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In most developed countries, the insurance sector accounts for around eight percent of

the GDP. In Europe alone the insurers liabilities are estimated at around e 900 bil-

lion. Every insurance company regularly estimates its liabilities and reports them, in

conjunction with statements about capital and assets, to the regulators. The liabilities

determine the insurers solvency and also its pricing and investment strategy. The new

EU directive, Solvency II, which came into effect in the beginning of 2016, states that

those liabilities should be estimated with ‘realistic assumption’ using ‘relevant actuarial

and statistical methods’. However, modern statistics has not found its way in the reserv-

ing departments of today’s insurance companies. This thesis attempts to contribute to

the connection between the world of mathematical statistics and the reserving practice

in general insurance. As part of this thesis, it is in particular shown that today’s reserv-

ing practice can be understood as a non-parametric estimation approach in a structured

model setting. The forecast of future claims is done without the use of exposure informa-

tion, i.e., without knowledge about the number of underwritten policies. New statistical

estimation techniques and properties are derived which are build from this motivating

application.
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1
Introduction

The idea behind insurance is simple. If the risk of rare events is spread from the indi-

viduum to a larger community, everyone feels, and in fact is, safer. This basic idea makes

insurance companies useful and important. Insurance companies charge premiums to

their customers in exchange for covering their risk. They are multi-billion dollar enti-

ties that invest their clients’ premiums into the financial market and the real economy.

Overall, the insurance sectors in most developed economies earn premiums amounting

to approximately eight percent of their GNPs (ESRB, 2015; FIO, 2015).

The size of insurance sectors, while reflecting their importance, makes economic systems

vulnerable to them. The failure of just one large insurance company does not only harm

its policyholders, but could also disrupt the financial market and the real economy.

Therefore, the insurance market remains highly regulated. Since early 2016 in the EU,

regulation has been set by the Solvency II directive. Its main content is the new ‘Solvency

II balance sheet’, which lists the insurers assets, liabilities, and capital. The largest item

on the general insurers balance sheet is often liabilities, which determine the solvency

and investment strategy of the company. Liabilities are composed of the future costs for

reported claims that have not been settled yet, and also for incurred claims that have

not yet been reported. In Europe, liabilities amount to approximately e 900 billion (IE,

2013). With regards to the reserve, i.e., the best estimate of the liabilities, Article 77

‘Calculation of technical provisions’ states:
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Chapter 1. Introduction

“The calculation of the best estimate shall be based upon up-to-date and cred-

ible information and realistic assumptions and be performed using adequate,

applicable and relevant actuarial and statistical methods.”

While everyone should agree on the content of said article, this statement is actually

quite vague. Without detailed guidelines, it is perhaps not too surprising that mod-

ern statistics has not found its way in the reserving departments of today’s insurance

companies.

The reasons for these are manifold and the discussion is not a subject of this thesis.

However, a main reason for this absence might be the lack of sufficient exchange and

interaction between actuaries and statisticians and also between practicing and academic

actuaries. The first is most evident from the fact that statisticians rarely publish in

actuarial journals and vice versa.

This thesis aims to contribute to the connection between the world of mathematical

statistics with the reserving practice in general insurance. Chapter 2 & 3 present new

contributions in mathematical statistics, but explain how those are useful for the ac-

tuarial field of reserving. Chapter 4 is written for an actuarial audience; it elaborates

how the mathematical objects of Chapter 2 & 3 can be explained as traditional objects

known to actuaries.

The connection between the actuarial and statistical world is done by introducing the

notion of in-sample forecasting, which will be repeatedly explained throughout all chap-

ters. Consider the estimation problem of a two-dimensional function, either a density or

a hazard, supported on a rectangle. If these functions are known, then full information

about the distribution, and, therefore, uncertainty is available. The difficulty is that ob-

servations are only available on a subspace of that rectangle. The reason is that points

on the rectangle represent dates, some of which correspond to the future which is not

known at time of data collection. Without further parametric assumptions, this problem

can only be solved if the univariate components of the density or hazard are separable.

This separability assumption is known as structured model in non-parametric statistics.

Under certain assumptions on the subspace, this is already enough to estimate the orig-

inal functions with support on the full rectangle and in particular to get information

about the ’future part’ of the rectangle.
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Chapter 1. Introduction

These considerations are interesting from both statistical and actuarial perspectives.

From a statistical point of view, in-sample forecasting allows structured models to get

another justification and application besides their traditional motivation of visualization

in higher dimensions and solution of the curse of dimensionality. Note that in-sample

forecasting has potential to be applied to other fields as well, as is for instance already

done for asbestos mortality forecasting, see Mammen, Mart́ınez-Miranda, and Nielsen

(2015).

More importantly, from an actuarial perspective, it is shown (Chapter 4) that what

actuaries are doing today when setting reserves can be understood in a non-parametric

structured model setting: A one dimensional component of the two dimensional hazard

is shown to be the ‘actuarial’ development factors. These factors are are often the central

object in the reserving departments of general insurance companies. Hence, actuaries

have a deep understanding of this function with respect to different situations and busi-

nesses. Via the identification to a hazard function one now gets a better understanding

of the statistical estimation: In Chapter 4 & 5, it is for the first time discussed which as-

sumptions on the data generating process have to be made for the classical chain ladder

estimation technique to be consistent. Under these assumptions, we develop improved

estimators of the development factors, based on the theory of Chapter 2. It also turns

out that the assumptions are often quite restrictive. In Chapter 3, we develop a new

statistical estimation technique for relaxed assumptions.

This thesis is composed of four self-contained chapters stemming from four research

papers. The first two papers were developed in collaboration with my supervisors as

co-authors who are mentioned in the beginning of those chapters. Being self-contained,

each chapter has its own introduction, notation, conclusions and references.

A brief description of the contributions of each chapter follows.

Chapter 2: In-sample forecasting with local linear survival densities

In this chapter, we introduce in-sample forecasting via a counting process approach and

describe how to estimate the resulting survival densities with local linear smoothers

motivated by a least squares criterium. For that, we also provide:

• a class of data-driven bandwidth selectors with full asymptotic theory,

3



Chapter 1. Introduction

• a weighting in the bandwidth selection when the task is in-sample forecasting of

reserves in general insurance,

• an application and simulation study in the field of reserving in general insurance.

Chapter 3: Smooth backfitting of multiplicative structured hazards

This chapter generalizes the setting of Chapter 2. The assumption of independent com-

ponents is relaxed. This makes the one dimensional hazard of Chapter 2 multivariate.

We introduce smooth backfitting, known from regression (Mammen, Linton, and Nielsen,

1999), to hazards in a survival analysis setting. Smooth backfitting efficiently estimates

the one-dimensional components of a multiplicative separable hazard. Given a local lin-

ear pilot estimator of the d-dimensional hazard, the backfitting algorithm is motivated

from a least squares criterion and converges to the closest multiplicative function. We

show that the one dimensional components are estimated with a one-dimensional con-

vergence rate, and hence do not suffer from the curse of dimensionality. The setting

is very similar to Linton, Nielsen, and Van de Geer (2003), but has two significant im-

provements. First, our approach works without the use of higher order kernels. With

them, one can theoretically derive nearly n−1/2–consistency (with growing order), but

they often fail to show good performance in practice. Second, the support of the mul-

tivariate hazard does not need to be rectangular. In the provided in-sample forecasting

application of reserving in general insurance, the support is indeed triangular.

Chapter 4: On the relationship between classical chain ladder and gran-

ular reserving

This chapter explains how the contributions of Chapters 2 & 3 are related to today’s

reserving practice in general insurance. It is shown that the one dimensional hazard

has a one to one correspondence to the ‘development factors’ originating from the most

widely used reserving method, chain-ladder. This is done by modeling the claims data

used in the chain-ladder technique as arising from individual iid observations. As a

side result, we also show that the level of aggregation has an effect on the underlying

assumptions and often is a bias-variance trade-off.

4



Chapter 1. Introduction

Chapter 5: Continuous chain-ladder with paid data

The theory of Chapter 4 can only be used to forecast claim numbers. This chapter

extends that model to be suitable for claim amounts by introducing a methodology to

estimate a cost weighted density. The message is that practitioners can essentially do

the same whether the data are claim counts or claim amounts. This corresponds to the

fact that in practice, the chain-ladder method is used in both cases. However, when

claim amounts are considered, this comes with the cost of an additional assumption,

which is that the influences of development delay and underwriting date on the claim

severity are independent to each other.
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Chapter 2. In-sample forecasting with local linear survival densities

In-sample forecasting with local linear survival densities

M. Hiabu a, E. Mammenb, Maŕıa D. Mart́ınez Mirandaa, Jens P. Nielsena

aCass Business School, City, University of London, United Kingdom
bInstitute for Applied Mathematics, Heidelberg University, Germany

Abstract

In this paper, in-sample forecasting is defined as forecasting a structured density to sets

where it is unobserved. The structured density consists of one-dimensional in-sample

components that identify the density on such sets. We focus on the multiplicative density

structure, which has recently been seen as the underlying structure of non-life insurance

forecasts. In non-life insurance the in-sample area is defined as one triangle and the fore-

casting area as the triangle that added to the first triangle produces a square. Recent

approaches estimate two one-dimensional components by projecting an unstructured

two-dimensional density estimator onto the space of multiplicatively separable func-

tions. We show that time-reversal reduces the problem to two one-dimensional prob-

lems, where the one-dimensional data are left-truncated and a one-dimensional survival

density estimator is needed. This paper then uses the local linear density smoother, with

weighted cross-validated and do-validated bandwidth selectors. Full asymptotic theory

is provided, with and without time reversal. Finite sample studies and an application

to non-life insurance are included.

Keywords:Aalen’s multiplicative model; Cross-validation; Do-validation; Density estima-

tion; Local linear kernel estimation; Survival data.
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Chapter 2. In-sample forecasting with local linear survival densities

2.1 Introduction

This paper develops a dimension-reduction procedure in order to forecast an age-cohort

structure. Our motivating example is taken from non-life insurance where the estima-

tion of outstanding liabilities involves an age-cohort model. In non-life insurance such a

structure is called chain ladder: cohorts are based on the year of underwriting the insur-

ance policy and age is the development of claims. Age-cohort and chain ladder models

have often been formulated as discrete models aggregating observations in months, quar-

ters or years. Mart́ınez-Miranda et al. (2013) identified the chain ladder method as a

structured histogram in the vocabulary of non-parametric smoothing, and suggested re-

placing the structured histogram smoothers by continuous kernel smoothers, which are

more efficient.

We assume that our data are sampled from two independent distributions, one for cohort

and one for age, but are truncated if cohort plus age is greater than the calendar time of

data collection. Future observations remain unobserved, and the forecasting exercise is

to predict them. Visualized, the historical data belong to a triangle and the forecasting

exercise is to predict the densities on the triangle that added to the first completes a

square. We call this forecasting structure in-sample forecasting, because information on

the two relevant densities of the multiplicative structure is indeed in the sample. The

independence assumption for the unfiltered data will be discussed in the next section.

Our model is thus that we have independent and identically distributed truncated obser-

vations sampled from the two-dimensional random variable, (X,Y ), with values on the

triangle I = {(x, y) : x+ y ≤ T, x, y ≥ 0}, T ∈ R+. These observations are truncated

from the complete set with support on the square [0, T ]2. We wish to make in-sample

forecasts of the density with support on the second triangle, J = [0, T ]2 \ I, which

completes the square. Furthermore, for unfiltered (X,Y ), the joint density, f, has sup-

port on the whole square, [0, T ]2 and is multiplicative, i.e., f(x, y) = f1(x)f2(y). Given

this multiplicative structure, the truncated observations provide in-sample information

about the density in the forecasting triangle. Estimating only the survival functions

or cumulative hazards is not enough when integrating the forecasts considered in this

paper, since J is non-rectangular.

9



Chapter 2. In-sample forecasting with local linear survival densities

We estimate the two multiplicative components without first having to estimate the

two-dimensional density. This is possible due to the reinterpretation of the forecasting

aim as two distinct one-dimensional right-truncated density estimation problems, which

can be solved in a counting process framework. It is well-known that intractable right-

truncation can be replaced by more tractable left-truncation by reversing the time scale;

see for example Ware and DeMets (1976) and Lagakos, Barraj, and De Gruttola (1988).

The time-reversal approach requires estimates of the survival densities, for which we use

the local linear survival kernel density estimator of Nielsen, Tanggaard, and Jones (2009)

with cross-validated or do-validated bandwidths, see Mammen et al. (2011), Gámiz

et al. (2013) and Gámiz et al. (2016). We introduce full asymptotic theory of the

corresponding bandwidth selectors with and without weighting, and with and without

time reversal. Reducing the forecasting to a one-dimensional problem enables us to

introduce a new measure of forecasting accuracy that is equivalent to an importance-

weighted loss function. The bandwidths chosen by this new measure focus on the areas of

the one-dimensional functions that are most important for the forecast. When estimating

outstanding liabilities, least information is available for the most recent years but they

are the most important ones to estimate accurately. The new approach leads to larger

bandwidths than classical goodness-of-fit loss measures. This better reflects the nature

of the underlying problem, and improves forecasting accuracy.

2.2 In-sample forecasting and related work

While we use counting process theory in this paper to reduce the number of dimensions,

the problem can also be formulated via independent stochastic variables X and Y and

their density on a triangular support; see Mart́ınez-Miranda et al. (2013), Mammen,

Mart́ınez-Miranda, and Nielsen (2015) and Lee et al. (2015), where in the two latter pa-

pers the triangular support is one special case. The independence assumption of X and

Y have direct analogues to survival analysis. The density f1 of X measures exposure,

i.e., the number of individuals at risk, while the density f2 of Y corresponds to duration.

While classical counting process theory in survival analysis operates with observed expo-

sure, in-sample forecasting estimates f1 and does not need observed exposure. This has

the advantage of operating on less data. Simple model assumptions are often preferable

10



Chapter 2. In-sample forecasting with local linear survival densities

when forecasting, therefore in-sample forecasting might be preferable even in situations

where more data, including exposure, is available.

For example when reserves for outstanding liabilities are to be estimated in insurance

companies, there is usually no follow-up data of individuals in the portfolio available and

reported claims, categorized in different businesses and other baseline characteristics, are

the only records. The reason that insurers do not use classical biostatistical exposure

data, i.e., they do not follow every underwritten policy, might be because of the bad

quality and complexity of such exposure data with many potential causes of failure which

heavily affect the actual cost of a claim. When claim numbers are considered, then X is

the underwriting date of the policy, and Y is the time between underwriting date and

the report of a claim, the reporting delay. Truncation occurs when X + Y is smaller

than the date of data collection. The mass of the unobserved, future triangle, J , then

corresponds to the proportion of claims underwritten in the past which are not reported

yet. The assumption of a multiplicative density means that the reporting delay does

not depend on the underwriting date. Thus, calendar time effects like court rulings,

emergence of latent claims, or changes in operational time cannot be accommodated

in the model before further generalisations of the model are introduced. Nevertheless

we restrict our discussion to the multiplicative model for several reasons. It has its

justification as baseline for generalisations in many directions. It also approximates the

data structure well enough in many applications. We will come back to this point when

discussing our data example. The relevance of the multiplicative model also lies in the

fact that it helps to understand discrete related versions that are used every day in all

non-life insurance companies, see England and Verrall (2002) for an overview of those

discrete models.

The underlying model before filtering is the same in forward and backward time, namely

that the underlying sampled random variables, X and Y , are independent with joint mul-

tiplicative density f(x, y) = f1(x)f2(y). This multiplicative structure based on partially

observed independent random variables is well known in biostatistical theory and the

fulfillment of multiplicity can be checked via independence tests of Tsai (1990), Mandel

and Betensky (2007) and Addona, Atherton, and Wolfson (2012). Brookmeyer and Gail

(1987) aimed at understanding the estimation of outstanding numbers of onset AIDS

cases from a given population. They considered prevalent cohorts, where time of origin is

not known, and discussed the resulting biases from just using the prevalent time available

11
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instead of infection time of each observed individual. Wang (1989) works with prevalent

cohort data, but where time of origin is known, and points out that this sampling boils

down to a random truncation model. Both these two well known biostatistical papers

work in usual forward moving time but nevertheless could have taken advantage of the

filtered non-parametric density approach of this paper, see §2.6, had it existed.

In the in-sample forecasting application two sampling details are different, leading us

to reverse the time and using the non-parametric density approach in reversed time.

One sampling detail is that less is known than in the paper of Wang (1989), because

exposure, i.e., the number of people at risk, is unobserved. Another is that more is

known than in the paper of Wang (1989), because all failures are observed, without

exception. In reversed time, the future numbers of failures, the past number of failures

in regular time, is exactly the exposure needed for estimation. Therefore, the extra bit

of information that all failures are observed up to a point can alleviate the challenge of

unobserved exposure, and the technique doing this is to reverse the direction of time.

2.3 Model

Consider the probability space {S,B(S), P}, where S is the square {(x, y) : 0 ≤ x, y ≤

T}. We are interested in estimating the density, f = dP/dλ, where λ is the two-

dimensional Lebesgue measure. We will assume that f is multiplicative, i.e., f(x, y) =

f1(x)f2(y), and that observations are only sampled on a subset of the full support of

this density, f . The truncated density is assumed to be supported on the triangle, I. In

this case, we consider observations of the independent and identically distributed pairs,

{(X1, Y1), . . . , (Xn, Yn)}, with Xi ≤ T − Yi, or equivalently Yi ≤ T − Xi, where T is

the calendar time at which the data are collected. Both observation schemes can be

understood as random right-truncation targeting only X or Y , respectively, and so both

can be formulated in the following counting process framework. We define two counting

processes, one indicating the occurrence of X, and the other indicating the occurrence

of Y . By reversing the times of the counting processes, the right-truncation becomes

left-truncation (Lagakos, Barraj, and De Gruttola, 1988).

12



Chapter 2. In-sample forecasting with local linear survival densities

We define the two time reversed counting processes as

N i
1(t) = I (T −Xi ≤ t) , N i

2(t) = I (T − Yi ≤ t) (i = 1, . . . , n),

with respect to the filtrations

F i1,t = σ

({
T −Xi ≤ s : s ≤ t

}
∪
{
Yi ≤ s : s ≤ t

}
∪N

)
,

F i2,t = σ

({
T − Yi ≤ s : s ≤ t

}
∪
{
Xi ≤ s : s ≤ t

}
∪N

)
,

satisfying the usual conditions (Andersen et al., 1993, p. 60), and where N = {A :

A ⊆ B, B ∈ B(S),pr(B) = 0}. Adding the null set, N , to the filtration guarantees its

completeness. This is a technically useful construction, but it has been argued that it is

not necessary; see Jacod (1979) and Jacod and Shiryaev (1987). We keep the assumption

because we use results that rely on it.

Both counting processes live on a reversed timescale, so all the usual estimators derived

from these counting processes will be estimators based on T − X and T − Y , rather

than on X and Y . To minimize any potential confusion, we will mark all functions

corresponding to T −X or T − Y with an superscript, R. The desired estimators will

then be linear transformations of the time-reversed versions.

The advantage of this time reversal can be seen by identifying the random intensity of

N i
l , λ

i
l, which is well-defined sinceX and Y have bounded densities. Thus it holds, almost

surely, that λil(t) = limh↓0 h
−1E

[
N i
l {(t+ h)−} −N i

l (t−)| Ft−
]

(l = 1, 2), see Aalen

(1978). Straightforward computations lead to intensities satisfying Aalen’s multiplicative

intensity model (Aalen, 1978):

λil(t) = αl(t)Zil (t),

13
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where the hazard ratios α1, α2 and the predictable processes, Zi1 and Zi2, are

α1(t) = lim
h↓0

h−1pr {(T −X) ∈ [t, t+ h) | (T −X) ≥ t} = f1(T − t)
F1(T − t) = fR1 (t)

SR1 (t)
,

Zi1(t) = I
{
Yi < t ≤ (T −Xi)

}
,

α2(t) = lim
h↓0

h−1pr {(T − Y ) ∈ [t, t+ h) | (T − Y ) ≥ t} = f2(T − t)
F2(T − t) = fR2 (t)

SR2 (t)
,

Zi2(t) = I
{
Xi < t ≤ (T − Yi)

}
,

and Fl =
∫ ·

0 fl(x)dx (l = 1, 2) are the cumulative distribution functions. As the hazard

function, α1, does not depend on f2, and the hazard function, α2, does not depend on

f1, we can estimate f1 and f2 as one-dimensional densities.

2.4 Local linear density estimator in reversed time

Due to the symmetry between T−X and T−Y , all of the following results hold for both f1

and f2. For clarity, therefore, we suppress the subscript l, which indicates the coordinate.

Furthermore, we will denote the exposure or risk process by Z(t) =
∑n
i=1 Z

i(t).

Following Nielsen, Tanggaard, and Jones (2009), our proposed estimator of the density

function, fR, will involve a pilot estimator of the survival function, SR(t). Here, for

simplicity, we choose the Kaplan–Meier product-limit estimator,

ŜR(t) =
∏
s≤t

{
1−∆Â(s)

}
,

where Â(t) =
∑n
i=1

∫ t
0 {Z(s)}−1 dN i(s) is the Aalen estimator of the integrated hazard

function, A(t) =
∫ t

0 α(s)ds. We define the local linear estimator f̂Rh,K(t) of fR(t) as the

minimizer θ̂0 in the equation

θ̂0

θ̂1

 = arg min
θ0,θ1∈R

n∑
i=1

[ ∫
Kh(t− s) {θ0 + θ1(t− s)}2 Zi(s)W (s)ds

− 2
∫
Kh(t− s) {θ0 + θ1(t− s)} ŜR(s)Zi(s)W (s)dN i(s)

]
.(2.1)

Here and below, an integral
∫

with no limits denotes integration over the whole support,

i.e.,
∫ T

0 . In addition, for kernel K and bandwidth h, Kh(t) = h−1K(t/h). The definition

14
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of the local linear estimator as the minimizer of (5.3) can be motivated by the fact that

the sum on the right hand side of (5.3) equals the limit of

n∑
i=1

∫ [{1
ε

∫ s+ε

s
ŜR(u)dN i(u)− θ0 − θ1(t− s)

}2
− ξ(ε)

]
Kh(t− s)Zi(s)W (s) ds,

for ε converging to zero. Here, ξ(ε) = {ε−1 ∫ s+ε
s ŜR(u)dN i(u)}−2 is a vertical shift

subtracted to make the expression well-defined. Because ξ(ε) does not depend on

(θ0, θ1), θ̂0 is defined by a local weighted least squares criterion. The function, W ,

is an arbitrary predictable weight function on which the pointwise first order asymp-

totics will not depend. There exist two popular weightings: the first being the nat-

ural unit weighting, W (s) = 1, while the second is the Ramlau–Hansen weighting,

W (s) = {n/Z(s)}I{Z(s) > 0}. The latter becomes the classical kernel density estima-

tor in the simple unfiltered case. However, in the framework of filtered observations the

natural unit weighting, W (s) = 1, tends to be more robust (Nielsen, Tanggaard, and

Jones, 2009), so we use it. For this, the solution of (5.3) (Nielsen, Tanggaard, and Jones,

2009; Gámiz et al., 2013) is

f̂Rh,K(t) = n−1
n∑
i=1

∫
Kt,h(t− s)ŜR(s)dN i(s), (2.2)

where

Kt,h(t− s) = a2(t)− a1(t)(t− s)
a0(t)a2(t)− {a1(t)}2Kh(t− s),

aj(t) = n−1
∫
Kh(t− s)(t− s)jZ(s)ds (j = 0, 1, 2).

If K is a second-order kernel, then n−1 ∫ Kt,h(t − s)Z(s)ds = 1, n−1 ∫ Kt,h(t − s)(t −

s)Z(s)ds = 0, n−1 ∫ Kt,h(t − s)(t − s)2Z(s)ds > 0, so that Kt,h can be interpreted

as a second-order kernel with respect to the measure, µ, where dµ(s) = n−1Z(s)ds.

This is essential in understanding the pointwise asymptotics of the local linear estima-

tor f̂h,K(t) = f̂Rh,K(T − t) which, as we will see, coincides with the kernel estimator∑n
i=1

∫
Kt,h(t− s)ŜR(s){Z1(s)}−1dN i(s).

We introduce the following notation. For every kernel, K, let

µj(K) =
∫
sjK(s)ds, R(K) =

∫
K2(s)ds, K

∗(u) = µ2(K)− µ1(K)u
µ2(K)− {µ1(K)}2

K(u).
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For an interval I, Cd(I), denotes the space of d-times continuously differentiable function

on I. We make the following assumptions.

S1. The bandwidth h = h(n) satisfies h→ 0 and n1/4h→∞ for n→∞.

S2. The density f is strictly positive and it holds that f ∈ C2([0, T ]).

S3. The kernel K is symmetric, has bounded support and has finite second moment.

Assumptions (S2) and (S3) are standard in smoothing theory. In contrast to the unfil-

tered case, (S1) assumes more than just the bandwidth h converging to zero. This is

required, otherwise the estimation error of the survival function would determine the

first-order asymptotic properties of the bias, since n−1/2/h2 → 0 would not hold.

The key in obtaining the pointwise limit distribution of f̂h,K(t) − f(t) is to split the

estimation error into a sum of a stable part and a martingale part,

BR(t) = fR,∗h,K(t)− fR(t), V R(t) = f̂Rh,K(t)− fR,∗h,K(t),

where fR,∗h,K(t) = n−1∑n
i=1

∫
Kt,h(t−s)Zi(s)ŜR(s)α(s) ds. The estimation error can then

be described as

f̂(t)− f(t) = BR(T − t) + V R(T − t) = B(t) + V (t).

