
              

City, University of London Institutional Repository

Citation: Caudrelier, V. & Ragoucy, E. (2003). Lax pair and super-Yangian symmetry of the

nonlinear super-Schrodinger equation. Journal of Mathematical Physics, 44(12), pp. 5706-
5732. doi: 10.1063/1.1625078 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/171/

Link to published version: https://doi.org/10.1063/1.1625078

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


tum

sional
lebrated

ngian
n

hich
erarchy

.
rmion
f
of

ested

tion or

al was

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 12 DECEMBER 2003

Downloade
Lax pair and super-Yangian symmetry of the nonlinear
super-Schro¨ dinger equation
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de Savoie, LAPP, BP 110, F-74941 Annecy-le-Vieux Cedex, France

~Received 10 June 2003; accepted 4 September 2003!

We consider a version of the nonlinear Schro¨dinger equation withM bosons andN
fermions. We first solve the classical and quantum versions of this equation, using
a super-Zamolodchikov–Faddeev~ZF! algebra. Then we prove that the hierarchy
associated to this model admits a super-YangianY(gl(M uN)) symmetry. We ex-
hibit the corresponding~classical and quantum! Lax pairs. Finally, we construct
explicitly the super-Yangian generators, in terms of the canonical fields on the one
hand, and in terms of the ZF algebra generators on the other hand. The latter
construction uses the well-bred operators introduced recently. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1625078#

I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation is one of the most studied systems in quan
integrable systems~for a review, see, e.g., Ref. 1!, and its simplest~scalar! version played an
important role in the development of the~quantum! inverse scattering method.2 As usual in
quantum integrable systems, its integrability relies on the existence of an infinite-dimen
symmetry algebra. In integrable systems, natural candidates for such algebras are the ce
quantum groups associated to~affine! Lie algebras, or the Yangians. Indeed, it is known3 that the
quantum NLS model with spin 1/2 fermions and repulsive interaction on the line has a Ya
symmetryY(sl(2)). More generally, its vectorial version, based onN-component bosons or o
N-component fermions, was shown to possess aY(gl(N)) symmetry.4 The integrability can also
be grounded on the existence of an infinite series of mutually commuting Hamiltonians, w
thus generates a whole hierarchy of equations. In the case of scalar NLS equation, the hi
contains well-known models, such as the modified KdV equation.

It was natural to seek a supersymmetric version~including both bosons and fermions! of these
models which admits the super-Yangian based on superalgebrasgl(M uN) as symmetry algebra
Different versions of such a generalization were already proposed, from the simple boson-fe
systems related to NLS,5,6 or superfields formulation7,8 of NLS, up to more algebraic studies o
these models.9,10 The difficulty with such generalizations is to keep the fundamental notion
integrability while allowing for the existence of supersymmetry. Even when some of the sugg
supersymmetric systems were shown to pass some integrability conditions,11 the status of such
models remained not clearly established, and one is still looking for, e.g., their Lax presenta
their underlying infinite-dimensional symmetry algebra.

AnotherZ2-graded version of NLS was introduced by Kulish,12 the fields being super-matrix
valued and thus associated to both fermions and bosons. However, only the finite interv
studied, using the thermodynamical Bethe ansatz~see also Ref. 13!, and the explicit quantum
solutions are not known. The symmetry~super! algebra is also lacking in this presentation.

The aim of this article is to present a ‘‘super-vectorial’’ version~close to the matricial version
introduced by Kulish! of the NLS model on the infinite line which includesM bosonsand N

a!Electronic mail: caudreli@lapp.in2p3.fr
b!Author to whom correspondence should be addressed. Electronic mail: ragoucy@lapp.in2p3.fr
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fermions fields. The advantage of this version relies on its manifest integrability and the exis
of quantum canonical solutions, which we will explicitly construct using a super-ZF algebra~Sec.
II !. Indeed, these solutions can be associated to a whole hierarchy of mutually commuting H
tonians, as it should be for an integrable model. It also admits, as we will show~Sec. III!, a Lax
presentation both at classical and quantum level~without using a superfield formalism!. As usual,
the Lax pair presentation allows us to recover the hierarchy of our super-NLS equation. F
this super-NLS hierarchy possesses a super-Yangian symmetry and we will construct it, both
the quantum canonical solutions or the super-ZF generators~Sec. IV!.

II. NONLINEAR SUPER-SCHRÖDINGER EQUATION

A. The usual nonlinear Schro ¨ dinger equation

The NLS equation reads

~ i ] t1]x
2!f i~x,t !52gf† j~x,t !f j~x,t !f i~x,t !, i 51,...,N, with g.0, ~2.1!

where summation over repeated indices is understood. It is obtained from the~time-independent!
Hamiltonian

H~f i ,f j
†!5E

2`

`

dx~]xf
† j~x!]xf j~x!1gf†i~x!f† j~x!f j~x!f i~x!! ~2.2!

using the Hamiltonian equation of motion] tF5$H,F%, valid for any functionalF(f i ,f j
†), where

the Poisson bracket~PB! is canonically associated tof andf†.
A solution à la Rosales14 can be written as follows:

f i~x,t !5 (
n50

`

~2g!nf i
~n!~x,t !, g.0, ~2.3!

with

f i
~n!~x,t !5E

R2n11
dnpdn11qlk1~p1!¯lkn~pn!lkn

~qn!¯lk1
~q1!l i~q0!

eiVn~x,t;p,q!

Qn~p,q,0!
,

Vn~x,t;p,q!5(
j 50

n

~qjx2qj
2t !2(

i 51

n

~pix2pi
2t !,

~2.4!

Qn~p,q,«!5)
i 51

n

~pi2qi 211 i«!~pi2qi1 i«!,

dnpdn11q5)
i 51
j 50

n
dpi

2p

dqj

2p
,

where we have denotedp5(p1 ,...,pn), q5(q0 ,...,qn).
The Rosales solution is fundamental since its structure is preserved upon quantization15 and

we shall see below that this result survives when one includes fermions. The NLS equation
hierarchy admit the YangianY(gl(N)) as symmetry, and the explicit construction of its generat
was given in Ref. 3@for sl(2), in terms of canonical fields# and Ref. 4@for sl(N), in terms of the
ZF generators#. A Lax pair formulation can be found in Refs. 16 and 17~for NLS equation! and in
Refs. 18 and 19~for its vectorial generalization!.
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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B. Classical nonlinear super-Schro ¨ dinger equation

We consider a generalized version of the NLS equation which includes both boson
fermions. Due to the use of auxiliary spaces~see the Appendix!, the corresponding equation wi
formally look like the original one, but let us insist that the present version is a ‘‘supersymme
version of it. While the similarities allow us to build the solution of the nonlinear sup
Schrödinger equation, the differences will appear, for instance, in the nature of the sym
algebra~see below!.

We defineF(x)5( j 51
M1Nf j (x)ej , where ej is an (M1N)-column vector in the auxiliary

space and summation is understood for repeated indices. Heref j , j 51,...,M , and f j , j 5M
11,...,M1N, are the bosonic and fermionic components, respectively. By fermionic function
mean Grassmann-valued functions depending on the real variablex, the integrations throughou
the article being always in real~or complex! variables. For convenience, we setK5M1N. We
shall also need adjoints of the fields

F†~x!5f i
†~x!ei

† , xPR. ~2.5!

The Hamiltonian reads

H~F,F†!5E
2`

`

dx~]xF
†~x!]xF~x!1g~ uF~x!u2!2!, ~2.6!

or, in components,

H~F,F†!5E
2`

`

dx~]xf
† j~x!]xf j~x!1gf† j~x!f†k~x!fk~x!f j~x!!. ~2.7!

The canonical Poisson brackets for the basic fieldsF(x), F†(y) with corresponding component
f i(x), f j

†(y) take the following form:

$F1~x!,F2
†~y!%5 id12d~x2y!52$F2

†~y!,F1~x!% ~globally!, ~2.8!

$f j~x!,fk
†~y!%5 id jkd~x2y!52~21!@ j #@k#$fk

†~y!,f j~x!% ~ in components!. ~2.9!

The fieldF(x,t) of componentsf i(x,t) satisfies the following Hamiltonian equation of motio
which we call the classical nonlinear super-Schro¨dinger ~NLSS! equation:

i ] tF~x,t !52]x
2F~x,t !12guF~x,t !u2F~x,t ! ~globally!, ~2.10!

i ] tf j~x,t !52]x
2f j~x,t !12g~fk

†~x,t !fk~x,t !!f j~x,t ! ~ in components!. ~2.11!

