

City, University of London Institutional Repository

Citation: Howe, J. M. (1997). Two loop detection mechanisms: a comparison. Paper

presented at the International Conference on Analytic Tableaux and Related Methods
(TABLEAUX'97), 13 - 16 May 1997, Pont-a-Mousson, France.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1707/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Two Loop Detection Mechanisms: a Comparison

Jacob M. Howe

Computer Science Division
University of St Andrews, Scotland, KY16 9SS

jacob@dcs.st-and.ac.uk

Abstract. In order to compare two loop detection mechanisms we describe two
calculi for theorem proving in intuitionistic propositional logic. We call them bothMJHist, and distinguish between them by description as ‘Swiss’ or ‘Scottish’.
These calculi combine in different ways the ideas on focusedproof search of Her-
belin and Dyckhoff & Pinto with the work of Heuerdinget al on loop detection.
The Scottish calculus detects loops earlier than the Swiss calculus but at the ex-
pense of modest extra storage in the history. A comparison ofthe two approaches
is then given, both on a theoretic and on an implementationallevel.

1 Introduction

The main interest of this paper is the comparison of the two loop detection mechan-
isms described below. In order to do this we illustrate theiruse on the permutation-free
sequent calculusMJ for the propositional fragment of intuitionistic logic. This gives
calculi whose implementations are suitable for theorem proving.

Backwards proof search and theorem proving with a standard cut-free sequent cal-
culus, Gentzen’sLJ , for the propositional fragment of intuitionistic logic isinefficient
because of three problems. Firstly, the proof search is not in general terminating, due
to the possibility of looping. Secondly, it will produce proofs which are essentially the
same; they are permutations of each other, and correspond tothe same natural deduc-
tion. Thirdly, there are choice points where it has to be decided which of several rules
to apply and where to apply them.

The sequent calculusMJ for intuitionistic logic was introduced (with another name,LJT) by Herbelin in [7]. The propositional fragment of the calculusMJ is displayed
in Figure 1. This uses Girard’s idea of a special place for formulae in the antecedent,
the stoup first seen in [6]. The calculus was developed by Dyckhoff and Pinto [3] be-
cause it has the property that proofs are in 1–1 correspondence with the normal natural
deductions ofNJ . MJ is a permutation-free sequent calculus; it avoids the problems
of permutations in the cut-free sequent calculus of Gentzen. This removes the second
of the problems. In this paper we are more interested in theorem proving than in proof
search, hence the second problem is not directly relevant. But notice that permutations
are avoided inMJ by a focusing method — several choice points are removed. That
is,MJ partly addresses the third problem and hence is advantageous as a calculus for
theorem proving. However, the naı̈ve implementation ofMJ will lead to the possibility
of looping.

Looping may easily be removed by checking whether a sequent has already oc-
curred in a branch. Implementation of this is inefficient as it requires much information

to be stored. Recent work by Heuerdinget al [9] (the intuitionistic case of which is
closely related to that of Gabbay in [5]) shows how to use a ‘history’ to prevent looping
in a far more efficient way.

In this paper the history mechanism is developed in two ways and applied toMJ .
Both the resulting calculi have advantages and disadvantages. These are discussed the-
oretically and also pragmatically (in terms of the speed with which Prolog implement-
ations give proofs). We call the new calculusMJHist, the two varieties ‘Swiss’ and
‘Scottish’. A;�) B�) A � B (�R) �) A � B�! C� A�B�! C (�L)� A�! C� A^B�! C (^L1) � B�! C� A^B�! C (^L2)�) A �) B�) A ^B (^R) A;�) C B;�) C� A_B�! C (_L)�) A�) A _B (_R1) �) B�) A _B (_R2)A;� A�! BA;�) B (C) � A�! A (ax) � ?�! A (?)
Define:A � A � ?.A, B, C are formulae.� is a multiset of formulae.B, � is shorthand forfBg [� , where[is multiset union.
Sequent�) C has context� , goalC and no stoup.

Sequent� A�! C has context� , goalC and a single formula,A, in the stoup.

Fig. 1. Propositional Fragment of the calculusMJ .

2 Calculi With Histories

In this section we first discuss the idea of the history mechanism, and then describe the
two calculi. We shall conclude with a comparison of the two calculi.

