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Abstract 
 

There are a number of combinatorial optimisation problems in information retrieval in which the use of local search 
methods are worthwhile. The purpose of this paper is to show how local search can be used to solve some well known 
tasks in Information Retrieval (IR), how previous research in the field is piecemeal, bereft of a structure and 
methodologically flawed, and to suggest more rigorous ways of applying local search methods to solve IR problems. 
We provide a Query based taxonomy for analysing the use of local search in IR tasks and an overview of issues such as 
fitness functions, statistical significance and test collections when conducting experiments on combinatorial 
optimisation problems. The paper gives a guide on the pitfalls and problems for IR practitioners who wish to use local 
search to solve their research issues, and gives practical advice on the use of such methods. The Query based taxonomy 
is a novel structure which can be used by the IR practitioner in order to examine the use of local search in IR.  
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1. Introduction 
There are various tasks in information retrieval that are computationally difficult if not impossible to solve using normal 
computational methods. These problems can be NP hard and require the application of combinatorial optimisation methods, 
particularly the utilisation of local search. There has been a great deal of work in the area, and readers interested in reviews 
should refer to Chen (1995) and Sebastiani (2002). Having read the literature, we have identified a number of areas which 
need to be tackled in order to improve the quality of work in applying local search to IR problems:  

• Local search techniques are used piecemeal without any thought about what might be the best method for a 
particular IR problem. 

• There is no overall overview or structure of how local search can be applied to IR, understanding the available 
techniques and which local search method is best suited to what task. 

• Much of the research is methodologically flawed in terms of evaluation techniques, in particular the application 
and choice of test collections. 

 
In this paper we define a number of IR tasks, and show how local search either has, or could be, used to tackle 
combinatorial optimisation problems. We propose the following solutions to the problems in applying local search to IR 
specified above:  

• We discuss a technique of knowledge based optimizer design through which we can understand local search 
techniques in general. This gives us a methodology with which we can apply to the problem. 

• Using the current practice in knowledge based optimizer design we describe how knowledge from the IR domain 
can be used to inform local search techniques through the application of a Query based taxonomy to various 
problems in IR. 

• We examine how a methodologically sound experiment can be used to improve the quality of research in the area. 
 
Our overall purpose is to give an outline of the area and provide practitioners in IR who have combinatorial optimisation 
problems a method with which they can use to conduct their experiments. The evidence used to build this advice comes 
from current practice in both areas from the literature, theory in the area of optimizer design and the experience of applying 
techniques to various problems by both authors. However limitations of these techniques lie mainly in their effective design 
e.g. Papadimitriou & Steiglitz (1982) note that “the design of effective local search algorithms has been, and remains, very 
much an art”.  

The paper is structured as follows. We describe local search using an example from IR in section 2, from research 
done so far with hillclimbers. Extensions to hillclimbers for IR are then described in section 3, providing an overview of the 
various neighbourhood search techniques and giving references for further reading - though the reader is directed to other 
introductions (Osman, 1995; Osman and Laporte, 1996; Osman and Kelly, 1996; Reeves 1993). The concept of knowledge 
based optimizer design is outlined in section 4. In section 5 we then outline how local search techniques can be used in IR 



using a Query based taxonomy, and then outline ideas for good practice when applying local search methods to IR problems 
in section 6 by discussing the issue of evaluation. A conclusion is given at the end and we discuss the implications of the 
research. 
 
2. What is Local Search? 
Local search is a method which can be applied to computationally complex problems (which therefore cannot be completed 
in a reasonable length of time).  In this class of problems there is no specific algorithm or heuristic which can be applied to 
solve the problem in its entirety. An example of the application of local search are hillclimber techniques used by the City 
University Okapi team on the Routing track at the Text Retrieval (TREC) conference run by NIST (Voorhees and Harman, 
2000). This is the process of using relevant documents from a training set to produce a set of terms to be applied to a test 
set. When choosing terms from a training set, the reader can imagine that normal relevance feedback techniques (Robertson 
et al, 1995) can be used to select a set of terms, using the kind of techniques suggested by Robertson (1990) for limited 
query expansion. In limited query expansion the number of terms would normally be restricted to the 15-20 range. 
However, a further process can be applied by increasing the initial set of terms to say 200 and try to find the best possible 
combination of terms from this term set. This cannot realistically be done as the computational requirement is of order 
O(2200), therefore optimisation techniques must be used in order to select a good set of terms from this second stage process 
– it is known as a Combinatorial Optimisation Problem or COP. Using this example we can give a more precise definition 
of local search in IR terms. 

Consider a Combinatorial Optimisation Problem (COP) which has the form: 
 

• A space of possible solutions, S, with possibly constraints on valid solutions; 
• A `quality' for each solution, quality(s) where s ∈ S; 

 
where the objective is to find a solution s such that quality(s) is maximised and the constraints satisfied. In the context of the 
Okapi experiments described briefly above the space of all possible solutions is the power set of terms, and an example of 
the quality of the solution is average precision. Other evaluation measures have been tried in these experiments, but it has 
been empirically found that average precision is a good predictor of other measures, but other measures are not good 
predictors for average precision (Robertson et al, 1996) – although there is conflicting evidence on this, see further 
discussion of this issue below in section 6.2.  

Such problems are usually NP-hard (Garey and Johnson, 1979) and therefore, for a problem of large enough size, 
the time taken to find an optimal solution by exact methods will become prohibitive.  Fortunately, in practice a `good 
enough' answer in the time available is all that is required, which opens up the possibility of using heuristic methods that do 
not guarantee optimality, but work well in practice. A good enough answer in our example would be to produce a term set 
which would produce better results on the test set than just using the initial set of terms from relevance feedback. 

One heuristic approach would be to employ some form of hillclimbing that requires the following decisions to be made: 
 

• Find a suitable encoding scheme for the candidate solutions in S, such as a list/matrix of average precision scores; 
• Choose a quality metric for each solution, quality(s), such as an increase in average precision; 
• Utilise a method of modifying an encoded solution to give another solution (a move operator) e.g. add/delete terms 

from term set, or adjust weight for term/document pairs (reduce weight, increase weight). 
 
There is usually more than one possible solution (valid or invalid) that can be produced by applying the move operator on a 
given solution, therefore we define a neighbourhood, N(s,m), as the set of solutions in S that are produced by applying the 
move operator, m, on a solution s. Once the above have been defined, the general algorithm is quite straightforward and is 
described below: 
 

• Generate an initial solution (in our example the top three ranked terms from relevance feedback) and evaluate it; 
• Apply and evaluate a move in the neighbourhood of the current solution and apply an acceptance criterion to 

decide whether to use the new solution e.g. add a new term and evaluate its usefulness using average precision; 
• Go back to step 2 until a termination criterion is reached. 

 
The termination condition is merely when the user would like to stop the search.  Examples would include when a certain 
amount of CPU time has elapsed, or when a solution of a certain quality has been found. In the Okapi experiments the 
termination conditions included a limit of 100 iterations for term selection and when no increase in average precision was 
found in a single iteration (Robertson et al, 1995). The acceptance criterion determines whether a new solution generated by 
a move operator replaces the current solution, and introduces a bias towards better solutions in the search. Acceptance 
criteria, and thus hillclimbers, can be broadly classified as follows: 
 



• Any-Ascent hillclimbers (AHC) accept moves that give (new) solutions, which have better or equal quality than 
the current solution, curr (i.e. accept when quality(snew) ≥ quality(scurr)). A common variant is stochastic 
hillclimbing (SHC) where moves are tried in a random order. Not used on Okapi experiments. 

