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Two Variables per Linear Inequality as anAbstra
t DomainAxel Simon1 Andy King1 Ja
ob M. Howe21Computing Laboratory, 2Department of Computing,University of Kent, Canterbury, UK. City University, London, UK.fa.m.king, a.simong�uk
.a
.uk ja
ob�soi.
ity.a
.ukAbstra
t. This paper explores the spatial domain of sets of inequalitieswhere ea
h inequality 
ontains at most two variables { a domain thatis ri
her than intervals and more tra
table than general polyhedra. Wepresent a 
omplete suite of eÆ
ient domain operations for linear sys-tems with two variables per inequality with unrestri
ted 
oeÆ
ients. Weexploit a ta
ti
 in whi
h a system of inequalities with at most two vari-ables per inequality is de
omposed into a series of proje
tions { one forea
h two dimensional plane. The de
omposition enables all domain oper-ations required for abstra
t interpretation to be expressed in terms of thetwo dimensional 
ase. The resulting operations are eÆ
ient and in
ludea novel planar 
onvex hull algorithm. Empiri
al eviden
e suggests thatwidening 
an be applied e�e
tively, ensuring tra
tability.1 Introdu
tionThe value of spatial domains su
h as intervals [13℄, aÆne spa
es [19℄ and poly-hedra [8℄ has been re
ognized sin
e the early days of program analysis. Onereo

urring theme in program analysis is the trade-o� between pre
ision of thedomain and the tra
tability of the domain operations. In this regard, the polyhe-dral sub-domain that 
onsists of sets of linear inequalities where ea
h inequality
ontains at most two variables has re
ently attra
ted attention [26, 27, 33, 35℄.In fa
t, be
ause of its tra
tability, this 
lass of linear inequalities has re
entlybeen proposed for 
onstraint logi
 programming [15, 18℄. This paper adapts thiswork to the requirements of program optimization and program development byequipping this domain with the operations needed for abstra
t interpretation.Two variable inequality domains have already proven useful in areas as diverseas program veri�
ation [29, 34℄, model 
he
king of timed automata [22, 28℄, par-allelization [2℄, lo
ating se
urity vulnerabilities [36℄, dete
ting memory leaks [33℄and verifying program termination in logi
 programming [24℄. Thus the appli
a-bility of the domain extends beyond logi
 programming [4, 17℄ to other analysisproblems in veri�
ation and program development.The work of Min�e [26℄ represents the state-of-the-art for program analysiswith domains of inequalities restri
ted to two variables. He uses the so-
alledO
tagon domain [26℄ where inequalities have unit 
oeÆ
ients of -1, 0 or +1. Adi�eren
e-bound matrix (DBM) representation is employed that uses a 2d� 2d



matrix to en
ode a system of inequalities, S say, over d variables (the dimension).One key idea in this work is that of 
losure. Closure strengthens the inequalitiesof S (represented as a DBM) to obtain a new system S0 (also represented as aDBM). For example, if x+y � 
0 2 S0, then 
0 � 
 whenever S implies x+y � 
.Thus applying 
losure maximally tightens ea
h inequality, possibly introdu
ingnew inequalities. Proje
tion, entailment and join apply 
losure as a prepro
essingstep both to preserve pre
ision and simplify the domain operations themselves.For example, the join of two inequalities with identi
al 
oeÆ
ients, say x�y � 
1and x � y � 
2, is simply x � y � max(
1; 
2). Closure enables this simple jointo be lifted point-wise to systems of inequalities. Sin
e most domain operationsrequire one or both of their arguments to be 
losed, these operations inherit theO(d3) 
omplexity of the DBM 
losure operation. In this paper, we show how
losure is also the key 
on
ept to ta
kle the two variable per inequality domainwith unrestri
ted 
oeÆ
ients. Hen
eforth, our 
losure operator is referred to as
ompletion to distinguish it from topologi
al 
losure.This paper draws together a number of strands from the veri�
ation, analysisand 
onstraints literature to make the following novel 
ontributions:{ We show that a polynomial 
ompletion algorithm whi
h makes expli
it allthe two-dimensional proje
tions of a system of (unrestri
ted) two variableinequalities enables ea
h domain operation to be 
omputed in polynomialtime. In
redibly, su
h a 
ompletion operator already exists and is embeddedinto the satis�ability algorithm of Nelson [29℄.{ We explain how 
lassi
 O(m logm) 
onvex hull algorithms for sets of mplanar points, su
h as [11℄, 
an be adapted to 
ompute the join eÆ
iently.The 
ru
ial point is that 
ompletion enables join to be 
omputed point-wiseon ea
h two-dimensional proje
tion whi
h ne
essarily des
ribes a planar ob-je
t. Surprisingly little literature addresses how to eÆ
iently 
ompute 
on-vex hull of planar polyhedra (without the full 
omplexity of the standardd-dimensional algorithm [6, 23℄) and as far as we are aware, our 
onvex hullalgorithm is unique (see [32℄ for a re
ent survey). Proje
tion and entailmentoperators are also detailed.{ We also address s
alability and present empiri
al eviden
e that the numberof inequalities in ea
h two-dimensional proje
tion is small. This suggests anatural widening: limit the number of inequalities in ea
h proje
tion by a
onstant. This trivial widening obtains an O(d2) representation, like DBMs,without enfor
ing the requirement that 
oeÆ
ients are �1; 0 or +1. Notethat in 
ontrast to DBMs, our representation is dense { spa
e is only re-quired for those inequalities a
tually o

urring in the system. The wideningalso 
auses 
ompletion to 
ollapse to an O(d3(log d)2) operation whi
h is
ompetitive with the O(d3) DBM approa
h, taking into 
onsideration theextra expressiveness.{ We also argue that the domain operations themselves are 
on
eptually sim-ple, straightforward to 
ode and therefore more likely to be implemented
orre
tly.