2.1 The Use of Histories to Prevent Looping

Looping can very easily occur inMJ , for example:

....(p ^ p) � p) p(p ^ p) � p) p(p ^ p) � p) p ^ p (^R) (p ^ p) � p p�! p (ax)(p ^ p) � p (p^p)�p�! p (�L)(p ^ p) � p) p (C)
The sequent(p ^ p) � p) p may continue to occur in the proof tree for this

sequent using theMJ calculus. We can see that there is a loop: we need a mechanical
way to detect such loops.

One way to do this is to add ahistory to each sequent. The history is the set of all
sequents that have occurred so far on the branch of a proof tree. After each backwards
inference the new sequent (without its history) is checked to see whether it is a member
of this set. If it is we have looping and backtrack. If not the new history is the extension
of the old history by the old sequent (without its history), and we try to prove the new
sequent, and so on. Unfortunately this method is inefficientas it requires long lists of
sequents to be stored by the computer, and all of this list hasto be checked at each stage.
When the sequents are stored we are keeping far more information than is necessary.
Efficiency would be improved by cutting down the amount of storage and checks to the
bare minimum needed to prevent looping.

The basis of the reduced history is the realisation (as in [9]) that one need only store
goal formulae in order to loop-check. The rules ofMJ are such that the context cannot
decrease; once a formula is in the context it will be in the context of all sequents above
it in the proof tree. For two sequents to be the same they obviously need to have the
same context. Therefore we may empty the history every time the context is extended.
All we need store in the history are goal formulae. If we have asequent whose goal
is already in the history, then we have the same goal and the same context as another
sequent, that is, a loop.

There are two slightly different ways of doing this. There isthe straightforward
extension and modification of the calculus described in [9] (which we call a ‘Swiss
history’). The other approach involves storing slightly more formulae in the history, but
detects loops more quickly. This we describe as the ‘Scottish history’; it can, in many
cases, be much more efficient than the Swiss method.

2.2 The Swiss History

Before continuing, we should point out that the calculus we describe here as Swiss is
significantly different from the one in [9]. This is partly due to our use ofMJ as a base
calculus, and partly because we are trying to focus on the history mechanism, hence we
have not included the subsumption checks that the calculus in [9] uses.

The Swiss-style calculusMJHist is displayed in Figure 2. Let us make some gen-
eral points about it (which will apply to the ScottishMJHist as well). We have given
explicit rules for negation (which are just special cases ofthe rules for implication) for
the sake of completeness of connectives. Also, notice that there are two rules for(�R).

These correspond to the two cases where the new formula is or is not in the context.
As noted above (inx2.1) this is very important forMJHist. Also note that the number
of formulae in the history is at most equal to the length of theformula we check for
provability.

The loop checking due to the history in the calculus works in asimilar way to that

of IPCRP ^;!SU
in [9]. A sequent is matched against first the conclusions of right rules

until the goal formula is either a propositional variable, falsum, or a disjunction (note
that disjunction isn’t covered in [9], and requires specialtreatment). This is ensured by
condition? on rule(C). Then a formula from the context is selected and placed in the
stoup by the(C) rule, the sequent is then matched against stoup formulae of left rules
(this focusing does not occur in [9]). The history mechanismis used to prevent looping
in the(�L) rule (and similarly in the(:L) rule). The left premiss of the rule has the
same context as the conclusion, but the goal is generally different. If the goal,C, of
the conclusion is not in the history,H, we storeC inH and continue backwards proof
search on the left premiss. Alternatively,C might already be inH. In this case there is a
loop, and so this branch is not pursued. We backtrack and lookfor a proof in a different
way.

There is another place where the rules are restricted in order to prevent looping. This
is the condition placed on the(_L) rule. For the(�R) rule (which attempts to extend
the context) there are two cases corresponding to when the context is and when it is not
extended. Something similar is happening in the(_L) rule. In both the premisses of the
rule a formula may be added to the context. If both contexts really are extended, then
we continue building the proof tree. If one or both contexts are not extended then the
sequent with the non-extended context,S, will be the same as some sequent at a lesser
height in the proof tree — there is a loop. This is easy to see: since the context and goal
of S are the same as that of the conclusion, the sequent before thestoup formula (or a
formula containing it as a subformula) was selected into thestoup must be the same asS.