• First-ascent (FAHC) hillclimbers operate similarly, but take the first improvement in quality found (i.e. accept if 
quality(snew) > quality(scurr)). Okapi algorithm: Choose First Positive (Robertson et al, 1995). 

• Steepest-ascent (SAHC) hillclimbers, systematically evaluate the entire neighbourhood of the current solution and 
accept the most improving move (i.e. accept if quality(s_ best)  > quality(s_ curr) and quality(sbest)  > quality(sany | 
sany ∈ N(scurr, m))). Okapi algorithms: Find Best and Choose All Positive (Robertson et al, 1995).   

 
The bias introduced by the acceptance criterion, though necessary, can lead to problems. This happens when an implicit 
assumption is made about the landscape (Tuson, 2000) - which is a graph induced by the move operator and quality function 
that connects solutions accessible to each other by a move operator - is correlated in such a way as to lead the hillclimber 
into a region of the landscape with high-quality solutions. Deviations from this ideal can lead to the hillclimber being 
deceived (the correlations lead the hillclimber away from the optimum), or stuck in local optima. This can force the 
hillclimber to choose a set of terms which may not do so well on the test set, causing overfitting. Overfitting of terms on the 
training set can be a significant problem unless care is taken on the use of the training set. Fortunately, these potential 
difficulties do not necessarily arise in practice, as this assumption is not too far from the reality if a suitable move operator 
is used e.g. an add/remove terms strategy in Okapi hillclimbing (Robertson et al, 1996). 
 
3. Extending the Hillclimber 
The most common type of meta-heuristic, commonly known as neighbourhood (or local) search, extends hillclimbing in 
some fashion, usually by relaxing the acceptance criterion, so to escape local optima. Thus they can be placed in a common 
implementation framework such as described by the pseudo-code below (Rayward-Smith, 1994). 
 

neighbourhood_search() 
  
     initialise(P);        // generate starting solution(s) 
     while(!finished(P))  
         Q = select_solution(P); // choose solution(s) to perturb 
  
    R = create_moves(Q);    // apply move operator(s) 
 
         P = merge_sets(P,Q,R);  // merge to obtain a new set P 

 
  END while 
 
   END neighbourhood_search 
 
where P, Q, and R are sets of solutions in S. Although it is usual to have only one solution in a set, Evolutionary Algorithms, 
described later, are the exception to this rule. With the problem encoding, move operator(s), quality measure specified, and 
by defining the above functions appropriately, any of the versions of neighbourhood search described in the remainder of 
this paper can be implemented. In the following sub-sections, we show how the hillclimbers can be extended to tackle the 
term selection problem below, using the example of the Okapi experiments discussed above.  
  
3.1 Iterated Hillclimbers and GRASP 
One way out of the problem of local optima is to restart the hillclimber with a different initial solution when a local 
optimum has, or is suspected to have, been found. This is known as iterated hillclimbing. A common criterion for restart is 
when a certain user-defined number of evaluations have been made without an improvement in solution quality. The search 
will then resume in a different part of the search space, with a different, and possibly better quality, local optimum. 

A variant of this, GRASP, Greedy Randomised Adaptive Search Procedure (Feo, Bard and Claflin, 1991) - a trade 
mark of Optimization Alternatives, Austin, Texas, incorporates a construction phase where the new starting point is 
generated using a greedy algorithm which is then followed by a local search improvement phase. The intelligent   
initialisation procedure used in GRASP attempts to start the search in the vicinity of good solutions. More emphasis is thus 
placed on the initialisation procedure than the other components of neighbourhood search, to the extent that its design is 
highly problem-specific and it often is adaptive in nature, making use of past experience in the search.  This contrasts with 
the role of the improvement phase which is merely to locate a local optimum.  Applications of GRASP include vehicle 
routing (Hjorring, 1995), and single machine scheduling (Feo, Venkatraman and Bard, 1991). A review of other 
applications, such as flight scheduling for airlines, as well as directions for further reading is given in (Feo, Bard and 
Claflin, 1991). This could be applied to the Okapi term selection problem by restarting the selection process when the top 



average precision ‘peak’ is reached and continually reusing evidence from a number of term selection runs to improve the 
final result.  
 
3.2 Simulated Annealing 
Simulated Annealing (SA) is based upon an analogy between optimisation and the annealing process in physics (Kirkpatrick 
et al, 1983).  In terms of neighbourhood search, it can be thought of as a form of stochastic/any-accept hillclimbing with a 
modified acceptance criterion that accepts lower quality solutions with a probability (the Metropolis criterion) given by the 
equation below: 

 
 

Equation 1 
 
where Tk is the ‘temperature’ at time-step k. In plain English, the temperature controls how likely it is for a lower quality 
solution to be accepted, and thus allows SA to escape local optima; i.e. low quality differences/high temperatures indicate a 
higher probability of acceptance of a lower quality solution. At T = 0, SA is equivalent to SHC. 

The temperature varies with time according to a cooling schedule where, usually, the temperature is reduced as the 
optimisation progresses.  This allows exploration of the search space at the start of the search, followed by exploitation of a 
promising region later on. The technique-specific choices of initial and final temperatures and the form of the cooling 
schedule are important in order to obtain a balance between exploration and exploitation (also termed 
intensification/diversification). However, there is no reason why the cooling schedule should be of any particular form, or 
even monotonically decreasing - the choice is problem-dependent. That said, two common cooling schedules that generally 
work well (Lundy and Rees, 1986), are given below:   
 
 

Equation 2 
 
Work on SA has looked at the theory (Hajek, 1988), cooling schedules (Lundy and Mees, 1986), and applications of SA 
such as sequencing (Osman and Potts, 1989; Ogbu and Smith, 1990), timetabling (Abramson, 1991) and the Steiner 
problem in graphs (Downsland, 1991). Further information on SA can be found in a variety of sources (Collins et al, 1988; 
Van Laarhoven and Aarts, 1989; Aarts and Korst, 1989).  

This technique has been used in Okapi routing experiments, with disappointing results (Walker et al, 1998). A very 
simple simulated annealing process was tried, reducing the ‘temperature’ at a number of stages for term re-weighting, until 
a zero or ‘quench’ temperature was reached. Unlike the hillclimbers used in previous experiments on Okapi, terms which 
actually decreased the average precision were kept, but with a probability which decreases with the current temperature. 
This was done so that the term selection process could escape from a local maximum (which the hillclimbers were unable to 
do). The results on the training set were encouraging when using the re-weighting operation, but when the term sets were 
applied to the test set the results on the queries varied significantly, and it appears that the annealing process was overfitting 
terms on the training set. A deterministic re-weighting process was combined with a mild simulated annealing mechanism, 
which gave a noticeable increase on the training set, but the authors were unable to demonstrate an improvement on the test 
set. It was noted that a significant number of tuning parameters would need to be investigated such as the temperature 
reduction function, the re-weighting process (which terms to choose, how to vary the re-weighting), and rules for both 
ending a stage in the procedure, and the simulated annealing process itself. This method was not investigated further with 
respect to the term selection process.  
 
