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SUMMARY 15

We address the problem of testing for a parametric function of fixedteffeanixed mod-
els. We propose a test based on the distance between two empirical emibuties functions,
which are constructed from residuals calculated under the opposirgheges. The proposed
test statistic has power against all alternatives, and its asymptotic distributienved. A sim-
ulation study shows that the test outperforms others in the literature. The éggilied to longi- 2
tudinal data from an AIDS clinical trial and a growth study.

Some key word8ootstrap; Empirical distribution; Residual; Local polynomial estimatiixed model.

1. INTRODUCTION

Mixed effects models assume a flexible covariance structure which allowsfeconstant
correlation among the observations, and have become very popularrigmqrectical situations. s
A mixed effects model, or simply mixed model, contains both fixed and randauteffwhile
the former describe the relationship between the covariates and the sedporall the obser-
vations, the latter are specific to clusters or subjects within a population. iHtisskmodel is
suitable for problems related to, e.g., longitudinal data, repeated meastseniestered data
and small area estimation. 30

The most popular parametric mixed effects models are linear mixed models erageed
linear mixed models, which can be described as

g{E (Yij | Xij,b:)} = m(Xi;) +b] Zij, 1)

where, g is a known link function,Y;; is the response variabley;; is a covariate vector of
dimensiond, Z;; is a subvector of1, X%)T of dimensiond’, m represents the fixed effects and
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b; is ad’-dimensional vector of mean zero corresponding to the random eft&tisn g is the
identity function andn is linear we have the linear mixed model. The nonlinear mixed model
arises when the right-hand side in equation (1) is a nonlinear function dixégeeand random
effects; see Pinheiro & Bates (2000).

The parametric assumption simplifies both theoretical and computational adpedtsalso
provides valuable interpretations in real data applications. Therefasepfitinterest to test the
adequacy of simple parametric mixed models. There are different ajpy@®éx test parametric
assumptions for the function of the fixed effects, given by the funetian model (1), or for the
distribution of the random effects, typically considered to be normally digetu

Specification tests for the functiam in model (1) are well-established in the literature in
the absence of random effects. Different methods developed in thevisty years (Gorédez-
Manteiga & Crujeiras, 2013) can be classified into three groups: testsl loasthe comparison
between nonparametric and parametric estimates; generalized likelihood sésioated tests
based on the empirical distribution of the residuals. Contributions for thewtdls random ef-
fects are more recent and scarce. Zhang & Lin (2003) consider tessemiparametric addi-
tive mixed model, wheren is an additive function. In particular, when one additive component
is linear and the other is nonparametric, they designed a goodnessest-fibor polynomial re-
gression in the nonparametric component. The authors assume clustered aod non-normal
data and base the test on nonparametric estimation by smoothing splines. diendb&perlich
(2008) propose a test based on kernel smoothing to check a linegiofufar the nonparamet-
ric component of a generalized semiparametric additive model. See aldxiSBeLombarda
(2010), which is motivated by the small area estimation problem, and Hemdetrab (2008).

In the context of linear mixed models, or generalized linear mixed models)trpapers ex-
ploit the link between random effects and penalized regression, dévglagstricted likelihood
ratio testing for zero variance components in linear mixed models. These raethoidh are
extensions of thé'-test, have been applied to test whether the fixed effects are linearatjuad
cubic, etc., in the presence of random effects, see Greven et a8)@00 Wood (2013a,b). Huet
& Kuhn (2015) suggest an omnibus test that exploits the ideas afttest but using a Bonfer-
roni adjustment. Lin et al. (2002), Pan & Lin (2005) anahShez et al. (2009) provide omnibus
tests for linear mixed models and generalized linear mixed models, based olattuersums of
the residuals with respect to the covariates or the predicted values.

On the other hand, inference about the assumptions made for the rafidots i@ model (1),
for example the normal distribution of tthgs, has been considered recently in many papers. See
Claeskens & Hart (2009) for an extensive review, or Meintanis & Ryr{2011).

In this paper we propose a test based on the empirical distribution of tldeatss It extends
the test of Van Keilegom et al. (2008), who consider a model withoutmareffects representing
cross-sectional independent data. This kind of method is very polwsiriae it can detect alter-
natives at the parametric rate /2. To calibrate the distribution of the test statistics we suggest
a bootstrap method suitable for the assumed mixed effects model.

2. MODEL AND ESTIMATION
In this paper we consider the semiparametric one-way model

where ¢ is the number of levels in the model amd= "7 , n; is the total number of ob-
servations. The covariatd;; is a d-dimensional random vector, and;; is a sub-vector of
(1, X%)T of dimensiond’. We assume that ak;;’s are identically distributed with distribution
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Fx and densityfx, and Xy, ..., X, are mutually independent, With; = (X1, ..., Xin,)%.