We now state the equivalence theorem. This is done in two stages.

Theorem 1 The calculiMJ andMJHist (without ?) are equivalent. That is, a sequentS is provable in MJ if and only if S;� (the sequent with the empty history) is provable
in MJHist (without ?).

PROOF:(Sketch) The(direction is straightforward.
To prove the) direction we take anMJ proof tree and use it to build anMJHist

proof tree.
We start at the root,�) A in MJ and we have root�) A; fAg in MJHist.
Given a fragment ofMJ proof tree with corresponding fragment ofMJHist proof

tree, we look at the next inference in theMJ tree. We have a recipe which we can use
to build a fragment ofMJHist proof tree corresponding to a strictly larger fragment of
theMJ proof tree.

As proof trees are finite, this process must be terminating.
For full details see [10].�

A;�) B;��) A � B;H (�R1) if A =2 � �) B;H�) A � B;H (�R2) if A 2 �A; �)?;��) :A;H (:R1) if A =2 � �)?;H�) :A;H (:R2) if A 2 ��) A; (C;H) � B�! C;H� A�B�! C;H (�L) if C =2 H�) A; (C;H)� :A�! C;H (:L) if C =2 H� A�! C;H� A^B�! C;H (^L1) � B�! C;H� A^B�! C;H (^L2)�) A;H �) B;H�) A ^B;H (^R)A;�) C;� B; �) C;�� A_B�! C;H (_L) if A =2 � andB =2 ��) A;H�) A _B;H (_R1) �) B;H�) A _B;H (_R2)A;� A�! B;HA;�) B;H (C)? � A�! A;H (ax) � ?�! A;H (?)? B is either a propositional variable,? or a disjunction.A, B, C are formulae,� is a multiset of formulae, andH is a set of formulae.B;� is shorthand forfBg [� .
Sequent�) C;H has context� , goalC, historyH and no stoup.

Sequent� A�! C;H has context� , goalC, historyH and stoupA.
When the history has been extended we have parenthesised(C;H) for emphasis.

Fig. 2. The propositional calculusMJHist, Swiss style

A;�) B; fBg�) A � B;H (�R1) if A =2 � A; �) ?; f?g�) :A;H (:R1) if A =2 ��) B; (B;H)�) A � B;H (�R2) if A 2 �; if B =2 H�)?; (?;H)�) :A;H (:R2) if A 2 �; if ? =2 H�) A; (A;H)� :A�! C;H (:L) if A =2 H�) A; (A;H) � B�! C;H� A�B�! C;H (�L) ifA =2 H� A�! C;H� A^B�! C;H (^L1) � B�! C;H� A^B�! C;H (^L2)�) A; (A;H) �) B; (B;H)�) A ^B;H (^R) if A =2 H andB =2 HA;�) C; fCg B;�) C; fCg� A_B�! C;H (_L) if A =2 � andB =2 ��) A; (A;H)�) A _B;H (_R1) if A =2 H �) B; (B;H)�) A _B;H (_R2) ifB =2 HA;� A�! B;HA;�) B;H (C)? � A�! A;H (ax) � ?�! A;H (?)? B is either a propositional variable,? or a disjunction.A, B, C are formulae,� is a multiset of formulae,H is a set of formulae.B;� is shorthand forfBg [� .
Sequent�) C;H has context� , goalC, historyH and no stoup.

Sequent� A�! C;H has context� , goalC, historyH and stoupA.
When the history has been extended we have parenthesised(C;H) for emphasis.

Fig. 3. The propositional calculusMJHist, Scottish style

Theorem 2 The calculus MJHist with condition ? placed on rule (C) is equivalent toMJHist without the extra condition.

PROOF:(Sketch) The(direction is trivial.
To prove the) direction, we first prove thatMJ andMJ with condition? on (C)

are equivalent. This is done by a simple induction on the depth of the proof and on
complexity of formulae.

For anyMJHist (without?) proof that doesn’t satisfy?, we can consider it as anMJ proof. Then we can find anMJ proof satisfying?. Using the procedure in the
proof of theorem 1, we can build anMJHist (with ?) proof tree.