3.3 Threshold Methods 
Threshold methods are additional extensions of stochastic/any-accept hillclimbing, that use the idea of a threshold which 
sets a level below which new solutions will not be accepted (i.e. acceptance is deterministic). For similar reasons to SA, the 
threshold, Lk is time varying. Threshold methods including the following; 
 

• Threshold Accepting (TA) accepts a new solution if its quality is not below a set threshold relative to the current 
solution (Dueck and Scheuer, 1990) (i.e. accept if quality(s new) ≥ quality(scurr) - Lk).  

• Record-To-Record Travel (RTRT) accepts a new solution if  its quality is not below a certain threshold relative to 
the best solution or record found during the search so far (Dueck, 1990) (i.e. if  quality(snew) ≥ quality(sbest) - Lk).  

• The Great Deluge Algorithm (GDA) accepts a new solution if its quality is not below an absolute quality threshold 
- the current water-level (Dueck, 1990) (i.e. if quality(snew) ≥ Lk). 

 



These techniques differ in the way the threshold is used. For all of these techniques it is usual to vary Lk according to the 
schedule Lk+1 = Lk + α, though there is no reason why others cannot be used. For further details and applications, the reader 
is referred to the papers (Althofer and Koschnick, 1991; Sinclair, 1993). 

This scheme was not used in Okapi term selection experiments but it is easy to see how two of these schemes could 
be used to augment the optimisation process. For example RTRT could be utilised by using something like a 0.05 limit on 
increase in average precision, below which evaluations are rejected. The GDA would not be a useful method for term 
selection as there are no absolute values for average precision, which can vary significantly with the set of topics, and from 
topic to topic.  
 
3.4 Evolutionary Algorithms 
Evolutionary Algorithms (EAs) are based upon the theory of evolution by natural selection (Darwin, 1859). A population of 
solutions is maintained, and allowed to ‘evolve’. Three main styles of EA exist: Genetic Algorithms (GAs) (Holland, 1975), 
Evolutionary Programming (EP) (Fogel et al, 1966), and Evolution Strategies (ESs) (Rechenburg, 1973), but the basic idea 
behind them is the same and the differences can be considered historical.  As an example of the concept, the following 
describes a simple EA with steady-state reproduction: 
 

1. Generate an initial population of solutions; 
2. Select two parent solutions from the population according to their quality; 
3. Apply move operator(s) to generate a new solution, snew; 
4. If snew is superior to the worst member of the population, sworst, then snew replaces sworst; 
5. Go back to step 2 until the termination criterion is reached. 

 
There are many flavours of EAs, as almost all of the stages have a wide choice of alternatives; however all have population-
based acceptance criteria as a set of solutions are maintained and a new set of solutions are produced by applying the 
available move operator(s) and then somehow merging the two sets.  Two types of moves are commonly used: mutation 
(roughly analogous to asexual reproduction), which is equivalent to the conventional move operator, and a binary move 
operator, crossover (roughly analogous to sexual reproduction) which selects two candidate solutions and (probabilistically) 
swaps information between them.  An example is `two-point' crossover which randomly picks two points along the strings 
and swaps the contents of the string between those points, to produce a child as shown in Figure 1. 
 

 
Figure 1: An Example of Two-Point Crossover 

 
The usual rationale for why crossover is a useful search operator is that the recombinative process can bring together 
portions of separate strings associated with high fitness to produce even fitter children. Both the population-based nature of 
the search, and the crossover operator help to avoid the search being trapped in local optima. 

Unfortunately, some practitioners still equate EAs with encoding solutions as binary strings - due to a 
misunderstanding of early theoretical work on the schema theorem (Holland, 1975). This is simply not true (Radcliffe, 
1992) and successful EA applications use whichever encoding is appropriate to the problem.  Such applications are 
extremely varied, covering fields as diverse as chemistry (Cartwright and Harris, 1993), machine learning (Goldberg, 1989), 
and Operational Research (OR).  Example applications in OR include: sequencing problems (Reeves, 1995), vehicle routing 
(Thangiah, 1995), and timetabling (Corne et al, 1993).  A variety of textbooks are available though Michalewicz (1992) is a 
good starting point for those interested in how to apply EAs, whereas the more recent `Handbook of Evolutionary 
Computation' is recommended for its in-depth coverage of the field (Baeck et al, 1997). 

An example of the way this would work with term selection would be to generate some strings of the term set size, 
with each element of a string representing either the absence or presence of a term. Average precision scores for these 
strings would then be generated, applying move operators and replacing the worse average precision scores until a 
termination condition was reached. This scheme could be extended for term reweighing by assigning a positive integer for 
each element of the string to indicate not only the presence of a term, but the level at which it would be re-weighted. 
 
3.5 Tabu Search 
Tabu Search (TS) (Glover, 1990) is based on steepest-ascent or first-ascent hillclimbing, and avoids local optima in a 
deterministic way, based on an analogy with memory, which centres on the use of a tabu list of moves/solutions (or their 
features) which have been made/visited in the recent past (tabu tenure) of the search. Applications of TS include: vehicle 
routing (Semet and Taillard, 1993), graph colouring (Hertz and de Werra, 1987), and path assignment (Oliveria and Stroud, 
1989).  In TS, the acceptance criterion of the hillclimber is altered slightly so that if no improving move can be found after 
the neighbourhood has been fully examined, then the move that gives the least drop in quality is taken.  Then a basic form 



of memory, recency, is used, which is short-term in nature.  In essence, any move/solution that is on the tabu list cannot be 
made/revisited; this prevents the search cycling in an already explored area of the search space. 

In addition, aspiration criteria can be used to override this mechanism under certain circumstances (e.g. when 
making a tabu move would lead to a higher quality solution).  As neighbourhoods can be quite large and thus expensive to 
search fully, candidate list strategies are often used to choose subsets of the neighbourhood to search. An alternative 
approach is to use some form of cheap, but approximate, evaluation procedure. 

A form of long term memory, frequency, can be used to direct the search by adjusting the quality function (e.g. 
solutions closer to a frequently visited area of the search space are penalised more than distant ones).  Other forms of 
memory are: quality, which refers to solutions of high quality, and is often used to intensify search in the region of good 
solutions; and influence, which is a measure of change in solution structure, and often used as part of an aspiration criterion.  
Of course, all of these memory structures have to be defined for the problem being solved. 

Examples of research in this area include dynamic rules for tabu tenure (Battiti and Tecchiolli, 1994), hashing 
functions to identify tabu solutions (Hasan and Osman, 1995), and hybrids with other methods (Osman and Christofides, 
1994).  However, a recency-based approach with a simple neighbourhood structure and a restricted candidate list strategy 
will often produce good results (Reeves, 1993).  For more information, the reader is directed to Glover and Laguna (1997). 

In the context of Okapi experiments, this would require a term removal from the current working set, and the term 
that yields the least reduction in average precision is chosen for removal. This term is recorded in the tabu list to prevent any 
move to add it to the term set until the recency criteria is met. An alternative is to choose a set of terms that yields the least 
reduction in average precision. Generic aspiration criteria could include making a term non-tabu if using it leads to a better 
solution than the current best. One way to use long term memory is to keep sets of terms already examined and to reduce 
average precision by say 0.1 if the optimizer attempts to use that particular set of terms again.   
 