We assume that the errars, . . ., ¢4, are independent and identically distributed normal rans
dom variables with mean zero and variarce and thatE(e;; | X;;) = 0. The random effects
bi, ..., b, are independent and identically distribui€edimensional normal random variables
with mean zero and covariance matii¥, which quantifies the within-subject variation. Fur-
ther, assume that; and X;; are independent foi,7’ = 1,...,q, sob; is independent ofX;.
Moreover, covb;, e;; | X;, Xy) =0forall i,/ =1,...,gandj =1,...,ny. The normal as- &
sumption made for the random effects and the errors could be relaxeerifB& Staniswalis,
1994; Lin & Carroll, 2000). Here we make this assumption to develop simpldinded-based
inferences for the functiom, as well as for the estimation of the varianégsando?.

Since the observations are only dependent if they come from the saméiradjwve can
write (2) using matrix notation. Thus we first stack the observations at tixddodl level, i.e., o
Yi = m(X;) 4+ Zibi + € (i = 1,...,q), whereZ; is then; x d' matrix with rowsZz], ..., Z1
Y; = (Yi1,...,Yin,)?, ande; = (&1, .. ., €m,)! has diagonal covariance matex1,,, . Also the
variance ofY; conditionally onX; is

Vi = Z;VZF + 0%1,,. (3)

The model can be compactly written for the whole set observations a8 = m(X) + Zb + e,
whereY = (Y, ..., Y])?, X is then x d matrix with rows X', andZ is then x qd’ matrix s
with diagonal blocksZ;. Here, the variance of conditionally onX is V = ZBZ" + ¢21,,
whereB is the matrix with diagonal blocKg,.

Under a parametric mixed effects model the function of the fixed effecis commonly
estimated by the global likelihood method. Under the above conditions the dexfsity
conditionally onX;, is normal with meann(X;) = {m(X;1),...,m(X;,,)}* and covariance
matrix V;. Then the log-likelihood o¥” conditional onX is

—5 >0 ¥ = m(X)Y VY = m(X0)} + log Vil + 2nilog(2m) | (4)
=1

U(m,Vy, 0

[\D\H

Here we are interested in estimatingz), for any fixedz in R?, by a local polynomial ap-
proach. We consider an extension of the common local polynomial estimatodé&pendent and
identically distributed data, derived using local likelihood. For a giveamd supposing thaX;; s
is close tar and thatn is continuous at, we have thatn(X;;) ~ m(z) = B0 (j = 1,...,n;).
Model (2) can then be locally approximated by the mixed ma@et P;(5,, z,p) + Z;b; + €,
whereP; (8., =, p) is an;-dimensional vector of polynomials of ordgrcontaining all products
of factors of the formX;; , —x, (( =1,...,d; j = 1,...,n;). The vectors, consists of all co-
efficients of these polynomials, and its first componeritis= m(z). The local log-likelihood 11
can be defined from the global log-likelihood (4), by introducing locaights for each
observation. However, in the presence of within-subject correlationemtbdel, this should
be done using blocks, i.e., considering each of ghedependent components of the global
log-likelihood. As Lin & Carroll (2000) pointed out, the way to introduce trezriel weights
into the individual components is problem-specific, and different wagsige estimators with us
different theoretical and practical properties; Galez-Manteiga et al. (2013) give a recent
discussion on this topic. In this paper we follow the approximation of Park &2006), which

is simpler and has good finite-sample properties. They define the local Eipikd by
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—

q
loe(Ba, Vi 0%) = == S [{Yi = Pi(Bos,p)Y T Wi 2V ' W2 {Y; — Pi(Ba, 2,p))
=1

l\D

+ log |Vi| + 2n; log(2)], (5)

where the matrixV;, ., is diagonal with element&, (X;; — x) for each independent block £
1,...,q). Here, foru = (ui,...,uq) € R, K(u) = ]_[j.l:1 k(u;) is a d-dimensional product
kernel, k is a univariate kernel functiorf = h,, is a bandwidth sequence converging to zero
whenn tends to infinity, and<;, (u) = H?Zl{k(uj/h)/h}. The estimatorm(z) is then defined
as the first component of the vector that maximiggg 3., Vi, o%) over j3,.

For the special case of local linear smoothing, i.e., when-1, the estima-
tor m(x) can be explicitly Written as the first component of thex 1 vector
(S, XTWy2vio w2 x) T ol XTI 2Vt w2 v, with X, being then; x 2 ma-
trix W|th rows (1, X;; — )T (= 1 ,n;; 1=1,...,q). The local constant casg,= 0, is
analogous but replacing the matrK(i by theni-dimensional vector of ones,,,. If there is no
within-subject correlation, or it is ignored, the derived estimator/fdr) is the local linear
estimator for independent data when-= 1, and the Nadaraya—\Watson estimator whes 0.