Proposition 2.1. Under (S1)–(S3), for t ∈ (0, T ),

(nh)1/2
{
f̂l(t)− fl(t)−Bl(t)

}
→ N

{
0, σ2

l (t)
}

(l = 1, 2), n→∞,

in distribution, where Bl(t) = 1
2µ2(K∗)f ′′l (t)h2 + o(h2), σ2

l (t) = limn→∞ nh 〈Vl〉t =

R(K∗)fl(t)Fl(t)γl(t)−1, γl(t) = pr(Z1
l (t) = 1).

Proposition 4.3 is proved in the Supplemental Material.
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2.5 Bandwidth selection in reversed time

2.5.1 Cross-validation and do-validation

For a kernel estimator, the bandwidth is a positive scalar parameter controlling the

smoothing degree. Data-driven cross-validation in density estimation goes back to

Rudemo (1982) and Bowman (1984). Nowadays, a slightly modified version (Hall, 1983)

is used intended to minimize the integrated squared error. By adding a general weighting,

w, and the exposure, Z, which acknowledges the filtered observations, the aim is to find

the minimizer of the integrated squared error ∆K(h) =
∫ {

f̂Rh,K(t)− fR(t)
}2
Z(t)w(t) dt,

which has the same minimizer as
∫
{f̂Rh,K(t)}2Z(t)w(t) dt− 2

∫
f̂Rh,K(t)fR(t)Z(t)w(t) dt.

Only the second integral of this term needs to be estimated. For the survival density

estimator defined in §2.4, Nielsen, Tanggaard, and Jones (2009) propose choosing the

bandwidth estimator, ĥKCV, as the minimizer of

Q̂K,w(h) =
∫ {

f̂Rh,K(t)
}2
Z(t)w(t) dt− 2

n∑
i=1

∫
f̂
R,[i]
h,K (t)ŜR(t)w(t) dN i(t), (2.3)

where f̂R,[i]h,K (t) = n−1∑
j 6=i
∫
Kt,h(t− s)ŜR(s) dN j(s). This can be seen as a generaliza-

tion of classical cross-validation.

Over the last 20 years, many new methods have been developed to improve cross-

validation; see Heidenreich, Schindler, and Sperlich (2013). One of the strongest band-

width selectors of this review is so-called one-sided cross-validation (Hart and Yi, 1998;

Mart́ınez-Miranda, Nielsen, and Sperlich, 2009), which uses the fact that, under mild reg-

ularity conditions, the ratio of asymptotically optimal bandwidths of two estimators with

different kernels, K and L, is a feasible factor, ρ(K,L) = {R(K)µ2
2(L)/µ2

2(K)R(L)}1/5,

which depends only on the two kernels; see also (2.6) and (2.7) below. The authors

replace the kernel K used for the kernel estimator in (5.4), by its right-sided version

L = KR = 2K(·)I(· ≥ 0) when minimizing (2.3) and multiply the resulting cross-

validation bandwidth by the feasible factor, ρ(K,KR), to derive a bandwidth for a

kernel estimator with kernel, K. Such a construction makes sense if cross-validation for

a one-sided kernel estimator works better than cross-validating with the original ker-

nel, K. One can generalize this idea by defining indirect cross-validation as a method
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where a kernel, L, can be arbitrarily chosen. We denote such bandwidth estimator by

hLICV = ρ(K,L)hLCV.

Savchuk, Hart, and Sheater (2010) propose an indirect cross-validation procedure where

one choses a linear combination of two Gaussian kernels as kernel, L. Mammen et

al. (2011) introduce the do-validation method, which performs indirect cross-validation

twice by using two one-sided kernels, L1 = KL = 2K(·)I(· ≤ 0) and L2 = KR, as indirect

kernels in (2.3). The do-validation bandwidth is the average of the two resulting band-

widths, hDO = 0.5(hKL
ICV + hKR

ICV). Cross-validation for kernels KL and KR works better

than for K because the asymmetry of the kernels KL and KR leads to larger optimal

bandwidths. An empirical study in favour of do-validation in our survival setting has

been performed in Gámiz et al. (2013). Asymptotic theory for weighted and unweighted

cross-validation and do-validation, with and without time reversal, is developed in this

paper in our general survival density framework. Below we discuss how the weighting,

w, in (2.3) can be chosen when the aim is to estimate outstanding loss liabilities.

2.5.2 Weighting for application in claims reserving

In Gámiz et al. (2013), standard cross-validation is defined as the minimizer of (2.3)

with w(t) = 1. Hence, standard cross-validation can be formulated as an in-sample

technique, which aims to estimate the optimal bandwidth for the estimator calculated

from the given sample. However, the situation in the forecasting problem motivating

this paper is different, since our interest focuses on the unobserved region.

In this section, we illustrate how to choose a reasonable weighting scheme to estimate

the outstanding liabilities for a non-life insurance company. The most relevant data

for this relate to the most recent time-periods, for which only a small number of data

are available. This is a well-known challenge for actuaries, who generally tackle it by

using expert opinion and manual adjustments to the data. Bornhuetter and Fergu-

son (1972), Mack (2008) and Alai, Merz, and Wüthrich (2010) give a flavour of the

Bornhutter–Ferguson method used by actuaries. Our smoothing methodology, based on

continuous data, could be used as an alternative to these less rigorous approaches, and

so replace expert opinion and manual adjustments by using information from relevant

neighbourhoods according to an optimal smoothing criteria.
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Unfortunately, the trivial weighting, w = 1, implies that the recent years only have small

influence on the size of the bandwidth, due to the lack of sufficient data. In contrast,

we want the weighting, w(t), to depend on the estimated size of the liabilities at t, in

order to give greatest weight to the most recent period. Assume that T is an integer

indicating for instance months or years, then for a period, p = 1, . . . , T , the reserve,

R(p), is given as R(p) = n
∫ p
p−1 f1(s)S2(T − s) ds/

∫
I f(x, y) dxdy, which is proportional

to
∫ p
p−1 f1(s)FR2 (s) ds. Hence if this is the quantity of interest, for short periods, we

propose the following weighted integrated squared error to be the optimality criteria for

estimating f1,

∆1,K(h) = n−1
∫ {

f1(s)FR2 (s)− f̂1,h,K(s)F̂R2 (s)
}2

ds

= n−1
∫ {

fR1 (s)S2(s)− f̂R1,h,K(s)Ŝ2(s)
}2

ds.

The estimator Ŝ2 converges to S2 uniformly with rate n−1/2 Andersen et al. (1993, p.

261). Thus, we can substitute S2(s) by its estimator Ŝ2(s) = 1− ŜR2 (T − s), and define

∆̃1,K(h) = n−1
∫ {

fR1 (s)− f̂R1,h,K(s)
}2 {

Ŝ2(s)
}2

ds.

But, since f1 and Ŝ2 do not depend on h, minimizing ∆̃1,K in h is equivalent to mini-

mizing

QK(h) = ∆̃1,K(h)−
∫ {

fR1 (t)Ŝ2(t)
}2

dt

=
∫ {

f̂R1,h,K(t)
}{

Ŝ2(t)
}2

dt− 2
∫
fR1 (t)f̂R1,h,K(t)

{
Ŝ2(t)

}2
dt.

Therefore, we choose the weight w1(t) = Ŝ2(t)2/Z1(t) in (2.3), and the cross-validation

estimator of QK(h) becomes

Q̂K,w1(h) =
∫ {

f̂R1,h,K(t)
}2 {

Ŝ2(t)
}2

dt

− 2
n∑
i=1

∫
f̂
R,[i]
1,h,K(t)ŜR1 (t)

{
Ŝ2(t)

}2
{Z1(t)}−1 dN i(t).

By symmetry, the weighting for f2 can be derived in a similar fashion, with w2(t) =

Ŝ1(t)2/Z2(t).
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2.6 Asymptotic properties of weighted combinations of in-

direct cross-validation

In this section we formulate the asymptotic theory of the bandwidth selectors in the

original time direction. This gives statisticians using cross-validation or do-validation

with the local linear density estimator of Nielsen, Tanggaard, and Jones (2009); as in

Gámiz et al. (2013), the asymptotic theory needed to support their approach. We then

provide the theory for the reversed time direction.

We first briefly describe the general model in the original time direction (Nielsen, Tang-

gaard, and Jones, 2009; Gámiz et al., 2013). When observing n individuals, let Ni be

a {0, 1}-valued counting process, which observes the failures of the ith individual in the

time interval, [0, T ]. We assume that Ni is adapted to a filtration, Ft, which satisfies

the usual conditions, see §2.3. We also observe the {0, 1}-valued predictable process,

Zi, which equals unity when the ith individual is at risk. It is assumed that Aalen’s

multiplicative intensity model, λi(t) = α(t)Zi(t), is satisfied. This formulation contains

the case of a longitudinal study with left-truncation and right-censoring. In this case,

we observe triplets (Yi, Xi, δi) (i = 1, . . . , n) where Yi is the time at which an individual

enters the study, Xi is the time he/she leaves the study and δi is binary and equals 1

if death is the reason for leaving the study. Hence, Yi ≤ Xi, and the counting process

formulation would be Ni(t) = I(Xi ≤ t)δi and Zi(t) = I(Yi ≤ t < Xi).

The local linear survival density estimator in the original time direction is then defined

as f̂(t) = n−1∑n
i=1

∫
Kt,h(t− s)Ŝ(s) dNi(s), where Ŝ(s) is the Kaplan–Meier estimator

of the survival function. The integrated squared error, ∆K(h), and the cross-validation

criterion, Q̂K,w(h), then become

∆K(h) = n−1
n∑
i=1

∫ {
f̂(t)− f(t)

}2
w(t)Zi(t) dt, (2.4)

Q̂K,w(h) =
n∑
i=1

∫ {
f̂(t)

}2
Zi(t)w(t) dt− 2

n∑
i=1

∫
f̂ [i](t)Ŝ(t)w(t) dNi(t), (2.5)

where f̂ [i](t) = n−1∑
j 6=i
∫
Kt,h(t− s)Ŝ(s) dNj(s).

We will derive the asymptotic properties of weighted combinations of indirect cross-

validation bandwidths and in particular of the do-validation approach. In Lemma 2.3 of
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Appendix 2.A, we prove that the integrated squared error in (2.4) is uniformly asymptoti-

cally equivalent toMK(h) = (nh)−1R(K∗)
∫
f(t)S(t)w(t)dt+h4µ2

2(K∗)
∫
{f ′′(t)/2}2γ(t)w(t)dt,

which leads to the optimal deterministic bandwidth selector

hMISE = C0n
−1/5, C0 =

{
R(K∗)
µ2

2(K∗)

∫
f(t)S(t)w(t)dt∫
f ′′(t)2γ(t)w(t)dt

}1/5

, (2.6)

where γ(t) = n−1E{Z(t)}. To simplify the discussion, we assume that hISE, is defined

as the minimizer of (2.5) over the interval I∗n = [a∗1n−1/5, a∗2n
−1/5], where the constants

a∗2 > a∗1 > 0 are chosen such that a∗1 < C0 < a∗2.

We will study the asymptotic properties of the weighted combinations of indirect cross-

validation selectors introduced in Section 2.5.1,

ĥICV =
J∑
j=1

mjρjh
Lj

CV, ρj = ρ(Lj) =
{
R(K)µ2

2(Lj)
µ2

2(K)R(Lj)

}1/5

, (2.7)

where Lj are arbitrary kernels and mj are weights with
∑J
j=1mj = 1. For K symmetric,

J = 2, L1 = KL, L2 = KR, and m1 = m2 = 0.5 we get the do-validation bandwidth

estimator. We make the following assumptions.

T1. Let Z =
∑n
i=1 Zi. The expected relative exposure function, γ(t) = n−1E{Z(t)} is

strictly positive, satisfies γ ∈ C2([0, T ]), and sups∈[0,T ] |Z(s)/n− γ(s)| = oP
{
(logn)−1},

sups,t∈[0,T ],|t−s|≤CKh |{Z(t)− Z(s)} /n− {γ(t)− γ(s)}| = oP
{

(nh)−1/2
}

, where the

constant CK is defined in (T2).

T2. The kernels, K and Lj (j = 1, ..., J), are compactly supported, i.e., the support

lies within [−CK , CK ] for some constant, CK > 0. The kernels are continuous

on IR\{0} and have one-sided derivatives that are Hölder continuous on IR− =

{x : x < 0} and IR+ = {x : x > 0}. Thus, there exist constants c and δ such

that |g(x) − g(y)| ≤ c|x − y|δ for x, y < 0 or x, y > 0 with g equal to K ′ or L′j
(j = 1, ..., J). The left and right-sided derivatives differ at most on a finite set.

The kernel K is symmetric.

T3. It holds that f ∈ C2([0, T ]). The second derivative of f is Hölder continuous with

exponent δ > 0 and f is strictly positive.

T4. There exists a function w̃ ∈ C1([0, T ]), with supt∈[0,T ] |w̃(t)− w(t)| = oP (1).
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Table 2.1: The factor ΨK in (2.8) as comparison of asymptotic variances among
bandwidth selection methods.

Method Epanechnikov Quartic Sextic
Do-validation 2.19 1.89 2.36
Cross-validation 7.42 5.87 6.99
Plug-in 0.72 0.83 1.18

Assumption (T2) is a weak standard condition on kernels. Assumption (T3) differs from

standard smoothness conditions only by the mild additional assumption that the second

derivative of the density function fulfils a Hölder condition. Assumption (T1) is also

rather weak. In the special framework considered in §1–4, and also in the framework of

longitudinal data described previously, (T1) is easily verified by setting γ(t) = pr(Zi(t) =

1).

Theorem 2.2. Under (T1)–(T4), the bandwidth selector ĥICV of the local linear survival

density estimator in the original time direction satisfies

n3/10
(
ĥICV − hMISE

)
→ N

(
0, σ2

1

)
, n3/10

(
ĥICV − hISE

)
→ N

(
0, σ2

2

)
, n→∞,

where

σ2
1 = S1

∫ 
J∑
j=1

mj
R(K)
R(L̄j)

(HLj −GLj )(ρju)


2

du,

σ2
2 = S1

∫ 
J∑
j=1

mj
R(K)
R(L̄j)

(HLj −GLj )(ρju)−HK(u)


2

du+ S2,

S1 = 2
25

∫
S2(t)f2(t)w̃2(t)dt

R7/5(K)µ6/5
2 (K) {

∫
f ′′(t)2γ(t)w̃(t) dt}3/5 {

∫
f(t)S(t)w̃(t) dt}7/5

,

S2 = 4
25

∫
f ′′(t)2S(t)f(t)w̃2(t)γ(t)dt−

∫ {∫ T
t f ′′(u)f(u)w̃(u)γ(u)du

}2
α(t)γ−1(t)dt

R2/5(K)µ6/5
2 (K) {

∫
f(t)S(t)w̃(t)dt}2/5 {

∫
f ′′(t)2γ(t)w̃(t)dt}8/5

,

and GK(u) = I(u 6= 0)
{
K
∗∗(u)−K∗∗(−u)

}
, and

HK(u) = I(u 6= 0)
∫
K
∗(v)

{
K
∗∗(u+ v)−K∗∗(−u+ v)

}
dv, with

K
∗∗(u) = − µ2(K)− µ1(K)u

µ2(K)− {µ1(K)}2 {K(u) + uK ′(u)}+ µ1(K)u
µ2(K)− {µ1(K)}2K(u).

Theorem 2.2 is proved in the Appendix 2.A. The theorem states that the relative differ-
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ence between the bandwidths hCV, hMISE and hISE is of order n−1/10. This can be ex-

plained intuitively by the fact that a bounded interval contains O(n1/5) non-overlapping

subintervals of length h, and the kernel estimators are thus asymptotically independent

if their argument differs by a magnitude of order O(n−1/5). The rate n−1/10 = (n−1/5)1/2

can then be explained by a central limit theorem.

The result generalizes the asymptotic properties of do-validation established by Mammen

et al. (2011) in the unfiltered case. If the observations, X1, . . . , Xn, are unfiltered, i.e.,

Zi(t) = I(t ≤ Xi), then the Kaplan–Meier estimator becomes Ŝ(t) = n−1∑
i Zi(t),

which implies that γ(t) = S(t). Then, by choosing the weighting w(t) = Ŝ(t)−1, the

integrated squared error (2.4) and the cross-validation criterion (2.5) are identical to the

unfiltered case and, thus, Theorem 2.2 is Theorem 1 in Mammen et al. (2011).

For a fixed kernel K and different choices of weighted indirect kernels (mj , Lj), the

variances, σ2
2, only differ in the feasible factor

ΨK
ICV (m1, . . . ,mJ , L1, . . . , LJ) =

∫ 
J∑
j=1

mj
R(K)
R(L̄j)

(HLj −GLj )(ρju)−HK(u)


2

du.

(2.8)

The asymptotic variance of a plug-in estimation error, (hMISE − hISE), is obtained by

replacing the factor ΨK
ICV in σ2

2 by ΨK
MISE =

∫
{HK(u)}2 du. Plug-in estimators are those

derived by estimating the infeasible quantities of hMISE and achieve the same asymptotic

limit as hMISE under appropriate conditions. The values of ΨK can be used to compare

the asymptotic performance of different methods. Table 2.1 shows these values for do-

validation, cross-validation and the plug-in method using the Epanechnikov, quartic and

sextic kernels. Once the asymptotic properties in the original time direction are derived,

it is straightforward to derive a similar result in the reversed time direction.

Corollary 2.3. Under assumption (T1)–(T3), the bandwidth selector, ĥICV, of the local

linear survival density estimator in the reversed time direction satisfies

n3/10
(
ĥICV − hMISE

)
→ N

(
0, σ2

1

)
, n3/10

(
ĥICV − hISE

)
→ N

(
0, σ2

2

)
, n→∞,
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where

σ2
1 = S1

∫ 
J∑
j=1

mj
R(K)
R(L̄j)

(HLj −GLj )(ρju)


2

du,

σ2
2 = S1

∫ 
J∑
j=1

mj
R(K)
R(L̄j)

(HLj −GLj )(ρju)−HK(u)


2

du+ S2,

S1 = 2
25

R−7/5(K)
∫
F 4(t)α2(T − t)w̃2(T − t)dt

µ
6/5
2 (K) {

∫
f ′′(t)2γ(T − t)w̃(T − t) dt}3/5 {

∫
f(t)F (t)w̃(T − t) dt}7/5

,

S2 = 4
25

[ ∫
f ′′(t)2F (t)f(t)w̃2(T − t)γ(T − t)dt

R2/5(K)µ2(K)6/5 {
∫
f ′′(t)2γ(T − t)w̃(T − t)dt}8/5 {

∫
f(t)F (t)w̃(T − t)dt}2/5

−
∫ {∫ T

t f ′′(u)f(u)w̃(T − u)γ(T − u)du
}2
α(t)γ−1(t)dt

R2/5(K)µ6/5
2 (K) {

∫
f ′′(t)2γ(T − t)w̃(T − t)dt}8/5 {

∫
f(t)F (t)w̃(T − t)dt}2/5

]
.

2.7 Illustration

We now analyse a data set of reported and outstanding claims from a motor business

in Cyprus. All the calculations in this and the next section have been performed with

R (R Development Core Team, 2014). The data of this section consist of n = 58180

claims reported between 2004 and 2013. The data are {(X1, Y1), . . . , (Xn, Yn)}, where

Xi denotes the underwriting date of claim i, and Yi the reporting delay in days. The

data exist on a triangle, with Xi + Yi ≤ 31 December 2013. Our aim is to forecast the

number of future claims from contracts underwritten in the past which have not yet

been reported. It is implicitly assumed that the triangle is fully run off, such that the

maximum reporting delay is ten years. This is reasonable, see Figure 2.2, since f2 has

a strong decay already after one year. According to the theory, we use a multiplica-

tive structured density, f(x, y) = f1(x)f2(y), where the components f1 and f2 are the

underwriting date density and the development time density, respectively.

For justification of this assumption, we performed several tests which all indicated that

the assumption might be violated. We then did a more pragmatic step which is motivated

from actuarial practice. We transformed the data into a triangle with dimension 3654×

3654, Nx,y =
∑n
i=1 I

(
Xi = x, Yi = y

)
, (x, y) ∈ {1, . . . , 3654}2, and then aggregated the

data into a quarterly triangle, (NQ
r,s), with dimension 40× 40, which is the form usually
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Chapter 2. In-sample forecasting with local linear survival densities

Figure 2.1: Development factors of the first six quarter for individual underwriting
quarter.
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available in a reserving department; see the Supplemental Material. For s = 1, . . . , 6, we

calculated the quantities α(r, s) =
∑s+1
l=1 N

Q
r,l/
∑s
l=1N

Q
r,l, known as development factors

in actuarial sciences (Kuang, Nielsen, and Nielsen, 2009). The values of α(r, s) are

displayed in Figure 3.2. If the multiplicativity assumption is satisfied, then α(r, s) is

approximately equal to {
∑s+1
l=1 f1(xr)f2(yl)}/{

∑s
l=1 f1(xr)f2(yl)} which does not depend

on r. Here, xr lies in the rth quarter and yl in the lth quarter. Hence, the points in each

plot should lie around horizontal lines.

Only considering the first four plots, one could argue that discrepancy from constancy

is only caused by white noise from the stochastic nature of the observations. However,

there seems to be a negative drift in the 5th and 6th plots. Non constancy is caused in

particular by the first 7 underwriting quarters which correspond to the first 7 points in

each plot. Re-evaluating the first four plots, one can also spot the drift there; despite

the noise. The realtive drift size in the different plots seems of smiliar magnitude when

the values are substracted by 1. This indicates that the data do indeed not satisfy the

independence assumption. A pragmatic solution would be to throw away the data of

the first 7 underwriting quarters, as it is often done by actuaries when using the chain-

ladder method. We preferred to keep the whole data set because there are not many

data observed after the fourth quarter. A better strategy might be to look for extensions

of our model where the reporting delay density f2 depends on calendar time. This is

topic of ongoing research. Additional seasonal effects are considered in Lee et al. (2015).

Other calendar time effects will often involve the need of extrapolation of a time series;

see also Kuang, Nielsen, and Nielsen (2008) for the discrete-time case. Accounting for

the spotted drift in the data example leads only to a slight change of the total number
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Chapter 2. In-sample forecasting with local linear survival densities

of forecasted claim numbers but to larger differences in the forecasted delay times.

We have calculated the local linear density estimators of the two underlying multiplica-

tive densities, f1 and f2, using the Epanechnikov kernel and weighted cross-validated and

do-validated bandwidth selectors. For the density f1, cross-validation chose a bandwidth

of 408 days and do-validation a bandwidth of 1,860 days, while, for f2, the minimizer of

the cross- and do-validation criteria were 15 days and 72 days, respectively. Figure 2.2

shows the estimated densities.

The left plot indicates that there is no trend in the amount of underwritten policies.

In the right plot, consistent with the policy duration of one year and our experience of

other motor insurance, we find that most of the claims are reported within 1.4 years.

There is a sharp increase and decrease at the beginning and at the end of the first

year, respectively, and a near-uniform development in between. It seems plausible that

boundary and bias correction techniques would be useful in future analyses. One could

for example consider multiplicative bias correction (Nielsen, Tanggaard, and Jones, 2009)

or asymmetric kernels (Hirukawa and Sakudo, 2014).

In this application, we encounter the usual problem with standard cross-validation which

sometimes picks bandwidths which are much too small. Do-validation seems to have

estimated a reasonable bandwidth.

The number of outstanding claims for the future quarters, obtained by integrating the

multiplicative estimator over diagonals in the unobserved part, are shown in Table 3.1.

As a benchmark, we have calculated the total reserve using the standard chain ladder

method by aggregating the data on an quarterly basis. The chain ladder method is

the most widely used reserving method in practice, and can be interpreted as a Poisson

maximum likelihood estimator with multiplicative mean structure (Kuang, Nielsen, and

Nielsen, 2009). It predicts a smaller number than the continuous approaches. Under a

Poisson approximation with an approximated standard deviation of 48 we get significant

differences between the predicted future claims.
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Chapter 2. In-sample forecasting with local linear survival densities

Figure 2.2: Estimated underwriting and development densities in the real data
application: Cross-validation (dashed), do-validation (solid).
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Table 2.2: Number of claims forecasts in the real data application. In quarters;
1 = 2014 Q1, 39 = 2022 Q3.

Future quarter: 1 2 3 4 5 6 7 8 9 10 11 – 39 Total
Cross-validation 1027 733 465 201 15 5 3 2 1 1 1 2452

Do-validation 970 684 422 166 14 5 3 2 1 1 1 2270
Chain ladder 948 651 387 148 12 5 3 2 1 1 1 2160

2.8 Simulation study

We now describe a simulation study to show that the local linear estimator is a good

strategy for reserve forecasting. We simulated the two do-validated densities from the

application section, shown in Figure 2.2, assuming the multiplicative structure f(x, y) =

f1(x)f2(y). These models have been chosen to illustrate realistic situations in claims

reserving. Furthermore, for computational reasons, we simulated data by aggregating

the occurrence of claims in bin sizes of three days; see Appendix 2.B. We consider four

sample sizes corresponding to 0.5, 1.0, 1.5 and 2.0 times the sample size, n = 58180,

from the application.

For each sample size, we generated 500 samples and have solved the forecasting problem

using the methods described in this paper. Since the data are generated in discrete

time, the methods were applied using the discrete expressions in Appendix 2.B. The

performance of the methods for each simulated data set was evaluated using the discrete

approximation of the integrated squared error.