To summarize, we remove a serious limitation of the O
tagon domain { that the
oeÆ
ients must be unitary { without 
ompromising tra
tability. Appli
ationsthat employ the O
tagon domain or related weaker domains [22, 28, 33℄ willtherefore dire
tly bene�t from this work.The paper is stru
tured as follows. Se
tion 2 presents the abstra
t domain.Se
tion 3 explains how Nelson's satis�ability algorithm [29℄ 
an be adapted to
omplete a system. The next three se
tions explain how 
ompletion provides thebasis for the domain operations. Se
tion 7 presents empiri
al eviden
e for thepra
ti
ality of the domain. The future and related work se
tions 
on
lude.2 Abstra
t domainTo spe
ify the domain algorithms and argue their 
orre
tness, we start the ex-position by detailing some theoreti
al properties of polyhedral domains.2.1 Convex hull and 
losureAn �-ball around y 2 Rn is de�ned as B�(y) = fx 2 Rn jPni=1(xi � yi)2 < �g.A set S � Rn is open if, given any y 2 S, there exists � > 0 su
h that B�(y) � S.A set S � Rn is 
losed i� Rn nS is open. Note that if Si � Rn is 
losed for ea
hmember of an index set i 2 I then \fSi j i 2 Ig is also 
losed. The (topologi
al)
losure of S 2 Rn is de�ned 
l(S) = \fS0 � Rn j S � S0 ^ S0 is 
losedg. The
onvex hull of S 2 Rn is de�ned 
onv(S) = f�x+(1��)y j x;y 2 S^0 � � � 1g.2.2 Two-variables per inequality domainLet X denote the �nite set of variables fx1; : : : ; xng so that X is ordered lexi
o-graphi
ally by xi � xj i� i < j. Let LinX denote the set of (possibly rearranged)linear inequalities of the form axi + bxj � 
 where a; b; 
 2 R. Let TwoX denotethe set of all �nite subsets of LinX . Note that although ea
h set T 2 TwoX is�nite, TwoX is not �nite. Synta
ti
 sugar of the form x � y is used instead of(+1)x+ (�1)y � 0 2 LinX as well as by + ax � 
 instead of ax+ by � 
.De�nition 1. The mapping [[:℄℄ : LinX ! Rn is de�ned: [[axi + bxj � 
℄℄ =fhy1; : : : ; yni 2 Rn j ayi+ byj � 
g and the mapping [[:℄℄ : TwoX ! Rn is de�ned[[T ℄℄ = \f[[t℄℄ j t 2 Tg.For brevity, let t= represent the boundary of a given half-spa
e, that is, de�net= = faxi + bxj � 
;�axi � bxj � �
g when t � axi + bxj � 
. TwoX isordered by entailment, that is, T1 j= T2 i� [[T1℄℄ � [[T2℄℄. Equivalen
e on TwoXis de�ned T1 � T2 i� T1 j= T2 and T2 j= T1. Moreover T j= t i� T j= ftgand t1 � t2 i� ft1g � ft2g. Let Two�X = TwoX=�. Two�X inherits entailmentj= from TwoX . In fa
t hTwo�X ; j=;u;ti is a latti
e (rather than a 
ompletelatti
e) with [T1℄� u [T2℄� = [T1 [ T2℄� and [T1℄� t [T2℄� = [T ℄� where [[T ℄℄ =
l(
onv([[T1℄℄ [ [[T2℄℄)). Note that in general 
onv([[T1℄℄ [ [[T2℄℄) is not 
losed andtherefore 
annot be des
ribed by a system of non-stri
t linear inequalities as isillustrated below.



Example 1. Let X = fx; yg, T1 = fx � 0;�x � 0; y � 1;�y � �1g andT2 = f�x � 0; x� y � 0; y � x � 0g so that [[T1℄℄ = fh0; 1ig and [[T2℄℄ = fhx; yi j0 � x^ x = yg. Then 
onv ([[T1℄℄[ [[T2℄℄) in
ludes the point h0; 1i but not the rayfhx; yi j 0 � x ^ x+ 1 = yg and hen
e is not 
losed.
-60 1 2 3 x0123y r[[T1℄℄�������[[T2℄℄ -60 1 2 3 x0123y r�������The domain TwoX is a generi
 abstra
t domain that is not limited to a spe-
i�
 appli
ation. No 
on
retization map is de�ned in this paper sin
e su
h a mapis spe
i�
 to an appli
ation. However, if an appli
ation used the 
on
retizationmap 
(T ) = [[T ℄℄ then no abstra
tion map � : }(Rn )! TwoX would exist sin
ethere is no best abstra
tion e.g. for the set fhx; yi j x2 + y2 � 1g. The prob-lem stems from the fa
t that TwoX 
an 
ontain an arbitrarily large number ofinequalities. This 
ontrasts with the O
tagon domain where ea
h planar obje
twill be des
ribed by at most eight inequalities.We will augment hTwo�X ; j=;u;ti with proje
tion 9 and widening to a

om-modate the needs of abstra
t interpretation.De�nition 2. Proje
tion operator 9xi : Two�X ! Two�X is de�ned 9xi([T1℄�) =[T2℄� where [[T2℄℄ = fhy1; : : : ; yi�1; y; yi+1; : : : ; yni j y 2 R ^ hy1; : : : ; yni 2 [[T1℄℄g.Proje
tion 
an be 
al
ulated using Fourier-Motzkin variable elimination andfrom this it follows that T2 2 TwoX if T1 2 TwoX .2.3 Complete form for the two-variables per inequality domainThe 
omplete form for the two-variables per inequality domain is de�ned interms of those variables that o

ur in a set of inequalities.De�nition 3. The mapping var : LinX ! }(X) is de�ned:var (ax+ by � 
) = 8>><>>: ; if a = b = 0fyg if a = 0fxg if b = 0fx; yg otherwiseThe mapping var 
aptures those variables with non-zero 
oeÆ
ients. Observethat var (t1) = var (t2) if t1 � t2. In 
ontrast, note that var (0u+ 0v � 1) = ; =var (0x+ 0y � �1). If T 2 TwoX then let var(T ) = [fvar(t) j t 2 Tg.De�nition 4. Let Y � X . The restri
tion operator �Y is de�ned:�Y (T ) = ft 2 T j var (t) � Y g



