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Abstract: We compute lateral displacements and time-delays for a scattering processes

of complex multi-soliton solutions of the Korteweg de-Vries equation. The resulting

expressions are employed to explain the precise distinction between solutions obtained

from different techniques, Hirota’s direct method and a superposition principle based

on Bäcklund transformations. Moreover they explain the internal structures of degen-

erate compound multi-solitons previously constructed. Their individual one-soliton con-

stituents are time-delayed when scattered amongst each other. We present generic for-

mulae for these time-dependent displacements. By recalling Gardner’s transformation

method for conserved charges, we argue that the structure of the asymptotic behaviour

resulting from the integrability of the model together with its PT -symmetry ensure the

reality of all of these charges, including in particular the mass, the momentum and the

energy.

1. Introduction

It is one of the defining features of classical multi-soliton solutions to nonlinear integrable

equations that individual one-soliton contributions maintain their overall shape before and

after a scattering event. The only net effect is that they are delayed or advanced in time

as a result of the scattering with other solitons when compared to the undisturbed motion

of a single one-soliton [1, 2, 3]. Besides providing a more detailed picture on the motion

of classical solitons, following ideas of Wigner and Eisenbud [4], the concrete values of the

delay times are also important for the quantization of the theory as they can be related to

quantum mechanical scattering matrices in a semi-classical approximation.

We present here a detailed analysis of the delay times for complex soliton solutions to

the Korteweg de-Vries equation (KdV) previously reported in [5, 6]. We use our results

http://arxiv.org/abs/1608.01691v1
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for a variety of purposes. On a technical level the explicit expressions allow to clarify the

precise distinctions between solutions obtained from different types of solution methods,

in particular Hirota’s direct method and Bäcklund transformations. Moreover, the time-

delays also shed new on the degenerate multi-soliton solutions constructed in [6], especially

the internal structure of compound multi-solitons can be explained in detail when using

the expression for the time-delays or some approximate asymptotic formulae.

In the quantum mechanical context it is well understood which role PT -symmetries,

or better antilinear symmetries [7], play in order to explain the reality of the energy eigen-

spectrum [8, 9, 10]. For nonlinear integrable wave equations and their PT -symmetric

deformations [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] there is still some uncertainty about

the precise reasoning. For the model discussed here we argue that physical quantities based

on one-soliton solutions, PT -symmetric or not, can always be made PT -symmetric and in

this case that feature alone guarantees their reality. The integrability of the model then

ensures that asymptotically any multi-soliton solution separates into a collection of one-

soliton solutions, possibly time-delayed, of which each contributes only a real value to an

overall conserved charge. We recall the structure of all of these charges constructed from

Gardner’s transformation and then use it to show that PT -symmetry and integrability

ensure the reality of all conserved charges.

Our manuscript is organized as follows: Starting from some general definitions and

properties of conserved quantities and complex one-soliton solutions we compute in section

2 the time-delays in nondegenerate and degenerate two and three-soliton solutions. We

provide closed expressions for the time-dependent displacements for degenerate N -solitons

for any N . In section 3 we present the reasoning that ensures the reality of all conserved

quantities. Our conclusions and an outlook into future work and open issues is presented

in section 4. In general the detailed computations are omitted in section 2, but in order to

illustrate the working we present some sample computations in an appendix.

2. Time-delays for multi-soliton solutions

2.1 Generalities

Following [1, 2, 3] the classical time-delay of a scattering process is defined as follows:

We consider the trajectories of a particle, or a soliton for that matter, with velocity v

before and after the collision as x = vt + x(i) and x = vt + x(f), respectively. The lateral

displacement resulting from the scattering event is then defined as the difference between

these two trajectories, that is simply

∆x := x(f) − x(i), (2.1)

so that the time-delay is naturally defined as

∆t := t(f) − t(i) = −x(f)

v
+

x(i)

v
= −∆x

v
. (2.2)

Negative and positive time-delays are interpreted as attractive and repulsive forces, re-

spectively. In a multi-particle scattering process of particles, or solitons, of type k the
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corresponding lateral displacements and time-delays (∆x)k and (∆t)k, respectively, have

to satisfy certain consistence conditions [3]. Demanding for instance that the centre of

mass coordinate

X =

∑

k
mkxk

∑

k
mk

(2.3)

remains the same before and after the collision, i.e. X(i) = X (f), immediately implies that

∑

k
mk(∆x)k = 0. (2.4)

Furthermore, given that m∆x = −mv∆t = −p∆t yields

∑

k
pk(∆t)k = 0, (2.5)

where pk is the momentum of a particle of type k. We will use the relations (2.4) and (2.5)

for consistency checks.

2.2 Complex KdV multi-soliton scattering

Let us now see how the above applies to the scattering of multi-solitons that are solutions

of the KdV equation for the complex field u(x, t) = p(x, t)+ iq(x, t) with p(x, t), q(x, t) ∈ R

ut + 6uux + uxxx = 0. (2.6)

Separating (2.6) into its real and imaginary part one may view it of course as set of coupled

equations for the real fields p(x, t) and q(x, t). In the limits (pq)x → pqx and qxxx → 0

they reduce to some well studied systems, the Hirota-Satsuma [22] and Ito equations [23],

respectively. The total mass, momentum and energy associated to the solution u(x, t) are

defined as

m =

∫ ∞

−∞

udx, p =

∫ ∞

−∞

u2dx, E =

∫ ∞

−∞

(

2u3 − u2x
)

dx, (2.7)

respectively. See section 3 for a derivation of these expressions. We have to establish that

these quantities are real as they are meant to be physical, i.e. observable.