The local linear estimators were calculated using the Epanechnikov kernel with four

different bandwidth choices. Firstly the infeasible integrated squared error optimal

bandwidth which changes in each simulated sample and secondly the mean of those

integrated squared error optimal bandwidths of the 500 simulated samples for every
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Table 2.3: Summary of the integrated squared errors multiplied by 105, along the
500 simulated samples. Four different bandwidths: optimal bandwidth (ISE), averaged

optimal out of the 500 samples (MISE), cross-validation (CV), do-validation (DO).

f1 f2
n ISE MISE CV DO ISE MISE CV DO
29090 Median 0.84 2.45 5.87 6.49 1.40 1.44 1.57 1.50

Mean 1.50 3.31 18.40 17.65 1.49 1.53 1.66 1.58
SD 1.72 2.39 33.07 39.64 0.59 0.60 0.68 0.60

58180 Median 0.56 2.29 4.65 4.47 0.84 0.86 0.91 0.87
Mean 1.12 2.81 11.24 7.21 0.87 0.89 0.95 0.89
SD 1.30 1.58 17.27 9.09 0.29 0.29 0.34 0.29

87270 Median 0.52 2.42 4.04 3.74 0.62 0.63 0.67 0.65
Mean 0.99 2.71 7.49 5.29 0.64 0.65 0.69 0.66
SD 1.14 1.24 11.55 5.68 0.20 0.20 0.22 0.20

116360 Median 0.43 2.35 3.42 3.74 0.49 0.51 0.53 0.53
Mean 0.89 2.64 5.97 6.15 0.51 0.53 0.55 0.54
SD 1.06 1.08 8.54 9.00 0.15 0.15 0.17 0.15

run. These two infeasible choices are compared to the two data-driven bandwidths,

weighted cross-validation and weighted do-validation.

Table 2.3 shows that weighted cross-validation and do-validation perform reasonably

well. The results support the asymptotic theory ranking cross-validation as more volatile

than do-validation. For the development density, f2, note that, for larger sample sizes,

there is nearly no difference between the optimal infeasible methods and the two vali-

dated bandwidth selectors. In any event, the feasible approaches seem to be doing very

well at picking appropriate bandwidths.

We also simulated the development of the claims according to Table 3.1. Let Rp be the

true reserve for the future period p and R̂p its estimator. Then, the error was calculated

as {
∑

(Rp − R̂p)2}1/2. Figure 2.3 shows box plots of the errors in the future count

development, obtained from the 500 simulated samples. For comparison, we calculated

density estimates based on the chain ladder method, with data aggregated in years,

quarters, and months, respectively. Chain ladder modelling is competitive for yearly

numbers, but breaks down for more detailed quarterly, monthly, or daily numbers. It is

not included in Table 2.3.
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Figure 2.3: Prediction errors of simulated monthly (right panel), quarterly (middle
panel) and yearly (left panel) data along the 500 simulated samples. Sample size is
n = 58180. Three different methods: Chain ladder method (CLM), local linear density

estimator with cross-validation (CV) and do-validation (DO) bandwidth.
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2.9 Concluding Remarks

This paper produces a simpler alternative to the in-sample forecasting approach of Mam-

men, Mart́ınez-Miranda, and Nielsen (2015) and Lee et al. (2015). This is done by

reversing the time, and it works because all failures are observed until some calendar

time. Obviously the simple multiplicative structure of the model could be questioned,

see England and Verrall (2002) for some actuarial discussion on the short-comings of the

multiplicative chain ladder model. One possible generalisation of our model would be

to let the development density depend on calendar time. Another generalisation would

be to include covariates, as has been done e.g. by Wells (1994) for counting process

intensities. An example would be to incorporate claim severities. This could be done

by extending the counting process set-up of this paper to the marked point processes

approach (Norberg, 1993). This could also help to generalise the recent double chain

ladder technique of Verrall, Nielsen, and Jessen (2010), Mart́ınez-Miranda et al. (2011)

and Mart́ınez-Miranda, Nielsen, and Verrall (2012) to continuous time. In this paper

we developed detailed asymptotic theory for the estimation of the density f(x, y). Dis-

cussions of plug-in estimators of integrals of the density over triangles and/or diagonals

need further theory.
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2.A Asymptotic properties and proofs

For readability, we will write most quantities without indices, i.e., we will not write

the obvious dependence on bandwidth and kernel. We start by stating a central limit

theorem for martingales, which was proved in Ramlau-Hansen (1983) and will be used

in the proofs of Proposition 1 and Theorem 1.

Theorem 2.2 (Ramlau-Hansen (1983)). Consider a predictable process Wn(t) and as-

sume that for some σ2 ≥ 0

∫
W 2
n(t)Z(t)α(t)dt = σ2 + op(1),

∫
W 2
n(t)I

{
W 2
n(t) > ε

}
Z(t)α(t)dt = op(1), ε > 0.

Then, it holds that
∫
Wn(u)dM(u)→ N(0, σ2), in distribution, as n→∞.

Proof of Proposition 1

First we define the relative exposure γ(t) = pr{Zi(t) = 1}. Note that γ is strictly positive

and γ ∈ C2([0, T ]), since f1 and f2 have these properties. Furthermore,

sup
s∈[0,T ]

|Z(s)/n− γ(s)| = op(1). (2.9)

sup
t∈[0,T ]

|Ŝ(t)− S(t)| = Op
(
n−1/2

)
, (2.10)

sup
t∈[h,T−h]

|aj(t)− hjµj(K)γ(t)| = op(1) (j = 1, 2, 3). (2.11)
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The proof consist of two parts. First, we have to show that B(t) = 1
2µ2(K∗)f ′′(t)h2 +

o(h2), and then that (nh)1/2V (t) → N
{

0, R(K∗)f(t)F (t)γ(t)−1
}

, for n → ∞. We

start with B(t). The uniform convergence property in (2.10), together with (2.9) and

(S1) yield B(t) = n−1 ∫ Kt,h(t− s) {f(s)− f(t)}Z(n)(s)ds+Op
(
n−1/2

)
. Then, a Tay-

lor expansion gives B(t) = h2n−1f
′′(t)

∫
Kt,h(t − s)(t − s)2Z(n)(s)ds + op(h2). Finally,

from (5.5), we derive B(t) = h2f
′′(t)

∫
K
∗
t,h(t − s){(t − s)}2ds + op(h2), which con-

cludes the first part of the proof. For V (t), again, (2.10) and (5.5) yield V (t) =

n−1 ∫ K∗t,h(t − s)SR(s)γ−1(s)dM(s) + Op(n−1/2), and, with Theorem 4.8, we conclude

that (nh)1/2V (t)→ N
{
0, σ2(t)

}
, where σ2(t) = R(K∗)f(t)F (t)γ(t)−1.

Proof of Theorem 1

The kernel, L, will denote a generic kernel with L = K or L = Lj satisfying assumption

(T2). Recall that

B(t) = f∗(t)− f(t) = n−1
∫
Lt,h(t− s)

{
Ŝ(s)α(s)− f(t)

}
Z(s) ds,

V (t) = f̂(t)− f∗(t) = n−1
∫ T

0
Lt,h(t− s)Ŝ(s) dM(s),

where f∗(t) = n−1∑n
i=1

∫ T
0 Lt,h(t−s)Ŝ(s)Zi(s)α(s) ds, dM(t) = dN(t)−α(t)Z(t)dt,N(t) =∑n

i=1Ni(t). We first state a uniform asymptotic expansion for the integrated squared

error. Hereby it is necessary that the quantities we are dealing with are predictable.

Thus, we approximate V by Ṽ , with

Ṽ (t) = n−1
∫
L̃t,h(t− s)S(s) dM(s),

L̃t,h(u) =
ãL2,h(t)− ãL1,h(t)u

ãL0,h(t)ãL2,h(t)− {ãL1,h(t)}2
Lh(u),

ãLl,h(t) = n−1
∫
Lh(t− s)(t− s)l [Z(t) + n {γ(s)− γ(t)}] ds.

Using assumption (B1), we have uniformly for 0 ≤ t ≤ T and h ∈ I∗n that

{log(n)nh}1/2|V (t)− Ṽ (t)| = oP (1).
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Now, for the weighted integrated squared error ∆L(h), we obtain the following asymp-

totic expansion.

Lemma 2.3. Under Assumption (T1) – (T4), it holds that ∆L(h) = ML(h)+oP
(
n−4/5

)
,

uniformly for h ∈ I∗n, with

ML(h) = (nh)−1R(L̄∗)
∫
f(t)S(t)w(t)dt+ h4µ2

2(L̄∗)
∫ {

f ′′(t)
2

}2
γ(t)w(t)dt

Proof. We decompose the integrated squared error into

∆L(h) = n−1
∫
B2(t)Z(t)w(t) dt+2n−1

∫
B(t)V (t)Z(t)w(t) dt+n−1

∫ T

0
V 2(t)Z(t)w(t) dt.

Now, note that supt∈[0,T ]

∣∣∣Ṽ (t)
∣∣∣ = OP

{
n−2/5(logn)1/2

}
, supt∈[0,T ] |B(t)| = OP

(
n−2/5

)
,

and together with (T1), (2.A), we conclude that uniformly for h ∈ I∗n,

∆L(h) =
∫
Ṽ (t)2γ(t)w̃(t) dt+ 2

∫
Ṽ (t)B(t)γ(t)w̃(t) dt+

∫
B2(t)γ(t)w̃(t) dt+ oP (n−4/5)

= SL,1(h) + SL,2(h) + TL,1(h) + TL,2(h) + oP (n−4/5),

where

SL,1(h) =
∫ ∫

H̄L,h(u, v) dM(u) dM(v)−
∫ T

0
H̄L,h(u, u) α(u)Z(u) du,

SL,2(h) = 2
∫
δL,h(u) dM(u),

TL,1(h) =
∫
H̄L,h(u, u) α(u)Z(u) du,

TL,2(h) =
∫
B2(u)γ(u)w̃(u) du,

H̄L,h(u, v) = n−2
∫
L̃t,h(t− u)L̃t,h(t− v)S(u)S(v)γ(t)w̃(t) dt,

δL,h(u) = n−1
∫
L̃t,h(t− u)S(u)B(t)γ(t)w̃(t) dt.

First, we define

SL,1,t(x) = n4/5
∫ t

0

∫ t

0
H̄L,xn−1/5(u, v) dM(u) dM(v)−

∫
H̄L,xn−1/5(u, u) α(u)Z(u) du,

SL,2,t(x) = 2n4/5
∫ t

0
δL,xn−1/5(u) dM(u).

Now t 7→ SL,1,t(x) and t 7→ SL,2,t(x) are martingales. Applying Theorem 4.8 to these

processes, gives pointwise convergence to zero. Following on from this, we show that
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the functions x 7→ SL,1,T (x) and x 7→ SL,2,T (x) are tight, so that uniformly for h ∈ I∗n,

SL,1(h) = oP
(
n−4/5

)
, SL,2(h) = oP

(
n−4/5

)
. Finally, with standard smoothing theory

arguments we conclude that uniformly for h ∈ I∗n,

TL,1(h) = n−4/5R(L̄∗)
∫
f(t)S(t)w̃(t)dt+ oP

(
n−4/5

)
,

TL,2(h) = n−4/5µ2
2(L̄∗)

∫ {
f ′′(t)

2

}2
γ(t)w̃(t)dt+ oP

(
n−4/5

)
,

which concludes the proof.

For the asymptotic discussion of the cross-validation method, note that the minimizer

of Q̂L(h) equals the minimizer of ∆̂L(h) with

∆̂L(h) = n−1Q̂L(h)− n−1
∫
f(t)2Z(t)w(t) dt+ 2n−1

∫
f(t)Ŝ(t)w(t) dM(t)

+ 2n−1
∫
f(t)Ŝ(t)α(t)Z(t)w(t) dt.

Furthermore, almost surely

Q̂L(h) =
∫
f̂(t)2Z(t)w(t) dt− 2

∫
f̂−(t)Ŝ(t)w(t) dN(t),

with f̂−(t) = n−1 ∫ Lt,h(t − s)Ŝ(s)I(s 6= t) dN(s). We define DL(h) = ∆L(h) − ∆̂L(h).

The next lemma states consistency of cross-validation.

Lemma 2.4. Under Assumption (T1) – (T4), we get DL(h) = oP
(
n−4/5

)
, uniformly

for h ∈ I∗n. In particular, we have that ĥCV = hMISE + oP
(
n−1/5

)
.

Proof. Simple computations lead to

DL(h) = 2n−1
[ ∫ {

f̂−(s)− f(s)
}
Ŝ(s)w(s) dM(s)

+
∫ {

f̂(s)− f(s)
}{

Ŝ(s)α(s)− f(s)
}
w(s)Z(s) ds

]
= 2n−1

∫
Ṽ −(s)Ŝ(s)w̃(s) dM(s) + 2n−1

∫
B(s)Ŝ(s)w̃(s) dM(s)

+2n−1
∫ {

f̂(s)− f(s)
}{

Ŝ(s)α(s)− f(s)
}
w̃(s)Z(s) ds+ oP (n−4/5)

= oP (n−4/5),

uniformly for h ∈ I∗n, where Ṽ −(t) = n−1 ∫ L̃t,h(t− s)Ŝ(s)I(s 6= t) dM(s).
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Next, to develop a linear expansion of ĥKISE we state the following Lemma.

Lemma 2.5. Under Assumptions (T1) – (T4), we get uniformly for h ∈ I∗n

∆′′L(h) = M ′′L(h) + oP
(
n−2/5

)
, D′′L(h) = oP

(
n−2/5

)
,

as well as

M ′′L(h) = 12h2µ2
2(L̄∗)

∫ {
f ′′(t)

2

}2
γ(t)w̃(t)dt

+ 2n−1h−3R(L̄∗)
∫
f(t)S(t)w̃(t)dt+ op(n−2/5),

D′L(h) = −n−2h−2
∫ ∫

GL

(
u− v
h

)
S(v)S(u)γ−1(u)w̃(u) dM(u) dM(v)

+ 2n−1hµ2(L∗)
∫
f ′′(u)S(u)w̃(u) dM(u)

− 2n−1hµ2(L∗)
∫ ∫ T

u
f ′′(s)f(s)w̃(s)γ(s) ds γ−1(u) dM(u) + op(n−7/10),

∆′L(hMISE) = −n−2h−2
MISE

∫ ∫
HL

(
u− v
h

)
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

+ 2n−1hMISEµ2(L∗)
∫
S(u)f ′′(u)w̃(u)dM(u)

− 2n−1hMISEµ2(L∗)
∫ ∫

f ′′(s)f(s)w̃(s)γ(s) ds γ−1(u)dM(u) + op(n−7/10),

where GL(u) = I(u 6= 0){L∗∗(u)−L∗∗(−u)} and HL(u) = I(u 6= 0)
∫
L
∗(v){L∗∗(u+v)−

L
∗∗(−u+ v)}dv, with

L
∗(u) = µ2(L)− µ1(L)u

µ2(L)− {µ1(L)}2L(u),

L
∗∗(u) = − µ2(L)− µ1(L)u

µ2(L)− {µ1(L)}2 {L(u) + uL′(u)}+ µ1(L)u
µ2(L)− {µ1(L)}2L(u).

Proof. This follows by straightforward computations, similar to those for Lemma 2.3

and Lemma 2.4. Note that following Mammen and Nielsen (2007) we can replace the

kernels Lt,h(u) and ∂hLt,h(u) by the kernels γ(t)−1L
∗
h(u) and {γ(t)h}−1L

∗∗
h (u), respec-

tively. Also note that while in all prior computations we could simply replace B(t) =

n−1 ∫ Lt,h(t−s)
{
Ŝ(s)α(s)− f(t)

}
Z(s) ds by n−1 ∫ Lt,h(t−s) {f(s)− f(t)}Z(s) ds, this

is not the case in ∆′L(hMISE) . Here one gets an additional error term arising from the

estimation error Ŝ(t)− S(t) = −S(t)
∫ t

0 Ŝ(s−){S(s)Z(s)}−1dM(s).
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Now, with the continuity of M ′′, a simple Taylor expansion gives

hISE = hMISE −M ′′L(hMISE)−1∆′L(hMISE) + op(n−3/10),

ĥCV = hMISE −M ′′L(hMISE)−1∆̂′L(hMISE) + op(n−3/10),

and together with Lemma 2.5 we conclude

hISE − hMISE = C−1
1,Ln

−8/5h−2
MISE

∫ ∫
HL

(
u− v
hMISE

)
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

− 2C−1
1,Lµ2(L∗)n−3/5hMISE

×
∫
S(u)f ′′(u)w̃(u)−

{∫ T

u
f ′′(s)f(s)w̃(s)γ(s) ds

}
γ−1(u) dM(u)

+ op(n−3/10),

ĥCV − hMISE = C−1
1,Ln

−8/5h−2
MISE

×
∫ ∫

(HL −GL)
(
u− v
hMISE

)
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

+ op(n−3/10),

where

C1,L = n2/5M ′′L(hMISE)

= 5R2/5(L∗)µ6/5
2 (L∗)

{∫
f(t)S(t)w̃(t)dt

}2/5 {∫ {
f ′′(t)

}2
γ(t)w̃(t)dt

}3/5
.

That results directly in the conclusion

ĥICV − hMISE = U1(T ) + op(n−3/10), ĥICV − hISE = U2(T ) + op(n−3/10),

where

35
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U1(t) = n−8/5h−2
MISE

×
∫ t

0

∫ t

0

J∑
j=1

mjρ
3
jC
−1
1,Lj

(HLj −GLj )
{
ρj(u− v)
hMISE

}
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

U2(t) = n−8/5h−2
MISE

×
∫ t

0

∫ t

0

J∑
i=1

mjρ
3
jC
−1
1,Lj

(
HLj −GLj

){ρj(u− v)
hMISE

}
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

− C−1
1,Kn

−8/5h−2
MISE

∫ t

0

∫ t

0
HK

(
u− v
hMISE

)
S(u)S(v)w̃(u)γ−1(u) dM(u)dM(v)

+ 2C−1
1,Kµ2(K∗)n−3/5hMISE

×
∫ t

0

[
S(u)f ′′(u)w̃(u)−

{∫ t

u
f ′′(s)f(s)w̃(s)γ(s) ds

}
γ−1(u)

]
dM(u).

Now, U1 and U2 are martingales and their variances σ2
1 and σ2

2 can be computed with

Theorem 4.8.

2.B Discretization

In this section, we will describe how we discretized the continuous approach, in or-

der to be suitable for a simulation study. The discrete triangle is described as Id =

{(r, s) : r = 1, . . . , T ; s = 1, . . . , T ; r + s ≤ T + 1}, where T ∈ N, in the chosen

unit, denotes the last time point where data are aggregated. Then, given observations,

{(X1, Y1), . . . , (Xn, Yn)}, a discrete data set (Nr,s)(r,s)∈Id , is obtained by defining

Nr,s =
n∑
i=1

I
{
Xi ∈ [r − 1, r), Xi + Yi ∈ [r + s− 2, r + s− 1)

}
.

We then define the occurrence and the exposure as

Or =
n∑
i=1

∫ r+1

r
dN i

1(s) =
r+1∑
l=1
N(T−r),l,

Er =
n∑
i=1

∫ r+0.5

r−0.5
Zi1(s) ds =

n∑
i=1

Zi1(r + 0.5) =
∑

k≤(T−r)
l≤r+1

Nk,l, (r = 0, . . . , T − 1).
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Using this, the local linear estimator becomes

f̂R1,h,K(t) = n−1
T−1∑
r=0

Kt,h {−(r + 0.5)} ŜR1 (r + 0.5)Or. (2.12)

The Kaplan–Meier estimator becomes

ŜR1 (r + 0.5) =
r∏
l=1

(
1− Ol

El

)
,

and is constant around these grid points. The local linear kernel becomes

Kt,h(t− s) = a2(t)− a1(t)(t− s)
a0(t)a2(t)− {a1(t)}2Kh(t− s),

with aj(t) = n−1∑T−1
r=0 ErKh(t− r)(t− r)j (j = 0, 1, 2). Furthermore, the final estima-

tor, f̂1, of f1, is then f̂1(t) = f̂R1,h,K(T − t). The integrated squared error can be written

as

∆1,K(h) = n−1
T−1∑
r=0

{
f̂R1,h,K(r + 0.5)− f1(T − r − 0.5)

}2
Er w1(r + 0.5),

for our preferred weighting function, w1(r+0.5) =
{

1− ŜR2 (T − r − 0.5)
}2
/Er. Finally,

the wewighted cross-validation score becomes

Q̂K,w1(h) =
T−1∑
r=0

{
f̂R1,h,K(r + 0.5)

}2
Er w1(r+0.5)−2

T−1∑
r=0

f̂
R,[r]
1,h,K(r+0.5)ŜR1 (r+0.5)Orw1(r+0.5),

where f̂R,[r]1,h,K is the estimator arising from (2.12) by setting Or = Or − 1.
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Abstract

We propose a smooth backfitting approach to non-parametrically estimate a multiplica-

tive separable hazard function. Motivated by Mammen, Linton, and Nielsen (1999), the

approach is based on a least square criterium projecting a pilot estimator to the space

of multiplicative separable functions. We achieve optimal one-dimensional convergence

rates, which are independent of the dimension of the hazard function. Compared to

existing, literature our approach only needs second order kernels and derivatives and

also allows the hazard to have non-rectangular support. We provide an application for

the estimation of the reserve in general insurance where the data has triangular support.

Keywords: Structured model; Multiplicative hazard; Hazard estimation; Local linear

kernel estimation; Survival data.
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3.1 Introduction

Consider a non-negative random variable T . One might think of T as a survival time,

that is the occurrence time of death or failure of any kind. Let Z = (Z1, . . . , Zd) be

a d-dimensional covariate process which is observed until the survival time. We are

interested in the conditional hazard

a(t|Z) = lim
h↓0

h−1Pr [T ∈ [t, t+ h)| T ≥ t, {Z(s), s ≤ t}] . (3.1)

We assume that

a(t|Z) = α(t, Z(t)), (3.2)

where α is some unknown smooth function depending on the time t and the value of the

covariate at only the time point t. In many cases, T might be subject to some filtering.

Filtered observations are present in a vast variety of topics including right censoring in

experimental studies like clinical trials or left truncation in insurance loss data. A first

version of the non-parametric model (3.2) was introduced in Beran (1981) where the

author only considered time independent covariates and a filtering scheme of only right

censoring. Dabrowska (1987) derives weak converges of the estimator presented there.

The more general model, that is with time dependent covariates and also more general

filtering patterns, are analysed in McKeague and Utikal (1990) and Nielsen and Linton

(1995) as part of a counting process model. Here, one observes n independent and

identically distributed copies of the process (N,Y, Z), where Y is a predictable process

and N a counting process with intensity

λ(t) = α(t, Z(t))Y (t), (3.3)

The multiplicative intensity assumption (3.3) of the counting process is known as Aalen’s

multiplicative intensity model. Andersen et al. (1993) give a comprehensive overview of

how to embed various survival data, including model (3.1), into this counting process

formulation.

Non-parametric approaches like (3.2) and (3.3) are often favoured since they have min-

imal assumptions on the underlying model and are thus more robust than a parametric
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approach. However, the optimal convergence rate decreases rapidly with higher dimen-

sions which is also known as curse of dimensionality. This weakness can be overcome

by separable structure assumptions on the underlying hazard, see also Stone (1985). It

also gives the advantage of better visualisation and interpretations of the components.

In this paper we will assume that the conditional hazard is multiplicative, i.e.,

α(t, z) = α0(t)α1(z1) · · ·αd(zd). (3.4)

Model (3.4) is considered in Gámiz et al. (2013) and Linton, Nielsen, and Van de Geer

(2003). Linton, Nielsen, and Van de Geer (2003) estimate the components of (3.4)

based on marginal integration (Linton and Nielsen, 1995), and derive the optimal one-

dimensional convergence rate of n−2/5. Since marginal integration estimators are not

efficient, an additional backfitting step (Hastie and Tibshirani, 1990; Linton, 1997; Lin-

ton, 2000) is applied afterwards to overcome that drawback.

In this paper, we will estimate the components of (3.4) by a projection approach based on

least squares. It is motivated by the smooth backfitting approach of Mammen, Linton,

and Nielsen (1999) in regression. Compared to Linton, Nielsen, and Van de Geer (2003),

we achieve two major improvements. Firstly, we do not need higher derivatives of the

hazard function and higher order kernels. In Linton, Nielsen, and Van de Geer (2003),

it is assumed that (2r+1)/3 > d+1, where r is the order of the used kernel and also the

required order of continuous differentiability of the hazard function α. Despite having

asymptotic advantage, higher order kernels are known to often have poor performance

for reasonable sample sizes (Marron and Wand, 1992; Marron, 1994). In our approach

we only need second order kernels and only two-times differentiability of the hazard,

independent of the dimension, d, of the covariates. Secondly, marginal integration has

a weak point arising from its inner idea. It only works if the support of the hazard

is rectangular. The approach of this paper works for quite general supports, see the

assumptions in Section 3.4. A rectangular support will for instance not be given in

those cases where T is subject to truncation with respect to Z. In Section 3.5 we will

present an application where this is the case and the support is a triangle.
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3.2 Aalen’s multiplicative intensity model

We consider Aalen’s multiplicative intensity model. It allows for very general obser-

vations schemes. It covers filtered observations arising from left truncation and right

censoring but also more complicated changes of occurrence and exposure. In the next

section we describe how to embed left truncation and right censoring into this frame-

work. In contrast to Linton, Nielsen, and Van de Geer (2003) we will hereby allow the

filtering to be correlated to the survival time and be represented in the covariate process.

We briefly summarise the general model we are assuming.

We observe n iid copies of the stochastic processes (N(t), Y (t), Z(t)), t ∈ [0, R0], R0 > 0.

Here, N denotes a right-continues counting process which is zero at time zero and has

jumps of size one. The process Y is left-continuous and takes values in {0, 1} where the

value 1 indicates that the i’th individual is under risk. Finally, Z is a d-dimensional left-

continuous covariate process with values in a rectangle
∏d
j=0[0, Rj ] ⊂ Rd, j = 1, . . . , d.

