
              

City, University of London Institutional Repository

Citation: Martinez-Miranda, M. D., Nielsen, J. P., Verrall, R. J. & Wüthrich, M. V. (2015). 

Double chain ladder, claims development inflation and zero-claims. Scandinavian Actuarial 
Journal, 2015(5), pp. 383-405. doi: 10.1080/03461238.2013.823459 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/17077/

Link to published version: https://doi.org/10.1080/03461238.2013.823459

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Double Chain Ladder, Claims Development
Inflation and Zero Claims
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Abstract

Mart́ınez-Miranda, M.D., Nielsen, J.P., Verrall, R., Wüthrich, M.V. Double

Chain Ladder, Claims Development Inflation and Zero Claims. Scandinavian

Actuarial Journal.

Double Chain Ladder demonstrated how the classical chain ladder tech-

nique can be broken down into separate components. It was shown that, under

certain model assumptions and via one particular estimation technique, it is

possible to interpret the classical chain ladder method as a model of the ob-

served number of counts with a built-in delay function from when a claim is

reported until it is paid. In this paper, we investigate the double chain ladder

model further and consider the case when other knowledge is available, focus-

ing on two specific types of prior knowledge namely prior knowledge on the

number of zero claims for each underwriting year and prior knowledge about

the relationship between the development of the claim and its mean severity.

Both types of prior knowledge readily lend themselves to be included in the

double chain ladder framework.

Keywords: Prior Knowledge; Claims Reserves; Reserve Risk; Over-dispersed

Poisson Model; Cash flow; Bootstrap.

1 Introduction

In a recent series of papers Verrall, Nielsen and Jessen (2010), Mart́ınez-Miranda,

Nielsen, Nielsen and Verrall (2011) and Mart́ınez-Miranda, Nielsen and Verrall

(2012a) have analyzed the claims generating process and used this to understand,

visualize and estimate the underlying components implicit in the classical multiplica-

tive chain ladder structure. One of the basic requirements of the approach taken in

these papers is that there are two triangles of data available: a triangle of paid data

together with a corresponding triangle of the number of reported claims. By using

these two sets of information, it is possible to gain a much deeper understanding of

the fundamental drivers of the claims development than is possible with the basic

chain ladder technique. The paper Mart́ınez-Miranda et al. (2012a) was divided

into two parts. One was concerned with predicting the best estimate of the reserve

only, or the mean of the outstanding claims only, and the other part considering

the distribution. It turned out the framework of double chain ladder works under

very general conditions when only the mean is predicted. In the second part of

Mart́ınez-Miranda et al. (2012a) more specific assumptions were given to access the

distributional properties of the underlying model. For example, when considering
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the best estimate only, the model of Mart́ınez-Miranda et al. (2012a) works under

a wide array of stochastic assumptions on the nature and dependency structure of

payments. There can, for example, be multiple payments on each claim with com-

plicated correlation patterns. When analysing the stochastic nature of the simplest

possible version of double chain ladder, Mart́ınez-Miranda et al. (2012a) made a

number of simplifying assumptions including one payment per claim and constant

mean severity of claims. These additional assumptions are needed to understand

the full predicted distribution, but they are not needed to understand the mean.

In this paper we add insight to this discussion. We show that if prior knowledge

was available about the future number of zero claims and future severity inflation

(depending on payment development delay), then while this information does not

change the best estimates, it does affect the predicted distribution of outstanding

claims. Therefore, if the issue is to qualify or improve best estimates, prior knowl-

edge of zero claims and development year severity inflation is not important. If the

focus is the best estimate of outstanding claims, then one should (for example) con-

sider underwriting year severity inflation as in Mart́ınez-Miranda et al. (2012b) or

adjusting the calendar effect as in Kuang, Nielsen and Nielsen (2008a, 2008b, 2011)

and Jessen and Rietdorf (2011).

In this paper we show that prior knowledge on the nature of future zero claims,

see also Erhardt and Czado (2012), and on future severity development inflation

are surprisingly simple to include into a double chain ladder framework. We also

show how such information can be extracted from data when one extra triangle

is available on the number of payments. Our approach is different, but related

to that taken by Mart́ınez-Miranda et al. (2012c) which uses the general Poisson

cluster approach of Jessen, Mikosch and Samorodnitsky (2011). That paper is based

on the same type of data as in this paper, in the sense that it considers the two

triangles used in double chain ladder and combines these with the third triangle of

the number of payments. In this paper we model the extra information via a prior

knowledge approach, while Mart́ınez-Miranda et al. (2012c) goes through the full

mathematical statistical modelling of the entire system behind the three triangles.

It could argued that modelling the entire system over-complicates the approach,

since the added knowledge does not change the best estimate of the reserve, but

only makes a correction to the distributional properties.

We believe that it is essential to consider all available prior knowledge when exploring

the underlying characteristics and not just rely on inference and projection based

on a single triangle of aggregated data. The issue may not be that the predicted

values from the basic chain ladder technique are inappropriate. However, this basic

method may be too limited to address the challenges of setting reserves and assessing
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risk, when other information is available. This reflects the fact that many actuaries

make adjustments to the parameters of the chain ladder technique before setting

reserves. The difficulties become much more acute when considering issues such as

the distribution around the chain ladder prediction or when different assumptions

about the future evolution of claims need to be considered. This paper addresses

this latter issue directly, and illustrates how external information could be used more

precisely since the parameters in the model now relate directly to real quantities.

This is in contrast to the parameters of the basic chain ladder technique (and other

similar approaches) where the parameters can be affected by a range of different

factors. Specifically in this paper, we show how to include external information

about the relationship between the mean claim severity and the development year

and also the proportion of claims which are settled without payment (known as

“zero claims”).

The methods are applied to a real set of data, which consists of triangles each with 14

rows and columns corresponding to incremental yearly-aggregated run-off triangles.

The first two triangles (in tables 8 and 9) contain the information required by, for

example, the double chain ladder method of Mart́ınez-Miranda et al. (2012a). The

third triangle (table 10) contains the extra information required to estimate the

number of zero claims.

The paper is set out as follows. Section 2 contains the assumptions at the level of

individual claims and summarizes the model for aggregated paid claims. Section

3 contains a description of the intuitively appealing and simple estimation method

known as double chain ladder. Section 4 describes how prior knowledge can be

incorporated into this framework. Section 5 gives an outline of how bootstrapping

can be used to derive estimates of predictive distributions in this context. Section 6

makes some suggestions about the sources that could be used for the prior knowledge.

Note that it is possible to use other sources of external information to formulate the

prior knowledge. Finally section 7 provides some concluding remarks.

2 Model formulation

This section sets out the model assumptions, which can be considered as a strategic

extension of the model assumptions of the second part of the double chain ladder

paper Mart́ınez-Miranda et al. (2012a). If we were just interested in the mean or the

best estimate, the model assumptions could be much more general than those below.

However, since we are interested in the distributional properties, we generalize below

the original assumptions of the second part of the double chain ladder so that the
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added prior knowledge available allows us to identify the model parameters which

enter. We assume, without loss of generality, that the data are available in triangular

form. We denote this by Im = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m − 1; i + j ≤ m}

, with i denoting the accident or underwriting year, j the development year and m

the last observed accident year. We consider the following stochastic components

for all (i, j), both observed and future data. Thus, both here and in the assumptions

below, we consider I = {(i, j) : i = 1, . . . ,m, j = 0, 1, . . .}.