2.2.1 Properties of the one-soliton solutions

First we need to compute complex solutions to the KdV equation. We recall that they

may be constructed for instance from Hirota’s direct method [24]. Defining the quantities

ηµ;α := αx− α3t+ µ, we consider the τ -function for a one-soliton

τµ;α(x, t) = 1 + eηµ;α , (2.8)

from which the corresponding solution to the complex KdV equation is obtained as u(x, t) =

2[ln τ(x, t)]xx. Taking the value for µ in a form that respects the PT -symmetry of the

solutions, i.e. purely imaginary µ = iθ with θ ∈ R, we obtain [5]

uiθ;α(x, t) =
α2 + α2 cos θ cosh(αx− α3t)

[cos θ + cosh(αx− α3t)]2
− i

α2 sin θ sinh(αx− α3t)

[cos θ + cosh(αx− α3t)]2
. (2.9)
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We may restrict ourselves to this choice, because PT -symmetry breaking choices, such as

µ = κ + iθ with κ ∈ R, can be converted to the form (2.9) by simple shifts in x or t,

uκ+iθ;α(x, t) = uiθ;α(x+ κ/α, t) = uiθ;α(x, t− κ/α3). The former may then be absorbed in

the limits of integrals when computing physical quantities and the latter may be neglected

when considering conserved charges. Using this solution we compute the quantities as

defined in (2.7). For the mass of the complex one-soliton we obtain always a real value

mα =

∫ ∞

−∞

uiθ;α(x, t)dx =
α sinh(αx− α3t) + iα sin θ

cos θ + cosh(αx− α3t)

∣

∣

∣

∣

∞

x=−∞

= 2α. (2.10)

Thus only p(x, t) component contributes to the mass of the soliton u(x, t), so that q(x, t)

may be viewed as a massless soliton. Likewise, the momentum of the one-soliton turns out

to be always real

pα =

∫ ∞

−∞

u2iθ;αdx =
α3 sinh η0;α

[

5 + 6 cos θ cosh η0;α + cosh
(

2η0;α
)]

6
(

cos θ + cosh η0;α
)3

∣

∣

∣

∣

∣

∞

x=−∞

+ i
α3 sin θ

(

5 + cos(2θ) + 6 cos θ cosh
(

η0;α
))

6
(

cos θ + cosh η0;α
)3

∣

∣

∣

∣

∣

∞

x=−∞

=
2

3
α3, (2.11)

and the value for the energy was reported in [5] to be real as well

Eα =

∫ ∞

−∞

[

2u3iθ;α − (uiθ;α)
2
x

]

dx =
2

5
α5. (2.12)

In comparison with [5] we have rescaled the energy by a factor of −2 for reason that become

apparent in section 3.

We now follow [3] by choosing a reference frame that tracks a distinct point on the

soliton, such the crest or trough of the wave. Tracking the one-soliton solution by keeping

the traveling wave coordinate x − α2t at a fixed value, we obtain for the real part of the

solution (2.9) the constant values

piθ;α
[

tα2, t
]

=
α2

2
sec2

(

θ

2

)

=: P̂α(θ), (2.13)

piθ;α

[

tα2 ± 1

α
∆r(θ), t

]

= −α2

4
cot2 (θ) =: P̌α(θ), (2.14)

corresponding to a maximum and two minima, respectively, with shift function

∆r(θ) := arccosh(cos θ − 2 sec θ). (2.15)

Notice that the minima only emerge when θ ∈ ((4n + 1)π/2, (4n + 3)π/2) with n ∈ Z as

otherwise the argument of the arccosh in (2.15) is smaller 1. For the imaginary part we

define the shift function

∆i(θ) := arccosh

[

1

2
cos θ +

√
2

4

√

17 + cos(2θ)

]

, (2.16)
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and compute the minimal and maximal values

qiθ;α

[

tα2 ± 1

α
∆i(θ), t

]

= ∓
8α2 sin θ

√

5 + cos(2θ) +
√
2 cos θ

√

17 + cos(2θ)
[

6 cos θ +
√
2
√

17 + cos(2θ)
]2 =: ∓Qα(θ).

(2.17)

With these shifts the real part of the one-soliton solution is simply fixed to remain on the

crest of the wave as time evolves in (2.13) or on either of the two minima in (2.14) when

they exist. For the imaginary part we have the option to track either the crest or trough

as specified in (2.17).

We summarize these features in figure 1.

Figure 1: PT -symmetric one-soliton solution (2.9) of the KdV equation (2.6) with α = 6/5 and

θ = 6/5π at time t = 20.

2.2.2 Properties of nondegenerate two-soliton solutions

Next we consider the complex two-soliton solution. Abbreviating the reoccurring constant

κ(α, β) := (α− β)2/(α + β)2, the two-soliton τ -function is compactly expressed as

τµ,ν;α,β(x, t) = 1 + eηµ;α + eην;β + κ(α, β)eηµ;α+ην;β , (2.18)

from which, by using again the transformation u(x, t) = 2[ln τ(x, t)]xx, we compute the

solution

uiθ,iφ;α,β =
2[α2e

ηiθ;α+β2e
ηiφ;β+κ(α,β)(α2e

ηiθ;α+2ηiφ;β+β2e
2ηiθ;α+ηiφ;β)+2(α−β)2e

ηiθ;α+ηiφ;β ]
τ2
iθ,iφ;α,β

.

