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SUMMARY 15

We address the problem of testing for a parametric function of fixed effects in mixed mod-
els. We propose a test based on the distance between two empirical error distribution functions,
which are constructed from residuals calculated under the opposing hypotheses. The proposed
test statistic has power against all alternatives, and its asymptotic distribution isderived. A sim-
ulation study shows that the test outperforms others in the literature. The testis applied to longi- 20

tudinal data from an AIDS clinical trial and a growth study.

Some key words: Bootstrap; Empirical distribution; Residual; Local polynomial estimation;Mixed model.

1. INTRODUCTION

Mixed effects models assume a flexible covariance structure which allows for non-constant
correlation among the observations, and have become very popular for many practical situations. 25

A mixed effects model, or simply mixed model, contains both fixed and random effects. While
the former describe the relationship between the covariates and the response for all the obser-
vations, the latter are specific to clusters or subjects within a population. This kind of model is
suitable for problems related to, e.g., longitudinal data, repeated measurements, clustered data
and small area estimation. 30

The most popular parametric mixed effects models are linear mixed models or generalized
linear mixed models, which can be described as

g {E (Yij | Xij , bi)} = m(Xij) + bTi Zij , (1)

where,g is a known link function,Yij is the response variable,Xij is a covariate vector of
dimensiond, Zij is a subvector of(1, XT

ij)
T of dimensiond′, m represents the fixed effects and
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bi is ad′-dimensional vector of mean zero corresponding to the random effects.Wheng is the35

identity function andm is linear we have the linear mixed model. The nonlinear mixed model
arises when the right-hand side in equation (1) is a nonlinear function of thefixed and random
effects; see Pinheiro & Bates (2000).

The parametric assumption simplifies both theoretical and computational aspects, but it also
provides valuable interpretations in real data applications. Therefore, itis of interest to test the40

adequacy of simple parametric mixed models. There are different approaches to test parametric
assumptions for the function of the fixed effects, given by the functionm in model (1), or for the
distribution of the random effects, typically considered to be normally distributed.

Specification tests for the functionm in model (1) are well-established in the literature in
the absence of random effects. Different methods developed in the lasttwenty years (Gonźalez-45

Manteiga & Crujeiras, 2013) can be classified into three groups: tests based on the comparison
between nonparametric and parametric estimates; generalized likelihood ratio tests; and tests
based on the empirical distribution of the residuals. Contributions for the case with random ef-
fects are more recent and scarce. Zhang & Lin (2003) consider a testfor a semiparametric addi-
tive mixed model, wherem is an additive function. In particular, when one additive component50

is linear and the other is nonparametric, they designed a goodness-of-fittest for polynomial re-
gression in the nonparametric component. The authors assume clustered normal and non-normal
data and base the test on nonparametric estimation by smoothing splines. Lombard́ıa & Sperlich
(2008) propose a test based on kernel smoothing to check a linear function for the nonparamet-
ric component of a generalized semiparametric additive model. See also Sperlich & Lombard́ıa55

(2010), which is motivated by the small area estimation problem, and Henderson et al. (2008).
In the context of linear mixed models, or generalized linear mixed models, recent papers ex-

ploit the link between random effects and penalized regression, developing restricted likelihood
ratio testing for zero variance components in linear mixed models. These methods, which are
extensions of theF -test, have been applied to test whether the fixed effects are linear, quadratic,60

cubic, etc., in the presence of random effects, see Greven et al. (2008) and Wood (2013a,b). Huet
& Kuhn (2015) suggest an omnibus test that exploits the ideas of theF -test but using a Bonfer-
roni adjustment. Lin et al. (2002), Pan & Lin (2005) and Sánchez et al. (2009) provide omnibus
tests for linear mixed models and generalized linear mixed models, based on cumulative sums of
the residuals with respect to the covariates or the predicted values.65

On the other hand, inference about the assumptions made for the random effects in model (1),
for example the normal distribution of thebi’s, has been considered recently in many papers. See
Claeskens & Hart (2009) for an extensive review, or Meintanis & Portnoy (2011).

In this paper we propose a test based on the empirical distribution of the residuals. It extends
the test of Van Keilegom et al. (2008), who consider a model without random effects representing70

cross-sectional independent data. This kind of method is very powerful, since it can detect alter-
natives at the parametric raten−1/2. To calibrate the distribution of the test statistics we suggest
a bootstrap method suitable for the assumed mixed effects model.

2. MODEL AND ESTIMATION

In this paper we consider the semiparametric one-way model75

Yij = m(Xij) + bTi Zij + ǫij (j = 1, . . . , ni; i = 1, . . . , q), (2)

where q is the number of levels in the model andn =
∑q

i=1 ni is the total number of ob-
servations. The covariateXij is a d-dimensional random vector, andZij is a sub-vector of
(1, XT

ij)
T of dimensiond′. We assume that allXij ’s are identically distributed with distribution
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FX and densityfX , andX1, . . . , Xq are mutually independent, withXi = (Xi1, . . . , Xini
)T .