Number of reported claims. Let Nij denote the total number of claims with accident

year i which are reported in year i + j (i.e. reporting delay of j years). Note

that each of these Nij reported claims is assumed to generate a number of

payments i.e. a claims payment cash flow.

Number of payments. Let Npaid
ijl denote the number of claim payments originating

from the Nij reported claims, which are paid with a payment delay of l years,

with l = 0, . . . ,m− 1.

Individual severity claims. Let Y
(k)
ijl denote the individual settled payments which

arise from Npaid
ijl (k = 1, . . . , Npaid

ijl , (i, j) ∈ I, l = 0, . . . ,m− 1).

It is often the case that individual claims payment data are not available at this level

of detail and it is therefore important to consider models for more aggregated data.

Note that the models for the aggregated data are built using assumptions at the

level of individual claims, and thereby enable us to consider quantities which have

a real interpretation. Hence, we define the following aggregated claims payment

information:

Total payments in accounting year i+ j generated by all claims which were incurred

in year i,

Xij =

j∑

l=0

N
paid

i,j−l,l∑

k=1

Y
(k)
i,j−l,l. (1)

These are usually presented in the form of a run-off triangle, which we denote by

∆m = {Xij : (i, j) ∈ Im}. A triangle of the number of reported claims denoted by

ℵm = {Nij : (i, j) ∈ Im}.

Thus, it is assumed that a triangle of payments, Xij , and a triangle of reported

numbers of claims, Nij , are available. We make the following assumptions about

these data.
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D1. The numbers of reported claims, Nij, are independent random variables for all

(i, j) and have a Poisson distribution with cross-classified mean E[Nij] = αiβj

and identification (Mack 1991),
∑m−1

j=0 βj = 1.

D2. Given Nij, the numbers of paid claims follow a multinomial distribution, so

that the random vector (Npaid
i,j,0 , . . . , N

paid
i,j,m−1) ∼ Multi(Nij; p0, . . . , pm−1), for

each (i, j), where m − 1 is the assumed maximum delay. Let (p0, . . . , pm−1)

denote the delay probabilities such that
∑m−1

l=0 pl = 1 and 0 ≤ pl ≤ 1, ∀l =

0, . . . ,m− 1.

D3. The individual payments Y
(k)
i,j−l,l are independent and have a mixed type distri-

bution with Qi being the probability of a “zero-claim” i.e. P
{
Y

(k)
i,j−l,l = 0

}
=

Qi. We assume that Y
(k)
i,j−l,l|Y

(k)
i,j−l,l > 0 has a distribution with conditional

mean µij and conditional variance σ2
ij, for each i = 1, . . . ,m, j = 0, . . . ,m− 1.

We also assume that the mean depends on the accident year and payment

year such that µij = µγiδj. Here, µ a common mean factor and δj and γi

can be interpreted as being the inflation in the payment year and the accident

year, respectively. The variance follows a similar structure, with σ2
ij = σ2γ2

i δ
2
j ,

where σ2 is a common variance factor.

D4. Independence: We assume that settled payments, Y
(k)
ijl are independent of the

numbers of reported claims, Nij.

This is a more general situation than Mart́ınez-Miranda et al. (2012a) since it

assumes that the distribution depends on the accident year and the development

year and also allows for zero-claims. Under these assumptions, the first two moments

of the unconditional distribution of Y
(k)
i,j−l,l are given by:

E[Y
(k)
i,j−l,l] = γiδj(1−Qi)µ (2)

V(Y
(k)
i,j−l,l) = γ2

i δ
2
j (1−Qi)

(
σ2 +Qiµ

2
)

(3)

Following the similar calculations as Mart́ınez-Miranda et al. (2012a), it can be

shown that under the above assumptions the unconditional mean of Xij can be

written as

E[Xij ] = γi(1−Qi)µαiδj

j∑

l=0

βj−lpl = α̃iβ̃j, (4)
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where

α̃i = γi(1−Qi)µαi

and

β̃j = δj

j∑

l=0

βj−lpl.

Note that when Qi is identical zero and δj = 1 for all j = 0, . . . ,m− 1, the situation

reverts back to the double chain ladder model of Mart́ınez-Miranda et al. (2012a).

3 The Double Chain Ladder method.

The double chain ladder (DCL) estimation method was proposed by Mart́ınez-

Miranda et al. (2012a) to provide simple and intuitive estimators for the pa-

rameters {pl, µ, σ
2, γi : i = 1, . . . ,m; l = 0, . . . ,m − 1}. Below we quickly go

through this double chain ladder approach that is a special case of the approach

suggested in this paper. The assumptions in Mart́ınez-Miranda et al. (2012a) are

identical to D1-D4 except that it is assumed that Qi = 0 and δj = 1, for all

i = 1, . . . ,m; j = 0, . . . ,m− 1. It is therefore assumed that the individual payments

Y
(k)
i,j−l,l have means µij ≡ µi = γiµ and variances σ2

ij ≡ σ2
i = γ2

i σ
2 for all i = 1, . . . ,m

and j = 0, . . . ,m − 1. In this section, we briefly summarize the key steps in the

DCL method.

The DCL estimation method applies the chain ladder algorithm twice, using the

data in the two run-off triangles (ℵm,∆m). As the same method is repeated on each

triangle, we illustrate it just for the triangle of the number of reported claims ℵm

and the parameters αi and βj. A distribution-free approach is used and hence we

use the method of moments to obtain the estimators. Aggregating over the rows

and columns, we obtain the first moment equalities

m−i∑

k=0

E[Nik] = αi

m−i∑

k=0

βk for i = 1, . . . ,m,

m−j∑

k=0

E[Nkj] = βj

m−j∑

k=1

αk for j = 0, . . . ,m− 1.

Unbiased estimators for the parameters on the right-hand side of these equalities

can be obtained by replacing the moments E[Nij] by their observed values Nij for

(i, j) ∈ Im. Then the resulting system of linear equations can be solved for αi
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and βj which provides the corresponding estimators for these parameters. This

is the spirit of the “total marginals” method of Bailey (1963) and Jung (1968).

Kremer (1985) and Mack (1991) have shown that in the case of triangular data

ℵm this leads to the chain ladder estimators that can easily calculated. Thus ℵm

provides the chain ladder estimators α̂i and β̂j for αi and βj, respectively; and ∆m

provides the chain ladder estimators ̂̃αi and
̂̃
βj for α̃i and β̃j, respectively. Once

these parameter estimates have been calculated, estimates of {p0, . . . , pm−1} can be

obtained by solving and afterwards adjusting the solution of the linear system

β̃j =

j∑

l=0

βj−lpl for j = 0, . . . ,m− 1. (5)

We denote by {π̂0, . . . , π̂m−1} the solution of the above system. Since the solu-

tion has been derived with no restrictions, in order to provide suitable estimates

{p̂0, . . . , p̂m−1} for the probability delay parameters in the model (D2), which satisfy

that 0 ≤ p̂l ≤ 1 for all l = 0, . . . ,m−1 and
∑m−1

l=0 p̂l = 1, the initial general estimates

π̂l have to be adjusted. Such an adjustment can be done in different ways but note

that a suitable adjustment should not alter substantially the RBNS delay described

by the general estimates {π̂0, . . . , π̂m−1}. As was proved in Mart́ınez-Miranda et

al. (2012a), if we used the general estimates, π̂0, . . . , π̂m−1, we could obtain exactly

the same estimate of the mean of future payments as the standard chain ladder

technique would give. However, the estimated probabilities {p̂0, . . . , p̂m−1} yield a

slightly different estimated mean and therefore predicted reserve. The effect of using

general and adjusted delay parameters, and also how to carry out the adjustments,

will be illustrated in the next sections.

