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Abstract: Storage and transportation of goods within global supply chains is a major cause of 

environmental damage in modern value added processes. Thus, in the past, theory and 

practice developed several approaches in order to decrease these negative environmental 

impacts that frequently counteract the traditional efficiency-oriented ambitions. However, in 

many cases the economic and environmental performance can be improved at the same time. 

As many activities in logistics and inventory management are related to the treatment of 

potential uncertainties in the system by establishing redundancies, the reduction of 

uncertainty has equally a positive impact on both performance measures. To investigate the 

interrelation between uncertainty and the economic and environmental performance of supply 

chains, a serial inventory system consisting of a manufacturer who works with overseas 

suppliers and a carrier is considered, whereas the carrier is able to reduce lead time 

uncertainty. The relationships between uncertainties and the economic and environmental 

performance of the considered inventory system are highlighted by a simulation study based 

on empirical data from an international container shipping supply chain. 
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Introduction 

In recent years we have seen the necessity of including environmental considerations in 

business operations, in particular for emission intensive activities such as global 

transportation of goods. Although we should be willing to undertake some cost for reducing 

the environmental impact, identifying opportunities which have positive environmental effect 

without deteriorating economic performance has become very important. Such efforts would 

lead to sustainability on both dimensions. As mentioned by Wu and Dunn (1995) and 

McKinnon (2010) preserving the environment while maintaining economic growth is a 

priority for many countries and therefore developing and implementing practical and cost-

effective carbon mitigation strategies for the logistics sector is a major challenge. Several 

activities through the supply chain contribute to these challenges. 

 

Goods storage and transportation is a major cause of CO2 emissions and is cited as the single 

largest source of environmental hazard in the logistics chain (Wu and Dunn, 1995). It is 

estimated that 2,800 mega-tonnes of the overall greenhouse gas emissions, which is 

equivalent to 5,5% of the total emissions are caused by the logistics and transport sector 

(WEF, 2009). In 2004 transport activities were responsible for 23% of the energy-related 

greenhouse gas emissions and freight transport was responsible for around 8% (IPCC, 2007). 

Lengthening of supply lines and the increase in freight transport intensity coupled with high 

usage of carbon-intensive transport modes are the main drivers of transport related carbon 
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emissions in global supply chains (McKinnon, 2010). In addition, carbon emissions related to 

warehousing is a significant factor because of the considerable energy requirements for 

heating, cooling, materials handling equipment, etc. (Dhooma and Baker, 2012), which is a 

result of  the increasing warehouse capacities due to rising buffers caused by longer lead 

times in global supply chains as well as due to growing product portfolios. 

 

In order to decrease the negative environmental impact of goods storage and transportation, 

different entities of the logistics chain can take on actions with immediate implications on the 

transportation system. Manufacturers and retailers can use more environmentally friendly 

transportation modes, or reduce the need for transportation by buying from on-shore suppliers 

as well as centralizing warehouses. On the other hand, logistics providers can work on 

reducing the carbon intensity of the energy they use and increase the energy efficiency of 

their operations by freight consolidation or by improving the technical features and the 

maintenance of their vehicles (McKinnon, 2010). Additionally, there are actions which can 

help improve the system through the interaction of the overall operations. One example is 

coordinating production schedules among suppliers to allow joint shipments which results in 

better vehicle utilization and hence fewer emissions (Bonney and Jaber, 2011).  

 

Similarly, in this paper we analyse the economic and environmental implications of a serial 

inventory system through such an interaction effect: the indirect effect of transport lead time 

variability through the replenishment policy on economic and environmental performance of 

supply chains. In order to develop sustainable operations we need to understand the effect of 

system parameters on environmental performance. In this study we are interested in the 

impact of a system parameter, transport lead-time variability, on carbon emissions. 

 

As Fransoo and Lee (2012) put it, although ‘containerised ocean transport has become the 

lifeline of almost any global supply chain’, there appears to be little or no attention to end-to-

end supply chain focus. Similarly, in a recent review, Tang and Zhou (2012) conclude that 

there is a need to develop and analyze end-to-end supply chain models that incorporate the 

issue of sustainable operations.  Although we do not consider a complete end-to-end supply 

chain, we still consider the interactions of different parts of the supply chain.  