Since the estimator of:(x) depends oV, ands?, which are unknown in general, the corre-
sponding feasible or empirical estimator at eactan be derived using a three-step procedure.
The procedure accomplishes the estimatiop @ind the variance®;, ando?, using simultane-
ously the local and global log-likelihoods (5) and (4), and is formulatefdlbmvs:

Step 1.For arbitrary values ofr?> and V;, define the estimator ofn(x) for any z by
Mgy, (T) = Ba,vb, which is the first component of the maximizerff. (3., V4, o%). Cal-
culatem, v, (X;;) for all observedX;’s.

Step 2.Compute the estimator @¥;, 02) as the maximize(V;, 52) of £(iy.v;, Vi, 02), from
the global log-likelihood/(m, V3, 2) given in (4).

Step 3Finally, computen(x) = 332 i

Fromm(X;) = {m(X1),...,m(X )}T the random effects; can be predicted using stan-
dard methods for linear mlxed models by= %ZTV Yy, - (X)) (i =1,...,q).

The above three-step procedure is suitable for model (2), V\dﬂ%deb are global pa-
rameters, ang is the only local parameter, but it can be easily adapted depending on which
parameters in the model are global and which ones are local. For exantpke nifodel is het-
eroscedastic, i.e., vas; | X;;) = o(X;;), then we could estimaie?®(-) in the first step of the
above procedure. Then we would maximize the local log-likelihood at eaittt p, with re-
spect tof,, o2(z) and Vj(z). We could also consider that belongs to a parametric class
M = {my : 0 € ©}, in which case the estimation af would move to the second step of the
procedure. Then, we would maximize the global log-likelihood with respegtdd andVi,. Fi-
nally, note that our three-step procedure can be applied with any loctikédidpood and hence
to any local estimator afh proposed in the literature. If the error is not supposed to be normal,
steps 1 and 2 could be based on a quasi-likelihood approach and aalgstienating equations,
see, e.g., Liang & Zeger (1986) and Lin & Carroll (2000).
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3. GOODNESSOF-FIT TESTING

In this section we propose a test for the parametric null hypothesis al®fiiribtion of the
fixed effectsm, formulated as follows:

Hy:meM={my: 0 €O}, Hy:mé¢ M, (6)

where© is a compact subset ®&°. Letd, be the true value of underH,, which is supposed to
belong to the interior o®. UnderHy, let us definé as the minimizer of2[{m/(X) — mg(X)}?] 1o
in ©. Note thatd = 6, underH,. The proposed test extends that of Van Keilegom et al. (2008)
for cross-sectional independent data. The first step in defining it isdmacterize the null hy-
pothesis; see Theorem 2.1 in Van Keilegom et al. (2008). This resulsedan the comparison
between the error distributions under the null and the alternative hygsthéfhen the regression
model involves random effects, we can consider two approachesdiegen how we define the s
errors: either the marginal erroiis;; = Y;; — m(X;;), arising from the marginal distribution of
the respons#;;, or the conditional errors,; = Y;; — m(X;;) — b! Z;;, arising from the whole
regression structure, i.e., the distribution conditional on the randont&ffeand the covariates.
Inference from conditional errors requires the estimation of both th@orarand the fixed ef-
fects, but the results of the tests can be affected by misspecification aintlem component 1+
(Pan & Lin, 2005). The whole regression model is the target for testingepiwes based on
conditional residuals. However, our goal is to test the function of the ffkects, so we suggest
a test based on the marginal errors.

Consider the marginal errot$; = Y;; — m(X;;). Such errors are not independent and iden-
tically distributed, so the assumptions in Van Keilegom et al. (2008) do ndi.appor- i
der to remove the within-subject correlation, such errors have to beastineld. We con-
sider the block transformatioi —/2U/, based on the whole vectéf = (Uf, ..., UF)T, with

U = (Ui, ..., Uin,). The elements of ~/2U are then independent and identically distributed
variables, so we can follow arguments like those in Van Keilegom et al. j2@0®rmulate
the test statistics. Let us denote the elements of the transformed vectooiaf Ia'lei’j, and s
note that they all have the same distribution as a generic vari&dbl&nalogously, consider the
transformed errors based on the parametric regression function thedeull hypothesis, i.e.,
V=YY —mg(X)}, with elements denoted hiy;; ,, which are also independent and identi-
cally distributed variables with the same distributionl&s under Hy. From these definitions
the characterization of the null hypothesis in problem (6) follows by usiggraents from Van s
Keilegom et al. (2008). This is formulated in the next proposition, whosefs given in the

Supplementary Material.

PROPOSITIONL. Letm be a continuous function. The null hypotheHis: m € M in (6) is
valid if and only if the standardized marginal errot8 and U/, have the same distribution.

