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Abstract

A generalized structural time series modelling framework was used to analyse the monthly records of
mean temperature, one of the most important environmental parameters, using classical stochastic
processes. In this paper we are using the SARIMA Box-Jenkins model and obtain a medium-term
(10 years) forecast of the mean temperature in Erbil. A prediction of the monthly mean temperature
during the past 287 months (=24 years) using the SARIMA(0,1,2)(0,1,1):» model predicts that the
average temperature in the governorate of Erbil will be stable for the next 10 years. The evaluation of
prediction accuracy shows that our model performs equally well when applying it to different periods
of time for which data is available. The method used here could easily be applied by the decision

makers responsible for providing water and electricity in the Kurdistan Region.

Keywords Climate change, Stochastic Process, Fourier method, forecasting, Kurdistan Region of
Irag, SARIMA Model.

1. Introduction

In 2009, the United Nations Environment Programme (UNEP) reported a sudden surge in global
temperature of approximately 0.5°C. However, to this day there is no consensus among scientists on
how to gauge the magnitude of climate change and its effects on a regional level. It was widely
assumed that its effects on surface and ocean temperature would appear gradually and slowly due to
their weak and delayed response to the greenhouse gas levels (i.e. carbon dioxide, water vapour,
ozone, methane, various nitrous oxides, and other industrial gases). Since the emission of these gases
is coupled to world population growth and technological advances, it is hard to predict when (if at
all) this phenomenon will reach a stable equilibrium again (UNEP, 2009). Climate variation over any
region has become a topic of interest all over the world, due to its immediate effect on the daily lives
of humans (Ghahraman, 2006). The Kurdistan Region of Iraq is affected by changes in climate

conditions in the fields of agriculture, architecture, road construction etc. Situated in the north of



Irag, Kurdistan has been facing the consequences of severe drought in the Fertile Crescent since the
1970s (El-Kadi, 2001).

In terms of the Koppen classification of climes, Kurdistan exhibits an arid to semi-arid climate. It is
hot and dry in summer and cold and wet in winter, with short spring and autumn seasons (Turkes,
1996¢). In winter, the weather is shaped by Mediterranean cyclones passing Iragi Kurdistan on their
way to the northeast as well as Arabian Sea cyclones moving northward across the Persian Gulf, both
of which typically carry a great amount of moisture leading to a large amount of precipitation. Other
sources of rain and snow include occasional European winter low-pressure systems moving eastward
to the southeast part of Turkey and the adjacent Kurdish territories (Turkes, 1999). In summer, the
region falls under the influence of sub-tropical high pressure belts and Mediterranean anticyclones
which carry sand and dust to the region. Temperatures may reach up to 50°C in summer and drop as
low as -10°C in winter (Keller and Blodgett, 2006). The statistical analysis of the climatological
records contributes to the understanding of the underlying causes of drought and consequently
facilitates taking measures to prepare for (if not prevent altogether) natural disasters such as crop

failures or flooding or dust storms.

As pointed out by Al-Kubaisi and Gardi (2012), who compared mean air temperature, the number of
dust storms and precipitation figures over a period of 11 years from 1998 to 2009, there is an
unmistakable interrelation between the three. While the mean temperature fell from 22.7°C in 1998
to0 22.5°C in 2000 and 21.3°C in 2009, annual rainfall at first decreased from 310.3 mm to 268.5 mm,
finally climbing back to 295.6 mm and the number of dust storms went from 63 to 94 and back down
to 64, respectively (Al-Kubaisi and Gardi, 2012).

Kurdistan has been going through a period of drought over the past few years; as a result many of the
inhabitants of rural areas left their villages and migrated to the cities where the water scarcity issue is
becoming more pressing due to increasing population (Zakaria et. al., 2013). The situation is
complicated further by the political circumstances, such as mass immigration from southern Irag and
Syria. Another study by Khalid (2014) and Eklund and Pilesj6é (2012) showed that in the last two
decades, Erbil had expanded significantly both in population size and in area, a process in which
much of the natural soil was removed. As a result, the microclimate of these cites has changed and
now exhibits the Urban Heat Island (UHI) phenomenon. The temperature records make this evident:
While the average maximum temperature in Erbil city was 14.34°C in 1975-1990, it had reached
14.74°C in 1985-2000 and 15.70°C in 1995-2012 (see Saeed and Abas, 2012).



In order to accurately determine the need for electricity and water and plan their provision
accordingly, a precise quantitative understanding and monitoring of various climate parameters, such
as temperature, precipitation, humidity and wind, is indispensable. This study aims to examine the
time evolution of the mean temperature in Erbil between January 1992 and November 2015 by
separating seasonal effects from long-term trends and, using the Seasonal Autoregressive Integrated
Moving Average (SARIMA) method, create a model that accurately predicts the monthly mean
temperature until December 2025, thus enabling the political authorities to make informed decisions

on climate related matters.

To model a time series event as a function of its past values, analysts identify patterns in past values
and project them into the future. In particular, the Box-Jenkins methodology could be applied to any
environmental parameters e.g. wind speed, precipitation, humidity and evaporation. Box-Jenkins
methodology has been used by many researchers starting with the studies by Intergovernmental
Panel on Climate Change, IPCC (2013), Lee and Ko (2011), Ghil et. al., (2002), Mann (2008) and
Mann and Park (1996) who predicted the variation in temperature in different places in the world by
using different statistical approaches, including bivariate time series models, and time series
smoothing both in the univariate and multivariate setting. The most significant feature of the
univariate time series model is its ability to determine the trend and random residuals about the time

series data by using an autoregressive integrated moving average (ARIMA) (Romilly, 2005).

Autoregressive Integrated Moving Average (ARIMA) and Seasonal Integrated Moving Average
(SARIMA) techniques have been broadly applied to forecast how variables change over time. These
techniques typically use (seasonal) autoregressive terms and seasonal moving average terms to
forecast the changes of time series. As generally reported, these forecasting techniques regard both
the preceding values of a variable and the corresponding error terms as essential information in
forecasting future values. Given a large time series dataset, ARIMA and SARIMA methods show
high forecast accuracy. Forecasting analysis in a variety of fields such as air temperature, electricity
demand, wheat prices, inflation, unemployment, reliability and fishery landings have demonstrated
the validity of ARIMA and/or SARIMA models (Choi, et. al.,, 2015). In other instances, the
deterministic stochastic combined technique has been successfully used by Ye et al. (2013) to predict
global temperature as recorded by the National Climate Data Centre (NCDC); and a time series
approach has been implemented by Mraoua and Bari (2007) to accurately model weather derivative
pricing in Morocco. SARIMA itself has been applied to local temperature forecasting in the Ashanti

region of northern Ghana by Asamoah-Boaheng (2014).