For full details see [10]�
2.3 The Scottish History

In this section we discuss the ScottishMJHist. We go through its theory where it is
different from the Swiss style calculus and explaining the motivations for the alternative
approach. The ScottishMJHist is given in Figure 3.

We said earlier that when using a history mechanism to prevent looping it would
be good to cut down the amount of storage and checking needed to a bare minimum.
This was done in the SwissMJHist — the history mechanism operates in one place
only and other restrictions for loop prevention involve no storage. However it is not
clear that this is the best and most attractive approach. There is a tradeoff between these
advantages and the obvious disadvantage of not looking for loops very often. We will
find loops more quickly if we look for them at more points. Thatis, we might continue
building a tree needlessly, when a loop might already have been spotted. The ScottishMJHist has larger histories, but this allows us to check for loops more often, and in
certain situations this is advantageous.

As in the Swiss history, when attempting to prove a sequent, right rules are applied
first, then(C), then left rules. Also, looping is prevented by the(_L) rule in the same
way. The difference between the two calculi is in the way thatthe history mechanism
works.

Whereas the Swiss calculus only places formulae in the history which have been
the goal of the conclusion of a(�L) (or (:L)) rule, the Scottish calculus keeps as the
history a complete record of the goal formulae of sequents between context extensions.
At each of the places where the history might be extended, thenew goal is checked
against the history. If it is in the history, then there is a loop. The heart of the difference
between the two calculi is that in the Swiss calculus loop checking is done when a
formula leaves the goal, whereas in the Scottish calculus itis done when it becomes the
goal.

We have the same equivalence theorems as for the Swiss calculus. These are proved
in a similar manner. For details again see [10].

Theorem 3 The calculiMJ andMJHist (without ?) are equivalent. That is, a sequent�) A is provable in MJ if and only if �) A; fAg (the sequent with its trivial
history) is provable in MJHist (without ?).

PROOF: Similar to that of theorem 1.�
Theorem 4 The calculusMJHist with condition ? placed on rule (C) is equivalent toMJHist without the extra condition.

PROOF: Similar to that of theorem 2.�
2.4 Comparison of the Two Calculi

Because of the way that the Swiss history works, loop detection is delayed. Let us
illustrate this with an example. Consider the sequent:p; q; (p � q � r) � r) p � q � r

In the Swiss styleMJHist (where� = p; q; (p � q � r) � r, andG = p � q � r)
this gives the following: �) G; frg � r�! r;� (ax)� (p�q�r)�r�! r;� (�L)�) r;� (C)�) q � r;� (�R2)�) G;� (�R2)

We have to go through all the inference steps again (in the branch above the left
premiss) before the loop is detected. However, in the Scottish calculus we get:�) G; fG; r; q � r;Gg � r�! r; fr; q � r;Gg (ax)� (p�q�r)�r�! r; fr; q � r;Gg (�L)�) r; fr; q � r;Gg (C)�) q � r; fq � r;Gg (�R2)�) G; fGg (�R2)

The topmost inference,(�L), is not valid, because the left premiss has goal formula,G, which is already in the history. That is, the loop is detected, and is detected lower in
the proof tree than in the Swiss style calculus.

Spotting the loop as it occurs is not only theoretically moreattractive, but could also
prevent a lot of costly extra computation.

The two calculi both have their good points. The Swiss calculus is efficient from
the point of view that its history mechanism requires littlestorage and checking. The
Scottish calculus is efficient in that it detects loops as they occur, avoiding unnecessary
computations.

The question is whether or not in general an overhead in storage and checking of the
history (which shouldn’t be too great due to regular resetting) is preferable to the larger
proof trees which are the result delaying checking. Perhapsthe best way to decide this
is to look at empirical results in the form of timings for implementations of the calculi.
Note that as the two calculi are rather similar it is more thanlikely that any optimisation
that can be applied to the one can be applied to the other.