(2.19)

We now have to track the one-soliton contributions within the solution (2.19) and according

to our definitions (2.1) and (2.2) we need to compare the values in the infinite past with

the one in the infinite future in order to find the lateral displacements and time-delays.

From (2.13) we can read off which frame we have to choose. Tracking the maxima for the

real part of the two-soliton solution (2.19), we compute the asymptotic values

lim
t→−∞

piθ,iφ;α,β
[

tα2, t
]

= lim
t→+∞

piθ,iφ;α,β
[

tα2 + δα,βα , t
]

= P̂α(θ),

lim
t→+∞

piθ,iφ;α,β
[

tβ2, t
]

= lim
t→−∞

piθ,iφ;α,β

[

tβ2 + δα,ββ , t
]

= P̂β(φ),
(2.20)
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where for definiteness we have taken the ordering α > β and furthermore abbreviated the

quantity

δy,zx :=
2

x
ln

(

y + z

y − z

)

, (2.21)

for conciseness. See appendix A for the details of this computation. According to our

definitions (2.1) and (2.2) we can now read off the lateral displacements and time-delays

from the asymptotic values in (2.20) by comparing the infinite future and the infinite past.

For the soliton with velocity α2 we find

(∆x)α = δα,βα , and (∆t)α = − 1

α2
δα,βα , (2.22)

and for the soliton with velocity β2 we identify

(∆x)β = −δα,ββ , and (∆t)β =
1

β2 δ
α,β
β . (2.23)

Figure 2: Lateral displacements for the complex PT -symmetric two-soliton KdV solution (2.19)

with α = 3/2, β = 1, θ = π/3 and φ = π/4. The plots in the negative and positive regime of x

correspond to the time taken to be t = −20 and t = 20, respectively.

Using the values for the masses and momenta computed in (2.10) and (2.11), we verify

that the quantities (2.22) and (2.23) indeed satisfy the consistency relations (2.4) and (2.5),

since

mα(∆x)α +mβ(∆x)β = 2αδα,βα − 2βδα,ββ = 0, (2.24)

pα(∆t)α + pβ(∆t)β = −2

3
α3 1

α2
δα,βα +

2

3
β3 1

β2 δ
α,β
β = 0. (2.25)

We may of course also track any other point and should obtain the same values for the

displacement and delays. For instance, tracking the minima for the real part we compute

lim
t→−∞

piθ,iφ;α,β

[

tα2 ± ∆r(θ)
α , t

]

= lim
t→+∞

piθ,iφ;α,β

[

tα2 ± ∆r(θ)
α + δα,βα , t

]

= P̌α(θ),

lim
t→+∞

piθ,iφ;α,β

[

tβ2 ± ∆r(φ)
β , t

]

= lim
t→−∞

piθ,iφ;α,β

[

tβ2 ± ∆r(φ)
β + δα,ββ , t

]

= P̌β(φ),
(2.26)
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or tracking the minimum or maximum for the imaginary part we obtain

lim
t→−∞

qiθ,iφ;α,β

[

tα2 ± ∆i(θ)
α , t

]

= lim
t→+∞

qiθ,iφ;α,β

[

tα2 ± ∆i(θ)
α + δα,βα , t

]

= ∓Qα(θ),

lim
t→+∞

qiθ,iφ;α,β

[

tβ2 ± ∆i(φ)
β , t

]

= lim
t→−∞

qiθ,iφ;α,β

[

tβ2 ± ∆i(φ)
β + δα,ββ , t

]

= ∓Qβ(φ).
(2.27)

We depict these features in figure 2.

We also remark here that the time-delays are important to clarify the precise relation

between the solutions obtained from the Hirota method (2.19) and those constructed via

Bäcklund transformations [5]

uBµ,ν;α,β(x, t) =
α2 − β2

2

β2 sech
[

1
2(βx− β3t+ ν)

]2 − α2 sech
[

1
2(αx− α3t+ µ)

]2

[

α tanh
[

1
2(αx− α3t+ µ)

]

− β tanh
[

1
2 (βx− β3t+ ν)

]]2 . (2.28)

Tracking the maxima of the real part of (2.28) we compute the asymptotic values

lim
t→+∞

pBiθ,iφ;α,β

[

α2t+ δα,β
α

2

]

= lim
t→−∞

pBiθ,iφ;α,β

[

α2t− δα,β
α

2

]

= P̂α(θ + π)

lim
t→+∞

pBiθ,iφ;α,β

[

β2t− δα,β
β

2

]

= lim
t→−∞

pBiθ,iφ;α,β

[

β2t+
δα,β
β

2

]

= P̂β(φ)
(2.29)

Figure 3: Complex Hirota two-soliton KdV solution (2.19) versus two-soliton KdV solution ob-

tained from Bäcklund transformations (2.28) for α = 1.2, β = 0.8, θ = π/3 and φ = π/4. The plots

in the negative and positive regime of x correspond to the time taken to be t = −20 and t = 20,

respectively.

Comparing the real parts of the one-soliton contribution within the Bäcklund two-

soliton solution with those in the Hirota solution, we find that the slower and faster one are

delayed by the amount δα,ββ /2 and δα,βα /2, respectively. Thus the two types of solutions are

not simply shifted by an overall amount, but each of the individual one-soliton contributions

shifted by a different amount relative to each other. Furthermore, comparing (2.26) and

(2.29) we observe that we require a shift in θ by π in the Hirota solution in order to obtain

the same qualitative features in both solution, in the sense of matching amplitudes and

occurrence of minima. Overall we obtain the same total delays (2.22) from any of the

solutions.