De�nition 5. The set of 
omplete �nite subsets of LinX is de�ned:Two 0X = fT 2 TwoX j 8t 2 LinX : T j= t ) �var(t)(T ) j= tgProposition 1. Suppose T 2 TwoX . Then there exists T 0 2 Two 0X su
h thatT � T 0 and T � T 0.Proof. De�ne [Tx;y℄� = 9Xnfx;yg([T ℄�) for all x; y 2 X and T 0 = T[Sx;y2X Tx;y.Sin
e ea
h Tx;y is �nite, T 0 is �nite, hen
e T 0 2 Two 0X . By the de�nition of 9,T j= Tx;y, hen
e T [ Tx;y � T for all x; y 2 X , thus T � T 0. Moreover T � T 0.Corollary 1. Two�X = Two 0X=�.2.4 Ordering the two-variables per inequality domainLet Y = fx; yg � X su
h that x � y and 
onsider T = ft1; : : : ; tng 2 TwoY .Ea
h ti de�nes a half-spa
e in the Y plane and therefore T 
an be ordered bythe orientation of the half-spa
es as follows:De�nition 6. The (partial) mapping � : LinY ! [0; 2�) is de�ned su
h that�(ax+ by � 
) =  where 
os( ) = �b=pa2 + b2 and sin( ) = a=pa2 + b2.The mapping � a
tually returns the anti-
lo
kwise angle whi
h the half-spa
efhx; yi j y � 0g has to be turned through to 
oin
ide with fhx; yi j ax+ by � 0g.2.5 Entailment between three inequalitiesThis se
tion demonstrates how entailment 
he
ks of the form ft1g j= t andft1; t2g j= t 
an be 
omputed in 
onstant time. The following proposition ex-plains how this 
he
k redu
es to applying the Cramer rule for the three inequality
ase and simple s
aling for the two inequality 
ase.Proposition 2. Let ti � aix+ biy � 
i for i = 1; 2 and t � ax+ by � 
. Thenft1g j= t () 8>>>><>>>>: false if a1b� ab1 6= 0false else if a1a < 0 _ b1b < 0(a=a1)
1 � 
 else if a1 6= 0(b=b1)
1 � 
 else if b1 6= 0
1 < 0 _ (
 � 0 ^ a = 0 ^ b = 0) otherwiseft1; t2g j= t () 8>><>>:ft1g j= t _ ft2g j= t if d = a1b2 � a2b1 = 0false else if �1 = (ab2 � a2b)=d < 0false else if �2 = (a1b� ab1)=d < 0�1
1 + �2
2 � 
 otherwise.If the inequalities t1 and t di�er in slope, then the determinant of their 
oeÆ
ientsis non-zero and they 
annot entail ea
h other. Suppose now that the determinantis zero. Observe that the two inequalities have opposing feasible spa
es whenevera1 and a or b1 and b have opposite signs. In this 
ase t1 
annot entail t. If t1 has



a non-zero 
oeÆ
ient, then entailment redu
es to a simple 
omparison betweenthe 
onstants of the inequalities, suitably s
aled. The �fth 
ase mat
hes thepathologi
al situation of tautologous and unsatis�able inequalities.The entailment between three inequalities redu
es to the former 
ase if t1 andt2 have equal slope (the determinant is zero). Otherwise an inequality is 
on-stru
ted whi
h has the same slope as t and whi
h passes through the interse
tionpoint [[t=1 ℄℄ \ [[t=2 ℄℄ using the Cramer rule. Again, a 
omparison of the 
onstantsdetermines the entailment relationship. If either �1 or �2 is negative, the feasiblespa
e of the 
ombination of t1 and t2 will oppose that of t, thus ft1; t2g 
annotentail t.3 Completion: A variant of Nelson's satis�abilityalgorithmIn this se
tion we show how to 
omplete a system of inequalities. This operation
orresponds to the 
losure operation of Min�e. We follow the approa
h that Nelsonused for 
he
king satis�ability [29℄. One key 
on
ept in his algorithm is the notionof a �lter that is formalized below.De�nition 7. Let Y = fx; yg � X . The mapping �lterY : TwoY ! TwoY isde�ned su
h that:1. �lterY (T ) � T2. �lterY (T ) � T3. for all T 0 � T and T 0 � T , j�lterY (T )j � jT 0j.The role of �lterY is to remove redundant elements from a set of inequalities overthe variables Y . If the inequalities are ordered by angle, redundan
y removal 
anbe done surprisingly eÆ
iently as illustrated in Fig. 1. The fun
tion �lter returnsa single 
ontradi
tory inequality if the 
ompleted system S is unsatis�able, andotherwise removes tautologies before sorting the inequalities. The loop then it-erates over the inequalities on
e in an anti-
lo
kwise fashion. It terminates whenno more redundant inequalities 
an be found, that is, when (1) the whole setof inequalities has been traversed on
e (
ag f is true) and (2) the inequalitieswith the largest and smallest angle are both non-redundant. Sin
e the entail-ment 
he
k between three inequalities 
an be performed in 
onstant time, thealgorithm is linear. Note that di�erent subsets of the input 
an be minimal. Thiso

urs, for example, when the system is unsatis�able. Then �lterY returns oneof these subsets.The map �lterY lifts to arbitrary systems of two-variable inequalities asfollows:De�nition 8. The mapping �lter : TwoX ! TwoX is de�ned:�lter(T ) = Sf�lterY (�Y (T )) j Y � X ^ jY j = 2g