3 Implementation of the Decision Procedure

Our implementation of the calculus is syntax directed. A sequent�) A;� for the
Swiss calculus, or�) A; fAg for the Scottish, is passed to the theorem prover. For a
sequent with an empty stoup, the next inference is determined by the goal. If the goal is
an implication, negation or conjunction, then the appropriate rule on the right is applied.
If an instance of one of these rules fails, then we have to backtrack as no other rule is
applicable. If the goal is a propositionalvariable, falsumor a disjunction, the contraction
rule is applied, selecting a formula and placing it in the stoup. If a contraction fails,
then a different formula is placed in the stoup. If the goal isa propositional variable
or falsum, and contraction has failed for all possible stoupformulae, we backtrack. If
the goal is a disjunction and contraction has failed for all possible stoup formulae, then
we may apply disjunction on the right. If this fails we have tobacktrack. For a sequent
with a stoup formula, the next inference is decided upon by the stoup formula. The next
inference must be an instance of the appropriate rule on the left. If such an inference
fails, then we have to backtrack. Note that in(�L) we check the right branch, the one
with the stoup formula, first. We get failure if at any point norule instance can be
applied. We give an example of failure due to the history:p; �) p � q; fp; qg (�R2)
fails due toq =2 fp; qg not being satisfied. Because of condition?, no other rule in-
stances are applicable to this sequent and so we must backtrack.

For this implementation we do not need to know anything aboutthe invertibility of
any of the rules. However, it may be of some independent interest to point out rules
which are invertible and those which are not. For all three calculi - MJ , MJHist
(Swiss) andMJHist (Scottish) - all rules are fully invertible with the exception of(^L), (_R) and(C).
4 Results

The issue we are concerned with here is that of speed: how quickly we find out whether
or not a certain sequent or formula is provable. We tested thetwo theorem provers on a
sample of problems, some easy, some more problematic.

The calculi were implemented in prolog (naı̈vely, code can be found in [10]). The
programs were run using SICStus Prolog2.1 on a SUN SparcStation 10. The times given
are runtimes (in milliseconds), i.e. “CPU time used whilst executing, excluding time
spent garbage collecting, stack shifting or in system calls” [15]. In Figure 4 we present
the formulae we gave to the theorem prover (the quantified formulae were instantiated
over finite universes). In Table 1 we give the results and average timings (where NR
means that the machine had not proved the example after running overnight).

The results indicate that although the Swiss calculus can bequicker on some ex-
amples, this advantage is less significant than the disadvantage of the several examples
where the Swiss calculus is several orders of magnitude slower than the Scottish calcu-
lus. It should also be added that the times for the calculi implemented compare poorly
with our implementation of the single succedantLJT calculus of [1].

1. ((A _ B) ^ (D _E) ^ (G _H)) � ((A ^D) _ (A ^G) _ (D ^G) _ (B ^E) _ (B ^H) _ (E ^H))
2. ((A_B_C)^(D_E_F)^(G_H_J)^(K_L_M)) � (A^D)_(A^G)_(A^K)_(D^G)_(D^K)_(G^K)_(B^E)_(B^H)_(B^L)_(E^H)_(E^L)_(H^L)_(C^F)_(C^J)_(C^M)_(F^J)_(F^M)_(J^M)
3. ((A _B _ C) ^ (D _E _ F)) � ((A ^B) _ (B ^E) _ (C ^ F))
4. (A � B) � (A � C) � (A � (B ^ C))
5. (A ^ :A) � B
6. (A _ C) � (A � B) � (B _ C)
7. ((((A � B) ^ (B � A)) � (A ^ B ^ C)) ^ (((B � C) ^ (C � B)) �(A ^B ^ C)) ^ (((C � A) ^ (A � C)) � (A ^B ^ C))) � (A ^B ^ C)
8. ((::P � P) � P) _ (:P � :P) _ (::P � ::P)_ (::P � P)
9. (((G � A) � J) � D � E) � (((H � B) � I) � C � J) � (A � H) �F � G � (((C � B) � I) � D) � (A � C) � (((F � A) � B) � I) � E

