IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Simon, A,, King, A. & Howe, J. M. (2003). Two variables per linear inequality as

an abstract domain. Logic based program synthesis and transformation, 2664, pp. 71-89.
doi: 10.1007/3-540-45013-0_7

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1709/

Link to published version: https://doi.org/10.1007/3-540-45013-0_7

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Two Variables per Linear Inequality as an
Abstract Domain

Axel Simon! Andy King! Jacob M. Howe?

!Computing Laboratory, “Department of Computing,
University of Kent, Canterbury, UK. City University, London, UK.
{a.m.king, a.simon}@ukc.ac.uk jacob@soi.city.ac.uk

Abstract. This paper explores the spatial domain of sets of inequalities
where each inequality contains at most two variables — a domain that
is richer than intervals and more tractable than general polyhedra. We
present a complete suite of efficient domain operations for linear sys-
tems with two variables per inequality with unrestricted coefficients. We
exploit a tactic in which a system of inequalities with at most two vari-
ables per inequality is decomposed into a series of projections — one for
each two dimensional plane. The decomposition enables all domain oper-
ations required for abstract interpretation to be expressed in terms of the
two dimensional case. The resulting operations are efficient and include
a novel planar convex hull algorithm. Empirical evidence suggests that
widening can be applied effectively, ensuring tractability.

1 Introduction

The value of spatial domains such as intervals [13], affine spaces [19] and poly-
hedra [8] has been recognized since the early days of program analysis. One
reoccurring theme in program analysis is the trade-off between precision of the
domain and the tractability of the domain operations. In this regard, the polyhe-
dral sub-domain that consists of sets of linear inequalities where each inequality
contains at most two variables has recently attracted attention [26,27,33,35].
In fact, because of its tractability, this class of linear inequalities has recently
been proposed for constraint logic programming [15, 18]. This paper adapts this
work to the requirements of program optimization and program development by
equipping this domain with the operations needed for abstract interpretation.
Two variable inequality domains have already proven useful in areas as diverse
as program verification [29, 34], model checking of timed automata [22,28], par-
allelization [2], locating security vulnerabilities [36], detecting memory leaks [33]
and verifying program termination in logic programming [24]. Thus the applica-
bility of the domain extends beyond logic programming [4,17] to other analysis
problems in verification and program development.

The work of Miné [26] represents the state-of-the-art for program analysis
with domains of inequalities restricted to two variables. He uses the so-called
Octagon domain [26] where inequalities have unit coefficients of -1, 0 or +1. A
difference-bound matrix (DBM) representation is employed that uses a 2d x 2d

matrix to encode a system of inequalities, S say, over d variables (the dimension).
One key idea in this work is that of closure. Closure strengthens the inequalities
of S (represented as a DBM) to obtain a new system S’ (also represented as a
DBM). For example, if z+y < ¢’ € §', then ¢’ < ¢ whenever S implies z+y < c.
Thus applying closure maximally tightens each inequality, possibly introducing
new inequalities. Projection, entailment and join apply closure as a preprocessing
step both to preserve precision and simplify the domain operations themselves.
For example, the join of two inequalities with identical coefficients, say t—y < ¢;
and —y < ¢g, is simply — y < max(cy, ¢z). Closure enables this simple join
to be lifted point-wise to systems of inequalities. Since most domain operations
require one or both of their arguments to be closed, these operations inherit the
O(d?) complexity of the DBM closure operation. In this paper, we show how
closure is also the key concept to tackle the two variable per inequality domain
with unrestricted coefficients. Henceforth, our closure operator is referred to as
completion to distinguish it from topological closure.

This paper draws together a number of strands from the verification, analysis
and constraints literature to make the following novel contributions:

— We show that a polynomial completion algorithm which makes explicit all
the two-dimensional projections of a system of (unrestricted) two variable
inequalities enables each domain operation to be computed in polynomial
time. Incredibly, such a completion operator already exists and is embedded
into the satisfiability algorithm of Nelson [29].

— We explain how classic O(mlogm) convex hull algorithms for sets of m
planar points, such as [11], can be adapted to compute the join efficiently.
The crucial point is that completion enables join to be computed point-wise
on each two-dimensional projection which necessarily describes a planar ob-
ject. Surprisingly little literature addresses how to efficiently compute con-
vex hull of planar polyhedra (without the full complexity of the standard
d-dimensional algorithm [6,23]) and as far as we are aware, our convex hull
algorithm is unique (see [32] for a recent survey). Projection and entailment
operators are also detailed.

— We also address scalability and present empirical evidence that the number
of inequalities in each two-dimensional projection is small. This suggests a
natural widening: limit the number of inequalities in each projection by a
constant. This trivial widening obtains an O(d?) representation, like DBMs,
without enforcing the requirement that coefficients are —1,0 or +1. Note
that in contrast to DBMs, our representation is dense — space is only re-
quired for those inequalities actually occurring in the system. The widening
also causes completion to collapse to an O(d?(logd)?) operation which is
competitive with the O(d®) DBM approach, taking into consideration the
extra expressiveness.

— We also argue that the domain operations themselves are conceptually sim-
ple, straightforward to code and therefore more likely to be implemented
correctly.

To summarize, we remove a serious limitation of the Octagon domain — that the
coefficients must be unitary — without compromising tractability. Applications
that employ the Octagon domain or related weaker domains [22,28,33] will
therefore directly benefit from this work.

The paper is structured as follows. Section 2 presents the abstract domain.
Section 3 explains how Nelson’s satisfiability algorithm [29] can be adapted to
complete a system. The next three sections explain how completion provides the
basis for the domain operations. Section 7 presents empirical evidence for the
practicality of the domain. The future and related work sections conclude.

2 Abstract domain

To specify the domain algorithms and argue their correctness, we start the ex-
position by detailing some theoretical properties of polyhedral domains.

