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Abstract

We develop a coherent framework for the valuation of real assets and determination

of the optimal time to invest. To this end, we model the stochastic nature of income and

develop methodologies for valuing traded derivatives to facilitate model calibration and

for assessing real investment projects. A valuation paradigm for freight-linked assets is

presented and the effects of uncertainty in the key parameters are examined by means

of a sensitivity analysis. Using a real option approach, we demonstrate its usefulness

in investment appraisal and optimal timing of entry. We accompany our theoretical

results with illustrative examples from the shipping industry.

Keywords: real options, investment, uncertainty, contingent claims, shipping

JEL classification: C13, C63, G13, G31, L92.
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1 Introduction

Investment timing and uncertainty are issues that call for careful consideration when com-

mitting to any investment. Managers rely extensively on the use of traditional investment

valuation criteria such as the Internal Rate of Return (IRR) and Net Present Value (NPV).

These methods, although intuitive and easy to implement, have their shortcomings as the

managerial flexibility implicit in any investment opportunity, i.e., the option to adapt invest-

ment decisions in response to uncertainty, is not taken into account, resulting in suboptimal

investment timing rules. As such, managers often ignore or underestimate the extent of un-

certainty and its implications. This can be dealt with by treating the investment decision as

the exercise of an option under uncertainty, in which case real option theory provides better

answers. In their seminal paper, Brennan and Schwartz (1985) evaluate natural resource in-

vestments based on arbitrage arguments, where uncertainty originates from the output price;

operational policy decisions, such as postponing production temporarily or permanently, are

also examined. Other early contributions on the use of real option theory in evaluating invest-

ment projects include McDonald and Siegel (1986), Majd and Pindyck (1987), Dixit (1989),

Triantis and Hodder (1990) and Pindyck (1991); we refer to Dixit and Pindyck (1994) for a

comprehensive literature survey. Typically, the payoff of the call option is a convex function

of the underlying random variable, thus its value increases with uncertainty, i.e., the greater

the uncertainty the greater the value of the option to invest and, hence, the incentive to keep

the option open1; the investment decision is affected by the assessment of the option to either

invest immediately or wait and observe the progress of the investment until market conditions

improve. Hitherto, this is an issue that has been explored, inter alia, in different investment

projects such as real estate (Grenadier, 1996), environmental technologies (Cortazar et al.,

1998), natural resources (Schwartz and Smith, 2000, Moel and Tufano, 2002, Kellogg, 2014)

and information technology (Schwartz and Zozaya-Gorostiza, 2003).

1An exception to this rule is identified in Kandel and Pearson (2002), who find that a negative relation
may exist between the value of real options and uncertainty in the case of an incremental investment in
technology aimed at reducing marginal costs of production.
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This paper focuses on deep-sea shipping. This industry lends itself to this analysis as it

is the backbone of international trade – 80% of global trade by volume and 70% of global

trade by value are carried by sea and handled by ports (UNCTAD, 2015) – and a leading

indicator of the global economy (Kilian, 2009) that has recently attracted much interest also

in the finance and economics literature (e.g., see Kalouptsidi, 2014 and Papapostolou et al.,

2014). Furthermore, the valuation of vessels has been traditionally based on the price that

a well-informed rational investor would pay for the acquisition of a vessel using conventional

investment criteria such as NPV. However, this static framework is unable to capture the

market dynamics and the strategic optionalities available to shipping investors, such as the

commitment of time and capital resources to order a vessel.

The key contribution of this paper is the development of a framework for evaluating

real assets (ships in this case) and investing in based on a real-option based approach. The

methodology is applied to the drybulk sector of the shipping industry which provides an ideal

framework for empirical testing as there are numerous strategic and managerial flexibilities

embedded in shipping investment and operation decisions (Alizadeh and Nomikos, 2009).

Within this framework, two innovations are proposed. First, we derive a new, fast and

accurate analytical method for pricing traded contingent claims on the discrete arithmetic

average freight rate over a certain time interval2 under spot freight rates represented by an

exponential mean-reverting process with jumps of random magnitude and arrival. Using

this, we then calibrate the model to real market data, verify it by performing relevant

robustness checks, and, based on it, provide insights on how these assets can be evaluated;

this is crucial as quite often research on real options is theoretical due to the lack of data

for empirical testing. This also allows us to investigate the optimal timing of investment,

the key drivers of the investment value, the price differences among vessels of different

2Options with an average based on finitely many asset values over time are called discrete average options
as distinct from continuous average options. In practice, only discrete options are traded. Arithmetic average
options are difficult to price as they do not have closed-form analytic solutions. The reason for this difficulty
is that the payoff depends on the finite sum of correlated variables, for which there is no recognizable
probability density function. In view of this limitation, we refer to Section 2.3 for more about how to deal
with this option pricing problem.
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economic lives and the impact of construction lags on the acquisition cost3. In fact, the

importance of our formulation extends beyond shipping to markets where the use of average

options is prevalent (e.g., energy commodities (Kyriakou et al., 2016), agriculturals (Geman,

2005) and metals (www.lme.com/trading/contract-types/tapos/)), as well as long-term real

options with decision features on other income-generating real assets, such as plant and

equipment, real estate and commodity-linked assets (e.g., oil wells, refineries, gas storage

facilities).

Previously, the freight rate dynamics has been modelled by a geometric Brownian motion

(e.g., see Andersen, 1992, Koekebakker et al., 2007). Nomikos et al. (2013) augmented the

original model by jumps of normal size (Merton model) to account for upside jumps in the

spot freight rates, due to the inability of supply to immediately respond to increased demand

for seaborne trade, but also downside movements during market recessions. Mean-reverting

variations by means of an Ornstein–Uhlenbeck (OU) model have also been considered in

earlier communications, including Bjerksund and Ekern (1995), Alesii (2005), Sødal et al.

(2008), Sødal et al. (2009) and Jørgensen and De Giovanni (2010) to name but a few, in

order to describe the tendency of freight rates towards the long-run cost of transportation

service provision. Nevertheless, as truly put forward by Tvedt (1997), the assumption of a

Gaussian-OU process is not particularly realistic as this is not downward-restricted implying

possible negative spot freight rates, especially if volatility is high (which we confirm in

our analysis in Section 3.1), in addition to the resulting symmetry of freight rates while

these actually appear to be skewed. These deficiencies can be alleviated by using instead a

geometric mean-reverting process as in Tvedt (1997).

In the current research, we establish a generalized stochastic freight rate framework in

the form of an exponential mean-reverting process overlaid with jumps of random magni-

tude and arrival which aims to strike a good balance between realism and level of sophis-

3In modelling the investment timing decision, we assume that investors are solely concerned about the
potential profitability of their investment and thus their investment choice is not influenced by behavioural
biases such as competition neglect (Greenwood and Hanson, 2015).
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tication/tractability. This encompasses the geometric Brownian motion if mean-reverting

variations and jumps are disallowed; the geometric mean-reverting process if jumps are

excluded; the Merton model if mean-reverting variations are excluded; the Gaussian-OU

process if jumps are disallowed and a logarithmic transformation is applied. The model is

calibrated using cash-settled freight options with different maturities, whose payoff depends

on the discrete arithmetic average of the spot Baltic Capesize Index over a predetermined

time period; these are the most liquid contracts representing about 90% of the total trading

volume in freight options (www.balticexchange.com).

Our in- and out-of-sample empirical analysis suggests that the postulated model with

mean-reversion and jumps offers a sufficiently rich and realistic representation of the spot

freight rate process. This then affects the expected cash flows from real shipping investment

activities, hence provides the investors with the necessary information to make prudent

investment decisions; ignoring any of these features can result in error on decision-taking4.

To demonstrate this, we present a fair valuation setup for vessels of a given economic life

cycle. Sensitivity formulae with respect to valuation inputs are also derived to infer the limits

of variability of vessel values associated with changes of these inputs. For example, a critical

parameter when considering an investment in a newbuilding vessel is the construction lag,

which itself involves uncertainty causing delays in vessel deliveries. This implies the existence

of an immediate delivery premium which is reflected in our valuation exercise, i.e., the value

of a newbuilding vessel with construction lag is slightly lower than the value of a readily

available five-year-old vessel; this is generally more profound during periods of prosperous

market conditions and relatively full orderbook. Our results support the existence of a

high investment opportunity cost embedded in the construction lag of a newbuilding vessel

compared to readily available vessels. As the time-to-build declines, the investment volatility

4Negative and positive effects caused by extreme events are linked to the uncertainty of the payoff from a
project, resulting into ending the investment opportunity or boosting its prospects. Similarly, mean-reversion
implies that freight may temporarily be high or low but will tend towards the equilibrium freight; this is
directly related to the profitability of freight-linked projects and might also have an impact on the timing of
investment, depending on the speed of mean-reversion and the prevailing market conditions.

6



increases (Kalouptsidi, 2014) as well as the value of the option to wait. Finally, we find that

the exercise time of the option increases with the vessel age.