 

When we consider global supply chains with overseas transportation, air freight and 

containerized ocean transportation are the two relevant modes of transportation. Decreasing 

lead-time variability is an operational improvement which can indirectly affect the carbon 

emissions on the whole supply chain by triggering actions and policies from shippers that 

lead to lower carbon emissions. It is commonly acknowledged that unanticipated variability 

in demand and/or lead-time is the major reason for stock-outs or excess inventories in supply 

chains. As the ocean carrier is able to reduce the lead-time variability under certain 

conditions, the need for both emergency shipments by air freight as well as safety stocks will 

decrease, which will also have significant impacts on the environmental performance of the 

supply chain.  

 

Economic implications of lead-time variability have extensively been studied. Song (1994), 

He et al. (2005), and Song et al. (2010) analyse the effect of lead-time variability on optimal 

inventory control policies and the resulting total costs under standard inventory control 

policies. With a simulation study of a multi echelon supply chain Chaharsooghi and Heydari 

(2010) show the significant impact of lead-time variability on performance measures such as 

inventory levels, product availability and bullwhip effect.  
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The time factor is a critical component in ocean transportation. Shipping lines have 

developed a strong focus on designing liner services with high frequencies, short transit 

times, combined with a high degree of schedule reliability. Variability in transportation time 

and the resulting delays not only decrease the reliability of the liner services, but can also 

incur additional costs (Notteboom, 2006). 

 

Delays have negative impact not only on economic performance but also on environmental 

implications. McKinnon (2007) presents a framework where seven sustainability ratios link 

supply chain activities with the carbon emissions of freight transport operations. Sanchez-

Rodrigues et al. (2010) study the negative impact of operational uncertainty on the seven key 

ratios. They present the perceived economic and environmental risks of transport uncertainty 

based on focus groups and surveys from different industries including manufacturers, 

retailers, and logistics providers. Delays are identified as the main source of transport 

uncertainty which has the highest economic and environmental risk. 

 

Recently, several models and policies have been developed which consider an environmental 

objective or constraint in addition to the economic objectives. Generally, environmental 

considerations are included in the models as they are imposed by regulations: either as limits 

on carbon emissions or as costs derived from carbon taxes or carbon trading.  

 

Benjaafar et al. (2010) study how classical operational models can be modified to include 

carbon emission concerns in order to address the role of operational decisions on carbon 

reduction. In a following study, Chen et al. (2011) analyse the classical EOQ model with a 

carbon constraint and extend the results to the newsvendor model and facility location 

problems. They provide conditions under which carbon reductions can be achieved without 

significantly increasing cost using only operational adjustments. Similarly, Hua et al. (2011) 

and Song and Leng (2012) analyse the EOQ and newsvendor models respectively under 

carbon cap-and-trade mechanism and show that under some conditions it is possible to reduce 

carbon emissions and decrease cost or increase profit at the same time. Jaber et al. (2012) 

model a two echelon supply chain considering emissions trading. Using an EOQ type 

formulation they consider different legislative systems such as carbon tax, emissions penalty, 

and a combination of a carbon tax and penalty. 

 

In addition to identifying optimal policies for companies, these studies provide insight about 

the effectiveness of different regulations on emission reductions. However, this implies that 

most of the research on operations including carbon emissions ignores market forces 

including competitors and consumers (Tang and Zhou, 2012). An exception is El Saadany et 

al. (2011) who study a two-level supply chain under cost optimization objective where 

demand is assumed to be a function of several product features including its environmental 

performance. Bouchery et al. (2012) state that the regulation based models poses a restriction 

with respect to their relevance and applicability. They study a multi-objective model in order 

to avoid this problem and apply their model for the EOQ problem. They identify the efficient 

frontier between total cost and total amount of carbon emissions resulting from the inventory 

system, and further use this to analyze the effectiveness of different regulations.  

 

Hugo and Pistikopoulos (2005) and Frota Neto et al. (2008) address the supply chain network 

design problem using multi-objective models with environmental and economic criteria. 