The mean of the distribution of individual payments, including the parameters which

measure the inflation in the accident years, can be obtained using

γ̂i =
̂̃αi

α̂iµ
i = 1, . . . ,m, (6)

and

µ̂ =
̂̃α1

α̂1

, (7)

where to ensure identifiability γ1 is set to one. It only remains to correct the final µ̂

according to the estimates p̂l and in order to ensure Mack’s identification. This is

done by replacing the estimate µ̂ by the corrected µ̂/κ, with κ =
∑m−1

j=0

∑j

l=0 β̂j−lp̂l.

Hereafter, in a slight abuse of notation, we will denote by µ̂ the corrected estimator

of µ which is in agreement with the estimated probabilities p̂l (l = 0, . . . ,m− 1) in

the model.
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The estimate of outstanding claims is obtained by substituting in the above estimates

into the expression for the unconditional mean. In doing this, it is useful to split it

into the Reported But Not Settled (RBNS) and Incurred But Not Reported (IBNR)

components by considering payments on already reported claims and claims which

will be reported in the future. For i+ j > m, we define

X̂rbns
ij =

j∑

l=i−m+j

N̂i,j−lp̂lµ̂γ̂i (8)

and

X̂ ibnr
ij =

i−m+j−1∑

l=max(0,j−m+1)

N̂i,j−lp̂lµ̂γ̂i, (9)

respectively, where N̂ij = α̂iβ̂j.

The estimate of total outstanding claims is calculated by adding the RBNS and

IBNR components i.e. X̂DCL
ij = X̂rbns

ij + X̂ ibnr
ij . This is equivalent to the aim of the

standard chain ladder in just the lower triangle (ignoring any tail effects), i.e. for

(i, j) ∈ J1 = {i = 2, . . . ,m; j = 0, . . . ,m− 1 so i+ j = m+ 1, . . . , 2m− 1}. For the

DCL, the predictions can spread out to provide the tail by considering i = 1, . . . ,m

and j = m, . . . , 2m− 1.

Finally to provide the full cash flow the predictive distribution can be approximated

using parametric bootstrap methods as Mart́ınez-Miranda et al. (2011) described.

In order to do this, it is necessary to estimate the variances, σ2
i (i = 1, . . . ,m).

Verrall et al. (2010) showed that assumptions similar to D1–D4 can be used to

show that the conditional variance of Xij is approximately proportional to its mean.

Using this result, it is straightforward to estimate the variance using over-dispersed

Poisson distributions. More specifically, the over-dispersion parameter ϕ can be

estimated by

ϕ̂ =
1

n−m

∑

i,j∈Im

(Xij − X̂DCL
ij )2

X̂DCL
ij γ̂i

,

with n = m(m + 1)/2 and X̂DCL
ij =

∑j

l=0 N̂i,j−lp̂lµ̂γ̂i. And therefore the variance

estimators are defined by

σ̂2
i = σ̂2γ̂2

i

for each i = 1, . . . ,m, where σ̂2 = µ̂ϕ̂− µ̂2.

We now provide an illustration of the DCL method considering the dataset of di-

mension m = 14 shown in tables 8, 9 and 10. These triangles consist of yearly

aggregated data of number of reported claims, payments and number of payments,
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respectively. We have assumed a maximum delay of 13 years and provided point

forecasts for the reserves from the expression (4), with Qi = 0 and δj = 1 (i =

1, . . . ,m; j = 0, . . . ,m − 1). We have considered two variations when calculating

predictions. First, we use the estimated delay parameters π̂l resulting from solving

(5) without any adjustments, which provides exactly the classical chain ladder re-

serve (ignoring the tail). And second, we calculate a slightly modified reserve by

using the adjusted delay probabilities p̂l. Figure 1 shows both versions of the delay

parameters (general and adjusted parameters) in the top panel. Also the lower panel

shows the estimated DCL inflation parameters in the underwriting year direction

using expression (6). In this example the estimates of the mean and variance com-

ponents of the individual payments are µ̂ = 824.456 and σ2 = 97130427. The point

forecasts in the lower triangle (where the standard chain ladder technique would

provide estimates) can be separated into the RBNS and the IBNR reserve using the

expressions (8) and (9). The resulting forecasts are shown in table 1 together with

the standard chain ladder results for comparison. Note that, as mentioned above,

the DCL method allows us to separate out the RBNS and IBNR components but

still provides the same chain ladder mean in the lower triangle. Note that when

we consider an adjustment of the delay parameters as shown in figure 1, the mean

remains almost the same but with a slight deviation mainly due to rounding er-

rors. The adjustment considered in this case was the simple procedure suggested in

Mart́ınez-Miranda et al. (2012a), which is defined as follows. First count the num-

ber d+ 1 ≤ m− 1 of successive π̂l ≥ 0 such that
∑d−1

l=0 π̂l < 1 ≤
∑d

l=0 π̂l. Then the

estimated delay probabilities are defined as p̂l = π̂l, l = 0, . . . , d−1, p̂d = 1−
∑d−1

l=0 p̂l

and p̂d+1 = · · · = p̂m−1 = 0. Note that other adjustments can be done as for example

those suggested in the close (but more complex) model of Mart́ınez-Miranda et al.

(2012c). However such adjustment should be chosen carefully in order to not alter

the original pattern of the general delay parameters, {π̂0, . . . , π̂m−1}. To find an

approximation to the delay function that is a multinomial distribution is sometimes

a non-trivial exercise, as it was with this data set. We have not found a general

approximation method that always work. The approximation chosen might depend

on the situation and on the specific application of the model. In this case we can

assess the suitability of this adjustment first from figure 1 in that both general and

adjusted delay parameters almost coincide for all the years. Also table 1 illustrates

that the point predictions from adjusted delay probabilities and general parameters

are almost the same for each calendar year.

[Table 1 should be here]
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[Figure 1 should be here]

4 Incorporating prior knowledge into Double Chain

Ladder

In this section, we take the DCL method as set out in section 3 and consider how

to incorporate prior knowledge about the severity of individual claims and on the

number of zero claims. The first two subsections deal with each of these separately,

and the final subsection considers how to do them both together.

4.1 Incorporating prior knowledge on claims development

inflation

In this subsection, we first consider the case where the prior information of Qi is

that it is identically equal to zero for all i = 1, . . . ,m, but our prior knowledge

on the δj’s is unrestricted. It turns out to be surprisingly simple to include this

type of prior knowledge in the double chain ladder framework. Observed payments

are divided by the prior severity inflation, double chain ladder is then carried out

on these adjusted payments and in the final step we multiply back in the prior

severity inflation. This is indeed very simple, both when it comes to computations

and intuitive understanding. It is illustrative to compare this simple approach to

including severity inflation to the more complicated and complex approach taken

in Mart́ınez-Miranda et al. (2012c) where the modelling complexity increases ex-

ponentially with the added information. Considering the same problem in our way

as just adding prior knowledge to double chain ladder simplifies these complicated

issues for the practical actuary making it more easy for the practitioner to under-

stand what is going on and to manipulate the model. Let X̃ij = Xij/δj. It is easy

to verify that the triangle {X̃ij ; (i, j) ∈ Im} together with the counts triangle ℵm

follow model assumptions D1-D4 in section 2 with Qi identical zero and δj identical

one (i = 1, . . . ,m; j = 0, . . . ,m − 1). Therefore, the DCL method can be applied

to X̃ij. Let X̃DCL
ij be the predicted value of X̃ij by using the DCL method. Then

the predicted value of Xij including the prior information will be given by X̃DCLP
ij

=δjX̃
DCL
ij , for(i, j) ∈ J1. In this way it is possible to generate the distribution of

future values incorporating the prior information.

