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Lax pair and super-Yangian symmetry of the nonlinear
super-Schro dinger equation
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de Savoie, LAPP, BP 110, F-74941 Annecy-le-Vieux Cedex, France

(Received 10 June 2003; accepted 4 September)2003

We consider a version of the nonlinear Satinger equation witiM bosons andN
fermions. We first solve the classical and quantum versions of this equation, using
a super-Zamolodchikov—Fadde€&XfF) algebra. Then we prove that the hierarchy
associated to this model admits a super-Yangidgl(M|N)) symmetry. We ex-

hibit the correspondingclassical and quantuniax pairs. Finally, we construct
explicitly the super-Yangian generators, in terms of the canonical fields on the one
hand, and in terms of the ZF algebra generators on the other hand. The latter
construction uses the well-bred operators introduced recently20@3 American
Institute of Physics.[DOI: 10.1063/1.16250783

I. INTRODUCTION

The nonlinear Schidinger (NLS) equation is one of the most studied systems in quantum
integrable systemg¢for a review, see, e.g., Ref),1land its simplestscalaj version played an
important role in the development of thguantum inverse scattering methddAs usual in
quantum integrable systems, its integrability relies on the existence of an infinite-dimensional
symmetry algebra. In integrable systems, natural candidates for such algebras are the celebrated
quantum groups associated(affine) Lie algebras, or the Yangians. Indeed, it is knwimat the
guantum NLS model with spin 1/2 fermions and repulsive interaction on the line has a Yangian
symmetryY(sl(2)). More generally, its vectorial version, based ldrcomponent bosons or on
N-component fermions, was shown to posse¥{@l(N)) symmetry’ The integrability can also
be grounded on the existence of an infinite series of mutually commuting Hamiltonians, which
thus generates a whole hierarchy of equations. In the case of scalar NLS equation, the hierarchy
contains well-known models, such as the modified KdV equation.

It was natural to seek a supersymmetric vergiaoluding both bosons and fermionsf these
models which admits the super-Yangian based on superalgghisdN) as symmetry algebra.
Different versions of such a generalization were already proposed, from the simple boson-fermion
systems related to NLZ® or superfields formulatior of NLS, up to more algebraic studies of
these model$1° The difficulty with such generalizations is to keep the fundamental notion of
integrability while allowing for the existence of supersymmetry. Even when some of the suggested
supersymmetric systems were shown to pass some integrability condititives status of such
models remained not clearly established, and one is still looking for, e.g., their Lax presentation or
their underlying infinite-dimensional symmetry algebra.

AnotherZ,-graded version of NLS was introduced by Kulftthe fields being super-matrix
valued and thus associated to both fermions and bosons. However, only the finite interval was
studied, using the thermodynamical Bethe anga&e also Ref. )3 and the explicit quantum
solutions are not known. The symmefisupej algebra is also lacking in this presentation.

The aim of this article is to present a “super-vectorial” versigtose to the matricial version
introduced by Kulish of the NLS model on the infinite line which includéd bosonsand N
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fermions fields. The advantage of this version relies on its manifest integrability and the existence
of quantum canonical solutions, which we will explicitly construct using a super-ZF al¢g8bra

II). Indeed, these solutions can be associated to a whole hierarchy of mutually commuting Hamil-
tonians, as it should be for an integrable model. It also admits, as we will §Bewv 1)), a Lax
presentation both at classical and quantum Iéwéhout using a superfield formaligmAs usual,

the Lax pair presentation allows us to recover the hierarchy of our super-NLS equation. Finally,
this super-NLS hierarchy possesses a super-Yangian symmetry and we will construct it, both using
the quantum canonical solutions or the super-ZF generggas. 1\).

Il. NONLINEAR SUPER-SCHRODINGER EQUATION

A. The usual nonlinear Schro “dinger equation
The NLS equation reads
(id+ 3 di(x,1) =297 (x,1) p;(X,1) pi(x,1), i=1,.N, with g>0, (2.2
where summation over repeated indices is understood. It is obtained froftintlieeindependent

Hamiltonian

HEgy 01— [ X000 + 96700 610060061 (0) (2.2

using the Hamiltonian equation of motiarF ={H,F}, valid for any functionaF (¢; ,quT), where
the Poisson brackéPB) is canonically associated # and ¢'.
A solution a la Rosale¥* can be written as follows:

H0x0=5, -9"d"0c0. 90 29
with
(n) 1.4 k K el n(xt;p,0)
b (x.t)= fHMd pA™ AN A(py): - N(Pa) i (An) M (AN (G0) oG

Qn<x,t;p,q)=;0 (q,-x—oﬁt)—i:El (pix—pt),
) (2.9
Qn(lo,q,s)=ilzll (Pi—qi_1+ie)(pi—qi+ie),

n

dp; dg;

NN +1q— b}

d’pd™ g 1_[1 27 27’
J

j=0

where we have denotgu= (p4,...,pn), d=(dg,---,0n)-

The Rosales solution is fundamental since its structure is preserved upon quartfizaiibn
we shall see below that this result survives when one includes fermions. The NLS equation and its
hierarchy admit the Yangiavi(gl(N)) as symmetry, and the explicit construction of its generators
was given in Ref. 3for sl(2), interms of canonical fieldsand Ref. 4for sI(N), in terms of the
ZF generatork A Lax pair formulation can be found in Refs. 16 and(fat NLS equation and in
Refs. 18 and 19for its vectorial generalization

Downloaded 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5708 J. Math. Phys., Vol. 44, No. 12, December 2003 V. Caudrelier and E. Ragoucy

B. Classical nonlinear super-Schro “dinger equation

We consider a generalized version of the NLS equation which includes both bosons and
fermions. Due to the use of auxiliary spadeee the Appendijx the corresponding equation will
formally look like the original one, but let us insist that the present version is a “supersymmetric”
version of it. While the similarities allow us to build the solution of the nonlinear super-
Schralinger equation, the differences will appear, for instance, in the nature of the symmetry
algebra(see below.

We define®(x) =31 "¢;(x)e;, wheree; is an M +N)-column vector in the auxiliary
space and summation is understood for repeated indices. #jerg=1,..M, and ¢;, j=M
+1,...M+N, are the bosonic and fermionic components, respectively. By fermionic functions, we
mean Grassmann-valued functions depending on the real varatile integrations throughout
the article being always in re@br complex variables. For convenience, we $€=M +N. We
shall also need adjoints of the fields

oT(x)=¢!(x)ef, xeR. (2.5
The Hamiltonian reads
H@. 0= | @' 000,900+ 9(| 007, 26
or, in components,
H®. 0= | a8 00000+ 96V 0 B006 0. @27

The canonical Poisson brackets for the basic fididg), ®'(y) with corresponding components
$i(x), ¢](y) take the following form:

[D1(x), DNy} =i618(x—y)=—{DX(y),®1(x)} (globally), (2.9

{$;(X), by} =1 8 8(x—y)=—(— 1IN I(y),¢;(x)} (in components (2.9

The field ®(x,t) of componentsp;(x,t) satisfies the following Hamiltonian equation of motion
which we call the classical nonlinear super-Schinger (NLSS) equation:

P9, (x,1)=— 2D (x,t)+2g| P (x,1)|>P(x,t) (globally), (2.10

ididj(x,1)=— ﬁigbj(x,t)+29(¢E(x,t)¢k(x,t))¢j(x,t) (in components (2.11

These equations are simply derived from the Hamiltonian equations of matidiix,t)
={H,®(x,t)} and d,¢;(x,t)={H, #;(x,t)}. The equations of motion argormally) the same as
the usual ones and the solutiaria Rosales2.3) and(2.4) is still valid in our case:

Theorem 2.1: The solution of the classical NLSS equation (2.11) is given by

©

¢j(X,t)=zo(—g)”¢}”)(x,t) where (2.12

(n) +1 < + T el 2n(xt;p.a)
¢ (= fﬂ{zmd PA™iq 2 M(PO N (P M (An) My (G0N (G0 g
(2.13

using the same notations as in (2.4)
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Proof: Substituting into the NLSS equation, it amounts to the following identity being satis-

fied,
n n n n 2 n-1 ¢
> a2 p?—(E IR pi) =22 2 (Par1—9a)(Pes1—Uorn),
j=0 i=1 j=0 i=1 c=1a=1
which is readily seen to hold. |

Note that, due to thé&,-graded tensor product, the ordering of th&s and of the\’s,
respectively, matters.