The multivariate process ((N1, Y1, Z1), . . . , (Nn, Yn, Zn)), i = 1, . . . , n, is adapted to

the filtration Ft which satisfies the usual conditions. Now we assume that Ni satisfies

Aalen’s multiplicative intensity model, that is

λi(t) = lim
h↓0

h−1E[Ni((t+ h)−)−Ni(t−)| Ft−] = α(t, Zi(t))Yi(t).

The deterministic function α(t, z) is called hazard function and is the failure rate of an

individual at time t given the covariate Zi(t) = z.

3.2.1 Left truncation and right censoring time as covaraiates

Let us assume that we have iid observations (Ti, Zi(t)), i = 1, . . . , n. In Linton, Nielsen,

and Van de Geer (2003) it is assumed that the support of (T1, Z1(T1)) equals the whole

rectangle R =
∏d
j=0Rj . This is necessary in the approach of Linton, Nielsen, and Van

de Geer (2003), since the marginal integration estimator of Linton and Nielsen (1995)

it is based on would otherwise be inconsistent.

The most prominent example for Aalen’s multiplicative intensity model is filtered ob-

servation due to left truncation and right censoring. If the censoring and truncation

variables carry information about the hazard function, i.e., they are not independent to
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the survival time T , one would like to have them included in the covariates. But this im-

plies that the support of (T1, Z1(T1)) will not equal R =
∏d
j=0Rj . The approach of this

paper allows the observations to have support on only a subset, say X ⊆ R =
∏d
j=0Rj .

We now show how to embed covariates with truncation and censoring information into

Aalen’s multiplicative intensity model. Every covariate coordinate can carry individual

truncation information as long as it corresponds to left truncation. To be more precise,

we combine time and the covariates into one d + 1-dimensional vector X = (T,Z),

and assume that the observation X is left truncated. That is, we observe X if and

only if (T,Z(T )) ∈ I, where the set I is compact and it holds that (t1, Z(t1) ∈ I

and t2 ≥ t1, then (t2, Z(t2)) ∈ I, a.s.. The set I is allowed to be random but is

independent to T given the given the covariate process Z. Furthermore, T is subject to

right censoring with censoring time C. We assume that also T and C are conditional

independent given the covariate process Z. This includes the case that censoring time

equals one covariate coordinate. Concluding, we observe n iid copies of (T̃ , Z∗, I, δ)

where δ = 1(T ∗ < C), T̃ = min(T ∗, C), and where (T ∗, Z∗) is the truncated version of

X, i.e., (T ∗, Z∗(T ∗)) ∈ I.

Then, we can define the counting process Ni as

Ni(t) = 1
{
T̃i ≤ t, δi = 1

}
,

with respect to the filtration Fi,t = σ

({
T̃i ≤ s, Z∗i (s), Ii, δi : s ≤ t

}
∪N

)
, where

N = {A| A ⊆ B,with B ∈ B(S), P r(B) = 0}. With straight forward computations

one can conclude that under the setting above, including (3.2), it is straight forward to

verify that Aalen’s multiplicative intensity model is satisfied with

αz(t) = α(t, z1, . . . zd) = lim
h↓0

h−1Pr{T ∈ [t, t+ h)| T ≥ t, Zi(t) = z},

Yi(t) = 1
{
(t, Z∗i (t)) ∈ Ii, t ≤ T̃i

}
.
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3.3 Estimation

3.3.1 Unstructured estimation of the hazard

We introduce the notation Xi(t) = (t, Zi(t)). We also set x = (t, z), with x0 = t, x1 =

z1, . . . , xd = zd.

To estimate the components of the structured hazard in (3.6) below, we will need a

unstructured pilot estimator of the hazard α first. We propose the local linear kernel

estimator, α̂LL(x), based on least squares (cf. Nielsen (1998)). Its value in x is defined

as the minimiser θ̂0 in the equation

θ̂0

θ̂1

 = arg min
θ0∈R,θ1∈Rd+1

n∑
i=1

∫ [{1
ε

∫ s+ε

s
dNi(u)− θ0 − θT1 (x−Xi(s))

}2
− ξ(ε)

]
(3.5)

×Kb(x−Xi(s))Yi(s) ds.

In the following, we restrict ourselves to a multiplicative kernelK(u0, . . . , ud) =
∏d
j=0 k(uj)

and a one-dimensional bandwidth b withKb(u) =
∏d
j=0 b

−1k(b/uj). More general choices

would have been possible with the cost of extra notation. The local linear estimator in-

cludes boundary corrections so that the bias is of same order at the boundary as in the

interior of the support, namely O(max1≤i≤d+1 b
2
i ). The local constant estimator achieves

only slower rates at the boundary region and local polynomial estimators of higher order,

like in regression, have the usual drawback known from higher order kernels, that they

only perform poorly as long as sample sizes are not very large.

The solution of the least square minimisation (3.5) can be rewritten as the ratio of

smooth estimators of the number of occurrence and the exposure Gámiz et al. (2013).

ÔLL(x) = 1
n

n∑
i=1

∫ {
1− (x−Xi(s))D(x)−1c1(x)

}
Kb(x−Xi(s))dNi(s),

ÊLL(x) = 1
n

n∑
i=1

∫ {
1− (x−Xi(s))D(x)−1c1(x)

}
Kb(x−Xi(s))Yi(s)ds,
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where the components of the (d+ 1)−dimensional vector c1 are

c1j(x) = n−1
n∑
i=1

∫
Kb(x−Xi(s))(xj −Xij(s))Yi(s)ds, j = 0, . . . , d,

and the entries (djk) of the (d+ 1)× (d+ 1)−dimensional matrix D(x) are given by

djk(x) = n−1
n∑
i=1

∫
Kb(x−Xi(s))(xj −Xij(s))(xk −Xik(s))Yi(s)ds.

In this respect, the local linear estimator compares to the the local constant version that

can be defined as

ÔLC(x) = κn(x)
n∑
i=1

∫
Kb(x−Xi(s))dNi(s),

ÊLC(x) = κn(x)
n∑
i=1

∫
Kb(x−Xi(s))Yi(s)ds,

κn(x) =
[∫

Kb(x− u) du
]−1

and

α̂LC(x) = ÔLC(x)
ÊLC(x)

.

Under standard smoothing conditions, if b is chosen of order n−1/(4+d+1), then the bias

of α̂LL(x) and α̂LC(x) is of order n−2/(4+d+1) and the variance is of order n−4/(4+d+1),

which is the optimal rate of convergence in the corresponding regression problem Stone

(1982). For an asymptotic theory of these estimators see Linton, Nielsen, and Van de

Geer (2003).

3.3.2 Structured estimator by solution weighted minimization

In the sequel we will assume a multiplicative structure of the hazard α, i.e.,

α(x) = α∗
d∏
j=0

αj(xj), (3.6)
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where αj , j = 0, . . . , d, are some functions and α∗ is a constant. For identifiability of

the components, we make the following further assumption:

∫
αj(xj)wj(xj) dxj = 1, j = 0, . . . , d, (3.7)

where wj is some weight function.

We also need the following notation:

Ft(z) = Pr (Z1(t) ≤ z| Y1(t) = 1) , y(t) = E[Y1(t)].

By denoting ft(z) the density corresponding to Ft(z) with respect to the Lebesgue

measure, we also define

E(x) = ft(z)y(t)

and O(x) = E(x)α(x).

We define the estimators α̂∗ and α̂ = (α̂0, . . . , α̂d) of the hazard components in (3.6) as

solution of the following equation

α̂k(xk) =
∫
Xxk

Ô(x)dx−k∫
Xxk

α̂∗
∏
j 6=k α̂j(xj)Ê(x)dx−k

k = 0, . . . , d, (3.8)

under the constraint (3.7) with

wk(xk) =
∫
Xxk

∏
j 6=k

α̂j(xj)Ê(x)dx−k.

Here Xxk
denotes the set {(x0, . . . , xk−1, xk+1, . . . , xd)| (x0, . . . , xd) ∈ X}. Furthermore,

Ê and Ô are some full-dimensional estimators of E and O and

α̂∗ =
∫
X Ô(x)dx∫

X
∏d
j=0 α̂j(xj)Ê(x)dx

.

We will discuss below that the equation has a solution with probability tending to one.

In the next section we will show asymptotic properties of the estimator. We will see that

we do not require that the full-dimensional estimators Ê and Ô are consistent. We will
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only need asymptotic consistency of marginal averages of the estimators, see below. This

already highlights that our estimator efficiently circumvents the curse of dimensionality.

In practise, system (3.8) can be solved by the following iterative procedure:

α̂
(r+1)
k (xk) =

∫
Xxk

Ô(x)dx−k∫
Xxk

∏k−1
j=0 α̂

(r+1)
j (xj)

∏d+1
j=k+1 α̂

(r)
j (xj)Ê(x)dx−k

, k = 0, . . . , d (3.9)

After a finite number of cycles or after a termination criterion applies the last values

of α̂(r+1)
k (xk), k = 0, ..., d, are multiplied by a factor such that the constraint (3.7) is

fulfilled with the above choice of wk(xk). This can always be achieved by mulitplication

with constants. This gives the backfitting approximations of α̂k(xk) for k = 0, ..., d.

The estimator α̂ can be motivated as a weighted least squares estimator with random

data adaptive weights. To see this consider the estimator αj that minimizes

min
αj

∫
X

α̃(x)− α∗
d∏
j=0

αj(xj)


2

w(x)dx, (3.10)

where w(x) is some weighting and where α̃(x) = Ô(x)/Ê(x) is an unconstrained full-

dimensional estimator of α. This gives

α∗ =
∫
X α̃(x)

∏d
j=0 αj(xj)w(x)dx∫

X

{∏d
j=0 αj(xj)

}2
w(x)dx

,

and (α0, . . . , αd) can be described via the backfitting equation

αk(xk) =
∫
Xxk

α̃(x)
∏
j 6=k αj(xj)w(x)dx−k∫

Xxk
α∗
{∏

j 6=k αj(xj)
}2
w(x)dx−k

, k = 0, . . . , d. (3.11)

The asymptotic variance of kernel estimators of α is proportional to α(x)/E(x), see e.g.

Linton and Nielsen (1995). This motivates the choice w(x) = E(x)/α(x). However,

this choice is not possible because E(x) and α(x) are unknown. One could use w(x) =

Ě(x)/α̌(x) where Ě(x) and α̌(x) are some pilot estimators of E and α. We follow another

idea and we propose to weight the minimization (3.10) with its solution. We choose

w(x) = Ê(x)∏
i α̂i(x) , (3.12)
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and heuristically, by putting αj = α̂j and by plugging (3.12) into (3.11) we get (3.8).

The next section discusses existence and asymptotic properties of the solution α̂j of

(3.8).

3.4 Properties of the estimator

The estimator α̂j is defined as solution of a nonlinear operator equation. We will ap-

proximate this equation by a linear equation that can be interpreted as equation that

arises in nonparametric additive regression models. We will show that the solution of

the linear equation approximates α̂j . The linear equation and its solution is well under-

stood from the theory of additive models. This will be our essential step to arrive at an

asymptotic understanding of our estimator α̂j .

For our main theorem we make the following assumptions. We hereby do not make

assumptions on the full support R but only on a subset X ⊆ R.

A1 The function E(x) is two times continuously differentiable and infx∈X E(x) > 0.

A2 The hazard α is two times continuously differentiable and infx∈X α(x) > 0.

A3 The kernel K has compact support which is without loss of generality supposed to

be [−1, 1]. Furthermore it is symmetric and continuous.

A4 It holds that nb5 → cb for a constant 0 < cb <∞ as n→∞.

A5 It holds that ∫
Xxj ,xk

1
Oj(xj)Ok(xk)

dxj dxk <∞

for j, k = 0, ..., d, j 6= k, where Oj(xj) =
∫
p(x) dx−j and p(x) =

∏d
j=0 αj(xj)E(x)

and where Xxj ,xk
denotes the set {(xl : l ∈ {0, ..., d}\{j, k}| (x0, . . . , xd) ∈ X}.

A6 It holds that the two-dimensional marginal densities Oj,k(xj , xk) =
∫
p(x) dx−(j,k)

are bounded from above and bounded away from 0.

A7 The projections of X and R = [0, R0] ×
∏d
i=1[0, Ri] to their j′th (j = 0, . . . , d)

coordinate are equal, that is

⋃
xj∈[0,Rj ]

Xxj = [0, R0]×
∏
k 6=j

[0, Rk], j = 0, . . . , d.
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A8 For some δ > 0 it holds that for j, k = 0, ..., d, j 6= k

∫
Xxj ,xk

1
O1+δ
j (xj)Ok(xk)

dxj dxk <∞,

sup
xk∈Xk

∫
Xj(xk)

1
O1−δ
j (xj)Ok(xk)

dxj <∞,

sup
xk∈Xk

∫
Xj(xk)

1
O

1/2
j (xj)O1/2

k (xk)
dxj <∞,

where Xk = {xk| (x0, . . . , xd) ∈ X for some values of (xl : l 6= k)} and Xj(xk) =

{xj | (x0, . . . , xd) ∈ X for some values of (xl : l 6∈ {j, k})}.

Note that assumptions A1-A4 are standard in kernel smoothing theory. In Assumptions

A5 and A6 we only assume that the two-dimensional marginal densities of p are bounded

from above and bounded away from 0, but we do not make the assumption that the

one-dimensional marginal densities have this property. This allows that the support

of a two-dimensional marginal density Ojk has a triangle shape {(xj , xk) : xj + xk ≤

c; xj , xk ≥ 0} for some constant c > 0. This can be easily seen. Suppose for simplicity

that Ojk is the uniform density on the triangle. Then Oj(xj) = 2c−2(c − xj)+ and

Ok(xk) = 2c−2(c− xk)+ and we have

∫ 1
Oj(xj)Ok(xk)

dxj dxk =
∫
xj+xk≤c; xj ,xk≥0

2
c2

1
(c− xj)(c− xk)

dxj dxk <∞.

Thus, our assumption A5 on one-dimensional marginals is fulfilled. One can easily verify

that also A8 holds for this example. This discussion can be extended to other shapes of

two-dimensional marginals that differ from rectangle supports.

The estimators α̂0, . . . , α̂d of (3.8) can be rewritten as solutions of

∫
Xxk

Ô(x)dx−k −
∫
Xxk

α̂∗
∏
j

α̂j(xj)Ê(x)dx−k = 0, k = 0, . . . , d.
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Since,
∫
Xxk

O(x)dx−k−
∫
Xxk

α∗
∏
j αj(xj)E(x)dx−k = 0, the difference of those two terms

is zero as well, and we have

0 = ∆̂k(xk)−
∫
Xxk

α̂∗∏
j

α̂j(xj)− α∗
d∏
j=0

αj(xj)

 Ê(x)dx−k

= ∆̂k(xk)−
∫
Xxk

(1 + δ̂∗)
d∏
j=0
{1 + δ̂j(xj)} − 1

 d∏
j=0

αj(xj)Ê(x)dx−k, (3.13)

where

∆̂k(xk) =
∫
Xxk

{
Ô(x)−O(x)

}
dx−k +

∫
Xxk

α∗
d∏
j=0

αj(xj){Ê(x)− E(x)}dx−k,

δ̂j(xj) = α̂j(xj)− αj(xj)
αj(xj)

,

δ̂∗ = α̂∗ − α∗

α∗
.

Note that δ̂ is defined as root of a non-linear operator. Motivated by (3.13), we define

an approximation, δ∗ and δj(xj) (0 ≤ j ≤ d), as solution of the linear equation

∫
Xxk

δ∗ +
d∑
j=0

δj(xj)

α∗ d∏
j=0

αj(xj)Ê(x)dx−k = ∆̂k(xk) (3.14)

under the constraint

∫
δk(xk)

∫ d∏
j=0

αj(xj)Ê(x)dx−k

 dxk = 0,

where

δ
∗ =

∫
X

{
Ô(x)−O(x)

}
dx+

∫
X α
∗∏d

j=0 αj(xj){Ê(x)− E(x)}dx∫
X α
∗∏d

j=0 αj(xj)Ê(x)dx
.

Note that the constraint is identical to (3.7) for the choice wk(xk) =
∫ ∏

j 6=k αj(xj)Ê(x)dx−k
if we replace the right hand side of (3.7) by

∫ ∏d
j=0 αj(xj)Ê(x)dx . This norming cannot

be used in practice because α is unknown but it will simplify the theoretical discussion

and the results can be carried over to feasible weighting.

This can be rewritten to an integral equation of the second kind

δk(xk) +
∑
j 6=k

∫
Xj(xk)

π̂k,j(xk, xj)δj(xj)dxj = µ̂k(xk)− δ
∗
,
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with

Õ(x) = α∗
d∏
j=0

αj(xj)Ê(x),

Õj,k(xj , xk) =
∫
Õ(x) dx−(j,k)

Õk(xk) =
∫
Õ(x) dx−k

π̂k,j(xk, xj) = Õj,k(xj , xk)
Õk(xk)

,

µ̂k(xk) = ∆̂k(xk)
Õk(xk)

.

Note that all these functions depend on n. The integral equation can also be simply

written as δ + π̂δ = µ̂ − δ
∗, where π̂ is the intregral operator with kernel π̂k,j , see

Mammen, Støve, and Tjøstheim (2009) and Mammen and Yu (2009). We will show that

δ approximates δ̂. Before we come to this point we state a proposition that gives the

asymptotics for δ .

For the next results we need some conditions on the estimators Ê and Ô. We decompose

µ̂k into three terms µ̂k = µ̂Ak + µ̂Bk + µ̂Ck , that depend on n. For some deterministic

functions O∗(x) and E∗(x) these terms are defined as:

µ̂Ak (xk) =
∫
Xxk

∏d
j=0 αj(xj)

{
Ê(x)− E∗(x)

}
dx−k +

∫
Xxk

{
Ô(x)−O∗(x)

}
dx−k

Õk(xk)
,

µ̂Bk (xk) =
∫
Xxk

∏d
j=0 αj(xj) {E∗(x)− E(x)} dx−k +

∫
Xxk
{O∗(x)−O(x)} dx−k

Ok(xk)
,

µ̂Ck (xk) =
[
Ok(xk)
Õk(xk)

− 1
]
µ̂Bk (xk),

such that with

πk,j(xk, xj) =
∫ ∏d

j=0 αj(xj)E(x)dx−(k,j)∫ ∏d
j=0 αj(xj)E(x)dx−k

and δ
∗,r =

∫
µ̂rk(xk)Õk(xk) dxk for r ∈ {A,B,C} the following assumptions hold:

B1 It holds that
∫
Õ(x)2dx = OP (1) and

Õj,k(xj , xk)−Oj,k(xj , xk) = oP ((logn)−1/2)
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uniformly over 0 ≤ j < k ≤ d and xj , xk, where Oj,k(xj , xk) =
∫
O(x) dx−(j,k).

B2

sup
xj

|O1/2
j (xj)µ̂Aj (xj)| = OP ((logn)1/2n−2/5)

for 0 ≤ j ≤ d, where Oj(xj) =
∫
O(x) dx−j .

B3 For xj with Oj(xj) > 0 it holds that

n2/5µ̂Aj (xj)→ N(0, σ2
j (xj))

for 0 ≤ j ≤ d with some function σ2
j (xj) > 0.

B4 ∫
µ̂Aj (xj)2Oj(xj) dxj = OP (n−4/5)

and ∫
µ̂Bj (xj)2Oj(xj) dxj = O(n−4/5)

for 0 ≤ j ≤ d.

B5 It holds that

sup
xj∈Xj

O
1/2
j (xj)

∫
Xk(xj )

Oj,k(xj , xk)
Oj(xj)

µ̂Ak (xk)dxk = oP (n−2/5).

Proposition 3.1. Make the assumptions [A1]–[A8], [B1]–[B5]. Then the function δ =

(δ0, ..., δd), introduced in (3.14), exists and is uniquely defined, with probability tending

to one. Moreover, it has the following expansion:

∥∥∥δ − µ̂A − (I − π)−1(µ̂B − δB,∗)
∥∥∥
O,∞

= op(n−2/5),

where, for a function f(x) = (f0(x0), ..., fd(xd))ᵀ, we define

‖f‖O,∞ = sup
x∈X

max
0≤j≤d

|O1/2
j (xj)fj(xj)|.

From the proposition we get as a corollary the asymptotic distribution of δj(xj).
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Proposition 3.2. Make the assumptions [A1]–[A8], [B1]–[B5]. Then for xj (0 ≤ j ≤ d)

with Oj(xj) > 0 it holds that

n2/5{δj(xj)− [(I − π)−1(µ̂B − δB,∗)]j(xj)} → N(0, σ2
j (xj)),

in distribution. Under the additional assumption µ̂Bj (xj) = O(n−2/5) we have that the

bias [(I − π)−1(µ̂B − δB,∗)]j(xj) is of order O(n−2/5).

Equation (3.13) can be rewritten as

F̂(δ̂∗, δ̂0, . . . , δ̂d) = 0,

where

F̂(f∗, f0, . . . , fd)(x) =
(∫
Xxk

[
(1 + f∗)

d∏
j=0
{1 + fj(xj)} − 1

]

×
d∏
j=0

αj(xj)Ê(x)dx−k − ∆̂k(xk)
)
k=0,...,d

.

The following theorem states that δ is indeed a good approximation of the relative

estimation error δ̂.

Theorem 3.3. Under assumptions [A1]–[A8], [B1]–[B5] it holds that with probability

tending to one there exists a solution δ̂∗ and δ̂ = (δ̂0, . . . , δ̂d) of the equation F̂(f∗, f0, . . . , fd) =

0 with

∥∥∥δ̂ − δ∥∥∥
O,∞

= op(n−2/5),

δ̂∗ − δ∗ = op(n−2/5).

For this solution we get that

n2/5{(α̂j − αj)(xj)− αj(xj)[(I − π)−1(µ̂B − δB,∗)]j(xj)} → N(0, α2
j (xj)σ2

j (xj)),

in distribution, for xj (0 ≤ j ≤ d) with Oj(xj) > 0.
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3.5 Application: Outstanding loss liabilities

In order to illustrate the practical aspects of the proposed approach, we analyze the

reported claims from a motor business line in Cyprus.

This is exactly the same data set as in Hiabu et al. (2016). In fact the one driving

motivation of this paper was to generalize the approach in Hiabu et al. (2016) by using

relaxed assumptions.

The data we are considering consist of the number of claims reported between 2004

and 2013. During these 10 years, n = 58180 claims were reported. The data is

given as {(T1, Z1), . . . , (Tn, Zn)}, where Ti denotes the underwriting date of claim i,

and Zi the time between underwriting date and the date of report of a claim in days,

also called reporting delay. The data, therefore, exist on a triangle, with Ti + Zi ≤

31 December 2013 = R0, which is a subset of the full support R = [0, R0]2 (0 =

1 January 2004). Our aim is to forecast the number of future claims from contracts

written in the past which have not been reported yet. Hereby it is implicitly assumed

that the maximum reporting delay of a claim is 10 years. Actuaries call this assumption

that the triangle is fully run off. In our data set, this is a reasonable assumption, see

also Figure 3.1.

To estimate the number of outstanding claims we would like to estimate the conditional

hazard given the underwriting date, αz(t) = α1(t)α2(z).

While Hiabu et al. (2016) assume that T and Z are independent, we do not impose such

a strong restriction, but only the multiplicativity of the conditional hazard.

To justify their independence assumption, Hiabu et al. (2016) plotted Figure 3.2. The

points in the plots are derived by first transforming the data into a triangle with dimen-

sion 3654× 3654,

Nr∗,s∗ =
n∑
i=1

I
(
Xi = r, Yi = s

)
, (r∗, s∗) ∈ {1, 2, . . . , 3654}2,
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Figure 3.1: Histogram of claim numbers of a motor business line between 2004 and
2013.

Figure 3.2: Development factors of the first six quarter for individual underwriting
quarter.
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and then aggregating the data into a quarterly triangle, (NQ
r,s), with dimension 40× 40.

Then, for k = 1, . . . , 6, one derives α(r, s) =
∑s+1
l=1 Nr,l/

∑s
l=1Nr,l, which are known as

development factors under actuaries. The values are displayed in Figure 3.2.

If the multiplicativity assumption would be satisfied the points should lie around a

horizontal line in each plot. In Hiabu et al. (2016) it was argued that the multiplicativity

assumption might only be violated in the 5th and 6th development quarter because

constancy does not show up in the 5th and 6th plot. It was then argued that those

quarters do not have great impact on the reserve in order to justify their approach.

In this paper, however, it seems that we are able to catch the dependency structure

given in the data set. The development factors plotted are in nature very similar to the

hazard we want to estimate and the downward drift seems indeed in all 6 plots to be

multiplicative of similar size. Note that it can be argued that the drift in the first 4

plots is not detectable since the multiplicative drift part is so small that it is hidden by

the greater noise in those first figures.

We continue with the task of estimating the hazard function. We can not apply our

theory directly, since we only observe T if and only if T ≤ R0 − Z which is a right

truncation and thus does not fit directly into the model of the previous section. This

problem is also considered in Hiabu et al. (2016), and a solution is to transform the

random variable T to TR = R0 − T . This has the result that the right truncation

truncation becomes a left truncation, TR ≥ Z. Thus, considering the random variable

TR as our variable of interest, we are in the framework of Section 3.2.1 in the previous

section. In the notation of the example we now have T = TR, d = 1, Z = Z, δ = 1,

I = {(t, z) ∈ R|0 ≤ z ≤ t}. We conclude that the counting process Ni(t) = 1
{
TRi ≤ t

}
,

satisfies Aalen’s multiplicative intensity model with respect to the filtration given in

Section 3.2.1 and

αz(t) = α(t, z) = lim
h↓0

h−1Pr{TR ∈ [t, t+ h)| TR ≥ t, Z(t) = z},

Yi(t) = 1
{
(t, Zi(t)) ∈ I, t ≤ TR,∗i

}
.