2.1 Convex hull and closure

An e-ball around y € R" is defined as Bc(y) = {x € R" | 1" | (z; — yi)* < €}
A set S C R" is open if, given any y € S, there exists € > 0 such that B.(y) C S.
A set S C R” is closed iff R" \ S is open. Note that if S; C R" is closed for each
member of an index set 7 € I then N{S; | i € I'} is also closed. The (topological)
closure of S € R" is defined cl(S) =N{S" CR* | S C S"A S’ is closed}. The
convex hull of S € R" is defined conv(S) = {Ax+(1-Ny | z,y € SAO <A < 1}.

2.2 Two-variables per inequality domain

Let X denote the finite set of variables {z1,...,z,} so that X is ordered lexico-
graphically by «; < z; iff i < j. Let Linx denote the set of (possibly rearranged)
linear inequalities of the form az; + bx; < ¢ where a,b,c € R. Let Twox denote
the set of all finite subsets of Liny. Note that although each set T' € Twox is
finite, Twox is not finite. Syntactic sugar of the form x < y is used instead of
(+1)z + (=1)y <0 € Linx as well as by + ax < ¢ instead of az + by < c.

Definition 1. The mapping [.] : Linx — R" is defined: Jaz; + bz; <] =
{{y1,...,yn) € R" | ay; + by; < ¢} and the mapping [.] : Twox — R" is defined
[T1=n{[t] |t € T}.

For brevity, let t= represent the boundary of a given half-space, that is, define
t= = {az; + bzr; < ¢,—ax; —br; < —c} when ¢t = az; + bz; < c¢. Twox is
ordered by entailment, that is, T = T iff [T1] C [1:]. Equivalence on Twox
is defined Ty = T, iff Ty = T» and Ty |= 1. Moreover T' = t iff T = {t}
and t; = to iff {t1} = {t2}. Let Twox = Twox/=. Twoy inherits entailment
E from Twox. In fact (Twox,|=,M,U) is a lattice (rather than a complete
lattice) with [Th]= N [Tz]= = [T1 UT:]= and [T1]= U [T2]= = [T]= where [T] =
cl(conv([T1] U [T2])). Note that in general conv([T1] U [I:]) is not closed and
therefore cannot be described by a system of non-strict linear inequalities as is
illustrated below.

Ezample 1. Let X = {x,y}, Ty = {&# < 0,—z < 0,y < 1,—y < —1} and
Ty ={-2<0,z—y <0,y —x <0} so that [T1] = {(0,1)} and [T>] = {(z,y) |
0 <z Az =y}. Then conv([T1] U [Tz]) includes the point (0, 1) but not the ray
{{z,y) |0 <2z Az + 1=y} and hence is not closed.

y y
[72]
2 2
1407 1
0 0
01 2 3 x 01 2 3 x

The domain Twox is a generic abstract domain that is not limited to a spe-
cific application. No concretization map is defined in this paper since such a map
is specific to an application. However, if an application used the concretization
map y(T') = [T'] then no abstraction map « : p(R") — Twox would exist since
there is no best abstraction e.g. for the set {(z,y) | z* + y? < 1}. The prob-
lem stems from the fact that Twox can contain an arbitrarily large number of
inequalities. This contrasts with the Octagon domain where each planar object
will be described by at most eight inequalities.

We will augment (Two%, =, M,) with projection 3 and widening to accom-
modate the needs of abstract interpretation.

Definition 2. Projection operator 3,, : Twox — Twox is defined 3, ([T1]=z) =
[T2]= where [T2] = {(y1, -, yim1, ¥, Yit1, -~ yn) |y ERA (Y1, yn) € [T1]}-

Projection can be calculated using Fourier-Motzkin variable elimination and
from this it follows that 75 € Twox if T} € Two x.
2.3 Complete form for the two-variables per inequality domain

The complete form for the two-variables per inequality domain is defined in
terms of those variables that occur in a set of inequalities.

Definition 3. The mapping var : Linx — p(X) is defined:

§ ifa=b=0
var(az + by < ¢) = }Z{ iigig

{z,y} otherwise

The mapping var captures those variables with non-zero coefficients. Observe
that var(t;) = var(ts) if t; = 5. In contrast, note that var(Ou +0v <1) =@ =
var(0z 4+ 0y < —1). If T € Twox then let var(T) = U{var(t) |t € T'}.

Definition 4. Let Y C X. The restriction operator 7y is defined:

my(T)={t €T |var(t) CY}

Definition 5. The set of complete finite subsets of Linx is defined:
Two'y ={T € Twox |Vt € Linx . T Et = Ty (T) =t}

Proposition 1. Suppose 7' € Twox. Then there exists 77 € Two'y such that
TCT andT=T".

Proof. Define [Ty = = 3x\ (2,3 ([T]z) forall z,y € X and 7" =TUU, ,cx Tay-
Since each Ty, is finite, 7" is finite, hence T' € Two'y. By the definition of 3,
T=Tyy hence TUT, , =T for all ,y € X, thus T =T". Moreover T' C T". |

Corollary 1. Twox = Two'y/=.

2.4 Ordering the two-variables per inequality domain

Let Y = {z,y} C X such that z < y and consider T' = {t1,...,tp} € Twoy.
Each t; defines a half-space in the Y plane and therefore 7' can be ordered by
the orientation of the half-spaces as follows:

Definition 6. The (partial) mapping 6 : Liny — [0,27) is defined such that
0(ax + by < ¢) = ¢ where cos(¢)) = —b/v/a? + b? and sin(y)) = a/Va? + b.

The mapping 6 actually returns the anti-clockwise angle which the half-space
{{z,y) | y > 0} has to be turned through to coincide with {(z,y) | ax + by < 0}.