– 7 –



Time-delay and reality conditions for complex solitons

Tracking the minima and maxima for the imaginary part we obtain

lim
t→+∞

qBiθ,iφ;α,β

[

α2t+ δα,β
α

2 ± ∆i(θ+π)
α

]

= lim
t→−∞

qBiθ,iφ;α,β

[

α2t− δα,β
α

2 ± ∆i(θ+π)
α

]

= ∓Qα(θ + π)

lim
t→+∞

qBiθ,iφ;α,β

[

β2t− δα,β
β

2 ± 1
β∆i(φ)

]

= lim
t→−∞

qBiθ,iφ;α,β

[

β2t+
δα,β
β

2 ± 1
β∆i(φ)

]

= ∓Qβ(φ).

(2.30)

As expected, we observe from this that the imaginary parts of the soliton solutions are

displaced by the same amount as the real parts, but for the faster soliton we also acquired

an overall minus sign.

These features are displayed in figure 3.

We notice that the time-delay caused by the scattering between the faster and the

slower soliton is the same in both solutions, i.e. they are preserved quantities.

2.2.3 Properties of degenerate two-soliton solutions

As discussed in [6], the degenerate solutions for which some of the energies are the same

are quite special. In general the limit β → α to degenerate energies in a multi-soliton

solution is divergent. However, as discussed in detail in [6], in a complex setting, when

tuning certain parameters it can be performed consistently, leading to the solution

uiθ,iφ;α,α(x, t) =
2α2

[(

αx− 3α3t+ iφ
)

sinh
(

ηiθ;α
)

− 2 cosh
(

ηiθ;α
)

− 2
]

[

αx− 3α3t+ iφ+ sinh
(

ηiθ;α
)]2 . (2.31)

Defining the time-dependent displacement

∆(t) :=
1

α
ln

(

4α3 |t|
)

, (2.32)

we track the maximum for the real part of the degenerate solution (2.31) as

lim
t→+∞

piθ,iφ;α,α
[

tα2 −∆(t), t
]

= lim
t→−∞

piθ,iφ;α,α
[

tα2 +∆(t), t
]

= P̂α(θ), (2.33)

lim
t→+∞

piθ,iφ;α,α
[

tα2 +∆(t), t
]

= lim
t→−∞

piθ,iφ;α,α
[

tα2 −∆(t), t
]

= P̂α(θ + π), (2.34)

See appendix A for a derivation of these asymptotic expressions. Comparing (2.33) with

(2.13) we observe that the time-dependent shift is tracking the maximum of the one-soliton

solution. The second maximum (2.34) corresponds to the one-soliton solution (2.13) with

θ → θ + π, which relates the sech2 to the csch2 solution. We expect these solutions to

emerge as in the real case they correspond to the two independent solutions from which the

degenerate one (2.31) was constructed in [6] when usingWronskians involving Jordan states.

Moreover, regarding the internal structure of the degenerate two-soliton we deduce that

the one-solitons with amplitude P̂α(θ) and P̂α(θ+π) are laterally displaced by −2∆(t) and

2∆(t), respectively, as a result of the scattering process. When t → ±∞ the displacements

tend to infinity as we somehow expect from the displacement (2.22) which diverges when

β → α.

As we have seen, the real part of one of the one-soliton solutions also develops two

minima, for which we compute the limits

lim
t→σ∞

piθ,iφ;α,α

[

tα2 − σ∆(t)± 1

α
∆r(θ), t

]

= P̌α(θ). (2.35)
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where σ can be +1 or −1. Since the two one-solitons are relatively shifted to each other

by θ → θ + π it follows from the remarks after (2.15) that these minima can only emerge

in one of the two solitons.

For the imaginary part we compute the eight limits

lim
t→σ∞

qiθ,iφ;α,α

[

tα2 − σ∆(t)± 1

α
∆i(θ), t

]

= ∓Qα(θ), (2.36)

lim
t→σ∞

qiθ,iφ;α,α

[

tα2 + σ∆(t)± 1

α
∆i(θ + π), t

]

= ±Qα(θ + π). (2.37)

We also observe from the imaginary part that the overall time-delays are ±2∆(t).

2.2.4 Properties of nondegenerate three-soliton solutions

Let us now consider the three-soliton solution for which the τ -function reads

τµ,ν,ρ;α,β,γ(x, t) = 1 + eηµ;α + eην;β + eηρ;γ + κ(α, β)eηµ;α+ην;β + κ(α, γ)eηµ;α+ηρ;γ (2.38)

+κ(β, γ)eην;β+ηρ;γ + κ(α, β)κ(α, γ)κ(β, γ)eηµ;α+ην;β+ηρ;γ ,

leading to the three-soliton solution

uiθ,iφ,iϑ;α,β,γ(x, t) = 2 [ln τ iθ,iφ,iϑ;α,β,γ(x, t)]xx , (2.39)

which we do not report here explicitly. Assuming the ordering α > β > γ we track the

maxima for the real parts and compute the asymptotic values

lim
t→−∞

piθ,iφ,iϑ;α,β,γ
[

tα2, t
]

= lim
t→+∞

piθ,iφ,iϑ;α,β,γ
[

tα2 + δα,βα + δα,γα , t
]

= P̂α(θ),

lim
t→−∞

piθ,iφ,iϑ;α,β,γ

[

tβ2 + δα,ββ , t
]

= lim
t→+∞

piθ,iφ,iϑ;α,β,γ

[

tβ2 + δβ,γβ , t
]

= P̂β(φ),

lim
t→−∞

piθ,iφ,iϑ;α,β,γ
[

tγ2 + δα,γγ + δβ,γγ , t
]

= lim
t→+∞

piθ,iφ,iϑ;α,β,γ
[

tγ2, t
]

= P̂γ(ϑ).