They identify settings where significant improvements in one criterion can be achieved with 

marginal compromise in the other one. Similarly, Chaabane et al. (2012) show how to achieve 

environmental objectives in a cost efficient way while designing supply chains under carbon 
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regulations. On the other hand, Harris et al. (2011) present a network design problem with a 

classical economic objective of cost minimization in order to study the impact of this 

approach on environmental performance. They analyse the relation between total logistics 

cost and their environmental impact in terms of carbon emissions from transportation and 

warehousing. They highlight that the cost-optimal solution is not necessarily the same as the 

solution which minimizes environmental impact.     

 

The remainder of the paper is organised as follows: Section 2 presents our model and the 

modelling assumptions. We present the findings from our model based on a simulation study 

in Section 3, and Section 4 finally concludes the article. 

 

Problem Description 

This paper studies a serial inventory system consisting of a shipper, i.e. a manufacturer or a 

retailer who works with overseas suppliers and has to decide on replenishments in the 

presence of uncertain customer demands as well as uncertain lead times associated to ocean 

freights (see Figure 1). The retailer uses a common continuous review inventory control 

system to determine the size and timing of orders and issues a regular order whenever the 

inventory position reaches the reorder point. Lead time for regular sea freight deliveries is 

assumed to be uncertain and is consists of the average lead time and a lead time delay which 

is common with regard to containerized shipping (c.f. Drewry, 2010). Besides, the retailer 

also employs an emergency supply mode via air freight to hedge against shortages and to 

ensure a 100% customer service level. This setting is observable in many practical scenarios, 

for example in highly competitive industries in which supply bottlenecks lead to the 

migration of customers or high contract penalties if the guaranteed service level targets were 

infringed. Air shipments usually have a short and rather predictable lead time compared to 

regular deliveries at the expense of higher transport cost and CO2 emissions per item and are 

assumed to arrive within the same day (see Moinzadeh and Nahmias 1988, Johansen and 

Thorstenson 1998, Axsäter 2007 or Huang et al. 2011 for a similar setting). In order to 

quantify the effect of lead time variability reduction on carbon emissions and supply chain 

performance, we present and analyse a simulation model based on a standard multi-period 

inventory control policy in such a dual transportation mode setting. 

 

----------------------------------------------- 

Figure 1  

----------------------------------------------- 

 

As there is still a lack of global, integrative performance metrics that combine environmental 

and operational measures and targets, in practice many organisations treat these concerns 

separately (El Saadany et al., 2011). Therefore, two different scenarios with respect to the 

measurement of the global performance of the supply chain and the inducible decision 

objectives are studied in the remainder of the paper.  

 

Under the first scenario, it is assumed that the replenishment policy is based on cost 

minimization without consideration of the environmental performance during the decision 

making process. This scenario can be considered as the one closer to practice as most of the 

commonly used inventory policies are based on cost minimization. Since with the availability 

of emergency option all demand is satisfied, a customer service level criterion is not relevant 

in this setting. Our aim is to identify the impact of consequent transportation performance on 

CO2 emissions under such a classical cost based approach.  
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The second scenario takes the complete opposite approach where the inventory levels are set 

according to a pure emission minimization objective. Our aim with this scenario is to identify 

the cost of minimizing environmental impact by comparing the results of the two scenarios. 

We do not combine the two objectives in a multi-objective model nor we include the 

environmental performance as a constraint or try to convert the emissions into monetary units 

and use it in the cost minimization. This way we avoid using a regulation based model as 

mentioned in the previous section. Rather than developing a prescriptive model we illustrate 

the interactions among the two distinct objectives and the relation between system parameters 

under different settings. 

 

Simulation model 

The purpose of the following simulation mode that considers the inventory system described 

above is to find the optimal model parameter based on the given setting and to evaluate the 

system in different parameter settings for a given policy. 

 

----------------------------------------------- 

Figure 2  

----------------------------------------------- 

 

Figure 2 illustrates the decision process. The retailer faces a random daily demand which is 

satisfied from on-hand stock as long as possible. Whenever the inventory position declines to 

or below the reorder level, a regular order is issued that is delivered by the carrier via 

containerized sea freight and whose lead time is affected by uncertain delays in shipping 

times. Demands that cannot be fulfilled by on-hand stock will be served by emergency orders 

by air freight within one day at the expense of higher unit transport cost. As there is no fixed 

ordering cost for emergency replenishments assumed, the manufacturer will satisfy the daily 

shortages by emergency supplies.  