C. Quantizing NLSS

1. Graded ZF algebra

We write a graded version of the ZF algeB?&! using auxiliary spaces and entities containing
bosonic and fermionic componersee the Appendix

A(k)=a;(k)e; and AT(k)=a(k)el, keR. (2.14

Definition 2.2: The graded ZF algebra reads

A1(Kp)Ax(Ko) =Roi(ka— k1) Ax(ka)Ar(ky), (2.15
Al(kp) AL (kp) = Al (ko) Al(ky) Ras(ka—ky), (2.19
As(Kp)AS(Kp) = AS(Ko)Ryg(ky — ko)A (Kq) + 8108(ky — k), (2.17
where
_ kl®l-igPy,
Rix(k)= kg (2.18

is the R-matrix for the super-Yangian(fl(M|N))=Y(M|N), and P, is the super-permutation
operator:

K
Plzzijz,l (—-DUIE; ®E;. (2.19
Note that for even vectorg, v and even matriceB, C (as defined in the Appendixone has
P12(U®v)=v®u and Plz(B®C)P12:C®B
The R-matrix has the following useful properties:

R21(K)=R1a(k), (2.20
Ria(ki—Kz)Ray(ko—ky) =11, (2.2
RIZ(kl_ K2) = Rai(ka—Kyq). (2.22

For quantities of definit&,-grade, we define their super-commutator by
[B,C]=BC—(—1)[BICIlcB, (2.23

Then, after some calculations, one shows that the component version of the ZF algebra reads
(j,k=1,...K)
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[aj(kq),ax(ka)]= m(aj(kz)ak(kl) +(— DM (ky)a(ky)), (2.24
[[a}(ko,al(kz)u:ﬁ(a}f(k»a&(koﬂ—1>f”[k]al<k2>af<kl>>, (2.25

—ig . «
[3j(k) ai(ko) 1= 3 | (DM (ko)ay (k) + 0 2, ailko)acke) |+ dpcdlka—ko).
(2.26

Note that these relations ensure the existence of a PBW basis, generated by the monomials having
a'’s on the left of thea’s, the a's on one hand, and tha™s on the other hand, being ordered
according to the magnitude of the “impulsionk;.

2. Fock representation

The previous algebra can be represented on a Fock space, which is most useful for our
quantization of NLSS, and we follow the basic ideas of Ref(fli&her developed in, e.g. Refs. 22
and 23. A detailed presentation of the graded version wier N=1 has been given in Ref. 24.
The general case follows the same lines, so that we just sketch the results, referring to Ref. 24 for
more details about th&,-graded case.

We introducefr= & _ Hg where H3=C,

K
He= @(P)= 2, ¢i(P)ej st ¢jeLA(R).j=1..K | =KLA(R),
and forn=2
Hg: ¢1..n(p11---apn)
K
= 2_1 iy,i (PLoe- Do) (8 ® @€ ) St i eL*(RY),
1odn=

il7"'vin:lv'"K1 and ¢l..j,i+1...n(plv"'1pi 7pi+lv"'1pn)
=Rii+1(Pi=Pi+D)@1i+1i.n(P1s--Pi+1,Pis--Pn)-

There exists @vacuum vectorQ) e D which is cyclic with respect t&\"(k) and annihilated by
A(k).

The scalar product which we define below &} provides the usudl? topology andFy is
the completed vector space overor this topology.

The sesquilinear forny,) defined onHR X HR, n=1, by

<¢1 ¢>: fRndnp ¢In(pl (AR vpn)‘ﬁl..n(pl IR vpn)! (227)

n=loc oo —
@1 n(P1y- ) = (= 1)F=rlial o+ il in(ef @ ef ©---@ef ) (2.29

is a (Hermitian scalar product.

We introduce the finite particle spaceF%C]—"R, spanned by the sequences
(€,01,--1@1.n»--.) With ¢y, Hp ande,...,= 0 for n large enough. A$2.27) is defined for all
n, it extends naturally tcﬂfg. In this context, the vacuum state =(1,0,...,0,.), so that it is
normalized to 1.

We are now able to define tlismeareticreation and annihilation operatok$f) andA'(f) on
F? through their actionA(f)Q2=0 and foregy.,e HR %,
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[A(F)@]1..n(P1,---Pn) =N+ 1fRd Po fo(P0) @0 n(PosP1,---.Pn)- (2.29

Similarly, for ¢, e H:
n

1 1
[AT())@lo-n(Pos---Pn) = ﬁ%---n(pl:---pn)fo(po)"‘ ﬁgl Ri—1x(Pk-1

=P *Rok(Po— P) €0 - --n(Pos- - Pko--- P f(PK),  (2.30

where the hatted symbols are omitted.

It is easily checked tha®.29 and(2.30 are indeed elements 63 andHE”, respectively.
Therefore, we have operators actingﬁ% (linearity in ¢ obvioug with the additional property
that they are bounde(@e., continuouson each finite particle sectétf. Another essential feature
is the adjointness of these operators with respe¢tto

VeoeHy, Vpe HE™, VieHi (oA =(AT(He ). (2.31

At this stage, the Fock representatighi), A'(p) of the generators of the ZF algebra appear as
operator-valued distributions through the definition

A(f)= fdepr)A(p), Al()= fdeAWp)f(p). (2.32

It is readily shown from these definitions tha(p) and AT(p) satisfy the exchange relations
(2.15—(2.17), thus providing the desired representation.

We now have all the ingredients to deduce results for the whole Fock spastile working
on smaller and more intuitive spaces denseFin, using the continuity of the operators. In our
case, one has to define such a “state spaRe’Fx in the sense of distributions as follows?
=C and

Dn:[JRndnpAI(pl)'"Ax(pn)Qf(pl,...,pn); fEKan(JRn) Con=1.

Then,D is spanned by the sequences (x,X1,---:X1.-ns---), Wherexy..,e D" and x,...,,=0 for
n large enough. We also define

DO=C, DR={Al(fy,t)---Al(f, )Q f>-->f}JCHE, n=1, (2.33
where
Z\T(f,t):f dxAT(x,1)f(x),
R

xteR, (2.3
AT(x,t)= f dpAT(p)elaxia®
R

and the spac®; is the linear span of sequencgs (x,x1,---:X1.n:---), Where x,..,e D and
Xx1..n=0 for n large enough. We also introduce the following partial ordering relation:

f>geVi,j=1,..K, Vxesupgf), Vyesupfg), x>y,

which is just the extension of the ordering of the moméqta the definition of a state space basis
|Ky,...,kn). Then, one shows thd? and D, are dense i¥g.
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Summarizing, we have constructed a graded ZF algebra and its Fock represefatiod,
inspired by earlier work$>142°-2’we shall see that this allows us to construct the quantum
version of NLSS and its solution.