To illustrate this approach we calculate again the predictions in table 1 but using as

prior development inflation shown in figure 2 (bottom panel). The results are shown
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in table 3 considering general delay parameters and also adjusted probabilities. The

delay parameters from this approximation are shown in the top panel of figure 2

and reported in table 2. In this case we have considered an adjustment of the delay

parameters different from that described in section 3. The reason is because of the

special pattern of delay parameter estimates obtained by solving the linear system

(5), which is shown in table 2. Since some negatives values arise in the general

estimates in the first years the simple adjustment used in the previous section seems

to be inadequate. In fact, if we consider that method the delay pattern will be

modified dramatically providing wrong point forecasts. For this kind of pattern

we suggest the following alternative adjustment of the delay parameters π̂l. First

we define π̂′
0, . . . , π̂

′
m−1 being the same as π̂0, . . . , π̂m−1 but replacing the negatives

values by zeros. And second we increase (or decrease) the strictly positive values π̂′
l

by calculating the adjusted parameters, p̂l = π̂′
l + (1− τ)π̂′

l/τ , where τ =
∑m−1

l=0 π̂′
l.

With this adjustment we can assess in table 3 that the point predictions are very

close when calculated with both general parameters and adjusted probabilities for

all the calendar years.

In table 3 we can see that when considering prior information about the develop-

ment inflation the mean of the total reserves (RBNS+IBNR) is almost unaltered

compared with the mean predictions from DCL without any prior (table 1). The

prior knowledge only provides a slight reduction in the overall total from the value

13352 (given by DCL with no prior) to the value 13322. However the split between

RBNS and IBNR claims is indeed altered. Note that the overall total of RBNS

claims when the prior knowledge is ignored is 11751, which is reduced to 9630 when

the development inflation information is incorporated. This reduction is therefore

compensated with an increase in the IBNR reserve from 1601 to 3692. These num-

bers correspond to the case of using the general delay parameters, but a similar effect

can be observed in the predictions calculated with adjusted delay probabilities.

[Table 2 should be here]

[Table 3 should be here]

[Figure 2 should be here]
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4.2 Incorporating prior knowledge on the number of zero

claims

In this subsection, we consider the case where we have prior knowledge on the

future number of zero claims. While this gives us more information - or rather

one extra freely varying parameter - to handle the predicted distribution, it does

not affect the best estimate of the reserves. It takes a little more effort to include

this type of prior knowledge into the double chain ladder framework than it took

to include development severity inflation, but it is still quite straightforward and

computationally tractable. We first consider the case where the prior information

of δj is that it is equal to one for all j = 0, . . . ,m− 1, while the Qi’s (i = 1, . . . ,m)

are unrestricted between zero and one. In this case, there are two adjustments

to the double chain ladder method. First note that the conditional variance is

approximated by:

V[Xij|ℵm] = γ2
i δ

2
j (1−Qi)(σ

2 +Qiµ
2)

j∑

l=0

Ni,j−lpl

+γ2
i δ

2
j (1−Qi)

2µ2

j∑

l=0

Ni,j−lpl(1− pl)

≈ γ2
i δ

2
j (1−Qi)(σ

2 + µ2)

j∑

l=0

Ni,j−lpl

= γiδj
σ2 + µ2

µ
E[Xij|ℵm]

= ϕijE[Xij|ℵm].

where ϕij = γiδjϕ and ϕ = σ2+µ2

µ
. This means that an over-dispersed Poisson

model can be used to approximate the parameters, as in Martinez-Miranda et al.

(2012a). In order to consider the sensitivity of this approximation with respect

to the values of Qi and pj, we have carried out the following exercise. Firstly

we consider the estimated values calculated in Section 6 from the data example.

Using these estimates we evaluate and compare (by taking the ratio) the actual

expression of V[Xij|ℵm], with the approximation given by the term γ2
i δ

2
j (1−Qi)(σ

2+

µ2)
∑j

l=0 Ni,j−lpl. The summary of the resulting ratios reveals values very close to

1. In fact, these ratios vary between 0.9960 (minimum) and 0.9992 (maximum).

Secondly we replace the parameters Qi and pj by random values and evaluate again

the ratios. For Qi generated form a Uniform distribution between 0.2 and 0.8 and pj

generated from a Uniform distribution between 0 and 1 (rescaled to be a probability
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vector) the summary still gives values very close to 1. This simple exercise gives

us confidence about the approximation used. From the arguments above the only

difference from estimating the parameters in this model and the DCL model is that

we have to adjust the estimated row parameters with the known Qi’s.

Using the information from the zero claims contained in the data as shown in the

lower panel in figure 4 we can again derive the point forecasts using both the general

delay parameters and the adjusted delay probabilities. Here we have considered

the same adjustment described in subsection 4.1. The resulting predictions are

shown in table 4. Note that now we have a decomposition of the inflation in the

underwriting year direction which is shown in the top panel of figure 4. Specifically,

the DCL inflation from original payments Xij is equal to γDCL
i (1 − Qi)/(1 − Q1)

where (1 − Qi)/(1 − Q1) is the zero-claims effect, and γDCL
i is the DCL inflation

from the triangle removing the zero claims effect namely X̃ij = Xij/(1−Qi) . The

middle panel in this figure shows the zero-claims effect and top panel compares the

estimates of the inflation adjusted by the zero-claims, γDCL
i , with the DCL inflation

in the underwriting year.

As happened when introducing prior knowledge about development inflation in sub-

section 4.1, we can see in table 4 that the information about zero claims has almost

no impact on the point predictions for the total reserves, which remain very close

to those from DCL without any prior (table 1). Note that the new total reserve

is 13344 compared with the value 13352 given by DCL with no prior. Also, and

opposite to the case of considering prior knowledge about the severity inflation, the

zero-claims knowledge does not alter the split between RBNS and IBNR claims,

which remains almost the same as in table 1.

[Table 4 should be here]

4.3 Incorporating prior knowledge on both the severity de-

velopment inflation and zero claims

In this section, we show that the above approaches we can combined and information

on both prior information on severity inflation and future number of zero claims

included. If both the probabilities Qi’s (i = 1, . . . ,m) are different from zero and

the severity inflation parameters δj’s (i = 0, . . . ,m− 1) are different from one then

we can estimate this broader model combining the procedures of subsections 4.1 and

4.2. First we adjust for δj’s values which then gives the situation of subsection 4.2.
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Using this procedure we can calculate the predictions for the data set presented in

previous sections incorporating the prior knowledge about the proportion of non-zero

claims plotted in figure 4 and the severity development inflation shown in the bottom

panel of figure 2. Again we calculate the predictions and the split between RBNS and

IBNR considering general delay parameters π̂l, which provides exactly the classical

chain ladder reserve, and also the adjusted delay probabilities p̂l (l = 0, . . . ,m− 1).