These equations are simply derived from the Hamiltonian equations of motion] tF(x,t)
5$H,F(x,t)% and] tf i(x,t)5$H,f i(x,t)%. The equations of motion are~formally! the same as
the usual ones and the solutionà la Rosales~2.3! and ~2.4! is still valid in our case:

Theorem 2.1:The solution of the classical NLSS equation (2.11) is given by

f j~x,t !5 (
n50

`

~2g!nf j
~n!~x,t ! where ~2.12!

f j
~n!~x,t !5E

R2n11
dnpdn11q (

k1 ,...,kn51

K

lk1

† ~p1!¯lkn

† ~pn!lkn
~qn!¯lk1

~q1!l j~q0!
eiVn~x,t;p,q!

Qn~p,q,0!
,

~2.13!

using the same notations as in (2.4).
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: Substituting into the NLSS equation, it amounts to the following identity being s
fied,

(
j 50

n

qj
22(

i 51

n

pi
22S (

j 50

n

qj2(
i 51

n

pi D 2

522(
c51

n21

(
a51

c

~pa112qa!~pc112qc11!,

which is readily seen to hold. j

Note that, due to theZ2-graded tensor product, the ordering of thel†’s and of thel’s,
respectively, matters.

C. Quantizing NLSS

1. Graded ZF algebra

We write a graded version of the ZF algebra,20,21using auxiliary spaces and entities containi
bosonic and fermionic components~see the Appendix!:

A~k!5ai~k!ei and A†~k!5ai
†~k!ei

† , kPR. ~2.14!

Definition 2.2: The graded ZF algebra reads

A1~k1!A2~k2!5R21~k22k1!A2~k2!A1~k1!, ~2.15!

A1
†~k1!A2

†~k2!5A2
†~k2!A1

†~k1!R21~k22k1!, ~2.16!

A1~k1!A2
†~k2!5A2

†~k2!R12~k12k2!A1~k1!1d12d~k12k2!, ~2.17!

where

R12~k!5
k1^ 12 igP12

k1 ig
~2.18!

is the R-matrix for the super-Yangian Y(gl(M uN))[Y(M uN), and P12 is the super-permutation
operator:

P125 (
i , j 51

K

~21!@ j #Ei j ^ Eji . ~2.19!

Note that for even vectorsu, v and even matricesB, C ~as defined in the Appendix!, one has
P12(u^ v)5v ^ u andP12(B^ C)P125C^ B.

The R-matrix has the following useful properties:

R21~k!5R12~k!, ~2.20!

R12~k12k2!R21~k22k1!51^ 1, ~2.21!

R12
† ~k12k2!5R21~k22k1!. ~2.22!

For quantities of definiteZ2-grade, we define their super-commutator by

vB,Cb5BC2~21!@B#@C#CB. ~2.23!

Then, after some calculations, one shows that the component version of the ZF algebra
( j ,k51,...,K)
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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vaj~k1!,ak~k2!b5
2 ig

k22k11 ig
~aj~k2!ak~k1!1~21!@ j #@k#ak~k2!aj~k1!!, ~2.24!

vaj
†~k1!,ak

†~k2!b5
2 ig

k22k11 ig
~aj

†~k2!ak
†~k1!1~21!@ j #@k#ak

†~k2!aj
†~k1!!, ~2.25!

vaj~k1!,ak
†~k2!b5

2 ig

k12k21 ig S ~21!@ j #@k#ak
†~k2!aj~k1!1d jk (

,51

K

a,
†~k2!a,~k1!D 1d jkd~k12k2!.

~2.26!

Note that these relations ensure the existence of a PBW basis, generated by the monomials
a†’s on the left of thea’s, the a’s on one hand, and thea†’s on the other hand, being ordere
according to the magnitude of the ‘‘impulsions’’kj .

2. Fock representation
The previous algebra can be represented on a Fock space, which is most useful f

quantization of NLSS, and we follow the basic ideas of Ref. 15~further developed in, e.g. Refs. 2
and 23!. A detailed presentation of the graded version whenM5N51 has been given in Ref. 24
The general case follows the same lines, so that we just sketch the results, referring to Ref
more details about theZ2-graded case.

We introduceFR5 % n50
` HR

n whereHR
05C,

HR
15H w~p!5(

j 51

K

w j~p!ej s.t. w jPL2~R!, j 51,...,KJ [KL2~R!,

and forn>2

HR
n5H w1...n~p1 ,...,pn!

5 (
i 1 ,...,i n51

K

w i 1 ,...,i n
~p1 ,...,pn!~ei 1

^¯^ ei n
! s.t. w i 1 ,...,i n

PL2~Rn!,

i 1 ,...,i n51,...,K, and w1...i ,i 11...n~p1 ,...,pi ,pi 11 ,...,pn!

5Ri ,i 11~pi2pi 11!w1...i 11,i ...n~p1 ,...,pi 11 ,pi ,...,pn!.

There exists a~vacuum! vectorVPD which is cyclic with respect toA†(k) and annihilated by
A(k).

The scalar product which we define below onHR
n provides the usualL2 topology andFR is

the completed vector space overC for this topology.
The sesquilinear form̂,& defined onHR

n3HR
n , n>1, by

^w,c&5E
Rn

dnp w1...n
† ~p1 ,...,pn!c1...n~p1 ,...,pn!, ~2.27!

w1...n
† ~p1 ,...,pn!5~21!(k51

n21
~@ i 1#1¯1@ i k# !@ i k11#w̄ i 1¯ i n~ei 1

†
^ ei 2

†
^¯^ ei n

† ! ~2.28!

is a ~Hermitian! scalar product.
We introduce the finite particle spaceFR

0,FR , spanned by the sequence
(w,w1 ,...,w1¯n ,...) with w1¯nPHR

n andw1¯n50 for n large enough. As~2.27! is defined for all
n, it extends naturally toFR

0. In this context, the vacuum state isV5~1,0,...,0,...!, so that it is
normalized to 1.

We are now able to define the~smeared! creation and annihilation operatorsA(f) andA†(f) on
FR

0 through their action:A(f)V50 and forw0¯nPHR
n11,
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@A~ f!w#1¯n~p1 ,...,pn!5An11E
R
dp0 f0

†~p0!w0¯n~p0 ,p1 ,...,pn!. ~2.29!

Similarly, for w1...nPHR
n :

@A†~ f!w#0¯n~p0 ,...,pn!5
1

An11
w1¯n~p1 ,...pn! f 0~p0!1

1

An11
(
k51

n

Rk21,k~pk21

2pk!¯R0k~p02pk!w0¯k̂¯n~p0 ,...,pk̂,...,pn!fk~pk!, ~2.30!

where the hatted symbols are omitted.
It is easily checked that~2.29! and~2.30! are indeed elements ofHR

n andHR
n11, respectively.

Therefore, we have operators acting onFR
0 ~linearity in w obvious! with the additional property

that they are bounded~i.e., continuous! on each finite particle sectorHR
n . Another essential feature

is the adjointness of these operators with respect to^,&:

;wPHR
n , ;cPHR

n11, ;fPHR
1, ^w,A~ f!c&5^A†~ f!w,c&. ~2.31!

At this stage, the Fock representationsA(p), A†(p) of the generators of the ZF algebra appear
operator-valued distributions through the definition

A~ f!5E
R
dp f†~p!A~p!, A†~ f!5E

R
dp A†~p!f~p!. ~2.32!

It is readily shown from these definitions thatA(p) and A†(p) satisfy the exchange relation
~2.15!–~2.17!, thus providing the desired representation.

We now have all the ingredients to deduce results for the whole Fock spaceFR while working
on smaller and more intuitive spaces dense inFR , using the continuity of the operators. In ou
case, one has to define such a ‘‘state space’’D,FR in the sense of distributions as follows:D0

5C and

Dn5H E
Rn

dnp A1
†~p1!¯An

†~pn!Vf~p1 ,...,pn!; fPKnL2~Rn!J , n>1.

Then,D is spanned by the sequencesx5(x,x1 ,...,x1¯n ,...), wherex1¯nPDn andx1¯n50 for
n large enough. We also define

D0
05C, D0

n5$Ã1
†~ f1 ,t !¯Ãn

†~ fn ,t !V,f1s¯sfn%,HR
n , n>1, ~2.33!

where

Ã†~ f,t !5E
R
dxÃ†~x,t !f~x!,

Ã†~x,t !5E
R
dpA†~p!eiqx2 iq2t,

x,tPR, ~2.34!

and the spaceD0 is the linear span of sequencesx5(x,x1 ,...,x1¯n ,...), wherex1¯nPD0
n and

x1¯n50 for n large enough. We also introduce the following partial ordering relation:

fsg⇔; i , j 51,...,K, ;xPsupp~ f i !, ;yPsupp~gj !, x.y,

which is just the extension of the ordering of the momentaki in the definition of a state space bas
uk1 ,...,kn&. Then, one shows thatD andD0 are dense inFR .
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Summarizing, we have constructed a graded ZF algebra and its Fock representationFR and,
inspired by earlier works,15,16,25–27we shall see that this allows us to construct the quan
version of NLSS and its solution.