10. A � B � ((A � B � C) � C) � (A � B � C)
11. ((::(:A _ :B) � (:A _ :B)) � (::(:A _ :B) _ :(:A _ :B))) �(::(:A_ :B) _ :(:A _:B))
12. B � (A � (((A ^ B) � C1) � (((A ^ B) � C2) � (((A ^ B) � C3) �(((A ^B) � (B � C1 � C2 � C3 � B)) � (A ^B))))))
13. ((A ^B _ C) � (C _ (C ^D))) � (:A _ ((A _B) � C))
14. ::((:A � B) � (:A � :B) � A)
15. ::(((A$ B) $ C) $ (A$ (B $ C)))
16. 8x9y8z(p(x) ^ q(y) ^ r(z)) $ 8z9y8x(p(x) ^ q(y) ^ r(z))
17. 9x18y19x28y29x38y3(p(x1; y1) ^ q(x2; y2) ^ r(x3; y3)) �8y39x38y29x28y19x1(p(x1; y1) ^ q(x2; y2) ^ r(x3; y3))
18. :9x8y(mem(y; x) $:mem(x; x))
19. :9x8y(q(y) � r(x; y)) ^ 9x8y(s(y) � r(x; y)) � :8x(q(x) � s(x))
20. 8z18z28z3(q(z1; z2; z3; z1; z2; z3)) � 9x19x29x39y19y29y3((p(x1) ^p(x2) ^ p(x3)$ p(y1) ^ p(y2) ^ p(y3)) ^ q(x1; x2; x3; y1; y2; y3))
21. ((9x(p � f(x))) ^ (9x1(f(x1) � p))) � (9x2((p � f(x2)) ^ (f(x2) � p)))
22. (9x(p(x)) ^ (8x1(f(x1) � (:g(x1) ^ r(x1))) ^ (8x2(p(x2) � (g(x2) ^f(x2)))^(8x3(p(x3) � q(x3))_9x4(p(x4)^r(x4)))))) � 9x5(q(x5)^p(x5))
23. ((9x(p(x)) $ 9x1(q(x1))) ^ 8x28y((p(x2) ^ q(y)) � (r(x2) $ s(y)))) �(8x3(p(x3) � r(x3))$ 8x4(q(x4) � s(x4)))
24. (8x((f(x)_g(x)) � :h(x))^8x1((g(x1) � :i(x1)) � (f(x1)^h(x1)))) �8x2(i(x2))
25. (:9x(f(x)^(g(x)_h(x)))^(9x1(i(x1)^f(x1))^8x2(:h(x2) � j(x2)))) �9x3(i(x3) ^ j(x3))
26. (8x((f(x) ^ (g(x) _ h(x))) � i(x)) ^ (8x1((i(x1) ^ h(x1)) � j(x1)) ^8x2(k(x2) � h(x2)))) � 8x3((f(x3) ^ k(x3)) � j(x3))
27. :9y8x(f(x; y) $:9z(f(x; z) ^ f(z; x)))

Fig. 4. Example Formulae

ExampleUniverse Result Swiss TimeScottish Time

1. Provable 14 18
2. Provable 1388 1701
3. Unprovable 15 21
4. Provable 0.2 0.2
5. Provable 0.1 0.1
6. Provable 0.6 0.8
7. Provable 11 14
8. Provable 0.5 0.5
9. Provable 4.3 4.3
10. Unprovable 0.4 0.5
11. Unprovable 24 10
12. Provable 0.7 1.0
13. Unprovable 4.5 3.2
14. Provable 3.5 2.7
15. Provable 50 57
16. 3 Provable 803 961
17. 2 Provable 7497 8450
18. 4 Provable 63 8.5
18. 5 Provable 146 15
19. 2 Provable 7.8 8.1
19. 3 Provable 18420 27
20. 2 Provable 1.1 2.1
20. 4 Provable 5.3 6.6
21. 2 Unprovable 8.6 10
21. 3 Unprovable 27 33
22. 2 Provable 366 22
22. 3 Provable 12320 514
23. 2 Provable 35 45
23. 3 Provable 2186 1407
24. 2 Unprovable 49 31
25. 2 Provable 10790 20
25. 4 Provable NR 365
26. 2 Provable 3.4 5.8
26. 5 Provable 17 30
27. 2 Provable 10082 47

Table 1. Results and Timings (averages in milliseconds)

5 Conclusion

The use of a pared down history makes for a seemingly efficientmeans of loop detec-
tion for a theorem prover. However, as other intuitionistictheorem provers are written

in different languages, are run on different machines and (in most cases) deal with first-
order formulae, comparison is hard. An (incomplete) list ofother intuitionistic theorem
provers is: [2], [4], [8], [11], [12], [13], [14]. Of the two calculi given here, the one
with the smallest history and the least checking (the Swiss one) can become inefficient
(see example 27.) when delay in loop checking allows many extra branches to be pur-
sued. In the Scottish style calculus the inefficiency of the increased history is more than
counterbalanced by the early loop detection.