The rest of the paper is organized as follows. Section 2 outlines the details of the postu-

lated spot freight rate model dynamics and develops the valuation setup for traded derivatives

settled on the average freight rate. Section 3 presents the outcome of the model calibration.

Section 4 defines and solves the vessel valuation problem. Using our results from the previous

sections, in Section 5 we develop an application in investment appraisal based on real option

approach and present numerical experiments. Section 6 concludes. Several proofs and other

details are deferred to the appendices.

2 Model Setup and Valuation

2.1 Market Description

Freight markets are notoriously volatile. During the period 2003–2008, freight rates for

capesize drybulk carriers, with a cargo-carrying capacity of 180,000 mt dwt, increased from

an average rate of 20,000 USD/day to a maximum of 236,000 USD/day only to drop to 6,000

USD/day within a period of four months after the onset of the financial crisis. Given the

high volatility, it is not surprising that market participants increasingly rely on the use of

forward and option contracts to manage freight rate exposure.

Forward contracts on freight, known as Forward Freight Agreements (FFAs), are cash-

settled and trade the arithmetic average spot freight rate or charter hire rate for delivery at

a future date. The underlying spot rate reflects the cost of hiring (chartering) a bulk carrier

across a range of indicative shipping routes for the transportation of drybulk commodities

and is expressed in USD/day.5 FFAs are an effective and popular tool for hedging freight

5Spot rates are obtained using the market assessments by a panel of independent shipbrokers on the
prevailing open market level for the routes defined by the Baltic Exchange and are reported by the Baltic
Exchange on a daily basis. As a benchmark for the level of freight rates, the market uses the trip-charter route
average of four benchmark capesize routes, known as Baltic Capesize Index 4TC (www.balticexchange.com).
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rate risk. For 2015 the equivalent trading volume in FFAs has been about 640,000 cargo

trading days, which is roughly equivalent to the full capacity of the underlying capesize fleet

(www.balticexchange.com). Although FFAs allow traders to lock in a given freight rate over

a period of time, they lack the flexibility that would enable their users to maintain the hedge

in case market moved against them. Options, on the other hand, offer this flexibility.

The options market has gained popularity recently with a trading volume of 280,000

cargo days for 2015 and an average weekly open interest of 140,000 cargo trading days. In

this study we consider freight options traded on the Baltic Capesize Index (BCI) as they

are by far the most liquid contracts representing about 90% of the total trading volume

in freight options (www.balticexchange.com). The freight options belong to the family of

path-dependent contingent claims called Asian options whose payoff depends on the average

price of some underlying asset (e.g., see Zhang, 1995). More specifically, the BCI freight

options are settled on the arithmetic average of the spot Baltic assessments over the trading

days of the settlement month. The average-based settlement procedure is inherited from the

FFA market in response to concerns about the possibility of market manipulation by large

participants in such a highly volatile market.

2.2 The Spot Model and the FFA Price

In what follows, we denote by St, t ∈ [0,∞), the underlying spot freight rate dynamics. We

define this through Xt = lnSt as follows:

Xt = Yt + Lt, (1)

where

dYt = k(ε− Yt)dt+ σdWt, Y0 = X0,
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W is a standard Brownian motion, k is the mean-reversion coefficient that describes the rate

at which process Y is expected to be pulled towards level ε, and σ is the diffusion coefficient.

L is an independent compound Poisson process with a constant arrival rate of λ > 0 jumps

(per unit time) of size J ; J is modelled by a sequence of independent and identical normal

random variables with E(J) =: µJ and Var(J) =: σ2
J . We call St = exp(Xt) the MRJ model;

this includes the basic lognormal and exponential OU processes as special cases when jumps

and the mean-reversion feature are ignored (we also consider these in Section 3.2). The choice

of model (1) to describe the (log) spot dynamics is motivated by observed mean-reversion

and existence of discontinuities in the freight market (see Section 3.1 for further discussion).

The characteristic function of (1) is given by

φ0(u; t) = E
(

eiuXt
)

= exp

{

iuX0e
−kt + iuε(1− e−kt)− σ2u2

4k
(1− e−2kt) + ξ(u)t

}

, (2)

where

ξ(u) := lnE(eiuL1) = λ(eiuµJ−u2σ2
J
/2 − 1) (3)

is the characteristic exponent of L (e.g., see Cont and Tankov, 2004). By differentiating the

cumulant generating function lnφ0(u; t) we obtain the cumulants

E(Xt) =
1

i

∂ lnφ0

∂u
(0; t) = ε+ (X0 − ε)e−kt + λµJt, (4)

Var(Xt) =
−∂2 lnφ0

∂u2
(0; t) =

σ2(1− e−2kt)

2k
+ λ(µ2

J + σ2
J)t, (5)

E
[

(Xt − E(Xt))
3] =

−1

i

∂3 lnφ0

∂u3
(0; t) = λµJ(µ

2
J + 3σ2

J)t, (6)

E
[

(Xt −E(Xt))
4]− 3Var2(Xt) =

∂4 lnφ0

∂u4
(0; t) = λ(µ4

J + 6µ2
Jσ

2
J + 3σ4

J)t. (7)

Note that as t increases, the exp(−kt) term in (4) approaches zero and the expected log-spot

price approaches ε+λµJt, i.e., in the long run the expected log-spot prices behave as if they

started at a level ε and grow at a rate of λµJ . Scale-free versions of the third and fourth
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cumulants, i.e., the skewness coefficient and excess kurtosis, are given respectively by

E
[

(Xt −E(Xt))
3]

Var3/2(Xt)
and

E
[

(Xt − E(Xt))
4]

Var2(Xt)
− 3. (8)

Finally, assuming that the underlying spot price is monitored at the time points t0, . . . , tj, . . . , tN

over the period [0, T ], we obtain the FFA price

F (0, t0, tN) =

∑N
j=0E(Stj )

N + 1
=

∑N
j=0 φ0(−i; tj)
N + 1

,

where the second equality follows from (2).

2.3 The Option Pricing Model

An option in which the average freight rate is settled against a pre-specified strike price is

called an average rate (or fixed strike) option; an option in which the freight rate at the

option maturity is settled against the average strike price during a specified period prior to

settlement is called an average strike (or floating strike) option. In line with the market

practice we consider the fixed strike type, although our approach can be adapted to the

average strike type (more details can be made available by the authors upon request).

Let τ be the time of commencement of averaging and T the option maturity time. Suppose

that the spot price of freight S is monitored over the period [τ, T ], T > τ ≥ 0, at the following

equidistant dates: t0 = τ, . . . , tj = τ + j∆, . . . , tN = T . In addition, part of the underlying

price process may be realized by the valuation date, in which case the average option is in

progress ; let Ñ + 1 be the number of dates at which the price has already been observed

and t̃ := tÑ − τ1{τ>0,Ñ=0} the option valuation date. We distinguish among three cases of

practical relevance:

(a) τ = 0 and Ñ = 0 so that the time to maturity of the Asian option and the length of

the averaging period coincide, i.e., both are equal to T .
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(b) τ > 0 and Ñ = 0 so that averaging starts at the predetermined future time τ and is

completed at T in which case we have a forward start option, i.e., the time to maturity

of the option T is greater than the length of the averaging period T − τ .

(c) τ ≥ 0 and Ñ > 0 so that averaging starts at τ with part of the average being realized

by the valuation date t̃ hence the option is in progress, i.e., the time to maturity of the

option T − t̃ is smaller than the length of the averaging period T − τ .

The terminal payoff of the arithmetic Asian option depends on the average of the N + 1

spot prices
∑N

j=0 Stj

N + 1
.

The price of the fixed strike arithmetic Asian call option is given by

Et̃

[

e−r(T−t̃)

(

∑N
j=0 Stj

N + 1
−K

)+]

= Et̃

[

e−r(T−t̃)

(

∑N
j=Ñ+1 Stj

N + 1
− K̃

)+]

, (9)

where x+ := max(x, 0), Et̃ denotes the expectation conditional on the information available

at the valuation time t̃,

K̃ = K −
∑Ñ

j=0 Stj

N + 1

is the excess of the fixed strike price K over the realized weighted sum of spot prices up to

the valuation date, and r denotes the continuously compounded risk free rate of interest.

Based on the generic identity (x − y)+ − (y − x)+ = x − y, the price of the put option is

given by

Et̃

[

e−r(T−t̃)

(

K̃ −
∑N

j=Ñ+1 Stj

Ñ + 1

)+]

= e−r(T−t̃)Et̃

[(

∑N
j=Ñ+1 Stj

Ñ + 1
− K̃

)+

−
(

∑N
j=Ñ+1 Stj

Ñ + 1
− K̃

)]

= e−r(T−t̃)

{

Et̃

[(

∑N
j=Ñ+1 Stj

Ñ + 1
− K̃

)+]

−
∑N

j=Ñ+1 φt̃(−i; tj)
N + 1

+ K̃

}

,
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where the first term in the last equality is the price of the Asian call option (see Eq. 9) and

from (2)

φt̃(−i; tj) = Et̃

(

Stj

)

= exp

{

Xt̃e
−k(tj−t̃) + ε(1− e−k(tj−t̃)) +

σ2

4k
(1− e−2k(tj−t̃)) + (tj − t̃)ξ(−i)

}

.