3. Quantization of the fields

Following Refs. 15 and 27, we simply write the quantum version off j
(n)(x,t) as

f j
~n!~x,t !5E

R2n11
dnp dn11q (

k1 ,...,kn51

K

ak1

† ~p1!¯akn

† ~pn!akn
~qn!¯ak1

~q1!aj~q0!
eiVn~x,t;p,q!

Qn~p,q,«!
~2.35!

using the same notations as in~2.4! and ani e contour prescription. The global field reads

F~x,t !5 (
n50

`

~2g!nF~n!~x,t ! with F~n!~x,t !5f j
~n!~x,t !ej . ~2.36!

From ~2.31!, we deduce

F†~x,t !5 (
n50

`

~2g!nF†~n!~x,t ! ~2.37!

with

F†~n!~x,t !5E
R2n11

dnp dn11qA†~q0!A1
†~q1!¯An

†~qn!An~pn!¯A1~p1!
e2 iVn~x,t;p,q!

Qn~p,q,2«!
.

~2.38!

Just like we dealt withA(f) andA†(f), we are naturally led to introduce

F~ f,t !5E
R
f†~x!F~x,t !, F†~ f,t !5E

R
F†~x,t !f~x!. ~2.39!

And just like we did in Ref. 24, one shows thatF(f,t) and F†(f,t) are indeed well-defined
operators on a common invariant domain which turns out to beD0 . These fields also satisfy th
following fundamental requirement.

Theorem 2.3: The quantum fieldsF(f,t), F†(g,t) satisfy the equal time canonical comm
tation relations as operators onFR

0

@F~ f,t !,F~g,t !#5@F†~ f,t !,F†~g,t !#50, ~2.40!

@F~ f,t !,F†~g,t !#5^f,g&. ~2.41!

Proof: The proof is the same as in the ordinary NLS equation, see Ref. 15 or 23 for de
j

One then deduces the equal time CCR in components for the operator-valued distrib
f j (x,t), fk

†(y,t):

vf j~x,t !,fk~y,t !b5vf j
†~x,t !,fk

†~y,t !b50, ~2.42!

vf j~x,t !,fk
†~y,t !b5d jkd~x2y!. ~2.43!

Let us remind that forj, k5M11,...K, the above CCR correspond to anticommutator, consis
with the fermionic nature of these fields.
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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4. Time evolution

We first wish to emphasize that the form of the Hamiltonian~2.7! cannot be reproduced her
owing to the nature of the fields~products of distributions are not defined!. Fortunately, the power
of the ZF algebra and the quantum inverse method@leading to~2.35! and ~2.36!# rescues us by
delivering a simple, freelike Hamiltonian in terms of oscillators. Indeed, one easily checks th
Hamiltonian defined by

H5E
R
dp p2A†~p!A~p! ~2.44!

is self-adjoint, i.e.,H†5H. Moreover,

;wPD, @Hw#1¯n~p1 ,...,pn!5~p1
21¯1pn

2!w1¯n~p1 ,...,pn!, ~2.45!

which shows thatD is also an invariant domain forH and that this operator has the corre
eigenvalues. Finally,H generates the time evolution of the field:

F~ f ,t !5eiHtF~ f ,0!e2 iHt . ~2.46!

Therefore,H, so defined, is the Hamiltonian of our quantum system.
Note that~2.45! and~2.46! have to be understood as operator equalities and must be eval

on D.
The freelike expression forH in terms of creation and annihilation oscillators may be surp

ing at first glance, but it is actually a mere consequence of the rather complicated exc
relations~2.15!–~2.17!. One can say that the effect of the nonlinear term has been encoded di
in the oscillators instead of the Hamiltonian~or equivalently the Lagrangian! of the field theory,
yielding a ~possibly misleading! simple expression forH. One may finally wonder about th
coupling constant which seems to disappear. Once again, it is actually present throu
R-matrix in the exchange relations.

Besides, the quantum nonlinear super-Schro¨dinger equation holds in the following form:

;w,cPD, ~ i ] t1]x
2!^w,F~x,t !c&52g^w,:FF†F:~x,t !c&. ~2.47!

5. Correlation functions

Again following the case of NLS, one shows that forw,cPD, one has

fsg, ^w,F†~g,t !Ã†~ f,t !c&5^w,Ã†~ f,t !F†~g,t !c&, ~2.48!

for gsf i , i 51,...,n,

^w,F†~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V&5^w,Ã†~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V& ~2.49!

and for anyf1sf2s¯sfn ,

^w,F~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V&5(
j 51

n

^g,f j&^w,Ã†~ f 1 ,t !¯Ã†̂~ f j ,t !¯Ã†~ fn ,t !V&.

~2.50!

This proves that the correlation functions of the NLSS model are completely determined, e
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^V,F~g1 ,t !¯F~gm ,t !F†~ f1 ,t !¯F†~ fn ,t !V&5dm,n (
sPSn

)
i 51

n

^gs~ i ! ,f i&,

^w1¯p ,F~g1 ,t !¯F~gn ,t !F†~ f1 ,t !¯F†~ fm ,t !V&

5dm,n1p (
sPSn1p

S )
i 51

n

^gs~ i ! ,f i& D ^w1¯p ,gs~n11!¯gs~n1p!&.

Similar expressions can be obtained when dealing with the fieldsF(x,t) andF†(x,t).

III. LAX PAIR AND SUPER-YANGIAN SYMMETRY FOR NLSS

Let us stress once again that we aim at generalizing known results of integrability and
metry for the nonlinear Schro¨dinger equation to the case of an arbitrary number of bosonsand
fermions. This physical motivation can be carried out by using appropriately the graded form
presented in the Appendix. Furthermore, we also want to transport our results to the quantum
which leads us to adopt the convenient Hamiltonian form of our model.

A. Classical Lax pairs

We define the Lax even super-matrix ingl(M11uN)

L~l;x!5
il

2
S1V~x! with S5IK11,K1122EK11,K11 ~3.1!

and

V~x!5 iAg(
j 51

K

~f j~x!Ej ,K112f j
†~x!EK11,j !. ~3.2!

Let us stress that, as above, the elementary matricesEjk ~with 1 at positionj, k! areZ2-graded,
with @Ejk#5@ j #1@k#, @ j #5@K11#50 for 1< j <M and @ j #51 for M, j <K. With this con-
vention, thegl(M11uN) superalgebra has the unusual matrix form

S M3M M31

N3N

13M 131
D ,

where the size of the submatrices corresponding to bosonic generators have been ex
written.

Using the PB of thef’s, it is easy to compute that

$L1~l;x!,L2~m;y!%5 id~x2y!@r ~l2m!,L1~l;x!1L2~m;y!# ~3.3!

with

r ~l2m!5
g

l2m
P12, ~3.4!

where we have introduced the (K11)3(K11) super-permutation

P125 (
i , j 51

K11

~21!@ j #Ei j ^ Eji .

Definition 3.1: We define the transition matrix by
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]xT~l;x,y!5L~l;x!T~l;x,y!, x.y, ~3.5!

with the ‘‘initial condition’’ T (l;x,x)5I.
T(l;x,y) obeys the iterative equation

T~l;x,y!5E~l;x2y!1E~l;x!E
y

x

dzV~z!E~l;z!T~l;z,y!, ~3.6!

where we have introduced

E~l;x!5expS ixl

2
S D5eixl/2IK111~e2 ixl/22eixl/2!EK11,K11 . ~3.7!

Property 3.2:

$T1~l;x,y!,T2~m;x,y!%5@r ~l2m!,T~l;x,y! ^ T~m;x,y!#. ~3.8!

Proof: The equation~3.6! implies that

T~l;x,y!5 (
n50

`

T~n!~l;x,y!, ~3.9!

T~n!~l;x,y!5E
Rn

dnzu~x.z1.z2.¯.zn.y!E~l;x2z1!V~z1!

3E~l;z12z2!V~z2!¯V~zn!E~l;zn2y!. ~3.10!

It is then simple to show that

$F1~w!,T2~l;x,y!%5Agu~x.w.y!T2~l;x,w!s12
2 T2~l;w,y!, ~3.11!