The next step is to estimate the distribution of the random varidileand U}, which we
denote byFy. andFUé; we assume that their corresponding densities exist and denote them by
furand fUé respectively. We consider the estimatorgrofind the varianc® resulting from the

three-step estimation method presented in Section 2. Denote these estima?‘msdbf/, where

V is the block diagonal matrix with blocli??; = ZJA/,,ZiT + &21I,,. Then we can estimate the dis-
tribution of U’ by the empirical distribution of the standardized nonparametric marginal resid
uals, Fpr(t) = n~ 1 0L, S I(U}; < t). Here, theU!;’s denote the elements of the vector
V-L2{y — m(X)}, andI is the indicator function. In the case of independent and identically
distributed data, the asymptotic properties of the estimator have been studidditag & Van
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Keilegom (2001) for the special case whére- 1 andp = 0, and by Neumeyer & Van Keilegom
(2010) for the general case. Also, the distributiof/gfis estimated by the empirical distributiorne

of the parametric marginal residud]7$ 0 1€ ﬁU,( t)=n"t 3 Y (U 10 <t), where

the U’ oS are defined as the elements of the vecﬁ’crl/Q{Y m[)( )} The estimatormn is
deflned analogously t6:, but replacing the observed respon$gsby the parametric estima-

tor me( X;j) of the fixed effects. Here the estimatbrcan, e.g., be defined by maximizing the

global likelihood/(myg, V3, o) with respect td&, Vi, anda?, but other estimators are possible if
assumptions (A7) and (AY below are satisfied.

Finally, we measure the distance between the empirical dlstrlbuﬂ@nsand FU/ using
Kolmogorov—Smirnov and Cra@n—von Mises type statistics,

_ N A A 2
Thxs =n'/? sup |Ep(t) — Fy@®)|,  Thom = n/ {FU’(t) - FUg,(t)} dFy,(t).

—oo<t<o0o
To study the local power of these statistics, we consider the local altexgaativ

Hin :m(-) = mg,y(-) + 121 ()

for some bounded function These alternatives only concern the regression function and not the
error distribution. The main asymptotic result of this paper provides the asyimgistribution
of the two test statistics. The result, given in Theorem 1 below, is formulatddrdi,,, but it
also coverdd, by taking the function- equal to zero. We need the following assumptions:

(A1) the number of blocks;, tends to infinity, anch; < C (i =1, ..., q), for someC < oc;

(A2) nh?P*2 — 0if pis odd,nh?*+4 — 0if pis even, anch>** — oo for some small > 0;

(A3) k is a symmetric probability density function supported|ed, 1], k is d-times continu-
ously differentiable, an#)(+1) =0 (j = 0,...,d — 1);

(A4) all partial derivatives oF'x up to order2d + 1 exist on the interior of the compact support
Rx of X, they are uniformly continuous, anaf,cr, fx(z) > 0;

(A5) all partial derivatives of: — m(x) up to ordemp + 2 exist on the interior oR x, and they
are uniformly continuous;

(A6) all partial derivatives ofz,0) — my(z) up to order2 exist on the interior ofRx x O,
and they are continuous (i, #); and

(A7) the estimatord can be written asf — 6y = n~' 3%, S0 (X, Yig)+n 20+
op(n~1/?), where¢ satisfiesE{¢(X;;,Y;;) | Xi;} = 0 both underH, and Hy,,. More-
over, the asymptotic distribution @f /237 | >ity €(Xij,Yi;) under Hy is the same
as underH,,, and the constant depends on the direction of the alternative hypothesis
determined by the function, and equals zero undéf,.

Assumption (A1) is common in the context of mixed effects models. In the cootéomgitudi-
nal data it states that the number of individuals increases but the numtieser/ations for each
individual is bounded. Assumptions (A2)—(A5) come from Neumeyer & Kailegom (2010)
and are required to obtain the asymptotic distribution of the pract@§Fy/(-) — Fyr/(-)}. As-
sumption (A6) is necessary for applying the asymptotic results in Van Keilegjazh (2008).
Finally, (A7) is needed to decompose the prooe‘é%{ﬁ%(-) — Fy(+)} into a sum of indepen-
dent and identically distributed terms and negligible terms, from which the waraletgence of
this process will follow. See also Pan & Lin (2005), formula (2), and Teen3.1.2 in the 1994
Wisconsin-Madison University PhD thesis by J. C. Pinheiro, for similaodgiositions, and for
precise conditions under which this assumption holds true.
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We are now ready to state the main result describing the limiting distribution of thetads-
tics T}, ks andT;, cv. The proof forp = 0 andp = 1 is given in the Supplementary Material.