In light of the lack of analytical tractability of the law of the arithmetic average price,

we additionally consider a close proxy, i.e., the arithmetic average log-price, with favourable

distributional properties and explain how this can be used towards evaluating (9) of interest

to us. Over any time interval [τ + (j − 1)∆, τ + j∆], j = 1, . . . , N , and for the interval [0, τ ]

define, respectively,

Zj = Xτ+j∆ −Xτ+(j−1)∆e
−k∆, Z0 = Xτ −X0e

−kτ , (10)

so that from (2) {Zj}Nj=0 forms a collection of independent random variables. The charac-

teristic function of Zj follows from (2):

ϕ(u; d) = E(eiuZj ) = exp

{

iuε(1− e−kd)− σ2u2

4k
(1− e−2kd) + ξ(u)d

}

, (11)

where d := ∆ (τ) for 1 ≤ j ≤ N (j = 0). In Proposition 1, we derive a key result which

represents the premise of our freight option pricing formula.

Proposition 1. Consider Z defined in (10) with characteristic function (11). Conditional

on the information available at time t̃, define the characteristic function of the pair (Xtn,
∑N

j=Ñ+1Xtj/(N + 1)) for any Ñ < n ≤ N

Ψt̃,n(u, υ) = Et̃



exp







iuXtn +
iυ

N + 1

N
∑

j=Ñ+1

Xtj









 . (12)

12



(i) Let t̃ = tÑ = τ + Ñ∆ ≥ τ (cases a and c). Then,

Ψt
Ñ
,n(u, υ) = exp

{

iXt
Ñ
e−k(n−Ñ)∆

(

u+ υ
ek(n−Ñ)∆ − e−k(N−n)∆

(ek∆ − 1)(N + 1)

)}

×
n−Ñ
∏

j=1

ϕ

(

ue−(n−Ñ−j)k∆ + υ
ek∆ − e−k(N−Ñ−j)∆

(ek∆ − 1)(N + 1)
;∆

)

×
N−Ñ
∏

j=n−Ñ+1

ϕ

(

υ
ek∆ − e−k(N−Ñ−j)∆

(ek∆ − 1)(N + 1)
;∆

)

. (13)

(ii) Let t̃ = 0 and tÑ = τ > 0, hence t̃ < τ (case b). Then,

Ψ0,n(u, υ) = exp

{

iX0e
−kτ

(

ue−(n−Ñ)k∆ + υ
1− e−k(N−Ñ)∆

(ek∆ − 1)(N + 1)

)}

×ϕ
(

ue−(n−Ñ)k∆ + υ
1− e−k(N−Ñ)∆

(ek∆ − 1)(N + 1)
; τ

)

×
n−Ñ
∏

j=1

ϕ

(

ue−(n−Ñ−j)k∆ + υ
ek∆ − e−k(N−Ñ−j)∆

(ek∆ − 1)(N + 1)
;∆

)

×
N−Ñ
∏

j=n−Ñ+1

ϕ

(

υ
ek∆ − e−k(N−Ñ−j)∆

(ek∆ − 1)(N + 1)
;∆

)

. (14)

Proof. See Appendix A.1.

We present next an analytical approximation to the price of the Asian option (9) in the

form of the lower bound

LBt̃(l) ≤ Et̃

[

e−r(T−t̃)

(

∑N
j=Ñ+1 Stj

N + 1
− K̃

)+]

,

where

LBt̃(l) := Et̃

[

e−r(T−t̃)

(

∑N
j=Ñ+1 Stj

N + 1
− K̃

)

1{ 1
N+1

∑N

j=Ñ+1
Xtj

>l}

]

. (15)

The idea of such a bound dates back to the seminal contributions of Curran (1994) and

Rogers and Shi (1995) which are, nevertheless, restricted to basic lognormal asset price dy-
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namics. Their exposition is incomplete leaving unattainable various modelling processes in-

cluding, for example, mean-reverting features and price discontinuities, which are important

for commodity markets, and contract-specific features such as forward-start and in-progress

averaging. In addition to recent research work by Fusai and Kyriakou (2016), our current

contribution removes the remaining block to universal application solving a long-standing

pricing problem by optimization6. In Theorem 2, we tailor to our log-spot freight model (1)

and freight option design described at the beginning of this section (cases a–c) and show

how to evaluate (15) using our results in Proposition 1. Finally, we note that our approach

can be easily adapted to alternative model specifications, requiring only knowledge of the

characteristic function of the driving process (see Proposition 1), while remaining highly

precise to 4 decimal places7.

Theorem 2. The optimal price lower bound is given by

LBt̃(l
∗) =

e−δl∗

2π

∫

R

e−iul∗Φt̃(u)du, (16)

where

Φt̃(u) =
e−r(T−t̃)

iu+ δ





1

N + 1

N
∑

j=Ñ+1

Ψt̃,j(−i, u− iδ)− K̃Ψt̃,N(0, u− iδ)



 (17)

is the Fourier transform of (15) with respect to l, constant δ > 0 ensures integrability, Ψt̃,j

is given by (13) or (14), and

l∗ := argmax
l

LBt̃(l) (18)

satisfies the optimality condition

Et̃

(

∑N
j=Ñ+1 Stj

N + 1

∣

∣

∣

∣

∣

∑N
j=Ñ+1Xtj

N + 1
= l∗

)

= K̃. (19)

6A thorough survey of previous pricing attempts is beyond the scope of this paper; we refer, for example,
to Fusai and Kyriakou (2016) for more details.

7We felt that presenting speed-accuracy tradeoffs against true (but time-consuming) Monte Carlo price
estimates indicating the substantial numerical gain of our method was beyond the scope of this paper,
however we can make them available upon request.
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Proof. See Appendix A.2.

3 Model Calibration and Analysis

We calibrate the MRJ spot freight model for the capesize sector of the drybulk market

using Baltic Option Assessments (BOAs). These are market assessments of at-the-money

option implied volatilities submitted to the Baltic Exchange by freight option brokers, with

strikes equal to the prevailing FFA rates which we collect also from the Baltic Exchange. We

consider options with different maturities on every Friday in the period 04 January 2008 to

27 June 2014, i.e., a total of 339 weeks. Conforming to market practice, we use the implied

volatilities as input in the pricing formula of Turnbull and Wakeman (1991) and Levy (1997)

(discrete average) to recover the market quotes of BCI Asian call options for the next four

quarters (+1Q, +2Q, +3Q and +4Q) and the next two calendar years (+1CAL and +2CAL).

Each quarterly contract consists of three options that expire at the end of each month in

the relevant quarter, whereas a calendar contract is a strip of twelve monthly options. The

settlement prices of the options are given by the average spot rates over the trading days of

the settlement month. For example, on 04 January 2014, the +1Q contract comprises three

options which settle at the end of April, May, and June 2014; the first option is based on the

average spot rate in April, the second corresponds to May and the third to June. Succinctly,

our dataset comprises 36 at-the-money options with different maturities on each week in

our sample, yielding a total of 12,204 option prices. We also collect information about the

spot BCI as at the valuation date of each option during our sample period from the Baltic

Exchange. Spot interest rates are available from the Datastream.

We extract risk neutral parameter estimates of the MRJ model from observed option

prices. More specifically, let PM and P θ be, respectively, the market option price and

the theoretical option price under the log-spot rate model (1) with parameter vector θ :=

{k, ε, σ, λ, µJ , σJ}. Theoretical option prices are computed fast via the formula (16) by
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quadrature in Matlab (up to 5 seconds per price) and at high accuracy (4 decimal places).

We estimate θ every week w = 1, . . . , 339 in our sample by minimizing the in-sample

quadratic pricing error (e.g., see Bates, 1996, Bakshi et al., 1997, Hilliard and Reis, 1999,

Andersen and Andreasen, 2000) across option maturities

θ∗w := argmin
θw

m
∑

i=1

∣

∣PM
i,w − P θw

i,w

∣

∣

2
, (20)

where m = 36 is the number of maturities. The minimization problem (20) is solved by

standard nonlinear least-squares solver in Matlab.

3.1 Parameter Estimates and Market Behaviour

The estimated parameters of the BCI MRJ model are presented in Panel A of Table 1. In

particular, we report the averages of the implied annual parameter values obtained across

the weeks in the sample period along with their standard errors. Several comments are in

order. The estimated degree of mean-reversion k is 3.310, implying that it takes an average

of 2.5 months for the log-spot rate to return half way towards the long-run level ε (half-life

is computed as ln 21/k). Mean-reversion in the shipping markets is justified on the basis that

high freight rates encourage investment in new capacity, which increases future supply and

subsequently lowers freight rates. On the other hand, low freight rates result in reduction

in operating performance and divestment either in the form of laying-up vessels or even

scrapping; the combined effect is a reduction in the supply of services and an increase in the

level of freight rates. Mean-reversion in freight rates is also observed in the volatility term

structure of forward contracts as longer maturity contracts, in general, tend to have lower

volatility than short-term ones as noted in Nomikos et al. (2013).