2.5 Entailment between three inequalities

This section demonstrates how entailment checks of the form {t;} | ¢ and
{t1,t2} |E t can be computed in constant time. The following proposition ex-
plains how this check reduces to applying the Cramer rule for the three inequality
case and simple scaling for the two inequality case.

Proposition 2. Let t; = a;x + bjy < ¢; for i = 1,2 and t = ax + by < ¢. Then

(false if ayb—aby 0
false elseifaja <0Vbhb<O
{titEt <= ((a/a1)er <c else if a; # 0
(b/bl)cl S C else if b1 7é 0

(1 <0V (c>0Aa=0Ab=0) otherwise
({t1}|:t\/{t2} |:t ifd:albz—agblzo

false else if \y = (aby — azb)/d < 0
{ti, 2} Ft = false else if Ay = (arh — aby)/d < 0
L Acr + Azee < ¢ otherwise.

If the inequalities ¢; and ¢ differ in slope, then the determinant of their coefficients
is non-zero and they cannot entail each other. Suppose now that the determinant
is zero. Observe that the two inequalities have opposing feasible spaces whenever
a1 and a or by and b have opposite signs. In this case ¢; cannot entail ¢. If ¢; has

a non-zero coefficient, then entailment reduces to a simple comparison between
the constants of the inequalities, suitably scaled. The fifth case matches the
pathological situation of tautologous and unsatisfiable inequalities.

The entailment between three inequalities reduces to the former case if ¢; and
t> have equal slope (the determinant is zero). Otherwise an inequality is con-
structed which has the same slope as ¢ and which passes through the intersection
point [¢t7] N [¢5] using the Cramer rule. Again, a comparison of the constants
determines the entailment relationship. If either \; or A, is negative, the feasible
space of the combination of ¢; and ¢, will oppose that of ¢, thus {t1,¢>} cannot
entail .

3 Completion: A variant of Nelson’s satisfiability
algorithm

In this section we show how to complete a system of inequalities. This operation
corresponds to the closure operation of Miné. We follow the approach that Nelson
used for checking satisfiability [29]. One key concept in his algorithm is the notion
of a filter that is formalized below.

Definition 7. Let Y = {z,y} C X. The mapping filtery : Twoy — Twoy is
defined such that:

2. filtery(T) =T
3. forall 7" C T and T" =T, |filtery (T)| < |T"|.

The role of filtery is to remove redundant elements from a set of inequalities over
the variables Y. If the inequalities are ordered by angle, redundancy removal can
be done surprisingly efficiently as illustrated in Fig. 1. The function filter returns
a single contradictory inequality if the completed system S is unsatisfiable, and
otherwise removes tautologies before sorting the inequalities. The loop then it-
erates over the inequalities once in an anti-clockwise fashion. It terminates when
no more redundant inequalities can be found, that is, when (1) the whole set
of inequalities has been traversed once (flag f is true) and (2) the inequalities
with the largest and smallest angle are both non-redundant. Since the entail-
ment check between three inequalities can be performed in constant time, the
algorithm is linear. Note that different subsets of the input can be minimal. This
occurs, for example, when the system is unsatisfiable. Then filtery returns one
of these subsets.

The map filtery lifts to arbitrary systems of two-variable inequalities as
follows:

Definition 8. The mapping filter : Twox — Twox is defined:

filter (T) = U{filtery (my (1)) | Y € X AY| =2}

function filter, ,1(S € Twox) begin
if3s € S . s =0z + 0y < —1 then return {s};
T:={seS|s#0x+0y <1}
let T = {t1,...,tm} such that 8(¢t1) < 8(t2) < ... < 0(tm);
f = false;
loop

if 6(tc) < 0(t;) A f then return T
if 6(tc) < 0(t;) then f := true;
T := {ti,te tn,...};
end;
end;
end

Fig. 1. Algorithm for redundancy removal

let {tc,tn,...,ti} =T;if |T| > 1A {tn,ti} = tc then T := {t,,...,t;}; else begin

The second key idea of Nelson is the result map that makes explicit those
inequalities that are indirectly expressed by the system. The basic step is to
generate all possible combinations of pairs of inequalities by eliminating their
common variable.

Definition 9. The resultants map result : Twox — Twox is defined by:

tits €T A
ti=ar+by<cA
ty=dr+ez< fA
a>0ANd<0

result(T) = < aez — dby < af — dc

The following example demonstrates how result works on a chain of dependent
variables:

Ezample 2. Let Tp = {zo < z1,21 < 2,29 < z3,23 < x4}. We calculate
Ty = result(Tp) and Ty = result(Ty U T1).

result(Ty) = {xo < T, 21 < 3,22 < T4}
result(To UTy) =Th U{xo < 3,20 < 24,21 < T4}

Note that Ty = U?:o T; is a fixpoint in T3 = result(T3).

An important property of T'U result(T') is the way it halves the number of
variables required to entail a given inequality ¢. Specifically, suppose T' |= ¢. Then
there exists 7' C T'U result(T") such that 7" |= ¢t and T" contains no more than
half the variables of T'. Lemma 1 formalizes this and is basically a reformulation
of Lemma 1b of [29].

Lemma 1. Let T' € Twox and t € Linx such that T' = ¢. Then there exists
Y C X such that |Y| < ||ver(T)|/2] + 1 and 7y (T' U result(T)) = t.

Lemma 1 suggests the following iterative algorithm for calculating completion
that takes (approximately) log,(|var(T)|) steps. Theorem 1 asserts its correct-
ness.

Definition 10. The mapping complete : Twox — Twox is defined:
complete(To) = Tiog, (|jvar(Ty)|-1)] Where Tiyy = filter(T; U result(T;))
Theorem 1. complete(T) =T and complete(T) € Two'y for all T € Twox.