THEOREM1. Assume that conditions (A1)—(A7) are satisfied. Then, uAdgr

Tn,KS — sup ‘fU/ (t)’ ‘W — a], Tn,CM — /f(%/ (t) dFU/(t) (W — a)2

—oo<t<oo
in distribution, wheréV is a zero-mean normal random variable with variance given in equation
(5) in the Supplementary Material, and where the constadepends on the direction of the
alternative, defined also in the Supplementary Material, equation (4). Nate th 0 underHj,.

Since the above limiting distributions are rather complicated, we suggest usitgjriap meth-
ods to approximate the critical values. More precisely, we define a bqotdgarithm suitable
for the assumed mixed model: 250

1. Calculate the estimator of the function of the fixed effects:, the estimatorsf/b anda?
of the variance$/, ando?, and also the estimaton;; of the parametric regression function
underH,. These estimators are derived using the three-step method in Section 2.

2. Generate bootstrap conditional errgrsindependently from a normal distribution with mean
zero and variancg?, and bootstrap random effeétsfrom ad’-dimensional normal distribu- »ss
tion with mean zero and covariance maﬂ?/@(

3. Under the null hypothesis the bootstrap responses are constructef & m’e‘(Xij) +
T Zi; + € (j =1,...,n;; i=1,...,q9). Then, the bootstrap sample is given by
{(XU,Z”,YZ) =1,...,n,i=1,...,q}.

4. Calculate the bootstrapped test statisti¢g. and7" ~,, from the bootstrap sample generzo
ated in the previous step. ’ ’

Finally, the quantiles of the distribution f; . andZ}; -, can be approximated by repeating
steps 2—4 in the bootstrap algorithBntimes.

The resampling scheme could also be defined without using the normal agsunip that
case both the conditional residuals and the random effects in the seepndb®ve could be s
generated from the smoothed empirical distribution of the residuals (Vangéeilet al., 2008).

The consistency of this bootstrap procedure is shown in the next resbtha proof is given
in the Supplementary Material. For this, we need to introduce the bootstragecpart of (A7):

(A7*) under Hy, the estimatof* can be written ag* — § = ! D (X, Y +
op~(n~/2), in probability, wheret* satisfiesz{¢*(Xi;, Y;3) | XU} =0 and where

stip‘pl‘*{ 1/2225 (X5, V7)< } { 1/223235 Y St}‘—>0,

=1 j=1 =1 j=1
in probability.
THEOREM 2. Assume that conditions (A1)—(A7) and tA\@re satisfied. Then, undéf,
sup ‘pr*(Trf,KS <s)—pr(Thks < s)‘ — 0, sup ‘pl’*(T&CM <s)—pr(Thom < s)‘ — 0,
S S

in probability, where the probability pris computed under the bootstrap distribution conditionakb
on the original data( X;;, Z;;,Yi;) (= 1,...,n;; i =1,...,q).
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4. SIMULATION EXPERIMENTS
We simulate two different models: a simple model with just a random intercept,

Yi; = m(Xi;) + b; + €5, (7)
and a model with random effects consisting of a random intercept andiamaslope, 275
Yij = m(Xi;) + bio + bin Xij + €ij. 8)

Both are particular cases of (2), with; = 1 for (7) andZ;; = (1, X;;)* for (8). In both cases
we considerX;; to be scalar and generated from either a uniform distributioif ar or a normal
distribution with mean zero and variane®. The random effects and the errefsare generated
independently. The random effeéis. . ., b, in (7) are generated from a normal distribution with
mean zero and standard deviatiog). We consider the values,, = 0.6, case 1, and, = 1,
case 2. The two-dimensional random vedtas, b;1)” (i = 1,...,¢), in model (8), is bivariate
normal with covariance matrix; = diag(0.3%,0.3%). The errors are generated from a normal
distribution with mean zero and standard deviatio#s: 0.3. We consider samples of sizes=
150, 300 and600, where the number of observations per group is alwgys 3, and the number
of groups equalg = 50, 100 and 200. We test whether the functiom is linear using the test
statisticsT;, ks and7}, cu.

The test involves a kernel estimator depending on three choices: theibdmgarameters,
the degree of the polynomigl, and the kernel functiok. The asymptotic analysis shows that
the bandwidthh should satisfy the conditions described in assumption (A2). We have evedid
bandwidths of the typé = hon3/1°, which satisfy this assumption, whehg is a constant
value chosen around the range of the covariéterhis recommendation is similar to that of
Pardo-Ferandez et al. (2007), who suggested the same kind of test in a diffegmssion
framework. In the Supplementary Material we analyse the sensitivity of sh&otéhe bandwidth
choice using several values fhg around the range of the simulated covariate values. The con-
clusion is that the test is quite robust to this choice so here we only repaasieg = 3n3/10.
Regarding the degree of the polynomial, it is known that the local linear estimpato1, has
better properties than the local constant estimater,0; see for example Wand & Jones (1995).
The effect of this choice is not major though; see the Supplementary Matartais section,
and in our other empirical analyses, we only consider the local linear Easaly, it is well-
known that the choice of the kernel functibrdoes not have a major impact on the performance
of the kernel estimator (Wand & Jones, 1995), and therefore on dufriesir empirical studies
we consider the Epanechnikov kernel. We work with these choicés pfindk in the rest of
this section and derive the kernel estimator using the three-step estimatiordrpetsented in
Section 2. We have approximated the critical values in the test using the hpoadgorithm
described in Section 3 witl8 = 1000 bootstrap samples. The bootstrapped test statistics have
been calculated using the choiceshiop andk above.