3. Quantization of the fields

Following Refs. 15 and 27, we simply write the quantum versiorzbﬁ‘?(x,t) as

K iQn(x,tp,q)
el
- _ t ...af —
¢jn x0)= f32n+1dnpdn+lqk1,.%n=1 akl(pl) akn(pn)akn(qn) akl(ql)aj(qO)Qn(pqus)
(2.39

using the same notations as(i4) and ani e contour prescription. The global field reads

e}

D(x,t)= nzo (—g)"PM(x,t)  with @M (x,t)=¢"(x,t)e;. (2.36

From (2.31), we deduce

©

OT(xt)= 2 (—g)"®" M (x,t) (239
with
t(n) 1At t t e uxtip
n — n n+
D0= [ oA AT (AL AN A APy AP G o oo
(2.38
Just like we dealt withA(f) and A'(f), we are naturally led to introduce
cb(f,t):f fI(x)D(x,1), d)T(f,t)zf dT(x,1)f(x). (2.39
R R

And just like we did in Ref. 24, one shows thd(f,t) and ®'(f,t) are indeed well-defined
operators on a common invariant domain which turns out t@®peThese fields also satisfy the
following fundamental requirement.

Theorem 2.3: The quantum field®(f,t), ®'(g,t) satisfy the equal time canonical commu-
tation relations as operators offy

[®(f,1),@(g,1)]=[®"(f,1),®"(g,1)]=0, (2.40
[®(f,1),®"(g,t)]=(f,0). (2.41)

Proof: The proof is the same as in the ordinary NLS equation, see Ref. 15 or 23 for details.
|

One then deduces the equal time CCR in components for the operator-valued distributions

bi(x,1), Bi(y,b):
[;(x.1), (Y. D]=[ ] (x,1), Ly, 1)]=0, (2.42
[(x.1), by, )] = S S(x—Y). (2.43

Let us remind that fof, k=M +1,..K, the above CCR correspond to anticommutator, consistent
with the fermionic nature of these fields.
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4. Time evolution

We first wish to emphasize that the form of the Hamilton{ary) cannot be reproduced here
owing to the nature of the fieldproducts of distributions are not define&ortunately, the power
of the ZF algebra and the quantum inverse metHedding to(2.35 and(2.36] rescues us by
delivering a simple, freelike Hamiltonian in terms of oscillators. Indeed, one easily checks that the
Hamiltonian defined by

H= ﬁ dp PPAT(p)A(p) (2.44

is self-adjoint, i.e.H'=H. Moreover,

VeeD, [Heli n(P1-Pn)=(pi+ 4+ P2 @1 n(P1,- - Pn), (2.49

which shows thatD is also an invariant domain fad and that this operator has the correct
eigenvalues. FinallyH generates the time evolution of the field:

d(f,t)=e"'P(f,00e H. (2.46

Therefore H, so defined, is the Hamiltonian of our quantum system.

Note that(2.45 and(2.46 have to be understood as operator equalities and must be evaluated
onD.

The freelike expression fdfl in terms of creation and annihilation oscillators may be surpris-
ing at first glance, but it is actually a mere consequence of the rather complicated exchange
relations(2.15—(2.17). One can say that the effect of the nonlinear term has been encoded directly
in the oscillators instead of the Hamiltoni&or equivalently the Lagrangiarf the field theory,
yielding a (possibly misleadingsimple expression foH. One may finally wonder about the
coupling constant which seems to disappear. Once again, it is actually present through the
R-matrix in the exchange relations.

Besides, the quantum nonlinear super-Sdimger equation holds in the following form:

VYo, eD, (id+32) (@, (x,t)h)=29(¢,: DDTD:(x,1)h). (2.47)

5. Correlation functions

Again following the case of NLS, one shows that tpise D, one has
=g, (T gOATEOY=(eAT(DD (gD Y), (2.48
for g>f;, i=1,..n,
(@@ (GOAT(FL D) AT(F D) =(eAT(GOAT(f, ) AT(f, Q) (249

and for anyf;>f,>--->f_,

n

(@, ®(g,)AT(fy, 1) -AT(f, ,t>n>=j§1 (G F)( @ AT(F1,t)-AT(F 1) AT(F, 1) Q).
(2.50

This proves that the correlation functions of the NLSS model are completely determined, e.g.,
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n
(Q.9(91,0 @ (g HPT(F1, )@ (10,00) = S 2 11 (Gori i),

(@1, P (g1, 1) P (g ,HPT(fy, 1) D T(fr, Q)

=Omn+p > (iljl<ga(i)!fi>

oeS,

(@1--p:95n+1) " "Gon+p))-

Similar expressions can be obtained when dealing with the fieldst) and®'(x,t).

lll. LAX PAIR AND SUPER-YANGIAN SYMMETRY FOR NLSS

Let us stress once again that we aim at generalizing known results of integrability and sym-
metry for the nonlinear Schdinger equation to the case of an arbitrary number of bosmals
fermions. This physical motivation can be carried out by using appropriately the graded formalism
presented in the Appendix. Furthermore, we also want to transport our results to the quantum case,
which leads us to adopt the convenient Hamiltonian form of our model.

A. Classical Lax pairs

We define the Lax even super-matrixgh(M + 1|N)

in
L(N;X)= ?2+Q(X) with 2 =lx1x+1= 2Bk +1k+1 3.1
and
K
mx>=ifgj§1 (i (0Ej k1~ B () E11))- (3.2

Let us stress that, as above, the elementary matEigevith 1 at positiony, k) areZ,-graded,
with [Ej]=[j]1+[k], [j]=[K+1]=0 for 1<j<M and[j]=1 for M<j<K. With this con-
vention, thegl(M + 1|N) superalgebra has the unusual matrix form

M XM M X1
N XN ,

1XM 1x1
where the size of the submatrices corresponding to bosonic generators have been explicitly
written.

Using the PB of thep's, it is easy to compute that
{LaOx), La(msy)}=ia(x=y)[r (A= p),Li(Nix)+La(u;y)] 3.3

with

r(N—pup)= LH (3.9

IU“ )\_,LL 12 -

where we have introduced th& ¢ 1)< (K+1) super-permutation

K+1
H12=ijE:1 (—DVIE;®E); .