 

The supply chain model discussed above is simulated using AnyLogic 6.8.1 software and is 

based on a discrete event simulation model to describe the sequence of operations within the 

system. 

 

Inventory Control Policy 

In the setting described above, the manufacturer decides on the stock levels as well as the 

reorder behaviour and deploys the carrier for the deliveries from overseas suppliers. Besides 

these regular replenishment processes, he can also use emergency supplies via air freight, i.e. 

a second means to deliver with negligible lead times but at the expense of higher transport 

costs and emissions. 

 

As mentioned in Axsäter (2007) and Huang et al (2011) accomplishing emergency orders 

usually imposes a direct unit cost which is in or case related to the increase in shipment cost 

per unit by using air freight instead of container shipping and avoids ordering cost for normal 

replenishments. Furthermore, as the demand fulfilled by emergency deliveries disappears 

from the regular replenishment process, the changes of the system state are essentially 

equivalent to a lost-sales approach. 

 

Since it is difficult to obtain the optimal policy for an inventory system with emergency 

orders, heuristics and approximations are commonly used. Minner (2003) provides an 

extensive review on inventory policies with multiple supply modes. There exist several 

models based on the extensions of (Q,r) policy. For example, Johansen and Thorstenson 
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(1998), and Axsäter (2007) provide heuristics based on (Q,r) policy for triggering emergency 

orders. Jain et al. (2010) study a make-to-order system with two transport modes where they 

assume a (Q,r) policy and derive the optimal policy parameters. Huang et al. (2011) provide a 

heuristic decision rule for an inventory system with emergency orders and partial 

backordering where the normal orders are set according to a (Q,r) policy. These models 

assume a positive lead time for emergency orders while we assume zero lead time for the 

emergency orders. Furthermore we assume that all demand which cannot be immediately 

satisfied has to be satisfied through an emergency order. These two assumptions make our 

model simpler and we do not really need a decision rule for when to put an emergency order 

and the size of the emergency order. Our decision variables are the size of the regular 

shipments. 

 

The regular ordering using ocean transportation can be seen as a lost sales system. Sheopuri 

et al. (2010) presents the connection between the lost sales inventory control problem and the 

dual sourcing problem. Based on their findings, we can observe that the dual mode system 

that we consider is identical to a lost sales system where the regular mode is the only supply 

source and the amount of orders placed from the emergency mode is exactly the amount of 

lost sales in the regular mode every period.  

 

For lost sales systems, the (Q,r) policy has been studied extensively, but it remains difficult to 

analyze the model exactly and determine the optimal values for Q and r. Bijvank and Vis 

(2011) provide a recent review on lost sales inventory models. 

 

In practice, it is common to derive the order quantity Q from a deterministic model using 

mean demand and lead-time, and stochasticity is considered while determining the reorder 

point r. This procedure is generally an adequate approximation to the optimal policy (Axsäter 

2006). In this study, we determine Q from the economic order quantity (EOQ) model, and 

find the optimal reorder point by simulation. We have used the default optimization engine in 

AnyLogic which is based on OptQuest Optimization Engine. 

 

Calculating logistical parameters 

To create a rather realistic description of the considered problem setting, the simulation 

model is based on data from different sources such as reports from public authorities and 

industry groups as well as internal operating data collected from a UK retailing company. An 

overview of the considered model parameters is given in Table 1, whereas their derivation is 

explained in detail in the following paragraph. 

 

----------------------------------------------- 

Table 1  

----------------------------------------------- 

 

Demand characteristics are based on the average daily product demand of the considered 

retailer. To achieve comparability between different product classes, demand is assumed to 

follow a normal distribution where the daily mean demand is normalized and different levels 

of the standard deviation are considered within the simulation. We consider products with 

stationary demand, where seasonality and trend are not significant. Hence, variability of 

demand refers to the forecast error, which in this setting stems from uncertainty in the 

demand process.  