The results are shown in table 5. The adjusted probabilities have been calculated

using the same method described in subsection 4.1. Note that once again we assess

that the prior knowledge introduced does not alter the point predictions compared

with those derived from DCL without any prior (table 1). Here the predicted total

reserve is 13314 compared with the value 13352 given by DCL with no prior. Again

the development inflation has a notable effect on the split between RBNS and IBNR

as in subsection 4.1. Note that the reduction in the overall RBNS reserve and the

increase in the IBNR reserve is quite remarkable but analogous to the provided when

only the development inflation knowledge is considered.

[Table 5 should be here]

5 Bootstrap methods

In this section we outline how the bootstrap methods described by Mart́ınez-Miranda

et al. (2011) and Mart́ınez-Miranda et al. (2012a), can be used to provide the pre-

dictive distribution of the reserve. In doing this, we use the prior knowledge about

development year inflation and/or zero-claims in a similar way as the section 4. In

other words, we first adjust the payments triangle by removing the effect of the prior

knowledge and we then apply a parametric bootstrap from the DCL distributional

model to simulate the RBNS and IBNR distributions. Finally, we replace the infla-

tion effects which were removed. In the DCL framework, Mart́ınez-Miranda et al.

(2012a) used a parametric bootstrap method to describe the possible fluctuations

of the true outstanding loss liability cash flows. By exploiting the distributional

assumptions in the DCL model (see assumptions in Section 5 in Mart́ınez-Miranda

et al. 2012a) two different resampling schemes can be defined to simulate separately

the predictive distribution of the RBNS and IBNR cash flows, using Monte Carlo

methods. For completeness, we provide more details and an explicit algorithm in

Appendix A.

For each situation and type of prior knowledge resampling schemes can be applied

as described by Mart́ınez-Miranda et al. (2011). There are two alternative meth-
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ods, the first of which ignores the uncertainty of the parameters {pl, µ, σ
2, γi : i =

1, . . . ,m; l = 0, . . . ,m − 1} estimated from the input data (ℵm,∆m). The second

incorporates the uncertainty of these parameters. When the severity inflation and

the probability of zero claims are also estimated from data a further extension can

be defined which takes also into account the uncertainty of these parameters. In

this paper we assume as prior knowledge the severity inflation in the development

year plotted in figure 2 and/or the zero claims effect which is assumed to be as was

plotted in figure 4.

In the previous section, it was observed that the prior knowledge does not alter

the point predictions in the total reserves. In fact only slight deviations from the

predictions by the DCL method with no prior information were observed. Only

the knowledge about the development inflation has a noticeable effect on the split

between RBNS and IBNR claims. The question now is whether the prior knowledge

modifies the predictive distribution. A summary of the distribution for the total out-

standing claims is shown in table 6. The same table also shows the DCL bootstrap

distribution with and without the prior information about development inflation

and/or zero-claims. The derived cash flows are compared with the results from the

bootstrap method of England and Verrall (2002) for the CLM as implemented in

the package ChainLadder in R (Gesmann, Murphy and Zhang 2012). “Prior A”

denotes when only severity inflation is considered, “Prior B” when considering only

zero-claims and “Prior C” when considering both severity inflation and zero-claims.

Also “Boot I” and “Boot II” denote the bootstrapping ignoring and taking into

account the uncertainty of the parameters, respectively. The distribution with and

without prior knowledge is indeed altered especially when prior knowledge about

development inflation is incorporated. From the upper quantiles reported in table 6

it can be seen that the prior knowledge on severity inflation provides a longer tailed

distribution. This effect can be visualized more clearly by plotting the bootstrap

distribution as in figure 3. This shows histograms of the predictive distribution

of the total reserve as well as the split between RBNS and IBNR claims with and

without prior knowledge. From visual inspection of these histograms we can confirm

that the introduced prior knowledge on development inflation induces a longer tailed

distribution but also it alters the split between RBNS and IBNR claims. On the

other hand, prior knowledge about zero claims has almost no influence in the dis-

tribution. Finally note that these plots correspond to the bootstrap method which

does not take into account the uncertainty of the parameters (labelled as “Boot I”).

When we take into account the uncertainty of the parameters as “Boot II” does,

the shape and the main properties of the distribution remain the same but with a

wider range.
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[Table 6 should be here]

[Figure 3 should be here]

6 An example showing how other data can be

used to provide prior information in practice

The methods described above assume some extra information is available. It has

been shown how the DCL method can be easily applied with simple adjustments

to allow for prior information about development inflation and zero claims. Here

we show how this prior information could be easily obtained by observing a new

run-off triangle. Specifically we observe the total number of non-zero payments in

accounting year i+ j from claims with accident year i and denote this by Rij. The

corresponding triangle is denoted by Rm = {Rij : (i, j) ∈ I}. Note that Rij is the

number of claims from the
∑j

l=0 N
paid
i,j−l,l which yields non-zero payments. Also each

cell in the new triangle can be decomposed into delay-dependent components, Rij =∑j

l=0Ri,j−l,l, with Rijl being the number of non-zero payments from the Nij reported

which were paid with l periods delay. In the next subsection we will prove that the

variables Rij have cross-classified (unconditional) mean E[Rij ] = αR
i β

R
j for all (i, j).

Thus here we propose to use simultaneously the three triangles (ℵm,Rm,∆m) to

provide prior information about Qi and δj. To do this, we apply the chain ladder

algorithm three times:

ℵm provides the chain ladder estimators α̂i and β̂j for αi and βj,

Rm provides the chain ladder estimators α̂R
i and β̂R

j for αR
i and βR

j ,

∆m provides the chain ladder estimators ̂̃αi and
̂̃
βj for α̃i and β̃j .

From the chain ladder estimates {(α̂i, β̂j), (α̂
R
i , β̂

R
j ), (

̂̃αi,
̂̃
βj) : i = 1, . . . ,m, j =

0, . . . ,m − 1}, we describe in the following how the DCL estimation method can

be applied twice to provide the required prior information.

6.1 Estimation of the zero-claims probability

Using the above definitions, the required information about the probability of zero-

claims, Qi, can be extracted using the triangles ℵm and Rm. Note first that using
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the assumed independence in D4 between the severity and the IBNR delay, we can

calculate the first moment of each variable Rij. This gives the conditional mean

E[Rij|ℵm] =

j∑

l=0

Ni,j−l(1−Qi)pl

and the unconditional mean

E[Rij] = αi(1−Qi)

j∑

l=0

βj−lpl := αR
i β

R
j . (10)

Thus, the pair of triangles (ℵm,Rm) follows the model described by Mart́ınez-

Miranda et al. (2012a) and therefore the DCL method can be applied to these

triangles in order to estimate the target parameters Qi (i = 1, . . . ,m). Specifically

from the chain ladder estimates, α̂i and α̂R
i , of the underwriting year parameters,

αi and αR
i (i = 1, . . . ,m), respectively, the probability of zero-claims in the under-

writing year can be estimated from the expression

Q̂i = 1−
α̂R
i

α̂i

. (11)

Using the data in tables 8 and 10 the zero-claims probabilities are estimated by the

values plotted in the bottom panel of figure 4.