Definition 3.1: We define the transition matrix by

Downloaded 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 12, December 2003 Lax pair and super-Yangian symmetry 5715

ATNXY)=LNX)TNXY), x>y, (3.5

with the “initial condition” T (A;X,X)=1.
T(N\;X,y) obeys the iterative equation

X
T(A;x,y)=E(k;x—y)+E(>\;X)f dzQ(z)E(N;2)T(N;2,y), (3.9
y
where we have introduced

:eix)\IZ}IK_Fl_i_(e*ix)\/Z_ eiX)\lz)EK+1,K+l- (37)

iIX\
E()\;x)=exr<—2
2
Property 3.2:

{TaGx YD) T X )= (M=), TN X Y) O T( X, Y) ] (3.8

Proof: The equation(3.6) implies that

T(x;x,y)=nzo TM(N;x,Y), (3.9

TN x,y)= j d"zO(x>2,>2,> - >72,>Y)E(N;x—21)Q(24)
R"

XE(N;21-2)(Z2) - Uz E(N;Z,—Y). (3.10

It is then simple to show that
{@1(W), ToN XY= VGOX>=W>Y) To (A X W) 0 T (NW,Y), (311
{®o(W), ToA XY} = VIO W>Y) TN X W) 01T (A W,Y), (3.12
{DI(W), T2NXY)}F= VG OX>W>Y) To(N;X,W) 15T (M W,Y), (3.13
{D5W), To XY} = VIO W>Y) Ti N X W) oz T (N W,Y), (3.14

where we have defined
K K

01‘2:]21 &®Ex 1), 0'I2=1_21 (—DUlef®F; 1. (3.15

From the form(A5) one also computes

_ . OT2(N\;X,y)
{q)l(w):TZ()\aXaY)}_l(ej®ﬂ)W (3.19
]
_ . oT1(A;%,y)
{(I)Z(W):Tl()\’X-Y)}_|(]I®ej)W (3.1
J
. - OTo(N;X,Y)
{@I(w), To(hsxy)}=—i(— 1) (ef ®1>W, (3.18
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. , ST1(N;%,Y)
®f : — _i(—=Dlil(qgeh 1227 _

This shows that the PB can be rewritten as
{Tl()\!xvy)!TS(Mix!y)}:i fRdW({(I);(W)le(}\axvy)}{q)Z(W)ITS(Maxny)}
—{DIW), Ta( X, Y)HP (W), TN x,¥)}). (3.20

Inserting(3.12) and(3.13 in this expression, one gets

(TN % Y), To(mix,y) b =ig Jyxdw TN X W) T X, W) (10— 20 To(NW,Y) To( 5 W,Y),

K
where 7T12:j21 Ej,K+l® EK+1,j . (32])

Finally, a direct calculation shows that

J
é,—W(Tl()\iXaW)Tz(M?X,W)leTl(M?W’Y)Tz()\;WaY))

}\_
=i 2'“ ToOGXW) To( s X, W) (10— 720 ToON W, Y) To( s w,y), (3.22

so that we get{3.8). [ |
Property 3.3: The following limits are well defined:
T (3= lim T(NX,Y)E(NY), (3.23
y——x
TH(ny)=lim E(0G—X)T(NGX,Y), (3.29
X— 00
TN)=T" ;2T (N2 = lim E(N;—X)T(NX,Y)E(NY). (3.29
X— 0
yafoc

T(\) is called the monodromy matrix
Proof: Using the equalityE(\;x)Q(2) =Q(2)E(\; —x), valid for anyx, z, T™(\;x,y) can
be conveniently rewritten as

TN x,y)= E()\;x)f d"zO(x>z,>->2,>Y)
]Rn

XE x;zEl (—1)iz <kH1 Q(zk)>E()\;—y), (3.26
= -
which shows that the limits are well defined. [ |
Property 3.4:
(T2, To()}=r s (A=) TR T() = TN T()r —(A— ) (3.27

with
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g .
re(N—p)= H(P12+ Ek+1k+1®EBkr1k+1) FITgON—p) (= m01),  (3.28

g .
r-(A—p)= m(P12+ Ek+1k+1®Ek+1k+1) —1mGON—p) (o= m21),  (3.29

where B, is the super-permutation in the space oKK matrices
Proof: Direct calculation, pluggind3.25 into (3.8), and using the Cauchy principal value
lim, .. p.v.(e™/x)=*ims(X). [ |
Introducingt(\), the KX K submatrix of T(\) with the last row and column removed, and
D(N)=Tk+1xk+1(N), one finally computes:

(GO0} = 2 Pt O] (330
{D(\),t(wm)}=0, (3.3))
{DOV)D()}=0. (332

Equation(3.30 shows thatt(\) defines a classical version of the super-Yangidgl(M|N)).
Equation(3.32 shows thaD(\) can be taken as a generating function for a hierarchy,(au3d)
proves that the super-Yangian is a symmetry of this hierarchy. It remains to identify this hierarchy.

Lemma 3.5: Only #V(\), neZ. , contribute to the super-Yangian generatofa } and to
the Hamiltonian generating function @).

Expanding {\) andD(\) as series i\ ~%, one has T2V(A\)=0o(x " ").

Proof: It is clear thatT(™(\) contains the product of exacttymatrices(), the other matrices
entering in its definition being diagonal. Due to the form(hfonly products of an even number
of such matrices will contribute to(\) andD(\).

To show the\ dependence, we consider the integrationzgnand z,;,,, and perform an
integration by part, assuming that the fiellisand®" are vanishing at infinity:

22j-1 23§
J dzy; j, dzpj41 E(N; 2255 = 2254 1) (22) Q2+ 1)1 n(Zoj 414 -+ 1Z2n)

— oo

i Z3j-1 2j
:Xzf,x dz,; Q(Zzi)2|j,n(22,‘+1,---,ZZn)_Jlmdzzju E(N;225j—225)41)

XUZ2)) 35+ 1 (U Zoj 1 1 n(Z2j +1:Z2) 425+ -+ Z2n))

Above, gy stands ford/ 9z, andl; (Zyj+1,25j+2,---,Z2n) denotes the other integraldepending
onz, k=2j) which enters into the definition of(™(\).
It is clear that one can do this integration for )|, j=1,...n, and any number of times, so
that the lowest power af ! is n. [ ]
Property 3.6: The first Hamiltonians generated byN) read

DM=igN with N=fw dx®T(x)®(x), (3.33

1 ©
D<2)=—§g2N2+gP with sz dxdT(x)ad(x), (3.39

Downloaded 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5718 J. Math. Phys., Vol. 44, No. 12, December 2003 V. Caudrelier and E. Ragoucy

N3
D(3)=—%N3+igzNP+igH, (3.39
H=f:dx6<I>T(x)ac1>(x)+gfldx(q>f(x)q>(x))2. (3.36

This shows that D\) generates the Hamiltonians of the NLSS hierarchy, so that (3.31) proves that
Y(gl(M|N)) is a symmetry of this hierarchy

Proof: We use the techniques given in the above proof, focusing onKhel(K + 1) matrix
element. The bounds in the integrals are simplified using the property

(Q(Xl)é’kﬂ(xz)ﬂ(xg)ﬂlﬂ(X4))K+1,K+1: (Q(Xl)3kQ(Xz))K+1,K+1(Q(X3)<9|Q(X4))K+1,K(+31-3_/)
. |

B. Time evolution

Strictly speaking, we have, up to now, constructed only the linear opdréigx) introduced
in the Zakharov—Shabbat schefi€his operator is only the first element of the Lax pdir ).
It is sufficient to solve the problem, but for completeness, we now introddicéhe second
element of the Lax pair.

The Lax pair is a reformulation of the equations of motion as the commutativity of two
differential operators:

d P
LX), Z = M(Ax,1) | =0, (3.39

which amounts to the compatibility condition of the auxiliary system

du=L(\;x,t)u,
(3.39
du=M(N\;Xx,t)u.