We assume that the errorsǫ11, . . . , ǫqnq are independent and identically distributed normal ran-80

dom variables with mean zero and varianceσ2, and thatE(ǫij | Xij) = 0. The random effects
b1, . . . , bq are independent and identically distributedd′-dimensional normal random variables
with mean zero and covariance matrixVb, which quantifies the within-subject variation. Fur-
ther, assume thatbi andXi′ are independent fori, i′ = 1, . . . , q, so bi is independent ofXi.
Moreover, cov(bi, ǫi′j | Xi, Xi′) = 0 for all i, i′ = 1, . . . , q andj = 1, . . . , ni′ . The normal as- 85

sumption made for the random effects and the errors could be relaxed (Severini & Staniswalis,
1994; Lin & Carroll, 2000). Here we make this assumption to develop simpler likelihood-based
inferences for the functionm, as well as for the estimation of the variancesVb andσ2.

Since the observations are only dependent if they come from the same individual, we can
write (2) using matrix notation. Thus we first stack the observations at the individual level, i.e., 90

Yi = m(Xi) + Zibi + ǫi (i = 1, . . . , q), whereZi is theni × d′ matrix with rowsZT
i1, . . . , Z

T
ini

,
Yi = (Yi1, . . . , Yini

)T , andǫi = (ǫi1, . . . , ǫini
)T has diagonal covariance matrixσ2Ini

. Also, the
variance ofYi conditionally onXi is

Vi = ZiVbZ
T
i + σ2Ini

. (3)

The model can be compactly written for the whole set ofn observations asY = m(X) + Zb+ ǫ,
whereY = (Y T

1 , . . . , Y T
q )T , X is then× d matrix with rowsXT

i , andZ is then× qd′ matrix 95

with diagonal blocksZi. Here, the variance ofY conditionally onX is V = ZBZT + σ2In,
whereB is the matrix with diagonal blocksVb.

Under a parametric mixed effects model the function of the fixed effectsm is commonly
estimated by the global likelihood method. Under the above conditions the densityof Yi,
conditionally onXi, is normal with meanm(Xi) = {m(Xi1), . . . ,m(Xini

)}T and covariance 100

matrixVi. Then the log-likelihood ofY conditional onX is

ℓ(m,Vb, σ
2) = −

1

2

q∑

i=1

[
{Yi −m(Xi)}

T V −1
i {Yi −m(Xi)}+ log |Vi|+ 2ni log(2π)

]
. (4)

Here we are interested in estimatingm(x), for any fixedx in Rd, by a local polynomial ap-
proach. We consider an extension of the common local polynomial estimator for independent and
identically distributed data, derived using local likelihood. For a givenx and supposing thatXij 105

is close tox and thatm is continuous atx, we have thatm(Xij) ≈ m(x) = βx0 (j = 1, . . . , ni).
Model (2) can then be locally approximated by the mixed modelYi = Pi(βx, x, p) + Zibi + ǫi,
wherePi(βx, x, p) is ani-dimensional vector of polynomials of orderp containing all products
of factors of the formXij,ℓ − xℓ (ℓ = 1, . . . , d; j = 1, . . . , ni). The vectorβx consists of all co-
efficients of these polynomials, and its first component isβx0 = m(x). The local log-likelihood 110

can be defined from the global log-likelihood (4), by introducing local weights for each
observation. However, in the presence of within-subject correlation in the model, this should
be done using blocks, i.e., considering each of theq independent components of the global
log-likelihood. As Lin & Carroll (2000) pointed out, the way to introduce the kernel weights
into the individual components is problem-specific, and different ways provide estimators with 115

different theoretical and practical properties; González-Manteiga et al. (2013) give a recent
discussion on this topic. In this paper we follow the approximation of Park & Wu(2006), which
is simpler and has good finite-sample properties. They define the local log-likelihood by



4 W. GONZÁLEZ-MANTEIGA , M.D. MARTÍNEZ-M IRANDA AND I. VAN KEILEGOM

ℓloc(βx, Vb, σ
2) = −

1

2

q∑

i=1

[
{Yi − Pi(βx, x, p)}

T W
1/2
ih,xV

−1
i W

1/2
ih,x {Yi − Pi(βx, x, p)}

+ log |Vi|+ 2ni log(2π)
]
, (5)

where the matrixWih,x is diagonal with elementsKh(Xij − x) for each independent block (i =120

1, . . . , q). Here, foru = (u1, . . . , ud) ∈ Rd, K(u) =
∏d

j=1 k(uj) is a d-dimensional product
kernel,k is a univariate kernel function,h ≡ hn is a bandwidth sequence converging to zero
whenn tends to infinity, andKh(u) =

∏d
j=1{k(uj/h)/h}. The estimator̂m(x) is then defined

as the first component of the vector that maximisesℓloc(βx, Vb, σ
2) overβx.

For the special case of local linear smoothing, i.e., whenp = 1, the estima-125

tor m̂(x) can be explicitly written as the first component of the2× 1 vector(∑q
i=1X

T
i W

1/2
ih,xV

−1
i W

1/2
ih,xXi

)
−1∑q

i=1X
T
i W

1/2
ih,xV

−1
i W

1/2
ih,x Yi, with Xi being theni × 2 ma-

trix with rows (1, Xij − x)T (j = 1, . . . , ni; i = 1, . . . , q). The local constant case,p = 0, is
analogous but replacing the matrixXi by theni-dimensional vector of ones,1ni