Regional changes were observed in the mean temperatures in Turkey from 1950-1994 over the
course of a study conducted by Can and Atimtay (2002) using time series analysis of mean
temperature data. Their study established a statistically significant cooling trend at 21 stations as well
as a warming trend at one station and no trend at 36 stations. Hansen et al. (2006) in their study
focused on global temperature change while Rahmstorf et al. (2007) compared recent climate
observations to projections. Zakaria et al. (2012) applied ARIMA models for weekly rainfall data
from four rainfall stations in the North West of Irag: Sinjar, Mosul, Rabeaa and Talafar, for the
period 1990-2011. Four SARIMA models were developed for the above stations: (3,0,2)(2,1,1)so,
(1,0,1)(1,1,3)30, (1,1,2)(3,0,1)30and (1,1,1)(0,0,1)30 respectively.

In the current paper, Box-Jenkins methodology, and in particular the method of the Seasonal
Autoregressive Integrated Moving Average (SARIMA) model will be applied to temperature data
from the Kurdistan Region of Iraq.

2. Methods

2.1 Data

The data covers the 287 month period from January 1992 to November 2015 and was compiled using
measured results made available via the Kurdistan Regional Statistics Office (KRSO), the Ministry
of Planning - Kurdistan Region 2015 Bulletin and the Environmental Statistics Bulletin - Iraq (CSOI)
2014.

The maximum and minimum temperature data in degrees centigrade is recorded in different
locations in the Kurdistan Region by the General Directorate of Meteorology and Seismology office
in Erbil. They send the data to the Central Statistical Organisation branches in Erbil and Baghdad;
after that the data will be ready for publication. The data can be also obtained from the United
Nations Food and Agriculture Organisation Coordination Office for North Irag and from the General
Directorate of Agriculture in Erbil at Agro-Meteorological Sub-sector Department. The data was

analysed using the Statgraphics Centurion XVII software package.

2.2 Box-Jenkins Methods
An integral notion in the Box-Jenkins framework is that of a stationary stochastic process. A
stochastic process is called stationary if its probability distribution is independent of time. This

immediately implies that the mean and variance functions of a stationary process are time-



independent. In particular, stationary processes cannot exhibit any sort of trend. The basic idea of the
Box-Jenkins method is to transform any given stochastic process into a stationary one by separating
the trend from the noise. A stationary process is completely determined by its mean, variance and
autocorrelation function, i.e. the correlation between two values separated by a lag of k time steps.
Comparing the autocorrelation of a given model to the one obtained from a dataset is a crucial step in
identifying accurate and reliable models (Chatfield, 2004).

2.2.1 Autoregressive Moving Average Process (ARMA) or Mixed Process

In order to reproduce autocorrelation patterns, a more general approach is needed. One option is to
use a combination of autoregressive and moving average methods, namely the ARMA(p,q) model,
which treats a variable as a linear function of the p preceding values and the statistical errors
associated to the q previous values (Jeffrey, 1990). The most general form that this model can take
is:

Vi =u+BY Y o+t By, & 08, —60,a_,—..—0,a_,, which can be more succinctly

expressed as in Equation (1):

Ye = Yea — Vi _"'_¢p Yip =& -ba, -0a,, _---_ant—q tu=
Q-aB -8 . =4, 8°)Y, =(U-0,-0,° .- 0,8, + u=
$(B)y, =0(B)a, + @

where S denotes the backward shift operator (5 y, =y, ), ¢ and @are polynomials of degree p and

g, respectively, a; denotes a purely random process and  is a constant.

2.2.2 ARIMA Models

The ARMA model can be further refined by passing to the Auto-Regressive Integrated Moving
Average or ARIMA(p,d,q). “Integration” here refers to the process of differencing in order to turn a
non-stationary time series into a stationary one. The parameter p stands for the number of
autoregressive terms, q is the number of statistical errors taken into account, representing the
moving-average approach, and d is the number of non-seasonal differences (Chatfield, 2004). A

model of this type can be expressed as in Equation (2):
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2.2.3 SARIMA Models

Lastly, a problem arising in many applications is that of periodicity. In our case, the mean
temperature clearly follows, to some degree, annual cycles, and these patterns need to be taken into
account separately. Box and Jenkins (1970) incorporated seasonality into existing ARIMA
approaches, arriving at the Seasonal Autoregressive Moving Average Model or
SARIMA(p,d,q)(P,D,Q)s which can be written as

¢p (ﬂ)(DP(ﬂS )Wt :‘gq (ﬂ)®Q (ﬂs)at 3)

where £ again denotes the backward shift operator, and S denotes the number of data points in a
season, so that #°y, =y, . is a shift of a full season (in our case S=12 representing 12 months in a

year). P and Q are equivalent terms to p and g, except they are applied to the series in steps of size S
to remove seasonality, before the ARMA transformation with p and q is carried out; $y, Pp,0,,0,

are polynomials of degree p,P,q,Q , respectively. a, denotes a purely random process and W, is a

differenced series used if the original process y, is not stationary. The differencing refers to

subtracting the earlier value of the time series observations from the present value and can be written
as:

W, =VViy,, (4)

V¢ =(- ) being the non-seasonal differencing and V2 = (1—3°)° the seasonal differencing.

The superscripts d and D indicate the order of the non-seasonal and seasonal differencing,
respectively (Ye et al., 2013: Chatfield, 2004).

2.3 Fitting Box-Jenkins Models

Following Box and Jenkins (1970), forecasts can be derived from the above model in four steps: (1)
Model identification; (2) estimation of model parameters; (3) diagnostic checking and (4) application
of the model forecasting (Box, et.al., 1994). The standard approach to model identification is to
match both the autocorrelation function (ACF) and the partial autocorrelation function (PACF),
which serves to isolate particularly strong self-correlations, e.g. due to seasonality effects, to the ones

exhibited by a given dataset (Pankratz, 1983); this procedure not only allows for model identification



but also gives a first estimate of the model parameters. This estimate is then refined by other

statistical methods, e.g. a mean-squares or maximum likelihood fit.

In the next step, the chosen model is checked against the time series by analyzing the series of
residuals, sample correlations and the residual histogram and performing a diagnosis test (Chatfield,
2004). One such test is the Ljung-Box lack-of-fit test which amounts to computing the following
quantity:

r
n—k

Q=n(n+ Z)Z ()

where h is the maximum considered lag, n is the number of observations in the series and r, is the

autocorrelation at lag k. Denoting by m the number of model parameters fitted to the data, and under
the null hypothesis the statistic Q is assumed to have a chi-square distribution with (h-m) degrees of

freedom. This hypothesis, and thus the model, is then rejected or accepted accordingly.