 

As the considered products are purchased from overseas suppliers on a make to stock basis, 
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lead time for regular replenishments is predominantly influenced by transportation lead times 

(see Tersine and Hummingbird, 1995) and thus, the performance of the oversea carrier which 

is mainly determined by two key factors, transit time and schedule variability (Notteboom, 

2006). Regular shipping time is chosen on the basis of typical transit time between the two 

considered ports. In addition, variability of these shipping times is included by considering 

delays appearing within these regular schedules. This schedule variability can be described by 

difference between the planned arrival date and the actual arrival date and is influenced by 

different factors such as terminal operations, port access, maritime passages and chance 

(Notteboom, 2006). Therefore, additionally to the regular fraction of the shipping time, a 

gamma distributed delay with mean of one day and a standard deviation of 2.05 days is 

considered, which reflects the average schedule reliability statistics for all types of carriers on 

this specific route (see Drewry, 2010). The variability appears to be comparatively small, but 

always depends on the considered route and the individual ocean carrier deployed. 

 

Inventory holding cost include the physical holding cost as well as the cost of capital and are 

also derived by the internal data provided by the retailer. The fixed element of the ordering 

cost consists of the fixed cost for ocean freight such as booking and documentation fees as 

well as the internal documentation and administration expenses and amounts to 195 USD. For 

the derivation of the variable sea transport cost per item all the cost associated with a FFT 

container such as hinterland transport cost in Asia and Europe, the ocean freight rates as well 

as customs and port handling fees are considered on the product level by assuming a full 

container load and an average product size. It is implied that remaining container space may 

be used for other products as well. A similar approach is used to derive the air transport cost 

per item. After considering all air freight cost per kg, such as transport cost, direct air freight 

cost, security and handling fees, the air transport cost rate is determined by assuming an 

average product weight. Table 2 summarizes all the relevant cost factors and the derivation of 

the variable transport cost per item for the employed transportation alternatives. 

 

--------------------------------- 

Table 2  

--------------------------------- 

 

Calculating CO2 emissions 

The presented approach considers the overall carbon emissions of the inventory system on an 

end-to-end supply chain focus as the sum of transport related and warehouse related 

emissions which can be identified as the main drivers of environmental pollution in global 

supply chains (see WEF, 2009). 

 

As the presented study is based on a retailer that works with different carriers and doesn’t 

have in-house transport operations that provide direct access to energy data, the transport 

related CO2 emissions are estimated on the level of transport activity. Thus, to calculate the 

emissions from transportation, the average product weight, the distances for ocean and air 

freight and the respective ocean and air freight emission factors are considered as follows: 

 

kgCO2 /item= average item weight * distance *CO2/tonne-km  

 

where an average emission factor of 8 gCO2/tonne-km is assumed for container vessels and 

602 gCO2/tonne-km for airfreight (cf. McKinnon and Piecyk, 2010). 

 

For the calculation of CO2 emissions from the distribution warehouse, we estimated the 
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average daily emissions per product based on the energy consumption (kWh) of fuels and 

electricity spent on lighting and air conditioning. Note that in the considered inventory 

system, the products don’t require a specialized storage environment, i.e. extensive cooling or 

heating. Consequently, the warehouse emissions per item within a year are calculated by 

using energy consumption benchmarks for retail warehouses and respective conversion 

factors as well as the provided warehouse capacity and average stock size: 

 

kgCO2/item = (warehouse capacity/average stock size)*energy benchmark*conversion factor 

 

where an energy benchmark for electricity of 67 kWh/m2 and for fossil fuels of 169 kWh/m2 

is used (CIBSE, 2004). The respective conversion factors for electricity of 0.54 kgCO2/kWh 

and for fossil fuels of 0.27 kgCO2/kWh are used to derive the appropriate emissions 

(DEFRA, 2012), which leads to overall warehouse emissions of 81,81 kgCO2/m2. 

Considering the average stock size of 250,000 products and the area of the warehouse of 

5,500m2, this leads to a daily emission of 0,005 kg CO2/item. In this case, it is implicitly 

assumed that a reduction of the amount of products stored leads to reduced emissions as the 

warehouse space may also be used for other products. 

 

Results 

Effect of lead time variability on cost and emissions 

With the given parameters we can observe that cost optimal re-order points rc* is always 

smaller than the emission optimal re-order point re*. This is a result of the relation between 

two ratios: the sea-air freight cost ratio and the sea-air freight emission ratio. Because of the 

large air freight emissions, optimisation on emissions results in higher safety stocks and 

hence lower emergency shipments.  