(2.40)

When tracking the minima or maxima in the imaginary part we obtain

lim
t→−∞

qiθ,iφ,iϑ;α,β,γ

[

tα2 ± ∆i(θ)
α , t

]

= lim
t→∞

qiθ,iφ,iϑ;α,β,γ

[

tα2 + δα,βα + δα,γα ± ∆i(θ)
α , t

]

= ∓Qα(θ),

lim
t→−∞

qiθ,iφ,iϑ;α,β,γ

[

tβ2 + δα,ββ ± ∆i(φ)
β , t

]

= lim
t→∞

qiθ,iφ,iϑ;α,β,γ

[

tβ2 + δβ,γβ ± ∆i(φ)
β , t

]

= ∓Qβ(φ),

lim
t→−∞

qiθ,iφ,iϑ;α,β,γ

[

tγ2 + δα,γγ + δβ,γγ ± ∆i(ϑ)
γ , t

]

= lim
t→∞

qiθ,iφ,iϑ;α,β,γ

[

tγ2 ± ∆i(ϑ)
γ , t

]

= ∓Qγ(ϑ).

Similarly as in the previous section for the two-soliton solution we read off the lateral

displacements form these expressions as

(∆x)α = δα,βα + δα,γα , (∆x)β = δβ,γβ − δα,ββ , (∆x)γ = −δα,γγ − δβ,γγ . (2.41)

The corresponding time-delays are

(∆t)α = − 1

α2

(

δα,βα + δα,γα

)

, (∆t)β =
1

β2

(

δα,ββ − δβ,γβ

)

, (∆t)γ =
1

γ2

(

δα,γγ + δβ,γγ

)

.

(2.42)
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Once again we may use the values for the soliton mass (2.10) and momentum (2.11) to

confirm that these quantities satisfy the consistency relation (2.4) and (2.5). As the values

in (2.42) are simply the sums of the scattering of two solitons, this confirms the well known

factorization property in integrable systems stating that a multiple scattering process can

always be understood as consecutive scattering of two particles for which any ordering is

equivalent [25]. In the quantized version of the model this property is reflected in the

Yang-Baxter and bootstrap equations.

2.2.5 Properties of degenerate three-soliton solutions

Let us now consider the degenerate three-soliton solution for which the limit β, γ → α is

carried out. In [6] a solution to this scenario was reported as

uiθ,iφ,iϑ;α,α,α(x, t) = 2







ln





(

1 +
(

η
(3)
iϑ;α

)2
+ cosh η

(1)
iθ;α

)

sinh
η
(1)
iθ;α

2
− η

(9)
iφ;α cosh

η
(1)
iθ;α

2











xx

,

(2.43)

with η
(λ)
µ;α := αx−λα3t+µ. In this case we find the three maxima for the real parts in the

limits

lim
t→±∞

piθ,iφ,iϑ;α,α,α
[

tα2, t
]

= P̂α(θ + π), (2.44)

lim
t→±∞

piθ,iφ,iϑ;α,α,α
[

tα2 ± ∆̄(t), t
]

= P̂α(θ), (2.45)

where the time-dependent displacement is defined as

∆̄(t) :=
1

α
ln

(

8α6t2
)

. (2.46)

Thus we find the center soliton converging to the sech2-one-soliton solution and the two

outer ones to the csch2-one-soliton solution. The outer ones keep moving away from the

center as |t| increases. Similarly as for the degenerate two-soliton, the two individual outer

solitons with amplitudes P̂α(θ) are time-dependently displaced by the different amounts

±2∆̄(t). This might is not be obvious from the limits (2.45) as these one-solitons are

identical, but they have actually exchanged their position. The one-soliton in the center

with amplitude P̂α(θ + π) is not displaced or time-delayed and simply travels identically

to a one-soliton solution. The real part of the solutions posses also minima in the regimes

for θ as specified after (2.15). For those we compute

lim
t→±∞

piθ,iφ,iϑ;α,α,α

[

tα2 ± 1

α
∆r(θ + π), t

]

= P̌α(θ), (2.47)

lim
t→±∞

piθ,iφ,iϑ;α,α,α

[

tα2 ± ∆̄(t)± 1

α
∆r(θ), t

]

= P̌α(θ). (2.48)
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For the imaginary parts we evaluate

lim
t→σ∞

qiθ,iφ,iϑ;α,α,α

[

tα2 ± 1

α
∆i(θ + π), t

]

= ∓Qα(θ + π), (2.49)

lim
t→σ∞

qiθ,iφ,iϑ;α,α,α

[

tα2 + ∆̄(t)± 1

α
∆i(θ), t

]

= ∓Qα(θ), (2.50)

lim
t→σ∞

qiθ,iφ,iϑ;α,α,α

[

tα2 − ∆̄(t)± 1

α
∆i(θ), t

]

= ∓Qα(θ). (2.51)

Using these limits we deduce the same values for the displacements as from the real part.