$F2~w!,T1~l;x,y!%5Agu~x.w.y!T1~l;x,w!s21
2 T1~l;w,y!, ~3.12!

$F1
†~w!,T2~l;x,y!%5Agu~x.w.y!T2~l;x,w!s12

1 T2~l;w,y!, ~3.13!

$F2
†~w!,T1~l;x,y!%5Agu~x.w.y!T1~l;x,w!s21

1 T1~l;w,y!, ~3.14!

where we have defined

s12
2 5(

j 51

K

ej ^ EK11,j ; s12
1 5(

j 51

K

~21!@ j #ej
†

^ Ej ,K11 . ~3.15!

From the form~A5! one also computes

$F1~w!,T2~l;x,y!%5 i ~ej ^ I!
dT2~l;x,y!

df j
†~w!

, ~3.16!

$F2~w!,T1~l;x,y!%5 i ~I^ ej !
dT1~l;x,y!

df j
†~w!

, ~3.17!

$F1
†~w!,T2~l;x,y!%52 i ~21!@ j #~ej

†
^ I!

dT2~l;x,y!

df j~w!
, ~3.18!
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$F2
†~w!,T1~l;x,y!%52 i ~21!@ j #~I^ ej

†!
dT1~l;x,y!

df j~w!
. ~3.19!

This shows that the PB can be rewritten as

$T1~l,x,y!,T3~m,x,y!%5 i E
R
dw~$F2

†~w!,T1~l;x,y!%$F2~w!,T3~m;x,y!%

2$F2
†~w!,T3~m;x,y!%$F2~w!,T1~l;x,y!%!. ~3.20!

Inserting~3.11! and ~3.13! in this expression, one gets

$T1~l;x,y!,T2~m;x,y!%5 igE
y

x

dw T1~l;x,w!T2~m;x,w!~p122p21!T1~l;w,y!T2~m;w,y!,

where p125(
j 51

K

Ej ,K11^ EK11,j . ~3.21!

Finally, a direct calculation shows that

]

]w
~T1~l;x,w!T2~m;x,w!P12T1~m;w,y!T2~l;w,y!!

5 i
l2m

2
T1~l;x,w!T2~m;x,w!~p122p21!T1~l;w,y!T2~m;w,y!, ~3.22!

so that we get~3.8!. j

Property 3.3: The following limits are well defined:

T2~l;x!5 lim
y→2`

T~l;x,y!E~l;y!, ~3.23!

T1~l;y!5 lim
x→`

E~l;2x!T~l;x,y!, ~3.24!

T~l!5T1~l;z!T2~l;z!5 lim
x→`

y→2`

E~l;2x!T~l;x,y!E~l;y!. ~3.25!

T(l) is called the monodromy matrix.
Proof: Using the equalityE(l;x)V(z)5V(z)E(l;2x), valid for anyx, z, T(n)(l;x,y) can

be conveniently rewritten as

T~n!~l;x,y!5E~l;x!E
Rn

dnzu~x.z1.¯.zn.y!

3ES l;2(
j 51

n

~21! j zj D S )
k51

n

V~zk!DE~l;2y!, ~3.26!

which shows that the limits are well defined. j

Property 3.4:

$T1~l!,T2~m!%5r 1~l2m!T~l! ^ T~m!2T~l! ^ T~m!r 2~l2m! ~3.27!

with
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r 1~l2m!5
g

l2m
~P121EK11,K11^ EK11,K11!1 ipgd~l2m!~p122p21!, ~3.28!

r 2~l2m!5
g

l2m
~P121EK11,K11^ EK11,K11!2 ipgd~l2m!~p122p21!, ~3.29!

where P12 is the super-permutation in the space of K3K matrices.
Proof: Direct calculation, plugging~3.25! into ~3.8!, and using the Cauchy principal valu

liml→` p.v.(e6 ilx/x)56 ipd(x). j

Introducingt(l), the K3K submatrix ofT(l) with the last row and column removed, an
D(l)5TK11,K11(l), one finally computes:

$t1~l!,t2~m!%5
g

l2m
@P12,t~l! ^ t~m!#, ~3.30!

$D~l!,t~m!%50, ~3.31!

$D~l!,D~m!%50. ~3.32!

Equation~3.30! shows thatt(l) defines a classical version of the super-YangianY(gl(M uN)).
Equation~3.32! shows thatD(l) can be taken as a generating function for a hierarchy, and~3.31!
proves that the super-Yangian is a symmetry of this hierarchy. It remains to identify this hiera

Lemma 3.5: Only T(2n)(l), nPZ1 , contribute to the super-Yangian generators t(l) and to
the Hamiltonian generating function D(l).

Expanding t(l) andD(l) as series inl21, one has T(2n)(l)5o(l2n).
Proof: It is clear thatT(n)(l) contains the product of exactlyn matricesV, the other matrices

entering in its definition being diagonal. Due to the form ofV, only products of an even numbe
of such matrices will contribute tot(l) andD(l).

To show thel dependence, we consider the integration onz2 j and z2 j 11 , and perform an
integration by part, assuming that the fieldsF andF† are vanishing at infinity:

E
2`

z2 j 21
dz2 jE

2`

z2 j
dz2 j 11 E~l;2z2 j22z2 j 11!V~z2 j !V~z2 j 11!I j ,n~z2 j 11 ,...,z2n!

5
i

l
SE

2`

z2 j 21
dz2 jFV~z2i !

2I j ,n~z2 j 11 ,...,z2n!2E
2`

z2 j
dz2 j 11 E~l;2z2 j22z2 j 11!

3V~z2 j !]2 j 11~V~z2 j 11!I j ,n~z2 j 11 ,z2 j 12 ,...,z2n!!G .
Above,]k stands for]/]zk , andI j ,n(z2 j 11 ,z2 j 12 ,...,z2n) denotes the other integrals~depending
on zk , k>2 j ) which enters into the definition ofT(n)(l).

It is clear that one can do this integration for allz2 j , j 51,...,n, and any number of times, s
that the lowest power ofl21 is n. j

Property 3.6: The first Hamiltonians generated by D(l) read

D ~1!5 igN with N5E
2`

`

dx F†~x!F~x!, ~3.33!

D ~2!52
1

2
g2N21gP with P5E

2`

`

dx F†~x!]F~x!, ~3.34!
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D ~3!52
ig3

6
N31 ig2NP1 igH, ~3.35!

H5E
2`

`

dx ]F†~x!]F~x!1gE
2`

`

dx~F†~x!F~x!!2. ~3.36!

This shows that D(l) generates the Hamiltonians of the NLSS hierarchy, so that (3.31) proves
Y(gl(M uN)) is a symmetry of this hierarchy.

Proof: We use the techniques given in the above proof, focusing on the (K11,K11) matrix
element. The bounds in the integrals are simplified using the property

~V~x1!]kV~x2!V~x3!] lV~x4!!K11,K115~V~x1!]kV~x2!!K11,K11~V~x3!] lV~x4!!K11,K11 .
~3.37!

j

B. Time evolution

Strictly speaking, we have, up to now, constructed only the linear operatorL(l;x) introduced
in the Zakharov–Shabbat scheme.2 This operator is only the first element of the Lax pair (L,M ).
It is sufficient to solve the problem, but for completeness, we now introduceM, the second
element of the Lax pair.

The Lax pair is a reformulation of the equations of motion as the commutativity of
differential operators:

F ]

]x
2L~l;x,t !,

]

]t
2M ~l;x,t !G50, ~3.38!

which amounts to the compatibility condition of the auxiliary system

]xu5L~l;x,t !u,
~3.39!

] tu5M ~l;x,t !u.

Starting from the definitions~3.1! and ~3.2!, it is a straightforward calculation to show that for

M ~l;x,t !52
il2

2
S1 igV~x,t !SV~x,t !2Ag~S]x1 il!V~x,t ! ~3.40!

the condition~3.38! is equivalent to

~ iS] t1]x
2!V~x,t !52guF~x,t !u2V~x,t !, ~3.41!

which just reproduces the equations of motion~2.10! and their counterpart forF†(x,t).
As it should be clear from the system~3.39!, M (l;x,t) is associated to time evolution in th

same wayL(l;x,t) is associated to spacial translation. This is confirmed by the following:
Property 3.7: The time evolution of the transfer and monodromy matrices is given by

] tT~l;x,y,t !5M ~l;x,t !T~l;x,y,t !2T~l;x,y,t !M ~l;y,t !, ~3.42!

] tT1~l;y,t !52
il2

2
ST~l;y,t !2T~l;y,t !M ~l;y,t !, ~3.43!

] tT2~l;x,t !5M ~l;x,t !T~l;x,t !1
il2

2
T~l;x,t !S, ~3.44!
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] tT~l;t !52
il2

2
@S,T~l;t !#. ~3.45!