In general, among the models that pass this test, the ones with fewer parameters yield more accurate
forecasts. Different models are compared by using either Akaike's Information Criterion (AIC)
(Zakaria et al., 2012) or the Schwarz Bayesian Information Criterion (SBIC) (Schwarz, 1978). When
we add parameters to the fitted models, the value of the likelihood will raise and cause the problem
of over fitting. AIC and SBIC are used to deal with this problem, by initiating a penalty term for the

number of parameters in the model, this value being greater in SBIC than in AIC (Schwarz, 1978).

The AIC amounts to minimizing the following quantity:
AIC =-2log,(L)+2(p+q+P+Q+C) (6)

where:

L= Maximum likelihood,

p= non-seasonal Autoregressive order, g= non-seasonal Moving average order,
P=seasonal Autoregressive order, Q= seasonal Moving average order,

C= constant of the model.



The SBIC is computed as;
SBIC =—2log(L)+2(p+q+P+Q+C)log(n) (7)

where n is the sample size.

2.3.1 Fitting Box-Jenkins Models for a Seasonal Model
A seasonal model is identified using the following steps:

Step 1: Examine the time series plots for seasonality and trend (i.e. check for stationarity).

Step 2: Carry out the necessary transformation of the data according to whether or not the data
exhibits trend and seasonality effects, turn the data into a stationary series using both seasonal and

non-seasonal differencing and apply e.g. a natural log normal transformation.

Step 3: Examine the ACF and PACF of the new data, transformed data and (if necessary)
differenced data as they are the principal tools used to identify the AR and MA terms. Generally, to
select non-seasonal terms we check the early lags of estimated ACF and PACF coefficients. Spikes
in the ACF indicate non-seasonal MA terms while spikes in the PACF are a sign of non-seasonal AR
terms. As for the seasonal terms, we study the patterns across lags that are multiples of S. For
example, for monthly data, we look at lags 12, 24, 36, 48 and so on. The ACF and PACF may then

be examined for spikes at the seasonal lags in the same way as we did for the earlier lags.

Step 4: When the model is selected, its parameters can be estimated using statistical techniques, such
as Maximum Likelihood, least-squares or the Yule-Walker method. The selected model(s) should be
those that might be reasonable on the basis of Step 3, including the transformation and any

differencing we made on the original data before looking at the ACF and PACF.

Step 5: Perform tests on the residuals in order to determine whether the model is adequate for the
data. It is sensible to use a p-value threshold of 0.05 (and equivalently a confidence level of 95%),
since this is the most widely used value and allows comparison to other studies. Test for the model's
in-sample fitting performance, which is measured by the stationary R-square and R-square model fit,
as well as AIC and SBIC. Test for the model's out-of-sample forecasting accuracy, the magnitude of
error, which is measured by the root mean squared error (RMSE), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE). Also check for bias in the estimators, for instance

the mean error (ME) and mean percentage error (MPE) are used as measures of biased estimators. It



IS necessary to check for the assumptions of normality and homoscedasticity, and also to check for
autocorrelations (using the Ljung-Box test), in addition to plotting ACF. It is essential to compare
AIC or SBIC values if several models have been tried (Ye et al., 2013). We recommend this
procedure, with the full range of diagnostic tests, for SARIMA model selection for similar data in

general.

If the results are unsatisfactory, we must go back to Step 3 or maybe even Step 2 (Chatfield, 2004),
and try a different set of parameters. At this stage we can select different models if any individual
coefficients fall outside some specific interval around zero. In that case we can depend on the
estimated ACF and PACF coefficient values to be more accurate and comparing them with the
appropriate confidence interval, which can be found by referring to cumulative distribution function

(cdf) for a normal distribution. For example, the 0.975 probability point of the standard normal is
1.96. The 95% confidence interval for ACF and PACF coefficients is therefore +1.96/n , where n is

the number of observations in the series. Any coefficients outside this critical interval are evidence
that the coefficients are significantly different from zero at the 95% confidence level and this interval
is called the Bartlett range (Box et al., 1994).

3. Results

3.1 Pattern of the Erbil mean temperature

The most common patterns in time series data are increasing or decreasing overall trend, cycles,
seasonality, and irregular fluctuations. These are identified by plotting the original mean temperature
data vs. monthly recorded data over 32 years, Figure 1(a). It appears from Figure 1(a)-(f), that there
is a seasonality effect on the mean temperate data. The overall mean temperature during the studied
period January 1992 - November 2015 appears to exhibit a slight trend. In addition there is a regular
cycle with a period of 12 months, rising to peak in July or August during the summer months and
falling off in December (Figure 1(d)). Thus the seasonal time series decomposition method is

suitable for our data.

Generally it is difficult to detect any pure cycle and trend in Figure 1(a), but the spectral density of
the data in the periodogram (Figure 1(b)) shows a sharp spike at exactly the right frequency, thus
indicating a hidden cycle. Although we are certain of a cyclical effect in the mean temperature data
we still used a periodogram based on Fourier decomposition; it fits the data to a sum of sine waves of
different frequencies (Gottman, 1981). For strongly seasonal data, e.g. one cycle every 12 months
there will be a large spike at 1/12. The multiplicative seasonal decomposition has been applied on
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Kurdistan temperature data. Figure 1(c) displays the trend and cyclical effects in the original dataset,
a moving average of length equal to the seasonal order has been added. The moving average
estimates the combined trend and cycle components, which are not usually separated (Dagum, 2010
and Grieser et al., 2002), and the seasonal indices estimate the seasonal component.
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Figure 1. Time sequence and the decomposed plot of monthly Erbil mean temperature. (a) time
series plot of the original data. (b) temperature periodogram. (c) plot of Trend-Cycle component. (d)
plot of seasonal indices. (e) plot of irregular or residual component. (f) Seasonally adjusted data.

When using a multiplicative model, the indices are expressed as percentages. Figure 1(d) shows the
seasonal indices for each season, scaled such that an average season corresponds to 100. The indices
range from a low of 40.504°C in January to a high of 160.589°C in July. This indicates that there is a
seasonal swing from 40.504% of the average to 160.589% of the average throughout 12 months. For
example the index 0.91 in April indicates that the mean temperature is at 91% of the baseline. Note

the strong seasonal effect for the temperature data, rising from a low in January to a peak in July or
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August and then falling off again. Finally the Irregular Component is displayed in Figure 1(e). For
the multiplicative model, this component is also expressed on a percentage basis, with the average
value scaled to equal 100. In January of 1993, the irregular component rose to approximately 133%,
implying that temperature during that month was 33% more than expected, while in January 2008 the
figure shows that the irregular component has declined to approximately 65% less than expected.
The region has faced the same situation when in December 1994 the temperature was 64% below the

average.