Next we consider the degenerate three-soliton solution for which only the limit β → α

is carried out, such that only two of the contributions are degenerate. We recall a solution

for this from [6]

uiθ,iφ,iϑ;α,α,γ(x, t) = 2







ln



cosh
η
(1)
iϑ;γ

2

[

α2 + γ2

8
sinh

(

η
(1)
iθ;α

)

− α2 − γ2

8
η
(3)
iφ;α

]

(2.52)

−αγ

2
cosh2





η
(1)
iθ;α

2



 sinh





η
(1)
iϑ;γ

2















xx

.

For the degenerated compound soliton the two maxima of the real part have the properties

lim
t→σ∞

piθ,iφ,iϑ;α,α,γ

[

tα2 + σ∆(t) + σ
δα,γα

2
, t

]

= P̂α(θ), (2.53)

lim
t→σ∞

piθ,iφ,iϑ;α,α,γ

[

tα2 − σ∆(t) + σ
δα,γα

2
, t

]

= P̂α(θ + π), (2.54)

and for the non-degenerated one-soliton contribution we compute

lim
t→σ∞

piθ,iφ,iϑ;α,α,γ
[

tγ2 − σδα,γγ , t
]

= P̂γ(ϑ). (2.55)

The degenerate one-solitons with amplitudes P̂α(θ) and P̂α(θ + π) are now time-

dependently displaced due to the scattering amongst each other and in addition displaced

by a constant due to the scattering by

(∆x)
θ
α = 2∆(t) + δα,γα and (∆x)

θ+π
α = −2∆(t) + δα,γα (2.56)

respectively. From (2.55) we deduce

(∆x)γ = −2δα,γγ (2.57)

the constant displacement for the one-soliton with amplitude P̂γ(ϑ). Our consistency equa-

tion (2.4) is satisfied as

mα(∆x)
θ
α +mα(∆x)

θ+π
α +mγ(∆x)γ = 4αδα,γα − 4γδα,γγ = 0. (2.58)

We can argue similarly for the time-delays. Thus while the two individual degenerate

contributions are time-dependently displaced, there are in addition nonvanishing constant

contributions as a result of the scattering with the remaining non-degenerate one-soliton.

In a similar fashion as above, these features are confirmed when tracking the minima in

the real part or the minima and maxima in the imaginary part.

These features are summarized in figure 4.
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Figure 4: Time-delays for a complex PT -symmetric three-soliton KdV solution with a compound

two-soliton with α = 6/5, γ = 4/5, θ = π/3 and ϑ = φ = π/4. The plots in the negative and

positive regime of x correspond to the time taken to be t = −30 and t = 30, respectively.

2.2.6 Properties of degenerate multi-soliton solutions

We have seen in sections 2.2.3 and 2.2.5 that the individual one-soliton constituents within

the degenerate two and three-soliton solutions (2.31) and (2.43) are shifted relative to each

other by the time-dependent displacements (2.32) and (2.46), respectively. As these shifts

are logarithmic in time the change is very slow and when confined to some finite regions they

may be viewed as a compound N -soliton as advocated in [6]. This qualitative behaviour

remains the same for degenerate N -soliton solutions for any N , albeit the fomulae for the

time-dependent displacements (2.32) and (2.46) need to be generalized.

Using the notation

lim
α2,...,αN→α1=α

uiθ1=iθ,...,iθN ;α1,...,αN
(x, t) = piθ,...,iθN ;Nα(x, t) + iqiθ,...,iθN ;Nα(x, t) (2.59)

We compute the asymptotic limits for N even and N odd separately. For the even case we

compute

lim
t→σ∞

piθ,...,iθ2n;2nα
[

tα2 + σ∆n,ℓ,1(t), t
]

= P̂α

(

θ +
1− (−1)n+ℓ+1

2
π

)

(2.60)

lim
t→σ∞

piθ,...,iθ2n;2nα
[

tα2 − σ∆n,ℓ,1(t), t
]

= P̂α

(

θ +
1− (−1)n+ℓ

2
π

)

(2.61)

for n = 1, 2, . . ., ℓ = 1, 2, . . . , n and for the odd case we obtain

lim
t→σ∞

piθ,...,iθ2n+1;(2n+1)α

[

tα2 ±∆n,ℓ,0(t), t
]

= P̂α

(

θ +
1− (−1)n+ℓ

2
π

)

(2.62)

for n = 0, 1, 2, . . ., ℓ = 0, 1, 2, . . . , n. The time-dependent displacement takes on the general

form

∆n,ℓ,κ(t) =
1

α
ln

[

(n− ℓ)!