Proof: The first equation is proven showing that

Z~l;x,y,t !5] tT~l;x,y,t !2M ~l;x,t !T~l;x,y,t !1T~l;x,y,t !M ~l;y,t !

obeys the differential equations (x.y):

]xZ~l;x,y!5L~l;x!Z~l;x,y!,

]yZ~l;x,y!52Z~l;x,y!L~l;y!,

together with the initial conditionZ(l;x,x,t)50.
The other equations are proved through the limitsx→`, y→2` using limuxu→` M (l;x,t)

52( il2/2)S. j

To conclude this section, let us remark that the time-evolution~3.45! shows that we have

T~l;x,y,t !5eitl2S/2T~l;x,y,0!e2 i tl2S/2 ~3.46!

in accordance with the ZF formulation of the Hamiltonian.

C. Quantum Lax pair

Following Sklyanin,28 we define the following.
Definition 3.8: The quantum transition matrixT(l;x,y) is the Wick (normal)-ordered classi

cal transition matrix T(l;x,y) regarded as a functional of the quantum canonical fieldsF(x),
F†(x):

T~l;x,y!5:T~l;x,y!:. ~3.47!

Here and below the normal ordering is defined as

:f j~x!fk
†~y!ª~21!@ j #@k#fk

†~y!f j~x!, ;x,y,

and extended to monomials inf, f† in the usual way, i.e., with all thef’s on the right of thef†’s,
keeping the original order between thef’s and between thef†’s.

For convenience, we also define a symbol ‡‡ which acts on operators and is not
confused with the symbol : :. It simply guarantees the ordering ofF, F† in an expression
containingL(l;x) and other~normal-ordered! functionals of the quantum fields without changin
the internal ordering of the functionals. For example, ifA5:a: andB5:b:, then

‡AL~l;x!B‡5
il

2
ASB1 iAg(

j 51

K

~~21!@ j #@A#f j~x!AEK11,jB2~21!@ j #@B#AEj ,K11Bf j
†~x!!.

The previous definition gives rise to many questions dealing with operator theory and
tional analysis which were answered for the bosonic case in the very detailed review1 by Gutkin.
But for the sake of brevity, we mimic the compact, albeit more formal, approach of Sklyanin
it contains all the fundamental and physical ideas, bearing in mind that everything is well de

In this sense, the quantum transition matrix is the fundamental solution of the qua
auxiliary problem

]xT~l;x,y!5‡L~l;x!T~l;x,y!‡ with T~l;x,x!51 ~3.48!

and satisfies
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]yT~l;x,y!52‡T~l;x,y!L~l;y!‡,

T~l;x,y!T~l;y,z!5T~l;x,z! for x,y,z or x.y.z,

whereL(l;x) is the Lax even super-matrix defined in~3.1! and ~3.2!.
This system of first-order differential equations together with the given initial conditio

equivalent to the following Volterra integral representations:

T~l;x,y!511E
y

x

dv ‡L~l;v!T~l;v,y!‡, ~3.49!

T~l;x,y!511E
y

x

dv ‡T~l;x,v!L~l;v!‡. ~3.50!

In order to reach our final goal there are several steps which all rely on one simple
extensively used in the inverse problem literature, that is two quantities are equal if and o
they satisfy the same first-order differential equation with the same initial condition. This is
is called ‘‘the differential equation approach’’ by Gutkin in Ref. 1. He criticized this approach
showed that it gives the correct answer using the ‘‘discrete approximation approach’’ w
amounts to the same line of argument but deals with finite differences on subintervals of@x,y#
instead of a true derivative.

The first step is to obtain the commutation relations of matrix elements of the transition m
and we need two preliminary lemmas.

Lemma 3.9:T1(l;x,y)T2(m;x,y) satisfies the following differential system:

]x$T1~l;x,y!T2~m;x,y!%5‡L12~l,m;x!T1~l;x,y!T2~m;x,y!‡, ~3.51!

T1~l;x,x!T2~m;x,x!5T2~m;x,x!T1~l;x,x!51^ 1, ~3.52!

where

L12~l,m;x!5L1~l;x!1L2~m;x!1gp12. ~3.53!

Proof: The idea is once again to use the equivalence between the differential problem a
Volterra integral representation of the solution. Indeed, taking care of the ordering of the
when using~3.49! and ~3.50!, one gets

T1~l;x,y!T2~m;x,y!51^ 11E
y

x

dv ‡L12~l,m;v!T1~l;v,y!T2~m;v,y!‡.

j

Lemma 3.10: The operatorL12(l,m;x) satisfies the following relation:

R12~l2m!L12~l,m;x!5L21~m,l;x!R12~l2m!, ~3.54!

whereR12(l2m)512 ir (l2m), and r(l2m) is given by (3.4).
Proof: Direct calculation using

@P12,L1~l;x!1L2~m;x!#5 i ~l2m!~p122p21!,

wherep12 has been defined in~3.21!. j

We can now formulate the basic result of this paragraph.
Theorem 3.11:The quantum transition matrixT(l;x,y) satisfies the following finite volum

commutation relations:
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R12~l2m!T1~l;x,y!T2~m;x,y!5T2~m;x,y!T1~l;x,y!R12~l2m!. ~3.55!

Proof: Using the fact thatR12(l) is a numerical, invertible~for l real and nonzero! matrix,
Lemmas 3.9 and 3.10 imply that the quantitiesT2(m;x,y)T1(l;x,y) and R12(l
2m)T1(l;x,y)T2(m;x,y)R12

21(l2m) satisfy the same first-order differential equation with t
same initial condition. j

Let us remark that if we restore the Planck constant in the canonical commutation rela
then R12(l2m)512 i\r (l2m) and we recover the relation~3.8! for the classical transition
matrix, given that as\→0, T(l;x,y)→T(l;x,y) and@ ,#→ i\$,% and keeping the terms of order\.

We are now in position to define the quantum monodromy matrix as an appropriate lim
the quantum transition matrix to obtain the infinite volume commutation relations correspo
to ~3.55!. The crucial difference with respect to the classical case comes from the non
commutation relations of the quantum fields, which produces the term proportional tog in
L12(l,m;x).

Therefore, one cannot define the limit as in~3.25! and insert it directly in the finite volume
commutation relations. Instead, we are led to compare the asymptotic behavio
T1(l;x,y)T2(m;x,y), for which we have information with that ofT1(l;x,y), T2(m;x,y) sepa-
rately, whose commutation relations in the infinite interval limit we are looking for.

Definition 3.12: The quantum equivalents of (3.23)–(3.25) are defined by

T 2~l;x!5:T2~l;x!:, T 1~l;y!5:T1~l;y!:, T~l!5:T~l!:, ~3.56!

and T(l)5T 1(l;z)T 2(l;z) is the quantum monodromy matrix.
E(l;x) being a numerical matrix, one immediately deduces

]xT 2~l;x!5‡L~l;x!T 2~l;x!‡, ~3.57!

]xT 1~l;x!52‡T 1~l;x!L~l;x!‡. ~3.58!

As a first step, we look for information onT 1
2(l;x)T 2

2(m;x) from what we know of
T1(l;x,y)T2(m;x,y). This is gathered in the following lemma.

Lemma 3.13:

lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!5T 1
2~l;x!T 2

2~m;x!C12~l,m!, ~3.59!

where, p12 being defined as in (3.21), we have introduced

j12~l,m;y!5expF S il

2
S11

im

2
S21gp12D yG , ~3.60!

C12~l,m!51^ 12
ig

l2m1 i«
p12. ~3.61!

Proof: Let

L~l,m;x!5 lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!, ~3.62!

L2~l,m;x!5T 1
2~l;x!T 2

2~m;x!. ~3.63!

Rewriting L12(l,m;x)5L0(l,m)1V1(x)1V2(x) with L0(l,m)5( il/2)S11( im/2)S2

1gp12, one easily gets from~3.51! the integral representation
d 16 Jan 2004 to 137.138.4.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5722 J. Math. Phys., Vol. 44, No. 12, December 2003 V. Caudrelier and E. Ragoucy

Downloade
T1~l;x,y!T2~m;x,y!5j12~l,m;x2y!1E
y

x

dv ‡T1~l;x,v!T2~m;x,v!~V1~v!

1V2~v!!‡j12~l,m;v2y!, ~3.64!

which shows thatL(l,m;x) is well defined and also satisfies

]xL~l,m;x!5‡L12~l,m;x!L~l,m;x!‡.