Once the decomposition has been performed, we can take the original data and divide it by the

estimated seasonal indices to obtain the seasonally adjusted data Y,” (Chatfield, 2004), defined by:

Y
Y =1, 8
7, (8)
where Y, is the seasonal component. The seasonally adjusted data is plotted in Figure 1(f). Appendix

A shows the mean temperature seasonal adjusted time series data in centigrade with the other
components. Table 5 of Appendix A explains each step of the seasonal decomposition. The trend-
cycle column shows the results of a centred moving average of length 12 applied to temperature. The
seasonality column shows the data divided by the moving average and multiplied by 100. Seasonal
indices are then computed for each season by averaging the ratios across all observations in that
season, and scaling the indices so that an average season equals 100. The data is then divided by the
trend-cycle and seasonal estimates to give the irregular or residual component. This component is
then multiplied by 100 (see Yi-Hui, 2011 and Theodosiou, 2011).

3.2 Fitting a SARIMA model

The model development process begins by studying the original plot, autocorrelation function
(ACF), partial autocorrelation function (PACF) and objective test of the raw data to ensure that the
assumption of stationarity is met. Figures 2(a) and 2(b) from the correlogram, most of the spikes in
both the ACF and the PACF were found to be outside the confidence limits. Also the ACF and
PACF show a cyclic or seasonal variation of the correlations in the form of sinusoidal waves.
Furthermore both the ACF and the PACF show decay of the spikes indicating that the series has

component problems. This is a clear indication of a seasonality of order 12.

The next step is to difference the series; by taking one regular difference to remove the seasonal
trend in the data and then one seasonal differencing to take out a seasonal random walk type of non-
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stationarity. In order to make the series stationary around its variance, we applied a natural log
transformation. Following the Box-Jenkins technique we depend on ACF or PACF plots to fit the
order of the seasonal model (Chatfield, 2004).

From Figures 2(c) and 2(d) we can choose our model, depending on the ACF and PACF spikes at
low lags. To determine the non-seasonal AR terms, we look at the PACF which show clear spikes at
lags 1, 2 and 3. So the non-seasonal AR terms are determined to be of order 3. There are three spikes
at lags 1, 11 and 12 in ACF so we have three terms for non-seasonal MA. Now for the seasonal part
of the model, in this case we look at lags 12, 24, 36 and 48 for both ACF and PACF. From the
PACF we indicate that there are three significant spikes at lags 12, 24 and 36; thus the order of the
seasonal AR is three. In the ACF, there are two spikes at lags 12 and 48; this means that the order of
the seasonal MA is two. Therefore our base model is SARIMA(3,1,3)(3,1,2)12. The model coefficient
summary is given in Table 1(a)-(i).
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Figure 2. Correlogram plots. (a) estimated autocorrelations for mean temperature (ACF), shows the
correlogram for the original mean temperature data. Here the 12, 24, 36 and 48 autocorrelation
coefficients are statistically significant at the 95.0% confidence level. (b) estimated partial
autocorrelation (PACF). (c) estimated autocorrelation for adjusted mean temperature (ACF). (d)
estimated partial autocorrelation function for adjusted mean temperature (PACF).



Table 1. SARIMA model terms selection procedures.
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SARIMA model coefficient summary. (a) - (i): Starting from SARIMA(3,1,3)(3,1,2);,, we arrive at our final model
SARIMA(0,1,2)(0,1,1):, by, at each step, dropping the term with the highest p-value associated to it and re-estimating the
remaining parameters until all p-values for all estimated parameters are below 0.05.

Table 6 in Appendix B shows the estimated autocorrelations (partial autocorrelations) between

values of adjusted Mean Temperature in degrees centigrade at various lags. We get two alternative

models from it depending on the 95% confidence interval for ACF and PACF coefficients. For the

Bartlett range, where n=287, they are significantly different from zero at the 95% confidence level.
The models are SARIMA(3,1,3)(3,1,3);2 and SARIMA(2,1,3)(3,1,3)1> when we select first and

second spikes in the PACF instead of three (the PACF accounts for the correlations at all lower lags).

Steps of estimating SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)1, parameters are shown in
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Tables 7A and 7B of Appendix C. The main conclusion between these models is that all three reduce
to the same SARIMA(0,1,2)(0,1,1);, model, which is the model that we select. This model is
appropriate for predicting future values from 2015(Dec)-2025(Jan-Dec). It is stable when we delete
from or add years to the original period from 1992(Jan-Dec) to 2015(Jan-Nov) and attempt to predict
the given data e.g. selecting the 1993(Jan-Dec) to 2010(Jan-Dec) period to predict year 2011 and so

on. This model is a final model which works under all conditions for various periods.

3.2.1. Model Estimation and Evaluation

Table 2 shows summarized results of seven tests run on the residuals to determine whether the model
is adequate for predicting the mean temperature in Erbil and on the basis of historical data from
1992(Jan-Dec) to 2015(Jan-Nov).The magnitudes of error in the model are 1.696°C, 1.294°C and
7.796% respectively, relative to the average of the predicted temperature at 21.028°C. The model
shows no sign of biased estimations across the entire duration of the prediction period (10 years),
based on the values of both ME and MPE as they are too close to zero. The fitted model is supported
by the small amount of AIC and SBIC. Since no tests are statistically significant at the 95% or higher
confidence level, the proposed model, SARIMA(0,1,2)(0,1,1):,, passes all tests. Therefore, it is
considered a good model for forecasting.

Table 2. Model Testing.

Model RMSE MAE MAPE ME MPE  AIC SBIC

SARIMA(0,1,2)(0,1,1);, 1.696 1.294 7.796 0.143 -0.294 1.078 1.116

Model selection and validity model testing criteria for mean temperature forecasting, where: RMSE= Root Mean Squared
Error, MAE= Mean Absolute Error, MAPE= Mean Absolute Percentage Error, ME= Mean Error, MPE= Mean
Percentage Error, AIC= Akaike's Information Criteria and SBIC= Schwarz Bayesian Information Criteria.

The model parameters (autoregressive, moving average, seasonal autoregressive and seasonal
moving average) are estimated using maximum likelihood estimation. The estimates of the
parameters are shown in Table 1(a)-(i). Based on 95% confidence level, we conclude that all the
coefficients of the SARIMA(0,1,2)(0,1,1)1, model are significantly different from zero. Furthermore,
the model reproduces the data under study very well, as indicated by the Stationary R-square (0.514)
and R-square (0.96). More than half the variance of the original time series is explained by the model

persistence.