. If there is no
within-subject correlation, or it is ignored, the derived estimator form(x) is the local linear130

estimator for independent data whenp = 1, and the Nadaraya–Watson estimator whenp = 0.
Since the estimator ofm(x) depends onVb andσ2, which are unknown in general, the corre-

sponding feasible or empirical estimator at eachx can be derived using a three-step procedure.
The procedure accomplishes the estimation ofβ and the variancesVb andσ2, using simultane-
ously the local and global log-likelihoods (5) and (4), and is formulated asfollows:135

Step 1.For arbitrary values ofσ2 and Vb define the estimator ofm(x) for any x by
m̂σ,Vb

(x) = β̂σ,Vb
, which is the first component of the maximizer ofℓloc(βx, Vb, σ

2). Cal-
culatem̂σ,Vb

(Xij) for all observedXij ’s.
Step 2.Compute the estimator of(Vb, σ

2) as the maximizer(V̂b, σ̂
2) of ℓ(m̂σ,Vb

, Vb, σ
2), from

the global log-likelihoodℓ(m,Vb, σ
2) given in (4).140

Step 3.Finally, computem̂(x) = β̂
σ̂2,V̂b

.

From m̂(Xi) = {m̂(X1), . . . , m̂(Xq)}
T , the random effectsbi can be predicted using stan-

dard methods for linear mixed models byb̂i = V̂bZ
T
i V̂

−1
i {Yi − m̂(Xi)} (i = 1, . . . , q).

The above three-step procedure is suitable for model (2), whereσ2 andVb are global pa-
rameters, andβ is the only local parameter, but it can be easily adapted depending on which145

parameters in the model are global and which ones are local. For example, ifthe model is het-
eroscedastic, i.e., var(ǫij | Xij) = σ2(Xij), then we could estimateσ2(·) in the first step of the
above procedure. Then we would maximize the local log-likelihood at each point x, with re-
spect toβx, σ2(x) and V̂b(x). We could also consider thatm belongs to a parametric class
M = {mθ : θ ∈ Θ}, in which case the estimation ofm would move to the second step of the150

procedure. Then, we would maximize the global log-likelihood with respect toθ, σ2 andVb. Fi-
nally, note that our three-step procedure can be applied with any local log-likelihood and hence
to any local estimator ofm proposed in the literature. If the error is not supposed to be normal,
steps 1 and 2 could be based on a quasi-likelihood approach and on general estimating equations,
see, e.g., Liang & Zeger (1986) and Lin & Carroll (2000).155
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3. GOODNESS-OF-FIT TESTING

In this section we propose a test for the parametric null hypothesis about the function of the
fixed effectsm, formulated as follows:

H0 : m ∈ M = {mθ : θ ∈ Θ} , H1 : m /∈ M, (6)

whereΘ is a compact subset ofRs. Let θ0 be the true value ofθ underH0, which is supposed to
belong to the interior ofΘ. UnderH1, let us definēθ as the minimizer ofE[{m(X)−mθ(X)}2] 160

in Θ. Note thatθ̄ = θ0 underH0. The proposed test extends that of Van Keilegom et al. (2008)
for cross-sectional independent data. The first step in defining it is to characterize the null hy-
pothesis; see Theorem 2.1 in Van Keilegom et al. (2008). This result is based on the comparison
between the error distributions under the null and the alternative hypotheses. When the regression
model involves random effects, we can consider two approaches depending on how we define the 165

errors: either the marginal errors,Uij = Yij −m(Xij), arising from the marginal distribution of
the responseYij , or the conditional errors,ǫij = Yij −m(Xij)− bTi Zij , arising from the whole
regression structure, i.e., the distribution conditional on the random effects bi and the covariates.
Inference from conditional errors requires the estimation of both the random and the fixed ef-
fects, but the results of the tests can be affected by misspecification of the random component 170

(Pan & Lin, 2005). The whole regression model is the target for testing procedures based on
conditional residuals. However, our goal is to test the function of the fixed effects, so we suggest
a test based on the marginal errors.

Consider the marginal errorsUij = Yij −m(Xij). Such errors are not independent and iden-
tically distributed, so the assumptions in Van Keilegom et al. (2008) do not apply. In or- 175

der to remove the within-subject correlation, such errors have to be standardized. We con-
sider the block transformationV −1/2U , based on the whole vectorU = (UT

1 , . . . , U
T
q )

T , with
UT
i = (Ui1, . . . , Uini

). The elements ofV −1/2U are then independent and identically distributed
variables, so we can follow arguments like those in Van Keilegom et al. (2008) to formulate
the test statistics. Let us denote the elements of the transformed vector of errors byU ′

ij , and 180

note that they all have the same distribution as a generic variableU ′. Analogously, consider the
transformed errors based on the parametric regression function underthe null hypothesis, i.e.,
V −1/2{Y −mθ̄(X)}, with elements denoted byU ′

ij,0, which are also independent and identi-
cally distributed variables with the same distribution asU ′

0, underH0. From these definitions
the characterization of the null hypothesis in problem (6) follows by using arguments from Van 185

Keilegom et al. (2008). This is formulated in the next proposition, whose proof is given in the
Supplementary Material.

PROPOSITION1. Letm be a continuous function. The null hypothesisH0 : m ∈ M in (6) is
valid if and only if the standardized marginal errorsU ′ andU ′

0 have the same distribution.