Consistent with the volatile nature of the shipping industry, the annualized volatility σ

of diffusive shocks is high at 68.8%. In shipping markets, the supply of services is perfectly

elastic at low levels of utilization, but as fleet utilization increases the supply schedule turns
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inelastic. In other words, when demand is strong and the available fleet is fully utilized,

a positive (negative) demand shock8 leads to a relatively larger upward (downward) price

movement. Abrupt adjustments in prices can be captured by the jump component of the

MRJ model. The estimated expected number of jumps per year λ is 6.786, and the mean

jump size µJ is -27.2% in consistency with the observed negative skewness in historical freight

rates which may be indicative of an asymmetric response to good and bad news (leverage

effect). Spot freight rates may also exhibit relatively large upside movements due to the

inability of supply to immediately respond to changes in demand due to the construction

lag inherent in shipbuilding. However, it seems that upside movements are less marked

than downside movements. In other words, as the rate of fleet utilization increases, we

anticipate rising freight rates with a certain degree of persistence; on the other hand, price

decreases, mostly linked to a reduction in economic activity, consumption rates or changes in

geographical demand are more pronounced. For example, during the 2008 market recession,

we evidenced an 80% average decrease in the freight rates in the course of only 4 months. It is

also interesting to note that over the period 2008–2014, the growth in fleet size outpaced the

growth in demand (seaborne trade), as shown in Figure 1, which caused abrupt downward

freight rate movements. The resulting excess capacity meant that increases in demand could

be easily absorbed, while reductions in demand meant that freight rates stayed at lower

levels for longer periods of time.

We conclude this part by presenting in Figure 2 the weekly evolutions of the implied

volatility, skewness and excess kurtosis of the 1-week, 1-month and 1-year log-changes in

the BCI computed using (5) and (8). The skewness is negative consistent with the negative

mean jump size. Increasing the time scale results in higher volatility, whereas excess kurtosis

decreases and skewness increases towards zero as the jump effect dies out.

8Such shocks can be due to a number of factors: seasonal fluctuations in demand, such as a reduction
in industrial activity in China before the Chinese new year or the slowdown of industrial activity in Europe
during the summer months; changes in harvest expectations for agricultural commodities; changes in market
expectations and unanticipated macroeconomic developments; political events; hurricane disruptions in port
facilities; port congestion; and temporary supply-demand imbalances.
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3.2 Robustness Checks

To formally test the accuracy of the fitted MRJ model, we calculate the weekly mean absolute

percentage error

MAPEw =
1

m

m
∑

i=1

∣

∣

∣

∣

∣

1−
P

θ∗w
i,w

PM

i,w

∣

∣

∣

∣

∣

(21)

and the root mean square percentage error

RMSPEw =

√

√

√

√

1

m

m
∑

i=1

∣

∣

∣

∣

∣

1−
P

θ∗w
i,w

PM

i,w

∣

∣

∣

∣

∣

2

, (22)

where θ∗w is given by (20). Panel B of Table 1 presents the average error statistics obtained

across the weeks in the sample period. Both in- and out-of-sample pricing error statistics

are reported.

In addition to the whole set of option pricing errors, which we label “All options”, we

report the results of three subsets comprising short, medium and long-term options: the first

subset is the +Q which encompasses the quarterly contracts with maturities up to the next

four quarters, i.e., +1Q, +2Q, +3Q, +4Q; the second subset includes the calendar options

with maturities between 13 and 24 months (+1CAL); and the third one maturities between

25 and 36 months (+2CAL). For the dataset “All options”, in-sample MAPE and RMSPE

are 11.91% and 16.99%, respectively. For the maturity-partitioned subsets, the pricing errors

improve in the case of longer-term contracts as the short-end of the forward curve, which is

relatively sensitive to information arrival (Samuelson (1965) effect), puts more stress on the

pricing experiments. To validate the model and study whether or not it over-fits the option

prices during the in-sample period, we perform out-of-sample pricing of options one week

ahead using our weekly in-sample estimates; we find that out-of-sample pricing errors do not

deviate significantly from the in-sample results. Finally, we use the stationary bootstrap of

Politis and Romano (1994) to test the null hypothesis of the MRJ not performing better than

18



a benchmark model9. As benchmarks, we consider the exponential mean-reverting model

without jumps (MR) and the basic lognormal (LogN) model which we calibrate on the same

dataset. We find that MRJ improves on MR and LogN models across all maturities at the

1% significance level.

Systematic bias from uncaptured factors is likely to be associated with the percentage in-

sample/out-of-sample pricing errors PE = (P θ∗ − PM)/PM . Following Bakshi et al. (1997)

and other authors, we investigate this by estimating regressions of the type

PEw = β0 + β1Tw + β2T
2
w + β3σ̂

2
S,w + β4dyw + uw, (23)

where T is the option’s time to maturity measured in years, T 2 accounts for a nonlinear time-

to-maturity effect (option-specific variables), σ̂S is the annualized 6-month rolling standard

deviation of the spot freight rate S (shipping sector-specific) and dy the yield differential

between the 30-year and 3-month US T-bill rates (general market conditions). Based on

the reports in Table 2, the mean error under the MRJ model is negative and statistically

significant, implying that the model tends to underprice options. The coefficients of T and T 2

are significant with positive and negative sign, respectively, implying a concave relationship

of the error with T . The coefficients of σ̂2
S are found insignificant. The yield differential

movements have a significant positive effect on the PE, i.e., accounting for interest rate

movements can lead to pricing improvement albeit small. The F -statistic suggests that the

joint effect of the independent variables is statistically significant, however the overall impact

on the pricing bias appears to be relatively small with the adjusted in-sample (out-of-sample)

R2-statistic being only 1.73% (1.31%). On the contrary, as suggested by the adj. R2 and

F -statistics, the option prices resulting from the elementary MR and LogN models are more

prone to systematic errors.

9We define loss functions between the benchmark (MR or LogN) and the MRJ model error statistics,
e.g., LF = MAPEMRJ − MAPEbenchmark. Then, using 10,000 bootstrap simulations, we test the null hy-
pothesis that the benchmark cannot be outperformed by the MRJ model. For more details, we refer to
Politis and Romano (1994) and Sullivan et al. (1999, Appendix C).
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Overall, we conclude that modelling mean-reversion and jumps results in a richer and

more realistic representation of the spot freight rate. In Sections 4 and 5, we present two

important applications of the proposed model and contributions of this research in ship

valuation and investment appraisal.

4 Model Application to Real Assets: Vessel Valuation

In what follows, we present a fair valuation framework for vessels of a given economic life

cycle. Sensitivity formulae with respect to valuation inputs are also derived to infer the

limits of the variability for the vessel value. In this and the next section, operating profits

are assumed to evolve according to the MRJ model of Section 2.2. Fair vessel values are

computed based on the parameter estimates in Table 1. Unless otherwise stated, the following

assumptions apply: initial spot freight rate of 34,700 USD (spot BCI 4TC), scrap price of 9.5

million USD for a capesize vessel and interest rate of 3.9% per annum (30-year US Treasury

bond); these values represent average historical market quotes over the estimation period.

We also assume that there are no taxes and that a typical vessel has an economic life of 25

years while, once operation starts, the vessel is on-hire 348 days per year (the remaining 17

days represent time off-hire for maintenance). We consider readily available newbuildings

(no construction lag) and vessels with an order-delivery gap (construction lag) of two years,

as well as 5Y, 10Y, 15Y and 20Y secondhand vessels. All shipping-related data are from the

Clarkson Shipping Intelligence Network; interest rates are from the Datastream.

4.1 The Value of a Vessel

Let l ≥ 0 be the construction lag of a newbuilding (NB) vessel (if applicable), T̄ ∈ {5, 10, 15, 20, 25}

the remaining ship life, and V̄ the vessel scrap value.
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Proposition 3. The ship value V at time t ≥ 0 is given by

V (t, T̄ ) = Et

[

∫ t+l+T̄

t+l

e−r(w−t)Swdw

]

+ V̄ e−r(T̄+l)

=

∫ t+l+T̄

t+l

e−r(w−t)φt(−i;w)dw + V̄ e−r(T̄+l), (24)

where Et denotes the expectation conditional on the information available at time t,

φt(u;w) = Et

(

eiuXw
)

= exp

{

iuXte
−k(w−t) + iuε(1− e−k(w−t))− σ2u2

4k
(1− e−2k(w−t)) + (w − t)ξ(u)

}

and ξ is given by (3).

Proof. Follows from Fubini’s theorem.