The mathematical equation for the SARIMA(0,1,2)(0,1,1)1, model’s estimated coefficients is
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1-AA- %)y, =A+0,+6,5°)1+0,%)a, =
A=B-B2+BP)Y, =+ 6,+0,5° +©,57 +0,0,5° +0,0,5*)a, =
)

yt = ytfl + yt712 - yt713 + a‘t + ela'tfl + 02at72 + ®la"[le + ®lelat713 + ®192a1714

Using the parameters we estimate from the data, this gives

Yo =Yg + Yo — Yegs +@, +0.588a, ; +0.237a, , +0.933a, ,, +0.549, , +0.221a, ,, =

Voss = Yases + Voss 1o — Yassas T+ Qogg +0.5888 55 1 +0.23785 , +0.9330,45 5, +0.5498,5, 15 +0.2218,, ,, =
Yoss = Yoz T Yars = Yars +0+0.588a,, +0.237a, +0.933a,,, +0.54%,,; +0.221a,,, (10)

Equation (10) may now be used to forecast the Erbil future mean temperature value for the coming

10 years (121 months) starting from December 2015, §,.,, Where ¥ is the predicted value and 288 is

the number of months that have passed since Jan 1992 (see Appendix D).
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Figure 3. Residual plot for SARIMA(0,1,2)(0,1,1)1> model: (a) normal probability plot for the
residual, (b) the standardized plot for residuals, (c) periodogram for residuals and (d) histogram for
residuals.Figure 4.
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3.2.2. Model Diagnostics

In time series modelling, the selection of a best model fit to the data is directly related to whether the
residual analysis is performed well. One of the assumptions of the SARIMA (Seasonal ARIMA)
model is that, for a good model, the residuals must follow a white noise process, that is, the residuals
have zero mean, constant variance (homoscedasticity) and are also uncorrelated with past values. A
special case of this process is when the residuals are normally distributed, when they are said to

follow a Gaussian white noise process. It is such a process that we test for here.

For our selected SARIMA(0,1,2)(0,1,1);, model, normality is tested by a normal probability plot as
shown in Figure 3(a), the standardized residual Figure 3(b), the periodogram Figure 3(c) and Figure
3(d) the histogram of residuals. The four figures of residuals for mean temperature data shows that
the residuals of the model are consistent with a normal distribution assumption. Table 3 indicates that
the SARIMA(0,1,2)(0,1,1)1, model residuals are uncorrelated as well as independent as all three tests
indicated.

Table 3. Test for autocorrelation and independence.

Test Statistic

Tests Value p-value
RUNS: Runs above and below median 0.545 0.586
RUNM: Runs up and down 0.599 0.549
AUTO: Ljung-Box Test 15.067 0.819

Residual autocorrelation and independence test for the selected model, where: RUNS = Test for excessive runs up and
down, RUNM = Test for excessive runs above and below median and AUTO = Ljung-Box test for excessive
autocorrelation.

In order to determine whether the residuals are randomly distributed, three tests have been
performed. In the first step, we counted how often the sequence exceeded the median, finding 143 as
opposed to 138 which is expected for a random sequence. In the second test, we determined how
often the sequence increased, finding 187 steps as compared to the expected 182.3. Both of these
tests result in a p-value that is larger than 0.05, which indicates that there is no reason to reject the
hypothesis of randomness at a 95% confidence level. Thirdly, the p-value (0.819) for the Ljung-Box
statistic exceeds 5% as well, indicating that there is no significant departure from white noise for the
residuals, i.e. there is no indication of autocorrelation in residuals of the selected model. Thus, the
selected model SARIMA (0,1,2)(0,1,1),, satisfies all the model assumptions.
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The estimated white noise variance at 271 degrees of freedom was 0.014 and the estimated white
noise standard deviation was 0.119, also the difference in variance and difference in mean test were
"OK", which indicate that our selected model residuals are homogeneous i.e. there are no significant
departures from white noise for the residuals at 95%. The current model is adequate for the data as
the selected model SARIMA(0,1,2)(0,1,1),, satisfies all our model assumptions (Normality,
uncorrelated residuals and homoscedasticity). Therefore the selected model is considered a good

model to forecast future values.

Looking at Figure 4, the autocorrelation checks of the residuals indicate that the model is good
because they resemble a white noise process; that is the residuals have zero mean, constant variance
and are also uncorrelated. Since the model diagnostic tests show that all the parameter estimates are
significant and the residual series for the model are random, it can then be concluded that a
SARIMA(0,1,2)(0,1,1);, model is adequate for the Erbil mean temperature series. Therefore,
SARIMA(0,1,2)(0,1,1);, is used to forecast the future mean temperature series of Kurdistan Region.

Residual Autocorrelations for adjusted Mean Temperature in oC
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Figure 4. ACF of residuals for SARIMA(0,1,2)(0,1,1)1, model.

3.3 Forecasting using SARIMA (0,1,2)(0,1,1);,

The performance of SARIMA(0,1,2)(0,1,1);, model for the Erbil mean temperature is now evaluated
by forecasting the data one step prediction for years 2014(Jan-Dec)-2015(Jan-Nov) to indicate the
models adequacy, performance and for comparison purposes. Using the selected model, the 23

months forecast are shown in Table 4 and Figure 5.
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Table 4. Forecasted mean temperatures value in °C for January 2014 to November 2015.

. Actual Forecast Residual . Actual Forecast .
Period Data Data Period Data Data Residual
Jan-14 0.40 8.35 1.05 Jan-15 8.07 8.56 -0.49
Feb-14 10.40 10.71 -0.31 Feb-15 Q.98 9.90 0.08
Mar-14 15.10 14.12 0.98 Mar-15 13.44 13.88 -0.44
Apr-14 20.10 2042 -0.32 Apr-15 2047 19.04 1.43
May-14 26.05 27.20 -1.15 May-15 25.78 26.83 -1.05
Jun-14 30.30 32.19 -1.89 Jun-15 31.42 31.07 0.35
Jul-14 33.70 34.83 -1.13 Jul-15 34.34 34.63 -0.29
Aug-14 33.50 34.51 -1.01 Aung-15 34.06 34.09 -0.03
Sep-14 28.90 290,78 -0.88 Sep-15 29.60 20.58 0.02
Oct-14 24.85 23.89 0.96 Oct-15 21.50 23.97 -2.47
Nov-14 16.30 16.11 0.19 Nov-15 14.50 15.10 -0.60
Dec-14 10.00 10.61 -0.61

Checking the SARIMA(0,1,2)(0,1,1);, model by predicting the existing mean temperature data in
January 2014 through November 2015.
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Figure 5. The forecasted mean temperatures value in °C for January 2014 to November 2015.
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Figure 6. The Erbil mean temperature forecast from December 2015 to December 2025
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It appears from Figure 5 that the selected model is very well-suited for predicting the future
development of the Erbil mean temperature as the differences between the actual data (solid line) and
forecast data (dashed line) are very small, the lower line represents their residual values as tabulated
in Table 4.