Proof. Let f : N — N where f(n) = |n/2] +1. The following table details m € N
for which f™(n) < 2. Observe that fleg2(n=Dl(n) < 2,

n|23456789101112131415161718
m|01223333444444445

Observe that T' = T U result(T') = filter(T' U result(T)) and by induction T =
complete(T'). Let t € Linx such that complete(T) =t¢. Then T =1¢. Let To =T
and Tiyq = filter(T; U result(T;)). By induction and by Lemma 1, there ex-
ists ¥; C war(T) such that 7y, (T;) = t and |Y;] < fi(|var(T)|). Therefore
[YTiog, (Jvar(1) 1)1 < 2, hence my,,.4) (complete(T)) |= t as required. |

Note that applying an additional completion step makes explicit all inequali-
ties over one variable. Furthermore, applying it once more creates tautologous
and contradictory inequalities. Applying these two additional completion steps
enables filter to detect unsatisfability without employing any extra machinery.

Ezample 3. To illustrate how unsatisfiability is detected consider the system
To={-z+y < —-1,-22—3y < —6,4x — 2y < —4}. The system is complete but
two more completion steps are necessary to detect unsatisfiability. The calcula-
tion Ty = filter(To U result(Ty)) = ToU{—y < =2, =5z < =9,z < —3} makes all
inequalities over one variable explicit. Unsatisfiability becomes explicit when cal-
culating 0 < —24 € result(Ty). Finally filter(result(T1)) = {0 < —24} collapses
the system to a single unsatisfiable constraint.

3.1 Complexity of the complete operation

Nelson shows that his satisfiability algorithm is polynomial in the number of
input inequalities [29]. For comparison with the DBM approach, consider the
complexity of filter(T; U result(T;)) where d = |var(T};)| and k = max{|ry (T})| |
i €10, [logy(Juar(T)| — DAY = {x,y} C var(T;)}. Since each T; may have
d(d—1)/2 restrictions, a linear pass over O(kd?) inequalities is sufficient to parti-
tion the set of inequalities into d sets, one for each variable. Each set has at most
O(kd) elements, so calculating the resultants for each set is O(k?d?), hence cal-
culating all the resultants is O(k?d®). The complexity of applying the linear filter
is in O(kd? + k*>d®) = O(k?d®) which with sorting requires O(k?d®log(k?d®)) =
O(k2d?(log(k)+log(d))) time. The complete operation runs result O(logd) times
which leads to an overall running time of O(k?*d®log(d)(log(k) + log(d))). In
Section 7 we show that k is typically small and therefore can be limited by a
constant with hardly any loss of expressiveness. This collapses the bound to
O(d?(log(d))?) which is only slightly worse than the O(d?®) closure of Miné [26)].

3.2 Satisfiability and the complete operation

Nelson [29] originally devised this completion operation in order to construct
a polynomial test for satisfiability. The following proposition explains how non-
satisfiability can be observed after (and even during) the completion calculation.
Specifically, the proposition asserts that non-satisfiability always manifests itself
in the existence of at least one contradictory inequality.

Proposition 3. Let 7" € Two'y. Then [T"] = 0 iff [ry(T")] = 0.

Proof. Let T' € Two'y. Suppose [T'] = #. Then T’ |= 0x + Oy < —1. Since
var(0z+0y < —1) = 0, hence 7y(T") |E 0z+0y < —1 and therefore [7y(7")] = 0.
Since mp(T") C T" the converse follows.

4 Join: Planar convex hull on each projection

Computing the join corresponds to calculating the convex hull for polyhedra
which is surprisingly subtle. The standard approach for arbitrary d-dimensional
polyhedra involves applying the Chernikova [6] algorithm (or a variant [23]) to
construct a vertices and rays representation which is potentially exponential [20].
By way of contrast, we show that convex hull for systems of two variables per
inequality can be computed by a short polynomial algorithm.

The construction starts by reformulating the convex hull piece-wise in terms
of each of its planar projections. Proposition 4 shows that this operation results
in a complete system whenever its inputs are complete; equivalence with the
fully dimensional convex hull operation is stated in Proposition 5.

Definition 11. The piece-wise convex hull Y : Twox? — Twox is defined
Ty Y Ty = U{Ty,y € Twoy,yy | o,y € X} where [T] = cl(conv([my,,,, (T1)] U
[[F{Ly}(T?)]]))

Proposition 4. T} Y Ty € Two'y if T{, Ty € Two'y.

Proof. Let t € Linx such that T{ Y Tj = ¢. Let z,y € X and let [T, ,] =
cl(conv([mis,yy (T1)] U [7{0,43(T5)])). Observe g, y(T7) E Ty, therefore
T |=T] ¥ Ty. Likewise Ty |= T{ Y Ty, hence it follows that T} =t and T} = t.
Since T117T2, € T’UJOIX, Tyar(t) (Tll) ': ¢t and Tyar(t) (T2’) |: t, thus [[anr(t) (Tll)]] C
[[t]] and [['”var(t) (TZ’)]] - [[t]]a hence [['”var(t) (TZ’)]] U [['”var(t) (TZI)]] - [[t]] Therefore
[['”var(t) (Tll Y TZI)]] = Cl(conv([["rvar(t) (Tll)]] U [['”var(t) (TZI)]])) - cl(com)([[t]])) = [[t]]
Therefore 7,qr(¢) (17 Y T3) = t as required. |

Proposition 5. [T} Y T3] = cl(conv([T{] U [T3])) if T{,T5 € Two'x.