Therefore we can estimate the unstructured hazard as described in Section 3.3.1. Since

estimating the optimal bandwidth via cross-validation, see below, turned out too com-

putationally expensive, we aggregated the triangle Nr∗,s∗ into bins of two days, see also
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Table 3.1: Number of claims forecasts in the real data application. In quarters;
1 = 2014 Q1, 39 = 2022 Q3. We compare the backfitting approach of this paper (MH),

the classic chain ladder method (CLM) and the approach of Hiabu et al. (2016).

Future quarter 1 2 3 4 5 6 7 8 9 10 11 12 – 39 Tot.
Hiabu et al. 2016 970 684 422 166 14 5 3 2 1 1 1 0 2270

CLM 948 651 387 148 12 5 3 2 1 1 1 0 2160
MH 872 621 400 130 53 7 4 3 2 1 1 1 2193

Appendix 3.C.

To derive the structured estimators, we also set X = I \ {(0, R0), (R0, 0)}. Note that

that this suffices assumption [A5]. However, this also means that the projections in

assumption [A7] do not include the corner points {(0, R0), (R0, 0)}. But since we will

also assume [A2] which ensures the continuity of α, the identification on the whole

square, including the boundary, will still hold. The components of the multiplica-

tive conditional hazard are then computed as in (3.9). We used a cross-validation

method to derive a bandwidth estimate. Further details are given in the Appendix

3.A. After several trials we run the minimization over the set b2 ∈ {2, 3, 4, 5} and

b1 ∈ {1300, 1400, 1500, 1600, 1700, 1800}, and found the cross-validated minimum to

be b2 = 3, b1 = 1600 (unit= 2days).

The results of the estimation procedure are given in Figure 3.4 and 3.3. The first

figure shows the components of the structured estimator, and the latter one shows the

difference, α̃(x)− α̂(x), of the structured and unstructured estimator.

Finally the reserve can be estimated as

R =
n∑
i=1

∫ T
T−Zi

f̂Zi(t)dt∫ T−Zi
0 f̂Zi(t)dt

, f̂z(t) = α̂1(T − t)α̂2(z) exp
{
−
∫ T−t

0
α̂1(s)α̂2(z)ds

}
.

If one is interested in the ’cash-flow’ of the next periods, one can decompose the reserve

further. If the future is divided into M periods, each with length δ = R0/M , then the

amount of claims forthcoming in the ath (a = 1, 2, . . . ,M) period can be then estimated

by

R(a) =
n∑
i=1

∫ (T−Zi+aδ)∧T
(T−Zi+aδ−1)∧T f̂Zi(t)dt∫ T−Zi

0 f̂Zi(t)dt
.

In Table 3.1, we have estimated the number of claims arising in the next quarters. We

compare the approach of this paper with the results derived in Hiabu et al. (2016), and
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Figure 3.3: Difference between structured and unstructured hazard estimator
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with the traditional chain ladder method. The two latter approaches have in common

that they assume independence between underwriting date, T , and reporting delay, Z.

We see that while all approaches estimate a similar total claim number those three

approaches have a very different distributions around the quarters than our method. It

seems that the obvious violation of the independence assumption has not a big influence

on the total claim number size, since it balances the different development pattern

arising from different periods out. However, the problem becomes quite serious if one is

interested in more detailed estimates like the cash flow.

3.A Bandwidth selection

A crucial part in practice is finding the right amount of smoothing when using non

parametric approaches. For our application we will stick to the maybe most straight

forward way in estimating the optimal bandwidth - the data-driven cross-validation

method.

The data-driven cross-validation method in density estimation goes back to Rudemo

(1982) and Bowman (1984). Nowadays, a slightly modified version (see Hall (1983))

is used which aims to minimize the integrated squared error. In our framework, the

cross-validation bandwidth has been proposed in Nielsen and Linton (1995). For the

practical purpose, in contrast to the previous chapters, we will allow the bandwidth

to be different in each direction. Cross-validation arises from the idea to minimize the

integrated squared error

n−1
n∑
i=1

∫ R0

0
[α̂{Xi(s)} − α{Xi(s)}]2 Yi(s)ds.

By expanding the square, only two of the three summands depend on the bandwidth and

are thus considered. While
∫
α̂(Xi(s))2ds is feasible, we have to estimate

∑
i

∫
α̂(Xi(s))α(Xi(s))Yi(s)ds.

In cross-validation this is done by the unbiased leave one out estimator

∫
α̂[i]{Xi(s)}dNi(s),

where α̂[i] is the leave one out version which arises from the definition of structured

estimator α̂ by setting Ni = 0. Concluding, we define the cross validation bandwidth
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bCV as

bCV (K) = arg min
b

n∑
i=1

∫
α̂(Xi(s))2ds− 2

n∑
i=1

∫
α̂[i]{Xi(s)}dNi(s).

Theoretical properties of cross validation in hazard estimation in the one dimensional

case are derived in Mammen, Mart́ınez-Miranda, and Nielsen (2015). To our knowledge

there is no theoretical analysis of cross-validation in the multivariate hazard case of this

paper. An extensive simulation study of the multivariate case can be found in Gámiz

et al. (2013).

3.B Proofs

3.B.1 Proof of Proposition 3.1

The proof of this proposition follows the lines of the proof of Theorem 1 in Mammen,

Linton, and Nielsen (1999) but it needs some modifications in the last step of the proof

because we have weaker assumptions that the ones assumed in the latter theorem. We

outline that the first part of the proof in Mammen, Linton, and Nielsen (1999) also goes

through uznder our weaker assumptions and we show how additional arguments can be

used in the last part.

Note that under our assumptions [A5], [A6] we get that
∫
Ojk(xj , xk)2Oj(xj)−1Ok(xk)−1 dxj dxk

<∞. As in Lemma 1 in Mammen, Linton, and Nielsen (1999) this implies that for some

constants c, C > 0

c max
0≤j≤d

‖δj‖ ≤ ‖δ0 + ...+ δd‖ ≤ C max
0≤j≤d

‖δj‖ (3.15)

for δj ∈ Lj = {δj : Xj → R :
∫
Xj
δ2
j (xj)Oj(xj) dxj <∞,

∫
Xj
δj(xj)Oj(xj) dxj = 0} where

‖...‖ denotes the norm ‖m(x)‖2 =
∫
m(x)2O(x) dx and Xj = {xj : x ∈ X}. Furthermore,

one gets that ‖T‖ = sup{‖T (δ0 + ...+ δd)‖ : δj ∈ Lj with ‖δ0 + ...+ δd‖ < 1} < 1, where

here T is the operator T = Ψd · ... ·Ψ0 with

Ψj(δ0 + ...+ δd)(x) = δ0(x0) + ...+ δj−1(xj−1) + δ∗j (xj) + δj+1(xj+1) + ...+ δd(xd),

δ∗j (xj) = −
∑
k 6=j

∫
δk(xk)πj,k(xj , xk) dxk.
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Furthermore, note that for j 6= k it holds that

∥∥∥∥∥Ôj(xj)−Oj(xj)Oj(xj)

∥∥∥∥∥ = oP (1),∥∥∥∥∥ Ôj,k(xj , xk)
Oj(xj)Ok(xk)

− Oj,k(xj , xk)
Oj(xj)Ok(xk)

∥∥∥∥∥ = oP (1),∥∥∥∥∥ Ôj,k(xj , xk)
Ôj(xj)Ok(xk)

− Oj,k(xj , xk)
Oj(xj)Ok(xk)

∥∥∥∥∥ = oP (1).

These equations follow from [A5], [A6] and [B1]. Note that [A6] and [B1] imply that,

uniformly for xj , xk it holds that Ôj,k(xj , xk) − Oj,k(xj , xk) = oP (1)Oj,k(xj , xk). This

gives that [Ôj(xj)/ Oj(xj)]− 1 = oP (1), uniformly for xj ∈ Xj and 0 ≤ j ≤ d. Together

with [A5] and [B1], this implies the three equations. As in Lemma 2 in Mammen, Linton,

and Nielsen (1999) we conclude from these equations that

‖T̂‖n < γ

for some γ < 1 with probability tending to one and

‖T̂ − T‖n = oP (1), ‖Ψ̂j −Ψj‖n = oP (1) (0 ≤ j ≤ d).

Here, we define T̂ , ‖...‖n, Xn,j , Ψ̂j as T , ‖...‖, Xj , Ψj but with Oj , πjk replaced by Ôj , π̂jk
(0 ≤ j, k ≤ d; j 6= k). Arguing as in the first part of Lemma 3 in Mammen, Linton, and

Nielsen (1999) this gives that δ(x) = δ
A(x) + δ

B(x) + δ
C(x), where for r ∈ {A,B,C}

δ
r(x) =

s∑
l=0

T̂ lτ̂ r(x) +Rr,[s](x)

with ‖Rr,[s]‖ ≤ Cγs with probability tending to one for some constant C > 0. Here we

put

τ̂ r = Ψ̂d · ... · Ψ̂1(µ̂r0 − δ∗,r) + ...+ Ψ̂d(µ̂rd−1 − δ∗,r) + (µ̂rd − δ∗,r).

Up to this point we followed closely the arguments in the proof of Theorem 1 in Mammen,

Linton, and Nielsen (1999). The arguments of the further parts of the proof of the latter

theorem would need that, in our notation,

sup
xj∈Xj

∫
Xk(xj )

Ô2
j,k(xj , xk)

Ô2
j (xj)Ok(xk)

dxk (3.16)

64



Chapter 3. Smooth backfitting of multiplicative structured hazards

is bounded by a constant, with probability tending to one. This would imply that with

probability tending to one for some constant C > 0 for all functions g : Xk(xj) → R

sup
xj∈Xj

∣∣∣∣ ∫
Xk(xj )

Ôj,k(xj , xk)
Ôj(xj)

g(xk)dxk
∣∣∣∣ ≤ C‖g‖, (3.17)

as can be seen by application of the Cauchy-Schwarz inequality. The proof of Theorem

1 in Mammen, Linton, and Nielsen (1999) shows that this can be used to show that

supx∈X ,0≤j≤d |R
r,[s]
j (x)| ≤ Cγs with probability tending to one for some constant C > 0.

Furthermore, it implies that

sup
x∈X

max
0≤j≤d

∣∣∣∣(δ − µ̂A − (I − π)−1(µ̂B − δB,∗)
)
j

(xj)
∣∣∣∣ = op(n−2/5).

Unfortunately in our setting (3.16) does not hold and thus we cannot follow that (3.17)

holds in our setting. One can also check that in general (3.17) does not hold under

our assumptions. Thus we do not have that T and T̂ map a function with bounded

L2-norm into a function with bounded L∞-norm. This also does not hold if we choose

our weighted norm ‖..‖O,∞ as L∞-norm. We now argue that after twice application of

T or T̂ a function with bounded ‖..‖-norm is transformed into a function with bounded

‖..‖O,∞-norm. This follows from the following two estimates for functions g : Xk → R

∫
Xxj

(∫
Xk(xj )

Oj,k(xj , xk)
Oj(xj)

g(xk)dxk

)2

O1−δ
j (xj)dxj ≤ C

∫
Xk

Ok(xk)g2(xk)dxk,(3.18)

sup
xj∈Xj

O
1/2
j (xj)

∣∣∣∣∣
∫
Xk(xj )

Oj,k(xj , xk)
Oj(xj)

g(xk)dxk

∣∣∣∣∣ ≤ C
(∫
Xk

O1−δ
k (xk)g2(xk)dxk

)1/2
(3.19)

with some constant C > 0. Using these bounds one can proceed as in Mammen, Linton,

and Nielsen (1999) by using similar arguments as used there. One needs to bound one

further term in the above expansion of δr(x) because we can bound ‖..‖O,∞-norms only

after a double application of T or T̂ . To bound this term one uses that a function with

bounded ‖..‖O,∞-norm is mapped by T and T̂ into a funcrtion with bounded ‖..‖O,∞-

norm. This follows from

sup
xj∈Xj

O
1/2
j (xj)

∣∣∣∣∣
∫
Xk(xj )

Oj,k(xj , xk)
Oj(xj)

g(xk)dxk

∣∣∣∣∣ ≤ C∗ sup
xk∈Xk

O
1/2
k (xk)|g(xk)|. (3.20)

with some constant C∗ > 0. For the proof of Proposition 1 it remains to show (3.18)–

(3.20). The bound (3.20) follows directly from the last inequality in Condition B5. For
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the proof of (3.18) note that the left hand side of (3.18) can be bounded by a constant

times

∫
Xxj ,xk

1
O1+δ
j (xj)Ok(xk)

dxj dxk

∫
Xk

Ok(xk)g2(xk)dxk.

Thus, (3.18) follows by application of the first inequality in Condition B5. For the proof

of (3.19) note that the left hand side of (3.19) can be bounded by a constant times

(
sup
xk∈Xk

∫
Xj(xk)

1
O1−δ
j (xj)Ok(xk)

dxj

∫
Xk

O1−δ
k (xk)g2(xk)dxk

)1/2

.

Here, (3.19) follows by application of the second inequality in Condition B5.

3.B.2 Proof of Proposition 3.2

The statement of Proposition 3.2 follows immediately from (B3) and Proposition 1.

3.B.3 Proof of Theorem 3.3

The main tool to prove this theorem is the Newton-Kantorovich theorem, see for example

Deimling (1985). Since this theorem is central in our considerations we will state it here.

Theorem 3.4 (Newton-Kantorovich theorem). Consider Banach spaces X,Y and a

continuous differentiable map F : Br(x0) ⊂ X 7→ Y . Also assume that the following

conditions are satisfied

(a) ‖F ′(x0)−1F (x0)‖ ≤ γ,

(b) ‖F ′(x0)−1‖ ≤ β,

(c) ‖F ′(x)− F ′(x∗)‖ ≤ l‖x− x∗‖ for all x, x∗ ∈ Br(x0),

(d) 2γβl < 1 and 2γ < r.

Then the equation

F (x) = 0
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has a unique solution x∗ in B2r(x0) and furthermore, x∗ can be approximated by Newtons

iterative method

xk+1 = xk − F ′(xk)−1F (xk),

and it holds that

‖xk − x∗‖ ≤
γ

2k−1 q
2k−1, with q = 2γβl < 1.

We come now to the proof of Theorem 3.3.

Proof of Theorem 3.3. We define the deterministic operator F

F(f0, . . . , fd)(x) =

∫
Xxk

 d∏
j=0
{1 + fj(xj)} − 1

 d∏
j=0

αj(xj)E(x)dx−k


k=0,...,d

.

Note that F(0) = 0. The Fréchet derivatives of F̂ and F in 0 are

F̂ ′(0)(f) =

∫
Xxk

∑
j

fj(xj)α(x)Ê(x)dx−k


k=0,...,d

,

F ′(0)(f) =

∫
Xxk

∑
j

fj(xj)α(x)E(x)dx−k


k=0,...,d

.

The main idea of our proof is to apply the Newton-Kantorovich theorem, Theorem 3.4,

with the mapping F = F̂ , norm ‖...‖O,∞ and the starting point x0 = δ. We will show

that

∥∥∥F̂ (δ)∥∥∥
O,∞

= Op(n−4/5), (3.21)

and that F̂ ′ is locally Lipschitz around 0, i.e., that there exist constants r∗, C such that

with probability tending to one

∥∥∥F̂ ′(g)(f)− F̂ ′(g∗)(f)
∥∥∥
O,∞
≤ C ‖g − g∗‖O,∞ ‖f‖O,∞ for all g, g∗ ∈ Br∗(0).(3.22)

Furthermore, we will show, that

F ′(0) is invertible, with
∥∥∥F ′(0)−1

∥∥∥
O,∞

< C∗, for some C∗ > 0. (3.23)

67



Chapter 3. Smooth backfitting of multiplicative structured hazards

We now argue that by application of the Newton-Kantorovich theorem (3.21)-(3.23)

imply

∥∥∥δ − δ̂∥∥∥
O,∞

= Op(n−4/5). (3.24)

This implies the statement of the theorem.

We now show that (3.21)-(3.23) imply (3.24). Since
∥∥∥δ∥∥∥

p.∞
= oP (1), the inequality

(3.22) also holds with a constant r for all g, g∗ ∈ Br(δ) with probability tending to one.

This gives condition 3. of the Newton-Kantorovich theorem.

Furthermore, note that [A5] and [B1] imply that [Ôj(xj)/ Oj(xj)] − 1 = oP (1), uni-

formly for xj ∈ Xj and 0 ≤ j ≤ d, as shown in the proof of Proposition 1. This gives∥∥∥F̂ ′(0)−F ′(0)
∥∥∥
O,∞

= oP (1). This together with
∥∥∥δ∥∥∥

O,∞
= oP (1) and (3.22) gives

∥∥∥F̂ ′ (δ)−F ′(0)
∥∥∥
O,∞

= op(1).

Therefore with probability tending to one, condition (3.23) also holds if F ′(0) is replaced

by F̂ ′(δ). Thus, (3.21)-(3.23) that conditions 1. - 4. of the Newton-Kantorovich theorem

are satisfied with probability tending to one, with γ = C|F̂(δ)|. This shows (3.24).

It remains to show (3.21), (3.22) and (3.23).

Proof of (3.22). First note that the Fréchet derivative of F̂ in (g0, . . . , gd) is given as

(
F̂ ′(g0, . . . , gd)(f0, . . . , fd)(x)

)
k

=
d∑
l=0

∫
Xxk

fl(xl)
∏
j 6=l
{1 + gj(xj)}α(x)Ê(x)dx−k

=
d∑
l=0

∫
Xxk

fl(xl)

 ∑
ν∈{0,1}d+1

νl=0

d∏
j=0

gj(xj)νj

α(x)Ê(x)dx−k.

Claim (3.22) follows by application of Cauchy-Schwarz inequality and Conditions A5, B1.

Proof of (3.23). We have to show that F ′(0) is invertible. For the proof of this claim we

start by showing that it is bijective. For the proof of injectivity, assume that F ′(0)(f) =
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0. We will show that this implies that f = 0. It holds that

∫
Xxk

d∑
j=0

fj(xj)α(x)E(x)dx−k = 0, for all k = 0, . . . , d.

Hence, ∫
X
fk(xk)

d∑
j=0

fj(xj)α(x)E(x)dx = 0, for all k = 0, . . . , d.

Then by summing up over k, we conclude

∫
X


d∑
j=0

fj(xj)


2

α(x)E(x)dx = 0,

which implies
d∑
j=0

fj(xj) = 0, a.e. on X .

By application of (3.15) this implies that f = 0.

Now we check that F ′(0) is surjective. Consider a function g = (g0, . . . , gd) with gk :

Xxk
7→ R, k = 0, . . . , d such that 〈F ′(0)(f), g〉 = 0 for all f = (f0, . . . , fd) with fk :

Xxk
7→∈ X . Since F ′(0) is linear, it is sufficient to show that g = 0. By choosing f = g,

we deduce that

∫
X
gk(xk)

d∑
j=0

gj(xj)α(x)E(x)dx = 0, for all k = 0, . . . , d,

and with exactly the same arguments as for the injectivity we conclude that g = 0.

Thus, we have shown that F ′(0) is invertible.

It remains to show that F ′(0)−1 is bounded, but this follows directly from the bounded

inverse theorem since F ′(0) is bounded.

Proof of (3.21). Since
∥∥∥δ∥∥∥

O,∞
= Op(ζ) and F̂ ′ is Lipschitz a first order Taylor expansion

yields

F̂(δ) = F̂(0) + F̂ ′(0)(δ) +Op(ζ2).

Equation (3.21) follows from F̂(0) + F̂ ′(0)(δ) = −∆̂ + ∆̂ = 0.
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3.C Discrete data

Data is given as Nr′,r , with (r′, r) ∈ Idisc, Idisc = {(r′, r)| r′ = 1, . . . , T0; r = 0, . . . , T0−1

and r′ ≤ r}. We define occurence Or′,r and exposure Er′,r.

Or′,r =
nr′∑
j=1

∫ r+1

r
dNr′,j(s) = Nr′,(T0−r),

Er′,r =
nr′∑
j=1

∫ r+0.5

r−0.5
Yr′,j(s)ds = Yr′,j(r + 0.5) =

∑
k≤(T0−r)

Nr′,k.

Then the local linear hazar estimator α̃ becomes

α̃(x) =
∑
r′,r∈Idisc

{
1− (x− (r + 0.5, r′))Ddisc(x)−1c1,disc(x)

}
Kb(x− (r + 0.5, r′))Or′,r∑

r′,r∈Idisc
{1− (x− (r + 0.5, r′))Ddisc(x)−1c1,disc(x)}Kb(x− (r + 0, 5, r′))Er′,r

,

where Ddisc and c1,disc are the discrete versions of D and c1, respectively:

c11,disc(x) = n−1 ∑
r′,r∈Idisc

Kb(x− (r + 0.5, r′))(t− r + 0.5)Er′,r,

c12,disc(x) = n−1 ∑
r′,r∈Idisc

Kb(x− (r + 0.5, r′))(t− r′)Er′,r,

d00,disc(x) =
∑

r′,r∈Idisc

Kb(x− (r + 0.5, r′))(t− r + 0.5)2Er′,r,

d01,disc(x) =
∑

r′,r∈Idisc

Kb(x− (r + 0.5, r′))(t− r + 0.5)(z − r′)Er′,r,

d11,disc(x) =
∑

r′,r∈Idisc

Kb(x− (r + 0.5, r′))(z − r′)2Er′,r.

The cross validation criteria is then

Q(b) = n−1 ∑
r′,r∈Idisc

{
α̂(r, r′)− α(r, r′)

}2
Er′,r,

and thus

Q̂b = n−1 ∑
r′,r∈Idisc

{
α̂(r5, r′)

}2
Er′,r − 2

∑
r′,r∈Idisc

α̂[r,r′](r, r′)Or′,r.
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Finally,

f̂(t, z) = α̂1(R0 − t)α̂2(z) exp
{
−
∫ T0−t

0
α̂1(s)α̂2(z)ds

}
.
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On the relationship between classical chain ladder and granular

reserving

M. Hiabu

Cass Business School, City, University of London, United Kingdom

Abstract

We connect classical chain ladder to the continuous chain ladder model of Mart́ınez-

Miranda et al. (2013). This is done by defining explicitly how the classical run-off

triangles are generated from iid observations in continuous time. One important result is

that the development factors have a one to one correspondence to a histogram estimator

of a hazard running in reversed development time. A second result is that chain ladder

has a systematic bias if the row effect has not the same distribution when conditioned

on any of the aggregated periods. This means that the chain ladder assumptions on one

level of aggregation, say yearly, are different from the chain ladder assumptions when

aggregated in quarters and the optimal level of aggregation is a classical bias variance

trade-off depending on the data-set. We introduce smooth development factors arising

from non-parametric hazard kernel smoother improving the estimation significantly.

Keywords: Chain Ladder, Granular Reserving, Development Factors, Solvency II, Non-

Life Insurance.
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4.1 Introduction

Reserving is the process behind setting capital reserves for outstanding liabilities in

non-life insurance. Insurance companies are obligated to account for claims that have

been reported but not settled yet and also for incurred claims which have not even

been reported. The reserve is often the major part of a non-life insurers balance sheet.

Accurate estimation is necessary for pricing future policies and also for the assessment

of solvency and net worth of the company. This in turn plays a major role in decisions

for financial investments and also for sales or acquisitions of insurances. Finally, wrong

assessment can lead to bankruptcy of major companies, with consequences for the whole

economic system; for example in the UK, the non-life insurance market accounts for

5% of the gross national product. These considerations come in hand with a growing

sense that the reserving process has to be done more rigorous including accurate point

forecast and discussions about its uncertainty around.

In practice, actuaries usually use the chain ladder method to calculate the reserve. The

method is based on historical data aggregated as run off triangles, i.e., paid claims, claims

counts, or incurred claims. For the sake of simplicity of the mathematical arguments we

only consider claim counts. Chain ladders development factors (see (4.6)) are hereby the

central object. One expression of their importance is maybe its many names: CL (chain

ladder) factor, link-ratio, age to age factor, or forward factor. But despite its central role

and intuitive appeal, as of today, practitioners and also academics are struggling with

the understanding of development factors in terms of classical mathematical statistics.

This might have let the author in Schmidt (2012) saying:

“ [. . . ] loss reserving is an art of which statistics is, although important, just

a part.”

This goes in hand with England and Verrall (2002) remarking on the usual reserving

practise that

”very often, the chain ladder technique is the first method to be applied,

followed by manual smoothing of the resultant development factors, then

adjustment of the results in line with expert opinion combined with addi-

tional information”.
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With these statements in mind, the reserving task remains, by its very nature, a sta-

tistical problem. Hence, a better statistical understanding of those practices and the

reserving problem is necessary not only to to get reasonable point estimates and to

quantify the risk and uncertainty in a reproducible way but also for understanding the

underlying assumptions under which these results hold.

A main result of this paper is that when the classical run-off triangles are modeled as

arising from observations in continuous time, then there is a quite easy understanding of

the development factors in terms of mathematical statistics. We will show that there is

a one to one correspondence to a histogram estimator of a hazard function (also known

as force of mortality in the actuarial branch of longevity) in reversed development time.