fun
tion �lterfx;yg(S 2 TwoX) beginif 9s 2 S : s � 0x+ 0y � �1 then return fsg;T := fs 2 S j s 6� 0x+ 0y � 1g;let T = ft1; : : : ; tmg su
h that �(t1) � �(t2) � : : : � �(tm);f := false;looplet ft
; tn; : : : ; tlg = T ; if jT j > 1 ^ ftn; tlg j= t
 then T := ftn; : : : ; tlg; else beginif �(t
) � �(tl) ^ f then return T ;if �(t
) � �(tl) then f := true ;T := ftl; t
; tn; : : :g;end;end;end Fig. 1. Algorithm for redundan
y removalThe se
ond key idea of Nelson is the result map that makes expli
it thoseinequalities that are indire
tly expressed by the system. The basi
 step is togenerate all possible 
ombinations of pairs of inequalities by eliminating their
ommon variable.De�nition 9. The resultants map result : TwoX ! TwoX is de�ned by:result(T ) =8>><>>:aez � dby � af � d
 �������� t1; t2 2 T ^t1 � ax+ by � 
 ^t2 � dx+ ez � f ^a > 0 ^ d < 0 9>>=>>;The following example demonstrates how result works on a 
hain of dependentvariables:Example 2. Let T0 = fx0 � x1; x1 � x2; x2 � x3; x3 � x4g. We 
al
ulateT1 = result(T0) and T2 = result(T0 [ T1).result(T0) = fx0 � x2; x1 � x3; x2 � x4gresult(T0 [ T1) = T1 [ fx0 � x3; x0 � x4; x1 � x4gNote that T3 = S2i=0 Ti is a �xpoint in T3 = result(T3).An important property of T [ result(T ) is the way it halves the number ofvariables required to entail a given inequality t. Spe
i�
ally, suppose T j= t. Thenthere exists T 0 � T [ result(T ) su
h that T 0 j= t and T 0 
ontains no more thanhalf the variables of T . Lemma 1 formalizes this and is basi
ally a reformulationof Lemma 1b of [29℄.Lemma 1. Let T 2 TwoX and t 2 LinX su
h that T j= t. Then there existsY � X su
h that jY j � bjvar(T )j=2
+ 1 and �Y (T [ result(T )) j= t.



Lemma 1 suggests the following iterative algorithm for 
al
ulating 
ompletionthat takes (approximately) log2(jvar (T )j) steps. Theorem 1 asserts its 
orre
t-ness.De�nition 10. The mapping 
omplete : TwoX ! TwoX is de�ned:
omplete(T0) = Tdlog2(jvar(T0)j�1)e where Ti+1 = �lter(Ti [ result(Ti))Theorem 1. 
omplete(T ) � T and 
omplete(T ) 2 Two 0X for all T 2 TwoX .Proof. Let f : N ! N where f(n) = bn=2
+1. The following table details m 2 Nfor whi
h fm(n) � 2. Observe that fdlog2(n�1)e(n) � 2.n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .m 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 . . .Observe that T � T [ result(T ) � �lter(T [ result(T )) and by indu
tion T �
omplete(T ). Let t 2 LinX su
h that 
omplete(T ) j= t. Then T j= t. Let T0 = Tand Ti+1 = �lter(Ti [ result(Ti)). By indu
tion and by Lemma 1, there ex-ists Yi � var(T ) su
h that �Yi(Ti) j= t and jYij � f i(jvar (T )j). ThereforejYdlog2(jvar(T )j�1)ej � 2, hen
e �var(t)(
omplete(T )) j= t as required.Note that applying an additional 
ompletion step makes expli
it all inequali-ties over one variable. Furthermore, applying it on
e more 
reates tautologousand 
ontradi
tory inequalities. Applying these two additional 
ompletion stepsenables �lter to dete
t unsatisfability without employing any extra ma
hinery.Example 3. To illustrate how unsatis�ability is dete
ted 
onsider the systemT0 = f�x+ y � �1;�2x� 3y � �6; 4x� 2y � �4g. The system is 
omplete buttwo more 
ompletion steps are ne
essary to dete
t unsatis�ability. The 
al
ula-tion T1 = �lter(T0 [ result(T0)) = T0 [f�y � �2;�5x � �9; x � �3g makes allinequalities over one variable expli
it. Unsatis�ability be
omes expli
it when 
al-
ulating 0 � �24 2 result(T1). Finally �lter(result(T1)) = f0 � �24g 
ollapsesthe system to a single unsatis�able 
onstraint.3.1 Complexity of the 
omplete operationNelson shows that his satis�ability algorithm is polynomial in the number ofinput inequalities [29℄. For 
omparison with the DBM approa
h, 
onsider the
omplexity of �lter(Ti [ result(Ti)) where d = jvar(Ti)j and k = maxfj�Y (Ti)j ji 2 [0; dlog2(jvar (T )j � 1)e℄ ^ Y = fx; yg � var (Ti)g. Sin
e ea
h Ti may haved(d�1)=2 restri
tions, a linear pass over O(kd2) inequalities is suÆ
ient to parti-tion the set of inequalities into d sets, one for ea
h variable. Ea
h set has at mostO(kd) elements, so 
al
ulating the resultants for ea
h set is O(k2d2), hen
e 
al-
ulating all the resultants is O(k2d3). The 
omplexity of applying the linear �lteris in O(kd2 + k2d3) = O(k2d3) whi
h with sorting requires O(k2d3 log(k2d3)) =O(k2d3(log(k)+log(d))) time. The 
omplete operation runs result O(log d) timeswhi
h leads to an overall running time of O(k2d3 log(d)(log(k) + log(d))). InSe
tion 7 we show that k is typi
ally small and therefore 
an be limited by a
onstant with hardly any loss of expressiveness. This 
ollapses the bound toO(d3(log(d))2) whi
h is only slightly worse than the O(d3) 
losure of Min�e [26℄.