Proof. Since T{ = T YTy and Tj |= T{ YTy, it follows that ¢l(conv ([TU[T4])) C
[T} Y T3]. Suppose there exists (c1,...,cn) € [17 Y T3] such that (c1,...,cn) &
[T"] where [T'] = cl(conv([T{]U[T3])). Thus U, {z; < ¢;,¢; <} = T', hence
there exists azj +bay, < c=t € T' with U {z; < ¢, ¢ <@} Eazj+bay < c.

function eztreme(T € Twoy,) begin
let T = {to,...,tn—1} such that §(to) < 8(t1) < ... < O(tn_1);
V:i=R:=10
for i € [0,n — 1] do let t; = ax + by < ¢ in begin
// are the intersection points of this inequality degenerated?
dpre := (0(ti) — 0(ti—1 mod n)) mod 2w > 7wV n = 1;
dpost := (0(tit1 mod n) — 0(t:)) mod 2w > 7V n =1,
if dpre then R := RU {{(b/va? + 1%, —a/Va? + b2)};
if dpost then R := RU {(—b/Va2 + b%,a/V/a? + b2)};
else V := V' U {v} where v € [t7] N [tG51) moa nl;
if dpre A dpost then begin
if n =1 then R := RU {(—a/Va? + b2, —b/\/a? + b)};
V := VU {v} where v € [t]]
end
end
return (V, R)
end

Fig. 2. Calculating the points and rays of a planar polyhedron

But T/ E T" E tand Ty = T' = t. Since T] € Two'y and Ty € Twoly, it
follows that 7, »,}(T1) | t and 7y, 4,1 (T3) | t. Hence T{ Y Ty |= t, thus
Ul {z: < e,ei < a;} = T{ Y T} but (c1,...,¢,) & [T Y T3] which is a
contradiction. |

Calculating the convex hull for a set of points in the plane has been studied
extensively [32]. The convex hull of polytopes can be reduced to this problem
by converting the polytopes into their vertex representation, calculating the
convex hull of all vertices and converting back into the inequality representation.
Although the generalization to planar polyhedra follows this three-step process,
it is much more subtle and little literature has been written on this fundamental
problem. Given a set of non-redundant inequalities, ordered by their orientation
0, the auxiliary function extreme in Figure 2 calculates a set of vertices and rays
that represent the polyhedron. Rays are created when the angle between the
current inequality ¢; and the previous inequality is greater or equal to 7 (dpre
is true) and similarly for the next inequality (dpes: is true). If both flags are
true, we create an arbitrary point on the boundary of the halfspace of ¢; to fix
its representing rays in space. A pathological case arises when the polyhedron
consists of a single halfspace (n = 1). In this case a third ray is created to indicate
on which side the feasible space lies. Note that the maximum number of rays for
each polyhedron is four, which occurs when T' defines two facing halfspaces.

The main function join in Figure 3 uses extreme to compute the vertices
and rays of each input polyhedron and catches the simple case of when both
polyhedra consist of the same single point. Otherwise we calculate a square whose
sides have length 2m which is centered on the origin and that contains all vertices

function join(Th € Twox,T> € Twox) begin
if 3t €T .t=0z+ 0y < —1 then return T;
if 3t €T> .t =0x + 0y < —1 then return 77;
// note: each T; is non-redundant
(V1, Ry) := extreme(Th);
(Va, R2) := extreme(T2);
V:=ViUVs R:= R1URy; // Note: |R| <8
if V={(x1,y1)} AN R =0 then
return {z < x1, —x < —x1,y <y, —y < —y1k;
m = maxz],lyl | (z,5) € V} + 1;
//add a point along the ray, goes through z,y and is outside the box
for (z,y,a,b) € ViUVe x Rdo V := V U {{x + 2v2ma,y + 2v2mb)};

{vo,...,vn—1} := graham (V') such that vo,...,v,—1 are ordered anti-clockwise
and points on the boundary are not removed
Tres := 0; tiast := connect(vn—1,v0);

for ¢ € [0,n — 1] do begin
let (x1,y1) = vi, (T2,Y2) = V(i+1) mod n, t = connect(Vi, V(i+1) mod n)
if (|zi|<mAyi|<m)V (Jz2| <m A |y2| <m) A 0(t) # O(tiast) then begin
if (0(t) — O(tiast)) mod 2w = 7w A |z1|<m A |y1| <m then
if y1 = y2 then Tres := Tres U {sgn(z1 — z2)x < sgn(xz1 — x2)z1}
else Tres := Tres U {sgn(y1 — y2)y < sgn(yr — y2)y1}
Tres = Tres U {t}; tiast = t;
end
end
return Thres
end

function connect((z1,y1), (z2,y2))
return (y2 — y1)7 + (21 — T2)y < (y2 — y1)v1 + (21 — 22)y1

Fig. 3. Convex hull algorithm for planar polyhedra

in V1 UVs. For each ray r € R we translate each vertex in V3 UV5 in the direction
of the ray r. Note that the normalization of the rays and the translation by
2v/2m ensures that the translated vertices are outside the square. We now apply
the Graham convex hull algorithm [11], modified so that it removes all (strictly)
interior vertices but retains points which lie on the boundary of the hull. What
follows is a round-trip around this hull, translating two adjacent vertices into an
inequality by calling connect if the following conditions are met: the inequality
must have a different slope than the previously generated inequality and at least
one of the two vertices must lie within the box. The two innermost if-statements
deal with the pathological case of when V' contains only colinear points and
additional inequalities are needed to restrict the two opposing inequalities so
that an (unbounded) line is not inadvertently generated.

The running time of this algorithm is dominated by the call to the convex
hull algorithm of Graham [11] which takes O(nlogn) time where n = |V||R].

However, |R| is at most eight (and usually between zero and four). Since O(|V]) =
O(|T) it follows that the overall running time is O((|T1| + |T2|) log(|T1| + |T2|))-

5 Projection

Projection returns the most precise system which does not depend on a given
variable. We provide a constructive definition of projection for (complete) sys-
tems. Proposition 6 states that this coincides with the spatial definition of pro-
jection. Furthermore we prove that this operation preserves completion.