3.6 Related Methods 
Another technique that fit into the framework of neighbourhood search is Iterative Repair (Zweben et al, 1993), which 
views moves as `repairs' to flaws in the solutions and has been successfully applied to coordinate space shuttle ground 
processing, and Tabu Thresholding (Glover, 1995), which is a variant of TS that replaces some of the memory structures in 
TS with a form of randomisation. Needless to say, hybrids of all of the techniques described here are also possible.   

Meta-heuristic techniques also exist which are not local search-based, though they are less commonly used.  However 
two are worthy of mention. Ant Systems are based on the use of pheromone trails by ants (Dorigo and Gambardella, 1997) - 
a population of `ants' makes a path through the solution construction process, where the choice at each stage is balanced 
between following the trails of other ants, and what a greedy heuristic would decide. Finally, Hopfield Nets arose from 
neural network research on associative memories and can also be used for optimisation (Hertz et al, 1991). 
 
3.7 Genetic Programming 
One sub-area of evolutionary computation/local search that is worth mentioning separately is that of Genetic Programming 
(GP) (Koza, 1992). Though the original idea was to evolve computer programs, for our purposes GP can be best thought of 
as the use of an EA to optimise mathematical functions represented as trees. The leaf/terminal nodes indicate variables and 
constants that are successively operated on by function nodes on their way to the root node, giving the final result. 

The choice of the terminal and function nodes is user (and also problem) dependant, and GP can potentially be 
used for any application that a neural network can, e.g. regression and classification. However GP does have one distinct 
advantage. If the function nodes are chosen well, the trees evolved by GP can be readily interpretable. One notable example 
was the use of GP, with a set of function nodes corresponding to Monod kinetics, in the identification of the kinetics of a 
fermentation process (Pohlheim and Marenbach, 1996). The results provided valuable insights into the process for the 
chemists and biologists working on the process.  

In addition the tree structure of GP allows the tree to be of whatever complexity is needed to solve the problem, 
whereas the complexity of a neural network is constrained by the user’s chosen network configuration. However, as this 
could affect the chances of GP `overfitting’ the data, it is unclear whether it is an advantage. In fact, users of GP are advised 
to read a good neural networks text such as (Masters, 1993) because issues such as overfitting, data preparation, and 
validation, are equally applicable in GP. 
 
4. Knowledge based Optimizer Design 
Local search optimizers are considered weak (need little domain knowledge) and heuristic (not guaranteed to find the 
optimal solution); therefore they are not suitable for all problems and should not be considered a panacea. Practitioners 
should first ask, can the problem be solved exactly by complete search? Also, it should be asked whether human/current 
performance is “good enough” (or all that can be achieved)? Although local search optimizers are relatively straightforward 
to understand, care does need to be taken in their design and evaluation. Practice in both the IR and optimisation literature 
provides much useful guidance. In any case, it is worth noting that simplicity is often effective: a simple hillclimber can 
often produce the desired performance in practice. 



        In general, the guiding principle today seems to be “mould the algorithm to the problem, not the problem to the 
algorithm” (Luke, 1996; Fogel and Angeline, 1997). There are at least two reasons for this. Firstly, as local search 
optimizers have been applied to a wider range of problems, it has been increasingly found that many do not map well into a 
binary string- or vector-based representation. Thus, workers have been driven to experiment with more natural 
representations and operators and have often found success by doing so. Secondly, and more fundamentally, the “No Free 
Lunch” theorems of Wolpert and Macready (1995) state broadly that, for any algorithm, any elevated performance on one 
class of problems is exactly countered by poorer performance on another class. Thus, an optimizer tailored for a specific 
application by the incorporation of problem-specific knowledge in the encoding and operators is likely to outperform a 
canonical, “black-box” implementation.  However, it is not enough just to say that domain knowledge is important, 
guidelines are required on how to approach a problem, extract the salient features, and to map these onto the optimizer. 
Therefore the design of local search optimizers remains very much an art, and a `methodological gap' remains between the 
literature, textbooks, and the application of these techniques that needs to be addressed (Tuson, 2000).   

Despite the above discussion and the record for IR applications and local search, the question of how to design an 
effective optimizer is non-trivial and remains an ad hoc process, partly (but not wholly) due the lack of an effective theory. 
In this context the need for a knowledge based design approach for local search is required. One recent approach (Tuson, 
2000) is based on the idea of viewing optimizers as Knowledge Based Systems (KBS): “a computer system that represents 
and uses knowledge to carry out a task” (Stefik, 1995). Furthermore the AI community has, for many years, been addressing 
the problems of how to design a Knowledge Based System (KBS), and therefore if we could place these optimizers into a 
KBS framework, then the reuse of the extensive research into KBS design may be possible. 

One such useful concept from the KBS literature is the distinction made between the knowledge level (the description 
of what domain knowledge is present in the system), and the symbol level (the description of how the knowledge is 
represented in the system - the data structures used and their operations on them) (Newell, 1982). The design of optimizers 
is, at present, conducted primarily at the symbol level, and therefore the knowledge/domain assumptions made by the 
optimizer designer are implicit, and may well not be properly utilised. A knowledge level analysis would make these 
assumptions explicit and ensure that they are fully considered in the optimizer design. To this end, (Tuson, 2000) proposes 
that domain knowledge used by an optimizer can be split into three roles: 
 
• Problem Solving Knowledge - this assists the search by providing problem-specific knowledge that structure and 

guides the search. 
• Problem Specification (Goal) Knowledge - specifying what are desirable solution(s)  (i.e. the evaluation function). 
• Search Control Knowledge - given a defined search space, how do we go about searching it? Our knowledge of the 

search process is represented here. 
 
Given that we would be interested in exploiting knowledge of a user’s information needs it would appear that problem-
solving knowledge role is most relevant.  However, exactly what is meant by this? A working definition is that it is all of the 
knowledge that can be directly related to the problem itself, and which is not involved with specifying the quality of a 
solution.  This allows for a clean separation from the technique-specific aspects of the search algorithm. Once these roles 
have been defined, then there are various types of knowledge sources available that need to be identified – some example 
optimizer problem solving knowledge sources are outlined below: 
 
• Problem features that correlate with solution quality (i.e. the decision variables); 
• How these features interact (as strongly interacting decision variables could be usefully considered as a single unit); 
• Areas of the search space which could be excluded from the search (to allow reductions of the size of the search space); 
• Areas of the search space where good solutions lie (as an initialisation strategy could be used to start the search in a 

potentially productive region). 
 
Some reflection should suggest to the reader that the above sources could be framed as questions that an IR practitioner 
would be able to answer in his role as a domain expert without necessarily having any expertise in optimisation. In addition, 
(Tuson, 2000) shows that the above sources can be formalised in such a way that suitable Evolutionary Algorithms (EA) 
crossover and mutation operators (or equivalent local search operators) can be derived. Therefore it appears possible that, in 
the future, optimizer design will centre on the modelling and acquisition of expert knowledge, rather than algorithm design 
in much the same way that the KBS community has been advocating (Motta, 1997). Furthermore, KBS methods such as 
those used for knowledge acquisition should allow the designer to more effectively take out the required domain 
knowledge.  Such knowledge based design approaches should help ensure the scalability of IR applications in the future. 
 