3.2 Satis�ability and the 
omplete operationNelson [29℄ originally devised this 
ompletion operation in order to 
onstru
ta polynomial test for satis�ability. The following proposition explains how non-satis�ability 
an be observed after (and even during) the 
ompletion 
al
ulation.Spe
i�
ally, the proposition asserts that non-satis�ability always manifests itselfin the existen
e of at least one 
ontradi
tory inequality.Proposition 3. Let T 0 2 Two 0X . Then [[T 0℄℄ = ; i� [[�;(T 0)℄℄ = ;.Proof. Let T 0 2 Two 0X . Suppose [[T 0℄℄ = ;. Then T 0 j= 0x + 0y � �1. Sin
evar (0x+0y � �1) = ;, hen
e �;(T 0) j= 0x+0y � �1 and therefore [[�;(T 0)℄℄ = ;.Sin
e �;(T 0) � T 0 the 
onverse follows.4 Join: Planar 
onvex hull on ea
h proje
tionComputing the join 
orresponds to 
al
ulating the 
onvex hull for polyhedrawhi
h is surprisingly subtle. The standard approa
h for arbitrary d-dimensionalpolyhedra involves applying the Chernikova [6℄ algorithm (or a variant [23℄) to
onstru
t a verti
es and rays representation whi
h is potentially exponential [20℄.By way of 
ontrast, we show that 
onvex hull for systems of two variables perinequality 
an be 
omputed by a short polynomial algorithm.The 
onstru
tion starts by reformulating the 
onvex hull pie
e-wise in termsof ea
h of its planar proje
tions. Proposition 4 shows that this operation resultsin a 
omplete system whenever its inputs are 
omplete; equivalen
e with thefully dimensional 
onvex hull operation is stated in Proposition 5.De�nition 11. The pie
e-wise 
onvex hull g : TwoX2 ! TwoX is de�nedT1 g T2 = [fTx;y 2 Twofx;yg j x; y 2 Xg where [[Tx;y℄℄ = 
l(
onv ([[�fx;yg(T1)℄℄ [[[�fx;yg(T2)℄℄)).Proposition 4. T 01 g T 02 2 Two 0X if T 01; T 02 2 Two 0X .Proof. Let t 2 LinX su
h that T 01 g T 02 j= t. Let x; y 2 X and let [[Tx;y℄℄ =
l(
onv([[�fx;yg(T 01)℄℄ [ [[�fx;yg(T 02)℄℄)). Observe �fx;yg(T 01) j= Tx;y, thereforeT 01 j= T 01 g T 02. Likewise T 02 j= T 01 g T 02, hen
e it follows that T 01 j= t and T 02 j= t.Sin
e T 01; T 02 2 Two 0X , �var(t)(T 01) j= t and �var(t)(T 02) j= t, thus [[�var(t)(T 01)℄℄ �[[t℄℄ and [[�var(t)(T 02)℄℄ � [[t℄℄, hen
e [[�var(t)(T 02)℄℄ [ [[�var(t)(T 02)℄℄ � [[t℄℄. Therefore[[�var(t)(T 01g T 02)℄℄ = 
l(
onv([[�var(t)(T 01)℄℄[ [[�var(t)(T 02)℄℄)) � 
l(
onv([[t℄℄)) = [[t℄℄.Therefore �var(t)(T 01 g T 02) j= t as required.Proposition 5. [[T 01 g T 02℄℄ = 
l(
onv([[T 01℄℄ [ [[T 02℄℄)) if T 01; T 02 2 Two 0X .Proof. Sin
e T 01 j= T 01gT 02 and T 02 j= T 01gT 02, it follows that 
l(
onv ([[T 01℄℄[[[T 02℄℄)) �[[T 01 g T 02℄℄. Suppose there exists h
1; : : : ; 
ni 2 [[T 01 g T 02℄℄ su
h that h
1; : : : ; 
ni 62[[T 0℄℄ where [[T 0℄℄ = 
l(
onv([[T 01℄℄[[[T 02℄℄)). ThusSni=1fxi � 
i; 
i � xig 6j= T 0, hen
ethere exists axj + bxk � 
 � t 2 T 0 with Sni=1fxi � 
i; 
i � xig 6j= axj + bxk � 
.



fun
tion extreme(T 2 Twofx;yg) beginlet T = ft0; : : : ; tn�1g su
h that �(t0) < �(t1) < : : : < �(tn�1);V := R := ;;for i 2 [0; n� 1℄ do let ti � ax+ by � 
 in begin// are the interse
tion points of this inequality degenerated?dpre := (�(ti)� �(ti�1 mod n)) mod 2� � � _ n = 1;dpost := (�(ti+1 mod n)� �(ti)) mod 2� � � _ n = 1;if dpre then R := R [ fhb=pa2 + b2;�a=pa2 + b2ig;if dpost then R := R [ fh�b=pa2 + b2; a=pa2 + b2ig;else V := V [ fvg where v 2 [[t=i ℄℄ \ [[t=(i+1) mod n℄℄;if dpre ^ dpost then beginif n = 1 then R := R [ fh�a=pa2 + b2;�b=pa2 + b2ig;V := V [ fvg where v 2 [[t=i ℄℄endendreturn hV; Riend Fig. 2. Cal
ulating the points and rays of a planar polyhedronBut T 01 j= T 0 j= t and T 02 j= T 0 j= t. Sin
e T 01 2 Two 0X and T 02 2 Two 0X , itfollows that �fxj ;xkg(T 01) j= t and �fxj ;xkg(T 02) j= t. Hen
e T 01 g T 02 j= t, thusSni=1fxi � 
i; 
i � xig j= T 01 g T 02 but h
1; : : : ; 
ni 62 [[T 01 g T 02℄℄ whi
h is a
ontradi
tion.Cal
ulating the 
onvex hull for a set of points in the plane has been studiedextensively [32℄. The 
onvex hull of polytopes 
an be redu
ed to this problemby 
onverting the polytopes into their vertex representation, 
al
ulating the
onvex hull of all verti
es and 
onverting ba
k into the inequality representation.Although the generalization to planar polyhedra follows this three-step pro
ess,it is mu
h more subtle and little literature has been written on this fundamentalproblem. Given a set of non-redundant inequalities, ordered by their orientation�, the auxiliary fun
tion extreme in Figure 2 
al
ulates a set of verti
es and raysthat represent the polyhedron. Rays are 
reated when the angle between the
urrent inequality ti and the previous inequality is greater or equal to � (dpreis true) and similarly for the next inequality (dpost is true). If both 
ags aretrue, we 
reate an arbitrary point on the boundary of the halfspa
e of ti to �xits representing rays in spa
e. A pathologi
al 
ase arises when the polyhedron
onsists of a single halfspa
e (n = 1). In this 
ase a third ray is 
reated to indi
ateon whi
h side the feasible spa
e lies. Note that the maximum number of rays forea
h polyhedron is four, whi
h o