The next step is to estimate the distribution of the random variablesU ′ andU ′

0, which we 190

denote byFU ′ andFU ′

0
; we assume that their corresponding densities exist and denote them by

fU ′ andfU ′

0
respectively. We consider the estimators ofm and the varianceV resulting from the

three-step estimation method presented in Section 2. Denote these estimators bym̂ andV̂ , where
V̂ is the block diagonal matrix with blockŝVi = ZiV̂bZ

T
i + σ̂2Ini

. Then we can estimate the dis-
tribution of U ′ by the empirical distribution of the standardized nonparametric marginal resid- 195

uals,F̂U ′(t) = n−1
∑q

i=1

∑ni

j=1 I
(
Û ′

ij ≤ t
)
. Here, theÛ ′

ij ’s denote the elements of the vector

V̂ −1/2{Y − m̂(X)}, andI is the indicator function. In the case of independent and identically
distributed data, the asymptotic properties of the estimator have been studied byAkritas & Van



6 W. GONZÁLEZ-MANTEIGA , M.D. MARTÍNEZ-M IRANDA AND I. VAN KEILEGOM

Keilegom (2001) for the special case whered = 1 andp = 0, and by Neumeyer & Van Keilegom
(2010) for the general case. Also, the distribution ofU ′

0 is estimated by the empirical distribution200

of the parametric marginal residualŝU ′

ij,0, i.e., F̂U ′

0
(t) = n−1

∑q
i=1

∑ni

j=1 I
(
Û ′

ij,0 ≤ t
)
, where

the Û ′

ij,0’s are defined as the elements of the vectorV̂ −1/2{Y − m̂0(X)}. The estimator̂m0 is
defined analogously tôm, but replacing the observed responsesYij by the parametric estima-
tor m

θ̂
(Xij) of the fixed effects. Here the estimatorθ̂ can, e.g., be defined by maximizing the

global likelihoodℓ(mθ, Vb, σ
2) with respect toθ, Vb andσ2, but other estimators are possible if205

assumptions (A7) and (A7⋆) below are satisfied.
Finally, we measure the distance between the empirical distributionsF̂U ′ and F̂U ′

0
, using

Kolmogorov–Smirnov and Craḿer–von Mises type statistics,

Tn,KS = n1/2 sup
−∞<t<∞

∣∣∣F̂U ′(t)− F̂U ′

0
(t)

∣∣∣ , Tn,CM = n

∫ {
F̂U ′(t)− F̂U ′

0
(t)

}2
dF̂U ′

0
(t).

To study the local power of these statistics, we consider the local alternatives210

H1n : m(·) = mθ0(·) + n−1/2r(·)

for some bounded functionr. These alternatives only concern the regression function and not the
error distribution. The main asymptotic result of this paper provides the asymptotic distribution
of the two test statistics. The result, given in Theorem 1 below, is formulated underH1n, but it
also coversH0 by taking the functionr equal to zero. We need the following assumptions:215

(A1) the number of blocks,q, tends to infinity, andni ≤ C (i = 1, . . . , q), for someC < ∞;
(A2) nh2p+2 → 0 if p is odd,nh2p+4 → 0 if p is even, andnh3d+ν → ∞ for some smallν > 0;
(A3) k is a symmetric probability density function supported on[−1, 1], k is d-times continu-

ously differentiable, andk(j)(±1) = 0 (j = 0, . . . , d− 1);
(A4) all partial derivatives ofFX up to order2d+ 1 exist on the interior of the compact support220

RX of X, they are uniformly continuous, andinfx∈RX
fX(x) > 0;

(A5) all partial derivatives ofx → m(x) up to orderp+ 2 exist on the interior ofRX , and they
are uniformly continuous;

(A6) all partial derivatives of(x, θ) → mθ(x) up to order2 exist on the interior ofRX ×Θ,
and they are continuous in(x, θ); and225

(A7) the estimatorθ̂ can be written aŝθ − θ0 = n−1
∑q

i=1

∑ni

j=1 ξ(Xij , Yij)+n−1/2δ +

oP (n
−1/2), whereξ satisfiesE{ξ(Xij , Yij) | Xij} = 0 both underH0 andH1n. More-

over, the asymptotic distribution ofn−1/2
∑q

i=1

∑ni

j=1 ξ(Xij , Yij) underH0 is the same
as underH1n, and the constantδ depends on the direction of the alternative hypothesis
determined by the functionr, and equals zero underH0.230

Assumption (A1) is common in the context of mixed effects models. In the contextof longitudi-
nal data it states that the number of individuals increases but the number ofobservations for each
individual is bounded. Assumptions (A2)–(A5) come from Neumeyer & Van Keilegom (2010)
and are required to obtain the asymptotic distribution of the processn1/2{F̂U ′(·)− FU ′(·)}. As-
sumption (A6) is necessary for applying the asymptotic results in Van Keilegomet al. (2008).235

Finally, (A7) is needed to decompose the processn1/2{F̂U ′

0
(·)− FU ′(·)} into a sum of indepen-

dent and identically distributed terms and negligible terms, from which the weak convergence of
this process will follow. See also Pan & Lin (2005), formula (2), and Theorem 3.1.2 in the 1994
Wisconsin-Madison University PhD thesis by J. C. Pinheiro, for similar decompositions, and for
precise conditions under which this assumption holds true.240



Goodness-of-fit Test in Parametric Mixed Effects Models 7

We are now ready to state the main result describing the limiting distribution of the test statis-
ticsTn,KS andTn,CM. The proof forp = 0 andp = 1 is given in the Supplementary Material.