6.2 Estimation of the severity development inflation

Now we consider the situation defined by assumption D3 where the severity depends

on the underwriting year but also on the development year. Specifically, we assume

that it has a development inflation component δj which is not considered in the DCL

model of Mart́ınez-Miranda et al. (2012a). In this case the usual input of the DCL

method, namely the paid and incurred counts triangles (ℵm,∆m) are not enough

to solve the over-parametrization problem of the chain ladder mean described by

Mart́ınez-Miranda et al. (2012a). However it can be easily solved by considering

the extra information provided by the triangle Rm introduced above. From the

expression (10) for the unconditional mean of Rij it can be seen that

j∑

l=0

βj−lπl = βR
j .

By substituting this into the expression for the unconditional mean of Xij (with

Qi = 0 for all i = 1, . . . ,m), it can be seen that
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E[Xij ] = γiµαiδj

j∑

l=0

βj−lpl = γiµαiδjβ
R
j = α̃iβ̃j .

Thus, the new inflation parameters can be estimated by

δ̂j =

̂̃
βj∑j

l=0 β̂j−lπ̂l

=

̂̃
βj

β̂R
j

. (12)

Therefore the prior δ̂j can be obtained just from the chain ladder estimates
̂̃
βj and β̂R

j

of the parameters β̃j and βR
j , respectively. But also the estimated delay parameters,

{p̂0, . . . , p̂m−1}, in the model (D2) can be estimated by a suitable adjustment of the

solutions of the linear system

βR
j =

j∑

l=0

βj−lpl for j = 0, . . . ,m− 1. (13)

Note that since the parameters are only derived in the observation triangle Im, it

is only possible to predict outstanding claims in the lower triangle J1. Hence, to

extend the forecasts to provide the tail any suitable model should be fitted to such

inflation parameters.

The estimated development inflation δ̂j (j = 0, . . . ,m−1), and also the general delay

parameters derived by solving the linear system (13), for the data set presented in

previous sections are shown in table 7. Also, the implied severity development

inflation reported in this table has been plotted in bottom panel of figure 3. It can

be seen that the estimated severity development inflation shows an increasing trend

in the development year as was expected. However some slight deviations from this

trend indicates that the mean of the payments could also depend on other directions

such as the settlement delay or the calendar year.

[Table 7 should be here]

[Figure 4 should be here]

7 Conclusions

This paper has illustrated how prior knowledge of severity inflation and future zero

claims can be included quite simply in the framework of double chain ladder. While
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this added knowledge does not significantly affect the predicted mean reserve, it does

add to the understanding of the underlying distributional properties of the reserve.

In the data study, the two effects have similar implications: the prior knowledge

of zero claims make the final distribution more long-tailed and prior knowledge of

severity claims does the same but also with a change in the split between RBNS and

IBNR claims. Adding the two types of prior knowledge at the same time does not

provide further effects to this long-tailness or separation between RBNS and IBNR

claims. Other data sets might give other conclusions. Our final conclusion is that it

is surprisingly easy to add complicated model structures of zero claims and severity

inflation to double chain ladder. The double chain ladder model and its extensions

considered in this paper gives a granular model of a single claim, even though the

original data is aggregated; see also Antonio and Plat (2012). This is interesting and

might have a number of applications beyond the simple distributional application

of this paper.
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A Bootstrap algorithms

Consider the distributional model described in D1-D4 (Section 2) with development

inflation δj, j = 0, . . . ,m−1 and probability of zero-claims Qi, i = 1, . . . ,m. Assume

that δj and Qi are known and denote by θ = {pl, µij = γiδjµ, σ
2
ij = σ2γ2

i δ
2
j ; l =

0, . . . ,m−1, i = 1, . . . ,m} the set of parameters in the model. Consider the adjusted

aggregated payments ∆̃m = {X̃ij : (i, j) ∈ Im}, with X̃ij = Xij/[δj(1 − Qi)].

Following arguments given in the paper, the triangles (ℵm, ∆̃m) follow the DCL

model described in Mart́ınez-Miranda et al. (2012a) with delay parameters pDCL
l ,

underwriting year inflation γDCL
i and severity parameters (µDCL, σ2

DCL). Using the

expressions summarized in section 3 these parameters can be estimated by p̂l, γ̂i, µ̂

and σ̂2. The desired parameter θ can be estimated by θ̂ = {p̂l, µ̂ij = γ̂iδjµ̂, σ̂
2
ij =

σ̂2
i γ̂

2
i δ

2
j ; l = 0, . . . ,m− 1, i = 1, . . . ,m}, where σ̂2

i = [(1−Qi)σ̂
2 −Qiµ̂].

The predictive distribution of the RBNS cash flow (taking into account the un-

certainty of the unknown parameters) can be simulated by running the following

algorithm:

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the observed (ad-

justed) data (ℵm, ∆̃m) estimate the model parameters θ by the estimator

θ̂, as described above. The payment delay distribution is estimated by a

Multinomial distribution with estimated parameter, i.e. (Npaid
i,j,0 , . . . , N

paid
i,j,m−1) ∼

Multi(Nij; p̂0, . . . , p̂m−1), for each (i, j), where m− 1 is the assumed maximum

delay. The distribution of the non-zero individual payments (Y
(1)
i,j,l > 0, l =

0, . . . ,m − 1) is estimated by a gamma distribution with mean µi = γ̂iµ̂ and

variance σ2
i , this is, with shape parameter λ̂i = γ̂2

i µ̂
2/σ̂2

i and scale parameter

κ̂i = σ̂2
i /γ̂iµ̂.

Step 2. Bootstrapping the data. Conditional on the observed number of reported

claims ℵm generate new bootstrapped triangles ∆∗
m = {X∗

ij ; (i, j) ∈ Im} as

follows:

(i) Simulate the payment delay: from each Nij, (i, j) ∈ Im, generate the

number of payments, Npaid∗
i,j,l from the Multinomial distribution estimated

in Step 1.

(ii) Simulate the number of “non-zero” payments Npaid∗
ij , at each (i, j) ∈ Im,

from a Binomial with size parameter
∑j

l=0N
paid∗
i,j−l,l and probability 1−Qi.
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(iii) Simulate the bootstrapped aggregated payments X∗
ij from the gamma

distribution with shape parameter Npaid∗
ij λ̂i and scale parameter κ̂i (esti-

mated in Step 1).

Step 3. Bootstrapping the parameters to include the parameters uncertainty. From

the (adjusted) bootstrapped data ∆̃∗
m = {X̃∗

ij : (i, j) ∈ Im}, with X̃∗
ij =

X∗
ij/[(1−Qi)] and the original ℵm, estimate again the parameter θ and get a

bootstrapped parameter θ∗.

Step 4. Bootstrapping the RBNS predictions. Simulate the RBNS cash flow, X̃rbns∗
ij ,

for i+ j > m, using similar specifications to (i)–(iii) in Step 2, but with boot-

strapped parameter θ∗. Incorporate again the development severity inflation

(removed for estimation purposes in Step 1) by Xrbns∗
ij = δjX̃

rbns∗
m .

Step 5. Monte Carlo approximation. Repeat Steps 2-4 B times and get the empir-

ical bootstrap distribution of the RBNS cash flows {Xrbns∗,b
ij ; i = 1, . . . ,m, j =

0, . . . ,m− 1, i+ j > m, b = 1, . . . , B}.