Now following the same line of argument as in Lemma 3.9, we get

]xL
2~l,m;x!5‡L12~l,m;x!L2~l,m;x!‡.

Consequently,

L~l,m;x!5L2~l,m;x!C12~l,m!, ;x, ~3.65!

and we can determineC12(l,m) from the asymptotic behavior asx→2`. From the physical
requirement that

lim
x→6`

uF~x!u50

and Eq.~3.64!, we see that

T1~l;x,y!T2~m;x,y! ;
y→2`

x→y

j12~l,m;x2y!,

implying

L~l,m;x! ;
x→2`

j12~l,m;x!. ~3.66!

On the other hand, from~3.57!, L2(l,m;x) can be represented as

L2~l,m;x!5E1~l;x!E2~m;x!1E
2`

x

dv ‡T1~l;x,v!T2~m;x,v!

3~V1~v!1V2~v!1gp12!‡E1~l;v!E2~m;v!,

so that

L2~l,m;x! ;
x→2`

E1~l;x!E2~m;x!1I ~l,m;x!,

where

I ~l,m;x!5gE
2`

x

dv j12~l,m;x2v!p12E1~l;v!E2~m;v!

can be evaluated from the knowledge of

j12~l,m;x!5E1~l;x!E2~m;x!12g
sin~@~l2m!/2#x!

l2m
p12

and ani« prescription to get
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I ~l,m;x!5
ig

l2m1 i«
e2 i @~l2m!/2#xp12.

Now, adopting the regularization

2g
sin~@~l2m!/2#x!

l2m
5

2 ig

l2m1 i«
@ei @~l2m!/2#x2e2 i @~l2m!/2#x#,

we see that~3.65! holds forC12(l,m) given in ~3.61!. j

Theorem 3.14:The commutation relations for the quantum matricesT 6(l;x) and T~l! for
real l and m take the following form:

R12~l2m!T 1
2~l;x!T 2

2~m;x!C12~l,m!5T 2
2~m;x!T 1

2~l;x!C21~m,l!R12~l2m!,

R12~l2m!C12~m,l!T 1
1~l;x!T 2

1~m;x!5C21~l,m!T 2
1~m;x!T 1

1~l;x!R12~l2m!,
~3.67!

R12
1 ~l2m!T1~l!T2~m!5T1~m!T2~l!R12

2 ~l2m!,

where, defining1K5( i 51
K Eii ,

R12
6 ~l2m!5

2 ig

~l2m!
1K ^ 1K1P121p211

~l2m!21g2

~l2m1 i«!2
p121

l2m2 ig

l2m
EK11,K11^ EK11,K11

6pgd~l2m!~1K ^ EK11,K112EK11,K11^ 1K!.

Proof: We start with the proof of the first equality. Lemma 3.13 gives

lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!5T 1
2~l;x!T 2

2~m;x!C12~l,m!,

which in turn yields

lim
y→2`

T2~m;x,y!T1~l;x,y!j21~m,l;y!5T 2
2~m;x!T 1

2~l;x!C21~m,l!.

Multiplying ~3.55! on the right byj12(l,m;y) and using the property

R12~l2m!j12~l,m;y!5j21~m,l;y!R12~l2m!

we get

R12~l2m!T1~l;x,y!T2~m;x,y!j12~l,m;y!5T2~m;x,y!T1~l;x,y!j21~m,l;y!R12~l2m!,

which gives the first equality in the limity→2`. The second equality is proved along the sa
line of argument. Now, combining the two equations and using the properties

T~l!5T 1~l;x!T 2~l;x! and T 2
1~m;x!T 1

2~l;x!5T 1
2~l;x!T 2

1~m;x!,

we get

R12~l2m!C12~m,l!T1~l!T2~m!C12~l,m!5C21~l,m!T2~m!T1~l!C21~m,l!R12~l2m!,

which take the form~3.67! if we define

R12
1 ~l2m!5C12

21~l,m!P12R12~l2m!C12~m,l!, ~3.68!
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R12
2 ~l2m!5C12~m,l!P12R12~l2m!C12

21~l,m!, ~3.69!

whose explicit calculation we leave to the reader. j

Let us extract the information contained in~3.67!. We start by particularizing some entries
the quantum monodromy matrix (i , j 51,...,K):

t i j ~l!5~T~l!! i j , ~3.70!

bj~l!5~T~l!! j ,K11 , ~3.71!

D~l!5~T~l!!K11,K11 . ~3.72!

Theorem 3.15:The exchange relations of the entries of the quantum monodromy matrix
as follows:

v t i j ~l!,tkl~m!b5 ig~21!@ j #@k#1@ i #~@ j #1@k# !
tk j~l!t i l ~m!2tk j~m!t i l ~l!

l2m
, ~3.73!

t i j ~l!D~m!5D~m!t i j ~l!, ~3.74!

D~l!D~m!5D~m!D~l!, ~3.75!

bj~l!bk~m!5
m2l

m2l2 ig
~21! jkbk~m!bj~l!2

ig

m2l2 ig
bj~m!bk~l!, ~3.76!

bj~l!D~m!5
l2m2 ig

l2m2 i«
D~m!bj~l!. ~3.77!

Proof: By direct calculation. j

Relations~3.73!–~3.75! are the quantum counterparts of Eqs.~3.30!–~3.32! and the same
interpretation holds but for the quantum hierarchy here. As such, the super-YangianY(gl(M uN))
is a quantum symmetry of the hierarchy generated byD(l), which is just the quantum analog o
Property 3.6 as can be seen from

D~l!511
ig

l
N1

g

l2 S P2
g

2
N~N21! D1

ig

l3 S H1g~N21!P2
g2

6
N~N21!~N22! D1OS 1

l4D .

D. ZF algebra from Lax pair

The two relations~3.76! and ~3.77! will allow us to recover the ZF algebra. Indeed, all th
quantities of Theorem 3.15 are functionals ofF, F†, themselves involving the ZF generators@cf.
~2.35!#, and one can get the ZF algebra out of them as follows.

Property 3.16: Defining aj (l)5(1/Apg)bj (l)D(l)21, Eqs. (3.76) and (3.77) give

aj~l!ak~m!5
m2l

m2l1 ig
~21! jkak~m!aj~l!2

ig

m2l1 ig
aj~m!ak~l!. ~3.78!

Proof: Direct calculation from Theorem 3.15. j

To complete our algebra, we need the exchange relations betweenaj (l) andak
†(m). Contrary

to the original one~bosonic! component case, this is not directly obtained from what we alre
have since there is no simple conjugate relationship for the entries of the monodromy matr
are naturally led to introduce a conjugate Lax super-matrix defined by
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L̄~l;x!52
il

2
S2 iAgf j

†~x!EK11,j1 iAgf j~x!Ej ,K11 ~3.79!

and the associated transition matrix

]xT̄~l;x,y!5‡T̄~l;x,y!L̄~l;x!‡. ~3.80!

Now, to obtain information between the entries ofT(l;x,y) and T̄(m;x,y) following the same
steps as in Lemmas 3.9 and 3.10 and Theorem 3.11, one sees that we actually need to w
the super-transposed Lax matrix. The corresponding operation on an even super-maA
5( i , j 51

K11 Ai j Ei j reads

At5 (
i , j 51

K11

Ai j Ei j
t 5 (

i , j 51

K11

~21!@ i #~@ i #1@ j # !Aji Ei j . ~3.81!

It satisfies (At) t5A and (AB) t5BtAt for any even super-matricesA andB. We get

Lt~l;x!5
il

2
S1 iAg~21!@ j #f j~x!EK11,j2 iAgf j

†~x!Ej ,K11 ~3.82!

and the associated transition matrix

]xT t~l;x,y!5‡T t~l;x,y!Lt~l;x!‡. ~3.83!

Therefore, instead of~3.51! we get

]x$T̄1~l;x,y!T 2
t ~m;x,y!%5‡T̄1~l;x,y!T 2

t ~m;x,y!G12~l,m;x!‡, ~3.84!

]x$T 1
t ~m;x,y!T̄2~l;x,y!%5‡T 1

t ~m;x,y!T̄2~l;x,y!G128 ~l,m;x!‡, ~3.85!

with

G12~l,m;x!5L̄1~l;x!1L2
t ~m;x!1gp12

t2 ,

G128 ~l,m;x!5L1
t ~m;x!1L̄2~l;x!1gp12

t1 .

Now the key point is to find an invertible numerical matrixR128 (l) solution of the new Yang–
Baxter equation

R128 ~l,m!G12~l,m;x!5G21~l,m;x!R128 ~l,m!.

It is given by

R128 ~l,m!5
ig

l2m
P12

t1 1
l2m2 ig~M2N!

l2m
P12. ~3.86!