In Section 4.3, we show that

λ̂j = {1− α̂H(T − xj)}−1,

where λ̂ are the development factors defined in (4.6) and α̂H is the histogram estimator

of the hazard function, see (4.8). This translates the estimation problem of development

factors to the well known estimation problem of a hazard function in survival analy-

sis. In this survival analysis framework it is possible to relax classical assumptions of

chain ladder, for instance by allowing calendar time effects. A possibility of extension

is adding covariates when estimating the hazard. Both possibilities transform the one

dimensional hazard to the multivariate case. In this paper we improve chain ladder

with a third possibility and make the maybe most easy improvement in estimating the

development factors. We replace the histogram estimator of the hazard by more efficient

non-parametric kernel smoother of the hazard, see also Hiabu et al. (2016) (Chapter 2).

The one to one correspondence then leads to non-parametric kernel smoothed develop-

ment factors.

Modeling the complete data generating process leads to another discovery in this paper.

An underlying assumption of any stochastic model describing the classical chain ladder

method is the independence of underwriting date (row) effect and delay (column) effect,

since the development factors do not depend on the underwriting date. In Proposition

4.4 below, it is shown that if this holds on the individual level, then chain ladder in its

aggregated form is only consistent if the underwriting effect is identically distributed

within a period. Already the simple example of a continuously linear increasing trend
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in the book-size will make chain ladder in-consistent by adding a systematic bias; more

precisely the reserve will be overestimated in that case. Hence, if one does not see the

aggregation in classical chain ladder as a smoothing step where the aggregation level

converges to zero with growing sample size, then this should indeed be seen as the

underlying assumptions of chain ladder.

There has been a lot of literature aimed at building a statistical model around the chain

ladder method; see Kremer (1982), Verrall (1991), Mack (1993), Renshaw and Verrall

(1998), Wüthrich, Merz, and Bühlmann (2008), and Kuang, Nielsen, and Nielsen (2009)

among others. In the last years there is a growing sense in the industry that aggregated

data or macro data is not accurate enough and maybe outdated in times of big data. This

argumentation is not completely correct, since it is the very aim of statistics to compress

information into a single number or function. Therefore, aggregation should be seen as

a statistical pre-smoothing step. The problem then, however, is that there is a) little

discussion about the optimal level of aggregation, which of course varies with the data

at hand, and b) no discussion about the underlying individual data which justifies this

type of aggregation. While discussing the underlying model of chain ladder, the papers

mentioned before do especially not discuss the data generating process or sampling

scheme which make it hard to understand and justify the implicit assumptions. Renshaw

and Verrall (1998), for instance, say that the chain ladder method assumes “stationarity

of the reporting process” without further defining what this process is and how the

actual data arises from this process. Finally, granular methods are necessary if one is

interested in a more detailed cashflow.

Models on individual data and continuous time have been developed by Arjas (1989) and

Norberg (1993), where the individual claim development is modeled as a marked point

process. These more theoretical contributions have been made more applicable through

the work of Antonio and Plat (2014). A different semi-parametric approach based on

copulas is given in Zhao, Zhou, and Wang (2009) and Zhao and Zhou (2010). A com-

parison of an individual model and chain ladder estimates derived from its aggregation

are discussed in Huang, Wu, and Zhou (2016).

In recent literature there have also been developed models based on individual data

assumptions but where the traditional run-off triangle data structure from chain ladder is

kept. The idea is to keep the triangular structure and thus do not completely throw away
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existing reserving theory and practice. Verrall, Nielsen, and Jessen (2010), Mart́ınez-

Miranda, Nielsen, and Verrall (2012), Hiabu et al. (2015), and Schiegl (2015) have

assumptions on the individual data but work entirely with aggregated observations. This

makes it hard to check the underlying assumptions on the individual data. Drieskens et

al. (2012), Rosenlund (2012), Pigeon, Antonio, and Denuit (2013), and Godecharle and

Antonio (2015) rely on individual data but work on aggregated time. Mart́ınez-Miranda

et al. (2013) formulated a continuous chain ladder model which keeps the traditional run-

off triangle structure of classical chain ladder but considers individual data in continuous

time.

This paper aims to connect and compare the continuous chain ladder model of Mart́ınez-

Miranda et al. (2013) and classical chain ladder. In practice one can imagine the con-

tinuous model being based on the classical data by defining a period as a second instead

of, say, a year, which results in a triangle of only 0’s and 1’s. An important result of

this paper is that chain ladder’s estimation techniques corresponds to survival analysis

techniques when the development time is reversed. With the time reversal one does not

need exposure data to estimate the quantities of interest which is also the case in the

classical chain ladder method. This is different to the individual data approaches based

on Arjas (1989), Norberg (1993), and Antonio and Plat (2014), and will be explained in

more detail in the next section.

4.2 The continuous model

4.2.1 Model formulation

In this chapter we will formulate the stochastic model of continuous chain ladder (Mart́ınez-

Miranda et al., 2013), and afterwards embed it into a counting process framework. For a

better understanding in what follows it is helpful to be familiar with the classical chain

ladder method, in particular the run-off triangle, see for example Taylor (1986) and

Wüthrich and Merz (2008). The idea of continuous chain ladder is that claims are point

observations on the usual run-off triangle rather than being aggregated into bins as is

assumed in the classical chain ladder method. With the counting process formulation we

will then define a hazard function as part of the counting process intensity. In chapter
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4.3, we will show that the hazard in reversed development time is the continuous version

of the well known development factors of the chain ladder method.

The data in the classical chain ladder method are given as a run-off triangle and are

one half of the square including the future claims which are needed to be estimated.

We consider the probability space, (S,B(S), P ), where S is the square {(x, y) : 0 ≤

x, y ≤ T}. The underwriting date, Y , and the reporting delay, X, of a claim are hence

random with probability measure P , which describes how likely it is to see a claim on

a certain position on the square. Since S is bounded by T , we implicitly assume that

firstly all claims are reported within a maximum delay of T from their underwriting

date and secondly that we have T time units of observed underwriting dates. Generally

to avoid extrapolation, which we are not doing here, the maximum delay of a claim

must be smaller than the range of observed underwriting dates. The theory described

here would, as chain ladder does, work if X and Y would be bounded by T1, T2, with

T1 ≤ T2. To simplify the notation, we have assumed T = T1 = T2. If this is not the case

in practise, i.e, T1 < T2, the remaining columns can just be filled with zeroes to obtain

the same results.

We will assume that the density with respect to the Lebesgue measure, f = dP/dλ, is

well defined and multiplicative, i.e., f(x, y) = f1(x)f2(y). Hence, we assume that the

components X and Y are independent. This assumption can be checked by usual inde-

pendence tests, see Tsai (1990), Mandel and Betensky (2007), and Addona, Atherton,

and Wolfson (2012). A more pragmatic solution is plotting the individual development

factors and checking whether they lie on a horizontal line, see Hiabu et al. (2016) (Chap-

ter 2).

We further assume that observations are only sampled on a subset of the full support

of the density f . The truncated density is supported on the triangle, I = {(x, y) : 0 ≤

x, y ≤ T, x + y ≤ T} - the well known run-off triangle. In this case, we consider ob-

servations of n independent and identically distributed claims, {(X1, Y1), . . . , (Xn, Yn)},

with Xi ≤ T − Yi, or equivalently Yi ≤ T −Xi, where T is the calendar time the data

are collected. Note that (X1, Y1) is not distributed according to P and does not have

density f , since we already know that it is on the upper triangle. Hence, its density is

given by f(x, y)/
∫
I(x, y)dxdy. The observation schemes, Xi ≤ T − Yi, and Yi ≤ T −Xi

can be understood as random right-truncation when targeting only X or Y , respectively.
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Figure 4.1: The exposure in forward moving time (left) and reversed time (right).
Only in reversed time we observe the exposure.

The well established method to make inference on such observation schemes is to refor-

mulate the problem into a counting process framework, see for example Andersen et al.

(1993). In the following we will focus on inference on the reporting delay X. Due to

symmetry all the results can be easily adapted for the random variable Y . The devel-

opment factors in chain ladder only correspond to estimates depending on X. To this

end, we define a counting processes indicating the occurrences of Xi, i = 1 . . . , n. A

crucial point here is that right-truncation is not tractable as such, since the exposure

is not observable: In the counting process model, one needs to know at every point in

time how many individuals are at risk. Assume that we move T years forward in time

and hence know about every claim on the square. Exposure in x is then the amount of

claims having a greater reporting delay than x but could have been observed already

at point of data collection if the delay would have been exactly x. This amount is not

know at time of data collection, see Figure 4.1.

By reversing the time of the counting process, however, the right-truncation becomes

a left-truncation, see for example Ware and DeMets (1976) and Lagakos, Barraj, and

De Gruttola (1988), and exposure is observable, since all past claims are known. Note

that in the models of Arjas (1989), Norberg (1993), and Antonio and Plat (2014) time

is not reversed, and hence extra exposure data is needed to calibrate their model.

We define the time reversed counting processes as

Ni(t) = I (T −Xi ≤ t) , (i = 1, . . . , n),
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where I denotes the indicator function, with respect to the filtration

F it = σ

({
(T −Xi) ≤ s : s ≤ t

}
∪
{(
Yi
)
≤ s : s ≤ t

}
∪N

)
,

satisfying the usual conditions, and where N = {A : A ⊆ B,with B ∈ B(S), P (B) = 0}.

Adding the null set, N , to the filtration guarantees its completeness. This is a technically

useful construction, but is not strictly necessary, since the subsequent results also hold

if one does not assume completeness of the filtration, see Jacod (1979) and Jacod and

Shiryaev (1987).

The random intensity of Ni, νi, is well-defined since X is absolutely continuous. It can

be described, almost surely, through νi(t) = limh↓0 h
−1E

[
Ni {(t+ h)−} −Ni(t−)| F it−

]
.

Straightforward computations lead to Aalen’s multiplicative intensity model (Aalen,

1978):

νi(t) = α(t)Zi(t),

where the hazard ratio α, and the predictable filtering process (individual exposure), Zi,

are

α(t) = lim
h↓0

h−1pr {(T −X) ∈ [t, t+ h) | (T −X) ≥ t} = f1(T − t)
F1(T − t) = fR1 (t)

SR1 (t)
,

Zi(t) = I
{
Yi < t ≤ (T −Xi)

}
,

and F1 =
∫ ·

0 f1(x)dx is the cumulative distribution function. The crucial point in Aalen’s

multiplicative intensity model is that the hazard function, α, does not depend on Y .

In chapter 4.3 we will show that the hazard in reversed development time, α, is the

continuous version of the well known development factors λ of the chain ladder method.

Before finishing this chapter, we introduce the notation N(t) =
∑
Ni(t) and the exposure

Z(t) =
∑
Zi(t).

4.2.2 Estimation in the continuous framework

In this section we briefly introduce three nonparametric estimators of the hazard func-

tion α in the continuous time framework: The histogram estimator, the local constant
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estimator and the local linear estimator. The local linear and the local constant esti-

mator are well studied in the statistical literature of kernel smoothing, and we will only

state the results and properties of the estimator for people not familiar with smoothing

theory. The histogram estimator is known from applied fields as in age-period-cohort

models of demographic problems.

An alternative to estimate the hazard function α would be to assume a parametric form

on the intensity νi, see Borgan (1984) and Andersen et al. (1993). We chose not to do

so in this paper, since a nonparametric estimation technique is more in the spirit of the

chain ladder technique.

For the asymptotic properties we consider the following assumptions.

Assumption (S)

S1. The bandwidth h = h(n) satisfies h→ 0 and nh→∞ for n→∞.

S2. The hazard function α is strictly positive and it holds that α ∈ C2([0, T ]).

S3. The kernel K is symmetric, has bounded support and has a second moment.

Assumptions (S1) - (S3) are standard regularity assumptions in smoothing theory (Sil-

verman, 1986; Simonoff, 1998). Note that under assumption (S2), the asymptotic rela-

tive exposure γ(t) = pr(Z1(t) = 1) is continuous and from empirical process theory it is

known that

sup
s∈[0,T ]

|Z(s)/n− γ(s)| = op(1). (4.1)

4.2.2.1 The histogram estimator of the hazard

The maybe simplest way to derive an estimator of the hazard function, α, is the his-

togram estimator. Let’s assume that a parameter, h > 0, as bin width is given. A

histogram estimator of α on equally sized bins, with bin size h is derived by dividing

the number of observations - relative to the bin width - in one bin by the number of
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exposure at that bin. For t in the bin [c1, c2), that is

α̂Hh (t) = h−1∑n
i=1

∫ c2
c1 dNi(s)∑n

i=1
∫ c2
c1 Zi(s)ds

= OH(t)
EH(t) . (4.2)

In Hoem (1969) optimality of the histogram estimator is proven if the true hazard, α, is

constant on the bins. The following proposition shows the asymptotic properties when

local constancy is not assumed. The proof can be found in the Appendix 4.C.

Proposition 4.1. Assume that assumptions (S1)-(S2) are satisfied. The histogram

estimator has asymptotically a bias of order h and variance of order (nh)−1. More

precisely, the following pointwise asymptotics holds for t ∈ (0, T ):

(nh)1/2
{
α̂Hh (t)− α(t)−B(t)

}
D−→ N

{
0, σ2(t)

}
,

where

B(t) = α′(t)h−1
∫ c2

c1
(t− s) ds+ o(h), σ2(t) = α(t)γ(c2)−1.

4.2.2.2 Local polynomial estimator of the hazard

The idea of local polynomial fitting is quite old and might originate from early time

series analysis, see Macaulay (1931). It has been adapted to the regression case in Stone

(1977) and Cleveland (1979). A general overview of local polynomial fitting can be found

in Fan and Gijbels (1996). The local constant estimator has a reduced convergence rate

at boundaries. This is not the case for polynomials of order p ≥ 1. In general, a higher

order reduces bias but increases variance. But variance only increases when the order

changes from odd to even. In this paper we will only consider the cases p = 0, 1, that is

the local constant and the local linear estimator of the hazard function.

We define the local constant estimator, α̂LCh,K(t) of α(t), as the minimizer, Θ̂0, in the

equation

Θ̂0 = arg min
Θ0∈R

n∑
i=1

[ ∫
Kh(t− s)Θ2

0Zi(s)ds− 2
∫
Kh(t− s)Θ0 dNi(s)

]
, (4.3)

where for a given kernel, K, and a bandwidth, h, Kh(t) = h−1K(t/h). The definition of

the local constant estimator as the minimizer of (4.3) can be motivated by the fact that
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its minimizer equals the least square criteria,

arg min
Θ0∈R

(
lim
ε→0

n∑
i=1

∫ [{1
ε

∫ s+ε

s
dNi(u)−Θ0

}2
− ξ(ε)

]
×Kh(t− s)Zi(s) ds

)
,

where ξ(ε) = {ε−1 ∫ s
s−ε dN i(u)}−2 is a just a vertical shift which is added to make the

expression well-defined. The solution of (4.3), see also Nielsen and Tanggaard (2001), is

given by

α̂LCh,K(t) =
∑n
i=1

∫
Kh(t− s)dNi(s)∑n

i=1
∫
Kh(t− s)Zi(s)ds

= OLC(t)
ELC(t) .

For every Kernel K we define

µi(K) =
∫
siK(s)ds, R(K) =

∫
K2(s)ds.

The following proposition states that the local constant estimator is efficient in optimal

rate sense.

Proposition 4.2 (Hjort, West, and Leurgans (1992)). Assume that assumption (S) is

satisfied. Then, the following pointwise asymptotics holds for t ∈ (0, T ):

(nh)1/2
{
α̂LCh,K(t)− α(t)−B(t)

}
D−→ N

{
0, σ2(t)

}
,

where

B(t) = µ2(K)h2
{1

2α
′′(t) + α′(t)γ′(t)γ(t)−1

}
+ o(h2), σ2(t) = R(K)α(t)γ(t)−1.

Note that this result only holds in the interior of the support [0, T ]. Following the

proof one can easily see that the bias is of order b in the boundary region, i.e., the

intervals [0, b) and (T − b, T ]. There have been several estimators proposed to derive

convergence in the full support. Due to its simplicity but also convincing properties the

local linear estimator became the maybe most popular kernel smoother. Similarly to the

local constant estimator, we define the local linear estimator (Nielsen, 1998), α̂LLh,K(t) of
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α(t), as the minimizer, Θ̂0, in the equation

Θ̂0

Θ̂1

 = arg min
Θ0,Θ1∈R

n∑
i=1

[ ∫
Kh(t− s) {Θ0 −Θ1(t− s)}2 Zi(s)ds

− 2
∫
Kh(t− s) {Θ0 −Θ1(t− s)}Zi(s)dNi(s)

]
. (4.4)

With solution

α̂LLh,K(t) = n−1
n∑
i=1

∫
Kt,h(t− s)dNi(s)

=
∑n
i=1

∫
Kh(t− s) {a2(t)− a1(t)(t− s)} dNi(s)∑n

i=1
∫
Kh(t− s) {a2(t)− a1(t)(t− s)}Zi(s) ds

= OLL,δ(t)
ELL,δ(t) , (4.5)

where

Kt,h(t− s) = a2(t)− a1(t)(t− s)
a0(t)a2(t)− {a1(t)}2Kh(t− s),

and

aj(t) = n−1
∫
Kh(t− s)(t− s)jZ(s)ds (j = 0, 1, 2).

The notation of Kt,h is chosen because it is indeed, given (S3), a second order kernel

with respect to the measure Z(s)ds:

n−1
∫
Kt,h(t− s)Z(s)ds = 1, n−1

∫
Kt,h(t− s)(t− s)Z(s)ds = 0,

n−1
∫
Kt,h(t− s)(t− s)2Z(s)ds > 0.

Furthermore, Nielsen and Tanggaard (2001) showed that Kt,h(t − s) is asymptotically

equivalent to kt,h(t− s)Z−1(s), with

kt,h(t− s) = c2(t)− c1(t)(t− s)
c0(t)c2(t)− {c1(t)}2Kh(t− s), cj(t) = n−1

∫
Kh(t− s)(t− s)jds,

which in turn pointwise equals K(t−s), for n large enough. This considerations make it

not surprising that the local linear estimator has similar point-wise asymptotics as the

local constant estimator.
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Figure 4.2: The usual aggregation of a triangle in the chain ladder method. The
bin-width δ represents the length of a period.

Proposition 4.3 (Nielsen (1998)). Assume that assumption (S) is satisfied. Then, the

following asymptotics holds for t ∈ (0, T ):

(nh)1/2
{
α̂LLh,K(t)− α(t)−B(t)

}
D−→ N

{
0, σ2(t)

}
,

where

B(t) = 1
2µ2(K)α′′(t)h2 + o(h2), σ2(t) = R(K)α(t)γ(t)−1.

4.3 Discretization of the continuous model

4.3.1 The model

In the previous section we have defined several estimators of the hazard function, given

observations in continuous time. In the non-life insurance context, data are usually

aggregated in so called yearly or quarterly run-off triangles. This is done by aggregating

the continuous triangle, I, into a grid of parallelograms, see Figure 4.2.

The observation scheme is very similar to those in a Lexis diagram known from age-

period-cohort models in demography, and aggregation of the same parallelograms is there

86



Chapter 4. On the relationship between classical chain ladder and granular reserving

known as the first principle set (Hoem, 1969; Keiding, 1990). In the language of age-

period-cohort models, the form of a parallelogram arises because while data are collected

with respect to cohort (underwriting date) and year (claim delay), the aggregation is

done with respect to cohort and period (calendar time). While aggregation into squares

would make many things easier, the triangular observation scheme would then imply

that the number of observation changes with different aggregation level, and in particular

forecasting would not be possible for the last underwriting period.

Let δ be the grid width with integer valued inverse. The individual data of indepen-

dent, identically, distributed data (Xi, Yi) are aggregated to observations, (Xδ
i , Y

δ
i ), with

support on

Iδ = {(xj , yk) = ((j + 0.5)δ, (k + 0.5)δ) : j, k = 0, 1 . . . , T δ−1 − 1, j + k ≤ T}.

The discrete observations are then described via

(Xδ
i , Y

δ
i ) = (xj , yk)⇔ Yi ∈ [kδ, (k + 1)δ) and Xi + Yi ∈ [(j + k)δ, (j + k + 1)δ)

Note that this implies that

Xi ∈ [(j − 1)δ ∨ 0, (j + 1)δ).

The parallelogram aggregation adds a non-trivial dependency structure between the

components Xδ and Y δ, even though X and Y might be independent. The chain ladder

method implicitly assumes independence between underwriting date and development

delay, since the development factors do not change for different underwriting dates, see

also various paper discussing the underlying model of chain ladder, e.g., Mack (1993)

and Renshaw and Verrall (1998).

It is then important to note that the necessary independence of the components of

(Xδ, Y δ) does generally not follow from the independence of X and Y. Consider the

following assumptions.

Assumption (D)
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D(i) The density function f2 of Y is multiplicatively separable in the sense that there

exist functions g1 and g2 so that for every y ∈ [yj − 0.5δ, yj + 0.5δ), it holds

thatf2(y) = g1(yj)g2(y − yj).

D(ii) The random variables Xδ and Y δ are independent.

Assumption D(i) basically says that the random variable Y needs to have the same

distribution when conditioned on any bin on the grid.

Sufficient conditions are for instance local constancy, f2(y) = g(yk), as most often as-

sumed in age-period-cohort literature, or an exponential growth f2(y) = c exp(y), where

c is a norming constant.

Note that those assumptions can not be checked if one has only access to the aggregated

data, also whether assumption D(i) or D(ii) are satisfied or by how much they violated

does depend on the level of aggregation.

Proposition 4.4. If X and Y have a multiplicative separable density, i.e., f(x, y) =

f1(x)f2(y), and f1 is not further specified, then assumption D(i) and D(ii) are equivalent.

The proof can be found in the Appendix 4.C.

The implication of this proposition is that if assumption D(i) is not satisfied, then the

level of aggregation in chain ladder is a bias-variance trade off. The optimal level of

aggregation should then be derived via a cross-validation method which needs to be

developed.

The classical run-off triangle data is given in the form (Nr,s), r, s = 1, . . . , T , r+s ≤ T+1,

and are the total numbers of claims of insurance incurred in period (most often a year

or quarter) r which have been reported in period r + s, i.e., with s periods delay from

r. The triangle is derived from the random variables (Xδ, Y δ), via

Nr,s = #{i : Y δ
i = r,Xδ

i = s} =
n∑
i=1

I
{
Y δ
i = r,Xδ

i = s
}
.

Since we are assuming that there is no so called tail, i.e., all claims are reported within

T periods, forecasts are obtained by estimating and summing up the values (Nr,s),
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r, s = 1, . . . , T , r + s ≥ T + 2. For this, chain ladder estimates development factors,

λ̂s =
∑T−s+1
k=1

∑s
l=1Nk,l∑T−s+1

k=1
∑s−1
l=1 Nk,l

, (s = 2, . . . , T ), (4.6)

and forecasts are derived as N̂r,s = Nr,T−r+1
∏s
l=T−r+1 λl.

For deriving estimators in the discrete framework, we want to use the already developed

theory in the continuous time case and introduce f δ1 as the density of Xδ with respect to

the counting measure µ(A) = δ#{j | (j+0.5)δ ∈ A, j = 0, 1 . . . , T δ−1−1}, A ∈ B([0, 1]).

f δ1 (t) =


0 if t 6= (j + 0.5)

δ−1 ∫ (j+1)δ
jδ f1(t)dx if t = (j + 0.5)δ.

We define the time reversed counting processes as

N δ
i (t) = I

(
T −Xδ

i ≤ t
)
, (i = 1, . . . , n),

with respect to the filtration

F i,δt = σ

({
(T −Xδ

i ) ≤ s : s ≤ t
}
∪N

)
.

Similar to the continuous case one derives that the intensity of the counting process is

νδi (t) = αδ(t)Zδi (t),

where the hazard ratio α, and the predictable filtering process, Zδi , are

αδ(t) = f δ1 (T − t)
F δ1 (T − t)

= f δ,R1 (t)
Sδ,R1 (t)

, Zδi (t) = I
{
Y δ
i ≤ t ≤ (T −Xδ

i )
}
.

This means that also the discrete observation can be translated into Aalen’s multiplica-

tive intensity model. The main difference to the continuous case is that the Lebesgue

measure is replaced by the counting measure, µ, which lives on a grid according to

the aggregation level of the data. For the development of the theoretical properties

of the discrete estimators in the next section we introduce the following functions for
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t ∈ [0.5δ, T − 0.5δ],

αδ(t) =
δ−1 ∫ t+0.5δ

t−0.5δ f(s)ds∫ 1
t−0.5δ f(s)ds

, Z
δ
i (t) = I

{
Yi − 0.5δ ≤ t ≤ (T −Xi) + 0.5δ

}
.

Note that αδ(xj) = αδ(xj) and Zδi (xj) = Zδi (xj). For δ converging to zero, we have that

sup
s∈[0,T ]

|Zδ(s)/n− γ(s)| = op(1). (4.7)

4.3.2 The histogram estimator and chain ladders development factors

Let us assume that one chooses a bandwidth h = cδ, c = 1, 2, . . . , as bin width. Then,

for t in the bin [c1, c2), with width h, the histogram estimator of the previous section

translates to

α̂H,δh (t) =
h−1∑n

i=1
∫ c2
c1

dN δ
i (s)∑n

i=1
∫ c2
c1
Zδi (s)dµ(s)

= OH,δ(t)
EH,δ(t) . (4.8)

We will suppress the subscript h in α̂H,δh , if h = δ. Note that while the nominator equals

the one from the continuous estimator in (4.2), the denominators are different. The

reason is that when considering discrete observations, the exposure in the considered

bins is not observed and hence needs to be estimated, see also Hoem (1969).

Proposition 4.5. Assume that assumptions (S) and (D) hold, then for h = δ, α̂H,δh (xj)

is an unbiased estimator of αδ(xj). The estimation error is asymptotically normal with

variance (nh)−1γ−1(tj)α(tj).