 

The direct effect of lead time variability on total cost and total emissions is illustrated in 

Figures 3 and 4. 

 

----------------------------------------------- 

Figure 3 + 4  

----------------------------------------------- 

 

Figure 3 shows the increase of mean total cost and their 95% confidence intervals in δL. As 

expected, total cost increase in δL, which is perfectly in line with the literature and validate 

our model. Figure 4 shows the corresponding effect of δL on mean total emissions and their 

95% confidence intervals. Intuitively total emissions are also increasing in δL, since both 

safety stocks and the amount of air shipments increase.  

 

Table 3: Optimality gap between cost and emission optimization, sea:air cost ratio 1:10.5, 

emission ratio 1:32 

σL ΔTC % ΔTE % 

1.00 0.08% 0.03% 

2.00 0.16% 0.52% 

3.00 0.13% 1.17% 

4.00 0.25% 1.42% 
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Table 4: Optimality gap for an alternative product with sea:air cost ratio 1:6 and emission 

ratio 1:50 

σL ΔTC % ΔTE % 

1.00 0.39% 0.88% 

2.00 0.65% 4.82% 

3.00 0.60% 10.92% 

4.00 0.57% 15.71% 

 

 

Tables 3 and 4, and Figures 5 and 6 show how a change in the objective from minimizing 

total cost to minimizing total emissions affects the shipper. Let ΔTC = (TC(re*) – TC(rc*)) / 

TC(rc*) be the relative cost difference: The increase in cost if the shipper decides based on 

emission minimisation instead of cost minimisation. Similarly, ΔTE = (TE(rc*) – TE(re*)) / 

TE(rc*) is the decrease in total emissions when the shipper minimizes total emissions instead 

of total cost. 

 

As can be observed this optimality gap depends mainly on the relation between the cost and 

emission ratios. The more different these two ratios become the larger the optimality gap is.  

 

In the base case in Figure 5, we observe a cost ratio of 1/10.5 (3.84/40.90) together with an 

emission ratio of 1/32 (1.76/56.80). Under this relation, the optimality gap both on cost and 

emissions are very small. This implies that the pricing is able to regulate the system such that 

cost optimal policy and the emission optimal policy are very close to each other. 

 

For products with different characteristics which can lead to a more divergent cost and 

emission ratios would cause the optimality gap to grow. In Figure 6 with a cost ratio of 1/6 

and emission ratio of 1/50, especially for high levels of δL, a change in the policy has a strong 

effect on the environmental performance (here around 15% savings in emissions for the 

highest lead time variability), which comes with a small increase in total cost (below 1% for 

all values of lead time variability).  

 

While we can observe that the optimality gap on total emissions can be quite considerable, 

especially for large δL, the gap on total cost is typically rather low independent of the cost and 

emission ratios. This can be explained with the fact that cost functions are typically steep left 

of the cost optimal re-order point where high cost of air freight are relevant. Right of the cost 

optimal re-order point the cost function is rather flat as holding cost are typically much lower 

than air-freight cost. Since rc* < re* changing the objective from cost to emission 

minimisation does not harm the economic performance but improves the environmental 

performance considerably. 

 

----------------------------------------------- 

Figures 5 + 6  

----------------------------------------------- 

 

Impact of ratio air:sea freight emissions 

Figure 7 shows how a change in the emission rate of air freight from a basis value of 23 

impacts total cost, when the objective is to minimize emissions. For low levels of demand 

variability (cvD = 0.2 and cvD = 0.4), total cost are almost unchanged in a change of air 



10 

 

emissions. This again confirms the finding that emission optimisation has little impact on the 

total cost. Only for high levels of demand variability (cvD = 0.6), increasing air freight 

emission rates impact the order policy strong enough that a significant decrease in total cost 

can be seen, which is caused by increased safety stocks and hence decreased air shipments.  

 

Figure 8 shows the impact of increasing air freight emissions from a basis value on total 

emissions, again with the objective to minimise emissions. Higher levels of demand 

uncertainty (cvD = 0.6) have a stronger impact on the change in total emissions. 