We consider two other tests that can deal with the formulated problem: the asrettuof
Pan & Lin (2005), which competes with our test if the aim is to test a linear mixedemizd
based on the cumulative marginal residuals and has critical values obteiimgdan asymptotic
approximation valid for large values ¢f and the restricted likelihood ratio test of Greven et al.
(2008), which is not omnibus in the sense that a single test is performetetd deviations from
a null hypothesis. One can expect that the restricted likelihood ratio tegth vghan extension
of the F-test, performs better than an omnibus test if the null hypothesis is linear.awe h
calculated this test using the functieractRLRTn the R-package RLRsim (Scheipl et al., 2008).

We compare the empirical level and power of the tests. Let us considemfiicdel (7). To
calculate the level we simulated 1000 samples under the null hypothesigdgfithis case
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by m(X) = 1+ X. Here, the considered nominal levekis= 0.05. The power was calculated

by simulating also 1000 samples from two specific alternatives. The firsisterof contami-
nating the null hypothesis with a sinusoidal function, by simulatingX) =1+ (1 — a) X +
asin(rX), witha = 0.1 and0.2. The second is harder to detect and allows us to check the power
against quadratic terms by simulating,(X) =1 + (1 — a)X + aX? for a = 0.1 and0.2. In

both cases, the value= 0 corresponds to the null hypothesis of linearity.

Table 1 shows the results obtained from each test under this scenar@mmasidering only
the normal design, which is also the most favourable design for the omniitusf t@an & Lin s
(2005). We considered a randomized rule (Pearson, 1950) to detetimimejection levels for
T, xs, Which is discrete. This consists of deciding the rejection of the null hygath®msed
on a random experiment when the test statistic equals the approximated edtioal In our
case we define the functian, (s) = {aB — #(T), kg > s)}/#(1,, ks = ), generate a uniform
numberu € (0, 1) and reject the null hypothesisiif < ¢, (7}, ks), or accept it otherwise. Heresxo
the notation#(S) represents the cardinality of the setAll the tests have similar empirical level
for all sample sizes, and the average p-value of the test of Greven(20@8) is, in all cases,
much higher than the expected value of 50%.

The power of the tests for the two alternatives are also shown in Table riteSuclearly
outperforms that of Pan & Lin (2005). The restricted likelihood ratio testtha highest power, sss
as expected since it incorporates model information. Taking this into atosarcan conclude
that our tests, in particular the Crémvon Mises test, have good power.

Table 1.Empirical size and power (%) of tests under two types of alter-
natives for model®). Under the null hypothesisp(X) = 1 + X, the av-
erage p-value (%) is shown between brackets. The nomindl i¥é&5.

Case 1l Case 2
Hy n CM KS PL RLRT CM KS PL RLRT
m 150 4.2 5.9 4.0 4.6 4.0 4.8 4.3 5

(51) (81) (@46) (72) (53) (53) (46) (72

300 41 48 44 54 51 40 46 54

(1) (51) @8 (72) (41) (3) (48) (72

600 51 43 41 48 52 50 42 47

(50) (50) (49) (71) (42) (51) (49) (72)

Jii n CM KS PL RLRT CM KS PL RLRT

mi a=01 150 261 185 54 289 216 148 45 280
300 49.1 333 123 542 488 341 7.0 539

600 82.8 603 189 921 814 564 9.1  90.8

mi a=02 150 755 547 161 905 718 498 69 89.6
300 969 854 361 999 968 813 150 99.9

600 100 977 68.8 100 99.6 980 272 100

m2 a=01 150 322 201 7.3 734 295 189 51 724
300 550 365 112 962 516 313 74 96.2

600 843 557 240 100 81.0 584 9.6 100

m2 a=02 150 811 59.4 190 998 754 548 80 99.6
300 96.2 829 429 100 944 788 159 100

600 100 970 821 100 995 956 34.0 100

CM, Craner-von Mises; KS, Kolmogorov—Smirnov; PL, Pan & Lin (2005); RLEFeven
et al. (2008)ym1(X), sinusoidalynz(X), quadratic.
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Table 2.Empirical size and power (%) of tests under four

types of alternatives for moded); Under the null hypothesis,

m(X) =1+ X, the average p-value (%) is shown between
brackets. The nominal level 5%.