urs when T de�nes two fa
ing halfspa
es.The main fun
tion join in Figure 3 uses extreme to 
ompute the verti
esand rays of ea
h input polyhedron and 
at
hes the simple 
ase of when bothpolyhedra 
onsist of the same single point. Otherwise we 
al
ulate a square whosesides have length 2m whi
h is 
entered on the origin and that 
ontains all verti
es



fun
tion join(T1 2 TwoX ; T2 2 TwoX) beginif 9t 2 T1 : t � 0x+ 0y � �1 then return T2;if 9t 2 T2 : t � 0x+ 0y � �1 then return T1;// note: ea
h Ti is non-redundanthV1; R1i := extreme(T1);hV2; R2i := extreme(T2);V := V1 [ V2; R := R1 [R2; // Note: jRj � 8if V = fhx1; y1ig ^ R = ; thenreturn fx � x1;�x � �x1; y � y1;�y � �y1g;m := maxfjxj; jyj j hx; yi 2 V g + 1;//add a point along the ray, goes through x; y and is outside the boxfor hx; y; a; bi 2 V1 [ V2 �R do V := V [ fhx+ 2p2ma; y + 2p2mbig;fv0; : : : ; vn�1g := graham(V ) su
h that v0; : : : ; vn�1 are ordered anti-
lo
kwiseand points on the boundary are not removedTres := ;; tlast := 
onne
t (vn�1; v0);for i 2 [0; n� 1℄ do beginlet hx1; y1i = vi, hx2; y2i = v(i+1) mod n, t = 
onne
t (vi; v(i+1) mod n)if (jx1j<m ^ jy1j<m)_ (jx2j<m ^ jy2j<m)^ �(t) 6= �(tlast ) then beginif (�(t)� �(tlast )) mod 2� = � ^ jx1j<m ^ jy1j<m thenif y1 = y2 then Tres := Tres [ fsgn(x1 � x2)x � sgn(x1 � x2)x1gelse Tres := Tres [ fsgn(y1 � y2)y � sgn(y1 � y2)y1gTres := Tres [ ftg; tlast := t;endendreturn Tresendfun
tion 
onne
t (hx1; y1i; hx2; y2i)return (y2 � y1)x+ (x1 � x2)y � (y2 � y1)x1 + (x1 � x2)y1Fig. 3. Convex hull algorithm for planar polyhedrain V1[V2. For ea
h ray r 2 R we translate ea
h vertex in V1[V2 in the dire
tionof the ray r. Note that the normalization of the rays and the translation by2p2m ensures that the translated verti
es are outside the square. We now applythe Graham 
onvex hull algorithm [11℄, modi�ed so that it removes all (stri
tly)interior verti
es but retains points whi
h lie on the boundary of the hull. Whatfollows is a round-trip around this hull, translating two adja
ent verti
es into aninequality by 
alling 
onne
t if the following 
onditions are met: the inequalitymust have a di�erent slope than the previously generated inequality and at leastone of the two verti
es must lie within the box. The two innermost if-statementsdeal with the pathologi
al 
ase of when V 
ontains only 
olinear points andadditional inequalities are needed to restri
t the two opposing inequalities sothat an (unbounded) line is not inadvertently generated.The running time of this algorithm is dominated by the 
all to the 
onvexhull algorithm of Graham [11℄ whi
h takes O(n logn) time where n = jV jjRj.