Table 3 reports our valuation results. The value of the NB with no construction lag is the

highest, whereas if we assume a construction lag of 2 years the value decreases. Further, the

value of the NB with construction lag is slightly lower than that of a 5Y vessel. This can be

attributed to the immediate delivery premium during periods of prosperous freight market

conditions and relatively full orderbooks, as was the case of the drybulk market during 2006–

2008. The term structure of vessel values is negatively sloped and concave. For example, the

difference between a readily available NB and a 5Y vessel is 6.5 million USD, whereas the

difference between a 15Y and a 20Y vessel exceeds 13.5 million USD. This possibly implies

mild depreciation in the first years of operation, while as vessels approach the end of their

economic life the price differential becomes wider before their values level off at scrapping.

Figure 3 (top-left sub-figure) exhibits the model values of capesize vessels of different

ages along with the corresponding historical mean values and 5th and 95th percentiles for

the entire sample (January 2008–June 2014). The remaining sub-figures exhibit the model

relative to the historical mean values for each year in our sample across different vessel ages.

We find that model-implied vessel values track mean market quotes well, both over the entire
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and yearly-partitioned sample period. The average difference is about 25% but this varies

with vessel age; it is very small for a NB (0.16%) and relatively young vessels (e.g., 7.49%

for a 5Y) and increases with vessel age. This can be attributed to the fact that vessels spend

more time off-hire and may also command lower freight rates as their age increases. Given

that the buyer and seller are cognisant of the market and face no compulsion to act, any

discrepancy between model-implied and market prices may be due to an expected revenue

based on an index/route other than the BCI, a different scrap value or life cycle.

Having set up the valuation model, by differentiating (24) under the integral sign, we

derive first-order partial sensitivities of the theoretical vessel values with respect to various

valuation inputs of interest, i.e., scrap price V̄ , interest rate r, long-run freight rate exp(ε),

diffusion coefficient σ, speed of mean-reversion k and jump arrival rate λ:

∂V (t, T̄ ; V̄ )

∂V̄
= e−r(l+T̄ ), (25)

∂V (t, T̄ ; r)

∂r
= −

∫ t+l+T̄

t+l

e−r(w−t)(w − t)φt(−i;w)dw − (T̄ + l)V̄ e−r(T̄+l), (26)

∂V (t, T̄ ; ε)

∂eε
=

∫ t+l+T̄

t+l

e−r(w−t)−ε
(

1− e−k(w−t)
)

φt(−i;w)dw, (27)

∂V (t, T̄ ; σ)

∂σ
=

∫ t+l+T̄

t+l

e−r(w−t) σ

2k

(

1− e−2k(w−t)
)

φt(−i;w)dw, (28)

∂V (t, T̄ ; k)

∂k
=

∫ t+l+T̄

t+l

e−r(w−t)
[

(ε−Xt)(w − t)e−k(w−t)

+
σ2

4k2
((2k(w − t) + 1)e−2k(w−t) − 1)

]

φt(−i;w)dw, (29)

∂V (t, T̄ ;λ)

∂λ
=

∫ t+l+T̄

t+l

e−r(w−t)(w − t)(eµJ+σ2
J
/2 − 1)φt(−i;w)dw. (30)

Results are presented in Table 3. Price sensitivities (26)–(30) increase as vessel age

decreases. An exception is the sensitivity with respect to the scrap price V̄ (25) due to the

impact of discounting: a 1 million USD change in V̄ causes a change of 0.376 million USD

in the price of the NB (l = 0). This effect becomes stronger as vessels approach demolition

since, as time passes, V̄ represents a larger proportion of the vessel’s total value. So far,
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we have assumed a constant interest rate r of 3.9% per annum. Increasing r by 1 basis

point decreases the price of the NB (l = 0) by 72,000 USD; this effect is less pronounced in

the case of secondhand vessels, e.g., a 20Y vessel whose price decreases by 9,000 USD. The

interest rate effect becomes more profound when we consider larger movements in interest

rates: if r rises, say, to 5%, the NB vessel values decrease to 60.2 (l = 0) and 52.5 (l = 2),

and 55.6, 49.0, 40.1 and 27.9 million USD for 5Y, 10Y, 15Y and 20Y vessels, respectively.

Further, we notice that vessel values rise with exp(ε) and σ and associated effects on the

mean and variance of the log-freight distribution (see Equations 4–5). For example, a change

in exp(ε) of 100 USD causes a substantial change in the NB (l = 0) price of 0.518 million

USD due to fast mean-reversion (half-life of 2.5 months). On the contrary, increasing λ has

a downward effect on the vessel value. For example, increasing λ by an average of 0.5 jump

per year decreases the NB (l = 0) price by 0.441 million USD due to negative skewness

of the log-freight distribution (see Figure 2). In addition, increasing k, i.e., accelerating

mean-reversion, reduces the variance of the log-freight distribution (see Equation 5) and,

consequently, the vessel value.

Typically, time to build involves uncertainty because actual construction duration may

be affected by dock capacity constraints which may further cause delay in vessel deliveries.

For this, we consider the NB vessel value sensitivity with respect to the construction lag l:

∂V (0, T̄ ; l)

∂l
= e−r(l+T̄ )φ0(−i; l + T̄ )− e−rlφ0(−i; l)− rV̄ e−r(T̄+l).

Deviating from the original 2-year construction lag has a perceptible effect on the vessel

value. Based on the report in Table 3, an increase of the construction duration by 3 months,

i.e., from 2 to to 2.25 years, decreases the price of the vessel by 0.725 million USD suggesting

a higher delivery premium. This is expected as the supply of vessels is elastic only in the

long run. However, even in the long run, the incentive to build is not strong as a positive

demand shock eventually fades away under mean-reverting freight rates. Therefore, vessels
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of forward delivery are not able to take advantage of the temporary high freight rates, driving

their price to lower levels compared to vessels that are readily available in the resale market.

Finally, we investigate the impact of a change in the initial spot freight level S0 by

computing

∂V (0, T̄ ;X0)

∂S0

=

∫ l+T̄

l

e−(r+k)w−X0φ0(−i;w)dw.

The impact of S0 on vessel values is found to be of a rather small scale compared to that

of exp(ε), i.e., an equivalent change in the vessel value of approx. 0.5 million USD requires

a change in S0 in excess of 7,500 USD, due to fast mean-reversion. Figure 4 depicts how

vessel values vary with S0 for given exp(ε), ln 21/k, σ and λ. We observe that varying S0 has

a marginal effect on the vessel values: increasing S0 by, say, 1,500% from 5,000 to 80,000

USD increases the vessel value by 7.96% under the original parameter estimates in Table

1 (see dotted lines). By perturbing each of ε, σ and λ (see solid lines), we observe that

the sensitivity remains relatively firm and low: an increase in S0 of 1,500% increases the

vessel value by 7%-9%. Instead, varying k (hence, the half-life) makes the impact of S0 more

prominent: for a half-life of 12 months (2-5 years) a 1,500% increase in S0 is associated with

a 37% (70%-160%) increase in the vessel values.

5 The Option to Invest: An Illustrative Real Option

Application

Studies have shown that the conventional NPV method fails to accurately capture uncer-

tainty in a dynamic environment (e.g., see Dixit and Pindyck, 1994, Schwartz and Smith,

2000). To this end, in this section, we demonstrate the practicality of our real asset valua-

tion approach in investment appraisal in the newbuilding and sale and purchase markets for

vessels from a real option perspective. Our aim is to integrate the effect of stochastic cash
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flows and the true American option nature of the investment. We consider three hypothetical

investments in vessels:

(1) The firm owns the right to order and get delivery of a NB and can exercise this option

at any time within the next 10-year period10. The NB price is 60.17 million USD (see

Table 3) and there is a 2-year construction lag from the time the investment decision is

made until delivery and commencement of regular operations. The initial freight rate

is 34,700 USD per day and thereafter it evolves stochastically according to the MRJ

model.

(2) The firm owns the right to purchase a NB in the resale market (no construction lag)

and can exercise this option at any time within the next 10 years. It costs 68.04 million

USD to purchase the vessel and operation starts immediately at an initial freight rate

of 34,700 USD per day.

(3) The firm owns the right to purchase a secondhand vessel in the sale and purchase

market and can exercise this option at any time within the next 10 years. Operation

starts immediately at an initial freight rate of 34,700 USD per day. Here, we consider

four different scenarios: the acquisition of a 5Y, 10Y, 15Y and 20Y vessel at a cost of

61.54, 53.21. 42.53 and 28.84 million USD, respectively.