Definition 12. The operator 3, : Twox — Twox\(,) is defined 3,(T) =
U{ry (1) | Y = {y,2} C X\ {z}}.
Proposition 6. 3,([T"]=) = [3.(T")]= and 3,(T") € Two'y for all T' € Two'y.

Proof. By Fourier-Motzkin 3,([T']=z) = [T]= where T = {t € T" U result(T") |
x ¢ var(t)}. Observe that T |= 3,(T"). Now suppose r € T" U result(T") such
that = ¢ var(r). Then 7" |= r, hence T4 () (1") = r and therefore 3,(7") = r,
and thus 3,(T") = T, hence 3,(T") = T as required.

Now let t € Linx such that 3,(T") = t. Moreover T = 3,(T") [= t, hence
Tyar(t) (T") E t. Since x € var(t), Tyarr)(3=(T")) FE t as required. |

Consider a complete system that includes y — ¢ < 0 and z — z < 0. Projecting
out x will preserve the inequality y — 2z < 0 which completion has made explicit.

6 Entailment

Entailment checking between systems of inequalities can be reduced to checking
entailment on their two dimensional projections. Moreover, entailment checking
for a planar polyhedron can be further reduced to checking entailment between
three single inequalities. We start by detailing the entailment relationship be-
tween systems of inequalities and their two dimensional projections.

Proposition 7. Let 7' € Two'y and T' € Twox. Then T' |= T iff 7y (T") =
my (T) for all Y = {z,y} C X.

Proof. Suppose T' = T'. Let t € ny (T). Then T" |=T' |= t. Hence Tyqr(1)(1") = t.
Since var(t) CY, my (T') =t and therefore my (1) = 7y (T).

Now suppose 7y (T") |= wy(T) for all Y = {z,y} C X. Let t € T. Then
te Tyar(t) (T)7 hence T" |: Tvar(t) (TI) ': Tyar(t) (T) |: t. I

Note that the proposition does not require both systems of inequalities to be
complete. Due to Proposition 7 it suffices to check that entailment holds for
all planar projections. Therefore consider checking entailment between two non-
redundant planar systems 77,7> € Two 4,y To test Th = T it is sufficient to
show that T |= t for all ¢ € T». This reduces to finding ¢;,¢;+1 € 131 such that
0(ti) < 0(t) < 8(tit1) (modulo 27). If any of the tests {¢;,t;4+1} = t fail, false
can be returned immediately. If the inequalities are ordered by angle, planar
entailment checking is linear time as shown in Fig. 4.

function entails(T;y € Two'y,T> € Twox) begin
if 3t €Ty .t=0z+ 0y < —1 then return true;
if 3t €Ty .t =0x+ 0y < —1 then return false;
let {t1,...,tn} = T1 such that 6(¢1) < 6(t2) < ... < 0(tn);
let {t1,...,t,} = T» such that 6(¢]) < 0(ty) < ... < 0(¢)
u:=1; 1 :=mn;
for 7 € [1, m] do begin
while 0(t.) < 6(¢;) A v < n do begin
l:=uw
ui=u-+1;
end
if {t1,t(u mod n)} = t; then return false;
end;
return true;
end;

Fig. 4. Algorithm for checking entailment of planar polyhedra

7 Widening

For domains that do not satisfy the ascending chain property, widening is nec-
essary to enforce termination of fixpoint calculations [7] (for example in loops).
Widening can also be used to improve space and time behavior. In the following
sections we elaborate on both.

7.1 Widening for termination

Any widening [7, 8] for polyhedra can be applied to planar polyhedra and then
lifted to systems of two variables per inequality. Since the domain is structured
in terms of projections, one tactic for delaying widening, and thereby improv-
ing precision, is to only apply widening when the number of projections has
stabilized and the dimension of each of the projections is also stable. One sub-
tlety is that applying completion after widening can compromise termination by
reintroducing inequalities that were removed during widening.

7.2 Widening for tractability

To assess the tractability of the domain, we implemented a naive completion
operation and measured the growth both in the number of projections and in-
equalities. Our test data is obtained by generating random planar polytopes
over different pairs of variables. Each polytope was constructed by computing
the convex hull of a random set of points distributed across a square in R?. We
set up three different scenarios called varying, constant and sparse. In the vary-
ing scenario, we created polytopes which had between 3 and 13 inequalities each
until we reached 147 inequalities in total. To make the results comparable, we

40% T T T T

varyin'g

: constant -

35% sparse 1
30% r 4
25% r 4
20%]
15% | 4
10% r 4
5% I 4
0% = .

25 30

Fig. 5. The number of inequalities seems to be restricted in practice

then applied completion to those systems which had exactly 100 non-redundant
inequalities. Redundancies can occur in the original system since two polytopes
may share a common variable and a bound on this variable may propagate from
one sub-system to the other, rendering inequalities superfluous. The constant
scenario creates 10 inequalities for each pair of variables. Since fewer non-empty
projections were initially generated (on average 143/10), the growth in the num-
ber of projections is larger — on average it increased to 32 projections. The last
case, sparse, corresponds to a system where inequalities are weakly coupled, that
is, few inequalities share variables. As expected the number of extra projections
generated by completion is marginal. The results are summarized in Figure 6.
Since randomly generated data offers no particular advantage to our completion
algorithm over real data, it appears the completion will remain tractable in prac-
tice. In particular, the worst case quadratic growth in the number of projections
is unlikely to arise.