THEOREM 1. Assume that conditions (A1)–(A7) are satisfied. Then, underH1n,

Tn,KS → sup
−∞<t<∞

|fU ′(t)| |W − a|, Tn,CM →

∫
f2
U ′(t) dFU ′(t) (W − a)2

in distribution, whereW is a zero-mean normal random variable with variance given in equation245

(5) in the Supplementary Material, and where the constanta depends on the direction of the
alternative, defined also in the Supplementary Material, equation (4). Note that a = 0 underH0.

Since the above limiting distributions are rather complicated, we suggest using bootstrap meth-
ods to approximate the critical values. More precisely, we define a bootstrap algorithm suitable
for the assumed mixed model: 250

1. Calculate the estimator̂m of the function of the fixed effectsm, the estimatorŝVb and σ̂2

of the variancesVb andσ2, and also the estimatorm
θ̂

of the parametric regression function
underH0. These estimators are derived using the three-step method in Section 2.

2. Generate bootstrap conditional errorsǫ⋆ij independently from a normal distribution with mean
zero and variancêσ2, and bootstrap random effectsb⋆i from ad′-dimensional normal distribu- 255

tion with mean zero and covariance matrixV̂b.
3. Under the null hypothesis the bootstrap responses are constructed by Y ⋆

ij = m
θ̂
(Xij) +

(b⋆i )
TZij + ǫ⋆ij (j = 1, . . . , ni; i = 1, . . . , q). Then, the bootstrap sample is given by

{(Xij , Zij , Y
⋆
ij), j = 1, . . . , ni, i = 1, . . . , q}.

4. Calculate the bootstrapped test statisticsT ⋆
n,KS andT ⋆

n,CM from the bootstrap sample gener-260

ated in the previous step.

Finally, the quantiles of the distribution ofT ⋆
n,KS andT ⋆

n,CM can be approximated by repeating
steps 2–4 in the bootstrap algorithmB times.

The resampling scheme could also be defined without using the normal assumption. In that
case both the conditional residuals and the random effects in the second step above could be 265

generated from the smoothed empirical distribution of the residuals (Van Keilegom et al., 2008).
The consistency of this bootstrap procedure is shown in the next result and the proof is given

in the Supplementary Material. For this, we need to introduce the bootstrap counterpart of (A7):

(A7⋆) underH0, the estimator̂θ⋆ can be written aŝθ⋆ − θ̂ = n−1
∑q

i=1

∑ni

j=1 ξ
⋆(Xij , Y

⋆
ij) +

oP ⋆(n−1/2), in probability, whereξ⋆ satisfiesE{ξ⋆(Xij , Y
⋆
ij) | Xij} = 0 and where

sup
t

∣∣∣pr⋆
{
n−1/2

q∑

i=1

ni∑

j=1

ξ⋆(Xij , Y
⋆
ij) ≤ t

}
− pr

{
n−1/2

q∑

i=1

ni∑

j=1

ξ(Xij , Yij) ≤ t
}∣∣∣ → 0,

in probability.

THEOREM 2. Assume that conditions (A1)–(A7) and (A7⋆) are satisfied. Then, underH0,

sup
s

∣∣∣pr⋆(T ⋆
n,KS ≤ s)− pr(Tn,KS ≤ s)

∣∣∣ → 0, sup
s

∣∣∣pr⋆(T ⋆
n,CM ≤ s)− pr(Tn,CM ≤ s)

∣∣∣ → 0,

in probability, where the probability pr⋆ is computed under the bootstrap distribution conditional270

on the original data(Xij , Zij , Yij) (j = 1, . . . , ni; i = 1, . . . , q).
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4. SIMULATION EXPERIMENTS

We simulate two different models: a simple model with just a random intercept,

Yij = m(Xij) + bi + ǫij , (7)

and a model with random effects consisting of a random intercept and a random slope, 275

Yij = m(Xij) + bi0 + bi1Xij + ǫij . (8)

Both are particular cases of (2), withZij = 1 for (7) andZij = (1, Xij)
T for (8). In both cases

we considerXij to be scalar and generated from either a uniform distribution on[0, 2] or a normal
distribution with mean zero and variance0.6. The random effects and the errorsǫij are generated
independently. The random effectsb1, . . . , bq in (7) are generated from a normal distribution with280

mean zero and standard deviationσb0 . We consider the valuesσb0 = 0.6, case 1, andσb0 = 1,
case 2. The two-dimensional random vector(bi0, bi1)

T (i = 1, . . . , q), in model (8), is bivariate
normal with covariance matrixVb = diag(0.32, 0.32). The errors are generated from a normal
distribution with mean zero and standard deviationσ = 0.3. We consider samples of sizesn =
150, 300 and600, where the number of observations per group is alwaysni = 3, and the number285

of groups equalsq = 50, 100 and200. We test whether the functionm is linear using the test
statisticsTn,KS andTn,CM.