(n+ ℓ− κ)!
(4 |t|α3)2ℓ−κ

]

. (2.63)

As in the previous cases we could also track the minima in the real part when they are

present or the minima and maxima in the imaginary part, which leads to the same expres-

sions for the time-dependent displacement (2.63).
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3. Reality conditions for conserved charges

We will now argue that PT -symmetry together with integrability will guarantee that all

conserved charges in the model will be real. In order to see the structure of all of the charges

we briefly recall how they can be constructed from the so-called Gardner transformation

[26, 27, 28]. The central idea is to expand the KdV-field u(x, t) in terms of a new field

w(x, t)

u(x, t) = w(x, t) + εwx(x, t)− ε2w2(x, t), (3.1)

for some deformation parameter ε ∈ R. The substitution of u(x, t) into the KdV equation

(2.6) yields
(

1 + ε∂x − 2ε2w
) [

wt +
(

wxx + 3w2 − 2ε2w3
)

x

]

= 0. (3.2)

Since the last bracket is in form of a conservation law and needs to vanish by itself, one

concludes that

∫ ∞

−∞

w(x, t)dx = const. Expanding the new field as

w(x, t) =
∞
∑

n=0

εnwn(x, t) (3.3)

then implies that also the quantities In :=

∫ ∞

−∞

w2n−2(x, t)dx are conserved. We may then

use the relation (3.1) to construct the charge densities in a recursive manner

wn = uδn,0 − (wn−1)x +

n−2
∑

k=0

wkwn−k−2. (3.4)

Solving (3.4) recursively, by taking wn = 0 for n < 0, we obtain easily the well known

expressions for the first charge densities

w0 = u, (3.5)

w1 = − (w0)x = −ux, (3.6)

w2 = − (w1)x + w2
0 = uxx + u2, (3.7)

w3 = − (w2)x + 2w0w1 = −uxxx − 2(u2)x, (3.8)

w4 = − (w3)x + 2w0w2 + w2
1 = uxxxx + 6(uux)x + 2u3 − u2x. (3.9)

The expressions simplify substantially when we drop surface terms and we recover the first

three charges reported in (2.7). For the energy to be part of this general series is the reason

why we rescaled it as compared to [5, 6].

For the charges constructed from the one-soliton solution (2.9) we obtain real expres-

sions

In =

∫ ∞

−∞

w2n−2(x, t)dx =
2

2n− 1
α2n−1 and In/2 = 0. (3.10)

The reality of all charges build on one-soliton solutions is guaranteed by PT -symmetry

alone: When realizing the PT -symmetry as PT : u → u, x → −x, t → −t, i → −i it is

easily seen from (3.4) that the charge densities transform as wn → (−1)nwn. This mean

– 13 –



Time-delay and reality conditions for complex solitons

when u(x, t) is PT -symmetric so are the even graded charge densities w2n(x, t). Changing

the argument of the functional dependence to the traveling wave coordinate ζα = x− α2t

this means we can separate w2n(ζα) into a PT -even and PT -odd part we
2n(ζα) ∈ R and

wo
2n(ζα) ∈ R, respectively, as w2n(ζα) = we

2n(ζα) + iwo
2n(ζα), which allows us to conclude

In(α) =

∫ ∞

−∞

w2n−2(x, t)dx =

∫ ∞

−∞

[

we
2n−2(ζα) + iwo

2n−2(ζα)
]

dζα =

∫ ∞

−∞

we
2n−2(ζα)dζα ∈ R.

(3.11)

It is easily seen that the previous argument applies directly to the charges build from the

solution uiθ;α(x, t) in (2.9), i.e. the real part and imaginary part are even and odd in ζα,

respectively. When the parameter µ has a nonvanishing real part the PT -symmetry is

broken, but it can be restored by absorbing the real part by a shift either in t or x as

argued in [5].

In order to ensure the same for the multi-soliton solutions we use the fact that the

multi-soliton solutions separate asymptotically into single solitons with distinct support.

As the charges are conserved in time we may compute In at any time. In the asymptotic

regime any charge build from an N -soliton u
(N)
iθ1,...,iθN ;α1,...,αN

decomposes into the sum of

charges build on the one-soliton solutions.

In(α1, . . . , αN ) =

∫ ∞

−∞

(

w
(N)
iθ1,...,iθN ;α1,...,αN

)

2n−2
(x, t)dx, (3.12)

=

∫ ∞

−∞

∑N

k=1

[

(

w
(1)
iθk;αk

)

2n−2
(ζαk

)

]

dζαk
, (3.13)

=
∑N

k=1
In(αk), (3.14)

=
2

2n − 1

∑N

k=1
α2n−1
k . (3.15)

We used here the decomposition of the N-soliton into a sum of one-solitons in the asymptotic

regime u
(N)
iθ1,...,iθN ;α1,...,αN

=
∑N

k=1

(

u
(1)
iθk ;αk

)

, which we have seen in detail above. Since each

of the one-solitons is well localized we always have u
(1)
iθk;αk

· u(1)iθl;αl
= 0 when k 6= l, which

implies that

[

u
(N)
iθ1,...,iθN ;α1,...,αN

]m
=

[

∑N

k=1

(

u
(1)
iθk;αk

)

]m

=
∑N

k=1

(

u
(1)
iθk ;αk

)m
. (3.16)

As all the derivatives are finite and the support is the same as for the us, this also implies

[(

u
(N)
iθ1,...,iθN ;α1,...,αN

)

nx

]m
=

[

∑N

k=1

(

u
(1)
iθk;αk

)

nx

]m

=
∑N

k=1

(

u
(1)
iθk;αk

)m

nx
, (3.17)

and similarly for mixed terms involving different types of derivatives. As all charge densities

are made up from u and its derivatives we obtain
(

w
(N)
iθ1,...,iθN ;α1,...,αN

)

2n−2
=

∑N

k=1

(

w
(1)
iθk;αk

)

2n−2
(3.18)

in the asymptotic regime, which is used in the step from (3.12) to (3.13). In the remaining

two steps (3.14) and (3.15) we use (3.10).