An interesting observation is that the number of inequalities is not propor-
tional to the number of points n over which the convex hull is calculated. This
squares with probabilistic theory [5, 31]. Specifically, the convex hull of a set of n
points randomly distributed over a square is expected to have O(logn) extreme
points [5], while a random set of n points restricted to a circle is expected to have
O(n%) extreme points [31]. In our experiments, less than 1% of all projections
had more than 30 inequalities (see Fig. 5 for the distribution). This suggests

|scenario |varymg | constant | sparse|

dimension 10 10{ 100
inequalities generated 147 143| 139
inequalities per polyhedron 3-13 10 10
after redundancy removal
remaining inequalities 100 100| 100
avg. no of ineq. per polyhedron 5.3 7.0 7.1
after completion
avg. resultant inequalities 210 189 106
increase in no of projections 56%| 123%| 9%
projections > 30 inequalities 0.22%| 0.18%]|0.00%

Fig. 6. The impact of calculating completion

that pruning the number of inequalities down to a constant bound will have
little overall effect on precision, yet obtains an attractive O(d®(logd)?) perfor-
mance guarantee. One way to systematically drop inequalities is to remove those
that contribute least to the shape, that is, remove the inequality that contributes
the shortest edge to the polyhedron.

8 Future Work

Using union-find an arbitrary T' € Twox can be partitioned in near-linear time
into a system {T%,...,T,} such that var(T;) N var(T;) = 0 whenever i # j.
This decomposition enables the complexity of completion to be reduced to
O(d?(log d)?) where d = max{|var(T4)|, ..., |var(T,)|}. This tactic, which is ap-
plicable to any polyhedral domain, will be useful if the coupling between variables
is low.

The completion of a system T is currently computed iteratively in approx-
imately log,(Jvar(T)|) steps. The completion operation could benefit from ap-
plying a strategy such as semi-naive iteration [3] that would factor out some of
the repeated work.

9 Related work

The Octagon domain [26] represents inequalities of the form ax; +bx; < ¢ where
a,b € {1,0,-1} and x;,2; € X. The main novelty of [26] is to simultaneously
work with a set of positive variables ;] and negative variables z; and consider
a DBM over {z,27,...,2,2;} where d = |X|. Then z; —a; < ¢, ; +7; < c
and x; < ¢ can be encoded respectively as :Uj' — a:j' <e, a:j' —z; < cand
mj' —x; < 2c. Thus an 2d x 2d square DBM matrix is sufficient for this domain.
Note that this DBM representation contains entries of the form a:j' — a:j' <
whenever z; — z; is not constrained (and likewise for z; + z; < ¢ and z; < c¢).

Closure is computed with an all-pairs Floyd-Warshall shortest-path algorithm

that is O(d®) and echos ideas in the early work of Pratt [30]. Other earlier work
on this theme considered the domain of inequalities of the form z; —z; < ¢
[25,33], though the connection between bounded differences [9] and abstract
interpretation dates back (at least) to Bagnara [1]. Very recently, Miné [27] has
generalized DBMs to a class of domains that represent invariants of the form
x —y € C where C is a non-relational domain that represents, for example,
a congruence class [12]. This work is also formulated in terms of shortest-path

closure and illustrates the widespread applicability of the closure concept.

Another thread of work is that of Su and Wagner [35] who propose a poly-
nomial algorithm for calculating integer ranges as solutions to two variable per
inequality systems, despite the intractability of some of these problems [21].
However, efficient integer hull algorithms do exist for the planar case [10, 14].
Combined with our completion technique, this suggests a new tractable way of
calculating the integer convex hulls for two variable systems that promises to be
useful in program analysis.

It is well-known that the linear programming problem — the problem of max-
imizing a linear function subject to linear inequalities — is polynomial time (Tur-
ing) equivalent to the problem of deciding whether a linear system is satisfiable.
Moreover, the problem of deciding whether a linear system is satisfiable can
be transformed into an equivalent problem where each inequality contains at
most three variables (with at most a polynomial increase in the number of vari-
ables and inequalities). Thus an efficient algorithm for solving this problem is
also an efficient algorithm for solving the linear programming problem and vice
versa. This equivalence, and negative results such as [20], explains the interest in
checking the satisfiability of systems of linear inequalities where each inequality
contains at most two variables that dates back to [29, 30, 34]. Of all the propos-
als for checking the satisfiability of a system 7', the algorithm of [16] is most in
tune with the requirements of abstract interpretation due to its succinctness and
its O(|T||var(T)|?log(]T|)) running time which is guaranteed without widening.
This result (and related results) provide fast entailment checking algorithms
which may be useful for efficient fixpoint detection.

The trade-off between expressiveness and tractability is also an important
consideration in constraint solving and in this context the class of two variables
per inequality has also received attention [15,18]. Jaffar et al [18] extend the
closure algorithm of Shostak [34] for checking satisfiability over the reals to
the integers by alternating closure with a tightening operation. However, this
procedure is not guaranteed to either terminate nor detect satisfiability. Jaffar
et al [18] go onto show that two-variables per inequality constraints with unit
coefficients can be solved in polynomial time and that this domain supports
efficient entailment checking and projection. More recently, Harvey and Stuckey
[15] have shown how to reformulate this solver to formally argue completeness.

10 Conclusion

We proposed a new abstract domain of linear inequalities where each of the
inequalities has at most two variables and the coefficients are unrestricted. We
have shown how a (polynomial) completion operation leads to efficient and sim-
ple domain operations. Empirical evidence was presented that suggests that the
domain is both tractable and well suited to widening.

Acknowledgments

We thank Roberto Bagnara, Les Hatton, Peter Linnington, Mike Norrish,
Antoine Miné, Justin Pearson and Warwick Harvey for interesting discussions
on polyhedra libraries and linear inequalities. We also thank the anonymous
referees for their comments.

References

1. R. Bagnara. Data-Flow Analysis for Constrant Logic-Based Languages. PhD thesis,
Dipartimento di Informatica, Universita di Pisa, 1997.