Figure 6 shows the forecasted values for the mean temperatures for 121 months from December
2015 to December 2025. The forecast mean temperatures are represented by the solid line and the
dashed lines indicate the 95% confidence band. In fact this figure does not give us a clear trend of
future mean temperature, as it may both increase or decrease within the confidence limits. We
therefore decided to plot the future value for the same period using the data from Jan 1992 to Nov
2015 as a base for our forecast instead of just using the last month of the existing data, Nov 2015, in
order to show the more striking graph shown in Figure 7. Table 8 in the Appendix D shows the 121
months forecast. The forecasted mean temperature in Erbil for next 10 years looks flattened when
compared to previous values in Figure 7, meaning that the temperature is predicted to be stable with

the same pattern in the future.

Time Sequence Plot for Mean Temperature in oC
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Figure 7. The Erbil mean temperature forecast from December 2015- December 2025.

The change in temperature is clear in Erbil, where the lowest temperature recorded was 5.80°C in Jan
2008 while the highest temperature recorded was 37.25°C in July 2000. A change in temperature
happened in August 1992 when it recorded 20.15°C degrees as compared to 2015 of the same month
in the other 24 years. The temperature in January, February, March, April, November and December
were below the temperature mean of 21°C while the other months were above the mean. From Figure
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7 it appears that the predicted mean temperature in January has decreased from 9.4°C in 2014 to
8.1°C in 2015 but is projected to rise in 2016 until 2025, while the average temperature in July,
August and December for the same period will be generally around 34°C, 33.4°C and 10°C.

4. Conclusions

The temperature in the Kurdistan Region has changed similarly to many other areas in the world, due
to climate change. Many researchers have studied these phenomena in different places by using
various methods and statistical tools, among them the seasonal time series method. In the Kurdistan
Region, studies on rainfall and on electricity demand in both Sinjar district and Sulaymaniyah
Governorate have been carried out using ARIMA and SARIMA, respectively. Although Erbil is the
capital of Iragi Kurdistan and it shows a significant shift in temperature over the last decades, until

now no time-series based studies in that direction have been undertaken.

In general the pattern of mean temperatures in Erbil Kurdistan Region from January 1992 to
November 2015 was observed to be not stationary and increasing over time. The non-stationarity of
the mean temperature series was verified by the plot of the sample ACF and PACF’s. The data cover
287 time periods. Currently, a seasonal autoregressive integrated moving average (SARIMA) model
has been selected by following the procedures of Box-Jenkin's SARIMA model building. The
underlying assumption is that the best forecast for future data is given by a parametric model relating
the most recent data value to previous data values and previous noise. Each value of mean
temperature has been adjusted in the following way before the model was fit: (1) seasonal and non-
seasonal differences are applied to remove the effect of trend and take out a seasonal random walk
type of non-stationarity, that is to make the series stationary around its mean, (2) a natural log
transformation was applied to make the series stationary around its variance, (3) a multiplicative

seasonal adjustment was applied.

Using the ACF and PACF estimated coefficient plots in Figures 2(c) and 2(d), as well as Tables 7A
and 7B (Appendix C), three models were developed: namely SARIMA(3,1,3)(3,1,2)12,
SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)12; each of them lead to the same model,
SARIMA (0,1,2)(0,1,1);,. We get this particular model based on the significance terms in the model.
Terms with p-values less than 0.05 are considered statistically significantly different from zero at the
95.0% confidence level. Starting with the base model, SARIMA(3,1,3)(3,1,2)12, p-value for AR(3),
MA(3), SAR(3) and SMA(2) terms in the model are greater than 0.05, so they are not statistically
significant. We should therefore consider reducing the order of the terms depending on the maximum
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p-values among them; this is illustrated in Table 1 (a)-(i). Here at each step, we are dropping the term
with the highest p-value associated to it and re-estimating the remaining parameters until all p-values

for all estimated parameters are below 0.05.

The model diagnostics were performed through careful examination of the model residuals. The
model residuals were found to be following a white noise process with a mean of zero and a constant
variance, hence uncorrelated. The comparison for choosing the best model to represent the data is
based on the value of RMSE, MAE and MAPE values 1.696°C, 1.294°C and 7.796% respectively.
No bias was detected in the model, based on the value of both ME and MPE (0.143 and -0.294,
respectively) as they are close to zero. The fitted model is supported by the small value of AIC and
SBIC amount of 1.07 and 1.116 respectively.

As no tests are statistically significant at the 95% or higher confidence level, the existing model is
sufficient for the data. Furthermore, the model residuals satisfy our assumptions of normality,
homoscedasticity and being uncorrelated with past values, through a normal probability plot,
standardized residual plot, periodogram and histogram (see Figures 3 and 4) and the Ljung-Box test.
The statistical analysis leads us to conclude that there is no reason to reject the hypothesis that the
residuals follow a white noise process at 95% confidence level. In addition, the value of R-square at
95% confidence level was 0.96 which means more than half of the variance of the original time
series is explained by the model persistence. Perhaps good indicators that our
SARIMA(0,1,2)(0,1,1)1, model represents well for this region are the small values of the estimated
variance and standard deviation for the model input white noise 0.014 and 0.119.

The selected model is further validated by predicting the mean temperature of January 2014 to
November 2015 and reproducing the known seasonal patterns in its forecasts. It shows that the
estimated forecast mean temperature was identical or very close to the actual real data. The pattern of
mean temperatures in Erbil from Dec. 2015 to Dec. 2025 was observed to be stationary, hence does

not follow any particular pattern (neither increasing nor decreasing).

Similar investigations have been carried out in the wider region by other researchers. Tektas (2010)
used an ARIMA(2,1,1) model to predict the weather of Gdztepe Region in Istanbul-Turkey. This
involved data from 2000-2008 collected on a daily basis. We note that the model fits their data less
well than our SARIMA model fits ours (assessed through the standard criteria). A SARIMA
(0,0,1)(0,1,1)12 model was adopted by Sarraf et al. (2011) to forecast average monthly temperature at
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Ahwaz synoptic station in Iran, using average monthly temperature data from 1990 to 2010. This
model was a good fit to their data, and they used it to predict the average temperature for 2010-2011,

with a particular applications for agriculture within the region that year.

Air temperature of the southern Caspian Sea (Anzali, Ramsar and Babolsar synoptic stations) was
modelled by Khajavi et al. (2012) in Iran. A SARIMA(1,0,0)(0,1,1);, model was chosen to forecast
future mean monthly temperature at the Anzali and Babolsar stations, while a SARIMA
(0,0,2)(0,1,1)12 model was used for the Ramsar mean monthly temperature. They compared
forecasted temperature at all stations with real data for the year 2005-2006, with good predictability.
The monthly mean temperature at the Shiraz Synoptic Station in the south of Iran was used in a study
by Babazadeh and Shamsnia (2014). They used a SARIMA (2,1,0)(2,1,0)1 model to forecast the
future mean temperature in the region, using the historical mean temperature data in the region from
21 years. Their chosen model again produced reliable forecasts for future mean temperature in the
Shiraz Region, and was also used to forecast crop productions in year 2008-2009 and 2009-2010.