Following the same procedure as above, we finally deduce the infinite volume commu
relations under the form

R128
1~l2m!T̄1~l!T 2

t ~m!5T 1
t ~m!T̄2~l!R128

2~l2m! ~3.87!

with
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R128
6~l2m!5

ig

l2m
P12

t1 1
l2m2 ig~M2N!

l2m
~P121p121p21!

1
~l2m2 ig !~l2m2 ig~M2N!!

~l2m1 i«!2
EK11,K11^ EK11,K11

7pgd~l2m!~p21
t1 2p21

t2 !.

All these results are the generalization to the graded case of Ref. 19~K, the total number of
bosonic or fermionic particles is replaced in our case byM2N, the difference of bosonic and
fermionic particles!. Accordingly, we get the same conclusions collected in the following pro
sition.

Property 3.17: Let ai
†(l)5(1/Apg)(D21)†(l)bj

†(l). Then

ai~l!aj
†~m!5

l2m

l2m1 ig
~21!@ i #@ j #aj

†~m!ai~l!2d i j

ig

l2m1 ig (
,51

K

a,
†~m!a,~l!1d i j d~l2m!,

~3.88!

ai
†~l!aj

†~m!5
m2l

m2l1 ig
~21!@ i #@ j #aj

†~m!ai
†~l!2

ig

m2l1 ig
ai

†~m!aj
†~l!. ~3.89!

Proof: Noting that

bj~l!5T t~l!K11,j , D~l!5T t~l!K11,K11 ,

bj
†~l!5T̄~l!K11,j , D†~l!5T̄~l!K11,K11 ,

~3.87! gives

D†~l!D~m!5D~m!D†~l!,

D~m!bi
†~l!5

l2m2 ig

l2m1 i«
bi

†~l!D~m!, bj~m!D†~l!5
l2m2 ig

l2m1 i«
D†~l!bj~m!,

bi~l!bj
†~m!5

m2l2 ig

m2l1 i«
~21!@ i #@ j #bj

†~m!bi~l!1d i j

ig~m2l2 ig !

~m2l1 i«!2 (
,51

K

b,
†~m!b,~l!

1d i j pgd~l2m!D†~m!D~l!,

which in turn yields~3.88!. The proof of~3.89! is similar. j

IV. EXPLICIT CONSTRUCTION OF THE SUPER-YANGIAN GENERATORS

A. Super-Yangian generators in terms of canonical fields

We consider the classical case. The quantum case can be done in a similar way, with
tion terms due to the noncommutativity of the fieldsF, F†.

For anyK3K-matrix sPgl(M uN), we introduce

Qs
~0!5E dx F†~x!sF~x!5E dx (

j ,k51

K

f j
†~x!s jkfk~x!, ~4.1!

Qs
~1!5E dx F†~x!s]F~x!2

g

2 E dxdy sg~x2y!F†~x!sF~y!•F†~y!F~x!, ~4.2!
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Qs
~2!5E dx F†~x!s]2F~x!2

g

2 E dxdy sg~x2y!~F†~x!s]F~y!2]F†~x!sF~y!!F†~y!F~x!

1
g2

4 E dxdydz sg~x2y!sg~y2z!F†~y!F~x!•F†~x!sF~z!•F†~z!F~y!. ~4.3!

The coefficients in~4.2! and ~4.3! are fixed in such a way that

$H,Qs
~n!%50, n50,1,2, ~4.4!

so thatQs
(n) are indeed symmetry generators of the NLSS equation. With these definitions,

simple calculation to show

$Qs
~0! ,Qv

~n!%5 iQ vs,v b
~n! , n50,1,2, ~4.5!

$Qs
~1! ,Qv

~1!%5 iQ vs,v b
~2! 2 i S 2

g

2D 2E dxdydt S~x,y,t !~F†~x!sF~y!•F†~y!vF~ t !

2F†~x!vF~y!•F†~y!sF~ t !!F†~ t !F~x!,
~4.6!

S~x,y,t !5sg~ t2x!sg~x2y!1sg~x2y!sg~y2t !1sg~y2t !sg~ t2x!.

Equation~4.5! shows thatQs
(0) , sPgl(M uN), generates agl(M uN) superalgebra, and thatQs

(n)

~n fixed! form a representation of it. The second term in~4.6! reflects the nonlinear commutatio
relation of the super-Yangian.

Note that we have

QI
~0!5N and QI

~1!5P, ~4.7!

so that Eq.~4.5! shows thatQs
(n) commutes withN andP. Moreover, we have the supersymm

trylike relations:

$Qs
~0! ,Qs

~0!%52iN,

$Qs
~0! ,Qs

~1!%52iP,
as soon ass25I and @s#51. ~4.8!

However, let us remark thatQI
(2) is not the NLSS Hamiltonian:

QI
~2!5H1

g2

4 E dxdydz sg~x2y!sg~y2z!F†~y!F~x!•F†~x!sF~z!•F†~z!F~y!.

QI
(2) corresponds to a central generator which, if it were the Hamiltonian, would lead to non

equation of motion forF. On the contrary,H commutes with the generatorsQs
(n) and provides

local equation of motion.

B. Super-Yangian generators in terms of ZF generators

We have obtained the ZF-algebra~2.15! and ~2.17! from the commutation relations of th
quantum monodromy matrix. This shows the central importance of this algebra and one is
rally led to take it as a starting point. This is the very idea developed in Ref. 29 and we us
construct a realization of the generators of the super-Yangian symmetry in terms of the ZF
lators.

First of all, we need to generalize all the basic results of Ref. 29 to our graded formalis
is actually readily obtained since the fundamental idea of the properties given in Refs. 29 an
the possibility of relabelling the auxiliary spaces which holds for our global formalism as
reader can check. Thus, we are in position to apply any result from Ref. 29 in our context.
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is our strategy: we start from the ZF algebra~corresponding to the algebraAR in Ref. 29!,
introduce the associated well-bred vertex operatorT(l) and use the explicit expression of ou
R-matrix to derive the first two terms of the expansion ofT(l) in power series ofl21. Then we
show that this approach actually coincides with the previous Lax pair formulation so that we
a realization of the generators of the super-Yangian symmetry for the hierarchy associated
nonlinear super-Schro¨dinger equation in terms of the ZF oscillators. This completes and confi
the deep relationships between the quantum canonical field description~cf. Sec. IV A! and the ZF
algebra approach.

Definition 4.1: The vertex operators Ti j (l) ( i , j 51,...,K) associated to the ZF algebraAR are

defined by T(l)5Ti j (l)Ei j PAR^ CK2
with

T`~l!511 (
n51

`
~21!n11

n!
an¯1

† T`1¯n
~n! a1¯n , ~4.9!

where

an...1
† 5~a1¯n!†5an

†~kn!¯a1
†~k1!,

T`1¯n
~n! 5T`1¯n

~n! ~l,k1 ,...,kn!P~C^ K2
! ^ ~n11!~l,k1 ,...,kn!,

and integration is implied over the spectral parameters k1 ,...,kn (the summation over the auxil
iary spaces being understood as in the Appendix).

T`(l) is said to be well-bred (onAR) if

T`~l!a1~m!5R1`~m2l!a1~m!T`~l! and T`~l!a1
†~m!5a1

†~m!R`1~l2m!T`~l!
~4.10!

with R given by (2.18).
Then, from Ref. 29 we can directly assert the following.
Property 4.2: The well-bred vertex operators T`(l) obey Faddeev–Reshetikhin–Takhtajan

(FRT) relations

R``8~l2m!T`~l!T`8~m!5T`8~m!T`~l!R``8~l2m!, ~4.11!

so that they generate the super-Yangian algebra Y(gl(M uN)). In addition, they form a symmetr
super-algebra for the hierarchy H(n) defined by

H ~n!5E
2`

`

dk kna†~k!a~k!, nPZ1 , ~4.12!

forming an Abelian algebra of Hermitian operators and governing the flows of the scatte
operators a, a† as follows:

eiH ~n!ta~k!e2 iH ~n!t5e2 iknta~k!,

eiH ~n!ta†~k!e2 iH ~n!t5eiknta†~k!.

Now, recalling the results obtained in Sec. II C 4, Property 3.6 and Eqs.~3.73!–~3.75!, we see
that both descriptions of our integrable system~in terms of canonical fields or ZF scatterin
operators! are equivalent. But in this operation, we have gained an explicit realization o
super-Yangian generators.