For h = cδ, c = 2, 3, . . . , it holds that

(nh)1/2
{
α̂Hh (xj)− α(xj)−B(xj)

}
D−→ N

{
0, σ2(xj)

}
,

where

B(t) = 1
24f

R′′(xj){SR(tj)}−1δ2 + (αδ)′(xj)
{

(xj − c1)− 1
2h
}

+ o(h+ δ2),

σ2(t) = αδ(xj)γ(xj)−1.

The proof can be found in the Appendix 4.C.
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We now discuss the relationship between chain ladder’s development factors and the

discrete histogram estimator of the hazard, α̂H,δh , when one chooses that the bin-width

h equals the discretization δ. Note that the development factor, (4.6), can be rewritten

as

λ̂j = EH,δ(xj)
EH,δ(xj)− δOH,δ(xj)

. (4.9)

Theorem 4.6. Assume that λj is the j-th development factor derived from the chain

ladder algorithm. It holds that

λ̂j = 1
1− δ α̂H,δ(T − xj)

. (4.10)

Furthermore, it holds that

λ̂(xj) = 1 + δ α̂H,δ(T − xj) +Op(δ2). (4.11)

Proof. This follows directly from (4.8) and (4.9).

Equation (4.10) tells us that there is an exact and deterministic relationship between the

histogram estimator and the development factor. Equation (4.11) even gives asymptotic

equality when the development factors are subtracted by 1.

We conclude the following. In continuous time, chain ladders development factors and

a histogram estimator of the hazard in reversed time are the same entity. Or in other

words the development factors aim to estimate a hazard in reversed time via a histogram

approach. To make this clear, we introduce the new notation

λ̂H,δ(xj) = λ̂j = 1
1− δ α̂H,δ(T − xj)

. (4.12)

When working in the continuous setting, or say daily level, those classical development

factors will be too noisy. Thus, one will need to increase, h or equivalently δ, to increase

performance. A better alternative might be to replace the classical development-factors

by kernel smoothed versions.

In the next section we introduce discrete versions of the local constant and local linear

kernel estimator.
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4.3.3 Local polynomial estimator

It is straight forward to see that the solutions of the discrete versions of (4.3) and (5.3)

are given by

α̂LC,δh,K (t) = h−1∑n
i=1

∫
Kh(t− s)dN δ

i (s)∑n
i=1

∫
Kh(t− s)Zδi (s)dµ(s)

= OLC,δ(t)
ELC,δ(t) .

and

α̂LL,δh,K (t) =
∑n
i=1

∫
Kh(t− s)

{
aδ2(t)− aδ1(t)(t− s)

}
dN δ

i (s)∑n
i=1

∫
Kh(t− s)

{
aδ2(t)− aδ1(t)(t− s)

}
Zδi (s) dµ(s)

= OLL,δ(t)
ELL,δ(t) ,

where

aδj(t) = n−1
∫
Kh(t− s)(t− s)jZδ(s)dµ(s) (j = 0, 1, 2).

Proposition 4.7. Assume that assumption (S) and (D) are satisfied. Then, the follow-

ing asymptotics holds for t ∈ (0, T ):

(nh)1/2
{
α̂LCh,K(t)− α(t)−BLC,δ(t)

}
D−→ N

{
0, σ2

LC,δ(t)
}
,

(nh)1/2
{
α̂LLh,K(t)− α(t)−BLL,δ(t)

}
D−→ N

{
0, σ2

LL,δ(t)
}
,

where

BLC,δ(x) = 1
24f

R′′(xj){SR(xj)}−1δ2 + µ2(K)h2
{

(αδ)′(xj)γ′(xj)γ−1(xj) + 1
2(αδ)′′(xj)

}
+ o(δ2 + h2),

BLL,δ(x) = 1
24f

R′′(xj){SR(xj)}−1δ2 + 1
2µ2(K)h2(αδ)′′(xj) + o(δ2 + h2),

σ2
LC,δ(x) = σ2

LL,δ(x) = R(K)αδ(t)γ(x)−1.

The proof can be found in the Appendix 4.C.

We now define the local constant and local linear development factors which can be used

in the chain ladder approach.

λ̂LC,δ(xj) = 1
1− δ α̂LC,δh (T − xj)

, λ̂LL,δ(xj) = 1
1− δ α̂LL,δh (T − xj)

. (4.13)
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4.4 Simulation study

To illustrate the finite sample performance, we simulated three models assuming inde-

pendent underwriting and delay components. For simplicity we set T = 1. For the

development component, in model 1 and 2, we chose that X ∼ Beta(2, 5), and in the

third model we chose a more steep development pattern with X ∼ Exponential(5). For

the underwriting variable, Y, in the first model, we assume a uniform distribution and

hence the chain ladder assumptions are satisfied for every aggregation. In the second

and third model the density of Y is linearly increasing, i.e., f2(y) = 2y. This means that

the aggregated approaches will estimate a biased reserve. We also tried many other dis-

tributions but they did not change the conclusions we derived from those three models

presented here.

We have run 500 repetitions with sample-sizes of n = 200, 1000, 5000, 10000 to estimate

the relative error, error = (E[R]− R̂)/E[R], where R̂ is the reserve estimate derived by

the chain ladder algorithm using the development factors in (4.12) and (4.13).

This is done by calculating the chain ladder development factors for aggregation levels

δ ∈ {0.01, 0.02, 0.04, 0.1, 0.2}. For δ = 0.01 we also calculated the local linear and the

local constant versions. The discretization δ = 0.01 should approximate the continuous

model well enough for the smaller sample sizes (n=200, 1000). For the greater sample

sizes (n=5000, 10000), the performance of the local polynomial estimators could have

been improved with a smaller δ, according to the asymptotic theory in the previous

section. The way the code is implemented, computation time depends on the aggregation

level, δ, and is unaffected by the sample size, n. More details are given in the Appendix.

This paper does not discuss the problem of how to choose a bandwidth b. This issue

needs to be addressed separately where a cross-validation procedure is developed and

assessed. Depending on the estimation purpose, i.e. if one interested in the full sum of

the lower triangle or in the diagonal sums of the lower triangle, one will have different

loss functions with different optimal bandwidths. In this simulation study, we have used

the bandwidth optimal for the given loss function in each simulation step. This choice

is infeasible in practice. To give an idea about the robustness of the estimators with

respect to the bandwidth, for the local constant estimator, we also included a bandwidth

which is randomly picked in every simulation step from a quite wide range depending on
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model and sample size. An eye picked or cross-validated bandwidth is then expected to

have a performance in between the optimal and random choice. For the local polynomial

estimators we have used the Epanechnikov kernel, as kernel K.

In Table 4.1 and Figure 4.3, we see that the histogram estimator becomes better the more

one aggregates. This is consistent with the theory, since there is no bias in the estimation

and accuracy can hence be reduced by aggregation via reduction of variance. But even

when aggregated to a triangle with only 5 periods (δ = 0.2) the kernel estimators are

competitive, and the local constant estimator is even favorable. A change in sample size

does not seem to alter the conclusion but improves the estimators uniformly.

The results of the second simulation study are presented in Table 4.2. Here, one can

see that the choice of the aggregation for the chain ladder approach is a classical bias

variance trade off. The results are also visualized in via boxplots in Figure 4.4. Also in

this model the conclusion is to prefer the kernel estimators.

Similar results are given in the third model, Table 4.3 and Figure 4.5, which indicates

that the results are independent of the distribution choice and also hold in a harder

estimation problem with a sharp decay of mass.

An interesting result is that independent of the models, extreme estimation errors are

always overestimating the reserve. This is independent of the true distributions or the

way the development factors are estimated but seems to be a feature of the chain ladder

technique.

In both models the local linear estimator performed surprisingly bad compared to the

local constant estimator, but might be better in other scenarios.

4.5 Concluding remarks

In this paper we connected classical chain ladder to the continuous chain ladder model

of Mart́ınez-Miranda et al. (2013). We derive a one to one connection between the de-

velopment factors and a histogram hazard estimator and then improve this histogram

estimator by more efficient kernel smoothers. However, the hazard interpretation also
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Figure 4.3: Boxplot results over 500 repetitions for the relative estimation error of
the reserve. The development delay, X, has a Beta distribution with parameters (2, 5),
and the underwriting date density, Y, is uniformly distributed. Sample size is n =
200, 1000, 5000, 10000. For n = 200, 1000 : b.random ∈ [0.05, 0.3], for n = 1000, 5000 :

b.random ∈ [0.05, 0.25]
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Figure 4.4: Boxplot results over 500 repetitions for the relative estimation error of the
reserve. The development delay, X, has a Beta distribution with parameters (2, 5), and
the underwriting date density, Y, is linear increasing, f2(y) = 2y. For n = 200, 1000 :

b.random ∈ [0.05, 0.3], for n = 1000, 5000 : b.random ∈ [0.05, 0.25]
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Figure 4.5: Boxplot results over 500 repetitions for the relative estimation error of
the reserve. The development delay, X, has a exponential distribution with rate 5, and
the underwriting date density Y, is linear increasing, f2(y) = 2y. For n = 200, 1000 :

b.random ∈ [0.05, 0.25], for n = 1000, 5000 : b.random ∈ [0.01, 0.1]
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n λ̂LL,0.01
b.opt λ̂LC,0.01

b.opt λ̂LC,0.01
b.random λ̂H,0.01 λ̂H,0.02 α̂H,0.04 λ̂H,0.1 λ̂H,0.2

200 Mean -1.746 -0.590 0.217 -1.311 -1.146 -1.217 -0.765 -0.474
Median -0.089 -0.053 0.607 1.042 0.999 0.848 0.082 -0.178

SD 3.674 1.289 2.825 9.033 8.177 7.498 4.528 2.957
1000 Mean -0.906 -0.105 0.536 -0.234 -0.304 -0.313 -0.146 -0.088

Median -0.082 -0.010 0.601 0.601 0.479 0.243 0.059 -0.029
SD 1.850 0.364 1.218 3.845 3.390 2.625 1.631 1.261

5000 Mean -0.514 -0.004 0.801 -0.115 -0.076 -0.090 -0.022 -0.004
Median -0.059 -0.001 0.788 0.348 0.246 0.046 0.015 -0.001

SD 1.090 0.083 0.559 1.785 1.335 1.088 0.709 0.544
10000 Mean -0.429 0.005 0.804 -0.045 -0.012 -0.032 -0.007 0.000

Median -0.084 0.003 0.814 0.214 0.102 0.027 0.015 -0.014
SD 0.813 0.079 0.446 1.163 0.932 0.748 0.511 0.388

Table 4.1: Simulation results over 500 repetitions for the relative estimation error of
the reserve. The development delay, X, has a Beta distribution with parameters (2, 5),
and the underwriting date density, Y, is uniformly distributed. Sample size is n =
200, 1000, 5000, 10000. For n = 200, 1000 : b.random ∈ [0.05, 0.3], for n = 1000, 5000 :

b.random ∈ [0.05, 0.25]

n λ̂LL,0.01
b.opt λ̂LC,0.01

b.opt λ̂LC,0.01
b.random λ̂H,0.01 λ̂H,0.02 α̂H,0.04 λ̂H,0.1 λ̂H,0.2

200 Mean -1.746 -0.590 0.217 -1.311 -1.146 -1.217 -0.765 -0.474
Median -0.089 -0.053 0.607 1.042 0.999 0.848 0.082 -0.178

SD 3.674 1.289 2.825 9.033 8.177 7.498 4.528 2.957
1000 Mean -0.824 -0.125 -0.062 -0.401 -0.374 -0.373 -0.352 -1.043

Median -0.094 -0.030 0.106 0.343 0.321 -0.017 -0.258 -0.999
SD 1.546 0.365 1.500 3.604 2.622 2.051 1.414 1.271

5000 Mean -0.464 -0.000 0.400 -0.084 -0.059 -0.120 -0.286 -0.975
Median -0.092 -0.001 0.500 0.237 0.094 -0.072 -0.273 -1.008

SD 0.867 0.093 0.743 1.264 1.020 0.840 0.602 0.534
10000 Mean -0.351 0.000 0.410 -0.053 -0.033 -0.092 -0.275 -0.958

Median -0.112 0.005 0.556 0.092 -0.005 -0.029 -0.258 -0.963
SD 0.584 0.087 0.665 0.846 0.705 0.584 0.423 0.369

Table 4.2: Simulation results over 500 repetitions for the relative estimation error
of the reserve. The development delay, X, has a Beta distribution with parameters
(2, 5), and the underwriting date density, Y, is linear increasing, f2(y) = 2y. For
n = 200, 1000 : b.random ∈ [0.05, 0.3], for n = 1000, 5000 : b.random ∈ [0.05, 0.25]

allows for straight forward generalisations to more flexible models allowing for calen-

dar time effects and covariates with specific claim informations. This can be done by

extending the univariate hazard estimation case to the multivariate case.

Another point is that we only considered claim counts. A generalisation suitable for

claim amounts is explained in Chapter 5. The assumption necessary hereby is that

the influences of development delay and underwriting date on the claim severity are

independent to each other. If this holds, then everything done in this paper can be done

in the same way with claim amounts. The uncertainty will, however, depend on the
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n λ̂LL,0.01
b.opt λ̂LC,0.01

b.opt λ̂LC,0.01
b.random λ̂H,0.01 λ̂H,0.02 α̂H,0.04 λ̂H,0.1 λ̂H,0.2

200 Mean -1.348 -1.033 -1.772 -0.437 -0.454 -0.539 -0.609 -0.759
Median -0.170 -0.126 -1.061 0.326 0.334 0.238 0.218 -0.434

SD 2.518 1.946 4.328 4.101 4.208 4.194 4.353 2.744
1000 Mean -0.553 -0.426 -1.400 -0.111 -0.055 -0.148 -0.200 -0.620

Median -0.120 -0.073 -1.242 0.125 0.113 0.062 -0.017 -0.567
SD 1.117 0.800 1.790 2.242 1.731 2.209 1.364 1.198

5000 Mean -0.188 -0.143 0.005 0.032 0.021 -0.032 -0.133 -0.539
Median -0.080 -0.037 0.006 0.073 0.046 0.019 -0.113 -0.565

SD 0.375 0.298 0.582 0.670 0.708 0.740 0.554 0.506
10000 Mean -0.123 -0.094 -0.001 0.022 0.008 -0.023 -0.142 -0.543

Median -0.058 -0.031 -0.001 0.034 0.015 0.012 -0.140 -0.556
SD 0.255 0.199 0.422 0.475 0.522 0.468 0.382 0.352

Table 4.3: Simulation results over 500 repetitions for the relative estimation error of
the reserve. The development delay, X, has a exponential distribution with rate 5, and
the underwriting date density Y, is linear increasing, f2(y) = 2y. For n = 200, 1000 :

b.random ∈ [0.05, 0.25], for n = 1000, 5000 : b.random ∈ [0.01, 0.1]

severity distribution. With this generalisation it would be interesting to compare the

methods in this paper with other individual reserving models like Mart́ınez-Miranda,

Nielsen, and Verrall (2012) or Antonio and Plat (2014).

In this the paper, we have derived asymptotic results for the estimation uncertainty of

the hazard/development factors. Uncertainty of the reserve or estimated sum of the

lower triangle is not discussed in this paper. An analytic derivation seems not to be

straightforward, since even if the true development factors are known, chain ladder uses

the observed values to project into the lower triangle. However, since we are in a full

statistical model, one could develop and implement a bootstrap approach which can

also include parameter uncertainty. This would also be possible in the more general

framework of Chapter 5 which is suitable for claim amounts.

4.A Computational complexity

In this section we give a brief and not so scientific outline about the computational cost

involved in the chain ladder algorithm implemented for this paper. The complexity does

hereby not depend on the sample size but only on the dimension of the triangle, i.e, the

number (Tδ−1). In Table 4.4 we provide an idea of the computational complexity of the

algorithm running in a standard computer (Intel(R) Core(TM) i5-4590S with 3.00 GHz
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and 8.00 GB-RAM with R working under Windows 7-64 bit). Specifically we have eval-

uated the run-time of one arbitrary simulated sample with (Tδ−1) = 100, 1000, 10000.

We have hereby split the computation time in the three different categories. Firstly, the

aggregation from a triangle of size Tδ−1 to a smaller triangle (Aggregation); note that it

does hereby not matter to which size the triangle is aggregated. Secondly the calculation

of the development factors via the different methods (λ̂H , λ̂LC , λ̂LL )and lastly the chain

ladder algorithm when the development factors are given (CL algorithm).

Tδ−1 Aggregation CL algorithm λ̂H λ̂LC λ̂LL

100 0.011 0.036 0.001 0.106 0.1109
1000 1.223 3.382 1.032 8.976 6.274

10000 117 1351 4659 5176 4933
(2min) (23min) (78min) (86min) (82min)

Complexity (Tδ−1)2 (Tδ−1)3 (Tδ−1)3 (Tδ−1)3B (Tδ−1)3B

Table 4.4: Computation time in seconds and complexity for the aggregation, the
chain ladder algorithm and the development factor estimators. The local polynomial
estimators also depend on the number of bandwidths B. The running time for the LC

and LL estimators are given for a choice with B = 50.

4.B A martingale CLT

In Ramlau-Hansen (1983), the author presented a central limit theorem for the martin-

gale M(t) = N(t) −
∫
α(t)Z(t)dt. This is essential to derive asymptotic normality of

the kernel and also the histogram estimator of the hazard function α. As mentioned in

that paper this central limit theorem is only a special case of Corollary 2 in Liptser and

Shiryayev (1981) which also covers the discrete setting of chapter 4.3 in this paper. The

result can be stated as follows.

Theorem 4.8. For the continuous case: Consider a predictable process Wn(t) and as-

sume that for some σ2 ≥ 0 the following conditions are satisfied:

∫
W 2
n(t)Z(t)α(t)dt = σ2 + op(1),∫

W 2
n(t)I

{
W 2
n(t) > ε

}
Z(t)α(t)dt = op(1) for all ε > 0.

Then, it holds that
∫
Wn(u)dM(u) → N(0, σ2), in distribution. For the discrete case:

Consider a predictable process Hn(t) and assume that for some (σδ)2 ≥ 0 the following
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conditions are satisfied:

∫
H2
n(t)Zδ(t)αδ(t)dµ(t) = σ2 + oP (1)∫

H2
n(t)I{H2(t) > ε}Zδ(t)αδ(t)dµ(t) = oP (1) for all ε > 0,

then it holds that

∫
Hn(t)dM δ(t)→ N(0, (σδ)2),

where M δ(t) = N δ(t)−
∫
αδ(t)Zδ(t)dµ(t).

4.C Proofs

4.C.1 Proof of Proposition 4.1

By defining

α∗(t) =
∑n
i=1

∫ c2
c1

dΛi(s)∑n
i=1

∫ c2
c1
Zi(s)ds

,

we divide the estimation error α̂Hh (t) − α(t) into a deterministic part, α∗(t) − α(t),

and a variable part, α̂Hh (t) − α∗(t). By a first order Taylor expansion we get for the

deterministic part that

α∗(t)− α(t) =
∑n
i=1

∫ c2
c1
{α(s)− α(t)}Zi(s)ds∑n
i=1

∫ c2
c1
Zi(s)ds

= α′(t)h−1
∫ c2

c1
(t− s) ds+ o(h).

For the variable part we have

α̂Hh (t)− α∗(t) =
∑n
i=1

∫ c2
c1

dMi(s)∑n
i=1

∫ c2
c1
Zi(s)ds

.

From (4.1) it directly follows that that the second condition of Theorem 4.8 in the

Appendix is satisfied for W (s) = (nh)1/2I(s ∈ [c1, c2]){
∫ c2
c1
Z(s)ds}−1. To calculate the

asymptotic variance several first order Taylor expansions of γ(s) and α(s) yield

∫
W 2(s)α(s)Z(s)ds = α(t)γ(t)−1 + o(1),
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where here and below, the integral,
∫

, with no limits denotes integration over the whole

support, that is
∫ T
0 . We deduce that α̂Hh (t)−α∗(t) is centered and asymptotically normal

with variance σ2(t).

4.C.2 Proof of Proposition 4.5

By defining

α∗(tj) =
∑n
i=1

∫ c2
c1

dΛδi (s)∑n
i=1

∫ c2
c1
Zδi (s)dµ(s)

,

we divide the estimation error α̂Hh (tj) − α(tj) into a deterministic part, α∗(tj) − α(tj),

and a variable part, α̂Hh (tj) − α∗(tj). By a first order Taylor expansion we get for the

deterministic part that

α∗(tj)− α(tj) =
∑n
i=1

∫ c2
c1
{αδ(s)− α(tj)}Zδi (s)dµ(s)∑n
i=1

∫ c2
c1
Zδi (s)dµ(s)

= αδ(tj)− α(tj) + (αδ)′(tj)h−1
∫ c2

c1
(tj − s) ds+ o(h)

= 1
24f

R′′(tj){SR(tj)}−1δ2 + (αδ)′(tj)
{

(tj − c1)− 1
2h
}

+ o(h+ δ2).

For the variable part we have

α̂H,δh (tj)− α∗(tj) =
∑n
i=1

∫ c2
c1

dM δ
i (s)∑n

i=1
∫ c2
c1
Zδi (s)ds

.

From (4.7) it directly follows that that the second condition of Theorem 4.8 in the

Appendix is satisfied for H(s) = (nh)1/2I(s ∈ [c1, c2]){
∫ c2
c1
Zδ(s)dµ(s)}−1. To calculate

the asymptotic variance several first order Taylor expansions of γ(s) and αδ(s) yield

∫
H2(s)αδ(s)Zδ(s)dµ(s) = αδ(tj)γ(tj)−1 + o(1).

We deduce that α̂H,δh (t) − α∗(t) is centered and asymptotically normal with variance

σ2(t).

4.C.3 Proof of Proposition 4.7

We only show the result for local constant estimator. The case for the local linear

estimator is proved in the same way after the kernel Kt,h(t − s) is replaced by K(t −
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s)Z−1(s). In Nielsen and Tanggaard (2001) it was shown that this can be done when

studying pointwise first order asymptotics. We define

α∗(tj) =
∑n
i=1

∫
Kh(tj − s)dΛδi (s)∑n

i=1
∫
Kh(tj − s)Zδi (s)dµ(s)

.

The estimation error can then be divided into into a deterministic part, α̂Hh (tj)− α(tj)

α∗(tj)−α(tj), and a variable part, α̂Hh (tj)−α∗(tj). By a second order Taylor expansion

we get for the deterministic part that

α∗(tj)− α(tj) =
∫
Kh(tj − s){αδ(s)− α(tj)}Zδi (s)dµ(s)∫

Kh(tj − s)Zδi (s)dµ(s)

= αδ(tj)− α(tj) + (αδ)′(tj)
∫
Kh(tj − s)(t− s)Z(s)dµ(s)∫

Kh(tj − s)Z(s)dµ(S)

+ 1
2(αδ)′′(tj)

∫
Kh(tj − s)(t− s)2Z(s)dµ(s)∫

Kh(tj − s)Z(s)dµ(S) + o(h2)

= 1
24f

R′′(tj){SR(tj)}−1δ2

+ µ2(K)h2
{

(αδ)′(tj)γ′(tj)γ−1(tj) + 1
2(αδ)′′(tj)

}
+ o(δ2 + h2)

For the variable part we have

α̂H,δh (tj)− α∗(tj) =
∑n
i=1

∫
Kh(tj − s)dM δ

i (s)∑n
i=1

∫
Kh(tj − s)Zδi (s)ds

.

From (4.7) it directly follows that that the second condition of Theorem 4.8 in the

Appendix is satisfied for H(s) = (nh)1/2{
∫
Kh(tj − s)Zδ(s)dµ(s)}−1. To calculate the

asymptotic variance Taylor expansions of γ(s) and αδ(s) yield

∫
H2(s)αδ(s)Zδ(s)dµ(s) = αδ(tj)γ(tj)−1 + o(1).

We deduce that α̂H,δh (t) − α∗(t) is centered and asymptotically normal with variance

σ2(t).

4.C.4 Proof of Proposition 4.4

We have to show that Assumption D is a necessary and sufficient condition so that

P
(
Xδ = xj , Y

δ = yk
)

factorizes for (xj , yk) ∈ Iδ. We will only show that Assumption

D is a necessary condition the sufficiency is easily shown by plugging in the solution in
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a similar manner. Consider the case for xj = 0.5δ. It holds that

pr(Xδ = 0.5δ)pr(Y δ = yk) =
Tδ−1∑
l=0

∫ δ

0
f1(x)

∫ (l+1)δ−x

lδ
f2(y) dydx

∫ (k+1)δ

kδ
f2(y)dy.

We also have that

pr
(
Xδ = 0.5δ, Y δ = yk

)
=
∫ δ

0
f1(x)

∫ (k+1)δ−x

kδ
f2(y)dydx

Without further restrictions on f1 those two terms can only be equal if for almost every

x ∈ [0, δ], and every k

Tδ−1∑
l=0

∫ (l+1)δ−x

lδ
f2(y) dy

∫ (k+1)δ

kδ
f2(y)dy =

∫ (k+1)δ−x

kδ
f2(y)dy

We assume without loss of generality that there is a k where
∫ (k+1)δ
kδ−x f2(y)dy is not zero

for all x ∈ [0, δ] (otherwise restrict the range of x). Fixing this k we conclude that

Tδ−1∑
l=0

∫ (l+1)δ−x

lδ
f2(y) dy

/∫ (k+1)δ−x

kδ
f2(y)dy

does not depend on x, which shows the necessity.
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Abstract

In survival analysis one is usually interested in making inference on the transition time.