Thus PT -symmetry and integrability guarantee the reality of all charges.
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4. Conclusions

We have explicitly computed lateral displacements and time-delays for complex two and

three-soliton solutions of the KdV equation. Our solutions satisfy the consistency equations

(2.4) and (2.5) resulting from the preservation of the centre of mass coordinate. The

expressions for the time-delay of the three-soliton scattering, being the sum of the delays

of two two-soliton time-delays, confirm on classical level the standard factorization property

of the scattering matrix for integrable systems that allows to treat any multiple scattering

process as a succession of two particle scatterings. The imaginary part in our solutions

may be thought of as a massless soliton partaking in the scattering process.

We used our expressions for three different purposes: Firstly we made the relation be-

tween solutions obtained from Hirota’s direct method on one hand and those constructed

from a superposition principle based on Bäcklund transformations precise. They differ by

non-identical lateral displacements in each of their one-soliton constituents and additional

shifts by π in the shift parameters. Overall they lead to the same values of the time-delays

as they are preserved quantities. Secondly we elaborated on the internal structure of com-

pound soliton solutions within degenerate multi-soliton solutions. We found that the de-

generate one-soliton contributions are displaced relative to each other by a time-dependent

shift. When scattered with any nondegenerate one-soliton constituent they are all displaced

by the same amount. With (2.63) we presented a generic formula for the relative time-

dependent displacement valid for any degenerate N -soliton solution. Thirdly we clarified

the role PT -symmetry plays in guaranteeing the reality of conserved charges, the energy

being one of them. It turned out that PT -symmetry is solely responsible for the reality

of any charge based on one-soliton solutions. For charges constructed from multi-soliton

solutions we need to invoke integrability having the effect of separating asymptotically the

multi-solitons into single solitons to ensure the reality these charges.

As our approach is entirely model independent, it would naturally be interesting to

apply it to other complex integrable systems. Furthermore, it would be very interesting

to employ the expressions obtained for a semi-classical quantization. In particular the role

played here by the massless soliton might shed some new light on some old results [29].

Acknowledgments: FC would like to thank the Alexander von Humboldt Foundation

(grant number CHL 1153844 STP) for financial support and City University London for

kind hospitality.

A. Sample time-delay computations

Most of the computations are rather cumbersome, so that it suffices to present a few

samples. Let us for instance derive the values for the shifts in (2.20). For simplicity

we take the real part of uiθ,iφ;α,β(x, t) in (2.19) at specific values of θ and φ. Taking

θ = φ = π/2 it acquires the relatively simple form

4
[

αeα
3t+2β3t+αx + βe2α

3t+β3t+βx + αχ(α, β)eα
3t+αx+2βx + βχ(α, β)eβ

3t+2αx+βx
]2

[

e2t(α
3+β3) + 8αβ

(α+β)2
et(α

3+β3)+x(α+β) + e2α3t+2βx + e2β
3t+2αx + χ2(α, β)e2x(α+β)

]2 . (A.1)
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Tracking the soliton with speed α2 in the multi-soliton solution and trying to match it with

the one-soliton, we may try to solve the equivalence relation

uiπ,iπ;α,β(tα
2 +∆, t) ∼ uiπ;α(tα

2, t), (A.2)

in the asymptotic regimes t → ±∞ for some as yet unknown constant ∆. The right hand

side of (A.2) is easily computed from (2.9) to α2. Replacing x by tα2 + ∆ in (A.1) and

identifying e4t(α
3+α2β) as the dominant term in the numerator and denominator in the

large t regime we read off the corresponding coefficients. Thus for large t the equivalence

relation (A.2) becomes

4α2
(

α2 − β2
)4

e2α∆

2
(

α2 − β2
)4

e2α∆ + (α− β)8e4α∆ + (α+ β)8
= α2. (A.3)

Solving this equation for ∆ leads to the time-displacement ∆ = 2/α ln[(α+β)/(α−β)] for

t → ∞, which corresponds to the shift reported in (2.20) for generic values of θ and φ.

Next we present a sample computation for a degenerate multi-soliton solution for which

the lateral displacement becomes time dependent rather than just being constant. We

derive the asymptotic relation (2.33). Taking x to be tα2+∆ in the degenerate two-soliton

solution (2.31) for some constant ∆, we observe that the limits t → ±∞ always yield zero

and we will not be able to obtain a finite value such as the maximum of the one-soliton

P̂α(θ). Hence we are forced to include a time-dependence into ∆. This mildest dependence

we may introduce is a logarithmic one. Taking therefore as an Ansatz ∆(t) = −1/α ln(κ |t|)
for some unknown constant κ we compute

4α2eiθκ |t|
[

κ2t2
(

2α3t− ν − 2 + ln(κ |t|)
)

− e2iθ
(

2α3t+ 2− ν + ln(κ |t|)
)

− 4eiθκ |t|
]

[e2iθ − κ2t2 − 2eiθκ |t| (2α3t− ν + ln(κ |t|))]2
.

(A.4)

For large |t| we can now find matching powers in t in the numerator and denominator. We

replace now |t| by σt and take σ to be ±1 depending on whether t is negative or positive.

The leading order terms are proportional to t4. Neglecting all other terms, the expression

in (A.4) reduces to
8α5eiθκσ

(κ+ 4σα3eiθ)
2 . (A.5)

For κ = 4α3 this equals P̂α(θ) and P̂α(θ+ π) for σ = 1 and σ = −1, respectively. Thus we

have derived (2.33) and (2.34) with the lateral displacement takeing on the form (2.32).
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