 
5. How Can Local Search be used in IR? 



The discussion so far indicates that there are three classes of design choices that are made in using local search methods in 
practice: 
 

• How solution quality is measured using a fitness function; 
• What encoding and operators are used, and; 
• What local search method is used and how it is configured. 

 
The first issue is a specification of what the IR practitioner considers to be a good solution. Often this is straightforward, 
only where there are multiple objectives or a constraint upon solution feasibility does the user need to think carefully (these 
are situations where the standard texts can provide guidance). The examples presented here should also be helpful. 

The second point refers to the use of domain knowledge in the design of the local search optimizer as described 
earlier in the discussion on knowledge based design. It is here that the insights of the IR practitioner can be brought to bear 
most effectively. 

The third class of design choice would appear at first glance the most important, after all, we are addressing local 
search. However it should be considered secondary. The reason is that it is impossible to say in any meaningfully general 
way that a particular local method is more suited to a given task than another. This is borne out by practical experience as 
well as theoretical results such as the no free lunch theorems (see section 4 above). In any case, they are based on similar 
assumptions as all are based on hillclimbing in some manner. It is the fit of the overall optimizer, in terms of its domain 
knowledge, to the problem that is the key to its success. In fact, practitioners would be well advised to start with a simple 
hillclimber in the first instance and focus on domain knowledge before considering more complex local search methods. 

So the fit between the overall optimizer design and the task to be solved is key. Therefore, it is useful to give the 
reader a taxonomy within the context of the IR tasks that local search may be applied to. This allows the focus to be rightly 
put on issues that relate to the problem domain such as the suitability of the problem representation to the task. We put 
forward a Query based taxonomy, showing elements of a query to which optimisation can be applied. For each of the 
components of this taxonomy we state what can be done via local search and describe some current work in the area for 
each. Some of these can be done in conjunction with each other e.g. term selection with raw weight optimisation (e.g. okapi) 
or in isolation. This should help the IR practitioner to relate their problems to local search optimizer decisions. The purpose 
of the taxonomy is therefore to provide the domain information needed for the knowledge based optimizer design process. 

We describe a number of tasks to which local search can be applied, and we then discuss the kinds of uses that 
local search techniques can be applied to in terms of both matching and term operations. Examples of work done in the area 
are provided.  
 

Figure 2: Query based taxonomy for local search in IR  
 
 
5,1 Tasks in IR 
We define an IR task as a process which has its own functionality, but which may on occasion share some processes. This is 
related to the type of search the user needs and is intimately related to their particular information need. Examples of tasks 
are as follows:  
 
• Ad-hoc and interactive search: A user types in a query to resolve a current information need and uses query 

modification techniques such as relevance feedback to refine their query. Local search could be useful in matching 
queries to documents, optimising relevance feedback and providing adaptive user interfaces. Mathematical logic in 
search models is important here. It is difficult to use such techniques for real time search, but prior or post processes to 
search such as parameter optimisation for term weighting schemes are valid applications. 

• Information filtering: A user has a long term information need and poses a query. Documents are ‘pushed’ through 
this query and filtered to the user. Optimisation techniques are very useful for this task (more details are given above). 
The techniques can be extended to social groups (collaborative filtering) as well as individuals. A ‘profile’ query is 
created by this task. 

• Text classification: A ‘queryless’ task at least initially. Organises text into groups or classes either by learning on the 
text itself (unsupervised) or by using evidence from pre-defined categories or taxonomies (supervised). A lot of 
clustering work has been done on this task. It can be thought of as another type of indexing process. 

• Topic detection and tracking: Another ‘queryless’ task, akin to text classification & filtering, but more refined in that 
it is split up into two main subtasks of topic detection (a classification task) and tracking (a filtering sub-task).  A 
profile query can be created by this task. 

 
We will use these tasks in our discussion below using examples from the literature.  
 



5.2 The Role of the fit between technique and task 
As noted above, we cannot match the technique and task without consideration of the particular problem at hand, with the 
relevant domain knowledge. A task, having its own particular functionality, will place requirements that will be different for 
that unique functionality, but will share some requirements with other tasks where functionality is shared. For example, 
most tasks will require some kind of ranking mechanism (apart from the case where Exact Match operators are required), 
while lexical analysis of terms is done at indexing. Techniques can also be applied to more than one element of the 
taxonomy, as in the Okapi experiments where both terms selection and term weights were optimised. There are some cases 
where local search techniques could be applied to any given task for a particular part of the taxonomy (see the discussion on 
stemming below). 
 The practitioner must consider the issue of how a query (or profile in the case of some ‘queryless’ tasks) from a 
given task is represented (Chen, 1995). For example, weights may be best represented as a vector of floating-point numbers, 
and a term selection task as a binary string, one bit for each term to be included/excluded. In GAs, a query can be 
represented by a chromosome, where each query term is represented by a Gene. Each Gene can either represent the presence 
or absence of a given term, or a more complex entity which represents a term together with its weight. Operators on 
chromosomes such as crossover (Vrajitoru, 1998) can be investigated, in order to ascertain which is best for a particular 
task. In Neural Networks, associations between terms or between terms/documents can be established with the links 
assigned some weight (a floating-point number). Methods such as back propagation can then be investigated over the 
networks created by these associations (Chen Shankaranarayanan and She, 1998).  
 
5.3 Matching operations 
 

The first major class of operations to be considered is matching operations i.e. taking a query and applying an 
operation to retrieve a set of documents which ‘match’ that query. This usually means taking sets retrieved from inverted 
lists (Harman et al, 1992) and merging them together to create a final set for presentation. Two major types of operations in 
IR are defined: Exact Match (Wartik, 1992) and Best Match (Harman, 1992b). 
 
5.3.1 Exact Match 
Local search is applied to the information filtering task, where the requirement is to build a Boolean query user profile. 
Exact match operators such as Boolean (AND, OR, NOT) and Adjacency (phrases, same sentence, same paragraph) can be 
optimised in conjunction with the query terms they are applied to. Genetic Programming (GP) has been applied to this 
problem. The query is treated like a program, and different forms of the query are ‘evolved’ and evaluated against the 
fitness function. Cordon et al (2006) use a Multi-objective pareto based evolutionary algorithm to optimize Boolean queries. 
Smith and Smith (1997) use a GP method which creates an initial 1,000 ‘Boolean’ organisms using the terms set and three 
Boolean operators (AND, OR, NOT), ‘breeding’ the organisations until some optimum is reached. Fernandez-Villacanas 
Martin and Shackleton (2003) compare a GP with a GA using a number of fixed bits for genes to represent function types 
and negation. Both of these methods are based on decision trees. Cordon et al (2002) also use GP on fuzzy sets, where a 
fuzzy set weight is generated and optimised using a simulated annealing process – this method is a hybrid Best/Exact match 
scheme. 
 