5.1 Option to Buy a Vessel Formulation

Let T be the expiration date of an option to buy a ship with remaining lifetime T̄ . We

consider an American option whose payoff to the holder on exercise at any stopping time

τ ∈ [t, T ] is given by

ψ(τ ;Xτ ) = (V (τ, T̄ ;Xτ )−K)+,

10An infinite horizon may be considered, instead, as in Schwartz and Smith (2000); for practical reasons,
we assume a finite horizon here.
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where K denotes the exercise price (acquisition cost of the vessel). The option fair value

is the solution to the classical optimal stopping problem, namely to find the stopping time

that maximizes the conditional expectation of the discounted payoff over exercise strategies:

g(t;Xt) = sup
τ∈[t,T ]

Et

[

e−r(τ−t)ψ(τ ;Xτ )
]

. (31)

Unlike an American option that can be exercised at any time prior to the option’s

maturity, a Bermudan option can be exercised only at a discrete set of monitoring times

T = {tj}Nj=0 where tj = t + j∆, j = 0, 1, . . . , N , and tN = T . The valuation of Bermudan

options corresponds to solving a discrete optimal stopping problem with the supremum in

(31) taken over the set of possible stopping times which take values in T . The optimal stop-

ping problem can be solved in a finite time horizon by backward induction where at each

monitoring time we take the maximum between the conditional expectation, representing

the continuation value of the option, and the option payoff from immediate exercise; the

continuation and stopping regions are separated by a critical value. More specifically, we

employ the following backward induction:

g(T ;XT ) = ψ(T ;XT ), (32)

g(tj;Xtj ) = max
{

ψ(tj ;Xtj ), c(tj;Xtj )
}

, 0 ≤ j ≤ N − 1, (33)

c(tj;Xtj ) = Etj

[

e−r∆g(tj+1;Xtj+1
)
]

, 0 ≤ j ≤ N − 1. (34)

Denote by m∗
tj

the value of Xtj where ψ(tj;Xtj ) and c(tj;Xtj ) cross: for Xtj > m∗
tj
, we

have that g(tj;Xtj ) = ψ(tj;Xtj ), i.e., option is exercised early; instead, for Xtj < m∗
tj
, we

have that g(tj;Xtj ) = c(tj ;Xtj ), i.e., we continue holding the option. At maturity (i.e., for

j = N), m∗
T solves V (T, T̄ ;m∗

T ) = K and the option is exercised if it ends up ITM, otherwise

it is left to expire. The relevant equations can be solved numerically (see Appendix B.1).
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Finally, by exploiting smooth monotone convergence of the chosen approach with increasing

N , we can then obtain accurate American option prices through extrapolation via standard

Richardson-type procedure.

The dynamic programming problem (32)–(34) is solved as follows. We write (34) as

c̃(tj ; xe
−k∆) =

∫ ∞

−∞

e−r∆g(tj+1; y)f(y|xe−k∆; ∆)dy,

where f denotes the density function describing the transition fromXtj = x at tj toXtj+1
= y

at tj+1. From the form of (2) we conclude that f(y|xe−k∆; ∆) = f(y − xe−k∆; ∆), hence by

changing variables we get

c̃(tj ; xe
−k∆) =

∫ ∞

−∞

e−r∆g(tj+1; z + xe−k∆)f(z; ∆)dz. (35)

Given

c(tj; y) = c̃(tj ; ye
−k∆), (36)

we get from (33)

g(tj; y) = max {ψ(tj ; y), c(tj; y)} . (37)

Recursion (35) starts as

c̃(tN−1; xe
−k∆) =

∫ ∞

m∗

T
−xe−k∆

e−r∆(V (T, T̄ ; z + xe−k∆)−K)f(z; ∆)dz

based on the terminal condition (32). Ultimately, the option price at inception is given by

g(t0;Xt0).

Note that evaluating f directly can be time-consuming. Instead, by exploiting knowl-

edge of the associated characteristic function E[exp(iu(Xtj+1
−Xtje

−k∆))] from (2) and the

convolution structure (35) we are able to compute the above backward induction fast and

accurately by discrete Fourier transform the way we describe in Appendix B.1.
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Remark 4. In case exercise is only possible at the expiration date T , the option is European

and the recursive solution algorithm reduces to a single backward time step from T to t.

Remark 5. In addition to the option price, the price sensitivities with respect to param-

eters of interest, e.g., the initial spot rate, can be obtained with essentially no additional

computational cost by differentiating (35) under the integral sign.

5.2 Comparison of Investment Decisions

Figure 5 portrays the NPV profiles of the hypothetical investments (1)–(3), described at the

beginning of Section 5, as a function of the long-run level exp(ε) (in 000s USD) and the

diffusion coefficient σ. In particular, we perturb parameters (exp(ε), σ) from their original

values in Table 1 to obtain 825 pairs of parameter values and compute optimal exercise

policies by solving the American option pricing problem described in Section 5.1 for a 10-

year horizon. The dark upper surfaces depict the value of the projects under the optimal

exercise policy. The white lower surfaces show the value of the projects as if immediate

exercise was forced. Note that dark upper surfaces fade as the two value surfaces approach

each other and become white when they overlap, i.e., regions where immediate exercise is

the optimal strategy. Grey surfaces represent the zero plane as a point of reference.

We find that both parameters have an impact on the timing of the decision and value

of the investment, and this impact diminishes with the vessel age as the surfaces become

flatter for older vessels. More specifically, we detect a positive relationship between the two

parameters and the value of the investment, i.e., NPVs increase with the parameter values.

This effect is more prevalent in the case of NBs. In terms of the optimal exercise policy,

the results confirm the higher delivery premium attached to readily available vessels as the

optimal exercise strategy for a NB with construction lag almost always implies immediate

exercise of the option to invest. Therefore, construction lag comes at a high investment

opportunity cost, and delaying the investment does not add value. In contrast, it is optimal

to delay the investment in a vessel that is readily available in the market unless exp(ε) and/or
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σ are high. For example, consider the case of a NB in the resale market and a low value for

σ of 40%; then, for any exp(ε) < 13, 000 USD the optimal exercise strategy suggests to wait

for either σ and/or exp(ε) to increase. Similarly, the optimal exercise strategy suggests to

delay the investment for values of exp(ε) < 11, 500 USD as long as σ < 120%.

In general, decisions based on the conventional versus real option NPV do not differentiate

for relatively high values of exp(ε) and σ, i.e., both approaches indicate immediate acquisition

of the vessel then; yet, the older the vessel, the higher these values have to be for the two

approaches to converge. By neglecting the value of management flexibility the conventional

NPV consistently understates the investment profitability, whereas the real option strategy

accounts for the strategic value of undertaking the project at some future time (even if

immediate investment is not viable). Therefore, failing to consider the embedded option

value leads to rejection of investment opportunities with profit potential. It is also worth

noting that the real option NPVs are more conservative in terms of the “trigger” parameters

for going ahead with the investment than the conventional NPVs, reflecting the risk-averse

thinking of decision-makers. In effect, by accepting a marginally positive NPV, project

investors lose all value from the investment timing option. This implies that real option

NPV leads to a more reliable approach for making strategic high capital intensive decisions,

i.e., marginally positive NPVs would not suffice to justify undertaking such a capital intensive

project.

While the NPVs provide an indication of the investment’s profitability, it is also useful

to examine the distribution of the optimal option exercise time. To this end, for each pair of

parameters exp(ε) and σ, we simulate 10,000 optimal exercise times using the least-squares

Monte Carlo approach of Longstaff and Schwartz (2001) and estimate the mean optimal

exercise time. Figure 6 depicts the distribution of the mean optimal exercise time for 825

pairs, from which we observe that this increases with the vessel age and that left skewness

becomes more prominent. Further, the dispersion of the exercise time distribution becomes

smaller with increasing vessel age due to less cash flow uncertainty for shorter remaining
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economic lives.

We conclude this analysis by now focusing on the original parameter estimates in Table 1.

In Table 4, we present the distributional properties of the optimal exercise time corresponding

to the particular parameter set. Consistent with our earlier observation, the mean exercise

time is substantially small (less than two months) for NBs with a 2-year construction lag.

For NBs with no construction lag and secondhand vessels, the mean exercise time rises to

2.084-2.440 years; across the different vessel ages, the estimated probability of the exercise

time to exceed 1 year ranges from 37% to 43%, whereas the probability that this lies between

1-4 or 4-7 or exceeds 7 years is 12%-14% depending on the vessel age. As before, our results

corroborate the high investment opportunity cost embedded in the construction lag of a NB

compared to readily available vessels and there is some evidence of increasing exercise time

with the vessel age.

6 Conclusions

Investment timing and uncertainty are critical issues when committing to a capital intensive

project. We develop a valuation framework for real assets which is well-suited for analyzing

investment projects where income uncertainty is driven by mean-reverting variations and

jumps of random magnitude and arrival.

In this paper, we use data on freight-related drybulk shipping assets to investigate em-

pirically the stochastic nature of income and the effect of uncertainty on vessel valuation and

investment decision. We find that it takes 2.5 months for the spot rate to return half way

towards the long-run level. Moreover, spot freight rates exhibit abrupt movements which are

mainly attributed to the inability of supply to immediately respond to changes in demand

due to the construction lag inherent in shipbuilding. En masse, our results suggest that

the postulated spot freight model captures flexibly the drybulk market behaviour, provid-

ing significant in- and out-of-sample assessment gains compared to benchmarks. This has
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implications in derivatives pricing and capital budgeting decisions, as failing to account for

mean-reversion and price discontinuities can lead to large errors and systematic biases.