The fitted SARIMA models that we have discussed are all quite similar in character, and it appears
that this is a good general model for fitting temperature data, providing a good fit in the cases
considered. We note, however, that in fitting the above models, none of the named studies carried out
the full range of tests and procedures that we outline in Section 2.3.1 which we believe should be
followed (see e.g. Chatfield, 2004). We would recommend the procedure carried out in our paper for
the selection of SARIMA models for equivalent data elsewhere. Based upon our results and the
model diagnostics performed, the identified model was found to be a good model for predicting
future mean temperatures in the Kurdistan Region. Potential applications include the forecasting of
crop yields as in Babazadeh and Shamsnia (2014) or the prediction of power requirements for

temperature-sensitive energy usage such as heating and refrigeration, or of adverse weather events.
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Appendix-A

Table 5. Seasonal Decomposition Method: Multiplicative of Erbil Mean Temperature in °C from
Jan. 1992 to Nov. 2015.

. Trend-  Season- Season- . Trend-  Season- Season-
Paiod Daa o gy Demim g | Peied Dl oy e Immie g
Jan-92 943 2328 Sep-95 2773 2014 13782 100.27 20.19
Feb-92 9235 20,035 Oct-93 2183 2006 10890 97.44 19.55
Mar-82 903 14.03 Nov-95 1360 2014 7151 92.30 1859
Apr-92  11.20 1256 Dec95 830 2022 41.06 8441 17.06
MMay-92 13.75 11.14 Jan-96 890 2030 43 83 108.22 2197
Jun-92 1780 12.18 Feb-96 1120 20350 54.63 11840 2428
Jul-92 1985 1346 14751 91.85 1236 Mar-96 1230 2038 5977 92 88 19.11
Aug-92 2015 1336 15083 95.07 12.70 Apr-96 1655 2039 80.40 90.19 18.37

Sep-82 1789 1339 13364 9723 1302 | May96 2795 2069 13510 109.43 2264
Oct92 1518 1372 11063 98.99 13.58 96 2960 2097 14117 96.57 2025
Nov-92 935 1437 63.07 88.96 12.78 Jul-96 3525 2113 166.82 103.88 2195
Dec-92 893 1524 5861 120.50 1836 | Aug 96 3360 2092 16061 101.23 21.18
Jan03 878 1627 33.97 13324 21.68 Sep-96 2792 2063 13536 98.49 20.31
Feb-93 7355 1739 4342 241 16.36 Oct-86 2186 2030  106.62 95.40 19.56
Mar-83 1140 1838 62.04 96.40 1771 | Nov-86 1607 2047 78.50 107.32 2197
Apr93 1685 19.17 87.89 98.60 1890 | Dec-%6 12354 2051 61.14 12571 2578
May-93 2365 1965 120335 97.49 19.16 Jan-97 836 2044 41.87 103.37 21.13
Jun-93 2870 1986 14454 08.88 1963 | Feb-97 643 2023 32.03 69.43 14.04
Jul-23 3375 1997 169.00 105.24 2102 | Mar-97 996 2010 49.55 77.00 1548
Aug-93 3310 2006  165.02 10401 2086 | Apr-97 1586 2011 79.36 89.03 17.90
Sep-93  28.65 2018 14196 103.29 2084 | May-97 2778 2012 138.04 111.82 22.50
Oct-93 2350 2026 11597 103.76 21.03 Jun-97 3066 1997  153.52 105.03 20.98
Now-93 1255 2032 61.75 84.42 17.16 Jul-97 3264 1974 16537 102.98 20.33
Dec-93 1065 2043 5212 107.16 2190 | Aug-®7 3106 1972 15751 99.27 19.58
Jan-54 980 2046 47.89 118.23 2420 Sep-97 2735 1990 13743 99.99 19.90
Feb-94 865 2036 4248 92.08 18.75 Oct-57 2270 2008 11305 101.15 20.31
Mar-94 1325 2036 65.09 101.14 2059 | Nov-97 1554 2020 76.95 105.20 21.25
Apr-84  17.00 2043 83.20 93.33 1907 | Dec-97 940 2028 46.33 95.29 19.33
May-94 2490 2052 12137 98.31 20.17 Jan-98 609 2044 29.80 1357 15.04
Jun-94  30.10 2042 14743 100.86 2059 | Feb-28 852 2071 41.15 89.18 1847
Jul-94 3310 2021 16376 101.98 2061 | Mar-98 1227 2094 58.60 91.06 19.07
Aug-94 3125 2027 15416 97.17 1970 | Apr98 1785 2103 8537 95.78 20.14
Sep-94 3040 2035 14939 108.69 2212 | May98 28355 2127 13424 108.74 2313
Oct-94 2360 2036 11590 103.70 21.12 hin-98 3193 2160 14791 101.19 2186
Nov-94 1445 2030 70.86 96.88 19.76 Jul98 3310 2189 16033 99 84 2186
Dec-94 635 2043 31.09 63.92 1306 | Aug 98 3506 2214 15835 99,80 22.10
Jan95 920 2041 4508 11131 20 Sep-98 2888 2227 1290 9436 21.01
Feb-05 1065 2040 52.22 113.18 2308 Oct-98 2328 2236 10413 9.1 2083
Mar-85 1315 2031 64.73 100.58 2043 | Now-23 2078 2239 92.82 126.90 84
Apr95 1740 2013 86.43 96.96 1952 | Dec-88 1215 2234 54.38 111.80 24.98
May-85 2520 2002 12586 101.95 2041 Jan-99 1035 2225 46.51 114.84 25.535
Jun95 3060 20.07 15248 10431 2093 | Feb9 1023 2217 46.13 99.99 2217
Tul-05 3215 2014 159465 2942 2002 | Mar-09 1338 2214 61.35 9532 2110
Aug-9F 3195 2015 15838 9995 2014 | Apr-99 1881 2215 8492 5.7 21.10