The test involves a kernel estimator depending on three choices: the bandwidth parameter,h,
the degree of the polynomial,p, and the kernel functionk. The asymptotic analysis shows that
the bandwidthh should satisfy the conditions described in assumption (A2). We have considered290

bandwidths of the typeh = h0n
−3/10, which satisfy this assumption, whereh0 is a constant

value chosen around the range of the covariateX. This recommendation is similar to that of
Pardo-Ferńandez et al. (2007), who suggested the same kind of test in a different regression
framework. In the Supplementary Material we analyse the sensitivity of the test to the bandwidth
choice using several values forh0 around the range of the simulated covariate values. The con-295

clusion is that the test is quite robust to this choice so here we only report thecaseh = 3n−3/10.
Regarding the degree of the polynomial, it is known that the local linear estimator, p = 1, has
better properties than the local constant estimator,p = 0; see for example Wand & Jones (1995).
The effect of this choice is not major though; see the Supplementary Material. In this section,
and in our other empirical analyses, we only consider the local linear case. Finally, it is well-300

known that the choice of the kernel functionk does not have a major impact on the performance
of the kernel estimator (Wand & Jones, 1995), and therefore on our test. In our empirical studies
we consider the Epanechnikov kernel. We work with these choices ofh, p andk in the rest of
this section and derive the kernel estimator using the three-step estimation method presented in
Section 2. We have approximated the critical values in the test using the bootstrap algorithm305

described in Section 3 withB = 1000 bootstrap samples. The bootstrapped test statistics have
been calculated using the choices ofh, p andk above.

We consider two other tests that can deal with the formulated problem: the omnibus test of
Pan & Lin (2005), which competes with our test if the aim is to test a linear mixed model, is
based on the cumulative marginal residuals and has critical values obtainedusing an asymptotic310

approximation valid for large values ofq; and the restricted likelihood ratio test of Greven et al.
(2008), which is not omnibus in the sense that a single test is performed to detect deviations from
a null hypothesis. One can expect that the restricted likelihood ratio test, which is an extension
of the F -test, performs better than an omnibus test if the null hypothesis is linear. We have
calculated this test using the functionexactRLRTin the R-package RLRsim (Scheipl et al., 2008).315

We compare the empirical level and power of the tests. Let us consider first model (7). To
calculate the level we simulated 1000 samples under the null hypothesis, defined in this case
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by m(X) = 1 +X. Here, the considered nominal level isα = 0.05. The power was calculated
by simulating also 1000 samples from two specific alternatives. The first consists of contami-
nating the null hypothesis with a sinusoidal function, by simulatingm1(X) = 1 + (1− a)X +320

a sin(πX), with a = 0.1 and0.2. The second is harder to detect and allows us to check the power
against quadratic terms by simulatingm2(X) = 1 + (1− a)X + aX2 for a = 0.1 and0.2. In
both cases, the valuea = 0 corresponds to the null hypothesis of linearity.

Table 1 shows the results obtained from each test under this scenario andconsidering only
the normal design, which is also the most favourable design for the omnibus test of Pan & Lin 325

(2005). We considered a randomized rule (Pearson, 1950) to determinethe rejection levels for
Tn,KS, which is discrete. This consists of deciding the rejection of the null hypothesis based
on a random experiment when the test statistic equals the approximated criticalvalue. In our
case we define the functionφα(s) = {αB −#(T ∗

n,KS > s)}/#(T ∗

n,KS = s), generate a uniform
numberu ∈ (0, 1) and reject the null hypothesis ifu < φα(Tn,KS), or accept it otherwise. Here330

the notation#(S) represents the cardinality of the setS. All the tests have similar empirical level
for all sample sizes, and the average p-value of the test of Greven et al.(2008) is, in all cases,
much higher than the expected value of 50%.

The power of the tests for the two alternatives are also shown in Table 1. Our test clearly
outperforms that of Pan & Lin (2005). The restricted likelihood ratio test has the highest power, 335

as expected since it incorporates model information. Taking this into account, we can conclude
that our tests, in particular the Cramér–von Mises test, have good power.

Table 1.Empirical size and power (%) of tests under two types of alter-
natives for model (7). Under the null hypothesis,m(X) = 1 +X, the av-
erage p-value (%) is shown between brackets. The nominal level is 5%.

Case 1 Case 2
H0 n CM KS PL RLRT CM KS PL RLRT
m 150 4.2 5.9 4.0 4.6 4.0 4.8 4.3 5

(51) (51) (46) (72) (53) (53) (46) (72)
300 4.1 4.8 4.4 5.4 5.1 4.0 4.6 5.4

(51) (51) (48) (72) (41) (51) (48) (72)
600 5.1 4.3 4.1 4.8 5.2 5.0 4.2 4.7

(50) (50) (49) (71) (42) (51) (49) (72)
H1 n CM KS PL RLRT CM KS PL RLRT

m1 a = 0.1 150 26.1 18.5 5.4 28.9 21.6 14.8 4.5 28.0
300 49.1 33.3 12.3 54.2 48.8 34.1 7.0 53.9
600 82.8 60.3 18.9 92.1 81.4 56.4 9.1 90.8

m1 a = 0.2 150 75.5 54.7 16.1 90.5 71.8 49.8 6.9 89.6
300 96.9 85.4 36.1 99.9 96.8 81.3 15.0 99.9
600 100 97.7 68.8 100 99.6 98.0 27.2 100

m2 a = 0.1 150 32.2 20.1 7.3 73.4 29.5 18.9 5.1 72.4
300 55.0 36.5 11.2 96.2 51.6 31.3 7.4 96.2
600 84.3 55.7 24.0 100 81.0 58.4 9.6 100

m2 a = 0.2 150 81.1 59.4 19.0 99.8 75.4 54.8 8.0 99.6
300 96.2 82.9 42.9 100 94.4 78.8 15.9 100
600 100 97.0 82.1 100 99.5 95.6 34.0 100

CM, Craḿer–von Mises; KS, Kolmogorov–Smirnov; PL, Pan & Lin (2005); RLRT, Greven
et al. (2008);m1(X), sinusoidal;m2(X), quadratic.
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Table 2.Empirical size and power (%) of tests under four
types of alternatives for model (8). Under the null hypothesis,
m(X) = 1 +X, the average p-value (%) is shown between

brackets. The nominal level is5%.