To demonstrate the significance of the option value in the investment decision, we develop

first a fair valuation paradigm for vessels and examine the effects of input uncertainties by

means of a sensitivity analysis. We present evidence for vessels of different economic lives

and find that vessel value sensitivities are higher for younger vessels. In addition, existing

construction lags in the shipbuilding process may put a significant downward pressure on

newbuilding vessel prices to the extent that a relatively new secondhand vessel may cost more

(immediate delivery premium). We then study the NPV profiles of different investments

using a real option approach and explore the optimal timing of entry. We find that long-run

freight rate and volatility have an impact on the timing of the decision and value of the

investment; this impact diminishes with increasing vessel age. Moreover, we observe that, as

time-to-build declines, the value of the option to wait increases implying a high opportunity

cost embedded in the investment decision due to construction lags.

Our work is of potential interest to various stakeholders in the industry, including in-

vestors (shareholders or private equity investors) for evaluating their prospective investment

projects; providers of credit (banks or bond investors) for imposing covenants either on the

mortgage of the asset or the bond issue offered by the company; regulators, as the fair

value of vessels should also be reported in any investment prospectus (initial or secondary

public offering, bond offering) for due diligence and accounting purposes; and governmental

organizations for assessing and comparing alternative investments.
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Appendix A: Proofs

A.1 Proof of Proposition 1

Proof. From (10) we get by recursive substitution that

Xtj = Xt
Ñ
e−k(j−Ñ)∆ +

j−Ñ
∑

m=1

Zme
−(j−Ñ−m)k∆, j ≥ Ñ + 1. (A.1)

Furthermore,

N
∑

j=Ñ+1

Xtj =
N−Ñ
∑

j=1







Xt
Ñ
e−kj∆ +

N−Ñ−j
∑

m=0

Zje
−km∆







= Xt
Ñ

1− e−k(N−Ñ)∆

ek∆ − 1
+

N−Ñ
∑

j=1

Zj
ek∆ − e−k(N−Ñ−j)∆

ek∆ − 1
. (A.2)

From (A.1)–(A.2) and for Ñ < n ≤ N

exp
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N + 1

N
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+
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N + 1



Xt
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1− e−k(N−Ñ)∆

ek∆ − 1
+

N−Ñ
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ek∆ − 1
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
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{

iXt
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(

u+ υ
ek(n−Ñ)∆ − e−k(N−n)∆
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(A.3)

+i

n−Ñ
∑

j=1

Zj

(

ue−(n−Ñ−j)k∆ + υ
ek∆ − e−k(N−Ñ−j)∆
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+ i
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Zjυ
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(ek∆ − 1)(N + 1)







.

(i) Result (13) follows by taking the expectation of (A.3) conditional on the information

at time t̃ = tÑ , and stochastic independence of {Zj}.
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(ii) Result (14) follows by additionally substituting Xt
Ñ
= Xτ = X0e

−kτ + Z0 from (10)

in (A.3), and taking the expectation conditional on the information at time t̃ = 0 <

tÑ = τ .

A.2 Proof of Theorem 2

Proof. To guarantee that the Fourier transform of the lower bound (15) is well-defined, we

introduce the exponential dampening factor eδl with δ > 0. Then,

Φt̃(u) =

∫

R

eiul+δl







e−r(T−t̃)

N + 1

N
∑
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Et̃

[(
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N − Ñ

)

1{ 1
N+1
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]







dl.

Applying Fubini’s theorem yields

Φt̃(u) =
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N + 1

N
∑
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− K̃Et̃

[

e
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N+1
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]







from which (17) follows given the definition (12). Then, (16) follows by application of

standard inversion formula (e.g., see Goldberg, 1961, Theorem 5C) and evaluation at l = l∗

given by (18).

The optimal value l∗ is determined as follows. By applying the tower property of expec-

tations in (15) we get

1
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E
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.
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Differentiating with respect to l and interchanging with the expectation yields

1
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, (A.4)

where the last equality follows from d1{∑N

m=Ñ+1
Xtm/(N+1)>l}/dl = −δ

(

∑N
m=Ñ+1Xtm/(N + 1)− l

)

with δ denoting the Dirac delta function and h the density function of
∑N

m=Ñ+1Xtm/(N+1).

Then, (19) follows from (A.4) by setting it equal to zero.

Appendix B: Computation of Price Convolutions

To compute fast the convolution (35), we employ a numerical method based on discrete

Fourier transform. In what follows, we provide the details of the numerical implementation.

B.1 Implementation of Backward Induction

We compute by backward induction at each monitoring time tj−1, j = N, . . . , 1, the con-

tinuation value of the option which is compared with the exercise payoff of the option to

determine the option value at the current time step for use one time step backward. (This

method is an extended version of Lord et al., 2008 to account for the mean-reverting drift

term in the log-price dynamics.) The procedure is repeated until the option value at time t0

is obtained.

Step 0 Preliminary computations.

a) Select equally spaced grid x := {x0 +mδ}n−1
m=0, for the state variable X , on which

the continuation value of the option (35) is computed (see Step 1 ). The grid range

is chosen based on the cumulants ofXtj−Xtj−1
e−k∆: x0 := cm1−̺

√

cm2 +
√
cm4,
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where ̺ is a user-defined proportionality constant and cmj the j-cumulant (see

Equations 4, 5, 7). (Cumulant cm4 is included to ensure that the tails of the

distribution are sufficiently captured.) For given grid size n, compute grid spacing

δ := 2̺
√

cm2 +
√
cm4n

−1.

b) Define grid y = x on which the option value (37) is computed (see Steps 2–3 ).

c) Select uniform, symmetric grid u := {(q−n/2)δu}n−1
q=0 of size n and spacing δu for

use in Step 0.d) and Step 1. The range of values of the grid u is chosen so that

the tail of the absolute value of the characteristic function of Xtj − Xtj−1
e−k∆,

ϕ(u; ∆) = exp{iuε(1− e−k∆)− σ2u2(1− e−2k∆)/(4k) + ξ(u)∆}, where ξ is given

by (3), is sufficiently captured, i.e., |ϕ| ≤ 10−̺′ at the tails where ̺′ ∈ N is guided

by the desired precision.

d) Let ϕ̄ be the values of the complex conjugate of ϕ on the grid u; store for use for

all j in Step 1.

Step 1 Denote by c̃j−1 = {c̃j−1,m}n−1
m=0 the continuation value of the option on the grid x,

c̃(tj−1;x). Compute

c̃j−1,m :=
δu
2π
ei

n
2
δu(x−x0)−r∆ ◦

n−1
∑

q=0

e−i 2π
n
qm
(

e−iux0 ◦Gj ◦ ϕ̄
)

q
, (B.1)

where we denote by Gj = {Gj,q}n−1
q=0 the values of the discrete Fourier transform of (37)

on the grid u with

Gj,q := δei(u+
n
2
δu)y0 ◦

n−1
∑

m=0

ei
2π
n
qm
(

e−in
2
δuy ◦ gj ◦w

)

m
(B.2)

and gj = {gj,m}n−1
m=0 the option value on the grid y, g(tj;y), initialized by (32) (see

also Step 3 for j < N). ◦ denotes the Hadamard element-wise product and w =

[1/2, 1, 1, · · · , 1, 1, 1/2] is the vector of trapezoid weights.

Remark 6. The sums in (B.1) and (B.2) can be computed using the fast Fourier
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transform (FFT) which is readily available in Matlab as fft and ifft. Choose grid

size n to be a power of 2 for fast computation of the sums (B.1) and (B.2) using the

radix-2 FFT. In addition, as required for a FFT implementation, check that the Nyquist

relation δuδ = 2π/n holds; if not, adjust the original grids accordingly. Alternatively,

(B.1) and (B.2) can be re-expressed to fractional discrete Fourier transforms which

discard the Nyquist restriction providing more flexibility in grid construction and can

be computed using the fractional FFT, however, at a higher CPU cost (for more details

about its implementation, see, e.g., Bailey and Swarztrauber, 1991).

Step 2 Evaluate c(tj−1;y) = c̃(tj−1;ye
−k∆) in (36) by a cubic interpolating spline fitted to

the nodes (x, c̃j−1) using not-a-knot endpoint conditions (for example, use interp1

available in Matlab).

Step 3 Compute the option values gj−1 on the grid y based on (37), i.e., g(tj−1;y) =

max {ψ(tj−1;y), c(tj−1;y)}, as well as the critical value at which the exercise payoff

and the continuation value coincide. Continue with Step 1 until j = 1.