Starting from the definition$3.1) and(3.2), it is a straightforward calculation to show that for
iN2 _
M(Aix,t) == S-S +igQxHEQ(x) — VO a,+iN)Q(x,1) (3.40

the condition(3.38 is equivalent to
(i 9.+ 02) Q(x,1)=2g| D (x,1)[2Q(x,1), (3.42)

which just reproduces the equations of moti@il0 and their counterpart fobT(x,t).
As it should be clear from the syste8.39, M(\;x,t) is associated to time evolution in the
same waylL (\;x,t) is associated to spacial translation. This is confirmed by the following:
Property 3.7: The time evolution of the transfer and monodromy matrices is given by

TN XY, D) =M X DTN XY, D =TS X Y, DM YT, (3.42
in2
FHT LNy t)=— TET(A;y.t)—T(A;y,t)M(A;y,t), (3.43
in2
AT_(N XD =M\ X DTN X, ) + TT()\;x,t)E, (3.49
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%
atT()\;t)=—7[2,T()\;t)]. (3.45

Proof: The first equation is proven showing that
ZIN XY, D=0 TINGXY, D =M DTN XY, D +TONGXY, DM Y
obeys the differential equationg$vy):
HWZNX,Y)=LNX)Z(NX,Y),
IyZ(N;%,Y)=—Z(N;%,Y)L(NY),

together with the initial conditioZ(\;x,x,t)=0.
The other equations are proved through the limits, y— —c using lim,_.. M(A;X,t)
=—(iN%2)3. [ ]
To conclude this section, let us remark that the time-evolut®45 shows that we have

T(Nx,y, 0= E2T(\;x,y,00e 122 (3.46

in accordance with the ZF formulation of the Hamiltonian.

C. Quantum Lax pair

Following Sklyanin?® we define the following.

Definition 3.8: The quantum transition matri\ ;X,y) is the Wick (normal)-ordered classi-
cal transition matrix T\;X,y) regarded as a functional of the quantum canonical fielg),
dT(x):

TONXY)=T(NXY): (3.47)

Here and below the normal ordering is defined as

LX) ph(y)=(— DMl (y) (%), VX,

and extended to monomials i) ¢ in the usual way, i.e., with all the¥s on the right of thep s,
keeping the original order between tigs and between the's.

For convenience, we also define a symbol 1 which acts on operators and is not to be
confused with the symbol : :. It simply guarantees the orderingbpf®' in an expression
containingL (A ;x) and otherinormal-orderegfunctionals of the quantum fields without changing
the internal ordering of the functionals. For exampleAif:a: andB=:b:, then

. K
I\ ) )
$AL(\;X)Bt= ?AEBH\@IZl ((— 1)U, (x)AE .+ 1jB— (- DUIBIAE; 4 1B (%)).

The previous definition gives rise to many questions dealing with operator theory and func-
tional analysis which were answered for the bosonic case in the very detailed réyieutkin.
But for the sake of brevity, we mimic the compact, albeit more formal, approach of Sklyanin since
it contains all the fundamental and physical ideas, bearing in mind that everything is well defined.
In this sense, the quantum transition matrix is the fundamental solution of the quantum
auxiliary problem

A TINX,Y)=FL(NX)TIN; X, Y)E with TTA;x,x) =1 (3.48

and satisfies
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ayTIN; X, y)=—FTIN x,y)L(Ny)
TN XY)T(NY,2)=T(N;X,2)  for x<y<z or x>y>z,

whereL (\;Xx) is the Lax even super-matrix defined (@.1) and(3.2).
This system of first-order differential equations together with the given initial condition is
equivalent to the following Volterra integral representations:

TIN;X,y) =1+ jyxdw LN, 0)T(N;0,y) T, (3.49

TN XY) =1+ J’yxdw FTIN X, 0)L(N; ). (3.50

In order to reach our final goal there are several steps which all rely on one simple idea
extensively used in the inverse problem literature, that is two quantities are equal if and only if
they satisfy the same first-order differential equation with the same initial condition. This is what
is called “the differential equation approach” by Gutkin in Ref. 1. He criticized this approach but
showed that it gives the correct answer using the “discrete approximation approach” which
amounts to the same line of argument but deals with finite differences on subinteryaly pf
instead of a true derivative.

The first step is to obtain the commutation relations of matrix elements of the transition matrix
and we need two preliminary lemmas.

Lemma 3.97;(\;x,y)To(w;x,y) satisfies the following differential system:

I TN XY) T X, Y) = F LN, i X) T (N X, Y) To( 3 X, Y) E (3.5
Ti(N X X) T 5 X, X) = To( s X, X) T (N X, X) = 1@ 1, (3.52

where
LN, ;%) =La(NX) +La(piX) + gy (3.53

Proof: The idea is once again to use the equivalence between the differential problem and the
\olterra integral representation of the solution. Indeed, taking care of the ordering of the fields
when using(3.49 and(3.50, one gets

X
Ti(NXY) To(pix,y) =11+ de FLooAN s 0) (N 0,Y) (s 0,Y)E .

Lemma 3.10: The operataf;»(\,u;X) satisfies the following relation:

RaoN— ) Lao N, w3 X) = Lo, N} X)Ryo(N— ), (3.59

whereR (A —u)=1—ir(N—pu), and r(A — ) is given by (3.4)
Proof: Direct calculation using

(Mo, La(Nx) + Lo(usX) J=1(N— ) (15— 51),

wherer;, has been defined i(8.21). |
We can now formulate the basic result of this paragraph.
Theorem 3.11: The quantum transition matri¥(\;x,y) satisfies the following finite volume
commutation relations:
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Raa N = ) TN, Y) T s X,Y) = To( 15 X, Y) To (NS X, Y) R N — ). (3.59

Proof: Using the fact thafR,,(\) is a numerical, invertibléfor A real and nonzepomatrix,
Lemmas 3.9 and 3.10 imply that the quantitie®,(u;X,y)71(N;X,y) and Rqis(A
—,LL)'Tl()\;X,y)'TQ(/J,;X,y)RIZl()\—M) satisfy the same first-order differential equation with the
same initial condition. [ |

Let us remark that if we restore the Planck constant in the canonical commutation relations,
then Rio(A—pu)=1—iAr(A—u) and we recover the relatio(8.8) for the classical transition
matrix, given that aé—0, 7(\;X,y)—T(\;x,y) and[,]—i#%{,} and keeping the terms of ordkr

We are now in position to define the quantum monodromy matrix as an appropriate limit of
the quantum transition matrix to obtain the infinite volume commutation relations corresponding
to (3.595. The crucial difference with respect to the classical case comes from the nontrivial
commutation relations of the quantum fields, which produces the term proportiorglirio
LN, 1;X).

Therefore, one cannot define the limit as(8125 and insert it directly in the finite volume
commutation relations. Instead, we are led to compare the asymptotic behavior of
Ti(N;%,Y) To( e %,y), for which we have information with that df; (A ;x,y), Zo(uw;X,y) sepa-
rately, whose commutation relations in the infinite interval limit we are looking for.