We have illustrated the use of the two history mechanisms on aparticular calculus
for intuitionistic propositional logic - one in which we areparticularly interested, rather
than because it is the best illustration. We anticipate similar advantages of the Scottish
history mechanism in treatment of modal logics.

A final issue to be addressed is that of proof search. For this neither calculus is really
suited, as they only find loop free proofs (plus a few more in the Swiss case). For details
see [10].

References

1. Dyckhoff, R.: Contraction-free Sequent Calculi for Intuitionistic Logic. Journal of Symbolic
Logic 57(3) (1992) 795–807

2. Dyckhoff, R.: MacLogic implementation. Available from URL http://www-theory.dcs.st-
and.ac.uk/�rd/logic/soft.html

3. Dyckhoff, R., Pinto, L.: A Permutation-free Sequent Calculus for Intuitionistic Logic. Uni-
versity of St Andrews Research Report CS/96/9 (1996)

4. Dyckhoff, R., Pinto, L.: Implementation of a Loop-free Method for Construction of Counter-
models for Intuitionistic Propositional Logic. University of St Andrews Research Report
CS/96/8 (1996)

5. Gabbay, D.: Algorithmic Proof With Diminishing Resources, Part 1. Proceedings of the 1990
workshop Computer Science Logic, eds. Börger, E., Kleine Büning, H., Richter, M. M.,
Schönfeld, W.; Springer LNCS533 (1991) 156–173

6. Girard, J.-Y.: A New Constructive Logic: Classical Logic. Mathematical Structures in Com-
puter Science1 (1991) 255–296

7. Herbelin, H.: A�-calculus Structure Isomorphic to Gentzen-style Sequent Calculus Struc-
ture. Proceeding of the 1994 workshop Computer Science Logic, eds. Pacholski, L., Tiuryn,
J.; Springer LNCS933 (1995) 61–75

8. Heuerding, A., Jäger, G., Schwendimann,S., Seyfried, M.: Propositional Logics on the Com-
puter. Proceedings of the 1995 international workshop on Theorem Proving with Analytic
Tableaux and Related Methods (TABLEAUX ’95), eds. Baumgartner, P., Hähnle, R., Pose-
gga, J.; Springer LNAI918 (1995) 310-323

9. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient Loop-Check for Backward Proof
Search in Some Non-classical Propositional Logics. Proceedings of the 1996 international
workshop on Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX
’96), eds. Miglioli, P., Moscato, U., Mundici, D., Ornaghi,M.; Springer LNAI 1071 (1996)
210–225

10. Howe, J.M.: Theorem Proving and Partial Proof Search forIntuitionistic Propositional Logic
Using a Permutation-free Calculus with Loop Checking. University of St Andrews Research
Report CS/96/12 http://www-theory.cs.st-and.ac.uk/�jacob/papers/tpil.html (1996)

11. Sahlin, D., Franzén, T., Haridi, S.: An IntuitionisticPredicate Logic Theorem Prover. Journal
of Logic and Computation2(5) (1992) 619–656

12. Shankar, N.: Proof Search in the Intuitionistic SequentCalculus. Proceedings of the 1992 in-
ternational conference on Automated Deduction (CADE-13),ed., Kupar, D.; Springer LNAI
607 (1992) 522–536

13. Stoughton, A.: porgi:a Proof-Or-Refutation Generatorfor Intuitionistic propositional logic.
http://www.cis.ksu.edu/�allen/home.html

14. Tammet, T.: A Resolution Theorem Prover for Intuitionistic Logic. Available from the URL
http://www.cs.chalmers.se/tammet/ (1996). This is a longer version of the paper in Proceed-
ings of the 1996 international conference on Automated Deduction (CADE-13), eds. McRob-
bie, M. A., Slaney, J. K.; Springer LNAI1104 (1996) 2-16

15. SICStus Prolog User’s Manual. Swedish Institute of Computer Science (1993)

Acknowledgements

The author is indebted to Roy Dyckhoff for many useful discussions. The comments of
the anonymous referees have also been very helpful and were greatly appreciated.

This article was processed using the LATEX macro package with LLNCS style