5.3.2 Best Match 
Best match operators, unlike exact match ranking documents given some order, usually based on the motive of retrieving 
more relevant documents higher up the rank. In order to do this, term weighting schemes assign a weight using some 
function that utilises collection statistics such as inverse document frequency (IDF) and term frequency (TF). There are two 
main way of optimising this information; applying a technique to a pre-defined weight or learning a function from a set of 
given parameters. Optimisation on this aspect is applicable to virtually all tasks in IR, although for the ad-hoc task this will 
mean offline processing as real time support for optimisation operations would be very hard to support. 
 With respect to learning on a pre-defined weight, the usual method is to use some matching function model such as 
BM25 and optimise the weight by varying it. A scenario could be envisaged where no matching function was used, and a 
random weight generated to be optimised on. In IR terms this would be theoretically very suspect, as matching functions 
such as BM25 would do far better than random weights, and matching on pre-defined weights produced by the former 
would provide a better initialisation in the search space. Some examples of work done in this area include Martin-Bautista et 
al (1999), who learn weights on fuzzy set genes and Horng & Yeh (2000) who use a GA to adapt pre-assigned weights 
produced by the vector space model. Other types of evidence can also be used to adapt weights. Lam et al (2003) use link 
information to optimise weights for documents on an information filtering task. Belew (1989) used a NN to adapt weights 
on links between authors, documents and keywords. A disadvantage with this method is there is no trail of evidence as to 
why a particular weight has been produced. 
 However optimising on functions does produce evidence – a list of parameters which have been produced during 
training. These parameters can either be variables such as term frequency or tuning constants such as K1 and B used in the 
BM25 weighting function (Robertson et al, 1995). As with Best Match operators, weighting functions can be treated as 



programs, and optimised using Genetic Programming techniques. Fan et al (2004a; 2004b; 2004c; 2005) learn ranking 
functions per query on variables only (no constants are used), the argument being that there is no best match function for a 
query or query set. Alternatively Burges et al (2005) learn ranking functions using NN gradient descent methods utilizing a 
function based on a preferable ranking for documents – the ranking from each instantiated parameter value is compared 
with this preferred value, and the NN learns accordingly. Taylor et al (2006) compare this method with line search, and 
conclude that gradient descent appears to be a very useful method for such a task and that gradient descent and line search 
track each other quite closely with respect to final model effectiveness. There is also considerable interest in optimising 
tuning parameters for weighting functions. For example the BM25 weighting function will require values for each K1, B 
constant pairs when undertaking XML retrieval – the number of values depending directly on the element set size (Wei et 
al, 2006). In structured document retrieval element parameters for weighting functions can also be optimised: Trotman 
(2005) uses a GA to learn field parameters for each node of the XML tree using a range of 0 to 1 with each parameter – 
each node in the tree being a gene, the chromosomes representing the flattened tree. Choosing values for constants can 
therefore become a significant issue, and can quickly become unmanageable for any manual selection method. In such cases 
local search can provide a reasonable solution.  
 
5.4 Term Operations  
 
The second major class of query operations is on the terms which constitute the ‘query’ and are the source for matching 
operations (see above). Term operations are divided up into two main types, term selection using relevance feedback 
(Harman, 1992a) or operations individual words such as stemming (Frakes, 1992b). 
 
5.4.1 Term Selection 
Local search is useful for tasks which need to optimise a set of terms e.g. information filtering, text classification and topic 
detection and tracking. For the most part this optimisation process works on the presence or absence of terms in a query, as 
described in the Okapi examples above. Other examples include Chen Shankaranarayanan and She (1998) who use a GA in 
conjunction with an SA in order to optimise term selection. Queries can be treated as fixed size or variable size entities; the 
Okapi experiments used the former, whereas Lopez-Pujalte et al (2003a) used a variable size chromosome together with a 
binary representation for a gene. Wong et al (1993) describe the process of learning a term association matrix using NN’s. 
i.e. relationships between terms. The strength of relationships are fed in to the NN; relationships are therefore learned, not 
the strength of them (there is no reason why optimisation could not be applied to each relationship). Terms for a given query 
can then be selected on the back of the relationships identified in the learning process. Tamine et al (2003) and Boughanem 
et al (2002) describe a technique that evaluates multiple queries using population niches and merging the results. Niches are 
sections of the population which are allowed to evolve independently. Mock and Rao Vermuri (1997) and Mock (1996) 
describe a global hill climbing method to select terms that uses collaborative evidence from a set of queries rather than 
evidence from a single queries task, a method targeted at information filtering. This method may be useful for some 
collaborative tasks, but its use is primarily for tasks that require optimisation for an individual user on the basis of their 
particular information need.  This is a good example of when to use local as opposed to global search. Global search could 
usefully be applied to indexing schemes such as stop wording, particularly words which are reasonably frequent, but may be 
poor search terms in some circumstances.  
 
5.4.2 Word operations  
In this context we refer to operations on terms themselves, i.e. the constituent part of the queries being optimised. Word 
operations include stemming, truncation, lexical analysis and synonym detection. Most tasks use these operations, and 
therefore local search can be generically applied to word operations in them. Some operations such as stemming and lexical 
analysis are done at indexing time for the most part and would therefore be candidates for global search techniques (as with 
stop wording). Query time operations such as truncation would be a more appropriate target for local search.  Note that 
there are some similarities between stemming and truncation, but the former is based on a series of rules while the latter is 
more free form. We could consider the use of GP for stemming, treating a set of rules as elements of a program and 
optimising to find the best set for a stemmer.  The authors are not aware of any work done using GP, but Mladenić (2002) 
describes a local search algorithm based on k-Opt, a neighbourhood operator used for the travelling salesman problem, for 
learning stemmer rules in text classification. Operations on truncation could be used in conjunction with term selection to 
find good query stems at search time (no work has been identified in this area). Synonym detection is another phrase for 
dimension reduction; this can either be done at indexing or search time. An example of using local search for dimension 
reduction is the work by Kuflik et al (2006), which uses a term reduction process similar to term selection, where the 
number of dimensions is reduced at every iteration until some limit has been reached. The method uses a version of a NN 
called the Guteman-Boger algorithm.  
 
6. Evaluation methods for Local Search in IR 



The most appropriate method for evaluation when applying local search to IR is the laboratory style evaluation method. 
This requires the use of test collections (see below), rather than users in an operational style of evaluation. It is entirely 
possible for users to feed relevance assessments into a local search process, but this is out of the scope of the paper and we 
do not discuss it here. The emphasis here is on applying laboratory style of evaluations in a rigorous way when evaluating 
local search, by looking at the role of test collections and fitness functions. They are used to drive the process of local 
search and have an impact on the outcomes. We point out how some research in the area has been methodologically flawed, 
and how these issues can be resolved by looking at benchmarking and test collections as well as fitness functions used in the 
optimization process.  
 