However, jRj is at most eight (and usually between zero and four). Sin
e O(jV j) =O(jT j) it follows that the overall running time is O((jT1j+ jT2j) log(jT1j+ jT2j)).5 Proje
tionProje
tion returns the most pre
ise system whi
h does not depend on a givenvariable. We provide a 
onstru
tive de�nition of proje
tion for (
omplete) sys-tems. Proposition 6 states that this 
oin
ides with the spatial de�nition of pro-je
tion. Furthermore we prove that this operation preserves 
ompletion.De�nition 12. The operator 9x : TwoX ! TwoXnfxg is de�ned 9x(T ) =[f�Y (T ) j Y = fy; zg � X n fxgg.Proposition 6. 9x([T 0℄�) = [9x(T 0)℄� and 9x(T 0) 2 Two 0X for all T 0 2 Two 0X .Proof. By Fourier-Motzkin 9x([T 0℄�) = [T ℄� where T = ft 2 T 0 [ result(T 0) jx 62 var(t)g. Observe that T j= 9x(T 0). Now suppose r 2 T 0 [ result(T 0) su
hthat x 62 var (r). Then T 0 j= r, hen
e �var(r)(T 0) j= r and therefore 9x(T 0) j= r,and thus 9x(T 0) j= T , hen
e 9x(T 0) � T as required.Now let t 2 LinX su
h that 9x(T 0) j= t. Moreover T 0 j= 9x(T 0) j= t, hen
e�var(t)(T 0) j= t. Sin
e x 62 var(t), �var(t)(9x(T 0)) j= t as required.Consider a 
omplete system that in
ludes y � x � 0 and x � z � 0. Proje
tingout x will preserve the inequality y� z � 0 whi
h 
ompletion has made expli
it.6 EntailmentEntailment 
he
king between systems of inequalities 
an be redu
ed to 
he
kingentailment on their two dimensional proje
tions. Moreover, entailment 
he
kingfor a planar polyhedron 
an be further redu
ed to 
he
king entailment betweenthree single inequalities. We start by detailing the entailment relationship be-tween systems of inequalities and their two dimensional proje
tions.Proposition 7. Let T 0 2 Two 0X and T 2 TwoX . Then T 0 j= T i� �Y (T 0) j=�Y (T ) for all Y = fx; yg � X .Proof. Suppose T 0 j= T . Let t 2 �Y (T ). Then T 0 j= T j= t. Hen
e �var(t)(T 0) j= t.Sin
e var(t) � Y , �Y (T 0) j= t and therefore �Y (T 0) j= �Y (T ).Now suppose �Y (T 0) j= �Y (T ) for all Y = fx; yg � X . Let t 2 T . Thent 2 �var(t)(T ), hen
e T 0 j= �var(t)(T 0) j= �var(t)(T ) j= t.Note that the proposition does not require both systems of inequalities to be
omplete. Due to Proposition 7 it suÆ
es to 
he
k that entailment holds forall planar proje
tions. Therefore 
onsider 
he
king entailment between two non-redundant planar systems T1; T2 2 Twofx;yg. To test T1 j= T2 it is suÆ
ient toshow that T1 j= t for all t 2 T2. This redu
es to �nding ti; ti+1 2 T1 su
h that�(ti) � �(t) < �(ti+1) (modulo 2�). If any of the tests fti; ti+1g j= t fail, false
an be returned immediately. If the inequalities are ordered by angle, planarentailment 
he
king is linear time as shown in Fig. 4.



fun
tion entails(T1 2 Two0X ; T2 2 TwoX) beginif 9t 2 T1 : t � 0x+ 0y � �1 then return true ;if 9t 2 T2 : t � 0x+ 0y � �1 then return false;let ft1; : : : ; tng = T1 su
h that �(t1) � �(t2) � : : : � �(tn);let ft01; : : : ; t0mg = T2 su
h that �(t01) � �(t02) � : : : � �(t0m);u := 1; l := n;for i 2 [1; m℄ do beginwhile �(tu) < �(t0i) ^ u � n do beginl := u;u := u+ 1;endif ftl; t(u mod n)g 6j= t0i then return false;end;return true ;end; Fig. 4. Algorithm for 
he
king entailment of planar polyhedra7 WideningFor domains that do not satisfy the as
ending 
hain property, widening is ne
-essary to enfor
e termination of �xpoint 
al
ulations [7℄ (for example in loops).Widening 
an also be used to improve spa
e and time behavior. In the followingse
tions we elaborate on both.7.1 Widening for terminationAny widening [7, 8℄ for polyhedra 
an be applied to planar polyhedra and thenlifted to systems of two variables per inequality. Sin
e the domain is stru
turedin terms of proje
tions, one ta
ti
 for delaying widening, and thereby improv-ing pre
ision, is to only apply widening when the number of proje
tions hasstabilized and the dimension of ea
h of the proje
tions is also stable. One sub-tlety is that applying 
ompletion after widening 
an 
ompromise termination byreintrodu
ing inequalities that were removed during widening.7.2 Widening for tra
tabilityTo assess the tra
tability of the domain, we implemented a na��ve 
ompletionoperation and measured the growth both in the number of proje
tions and in-equalities. Our test data is obtained by generating random planar polytopesover di�erent pairs of variables. Ea
h polytope was 
onstru
ted by 
omputingthe 
onvex hull of a random set of points distributed a
ross a square in R2 . Weset up three di�erent s
enarios 
alled varying, 
onstant and sparse. In the vary-ing s
enario, we 
reated polytopes whi
h had between 3 and 13 inequalities ea
huntil we rea
hed 147 inequalities in total. To make the results 
omparable, we
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Fig. 5. The number of inequalities seems to be restri
ted in pra
ti
ethen applied 
ompletion to those systems whi
h had exa
tly 100 non-redundantinequalities. Redundan
ies 
an o

ur in the original system sin
e two polytopesmay share a 
ommon variable and a bound on this variable may propagate fromone sub-system to the other, rendering inequalities super
uous. The 
onstants
enario 
reates 10 inequalities for ea
h pair of variables. Sin
e fewer non-emptyproje
tions were initially generated (on average 143=10), the growth in the num-ber of proje
tions is larger { on average it in
reased to 32 proje
tions. The last
ase, sparse, 
orresponds to a system where inequalities are weakly 
oupled, thatis, few inequalities share variables. As expe
ted the number of extra proje
tionsgenerated by 
ompletion is marginal. The results are summarized in Figure 6.Sin
e randomly generated data o�ers no parti
ular advantage to our 
ompletionalgorithm over real data, it appears the 
ompletion will remain tra
table in pra
-ti
e. In parti
ular, the worst 
ase quadrati
 growth in the number of proje
tionsis unlikely to arise.An interesting observation is that the number of inequalities is not propor-tional to the number of points n over whi
h the 
onvex hull is 
al
ulated. Thissquares with probabilisti
 theory [5, 31℄. Spe
i�
ally, the 
onvex hull of a set of npoints randomly distributed over a square is expe
ted to have O(log n) extremepoints [5℄, while a random set of n points restri
ted to a 
ir
le is expe
ted to haveO(n 13 ) extreme points [31℄. In our experiments, less than 1% of all proje
tionshad more than 30 inequalities (see Fig. 5 for the distribution). This suggests