Uniform Normal
H0 n CM KS RLRT CM KS RLRT
m 150 4.5 4.2 5.0 4.8 4.3 6.5

(52) (51) (74) (51) (51) (71)
300 4.6 5.3 5.1 5.5 5.1 4.4

(48) (48) (73) (49) (50) (71)
600 5.7 5.4 5.0 3.9 3.8 5.2

(51) (51) (73) (49) (49) (73)
H1 n CM KS RLRT CM KS RLRT

m1 a = 0.2 150 17.9 14.3 35.9 24.8 21.4 58.2
300 33.9 24.8 70.0 53.5 47.4 91.6
600 49.9 43.3 95.4 81.9 73.2 99.6

m2 a = 0.2 150 9.5 11.8 23.6 31.2 33.2 66.7
300 16.8 19.1 47.8 65.0 66.7 93.1
600 27.0 29.5 77.7 90.5 91.0 99.6

m3 a = 0.2 150 24.1 17.5 38.2 74.2 60.3 90.5
300 34.9 27.2 66.7 93.6 85.5 99.6
600 49.6 42.2 93.7 99.7 98.8 100

m4 a = 0.2 150 9.3 11.3 20.9 27.0 22.0 39.0
300 12.1 13.3 42.2 43.7 37.6 68.4
600 18.9 20.4 72.8 64.0 58.6 94.2

CM, Craḿer–von Mises; KS, Kolmogorov–Smirnov; RLRT, Greven et al.
(2008);m1(X), sinusoidal;m2(X), quadratic;m3(X), absolute value;
m4(X), discontinuous.

To finish this section, we consider model (8). The power was calculated from four alternatives:
the samem1(X) andm2(X) considered above witha = 0.2, and non-smooth alternatives de-
fined bym3(X) = 1− a|0.5−X| andm4(X) = 1− aX I

(
X ≤ 0.5

)
+ a I

(
X > 0.5

)
, also 340

with a = 0.2. Table 2 shows that for model (8) the size of our test is around the nominallevel of
5% and the test provides reasonable power. We have not considered the test of Pan & Lin (2005)
since it has been clearly beaten by our test in the simpler model (7). As expected, the test of
Greven et al. (2008) exhibits the highest power but provides an average p-value, under the null
hypothesis, much higher than 50%.345

5. APPLICATION TO AIDS CLINICAL TRIAL

Our first application consists of CD4 counts data from an AIDS clinical trialto evaluate the
efficacy of Zidovudine in treating patients with mild symptomatic HIV infection. These data have
also been analysed by Lin et al. (2002) and Pan & Lin (2005). A total of711 patients enrolled
in the study, with 361 randomized to Zidovudine and 350 to placebo. Here we only consider the350

patients treated with Zidovudine. Experts on this type of data suggest that theCD4 counts for
these patients tend to rise for the first few weeks and then decline over time (Lin et al., 2002).
Hence, it seems reasonable to describe the time trend with polynomials of degree two or three.
The profile plot for these patients is shown in Figure 1.
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Fig. 1. CD4 count data. Observed individual profiles (gray lines) forpatients treated
with Zidovudine. The estimated function of the fixed effects using the local linear ker-
nel estimator is shown by a dashed curve using a bandwidth of 8 weeks, and a cubic

parametric estimator is plotted by a solid curve.

From these plots it is difficult to extract any useful information, because the individual CD4355

cell counts are quite noisy. However, the nonparametric estimator proposed in Section 2 is able
to capture the underlying structure in the data withp = 1. This local linear kernel estimator is
shown by the black solid curve in Figure 1. We have calculated this estimator byassuming model
(2) with the response,Yij , being the CD4 cell counts, and with the covariate,Xij , being the time
in weeks. We chose a bandwidth of 8 weeks by eye. This choice considers the variability within360

the data, and it is sufficient to provide a first visual impression about the underlying function.
However, Gonźalez-Manteiga et al. (2013) describe an automatic data-driven bandwidthselector
for this type of kernel estimator.