Definition 3.12: The quantum equivalents of (3:23).25) are defined by

T-(x)=T (%), THOvy)=TY(Ny):, TIN)=:T(MV):, (3.56

and7(\)=7 *(\;2)7 ~(\;2) is the quantum monodromy matrix
E(\;X) being a numerical matrix, one immediately deduces

T ~(N;x)=1L(N )T~ (N5x)F, (3.57)
AT T (N X)=—FT " (N;x)L(N;x)E. (3.58
As a first step, we look for information of¥ ; (N;X)7 5 (u;x) from what we know of

TN, Y) To(w;x,y) . This is gathered in the following lemma.
Lemma 3.13:

lim T3(N X, Y) To( X, Y) Ero N i3 Y) =T 1 (N X)T 5 (3 X)Cra( N, ), (3.59
y— —x

where 7, being defined as in (3.21), we have introduced

iA i
flz(NMQY):eXF{(?El"‘ ?224'97712))’}, (3.60

_ ig
ClZ()\,M)_]®]_)\_,U,—+i87T12. (36])

Proof: Let
AN wsx)=Iim TG XY) To( 5 %,Y) 1 N 13 Y), (3.62
y——®

AN X) =T L (X)) T 5 (X)) (3.63

Rewriting  Lio(A, u;X)=Lo(N, 1) +Q1(X) +Qo(x)  with Lo\, u)=(IN2)2 1+ (1 ul2)25
+gm1,, One easily gets froni3.51) the integral representation
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TN Y) T3 %,Y) = (N s X—Y) + fyxdw FTL(NX,0) T 3%, @) (Q4(w)

+Qo(w) 1N us0—Y), (3.69
which shows that\ (A, u;X) is well defined and also satisfies
AN, 3 X) =F LN i X)A N, i X)F
Now following the same line of argument as in Lemma 3.9, we get
AT (N, X) = E LN i X)A T (N w3 ) F.
Consequently,
AN X) = AT (N wiX)Cra(N,p), VX, (3.69

and we can determin€5(\,u) from the asymptotic behavior as——o°. From the physical
requirement that

lim |®(x)|=0

X— oo

and Eq.(3.64), we see that

TIOGXY)To(usX,y) ~ SN, wiX—y),

y——
X—y

implying

AN, X)) ~ 1N 5 X). (3.69

X——

On the other hand, fron8.57), A~ (\,u;X) can be represented as

X

AN X)=E (N X)Ep(ux) + f oodw TN X, 0)To( i X, @)

X (Q1(w)+Qo(0)+9m) TE1(N 0)Ex(u; o),
so that

AN usx) ~ Ex(MX)Ea(usx)+ 1N, w53 %),

X— — 0

where

|()\,,u;X)=gJ_dew E1o N i X— @) mE (N 0) Ex(u w)

can be evaluated from the knowledge of

Sin(L(N — w)/2]x)
N—u

E1oN, 3 X) = E1(N;X)Ex( s X) + 29 T2

and anie prescription to get
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ig o
I()\'M;X):)\—,u,—-i-ise if(n M)IZJXW]_Z-

Now, adopting the regularization

2 SN WIRI0 719w gito- wizig
N—u N—utie '
we see that3.65 holds forC;5(\,u) given in (3.61). |

Theorem 3.14:The commutation relations for the quantum matri@e$(\;x) and Z(\) for
real N and u take the following form;

RaodN=m)T 1 (MX)T 5 (s X)Cro( Ny ) =T 5 (1, X) T 1 (N X) Cog( i, M) RN — ),

Ras A= ) Cra M T 1 (NX)T 3 (15%) = Con(N, ) T 3 (1) T L (N X) R A= ), 367

RidN =) TN To( ) = To( ) N R A — ),
where, definindc==1 |E;;,

—ig (A=p)?+g? N—u—ig
—— 1@+ Pt mpt
(A=p) KK 12t e ()\—,u“—i—is)zw12 A=

T 7SN — ) (Ik®Ek+1x+1~ Ek+1x+1®@1k).

RiAN—p)= Ek+1kr1®Eki1x+1

Proof: We start with the proof of the first equality. Lemma 3.13 gives

lim TN X Y) To(ws X Y) Ero Ny s Y) =T 1 (M X)T 5 (3 X)Cra( N, ),
y— —x

which in turn yields

lim (X, Y) TN X, Y) Exa( e, N Y) =T 5 (u3X)T 1 (NX) Cop( s\ ).
yﬂ—oo

Multiplying (3.55 on the right byé;,(\,«;y) and using the property
RN =) E1oN, 1Y) = Eo1( 4, N Y) RN — )
we get
Riod N = ) Tu(N X Y) To( i X, Y) 2Ny i3 Y) = To( i3 X, Y) T (N X0 Y ) Ep1( 1, N Y) RN — ),

which gives the first equality in the limit— —. The second equality is proved along the same
line of argument. Now, combining the two equations and using the properties

TN =T ()T (Nx) and T3 ()T 5 (NX) =T 7 (NX)T 3 (wX),
we get
Rya A= ) Caof u, M) Ty (N) Tp( ) Cao N, ) = Con(N, 1) To( ) Ty(N) Con( s, M) Ry A — ),
which take the form3.67) if we define

RidN— 1) =C (N, )1 R 5N — ) Cos N, (3.68
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RN =) =Cool s, MIT15R 14N = w)C (N, 1), (3.69

whose explicit calculation we leave to the reader. |
Let us extract the information contained(.67). We start by particularizing some entries of
the quantum monodromy matrix,{=1,...K):

ti;(N)=(7(N))ij (3.70
bj(M)=(T(N\))j k+1, (3.71
D(N)=(T(M))k+1k+1- (3.72
Theorem 3.15:The exchange relations of the entries of the quantum monodromy matrix read
as follows:
[tij V)t () ] =ig (= )BT KD tkj()\)t”(/;\)__:ij(ﬂ)t”()\) , 3.73
tii(MD(r)=D(m)t;;(N), (3.74
D(N)D(u)=D(m)D(N), (3.79
bj(N)by(p)= %(— 1)Mby(p)bj(N) — %bj(ﬂ)bk()\)- (3.7
m—N—ig m—A—Ig
bj(M)D(u)= @D(M)bj()\)- (3.77
AN—p—ie
Proof: By direct calculation. |

Relations(3.73—(3.795 are the quantum counterparts of E§3.30—(3.32 and the same
interpretation holds but for the quantum hierarchy here. As such, the super-Yaf(@kiM|N))
is a quantum symmetry of the hierarchy generatedy), which is just the quantum analog of
Property 3.6 as can be seen from

. 2
|
9 9 +7\—93 H—I—g(N—l)P—%N(N—l)(N—Z)

i
=1+ —N+— +
D(\)=1+-"N N o)

g
P-SN(N-1) =)

D. ZF algebra from Lax pair

The two relationg3.76) and (3.77) will allow us to recover the ZF algebra. Indeed, all the
quantities of Theorem 3.15 are functionalsdaf® ', themselves involving the ZF generatcs.
(2.35], and one can get the ZF algebra out of them as follows.

Property 3.16: Defining g\) = (1/\7g)b;(\)D(\) %, Egs. (3.76) and (3.77) give

L= : ig
) —_ 7 (_ 1)k ) 7 4
(M p) =7 (m DR adpwa (V) = mmrsai () adh). (3.78
Proof: Direct calculation from Theorem 3.15. [ |

To complete our algebra, we need the exchange relations beaq@ehandal(ﬂ). Contrary
to the original ongbosonig component case, this is not directly obtained from what we already
have since there is no simple conjugate relationship for the entries of the monodromy matrix. We
are naturally led to introduce a conjugate Lax super-matrix defined by
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i . )
LX) == 5 3= iVg8] () Exs 1+ VIS (0Ej k1 (3.79
and the associated transition matrix

ax7_()\;x,y)=i?(x;x,y)f()\;x)i;. (3.80
Now, to obtain information between the entries @ ;x,y) and7_'(,u;x,y) following the same
steps as in Lemmas 3.9 and 3.10 and Theorem 3.11, one sees that we actually need to work with
the super-transposed Lax matrix. The corresponding operation on an even super#natrix
=EiK,j+:11AijEij reads
K+1 K+1
At:ij2=1 AijE}j :ijzl (—1)ME+0DAE, . (3.80)