Note that, in Step 2-(iii) above, we can simulate directly the aggregated payments

at each cell (i, j) because of the convolution property of the gamma distribution,

together with the expression (1). In fact, the sum of independent individual pay-

ments, which are gamma distributed with the same scale parameter, is also gamma

distributed with such scale and shape parameter being the sum of the individual

shapes.

A simpler algorithm, which does not take into account the uncertainty of the esti-

mated parameters, consists of steps 1, 4 and 5, replacing the bootstrapped parameter

θ∗ by the θ̂, estimated from the original data in Step 1.

The algorithm to simulate the IBNR cash flows (taking into account the uncertainty

of parameters) follows the same steps as the algorithm RBNS but, in addition, it

involves the estimation and the simulation of the number of reported claims Nij in

the lower triangle, this is, {(i, j); i = 2, . . . ,m, j = 0, . . . ,m − 1,m < i + j < 2m}.

In this case, to include the uncertainty of these extra parameters, we should also

simulate (bootstrapped) reported-counts upper-triangles, ℵ∗
m = {N∗

ij; (i, j) ∈ Im}.

Using assumption (D1), this can be done by simulating from a Poisson distribution

with estimated chain ladder parameters {α̂i, β̂j ; i = 1, . . . ,m, j = 0, . . . ,m− 1} (see

Step 2 in Algorithm IBNR by Mart́ınez-Miranda et al. 2011 for more details). Again

the simpler version which does not take into account the uncertainty of parameters

would not require the simulation of such counts.
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[Table 8 should be here]

[Table 9 should be here]

[Table 10 should be here]
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Legends of tables

Table 1. Point forecasts from DCL without prior information (the numbers are

given in thousands). Columns 2-4 show the forecasts (RBNS, IBNR and total=

IBNR+RBNS) using the general delay parameters estimated by solving the

linear system (5). Columns 5-7 show the same forecasts but using adjusted

delay probabilities {p̂0, . . . , p̂m−1}. The last column shows the classical chain

ladder forecasts which are reproduced by DCL using the general delay.

Table 2. Estimated delay parameters considering prior information about the sever-

ity development inflation.

Table 3. Point forecasts considering prior information about the severity inflation

(the numbers are given in thousands).

Table 4. Point forecasts considering prior information about the zero claims (the

numbers are given in thousands).

Table 5. Point forecasts considering prior information about the zero claims and

severity inflation (the numbers are given in thousands).

Table 6. Summary of the bootstrap predictive distribution for the total reserve.

The DCL distribution with no prior is showed in columns 2–3. The third

column shows the results from the chain ladder bootstrapping of England

and Verrall (2002). The DCL distribution using prior information about the

development inflation (prior A), the zero-claims (prior B) and also both at

the same time (prior C) are showed in columns 5–10. Bootstrap methods

ignoring or taking into account the uncertainty of the parameters are showed

in columns labelled as “Boot I” and “Boot II”, respectively. The numbers are

given in thousands.

Table 7. Estimated parameters from DCL applied to the three triangles ℵm,∆m

and Rm. The first column reports the general delay parameters calculated by

solving system (13). The second column shows the estimated proportion of

zero-claims estimated from (11). The last column shows the severity develop-

ment inflation estimated from equation (12).

Table 8. Incremental incurred counts: ℵm = {Nij : (i, j) ∈ Im}.

Table 9. Incremental paid data: ∆m = {Xij : (i, j) ∈ Im}.

Table 10. Incremental number of non-zero payments: Rm = {Rij : (i, j) ∈ Im}.
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Legends of figures

Figure 1. Estimated DCL parameters assuming a maximum delay of 13 years. The

top panel shows the delay parameters: the solid blue curve corresponds to

the adjusted delay probabilities and the discontinuous green curve shows the

general parameters which provide the classical chain ladder reserve. The last

panel shows the DCL inflation parameters in the underwriting year direction.

Figure 2. Delay parameters considering prior knowledge about the severity devel-

opment inflation (δj). The first panel shows the delay parameters from DCL

on the adjusted triangle X̃ij = Xij/δj. The general delay parameters (solid

blue curve) without any restriction are compared with the adjusted delay prob-

abilities (discontinuous green curve). The prior severity development inflation

is showed in the bottom panel.

Figure 3. Bootstrap predictive distribution. The first row shows the distribution

of the total reserves. The second and third rows show the RBNS and IBNR

distributions, respectively. The DCL distribution when no prior is incorpo-

rated is shown in the first column. Columns 2–4 show the derived distribution

considering prior knowledge as in table 6. The histograms show the bootstrap

distribution which ignores the uncertainty of the parameters.

Figure 4. Inflation in the underwriting year. The top panel shows the inflation

removing the zero-claims effect and compares it with the inflation estimated

using DCL and ignoring the zero-claims knowledge. The second panel shows

the zero-claims effect and the last panel shows the probability of zero-claims

for each underwriting year.
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Tables

Table 1: Point forecasts from DCL without prior information (the numbers are

given in thousands). Columns 2-4 show the forecasts (RBNS, IBNR and total=

IBNR+RBNS) using the general delay parameters estimated by solving the linear

system (5). Columns 5-7 show the same forecasts but using adjusted delay proba-

bilities {p̂0, . . . , p̂m−1}. The last column shows the classical chain ladder forecasts

which are reproduced by DCL using the general delay.

General delay Adjusted delay CLM

Future RBNS IBNR Total RBNS IBNR Total Total

1 4799 891 5691 4799 891 5691 5691

2 1781 429 2210 1780 429 2209 2210

3 1465 69 1535 1466 69 1535 1535

4 1052 61 1113 1052 61 1112 1113

5 737 43 780 740 43 782 780

6 566 25 592 566 25 592 592

7 471 14 485 472 14 486 485

8 367 15 383 367 15 383 383

9 262 16 277 262 16 277 277

10 171 14 185 170 14 184 185

11 90 11 101 90 11 101 101

12 -12 14 1 0 12 12 1

13 1 -1 0 0 1 1 0

Total 11751 1601 13352 11764 1601 13365 13352

Figures
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Table 2: Estimated delay parameters considering prior information about the sever-

ity development inflation.

l π̂l p̂l

0 0.8037 0.7956

1 0.1981 0.1961

2 -0.0101 0.0000

3 0.0045 0.0045

4 0.0011 0.0011

5 0.0008 0.0008

6 0.0005 0.0005

7 0.0004 0.0004

8 0.0003 0.0003

9 0.0003 0.0003

10 0.0003 0.0003

11 0.0002 0.0002

12 0.0000 0.0000

13 0.0000 0.0000

Table 3: Point forecasts considering prior information about the severity inflation

(the numbers are given in thousands).

General delay Adjusted delay CLM

Future RBNS IBNR Total RBNS IBNR Total Total

1 4116 1567 5683 4472 1551 6023 5683

2 940 1263 2203 1328 1250 2579 2203

3 1310 228 1538 1297 335 1632 1538

4 858 249 1107 849 258 1107 1107

5 656 125 781 649 127 777 781

6 507 80 587 502 81 583 587

7 421 63 484 416 64 480 484

8 326 54 379 322 54 376 379

9 248 27 276 246 28 274 276

10 166 18 184 164 18 182 184

11 82 18 100 81 18 99 100

12 1 1 2 1 1 1 2

13 0 0 0 0 0 0 0

Total 9630 3692 13322 10328 3785 14113 13322
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Table 4: Point forecasts considering prior information about the zero claims (the

numbers are given in thousands).