Remark 7. At each monitoring time tj, we need to identify the critical value m∗
tj

at which the option value changes, i.e., ψ(tj ;Xtj ) and c(tj ;Xtj ) cross. This value is

unknown, however it satisfies ψ(tj;m
∗
tj
) − c(tj ;m

∗
tj
) = 0; this equation can be solved

fast numerically using, for example, the Trust-Region Dogleg algorithm in Matlab with

user-defined termination tolerance level and maximum number of iterations.
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Table 1: Model calibration results for the Baltic Capesize Index

The table is divided in two panels. Panel A of the table provides the implied risk neutral BCI model
parameters. Estimation has been performed on a weekly basis in the period 04 January 2008 to 27 June
2014 over all options (“All options”) and maturity-partitioned datasets (+Q, +1CAL, +2CAL). The reports
in Panel A are the averages (across weeks) of the annual parameter estimates of the fitted MRJ model along
with their standard errors in (·). Panel B reports the averages (across weeks) of the option pricing error
statistics MAPE (21) and RMSPE (22) under the MRJ model. For out-of-sample pricing errors, on each
Friday, we use in-sample model estimates to price the same options one week later using the relevant spot
prices, time to maturities and interest rates. We assess the MRJ model fit by considering the MAPE and
RMSPE statistics and testing the null hypothesis that MRJ does not perform better than a benchmark by
employing the stationary bootstrap of Politis and Romano (1994) with 10,000 bootstrap simulations. As
benchmarks, we consider the MR and LogN models which we calibrate using the same dataset. Superscripts
a and b indicate that MRJ yields significantly lower pricing errors than LogN and MR, respectively, at the
1% significance level.

Panel A. Model parameters
k ε σ λ µJ σJ

Estimate 3.310 2.486 0.688 6.786 -0.272 0.736
Standard error (0.133) (0.043) (0.042) (0.198) (0.005) (0.007)

Panel B. Pricing errors
All options +Q +1CAL +2CAL

In-sample pricing errors
MAPE 0.1191a,b 0.1773a,b 0.1073a,b 0.0778a,b

RMSPE 0.1699a,b 0.2212a,b 0.1376a,b 0.0920a,b

Out-of-sample pricing errors
MAPE 0.1612a,b 0.2352a,b 0.1463a,b 0.1087a,b

RMSPE 0.2335a,b 0.2857a,b 0.1830a,b 0.1421a,b
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Table 2: Regression analysis of pricing errors

The table reports the coefficients of the regression equation (23) for the MRJ model option pricing errors
computed using the parameter estimates in Table 1. Standard errors (·) are corrected for serial correlation
and heteroscedasticity. F -statistics are used to test the joint null hypothesis H0: β1 = β2 = β3 = β4 = 0.
As benchmarks, we consider the MR and LogN models which we calibrate using the same dataset; adj. R2

and F -statistics for the MR and LogN models are also reported. Superscripts a, b and c indicate significance
of the coefficients at the 1%, 5% and 10% levels, respectively.

MRJ model MR model LogN model
β0 β1 β2 β3 β4 adj. R2 adj. R2 adj. R2

F -stat F -stat F -stat
In-sample pricing errors
-0.0852a 0.1270a -0.0488a 0.0011 0.0104b 1.73% 5.24% 10.19%
(0.022) (0.026) (0.008) (0.016) (0.004) 53.12a 163.7a 336.1a

Out-of-sample pricing errors
-0.0660c 0.0845b -0.0430a 0.0059 0.0268a 1.31% 5.39% 7.97%
(0.038) (0.040) (0.013) (0.031) (0.008) 40.19a 168.1a 255.6a

Table 3: Capesize vessel valuation results

The table reports values (in million USD) of vessels of different ages based on the parameter estimates in
Table 1. The table also presents sensitivities of the vessel price V with respect to the scrap price V̄ , interest
rate r, and model parameters exp(ε), k, σ and λ. For the newbuilding (NB) vessel with l = 2, we also
report the sensitivity of V with respect to the construction lag l. For exposition purposes, all sensitivities
are expressed in monetary terms (million USD) and have been rescaled in order to correspond to changes of
1 million USD in V̄ , 1 basis point in r, 100 USD in exp(ε), 0.5 in k, 1% in σ, 0.5 in λ and 0.25 years in l.
All calculations are based on an initial spot rate of 34,700 USD (spot BCI 4TC), a scrap price of 9.5 million
USD (capesize) and an interest rate of 3.9% per annum.

Vessel age Vessel price Vessel price sensitivities
(million USD) (million USD)

V ∂V/∂ V̄ ∂V/∂r ∂V/∂ exp(ε) ∂V/∂k ∂V/∂σ ∂V/∂λ ∂V/∂l
Newbuilding vessels
NB (l = 2) 60.165 0.348 -0.077 0.473 -0.309 0.059 -0.480 -0.725
NB (l = 0) 68.038 0.376 -0.072 0.518 -0.609 0.066 -0.441 –

Secondhand vessels
5Y 61.541 0.457 -0.055 0.457 -0.569 0.058 -0.327 –
10Y 53.209 0.556 -0.038 0.380 -0.519 0.048 -0.214 –
15Y 42.528 0.676 -0.022 0.282 -0.456 0.036 -0.111 –
20Y 28.838 0.822 -0.009 0.156 -0.374 0.020 -0.033 –
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Table 4: Optimal exercise time of option to invest

The table reports the summary statistics (mean, standard error and interquartile range) of the optimal
exercise time topt (in years) of the option to invest in a vessel of a given age, as well as the simulated
distribution of the optimal exercise time based on 10,000 Monte Carlo simulations. We consider vessels of
different ages and use the parameter estimates in Table 1.

Newbuilding vessels Secondhand vessels
l = 2 l = 0 5Y 10Y 15Y 20Y

Optimal exercise time summary statistics
Mean 0.147 2.084 2.176 2.157 2.400 2.440

Standard error 0.002 0.095 0.097 0.100 0.103 0.102
Interquartile range 0.00 4.00 4.17 4.17 5.00 4.85

Optimal exercise time distribution
topt ≤ 1 100.0% 62.4% 60.9% 63.1% 58.9% 57.0%

1 < topt ≤ 4 0.0% 12.7% 13.5% 11.5% 12.2% 14.4%
4 < topt ≤ 7 0.0% 12.8% 12.8% 11.9% 13.4% 14.5%
topt > 7 0.0% 12.1% 12.8% 13.5% 15.5% 14.1%
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Fig. 1: Drybulk supply and demand

The figure presents the year-on-year % change in world fleet development and seaborne trade. Source:
Clarkson Shipping Intelligence Network (as of October 2015).
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Fig. 2: Estimated volatility, skewness and excess kurtosis of BCI log-changes

The figure presents the weekly evolutions of the implied volatility (Eq. 5), skewness and excess kurtosis (Eq.
8) of the 1-week, 1-month and 1-year log-changes in the BCI computed using the parameter estimates in
Table 1.
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Fig. 3: Capesize vessel valuation results

The top-left sub-figure presents the model capesize vessel values (in million USD) computed using formula
(24) for different vessel ages based on the parameter estimates in Table 1, as well as the historical mean
capesize vessel values along with the 5th and 95th percentiles. Calculations are based on an initial spot rate
of 34,700 USD, a scrap price of 9.5 million USD and an interest rate of 3.9% per annum (average values
across our sample period). The remaining sub-figures depict the annual average prices of vessels of different
ages across different years and the corresponding model prices computed using the average parameters, spot
rates, scrap prices and interest rates for the year of interest.

All 2008 2009 2010 2011 2012 2013 2014

25

50

75

100

125

5Y
 s

ec
on

dh
an

d 
pr

ic
es

All 2008 2009 2010 2011 2012 2013 2014

25

50

75

100

10
Y

 s
ec

on
dh

an
d 

pr
ic

es

All 2008 2009 2010 2011 2012 2013 2014

20

40

60

80

100

15
Y

 s
ec

on
dh

an
d 

pr
ic

es

All 2008 2009 2010 2011 2012 2013 2014

25

50

75

20
Y

 s
ec

on
dh

an
d 

pr
ic

es

NB 5Y 10Y 15Y 20Y
Vessel age

25

50

75

100

125

150

V
es

se
l p

ri
ce

s

Model prices Historical mean 5th percentile 95th percentile

All 2008 2009 2010 2011 2012 2013 2014

25

50

75

100

125
N

ew
bu

ild
in

g 
pr

ic
es

 (
l=

0)

47



Fig. 4: Vessel price patterns for varying parameter values

The figure presents vessel price patterns (in million USD) for varying initial spot freight rate S0 (in thousand
USD), for given deviations from the estimated (see Table 1 and indicated parameter values by an asterisk in
this figure) long-run freight level exp(ε) (in thousand USD), half-life ln 21/k (in months), jump arrival rate λ
and diffusion coefficient σ. For illustrative purposes, we present the case of the newbuilding vessel without
construction lag.
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Fig. 5: Net present value profiles of investments in vessels

The figure presents, for different vessel ages, real option NPVs (dark surfaces) versus conventional NPVs
(white surfaces) for varying long-run freight level exp(ε) (in thousand USD) and diffusion coefficient σ. The
zero plane (grey surface) is also plotted for reference. All NPVs are in million USD.
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Fig. 6: Distribution of optimal exercise time of option to invest

The figure presents simulated probability density estimates of the mean optimal exercise time (in years) of
the option to invest in a vessel of a given age. Each density is based on computed mean optimal exercise
times for 825 different combinations of the long-run freight level exp(ε) and diffusion coefficient σ.
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