It satisfies AY)'=A and (AB)'=B'A! for any even super-matricgsandB. We get

L'(Nix)= %Eﬂ Vo= D (0B 15~ 1V9 ] (0E; 1 (3.82
and the associated transition matrix
AT N X, Y)=1T'(N;x,y)LY(N;x) . (3.83
Therefore, instead af3.51) we get
AT T H(ix )= FT ) T oY) TN, i), (3.84
AT (X T = T (X)) TN Y)T 1N, 30 %, (3.89
with
T30, %) = Ly ix) + Ly i) + g7,
T30, w53) = Ly () + Lo(Nix) + g,

Now the key point is to find an invertible numerical matf,(\) solution of the new Yang—
Baxter equation

RN ) 1N, ;%) =T oa(N, i, X)Rao(N, ).
It is given by

, ig A—u—ig(M—N)
Righop)= 53— Tyt ———

;5. (3.86

Following the same procedure as above, we finally deduce the infinite volume commutation
relations under the form

Rix A=) TN T () =T () LR, (A= w) (3.87)

with
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- ig AN—p—ig(M—N)
Riz (N—u)= mptllz‘l‘ N1 (Pyot oot m29)
(A—p—ig)(A—p—ig(M—N))
+ — Exk+1k+1®Ek+1k+1
(AN—pu+ie)

— t t
F TGN —p) (T~ 7).
All these results are the generalization to the graded case of RdK,1the total number of
bosonic or fermionic particles is replaced in our caseMyy N, the difference of bosonic and
fermionic particles Accordingly, we get the same conclusions collected in the following propo-
sition.
Property 3.17: Let &(\) = (1/\mg)(D 1) T(\)b/(x). Then

A— . i <
(M3 ()= ﬁ(—l)““”a,—*w)am—6”-%;1 ay(mad\)+ 880N = ),
(3.89
Faat o TN it atay 1O tooNat
al(Ma(w)= e (C D Waj(wal ) - ral(waj). - (3.89

Proof: Noting that
bj(M=T"'Nk+1j, DOV)=T'Mks1k+1,
b/(M)=TN)ks1;, DIN=TN)kr1ks1,
(3.87) gives
DT(\)D(x)=D(#)D'(N),

N—p—i N—p—i
D(wb](N)= 3o BIVD (). by(w)DT(N)= =2 DTNy ()

. . . K
bt PN it . IQ(uATI0) g
Vb ()= gy (DB (b 87 7 e 2 bi)be (M)
+68jmgS(A—wu)DT(u)D(N),
which in turn yields(3.88). The proof of(3.89 is similar. [ |

IV. EXPLICIT CONSTRUCTION OF THE SUPER-YANGIAN GENERATORS
A. Super-Yangian generators in terms of canonical fields

We consider the classical case. The quantum case can be done in a similar way, with correc-
tion terms due to the noncommutativity of the fiellis .
For anyK X K-matrix o € gI(M|N), we introduce

K
Q5,0>=f dxqﬂ(x)mb(x):f dxj%1 b} (x) 1 py(x), (4.9

QE,“zf dx@*(x)a&@(x)—gf dxdy sgx—y)DT(x)a®(y) - dT(y)D(X), 4.2
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Q= J dx @ ()0 D ()~ 5 f dxdy sgx—y)(®'(x)7id(y) =D (x)a®(y)) ®'(y) P (x)

2
+ ng dxdydz sgx—y)sg(y—2)DT(y)D(x)- T(x)o®(z)- PT(2)P(y). (4.3

The coefficients in4.2) and(4.3) are fixed in such a way that
{H,QM1=0, n=0,1,2, (4.4

SO thathT”) are indeed symmetry generators of the NLSS equation. With these definitions, it is a
simple calculation to show

(Q7.Q=iQry, n=012, 9

2
{Qﬁrl),Qﬁf)}=iQf[§),wn—i<—g) f dxdydt $x,y,0(@'(x)c(y)- & (y) 0 D(1)

— DT (x)0d(y) ®T(y)od(1)DT(t)D(x),
(4.6)
S(X,y,t)=sg(t—x)sg(x—y) +sg(x—y)sg(y—t)+sg(y—t)sg(t—x).

Equation(4.5) shows thaQ!®, oegl(M|N), generates gl(M|N) superalgebra, and tha{"

o

(n fixed) form a representation of it. The second term{4rb) reflects the nonlinear commutation
relation of the super-Yangian.
Note that we have

Q{”=N and Q{"=P, (4.7)

so that Eq.(4.5) shows thale,”) commutes withN and P. Moreover, we have the supersymme-
trylike relations:

{QY Q1 =2iN,
{Q,QM}=2iP,

However, let us remark th&@!{? is not the NLSS Hamiltonian:

as soon aso’=1 and[o]=1. (4.9

2
Q¥=H+ ng dxdydz sgx—y)sgy—2)®"(y) @ (x)- DT (x)oP(2)- DT (2)D(y).

%2) corresponds to a central generator which, if it were the Hamiltonian, would lead to nonlocal
equation of motion ford. On the contraryH commutes with the generatot}f,“) and provides
local equation of motion.

B. Super-Yangian generators in terms of ZF generators

We have obtained the ZF-algebfa.15 and (2.17) from the commutation relations of the
quantum monodromy matrix. This shows the central importance of this algebra and one is natu-
rally led to take it as a starting point. This is the very idea developed in Ref. 29 and we use it to
construct a realization of the generators of the super-Yangian symmetry in terms of the ZF oscil-
lators.

First of all, we need to generalize all the basic results of Ref. 29 to our graded formalism. It
is actually readily obtained since the fundamental idea of the properties given in Refs. 29 and 4 is
the possibility of relabelling the auxiliary spaces which holds for our global formalism as the
reader can check. Thus, we are in position to apply any result from Ref. 29 in our context. Here
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is our strategy: we start from the ZF algekbi@rresponding to the algebrdg in Ref. 29,
introduce the associated well-bred vertex operdipx) and use the explicit expression of our
R-matrix to derive the first two terms of the expansioriTg¢h) in power series ok ~1. Then we
show that this approach actually coincides with the previous Lax pair formulation so that we have
a realization of the generators of the super-Yangian symmetry for the hierarchy associated to the
nonlinear super-Schdinger equation in terms of the ZF oscillators. This completes and confirms
the deep relationships between the quantum canonical field descrigti®ec. IV A and the ZF
algebra approach.

Definition 4.1: The vertex operators]'(}\) (i,j=1,...K) associated to the ZF algebrdy are

defined by T\) =TI (\)E;j € Az@ CX with

( 1)n+1
T.ON)=1+ 21 T T as.n, (4.9

where
al 1= (ag.n) " =al(ky)---al(ky),
o K2
T =T O Ky k) € (CZKH) 2D Ky k),

and integration is implied over the spectral parameteyfs.k k, (the summation over the auxil-
iary spaces being understood as in the Appendix)
T..(\) is said to be well-bred (otdR) if

TV ag(w) =Ry (pm—N)ag (@) T(N) andTw<x>a1<m=a1<mel<x—mux)( )
4.1

with R given by (2.18)

Then, from Ref. 29 we can directly assert the following.