Uniform Normal
Hy n CM KS RLRT CM KS RLRT
m 150 4.5 4.2 5.0 4.8 4.3 6.5

(52) (1) (74 (51 (51) (71)

300 46 53 51 55 51 44

(48) (48) (v3) (49 (50) (71)

600 57 54 50 39 38 52

(G1) (G (3) (49 (49 (73

H, n CM KS RLRT CM KS RLRT

mi a=02 150 17.9 143 359 248 214 582
300 339 248 70.0 535 474 916

600 499 433 954 819 732 996

m2 a=02 150 95 11.8 236 312 332 66.7
300 168 191 478 650 66.7 93.1

600 27.0 295 77.7 905 910 99.6

ms a=02 150 241 175 382 742 603 905
300 349 272 667 936 855 99.6

600 496 422 937 997 988 100

ms a=02 150 93 113 209 270 220 39.0
300 121 133 422 437 376 684

600 189 204 728 640 586 942

CM, Craner-von Mises; KS, Kolmogorov—Smirnov; RLRT, Greven et al.
(2008); m1(X), sinusoidal;m2(X), quadratic;ms(X), absolute value;
ma4(X), discontinuous.

To finish this section, we consider model (8). The power was calculatedffyur alternatives:
the samen; (X') andmgy(X) considered above with = 0.2, and non-smooth alternatives de-
fined byms(X) =1—a|0.5 — X| andmy(X) =1 —aX I(X <0.5) +a I(X > 0.5), also o
with a = 0.2. Table 2 shows that for model (8) the size of our test is around the nofeirglof
5% and the test provides reasonable power. We have not consideredtlof Pan & Lin (2005)
since it has been clearly beaten by our test in the simpler model (7). Astexpehe test of
Greven et al. (2008) exhibits the highest power but provides an gavgraalue, under the null
hypothesis, much higher than 50%.

5. APPLICATION TOAIDS CLINICAL TRIAL

Our first application consists of CD4 counts data from an AIDS clinical taavaluate the
efficacy of Zidovudine in treating patients with mild symptomatic HIV infection. Ewata have
also been analysed by Lin et al. (2002) and Pan & Lin (2005). A tot&ll dfpatients enrolled
in the study, with 361 randomized to Zidovudine and 350 to placebo. Herelyeonsider the
patients treated with Zidovudine. Experts on this type of data suggest th@Diheounts for
these patients tend to rise for the first few weeks and then decline over timet(al., 2002).
Hence, it seems reasonable to describe the time trend with polynomials oédegrer three.
The profile plot for these patients is shown in Figure 1.
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Fig. 1. CD4 count data. Observed individual profiles (gray lines)pfatients treated

with Zidovudine. The estimated function of the fixed effects using the locahtiker-

nel estimator is shown by a dashed curve using a bandwidth of 8 weeks, eubic
parametric estimator is plotted by a solid curve.

From these plots it is difficult to extract any useful information, becausenttividual CD4
cell counts are quite noisy. However, the nonparametric estimator prebpoSection 2 is able
to capture the underlying structure in the data with- 1. This local linear kernel estimator is
shown by the black solid curve in Figure 1. We have calculated this estimasssoyning model
(2) with the response;;;, being the CD4 cell counts, and with the covariate;, being the time
in weeks. We chose a bandwidth of 8 weeks by eye. This choice cossidevariability within
the data, and it is sufficient to provide a first visual impression aboutnbderlying function.
However, Gonalez-Manteiga et al. (2013) describe an automatic data-driven bandseidittor
for this type of kernel estimator.

To choose the covariance structure in model (2) we considered twadeaest a simple model
with only a random intercept, that is, witfy; = 1; and a more complex model with both randoms
intercept and slop€Z;; = (1, X;;)T. The second was used to calculate the local linear estimator
plotted in Figure 1. These models can be written in the forms (7) and (8gatsgy. To decide
which model is more appropriate, we calculated the AIC considering a gtiadolynomial for
the function of the fixed effects. The AIC values are 27344 and 27 &Efesting that the model
with just a random intercept describes the random variations betteefohelin the following s
we work under model (7).

The local linear estimator in Figure 1 shows that the underlying time trend in thedeD
counts could be modelled by a quadratic or a cubic polynomial. However thessipn from
this graph depends on the degree of smoothness considered in thieekéimator. We therefore
consider the tests proposed in this paper to decide between these two tpiaramodels. First as
we consider a quadratic polynomial as the null hypothesis. The resuliratups are 1.2% using
T, xs, and 0.1% usind’, cm. These statistics were calculated using the local linear estimator
and bandwidth parametér= hon—3/10, with hy equal to the range of the covariate. With the
same type of kernel estimator and bandwidth choice, we now consideri@malignomial as
the null hypothesis. In this casé, ks andT;, ca provide p-values equal to 16.9% and 14.1%y
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respectively. The tests confirm that the time trend in the CD4 cell countdhdqratients treated
with Zidovudine, can be described by a cubic polynomial.