2. V. Balasundaram and K. Kennedy. A Technique for Summarizing Data Access
and its Use in Parallelism Enhancing Transformations. In Programming Language
Design and Implementation, pages 41-53. ACM Press, 1989.

3. F. Bancilhon and R. Ramakrishnan. An Amateur’s Introduction to Recursive
Query Processing Strategies. In International Conference on Management of Data,
pages 16-52. ACM Press, 1986.

4. F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In
Logic Program Synthesis and Transformation (Selected Papers), volume 1207 of
Lecture Notes in Computer Science, pages 204-223. Springer-Verlag, 1997.

5. J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the Average
Number of Maxima in a Set of Vectors. Journal of the ACM, 25:536-543, 1978.

6. N. V. Chernikova. Algorithm for Discovering the Set of All Solutions of a Lin-
ear Programming Problem. USSR Computational Mathematics and Mathematical
Physics, 8(6):282-293, 1968.

7. P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In Programming Language
Implementation and Logic Programming, volume 631 of Lecture Notes in Computer
Science, pages 269-295. Springer-Verlag, 1992.

8. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among
Variables of a Program. In Principles of Programming Languages, pages 84-97.
ACM Press, 1978.

9. E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence,
32(3):281-331, 1987.

10. S. D. Feit. A Fast Algorithm for the Two-Variable Integer Programming Problem.
Journal of the ACM, 31(1):99-113, 1984.

11. R. L. Graham. An Efficient Algorithm for Determining the Convex Hull of a Finite
Planar Set. Information Processing Letters, 1(4):132-133, 1972.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P. Granger. Static Analysis of Linear Congruence Equalities among Variables
of a Program. In International Joint Conference on the Theory and Practice of
Software Development, volume 493 of Lecture Notes in Computer Science, pages
169-192. Springer-Verlag, 1991.

W. H. Harrison. Compiler Analysis of the Value Ranges for Variables. IEEFE
Transactions on Software Engineering, SE-3(3), 1977.

W. Harvey. Computing Two-Dimensional Integer Hulls. STAM Journal on Com-
puting, 28(6):2285-2299, 1999.

W. Harvey and P. J. Stuckey. A Unit Two Variable per Inequality Integer Con-
straint Solver for Constraint Logic Programming. Australian Computer Science
Communications, 19(1):102-111, 1997.

D. S. Hochbaum and J. Naor. Simple and Fast Algorithms for Linear and Inte-
ger Programs with Two Variables per Inequality. SIAM Journal on Computing,
23(6):1179-1192, 1994.

J. M. Howe and A. King. Specialising Finite Domain Programs using Polyhedra.
In Logic Programming, Synthesis and Transformation (Selected Papers), volume
1817 of Lecture Notes in Computer Science, pages 118-135. Springer-Verlag, 1999.
J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond Finite Domains.
In International Workshop on Principles and Practice of Constraint Programming,
volume 874 of Lecture Notes in Computer Science, pages 86-94. Springer-Verlag,
1994.

M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica,
6:133-151, 1976.

V. Klee and G. J. Minty. How Good is the Simplex Algorithm? In Inequalities —
III. Academic Press, New York and London, 1972.

J. C. Lagarias. The Computational Complexity of Simultaneous Diophantine Ap-
proximation Problems. SIAM Journal on Computing, 14(1):196-209, 1985.

K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Clock Difference Diagrams. Nordic
Journal of Computing, 6(3):271-298, 1999.

H. Le Verge. A Note on Chernikova’s Algorithm. Technical Report 1662, Institut
de Recherche en Informatique, Campus Universitaire de Beaulieu, France, 1992.
N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic Pro-
grams. In International Conference on Logic Programming, pages 63-77. MIT
Press, 1997.

A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices.
In Programs as Data Objects, volume 2053 of Lecture Notes in Computer Science,
pages 155-172. Springer, 2001.

A. Miné. The Octagon Abstract Domain. In Eighth Working Conference on Re-
verse Engineering, pages 310-319. IEEE Computer Society, 2001.

A. Miné. A Few Graph-Based Relational Numerical Abstract Domains. In Ninth
International Static Analysis Symposium, volume 2477 of Lecture Notes in Com-
puter Science, pages 117-132. Springer-Verlag, 2002.

J. Moller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference Deci-
sion Diagrams. In Conference of the European Association for Computer Science
Logic, volume 1683 of Lecture Notes in Computer Science, pages 111-125. Springer-
Verlag, 1999.

C. G. Nelson. An n'°5(™ Algorithm for the Two-Variable-Per-Constraint Linear
Programming Satisfiability Problem. Technical Report STAN-CS-78-689, Stanford
University, Department of Computer Science, 1978.

V. R. Pratt. Two Easy Theories Whose Combination is Hard, September 1977.
http://boole.stanford.edu/pub/sefnp.pdf.

31.

32.

33.

34.

35.

36.

H. Raynaud. Sur L’enveloppe Convexe des Nuages de Points Aléatoires dans R".
Journal of Applied Probability, 7(1):35-48, 1970.

R. Seidel. Convex Hull Computations. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, pages 361-376. CRC Press,
1997.

R. Shaham, H. Kolodner, and M. Sagiv. Automatic Removal of Array Memory
Leaks in Java. In Compiler Construction, volume 1781 of Lecture Notes in Com-
puter Science, pages 50-66. Springer, 2000.

R. Shostak. Deciding Linear Inequalities by Computing Loop Residues. Journal
of the ACM, 28(4):769-779, 1981.

Z. Su and D. Wagner. Efficient Algorithms for General Classes of Integer Range
Constraints, July 2001. http://www.cs.berkeley.edu/~zhendong/.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step Towards
Detection of Buffer Overrun Vulnerabilities. In Network and Distributed System
Security Symposium. Internet Society, 2000.