To choose the covariance structure in model (2) we considered two candidates: a simple model
with only a random intercept, that is, withZij = 1; and a more complex model with both random365

intercept and slope,Zij = (1, Xij)
T . The second was used to calculate the local linear estimator

plotted in Figure 1. These models can be written in the forms (7) and (8), respectively. To decide
which model is more appropriate, we calculated the AIC considering a quadratic polynomial for
the function of the fixed effects. The AIC values are 27344 and 27359,suggesting that the model
with just a random intercept describes the random variations better. Therefore in the following 370

we work under model (7).
The local linear estimator in Figure 1 shows that the underlying time trend in the CD4 cell

counts could be modelled by a quadratic or a cubic polynomial. However the impression from
this graph depends on the degree of smoothness considered in the kernel estimator. We therefore
consider the tests proposed in this paper to decide between these two parametric models. First 375

we consider a quadratic polynomial as the null hypothesis. The resulting p-values are 1.2% using
Tn,KS, and 0.1% usingTn,CM. These statistics were calculated using the local linear estimator
and bandwidth parameterh = h0n

−3/10, with h0 equal to the range of the covariate. With the
same type of kernel estimator and bandwidth choice, we now consider a cubic polynomial as
the null hypothesis. In this case,Tn,KS andTn,CM provide p-values equal to 16.9% and 14.1%,380
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respectively. The tests confirm that the time trend in the CD4 cell counts, forthe patients treated
with Zidovudine, can be described by a cubic polynomial.

6. TESTING NONLINEAR FIXED EFFECTS ASSUMING A MORE GENERAL MODEL

We now consider a model motivated by a data application to growth studies with longitudinal
data. Our objective is to provide a suitable extension of the methods proposed in Sections 2 and 385

3. The data analysis itself and a brief simulation experiment show the practicability of the tests
and their good performance in these settings. Further research is still necessary to derive the
theoretical properties of the test under the new model.

Our motivating data are the orange tree dataset described by Draper & Smith(1998). The data
arise from an experiment in which trunk circumference in millimeter was measured for q = 5390

orange trees onni = 7 different occasions, over roughly a 4-year period of growth defined at
(xi1, . . . , xini

) = (118, 484, 664, 1004, 1231, 1372, 1582) days for each tree. The interest in
growth studies lies, among others, in characterizing the average growth pattern in the population.
Thus testing whether a parametric function is appropriate for a particular growth study is of
interest. Figure 2 shows the profile plot. Previous studies suggest that themarginal mean can be395

described by a logistic model

E(Y | X) = β1 [1 + exp {−(X − β2)/β3}]
−1 , (9)

which represents many common growth patterns (Draper & Smith, 1998). Neither the test of Pan
& Lin (2005) nor that of Greven et al. (2008) can be used to check the suitability of this model,
but our test can be easily extended to it.400

The methods in Sections 2 and 3 were described under the semiparametric model (2), which
assumes that the function of the random effects is linear, inducing the marginal covariance struc-
ture given in (3). In order to apply the bootstrap method proposed in Section 3, the structure of the
random effects needs to be specified. Serroyen et al. (2009) consider the mean structure model
(9) for this dataset and suggest different models to describe the covariance structure. Among405

several candidates, the following nonlinear mixed effects model, also suggested by Pinheiro &
Bates (2000), provides a suitable representation of the underlying structure:

Yij = (β1 + bi) [1 + exp {−(Xij − β2)/β3}]
−1 + ǫij . (10)
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Fig. 2. Orange tree dataset. The dashed curves show the
observed individual profiles. The parametric logistic esti-
mator (solid curve) and the local linear estimator (triangle-

points) of the marginal mean are also shown.
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Here, bi are independent and identically distributed normal variables with mean zero and
varianceτ2, andǫij are independent and identically distributed normal variables with mean zero
and varianceσ2 (j = 1, . . . , ni; i = 1, . . . , q). The marginal mean from this model is indeed the410

logistic model (9), and it induces the covariance structure

Vi = var(Yi | Xi) = τ2sis
T
i + σ2Ini

, (11)

with si = ([1 + exp{−(Xi1 − β2)/β3}]
−1, . . . , [1 + exp{−(Xini

− β2)/β3}]
−1)T .

We propose the following extension of our model: 415

Yij = m(Xij) + vξi (Zij) + ǫij (j = 1, . . . , ni; i = 1, . . . , q), (12)

whereYij , Xij , Zij , m andǫij are specified exactly as before, but now the random effects func-
tion vξi (Zij) can be considered as a realization of a zero-mean nonlinear process depending on
a parameter vectorξ, with covariance functionγξ(Zij1 , Zij2) = E{vξi (Zij1)v

ξ
i (Zij2)}. Assume

also thatvξi (Zij) is independent ofǫij , conditionally onXij . The nonlinear mixed model defined
in (10) is a particular case of the semiparametric model (12), wherem is the logistic func- 420

tion defined in (9),vξi (Zij) = bi [1 + exp {−(Xij − β2)/β3}]
−1, and thebi are independent and

identically distributed normal variables with mean zero and varianceτ2.
Under model (12) our tests can be calculated in a straightforward way. The parametric and

nonparametric estimators ofm can be derived using the three-step method of Section 2. Here it is
necessary to specify the marginal covarianceVi involved in the global and local log-likelihoods,425

(4) and (5), respectively. For the orange trees dataset we considerthe structureVi defined in
(11). Figure 2 shows two estimators ofm: the parametric logistic estimator and the local linear
estimator with bandwidthh = 500 days. This figure suggests the adequacy of the logistic model.
To confirm this impression we perform the tests proposed in Section 3, and find that the p-
values forTn,KS andTn,CM are 58.7% and 55.7%, respectively. To derive these p-values we430

have considered a modification of the bootstrap algorithm, given in the Supplementary Material.
The finite sample performance of the tests described above is investigated in the Supplementary
Material under a scenario which represents the performed data analysis.
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