To do this, we use the inductive relations obtained in Theorem 3.3 of Ref. 29 order by
in the spectral parameterl. Let us rewrite
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T`~l!511
ig

l (
p50

`

T`
$p%l2p, ~4.13!

where, accordingly,

T`
$p%5 (

n51

`
~21!n11

n!
an¯1

† T`1¯n
~n!$p%a1¯n

for someT`1¯n
(n)$p%P(C^ K2

) ^ (n)(k1 ,...,kn).
Our goal is to determineT`

$0% and T`
$1% , that is the first two ‘‘levels’’ of the super-Yangia

generators. To do this we note that the inductive relations of Theorem 3.3 in Ref. 29 at first
in l take the form

T`0¯n
~n11!5T`1¯n

~n! 2T`0¯n21
~n! 1O~l22!, ~4.14!

which, under the knowledge of

T`0
~1!$0%511P`0 ,

yields

T`0¯n
~n11!$0%5~21!n(

k50

n

~21!kS n
kD P`k ,

wherePi j is the super-permutation of auxiliary spacesi and j, so that

T`
$0%5 (

n50

`
~21!n11

n! (
k50

n

~21!n2kS n
kDan¯0

† P`ka0¯n . ~4.15!

Now that we have the explicit form ofT`
$0% we can use it to evaluate the commutator@T`8

$1% ,T`
$0%#

directly and compare the result to that obtained from the FRT relations~4.11! at orderl22. The
latter calculation yields

@T`8
$1% ,T`

$0%#5@P`8` ,T`
$1%#. ~4.16!

As for the former, the well-bred relations~4.10! at orderl22 read

@T`
$0% ,a0~m!#5~11P0`!a0~m!,

@T`
$1% ,a0~m!#5m~11P0`!a0~m!1 ig~11P0`!a0~m!~11T`

$0%!,

@T`
$0% ,a0

†~m!#52a0
†~m!~11P`0!,

@T`
$1% ,a0

†~m!#52ma0
†~m!~11P`0!1 iga0

†~m!~11P`0!~12T`
$0%!,

which will be useful in calculating

@T`8
$1% ,T`

$0%#5 (
n50

`
~21!n11

n! (
k50

n

~21!n2kS n
kD @T`8

$1% ,an¯0
† P`ka0¯n#.

Note that this procedure can be iterated to evaluateT`8
$n% for an arbitraryn through@T`8

$n% ,T`
$0%#.

Now,
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@T`8
$1% ,an¯0

† P`ka0¯n#5(
i 50

n

an¯0
† P`ka0¯@T`8

$1% ,ai #¯an1(
i 50

n

an
†
¯@T`8

$1% ,ai
†#¯a0

†P`ka0¯n

5@P``8 ,~mk2n21!an¯0
† P`ka0¯n#1an¯0

† @P``8 ,P`k#T`8
$0%a0¯n

1 (
i 50

k21

an¯0
† @P`k ,P``8#P`8 ia0¯n1 (

i 5k11

n

an¯0
† P`8 i@P`k ,P``8#a0¯n .

This expression can be considerably simplified in@T`8
$1% ,T`

$0%# using the properties of the
binomial coefficients to combine the last three terms. Inserting~4.15! and using the property

(
n5k

i 21 S N
n Dak

na i 2n
N2n5ak

N2a i
N , where ak

n5~21!k21S n21
k21D ,

proved in Ref. 4, we get~after a convenient relabeling of the auxiliary spaces!

@T`8
$1% ,T`

$0%#5F P``8 ,(
n51

`
~21!n

n! (
k51

n

ak
na1¯n

† H ~mk2 ign!P`k2 ig(
i 51

k21

P` i P`kJ an¯1G .

Comparing this last expression with~4.16!, we get the explicit form forT`
$1% ~up to a term

proportional toI`).
To conclude, we can recast this expression as

T`
$1%5 (

n51

`
~21!n

n! (
k51

n

ak
na1¯n

† S mkP`k2 ig (
i 51

k21

P`kP` i D an¯11 igT`
$0%T`

$0% . ~4.17!

In the case ofgl(N), we recover the results of Ref. 4, although in a different basis:

Ti j
$0%5 (

n50

`
~21!n11

n! (
k50

n

ak
nan¯0

† Eji
~k!a0¯n ,

Ti j
$1%5 (

n51

`
~21!n

n! (
k51

n

ak
na1¯n

† S mkEji
~k!2 ig (

,51

k21

(
m51

N

Ejm
~, !Emi

~k!D an¯11 ig~T$0%! j i
2 ,

whereEi j
(,) denotes theEi j matrix in the,th auxiliary space.

For gl(M uN), similar formulas may also be obtained, taking care of theZ2-graded tensor
products.

V. CONCLUSION

We solved a vectorial version of the nonlinear Schro¨dinger equation which contains fermion
and bosons at the same time. We first introduced it classically using aZ2-graded formalism. At the
quantum level, special attention was paid to the resolution using a super ZF algebra assoc
the R-matrix of the super-YangianY(gl(M uN)). The integrability and symmetry of our syste
was studied through a Lax pair formalism and it is worth stressing the deep interplay be
canonical and~ZF! algebraic formalisms. The ZF algebra allowed us to compute the correl
functions. Further investigations can be performed in this direction to study super-versio
known integrable systems. One can also study these super-versions when a boundary i
duced, using generalizations of the ZF algebra~boundary algebras!.
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APPENDIX: AUXILIARY SPACES

1. Graded spaces

We define in the auxiliary space, aK-column vectorej with 1 at row j and 0 elsewhere, its
transpose, the row vectorei

†5(0,...,1,...,0) and the matricesEi j , with 1 at position (i , j ).
Here and below, the vectorsei , ei

† , and the matricesEi j will be Z2-graded:

@ei #5@ei
†#5@ i #; @Ei j #5@ i #1@ j # with @ i #5H 0 for i 51,...,M ,

1 for i 5M11,...,N.

Accordingly, the tensor product of auxiliary spaces will be alsoZ2-graded, e.g.,

~I^ ei !~Ejk ^ I!5~21!@ i #~@ j #1@k# !Ejk ^ ei .

We will consider even objects in the following sense:v5v iei and U5Ui j Ei j ~summation on
repeated indices is understood! are even iff@v i #5@ i # and@Ui j #5@ i #1@ j #. For example, the field
F(x) is even.

Note that, when dealing with the tensor product of auxiliary spaces, one has to be care
to confuse~even! objects likel15l^ I5( i 51

K l iei ^ I with their (Z2-graded! componentsl i , i
51,...,K. As a~tentative! clarifying notation, we will use boldface letters for the even objects,
ordinary letters for their components.

Finally, in order to apply our formalism to derive the classical NLSS equation, we will use
global Kronecker symbol,

d125d i j ~ei ^ ej
†!5~ei ^ ei

†!, ~A1!

and, accordingly,

d215~21!@ i #~ei
†

^ ei !. ~A2!

2. Poisson brackets

For F andG two (F,F†)-functionals, their Poisson bracket is defined by

$F,G%5 i (
,51

K E
2`

`

dx~21!@F#@,#S ~21!@,#
dF

df,~x!

dG

df,
†~x!

2
dF

df,
†~x!

dG

df,~x!D . ~A3!

This bracket is a graded Poisson bracket, i.e., it is bilinear, graded antisymmetric, and obe
graded Leibniz rule and graded Jacobi identity.

To any graded PB, one can associate a ‘‘global’’ Poisson bracket, defined for the even
tionals F and G. We introduce the notationua to denote eitherei (a5(0,i ) and @a#5@ i #), ei

†

(a5( i ,0) and@a#5@ i #), or Ei j (a5( i , j ) and@a#5@ i #1@ j #), so that any even objectF can be
written F5(aFaua with @Fa#5@a#.

On any even object, one defines the global PB

$F1 ,G2%5(
a,b

$Fa ,Gb%ua ^ ub . ~A4!

It is bilinear, antisymmetric, and obeys Leibniz rule and Jacobi identity. Let us stress tha
global PB is not graded~because of the use of auxiliary spaces!, but its ‘‘component’’ version
indeed is graded.

Lemma A.1: The global PB (A4) corresponding to the graded PB (A3) can be rewritten
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$F1 ,G2%5 i E
R
dxS dF1

dF3/2~x!

dG2

dF3/2
† ~x!

2
dG2

dF3/2~x!

dF1

dF3/2
† ~x!

D , ~A5!

where we have introduced a third auxiliary space (labeled3
2) which is ‘‘inserted’’ between the

space 1 and the space 2. We have also defined

d

dF~x!
5(

j 51

K

ej
† d

df j~x!
and

d

dF†~x!
5(

j 51

K

~21!@ j #ej

d

df j
†~x!

~A6!

Proof: Direct calculation. j
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