6.1 Benchmarking and Test Collections 
The Cranfield paradigm has had a significant impact on the evaluation of IR systems over the years, particularly after the 
advent of TREC. Test collections for benchmarking have been developed including the somewhat small Cranfield set 
(containing 1400 records) and the GOV2 set which is 426GB in size, and contains 25 million web documents. A test 
collection does not only contain documents however. Just as important are the topics or information needs which must be 
serviced over the document set, and relevance judgements which indicate both relevant and irrelevant documents for that 
information need on the given document set. Test collections provide the basic framework for benchmarking and evaluation 
for local search experiments. There are some very important issues about each element of a test collection which must be 
considered when choosing such a set for evaluation purposes. 
 Test collections come in two types, those with special purpose and general purpose document datasets. Examples 
of both are Cranfield-2 which is a set of abstracts for the area of metallurgy (Cleverdon, 1967), and the TREC collection 
(Harman, 1995) which contains a range of documents including government reports and newspaper articles etc. It is better 
to use more general datasets as any statements made about the applicability of a method are more likely to be more 
generally useful; conclusions on an experiment on a special collection may not be so applicable to other types (Frakes, 
1992a). Experiments on specialised collections should be done in the full knowledge of the limitations of those datasets, in 
particular an understanding of what they where designed for (Sparck  Jones and van Rijsbergen, 1976). The size of a 
collection to be used for experiments is a very important issue. Many practitioners in the area still use Cranfield test 
collections (Lopez-Pujalte, 2003a; Cordon et al, 2006; Vrajitoru, 1998), and other use even small datasets e.g. a set of 359 
abstracts by Cordon et al (2002), and a set of 200 ‘cases’ by Fernandez-Villacanas Martin and Shackleton (2003). Whilst it 
is difficult to assert what the best size is for using test collections in experimentation, these datasets are almost certainly too 
small as the collection statistics (such as IDF, TF) will be very different from larger datasets which are of more interest to 
users. Early in the field of test collection research Sparck Jones and van Rijsbergen (1976) asserted that small collections 
“are unsatisfactory on purely statistical grounds, and the increasing scale of operational systems makes the results obtained 
with them appear irrelevant to real systems”. Given the size of the web, this view is strongly reinforced. Hawking and 
Robertson (2003) provide some theoretical and empirical evidence on the relationship between collection size and 
effectiveness, in particular that precision at N documents retrieved (P@N) declines with a sample collection.  Cranfield, 
being a set of abstracts for a special area (Cleverdon, 1967) thus has a particular set of problems in the context of 
experimentation and evaluation (Sparck  Jones and van Rijsbergen, 1976).  Local search practitioners have used reasonably 
sized and general datasets for experiments e.g. Tamine et al (2003) who use standard TREC datasets and Fan et al (2004a) 
who use the WT10gb collection (which is 10GB in size and contains 1.69 million records). Once a collection has been 
chosen for experimentation, it needs to be separated into training, validation and test sets to avoid overfitting (Sebastiani, 
2002). Overfitting in the context of IR means that a term set produced from the training set yields poor results on the test 
set. Fan et al (2004a) use a scheme where 49% of the test collection is assigned for training, 21% for validation and 30% for 
test. Standard datasets used at TREC by Okapi for the Routing/Filtering tracks use around 2/3 of the collection for training 
and 1/3 for testing. The Okapi strategy of splitting the training set into extract and select sets is much the same as a split 
between training and validation sets. This is known as the holdout method. This can be extended by using the K fold cross 
validation method, where the holdout method is repeated K times. There is very little work on the issue of formally 
modelling datasets. One example is Cormack and Lynam (2006), who treat datasets as ‘source populations’ in order to 
examine the issue of random errors in them. 
 The second strand in a test collection is the set of information needs and topics, which are used for forming the 
query to be serviced over the collection. The issues of information need type and query set size need to be considered 
carefully. It should be noted that the issue of query size is not one to be overly concerned about for many tasks, most of 
which use relevance feedback – a process that produces plenty of terms. With respect to the type of information need, what 
we mean is how hard it is to formulate a successful query in order to retrieve relevant documents. If possible, it is best to 
have a mix of hard and easy topics, as this is more likely to be a reflection of users’ information needs (Sparck  Jones and 
van Rijsbergen, 1976). The number of information needs used in the experiment needs to be of a reasonable size; it is 
unlikely that any conclusions drawn from a small query set is transferable to other sets (Sparck  Jones and van Rijsbergen, 
1976). For example, Lam et al (2003) use 7 queries in one experiment for optimising search and 13 in another optimising 
relevance feedback. The Cranfield collection does have one advantage, it has 225 information needs associated with it. It 
should be noted however, that the number of records returned per query should also be considered together with the query 



set size. For example, Buckley and Voorhees (2000) argue that when using web collections at TREC which evaluate only on 
the top 10 retrieved documents, many more than 50 queries will be needed. They also recommend the use of at least 25 
topics, with 50 being preferable.  
 The third strand of the test collection, relevance judgements, are subjective assessments made by humans on 
information needs formulated into queries and applied to document sets. They can be negative or positive. Typically the 
relevance judgements are binary (0 or 1), but there is increasing interest in using graded relevance (Kekäläinen and Järvelin, 
2002). The distribution of relevant documents differs significantly between collections (Hawking and Robertson, 2003), a 
further aspect any practitioner should think about when choosing a test collection. With respect to size, there is no rule 
about how many positive relevance judgements are needed for a particular topic. This number will naturally vary between 
topics where queries can either be hard or easy to formulate. However, it is a moot point as to how many relevance 
judgements are needed to make the best use of local search, or, to put it another way, when have enough relevant documents 
been accumulated for local search to become useful. For the hillclimbers used for Okapi experiments, around 20/30 is 
approximately the number of positive relevance judgements required to make such a scheme worth while i.e. very little will 
be gained by using the Okapi methods on 1 or 2 relevant documents.  The number of positive relevance judgements has a 
direct effect on the fitness function; a topic with few relevant documents and optimised using average precision could 
quickly finish with a perfect score of 1 (MacFarlane, 2000). It is unclear how this evidence is likely to behave on the test 
set.  

There are a couple of quite contentious issues in IR evaluation generally which impact on any practitioner 
interested in using local search for IR. The first of these is the issue of statistical significance testing in order to find any real 
difference between two outputs e.g. a comparison between an Okapi relevance feedback and hillclimbing procedures. 
Kuflik et al (2006) used the t-test to evaluate significance on their experiments, while Burges et al (2005) use Wilcoxon test. 
The t-test assumes a normal distribution, while the Wilcoxon is a non-parametric test. Sanderson and Zobel (2005) assert 
that the t-test is highly reliable under certain conditions (with respect to size of topic set and hit lists per topic), and is more 
useful than the Sign or Wilcoxon tests. This issue is somewhat contentious as the underlying distribution of relevant 
documents in topics is difficult to establish; relevance assessment may differ significantly on the relevant documents for a 
particular topic, where there can be no agreement at all between the assessors (Voorhees, 1998). Care therefore needs to be 
used when using statistical testing.  

The second of these contentious issues relates to treatment of test collections for benchmarking purposes. 
Sebastiani (2002) asserts that comparisons for classifiers can only be performed when the test collection is the same 
(identical documents, topics and relevance judgements), the same split between training and test set is used, and finally the 
same evaluation measure must be applied to the test set. Unfortunately this is not the case from the literature in local search 
in IR, for example Lopez–Pujalte et al (2002) only use 33 of the 225 Cranfield queries for their experiments. Drawing any 
conclusions from the literature on which is the best local search technique for any given task is therefore very difficult if not 
impossible (Sparck  Jones and van Rijsbergen, 1976). Similar statistical and experimental design issues arise in evaluating 
local search optimizers, which, given their stochastic nature, require evaluations to be made over a number of runs, e.g. 
(Christiensen, 2007).  
 