s
enario varying 
onstant sparsedimension 10 10 100inequalities generated 147 143 139inequalities per polyhedron 3{13 10 10after redundan
y removalremaining inequalities 100 100 100avg. no of ineq. per polyhedron 5.3 7.0 7.1after 
ompletionavg. resultant inequalities 210 189 106in
rease in no of proje
tions 56% 123% 9%proje
tions > 30 inequalities 0.22% 0.18% 0.00%Fig. 6. The impa
t of 
al
ulating 
ompletionthat pruning the number of inequalities down to a 
onstant bound will havelittle overall e�e
t on pre
ision, yet obtains an attra
tive O(d3(log d)2) perfor-man
e guarantee. One way to systemati
ally drop inequalities is to remove thosethat 
ontribute least to the shape, that is, remove the inequality that 
ontributesthe shortest edge to the polyhedron.8 Future WorkUsing union-�nd an arbitrary T 2 TwoX 
an be partitioned in near-linear timeinto a system fT1; : : : ; Tpg su
h that var (Ti) \ var(Tj) = ; whenever i 6= j.This de
omposition enables the 
omplexity of 
ompletion to be redu
ed toO(d3(log d)2) where d = maxfjvar(T1)j; : : : ; jvar(Tp)jg. This ta
ti
, whi
h is ap-pli
able to any polyhedral domain, will be useful if the 
oupling between variablesis low.The 
ompletion of a system T is 
urrently 
omputed iteratively in approx-imately log2(jvar(T )j) steps. The 
ompletion operation 
ould bene�t from ap-plying a strategy su
h as semi-na��ve iteration [3℄ that would fa
tor out some ofthe repeated work.9 Related workThe O
tagon domain [26℄ represents inequalities of the form axi+bxj � 
 wherea; b 2 f1; 0;�1g and xi; xj 2 X . The main novelty of [26℄ is to simultaneouslywork with a set of positive variables x+i and negative variables x�i and 
onsidera DBM over fx+1 ; x�1 ; : : : ; x+d ; x�d g where d = jX j. Then xi � xj � 
, xi + xj � 
and xi � 
 
an be en
oded respe
tively as x+i � x+j � 
, x+i � x�j � 
 andx+i �x�i � 2
. Thus an 2d�2d square DBM matrix is suÆ
ient for this domain.Note that this DBM representation 
ontains entries of the form x+i � x+j � 1whenever xi � xj is not 
onstrained (and likewise for xi + xj � 
 and xi � 
).Closure is 
omputed with an all-pairs Floyd-Warshall shortest-path algorithm



that is O(d3) and e
hos ideas in the early work of Pratt [30℄. Other earlier workon this theme 
onsidered the domain of inequalities of the form xi � xj � 
[25, 33℄, though the 
onne
tion between bounded di�eren
es [9℄ and abstra
tinterpretation dates ba
k (at least) to Bagnara [1℄. Very re
ently, Min�e [27℄ hasgeneralized DBMs to a 
lass of domains that represent invariants of the formx � y 2 C where C is a non-relational domain that represents, for example,a 
ongruen
e 
lass [12℄. This work is also formulated in terms of shortest-path
losure and illustrates the widespread appli
ability of the 
losure 
on
ept.Another thread of work is that of Su and Wagner [35℄ who propose a poly-nomial algorithm for 
al
ulating integer ranges as solutions to two variable perinequality systems, despite the intra
tability of some of these problems [21℄.However, eÆ
ient integer hull algorithms do exist for the planar 
ase [10, 14℄.Combined with our 
ompletion te
hnique, this suggests a new tra
table way of
al
ulating the integer 
onvex hulls for two variable systems that promises to beuseful in program analysis.It is well-known that the linear programming problem { the problem of max-imizing a linear fun
tion subje
t to linear inequalities { is polynomial time (Tur-ing) equivalent to the problem of de
iding whether a linear system is satis�able.Moreover, the problem of de
iding whether a linear system is satis�able 
anbe transformed into an equivalent problem where ea
h inequality 
ontains atmost three variables (with at most a polynomial in
rease in the number of vari-ables and inequalities). Thus an eÆ
ient algorithm for solving this problem isalso an eÆ
ient algorithm for solving the linear programming problem and vi
eversa. This equivalen
e, and negative results su
h as [20℄, explains the interest in
he
king the satis�ability of systems of linear inequalities where ea
h inequality
ontains at most two variables that dates ba
k to [29, 30, 34℄. Of all the propos-als for 
he
king the satis�ability of a system T , the algorithm of [16℄ is most intune with the requirements of abstra
t interpretation due to its su

in
tness andits O(jT jjvar (T )j2 log(jT j)) running time whi
h is guaranteed without widening.This result (and related results) provide fast entailment 
he
king algorithmswhi
h may be useful for eÆ
ient �xpoint dete
tion.The trade-o� between expressiveness and tra
tability is also an important
onsideration in 
onstraint solving and in this 
ontext the 
lass of two variablesper inequality has also re
eived attention [15, 18℄. Ja�ar et al [18℄ extend the
losure algorithm of Shostak [34℄ for 
he
king satis�ability over the reals tothe integers by alternating 
losure with a tightening operation. However, thispro
edure is not guaranteed to either terminate nor dete
t satis�ability. Ja�aret al [18℄ go onto show that two-variables per inequality 
onstraints with unit
oeÆ
ients 
an be solved in polynomial time and that this domain supportseÆ
ient entailment 
he
king and proje
tion. More re
ently, Harvey and Stu
key[15℄ have shown how to reformulate this solver to formally argue 
ompleteness.



10 Con
lusionWe proposed a new abstra
t domain of linear inequalities where ea
h of theinequalities has at most two variables and the 
oeÆ
ients are unrestri
ted. Wehave shown how a (polynomial) 
ompletion operation leads to eÆ
ient and sim-ple domain operations. Empiri
al eviden
e was presented that suggests that thedomain is both tra
table and well suited to widening.A
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