Recent literature explains how claims data in the non-life insurance context can be

embedded in this framework and it is used to calculate future claim numbers. However,

when reserves are to be calculated there is a cost associated to every claim, depending

on the transition time. We introduce a local polynomial estimator of the cost weighted

density of the survival time. This enables one to forecast the cost of future claims. This

is done without the use of more complex marked point process theory. Consistency and

a central limit theorems for the normalized estimation errors are provided.
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5.1 Introduction

For centuries, researchers have been interested in estimating and predicting demographic

quantities. Even before the establishment of mathematical statistics, they have collected

data in life tables to investigate size and distribution of the population. Around 1870,

the Lexis diagram emerged with an attempt of leading demographers to formalize those

data in a useful and coherent manner. It can be best explained as a two-way ANOVA

arrangement, where data is organized on a two dimensional plane of (calendar time,

age) counting the number of people dead in those aggregated cells, with the purpose of

making inference on the three dimensional system of (calendar time, age, cohort), where

cohort is given by the diagonals. In the actuarial discipline of ‘reserving in non-life

insurance’, data is arranged in so-called run-off triangles. The appearance is similar to

Lexis diagrams, but the plane is given as (cohort, age), where cohort is the accident

data of a claim, and age the time from that date to a payment. Developed at least in

the beginning of the last century, the chain-ladder method is still the industry standard

for estimating the future cost for outstanding liabilities from those run-off triangles. It

is a deterministic algorithm which often gives reasonable point estimates, however, the

estimator does not specify the assumptions that it is based on, nor the uncertainty of

the estimation.

Stochastic models around the chain-ladder method have been developed in Kremer

(1982), Verrall (1991), Mack (1993), Renshaw and Verrall (1998), and Kuang, Nielsen,

and Nielsen (2009) and many others. A comprehensive summary can be found by Eng-

land and Verrall (2002). The drawback of those papers is that they do not discuss how

the data arises as aggregation from individual data. This is needed when one wants to

truly understand the underlying assumptions of the model. (Taylor, 1986) coins those

models as macro-models which are in direct contrast to micro-models which begin on

the individual level.

Recent literature addresses this gap and connects the chain ladder method and its data

to counting process theory in survival analysis. In Hiabu (2016) (Chapter 4), we in-

troduce a full statistical model including the data generating process which is built on

the continuous model of Mart́ınez-Miranda et al. (2013). The authors explain that the

estimation and sampling technique of the chain-ladder method is different from other
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sampling techniques used in classical (bio-)statistical literature: Individuals or policies

are only followed if a failure, i.e., a claim occurs. This has the advantage that less data

is required than in classical survival data, and censoring does not occur. Truncation

occurs when cohort + age is greater then the date of data collection. However when

all failures are observed, inference on the two dimensional random variable (cohort,age)

on the unobserved area is still possible via survival analysis techniques as explained in

Hiabu et al. (2016) (Chapter 2).

However, in contrast to the life tables in demographic data, the data in the run-off

triangles are usually not the aggregation of events, but events with their associated

cost. In other words, claim numbers are not summarized, but claim amounts. Mart́ınez-

Miranda et al. (2013) explain how the classical survival data in the chain ladder method

can be understood as arising from continuous data and how the estimators can be

understood as histogram estimators. However, the authors also point out that theory is

limited to the case where one is interested in the event times rather then the claim cost.

In this paper, we introduce a cost weighted density estimator based on a local polynomial

least squares minimisation principle, which is known from regression (Stone, 1977) and

translated to the survival density setting in (Nielsen, Tanggaard, and Jones, 2009). We

do so by introducing a mark representing the cost associated to the jump-observations of

the counting process and elaborate under which assumptions non-parametric estimation

is possible. Consistency and a central limit theorems for the normalized estimation

errors are provided. An application for the estimation of outstanding liabilities can be

found in Mart́ınez-Miranda et al. (2013).

There also exist other micro-models for estimating outstanding liabilities in non-life in-

surance. Arjas (1989) and Norberg (1993) formulated models in a classical bio-statistical

setup via marked-point processes. The problem with their models is that one is not in-

terested in full inference on the marked point process, i.e. for instance the distribution of

the mark/cost. This distribution is not necessary to derive an estimate of the outstand-

ing liabilities. As mentioned before, those approaches also require information about

the exposure (i.e. information about the number of policies in the portfolio), which does

not carry information about the cost of the single claims and might be quite volatile.
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5.2 Model formulation

We now formulate the model under a quite general counting process framework. The

special case of estimating outstanding liabilities (reserving) is explained in the next

section. Consider a probability space (Ω,F , P ). When observing n individuals, let

Ni = I(t ≥ Xi) be a {0, 1}-valued counting process, which observes the failure of the

ith individual in the time interval [0, 1].The process Ni is adapted to an increasing,

right-continuous, complete filtration, F it ⊂ F , t ∈ [0, 1]. We further observe the {0,

1}-valued Fi-predictable process, Yi, which equals unity when the ith individual is at

risk. Finally we observe a covariate Zi, which is given Xi independent to Fi, and is the

cost of the occurred failure, zero if no failure occurred. Assuming independence between

the individuals, we thus have independent identically distributed observations of triples

(Ni, Yi, Zi) (i = 1, . . . , n).

We assume that the random variable (X,Z) has density f with respect to the Lebesgue

measure and has support {[0, 1]×R+}. The filtered observation (X1, Z1) then has density

f∗, which differs from f due to the incomplete observation described via the exposure

process Y1. We assume the following relationship between Y1 and N1.

Assumption 1 [Aalen’s multiplicative intensity model] The intensity of the counting

process N1 exists and can be decomposed as

λ1(t) = lim
h↓0

h−1E
[
N1 {(t+ h)−} −N1(t−)| F1

t−

]
= α(t)Y1(t), (5.1)

where α is a continuous function.

The most prominent example of an observation scheme satisfying Aalen’s multiplicative

intensity model is left truncation. In cross-sectional observations for example, one starts

following individuals from a specific point in time. This means one observes triplets

(Ui, Xi, Zi) (i = 1, . . . , n) where Ui is age at which an individual enters the study, Xi

is the age at which an event happens. Hence, Ui ≤ Xi, and the counting process

formulation is Ni(t) = I(Xi ≤ t) and Yi(t) = I(Ui ≤ t < Xi). Assumption 1 is satisfied

if U and X are independent. Examples, without the observations of Z, of prevalent

cohort data, nursing-home data and AIDS blood transfusion data are given in Wang

(1989), see also Andersen et al. (1993).
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The observation of (Ni, Zi) can be interpreted as observing a marked point process, see

e.g. Jacobsen (2006). But we are not interested in making inference on the marked

point process as such. We want to estimate the cost weighted density,

f̃X(t) = E [Z| X = t]
E[Z] fX(t) = E [Z| X = t]

E[Z] α(t) exp
{
−
∫ t

0
α(s)ds

}
. (5.2)

Note that the conditional expectations to point events with probability zero here and

below are well defined through the marginals of f and f∗. To be able to estimate this

quantity non-parametrically we assume

Assumption 2 The random variable Z1 is uniformly integrable and

E [Z1| ∆N1(t) = 1]
E [Z1| Y1(t) = 1] = E [Z|X = t]

E [Z| X ≥ t] ,

where ∆Ni(t) = limh↓0Ni {(t+ h)−} −Ni(t−).

Under the the left truncation observation scheme, i.e., Yi(t) = I(Ui ≤ t < Xi), we will

show that this is, under mild assumptions, equivalent to the following assumption.

Assumption 2* The conditional expectation of the cost Z1, given (X1, U1) is multi-

plicatively separable, i.e., it can be written as E[Z1| X1, U1] = g1(X1)g2(U1), with

two functions g1, g2.

Proposition 5.1. Assume Yi(t) = I(Ui ≤ t < Xi). If the random variable (U,X,Z) has

density g, continuous and bounded from above and below, with respect to the Lebesgue

measure, then Assumption 2 is equivalent to Assumption 2*.

5.3 Reserving and In-sample forecasting

In-sample forecasting has been introduced in Mart́ınez-Miranda et al. (2013), and has

been further developed and generalized in Mammen, Mart́ınez-Miranda, and Nielsen

(2015), Lee et al. (2015), and Hiabu et al. (2016) (Chapter 2). The data in in-sample

forecasting can be seen as incomplete observations due to right-truncation. Hence,

given that the truncation is independent of the survival time, Assumption 1 can be
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fulfilled by reversing the time of the counting process, which turns the right truncation

to a left truncation. We have X̃1 = 1 − X1, N1 = I(t ≥ X̃1), see Ware and DeMets

(1976) and Hiabu et al. (2016). On a deeper glance it is a different sampling technique

compared to classical survival data, in that only but all failures are observed and there

is no information (needed) about the amount of individuals under risk. We observe

(Ui, Xi, Zi) (i = 1, . . . , n), where X describes the time from origin until a specific event,

and U is the calendar time of origin. Observations are then truncated if U + X is

larger then the date of data collection. Note that under Assumption 1, U and X are

independent.

In non-life insurance, outstanding liabilities are traditionally estimated using the chain

ladder method. The method is applied on so called run-off triangle of historical claim

amounts which are aggregated on a two dimensional grid of underwriting date of the

claim’s underlying policy and the time between this date and the payment. On an indi-

vidual basis this readily translates into the above model as follows. Given n observations

of independent and identically distributed historical claims, let the random variable Ui
describe the underwriting date of the underlying policy, and let the random variable Xi

be the time between this date and the payment. The mean of the outstanding claim

amount is then given as

τ

∫ 1

0

∫ 1

1−u
f̃X(x)f̃U (u)dxdu,

where (f̃X(x)f̃U (u)) is the cost weighted density of (U,X) (cf. (5.2)) and

τ = n

{∫ 1

0

∫ 1−u

0
f̃X(x)f̃U (u)dxdu

}−1
.

Due to symmetry, the components f̃X(x) and f̃U (u) can be estimated separately via the

approach described in the next section. This approach generalises the theory described

in the previous chapter since it allows to estimate outstanding claim amounts instead of

only claim counts.

115



Chapter 5.Continuous chain-ladder with paid data: the theoretical foundation

5.4 Local polynomial estimation

We first define the cost-weighted Kaplan–Meier product-limit estimator of the survival

function S̃(t) =
∫ t

0 f̃
X(s)ds = {E [Z1| X1 ≥ t] /E[Z1]}

∫ t
0 f

X(s)ds,

̂̃
S(t) =

∏
s≤t

{
1−∆Â(s)

}
,

where Â(t) =
∑n
i=1

∫ t
0 Zi

{∑
i 6=j ZjYj(s)

}−1
dNi(s) is motivated by the Aalen estimator,

estimating, Ã(t) =
∫ t

0 E [Z1|X = s] {E [Z1| X ≥ s]}−1α(s)ds. Let qp(z) =
∑p
i θiz

i de-

note a polynomial of degree p. We define the local polynomial estimator of degree p,̂̃
fXp,h,K(t) of f̃X(t) as the minimizer θ̂0 in the equation

θ̂0

θ̂1

 = arg min
θ0,θ1∈R

n∑
i=1

[ ∫
Kh(t− s) {qp(t− s)}2 ZiYi(s)W (s)ds

− 2
∫
Kh(t− s)qp(t− s)

Z2
i∑

j ZjYj(s)
̂̃
S(s)Yi(s)W (s)dNi(s)

]
.(5.3)

Here and below, an integral
∫

with no limits denotes integration over the whole support,

i.e.,
∫ T

0 . In addition, for kernel K and bandwidth h, Kh(t) = h−1K(t/h). The definition

of the local polynomial estimator as the minimizer of (5.3) can be motivated by the fact

that the sum on the right hand side of (5.3) equals the limit of

n∑
i=1

∫ [{1
ε

∫ s+ε

s

̂̃
S(u) dNi(u)− qp(t− s)

}2
− ξ(ε)

]
Kh(t− s)ZiYi(s)W (s) ds,

for ε converging to zero. Here, ξ(ε) = {ε−1 ∫ s+ε
s (

∑
j ZjYj(u))−1Zi

̂̃
S(u)dNi(u)}−2 is a

vertical shift subtracted to make the expression well-defined. Because ξ(ε) does not

depend on qp, θ̂0 is defined by a local weighted least squares criterion. The function, W ,

is an arbitrary predictable weight function.There exist two popular weightings: the first

being the natural unit weighting, W (s) = 1, while the second is the Ramlau–Hansen

weighting, W (s) = {n/Y (s)}I{Y (s) > 0}. The latter becomes the classical kernel

density estimator in the simple unfiltered case. However, in the framework of filtered

observations the natural unit weighting, W (s) = 1, tends to be more robust (Nielsen,

Tanggaard, and Jones, 2009), so we use it.
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In the sequel we will only consider the cases p = 0, 1, i.e., the local constant and local

linear case. While a higher degree in conjunction with higher order kernels improves

the asymptotic properties, finite sample studies show that improvements are only visible

with unrealistically big sample sizes. In the local constant case of (5.3) we derive the

first order condition

2
n∑
i=1

Kh(t− s)ZiYi(s)ds = 2
n∑
i=1

Kh(t− s)ZiYi(s)dNi(s),

and conclude the local constant estimator

f̂0,h,K(t) =
∑n
i=1

∫
Kh(t− s) ̂̃S(s)Zi dNi(s)∑n

i=1
∫
Kh(t− s)ZiYi(s) ds

We make the following assumptions.

S1. The bandwidth h = h(n) satisfies h→ 0 and n1/4h→∞ for n→∞.

S2. The density fX is strictly positive and two times continuously differentiable.

S3. The kernel K is symmetric, has bounded support and has finite second moment.

S4. There is a strictly positive and continuous function γ with sups∈[0,1] |
∑n
i=1 Yi(s)/n−

γ(s)| = op(1), for n→∞.

S5. The function l(t) = E[Z1| Y1(t) = 1] is continuously differentiable.

We introduce the following notation. For every kernel, K, let

µj(K) =
∫
sjK(s)ds, R(K) =

∫
K2(s)ds, K

∗(u) = µ2(K)− µ1(K)u
µ2(K)− {µ1(K)}2

K(u).

Proposition 5.2. Under Assumption 1, 2 and (S1)–(S5), for t ∈ (0, T ), n→∞,

(nh)1/2
{
f̂0,k,h(t)− f̃X(t)−B0(t)

}
→ N

{
0, σ2

0(t)
}
,

in distribution, where

B0(t) = 1
2h

2µ2(K)
[
f̃ ′′(t)h2 + f̃ ′(t){l(t)γ(t)}′

l(t)γ(t)

]
,

σ2
0(t) =

{
E [Z1| X = t]

E[Z1]

}2
R(K)f(t)S(t)γ(t)−1.
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For the local linear case, we introduce the following quantities.

Gj(t) =
n∑
i=1

∫
Kh(t− s)(t− s)jZidN(s) (j = 0, 1).

aj(t) =
n∑
i=1

∫
Kh(t− s)(t− s)jZiYi(s)ds (j = 0, 1, 2).

The first order condition for p = 1 then reads

G0(t) = θ0a0 + θ1a1,

G1(t) = θ0a1 + θ1a2.

Hence the solution θ0 is given by

f̂1,h,K(t) = n−1
n∑
i=1

∫
Kt,h(t− s) ̂̃S(s)Zi dNi(s), (5.4)

where

Kt,h(t− s) = n
a2(t)− a1(t)(t− s)
a0(t)a2(t)− {a1(t)}2Kh(t− s).

IfK is a second-order kernel, then n−1∑n
i=1

∫
Kt,h(t−s)ZiYi(s)ds = 1, n−1∑n

i=1
∫
Kt,h(t−

s)(t − s)ZiYi(s)ds = 0, n−1∑n
i=1

∫
Kt,h(t − s)(t − s)2ZiYi(s)ds > 0, so that Kt,h

can be interpreted as a second-order kernel with respect to the measure, µ, where

dµ(s) = n−1∑n
i=1 ZiYi(s)ds.

Since

sup
t∈[h,1−h]

|aj(t)− hjµj(K)g(t)γ(t)| = op(1) (j = 1, 2, 3), (5.5)

one can easily verify that n−1∑
iKt,h(t − s)ZiYi(s) converges locally uniform almost

surely to K∗h(t − s), where K∗h arises from K
∗ by replacing u and K(u) with the local

versions h−1u, h−1K(u/h); see also Nielsen and Tanggaard (2001). Furthermore, if K is

symmetric, then K
∗(t) = K(t).

Proposition 5.3. Under Assumption 1, 2 and (S1)–(S5), for t ∈ (0, T ), n→∞,

(nh)1/2
{
f̂1,k,h(t)− f̃X(t)−B1(t)

}
→ N

{
0, σ2

1(t)
}
,
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in distribution, where

B1(t) = 1
2h

2µ2(K)f̃ ′′(t)h2,

σ2
1(t) =

{
E [Z1| X = t]

E[Z1]

}2
R(K)f(t)S(t)γ(t)−1.

5.5 Concluding remarks

In this paper, we have introduced a local constant and a local linear estimator for a mark

weighted survival density. In the context of reserving in non-life insurance, this extends

the theory of continuous chain ladder, which is described in the previous chapters, see

also Mart́ınez-Miranda et al. (2013), from handling claim counts to now also handling

claim amounts. It turns out that one can use the same estimator in both cases. If claim

amounts are estimated, asymptotic bias and variance will additionally depend on the

conditional mean severity of a claim. The fact that the same estimator can be used

is not so surprising, since the traditional chain-ladder method is also applied on both

claim counts and claim amounts. However, the estimation of claim amounts comes with

the cost of additional assumptions. Assumption 2* dictates that the influence of the

payment delay, X, and the underwriting date, U, on the claim’s severity, Z, must act

independently. An application or simulation study is not presented in this paper. An

application can be found in Mart́ınez-Miranda et al. (2013), which was done without

discussing the underlying theory presented here. For future research, it would also

be interesting to examine continuous chain ladder for claim counts and claim amounts

acting together, as is done in the double chain ladder framework (Mart́ınez-Miranda,

Nielsen, and Verrall, 2012) for aggregated run-off triangles.

119



Chapter 5.Continuous chain-ladder with paid data: the theoretical foundation

5.A Proofs

5.A.1 Proof of Proposition 5.1

First note that

E [Z1| ∆N1(t) = 1]
E [Z1| Y1(t) = 1] = E [Z1| X = t, U ≤ t]

E [Z1| X > t, U ≤ t]

=
∫∞

0
∫ t

0 zg(u, t, z)dudz
∫ 1
t

∫∞
0
∫ t
0 g(u, s, z)dudzds∫ 1

t

∫∞
0
∫ t
0 zg(u, s, z)dudzds

∫∞
0
∫ t

0 g(u, t, z)dudz.

Now, since X and U are independent,

∫ 1

t

∫ ∞
0

∫ t

0
g(u, s, z)dudzds

/∫ ∞
0

∫ t

0
g(u, t, z)dudz

=
∫ 1

t

∫ ∞
0

∫ 1

0
g(u, s, z)dudzds

/∫ ∞
0

∫ 1

0
g(u, t, z)dudz = α−1(t).

Hence Assumption 2 is equivalent to

∫ t
0
∫∞

0 zg(u, t, z)dzdu∫ 1
t

∫ t
0
∫∞

0 zg(u, s, z)dzduds
=

∫ 1
0
∫∞

0 zg(u, t, z)dzdu∫ 1
t

∫ 1
0
∫∞

0 zg(u, s, z)dzduds.

With continuity arguments this holds if and only if
∫∞

0 zg(u, s, z)dz is multiplicatively

separable in s and u. This completes the proof with the independence of X and U .

5.A.2 Estimation of the weighted survival function

We first analyse the process Â1(t) =
∫ t
0 Z1/{

∑
j 6=1 ZjYj(s)}dN1(s), where the integral

can be understood pathwise in Lebesgue-Stieltjes sense. From (5.1) we conclude that

lim
h↓0

h−1E
[
Â1 {(t+ h)−} − Â1(t−)| F1

t−

]
= lim

h↓0
h−1E

[
Z1∑

j 6=1 ZjYj(X1) |X1 ∈ [t, t+ h)
]
E
[
N1 {(t+ h)−} −N1(t−)| F1

t−

]
= E[Z1|∆N1(t) = 1]

(n− 1)E[Z1|Y1(t) = 1]γ(t)α(t)Y1(t)

Hence,

Λ̃i(t) = 1
(n− 1)

∫ t

0

E[Z1|∆N1(s) = 1]
E[Z1|Y1(s) = 1]γ(s)α(s)Yi(s) ds, (i = 1, . . . , n),
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is a compensator of the uniformly integrable submartingale Âi. We denote the resulting

martingale by M̃i = Âi − Λ̃i. Since M is cadlag with finite variation, the quadratic

variation equals the sum of square differences:

[M̃1(t)] =
∑

0<s≤t
(∆M̃1(s))2 =

∫ t

0

{
Z1

{
∑
j 6=1 ZjYj(s)}

}2

dN(s).

And by similar arguments as before we can caluclate its compensator to derive the

predictable variation process

〈M̃1(t)〉 =
∫ t

0

{
E[Z1|∆N1(s) = 1]

(n− 1)E[Z1|Y1(s) = 1]γ(s)

}2
α(s)Y1(s) ds

Proposition 5.4. Under Assumption 1-2, S1-S4 it holds that

n1/2∑
i

M̃i → U(σ2), σ2 =
∫ t

0

{
E[Z1|∆N1(s) = 1]
E[Z1|Y1(s) = 1]

}2
α(s)γ−1(s) ds,

in distribution in Skorohod topology sense, where U is a zero mean Gaussian martingale

with covariance, Cov{U(s), U(t)} = σ2(s ∧ t).

Proof. This follows from a martingale central limit theorem in Rebolledo (1980), see

also Andersen et al. (1993)[p.83]. For the assumptions to be satisfied, we verify that

〈
∑
i

M̃i(t)〉 = n
∑
i

∫ t

0

{
E[Z1|∆N1(s) = 1]

(n− 1)E[Z1|Y1(s) = 1]γ(s)

}2
α(s)Yi(s) ds→ σ2,

where we have used that 〈M̃i, M̃j〉 = 0 for i 6= j. The Lindenberg condition follows from

n−1/2Z1 → 0, and the fact that jumps happen at the same time with zero probability.

Corollary 5.5. Under Assumption 1-2, S1-S4 it holds that

n1/2 sup
t
| ˆ̃S(t)− S̃(t)| = Op(1)

Proof. This directly follows from applying the functional delta method on Proposition

5.4, since ˆ̃S and S̃ are functionals of ˆ̃A and Ã, respectively.
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5.A.3 Proof Proposition 5.2

We first split the estimation error into a stable part and a martingale part, ̂̃f0 − f̃X =

B0 + V0, via

B0 = f̃∗0 − f̃X , V0 = ̂̃
f0 − f̃∗0 ,

where

f̃∗0 =
∑n
i=1

∫
Kh(t− s) ̂̃S(s)E[Z1| ∆N1(s) = 1]Yi(s)α(s) ds∑n

i=1
∫
Kh(t− s)ZiYi(s) ds .

We now discuss the asymptotics of B and V separately, and conclude the proof by

showing that that B0(t) = 1
2µ2(K∗)f ′′(t)h2 + o(h2), and then that

(nh)1/2V0(t)→ N
{

0, {E [Z1| X = t] /E[Z1]}2R(K)f(t)S(t)γ(t)−1
}
.

We start with V . The main tool is the following Lemma. We define

M i =
∫
ZidNi(s)−

∫
{E [Z1| ∆N1(s) = 1]α(s)Yi(s)ds.

Under Assumption 1,2 and S1-S4, one can show that

n1/2∑
i

M i → U(σ2), σ2 =
∫ t

0
{E[Z1|∆N1(s) = 1]}2 α(s)γ−1(s) ds,

in distribution in Skorohod topology sense, where U is a zero mean Gaussian martingale

with covariance, Cov{U(s), U(t)} = σ2(s ∧ t). With Proposition (survival function), S4

and the central limit theorem stated above we conclude that (nh)1/2V0 → N(0, σ2
0), with

σ2
0 = h

∫
K2
h(t− s)S̃2(s)E2[Z1| ∆N1(s) = 1]α(s)γ(s)ds
{
∫
Kh(t− s)E[Z1| Y1(s) = 1]γ(s)ds}2

A first order Taylor expansion in the numerator as well as denominator then gives the

desired result. We continue with the asymptotics for B0. After reshuffling, and replacinĝ̃
S(s) by S̃(s), which we can do by arguing with Proposition 5.4, we have that

B0(t) =
∑n
i=1

∫
Kh(t− s)Yi(s){f̃X(s)E[Z1|Y1(s) = 1]− Zif̃X(t)}ds∑n

i=1
∫
Kh(t− s)ZiYi(s) ds + o(h2).
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From assumption (S4) we can further use that n−1∑
i ZiYi(s) converges uniformly to

E[Z1|Y1 = 1]γ(s). Hence,

B0(t) =
∫
Kh(t− s)E[Z1|Y1(s) = 1]γ(s){f̃X(s)− f̃X(t)}ds∫

Kh(t− s)E[Z1|Y1(s) = 1]γ(s) ds + o(h2)

The proof is concluded by a Taylor expansion in the numerator and denominator and

using that K is a second order kernel.

5.A.4 Proof of Proposition 5.3

From (5.5), S3 and Proposition 5.4, we conclude that it is enough to consider the asymp-

totic behavior of

n−1
n∑
i=1

∫
Kh(t− s) ZiS̃(s)∑

i ZiYi(s)
dNi(s).

Analog to the local constant case, we split the estimation error into a stable and a

martingale part

B1 = f̃∗1 − f̃X + op(n−1/2), V1 = ̂̃
f1 − f̃∗1 + op(n−1/2),

where

f̃∗1 =
∫
Kh(t− s)f̃X(s)ds.

The asymptotic limit of the bias part, B1, is now easily derived via a second order

Taylor expansion. The martingale part can be concluded with similar arguments as in

Appendix 5.A.2.
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