6.2 Fitness functions 
There is a bewildering array of fitness functions for local search in IR, but there is one common element for them: use of 
relevance judgements as the primary source of information (see above). Functions can either use positive relevance 
judgements, or use both positive or negative relevance judgements in conjunction with each other. For the most part this 
means binary relevance assessments, but non binary user assigned scores are used e.g. a score between 0-1 is assigned by a 
user in (Martin-Bautista et al, 1999). Graded relevance assessments as put forward by Kekäläinen and Järvelin (2002) are 
also be potentially used in fitness functions e.g. using an ideal ranked set to compare the difference between two outputs 
when using Gradient Descent methods (Burges et al, 2005; Taylor et al, 2006). We divide fitness functions into two types, 
set-based and rank-based. 
 Set based functions are used in binary classification tasks (Lewis, 1997), which separate documents into accepted 
and rejected elements, accepted elements being in the set, rejected being outside. The sets that this type of fitness function 
evaluates do not imply order. The two main forms of set based measures are Precision and Recall, used since the days of the 
early Cranfield experiments.  In the context of local search for IR, set based functions are largely used on Exact Match 
operations, such as (Smith and Smith, 1997; Fernandez-Villacanas Martin and Shackleton, 2003; Cordon et al, 2006) who 
use functions which utilise a weighted combination of precision and recall.  Recall has also been used as a fitness measure 
(Cordon et al, 2002). Other methods for set based fitness functions include one used by Chen, Yi-Ming et al (1998) and 
Yang et al (2000), which utilises the difference between two retrieved sets using a Jacquard scoring mechanism. 
 Rank based functions do imply order and are used to evaluate the fitness of Best Match operators. It has been 
suggested by Fan et al (2004a) from Lopez-Pujalte et al (2003a) that order based functions yield better results than set based 
methods, and this is not inconsistent with evidence found in Okapi experiments. The most popular fitness function appears 
to be average precision; a recall-based precision measure used in standard IR evaluations such as TREC. This was found to 
be the best predictive measure in Okapi experiments (Robertson et al, 1995). Buckley and Voorhees (2000) assert that 



average precision is a “reasonably stable and discriminating choice” for general purpose retrieval. Others who have used 
this measure include Fan et al (2006) and Horng & Yeh (2000). Lopez-Pujalte et al (2002) and Lopez-Pujalte et al (2003b) 
provide an extensive survey on 12 fitness functions, and found that the choice of fitness function was essential when 
guiding GA’s through the search space.  Other examples include use of the Guttman model, a statistical measure of rank 
correlation which has many of the same properties of average precision according to Tamine et al (2003). All rank based 
measures evaluate on the top N documents, for example the standard top 1000 retrieved used for TREC style evaluations. 
However not all fitness functions work in this way, for example Utility functions.  These are based on the preference of a 
user for a given document, which can either be based on rank preferences (Fan et al, 2004a) or based on rewarding ranking 
mechanisms which retrieve relevant documents, whilst penalising them for retrieving irrelevant documents. Utility functions 
are tuned to preferences by some parameters e.g. 
 

Equation 3 
 
where A and B are relevant and non-relevant documents respectively and u1, u2 are the utilities for retrieving relevant and 
non-relevant. Fan et al (2004a) show their rank based utility functions provide better results than using average precision – 
this contradicts results from the Okapi experiments (see above).  
 What fitness function is best for a particular task, or element of the taxonomy? For the most part the task itself will 
determine the fitness function as different tasks imply different evaluation measures e.g. the topic detection and tracking 
task is evaluated by miss rate (new events not detected and assigned to existing events) and false alarm rate (events already 
identified incorrectly detected as new events). In some tasks therefore, fitness functions based on average precision are not 
appropriate. Slight modifications to average precision may be useful however. If the user is more interested in harder topics, 
geometric average precision (GMAP) may be a more useful measure to use (Robertson, 2006). This measure is more 
sensitive to observations at the lower end of the ranking scale than mean average precision, potentially allowing the local 
search method to emphasize those elements (e.g. terms) which yield better results at the bottom end.  
 The stability of the function used is another very important consideration. Stability in this context means the ability 
to use a fitness function in order to predict a good outcome for another. In recent years the Binary Preference or BPREF 
function (Buckley and Voorhees, 2004) has been put forward for IR evaluation. There has been some debate on the merits 
of using average precision for evaluation (Buckley and Voorhees, 2004) as these measures do not explicitly use identified 
non-relevant documents, and do not differentiate between identified and non identified non-relevant documents. When you 
use measures such as average precision, some important evidence is discarded which could be used to support optimisation. 
With BPREF the information recorded is pairs of non-relevant documents ranked higher than relevant documents, so 
preference of non-relevant over relevant documents is explicitly recorded in the function. Buckley and Voorhees (2004) 
demonstrated that the measure correlated with the original ranking, while mean average precision did not. With small 
numbers of relevance assessments (say 1 or 2) it is difficult to use BPREF measure as there are too few pairs to usefully 
distinguish between objects leading to severe overfitting. There is a question on the stability of the BPREF function at low 
sampling rates – correlations between systems rankings tend to deteriorate at this level (Aslam et al, 2006). However, it is 
not clear that using little evidence is much use for optimisation problems in IR (see section 6.1 above).  
 Should the same function be applied to the training set as to the test set? Taylor et al (2006) assert that ranked 
based methods are not efficient in terms of run time for tuning ranking function parameters. They suggest that gradient 
descent methods using cost functions are far more efficient than fitness functions that depend on ranking of documents 
(relevant or irrelevant). However rank based methods are more in line with what the user wants from an IR system, and 
attempts to use methods outside of this could pose serious problems.  
 
7. Conclusion and Discussion 
This paper has concerned itself with providing an introduction to the neighbourhood search paradigm and the main 
techniques in use today for IR. We have introduced a Query based taxonomy for examining local search techniques, which 
show when optimisation can be applied, and which techniques are appropriate for each element of the taxonomy or a 
particular task.  The paper also examined methodological issues and good practices from the IR and optimisation literature. 
A number of conclusions can be drawn from this paper. 
 
• Though local search optimizers show clear promise and wide applicability, it is hard to say definitely if many of the 

proposed methods have achieved real improvements over conventional IR approaches, a notable exception being 
(Robertson et al, 1995).  

• Because of this, comparisons between the different optimizer techniques are hard to make. This is for two reasons; from 
an IR perspective, inadequate and differing test collections are used in evaluation; from a local search perspective 
insufficient use of samples and hypothesis testing is made (Hooker, 1995). 

• To take the use of local search in IR forward, frameworks are needed to help IR practitioners relate their experience to 
the appropriate design choices for local search. As a starting point this paper has proposed a Query based taxonomy to 



assist in decisions regarding what is optimised, and reviewed an approach due to (Tuson, 2000) that guides the use of 
domain knowledge in optimizer design. 

 
The next stage in this area of research is to take the taxonomy and theory of optimizer design and build a framework with 
which to better inform the practitioner of choices in deploying local search methods. The framework would take account of 
the known limitations of optimizer design (Papadimitriou & Steiglitz, 1982), but would take the taxonomy derived from the 
literature in this paper to build concepts on which methods can be chosen to solve given problems.  

Finally the metaphors used should not be taken too literally. For example, the evolutionary metaphor has expressed 
itself in a belief that such natural processes inherently possess some additional computational power; examples of this view 
can be readily found in the evolutionary computation literature. However, the No Free Lunch (NFL) results discussed earlier 
and the effectiveness of other approaches such as Tabu Search do speak against adhering to this view too strongly. 
Furthermore (Glover and Laguna, 1997) argue that though such metaphors do have a place, to help suggest ideas from 
which to launch an investigation, but that problems begin when the metaphor is taken too far and is allowed to define the 
actual research agenda.  
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