 

----------------------------------------------- 

Figure 7 + 8   

----------------------------------------------- 

 

Impact of ratio air:sea freight cost 

In order to analyze the effects for a cost minimizing shipper, Figure 9 shows the impact of air 

freight cost on total cost. This is again perfectly in line with the literature. Figure 9 shows the 

effect of air freight cost on total emissions of the shipper. Clearly an increase in air freight 

cost reduces the percentage of air freight necessary and hence also emissions. Note that as rc* 

< re*, the decrease in rc* has a significant impact on emissions.  

 

----------------------------------------------- 

Figure 9 + 10   

----------------------------------------------- 

 

Detailed cost and emission analysis 

In Figures 11 to 14 we illustrate the distribution of costs and emissions between warehousing 

and air freight. The reason for choosing these two is that both warehousing and air freight are 

measures to deal with uncertainties in the system. Uncertainties can be either covered by 

safety stocks or by emergency shipments. Since by far the largest part of quantity shipped 

through ocean shipping is independent of variabilities, cost and emission related to ocean 

shipment are almost fixed for all levels of lead time and demand variability.  

 

Figure 11 shows the emissions from warehousing and airfreight for different levels of σL 

under emission minimization. On the other hand Figure 12 shows the same under cost 

minimization. It can be observed that under emission minimization it is mainly additional 

safety stocks that cover the increase in uncertainty of lead time as typically warehousing 

related emissions are considerably smaller than emissions of air shipment. Under the cost 

minimization criterion mainly air freight covers additional lead time variability.  

 

----------------------------------------------- 

Figures 11 + 12  

----------------------------------------------- 

 

In Figure 13 and 14 we show warehousing and air shipment cost under emission and cost 

minimization, respectively. Under emission minimization we can again observe that 

additional lead time variability is covered by safety stocks, air shipments remain almost 

constant. Under cost minimization, both additional safety stocks and air shipments are used to 

cover uncertainty. The main cost implication is on air shipments. 
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----------------------------------------------- 

Figures 13 + 14   

----------------------------------------------- 

 

As discussed previously cost is rather insensitive to the level of re-order points within these 

ranges, while emissions can change considerably. As a result, the (emission) values in Figures 

11 and 12 become very different for high lead time variability, while the (cost) values in 

Figures 13 and 14 are relatively similar.  

 

Conclusion 

In this study we quantified the effects of variability in deep sea container shipping on 

emissions and total cost for a retailer or manufacturer with high service level requirements. 

An important finding is that a change in the optimal policy from cost to emission 

minimization has a low impact on cost, but can have a considerably high impact on 

emissions. We showed this based on the optimality gap between cost and emission 

optimization. 

 

As this study is based on data from the case of a typical UK retailer and real-world cost and 

emission data, an additional value of this work is to provide estimates on the absolute cost 

and emission implications of typical ocean freight lead time variabilities. This is particularly 

relevant as recently ocean carriers have begun to offer ‘perfect reliability’ (i.e. aiming zero 

lead time variability) in containerized ocean shipping on major routes from Far East to 

Europe. In this sense our paper provides an illustrative case how such a change in shipping 

lead time variability affects a typical retailer’s cost and emission performance through 

inventory policies. 

 

An immediate extension of this work is to consider more levels of the supply chain and 

including the potential variability on different echelons. Production lead time on the supplier 

site and the transportation time on road/rail from the supplier to the port and from the central 

warehouse to further stocking points and customers are potential causes of variability and 

inefficiency in the supply chain. Moreover, the consideration of different transportation 

modes as well as the combination in intermodal logistics networks may lead to further 

interesting results. 

 

There exists a large body of literature on supply chain network design considering the 

environmental impact. Combining the strategic and tactical levels of supply chain planning 

with an eye on the environmental performance would be another challenging research topic. 

A plethora of works exist on the simultaneous analysis of the strategic network design and the 

interaction with tactical and operational level problems such as inventory control and 

transportation decisions. However, the environmental performance of such an integrated 

model has not been covered yet. It is worthwhile to look at the interaction of the two levels of 

problems from the environmental sustainability aspect.  