6. TESTING NONLINEAR FIXED EFFECTS ASSUMING A MORE GENERAL MODIE

We now consider a model motivated by a data application to growth studies witiddimal
data. Our objective is to provide a suitable extension of the methods prbpoSections 2 and sss
3. The data analysis itself and a brief simulation experiment show the pralitjcabthe tests
and their good performance in these settings. Further research is séisagg to derive the
theoretical properties of the test under the new model.

Our motivating data are the orange tree dataset described by Draper &(3898). The data
arise from an experiment in which trunk circumference in millimeter was medgarey = 5
orange trees on; = 7 different occasions, over roughly a 4-year period of growth ddfiate
(i1, - .., Tin,) = (118,484,664, 1004, 1231, 1372, 1582) days for each tree. The interest in
growth studies lies, among others, in characterizing the average grott¢hnga the population.
Thus testing whether a parametric function is appropriate for a particutavtiyrstudy is of
interest. Figure 2 shows the profile plot. Previous studies suggest thagtiginal mean can be
described by a logistic model

E(Y | X)=p1[1+exp{—(X - B2)/Bs}] ", 9)

which represents many common growth patterns (Draper & Smith, 1998) eX#ithtest of Pan
& Lin (2005) nor that of Greven et al. (2008) can be used to checkuhatslity of this model,
but our test can be easily extended to it.

The methods in Sections 2 and 3 were described under the semiparametrid2yodaich
assumes that the function of the random effects is linear, inducing the rakegirariance struc-
ture given in (3). In order to apply the bootstrap method proposed in 8&tibe structure of the
random effects needs to be specified. Serroyen et al. (2009) eotis&lmean structure model
(9) for this dataset and suggest different models to describe thei@owarstructure. Among
several candidates, the following nonlinear mixed effects model, alsesteggby Pinheiro &
Bates (2000), provides a suitable representation of the underlyingustuc

YVij = (By+bi) [1 4+ exp{—(Xi; — B2)/Bs}] " + €5 (10)

190 1.‘50 2?0

Circumference (mm)

5‘0

500 1000 1500
Age (days)

Fig. 2. Orange tree dataset. The dashed curves show the

observed individual profiles. The parametric logistic esti-

mator (solid curve) and the local linear estimator (triangle-
points) of the marginal mean are also shown.
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Here, b; are independent and identically distributed normal variables with mean rero a
variancer?, ande;; are independent and identically distributed normal variables with mean zero

and variance® (j = 1,...,n;;i = 1,...,q). The marginal mean from this model is indeed the
logistic model (9), and it induces the covariance structure
Vi =var(V; | X;) = 7%sis] + 0%, (11)
with s; = ([1 +exp{—(Xi1 — B2)/B3}] 7", .., [1 + exp{—(Xin, — £2)/B5}] )"
We propose the following extension of our model: a1
Vi =m(Xy) +vf(Zij) vei; (G=1,....ni5i=1,...,q), (12)

whereY;;, X;;, Z;;, m ande;; are specified exactly as before, but now the random effects func-
tion vf(Zl-j) can be considered as a realization of a zero-mean nonlinear progesldey on
a parameter vecta, with covariance functione(Z;;,, Zij,) = E{vf(Zijl)vf(ZijQ)}. Assume
also thatvf(Zl-j) is independent of;;, conditionally onX;;. The nonlinear mixed model defined
in (10) is a particular case of the semiparametric model (12), wheis the logistic func- o
tion defined in (9)pf(Zij) =b; [1 +exp {—(X4j — 82)/B3}] ", and theb; are independent and
identically distributed normal variables with mean zero and variaice

Under model (12) our tests can be calculated in a straightforward wayparametric and
nonparametric estimators of can be derived using the three-step method of Section 2. Here it is
necessary to specify the marginal covariahc@volved in the global and local log-likelihoods s
(4) and (5), respectively. For the orange trees dataset we corbilstructurel; defined in
(11). Figure 2 shows two estimatorsf the parametric logistic estimator and the local linear
estimator with bandwidth = 500 days. This figure suggests the adequacy of the logistic model.
To confirm this impression we perform the tests proposed in Section 3, mehdhfat the p-
values forT;, ks andT,, cm are 58.7% and 55.7%, respectively. To derive these p-values.we
have considered a modification of the bootstrap algorithm, given in the Supptary Material.
The finite sample performance of the tests described above is investigatedSogplementary
Material under a scenario which represents the performed data analysis
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