General delay Adjusted delay CLM

Future RBNS IBNR Total RBNS IBNR Total Total

1 4796 891 5688 4810 890 5700 5688

2 1783 428 2212 1800 428 2228 2212

3 1465 69 1535 1483 69 1553 1535

4 1056 60 1116 1073 60 1134 1116

5 733 44 776 751 44 794 776

6 563 25 588 578 25 603 588

7 469 14 483 484 14 497 483

8 366 15 382 379 15 395 382

9 262 15 278 275 15 290 278

10 171 14 185 183 14 197 185

11 90 11 101 103 11 114 101

12 -12 14 1 1 14 14 1

13 1 -1 0 1 1 2 0

Total 11743 1601 13344 11921 1600 13521 13344

Table 5: Point forecasts considering prior information about the zero claims and

severity inflation (the numbers are given in thousands).

General delay Adjusted delay CLM

Future RBNS IBNR Total RBNS IBNR Total Total

1 4113 1567 5680 4465 1551 6017 5680

2 942 1261 2204 1327 1249 2576 2204

3 1309 229 1538 1296 335 1631 1538

4 862 248 1110 853 257 1110 1110

5 651 126 777 644 129 773 777

6 504 80 584 499 81 580 584

7 419 63 482 415 63 478 482

8 325 54 378 322 54 375 378

9 249 27 276 247 28 274 276

10 166 18 183 164 18 182 183

11 82 18 100 81 18 99 100

12 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0

Total 9623 3691 13314 10314 3783 14097 13314
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Table 6: Summary of the bootstrap predictive distribution for the total reserve. The

DCL distribution with no prior is showed in columns 2–3. The third column shows

the results from the chain ladder bootstrapping of England and Verrall (2002). The

DCL distribution using prior information about the development inflation (prior

A), the zero-claims (prior B) and also both at the same time (prior C) are showed

in columns 5–10. Bootstrap methods ignoring or taking into account the uncer-

tainty of the parameters are showed in columns labelled as “Boot I” and “Boot II”,

respectively. The numbers are given in thousands.

DCL CLM Prior A Prior B Prior C

Boot I Boot II EV-2002 Boot I Boot II Boot I Boot II Boot I Boot II

mean 13087 13446 13376 13510 13584 13423 13576 13574 13864

pe 1271 2045 2313 1945 2995 1401 1998 2057 3064

50% 13080 13342 13246 13394 13150 13383 13399 13335 13397

90% 14764 16084 16286 16058 17248 15222 16176 16377 18079

95% 15235 16972 17259 16859 19103 15763 17219 17269 19671

99% 16024 18266 19408 18395 22413 16884 18883 19073 23990

Table 7: Estimated parameters from DCL applied to the three triangles ℵm,∆m and

Rm. The first column reports the general delay parameters calculated by solving

system (12). The second column shows the estimated proportion of zero-claims

estimated from (10). The last column shows the severity development inflation

estimated from equation (11).

π̂l Q̂i δ̂j

1 0.8037 0.207 0.751

2 0.1981 0.220 1.100

3 -0.0101 0.236 2.833

4 0.0045 0.228 7.081

5 0.0011 0.234 12.501

6 0.0008 0.248 14.474

7 0.0005 0.280 12.865

8 0.0004 0.306 17.349

9 0.0003 0.327 26.193

10 0.0003 0.347 24.391

11 0.0003 0.352 23.660

12 0.0002 0.339 40.284

13 0.0000 0.320 2.095

14 0.0000 0.346
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Table 8: Incremental incurred counts: ℵm = {Nij : (i, j) ∈ Im}.

i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 18247 3083 124 22 5 5 3 1 0 1 1 0 0 0

2 17098 2567 98 25 6 1 1 3 0 1 0 0 0

3 16110 2700 107 18 7 5 4 1 4 0 0 0

4 14426 2253 103 17 10 3 2 1 1 1 0

5 14142 2173 62 11 7 4 0 1 1 0

6 14275 1850 86 25 6 2 0 0 1

7 14019 1797 97 19 5 1 1 1

8 13933 1602 84 24 6 3 1

9 12962 1503 65 11 2 2

10 12226 1352 74 18 7

11 11124 1347 57 12

12 10360 1307 56

13 10371 1141

14 10435

Table 9: Incremental paid data: ∆m = {Xij : (i, j) ∈ Im}.

i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 9829717 5690608 874882 420112 154884 55497 46239 313960 290204 12936 6218 18755 4678 0

2 9263718 5004173 971523 660324 208000 531391 495368 48367 566099 49905 362747 388190 0

3 9402126 5625116 805027 322263 325505 101469 160747 310837 30754 69395 8123 51756

4 8650875 5150702 752354 802485 209590 466859 197654 41763 25349 367750 123091

5 8848118 4748516 1390699 1140610 412090 359991 20169 220227 54395 240967

6 9070691 5890678 519808 539202 127701 86472 122060 83853 6660

7 8763254 4293444 1339396 292330 1515615 155402 28210 36709

8 7777082 4145234 642816 504127 92030 101250 6620

9 7212984 3498230 778132 354855 626442 342182

10 6265457 3737631 546644 182490 297995

11 5737447 3281469 748102 456983

12 5612232 3495586 593774

13 6386024 3289703

14 6110750
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Table 10: Incremental number of non-zero payments: Rm = {Rij : (i, j) ∈ Im}.

i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 11761 4800 324 71 39 14 10 6 3 5 5 2 2 0

2 10927 4077 303 60 28 12 13 5 8 4 5 5 0

3 9856 4168 294 71 23 23 16 10 9 4 4 3

4 8915 3682 246 70 27 16 7 7 4 7 4

5 8854 3340 265 46 33 9 4 6 2 5

6 8881 3000 199 70 22 15 8 8 4

7 8170 2983 221 46 18 8 5 6

8 7827 2741 184 55 22 15 3

9 6999 2540 166 44 18 7

10 6240 2420 184 45 18

11 5652 2210 184 45

12 5223 2317 148

13 5627 2024

14 5483

Figure 1: Estimated DCL parameters assuming a maximum delay of 13 years. The

top panel shows the delay parameters: the solid blue curve corresponds to the

adjusted delay probabilities and the discontinuous green curve shows the general

parameters which provide the classical chain ladder reserve. The last panel shows

the DCL inflation parameters in the underwriting year direction.
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Figure 2: Delay parameters considering prior knowledge about the severity devel-

opment inflation (δj). The first panel shows the delay parameters from DCL on the

adjusted triangle X̃ij = Xij/δj. The general delay parameters (solid blue curve)

without any restriction are compared with the adjusted delay probabilities (discon-

tinuous green curve). The prior severity development inflation is showed in the

bottom panel.
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Figure 3: Bootstrap predictive distribution. The first row shows the distribution of

the total reserves. The second and third rows show the RBNS and IBNR distribu-

tions, respectively. The DCL distribution when no prior is incorporated is shown

in the first column. Columns 2–4 show the derived distribution considering prior

knowledge as in table 6. The histograms show the bootstrap distribution which

ignores the uncertainty of the parameters.
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Figure 4: Inflation in the underwriting year. The top panel shows the inflation re-

moving the zero-claims effect and compares it with the inflation estimated using DCL

and ignoring the zero-claims knowledge. The second panel shows the zero-claims

effect and the last panel shows the probability of zero-claims for each underwriting

year.
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