 

In this study we did not consider holding cost for pipeline inventory, which is a result of cost 

of capital and depreciation, and is very common and significant for products with a short life 

cycle. For example, in the electrical machinery industry depreciation rate per day accounts 

for around 1% of the product’s value (see Hummels 2000). In such a setting we would expect 

to see an even higher proportion of air shipment if the objective is cost minimization. This 

would increase the gap between emission and cost optima even further.  
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Moreover, in our simulation approach we employed the direct carbon emissions caused by 

transportation and storage of goods as an indicator for the environmental performance of the 

inventory system. More sophisticated environmental performance metrics that include a 

variety of qualitative and quantitative measures (c.f. El Saadany et al., 2011) could be used to 

illustrate the different environmental impacts of such a system and the ensuing customer 

behaviour. 
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Tables and Figures 

 

Table 1: Default 

model parameter 

used for simulation 

study, if not 

mentioned 

otherwise  

 

 

 

 

 

 

   

d = 100.00 Mean demand per day 

cvD = 20%  Coefficient of demand variation  

L = 30.00 Mean lead time 

σL = 2.05 Standard deviation of lead time 

ch = 0.01 Holding cost rate per item 

cs = 3.84 Sea transport cost rate per item 

ca = 40.80 Air transport cost rate per item 

co = 195.00 Fixed cost per regular order and delivery 

eh = 0.005 CO2-emission storage per item and day 

es = 1.76 CO2-emission sea transport per item 

ea = 56.80 CO2-emission air transport per item 
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Table 2: Calculation of transport related cost factors 

Cost factors sea transport per FFTC Cost factors air transport per kg 

Hinterland transportation to Yangshan terminal 357 USD Transportation from vendor to Pudong airport 0.30 USD 

Yangshan port terminal handling 120 USD Air Freight 0.97 USD 

Customs brokerage 50 USD Security fee 0.18 USD 

Ocean freight rate and security fee (including cost of fuel) 3510 USD Handling cost 0.14 USD 

Import customs clearance to UK 90 USD Fuel surcharge 1.82 USD 

Felixtstowe port terminal handling 270 USD War risk charge 0.13 USD 

Delivery from Felixtsowe terminal to customer 750 USD Heathrow airport handling 0.24 USD 

  Delivery from Heatrow airport to customer 0.30 USD 

Total sea transport cost per FFT container 5147 USD Total air tranposrt cost per kg 4.08 USD 

Sea transport cost per item* 3.84 USD Air transport cost per item** 
40.80 

USD 

    

* with 1340 products of average size per FFT container    

** with an average product weight of 10 kg    
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Figure 1: Schematic diagram of the two stage supply chaing with air freight, ocean shipping and 

warehousing emissions 

 

 

 
 

 

Figure 2: Decision flow chart of the inventory control and re-ordering subsystem of  the simulation 

model 
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Figure 3: Total emissions over σL for different levels of demand uncertainty: cvD = {0.40, 0.20, 

0.01} for top, middle and bottom plot, with 95% confidence intervals. 
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Figure 4: Total cost over σL for different levels of demand variability: cvD = {0.40, 0.20, 0.01} for 

top, middle and bottom plot, with 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Optimality gap in % of emissions (solid line) and cost (dashed line) for a product with 

sea:air cost ratio 1:10.5 and sea:air emission ratio 1:32, cvD = 0.20. 
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Figure 6: Optimality gap in % of emissions (solid line) and cost (dashed line) for an alternative  

product with more diverge sea:air ratios: a cost ratio of 1:6 and an emission ratio of 1:50, cvD = 

0.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sensitivity analysis of total cost with respect to emissions of air freight with an emission 

minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 

intervals. 
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Figure 8: Sensitivity analysis of total emissions with respect to emissions of air freight with an 

emission minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Sensitivity analysis of total cost with respect to cost of air freight with a cost 

minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 

intervals. 
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Figure 10: Sensitivity analysis of total emissions with respect to cost of air freight with a cost 

minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Detailed emissions of warehousing and air freight using re (emission optimal re-order 

point), cvD = 0.20. 
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Figure 12: Detailed emissions of warehousing and air freight using rc (cost optimal re-order point), 

cvD = 0.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  Detailed cost of warehousing and air freight using re (emission optimal re-order point), 

cvD = 0.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Detailed cost of warehousing and air freight using rc (cost optimal re-order point), cvD = 

0.20. 

 