Property 4.2: The well-bred vertex operators,(R) obey FaddeevReshetikhirTakhtajan
(FRT) relations

so that they generate the super-Yangian algebfgfM|N)). In addition, they form a symmetry
super-algebra for the hierarchy ¥ defined by

H<“>=F dk K'a'(k)a(k), neZ,, (4.12

forming an Abelian algebra of Hermitian operators and governing the flows of the scattering
operators aa' as follows:

iH () —iH(Mm —j
eIH nta(k)e iH ntze 'knta(k),

(M _ eik”ta‘r(k)

eiH(”)taT(k)efiH
Now, recalling the results obtained in Sec. Il C 4, Property 3.6 and (Bd&3—(3.75, we see
that both descriptions of our integrable systéim terms of canonical fields or ZF scattering
operatory are equivalent. But in this operation, we have gained an explicit realization of the
super-Yangian generators.
To do this, we use the inductive relations obtained in Theorem 3.3 of Ref. 29 order by order
in the spectral parametar Let us rewrite
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i oo
T.)=1+ 23 Tk o, (4.13
)\ p:O
where, accordingly,
*® (_1)n+1
-3 o —al T,

n=1 n!

for someTMIP e (CEKH Mk, . ko).

Our goal is to determmé’i?} and T | that is the first two “levels” of the super-Yangian
generators. To do this we note that the inductive relations of Theorem 3.3 in Ref. 29 at first order
in \ take the form

T V=1 —TW _1+O0(\"?), (4.14

©Q-n

which, under the knowledge of
THO=1+pP,,,

yields
- n
TR R=(-" Y (—1>k(k)Pwk,
k=0

wherePj; is the super-permutation of auxiliary spageandj, so that

n

1n+1
= ) 2( 1)nk

o=y

n=0

al oPkdo n- (4.19

Now that we have the explicit form af®' we can use it to evaluate the commuta{tﬁﬁ,} T
directly and compare the result to that obtained from the FRT relafiid) at orderx ~2. The
latter calculation yields

[T T =(P.... T, (4.16

o! 1

As for the former, the well-bred relatiorid.10 at order\ ~2 read
[T ag()]= (14 Po)ag(w),
[TE ag( ) 1= w1+ Po.)ag( ) +ig(1+ Po.)ao(w) (1+ T,
[T ag(w)]= —al(w) (1+ Poo),

[T al(w) 1= — pad(w) 1+ P.g)+igad(w) (14 P.g) (1= T,
which will be useful in calculating
o _1)n+l n

(i T3
n=0

- ko(—l)“( )[Tfj?, .. oPkao.n].

Note that this procedure can be iterated to evalﬂl'értéfor an arbitraryn through[Tio”,} ,TLO}].
Now,
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n

[T .al oPokdo.nl= 2, al..oPudo 1T e an+2 al- [T af1-alP.i@c
:[war ,(,(Lk_ n— 1)a$..,opo¢ka0..n]+ag,,,o[ wa/ ,Pwk]TiO,}ao.,.n

k=1 n
T T
+i20 an,,,o[Pmk,Pm,]Pm,iao..,ﬁi;+1 al  oPurilPoksPucr 180 -

This expression can be considerably simplified[irrf,},T‘EOO}] using the properties of the
binomial coefficients to combine the last three terms. Insei@ng5 and using the property

n—1
k—1)’

proved in Ref. 4, we gefafter a convenient relabeling of the auxiliary spaces

1N
ngk(n)aﬂa,’\l nn—aE—aiN, where ap=(— 1)kt

[T Tioh—

Pococ 121 (_ ) 2 CVkal n

n=

k-1
(pg—ign)Poy— '92 Poolpook}an

Comparing this last expression wiid.16, we get the explicit form forTi (up to a term
proportional tol.,).
To conclude, we can recast this expression as

)

TH=2 S 2 apaj...,

e

k—1
PPk~ .gz PmkPm.)an 4 +igTT (417

In the case ofyI(N), we recover the results of Ref. 4, although in a different basis:

o_g (D™ n
Tij =2 —k§=:0 agay.. OEJI Ao

n=0 n!

o0

(—1)" &
Ti{jl} 2 IZ« akal n

A1 Nl

a1 +Hig(TIODF,

k ; € k
i, S EfE

whereE(/) denotes theE;; matrix in the{th auxiliary space.
For gI(M|N) 5|m|lar formulas may also be obtained, taking care of Zhegraded tensor
products.

V. CONCLUSION

We solved a vectorial version of the nonlinear Schinger equation which contains fermions
and bosons at the same time. We first introduced it classically usihggeaded formalism. At the
quantum level, special attention was paid to the resolution using a super ZF algebra associated to
the R-matrix of the super-Yangiaiv(gl(M|N)). The integrability and symmetry of our system
was studied through a Lax pair formalism and it is worth stressing the deep interplay between
canonical andZF) algebraic formalisms. The ZF algebra allowed us to compute the correlation
functions. Further investigations can be performed in this direction to study super-versions of
known integrable systems. One can also study these super-versions when a boundary is intro-
duced, using generalizations of the ZF algetiraundary algebras
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APPENDIX: AUXILIARY SPACES

1. Graded spaces

We define in the auxiliary space,kacolumn vectore; with 1 at rowj and O elsewhere, its
transpose, the row vecte{z(O,...,l,...,O) and the matricés; , with 1 at position {,j).
Here and below, the vectogs, eiT, and the matriceg;; will be Z,-graded:

0 fori=1,..M,

le=(el1=[i1; [EyI=[II+01 with [i1=) (o

Accordingly, the tensor product of auxiliary spaces will be dlsegraded, e.g.,
(]I(X) ei)(Ejk®][) = ( - 1)[i]([j]+[k])Ejk®ei .

We will consider even objects in the following sense:v;e; and U=Uj;E;; (summation on
repeated indices is understoate even iffv;]=[i] and[U;;]=[i]+[]j]. For example, the field
d(x) is even.

Note that, when dealing with the tensor product of auxiliary spaces, one has to be careful not
to confuse(even objects likeA;=A®1=3K \;e;®1 with their (Z,-graded components\;, i
=1,...K. As a(tentative clarifying notation, we will use boldface letters for the even objects, and
ordinary letters for their components.

Finally, in order to apply our formalism to derive the classical NLSS equation, we will use the
global Kronecker symbol,

8= 8 (e@e))=(e@e)), (A1)
and, accordingly,
sn=(-Dl'elze). (A2)
2. Poisson brackets

For F and G two (®,®T)-functionals, their Poisson bracket is defined by

SF  5G SF  6G
0he(X) 8pl(x)  Sph(x) 6be(X) ]

K
{F,G}ziZ,l focdx(—l)[F]m((—l)[“ (A3)

This bracket is a graded Poisson bracket, i.e., it is bilinear, graded antisymmetric, and obeys the
graded Leibniz rule and graded Jacobi identity.

To any graded PB, one can associate a “global” Poisson bracket, defined for the even func-
tionals F and G. We introduce the notation, to denote eithee; («=(0,i) and[a]=[i]), efr
(a=(i,0) and[@]=[i]), or Ej; (a=(i,j) and[a]=[i]+[]]), so that any even objeét can be
written F=% F u, with [F_]=[«a].

On any even object, one defines the global PB

{Fl,Gz}:aEB {Fo.Gglu,®ug. (A4)

It is bilinear, antisymmetric, and obeys Leibniz rule and Jacobi identity. Let us stress that this
global PB is not gradedbecause of the use of auxiliary spacdsut its “component” version
indeed is graded.

Lemma A.1: The global PB (A4) corresponding to the graded PB (A3) can be rewritten as
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) oF, oG, 6G, oF,
{F1,Ga} = f

A5
5D3AX) 2L x) PN 5L %) (A9

where we have introduced a third auxiliary space (labefdvhich is “inserted” between the
space 1 and the space 2. We have also defined

K
1)[J] —5 (AB)
' "5 (%)

Proof: Direct calculation. [ |

5c1>(x) JZ 5¢>1(X) and 5<I>T(X):
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