Period Datt cone oo™ Imegular gfﬁ'd“j_ Period Datn (o o™ Inegulw ET:E_
May 59 2840 2192 12959 10457 2301 | Feb03 8§70 2088 467 9031 16.86
hn99 3105 2162 14364 9827 2124 | Mar03 1160 2089 5552 8628  18.02
Tl99 3380 2145 15756 9812 2105 | Apr03 1830 2084 8782 9852 2053
Aug99 3450 2125 16235 10233 2174 |May03 2570 2075 12386 10033 2082
Sep99 2855 2108 13543 9853 2077 | hmO03 3140 2077 15120 10344 2148
Oct:99 2390 2107 11344 100150 2138 | Julk03 3250 2085 15591 9708 2024
Nov-99 1455 2114 6882 9409 1989 | Aug03 3370 2087 16147 10077 2124
Dec:99 1120 2113 5301 10898 2303 | Sep-03 2880 2110 13652 9933 2095
Tm00 735 2127 3456 8532 1815 | Oct03 2470 2131 11592 10372 2210
Feb00 840 2142 3022 8501 1821 |Now03 1500 2128 7051 0630 2051
Mar00 1135 2144 5205  $227 1764 | Dec03 1010 2120 4764 9795 2076
Apr00 2075 2135 0718 10002 2328 | Jan04 960 2126 4515 11147 2370
May-00 2820 2130 13237 10722 2284 | Feb-04 0940 2135 4404 9545 2037
Jm-00 3095 2130 14528 9939 2017 | Ma-04 1630 2141 7612 11829 2533
T00 3725 2132 17473 10881 2320 | Apr04 1870 2152 8691 90750  20.98
Aus00 3461 2146 16120 10166 2181 |May-04 2450 2153 11378 9216 1985
Sep-00 2800 2173 13300 9677 2103 | Ju-04 3080 2143 14374 0834  21.07
Oct00 2155 2187 9854 8817 1928 | Jl04 3460 2128 16260 10125 2155
Nov-00 1574 2180 7222 9873 2152 | Aug-04 3360 2119 15860 9996 2118
Dec-00 1000 2173 4603 0462 2056 | Sep-04 3050 2104 14498 10548 2219
L0l 890 2157 4127 10189 2197 | Oct04 2550 2099 12147 10868 2282
Feb0l 1020 2142 4762 10321 2211 |Nov.04 1460 2110 €919 0450 1006
Mar01 1605 2140 7500 11654 2494 | Dec04 795 2116 3757 7725 1634
Apr01 1940 2150 9024 10123 2176 | Jan05 820 2123 3863 9538 2025
May-01 2780 2154 12007 10455 2252 | Feb05 855 2134 4006 8682 1853
Jn01 2970 2153 13795 9438 2032 | Mar05 1360 2138 6362 9836 2113
Jul01 3465 2150 16116 10036 2158 | Apr05 2035 2128 9564 10730 2283
Aug0l 3370 2146 15702 9897 2124 |May-05 2545 2124 11981 9705 2062
Sep01 2030 2143 13674 9949 2132 | JmD5 3120 2151 14505 9923 2134
Oct01 2355 2128 11069 9904 2107 | J05 3580 2175 16457 10248 2229
Nov-0l 1470 2104 6988 9553 2010 |Aug05 3525 2184 16137 10171 2222
Dec01 1080 2004 5158 10605 2220 | Sep0S 2065 2203 13450 0703 2157
Tn02 740 2097 3520 8713 1827 | Oct05 2395 2214 10818 0679 2143
Feb02 1080 2091 5165 11196 2341 |Now-05 1530 2219 6895 0427 2092
Mar-02 1460 2088 6994 10868 2269 | Dec-05 1370 2233 6137 12616  28.17
Apr02 1720 2096 8208 9208 1930 | Jan06 830 2237 3710 9160 2049
May-02 2430 2110 11514 9327 1068 | Feb06 1060 2238 4736 10265 2297
Jn02 3080 2107 14617 10000 2107 | Mar06 1600 2246 7125 11071 2486
TL02 3430 2105 16291 10145 2136 | Apr06 2060 2260 9116 10227 2311
Aug02 3260 2106 15478 9755 2055 |May06 2640 2269 11636 9426  21.39
Sep-02 2960 2085 14197 10329 2154 | Jun-D6 3350 2245 14922 10209 2292
Oct02 2520 2077 12132 10856 2255 | Jl-06 3460 2220 15583 90703 2155
Nov-02 1660 2088 7952 10872 2269 |Aue06 3670 2213 16581 10451  23.13
Dec:02 810 2096 3865 71046 1665 | Sep06 3000 2199 13642 0925  21.83
Jan03 970 2091 4639 11434 2395 | Oct06 2700 2169 12447 11137 24.16
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- Trend- Seasom- Seazom- . Trend- Seazom- Im Seasomally
Period Data (o am Imemlar JP%| Peiod Dam (oo o - re
Now-06 1440 2157 6676 9127 19.6%9 Auz-10 3620 2286 15837 Qg 82 2282
Dec06 890 21,57 41.26 8485 18.30 Sep-10 31.830 2265 14037  102.13 2314
Jan-07 7.20 21.52 33.46 82.62 17.78 Oct-10 2480 22335 109.96 98.39 22.19
Feb-07 1000 2143 4666 101.12 21.67 Nea-10 1930 2251 8573 11721 2639
Mar-07 1320 2137 61.77 9398 2031 Dec-10 1240 2243 3527 113.64 2349
Ap-07 1620 2133 7597 8522 18.17 Jan-11 290 2237 3978 9524 2197
May-07 2720 2132 13086 106,00 22.60 Feb-11 10,00 2226 492 97,36 21.67
Jum-07 3200 2145 14816 102.04 21.89 Mar-11 1390 22.10 6290 97.73 21.60
Jul-07 3480 2146 162.18 10099 21.67 Apr-11 1940 2181 8835 a3 34 21.76
Aug-07 3450 2138 16134 101.69 21.74 Mae-11 2300 2133 116.14 9408 2025
Sap-07 3070 2159 14221 103.47 2234 Jum-11 3170 2118 14971 102.42 21.69
Qet-07 2520 2210 11403 102.03 22.33 Jul-11 3460 2103 164.33 102.47 21.33
Now-07 1610 2228 7228 G881 2201 Aug-11 34350 2093 154.71 103.81 21.74
Dec-07 1040 2215 4696 96.55 2138 Sep-11 2960 2082 14219 10346 21.54
Jan-08 3.80 2213 26.21 64.71 14.32 Oet-11 2240  20.80 107.71 96.38 20,04
Feb-08 g80 217 4330 93185 2081 New-11 1250 21.00 5052 8137 17.09
Mar-08 1830 2221 33.29 129.42 28.73 Dec-11 1030 21.12 51.13 103.13 22.20
Ape-08 23520 2212 10490 11768 26.03 Jan-12 695 21.14 3287 g81.15 17.16
May-08 2310 220% 11394 9230 2033 Feb-12 1000 21.14 4731 102.54 21.67
Jum-08 3170 22.02 14398 98.50 21.69 Mar-12 1030 21.14 51.08 79358 16.78
Jul-08 3470 2210 157.01 %777 21.61 Apc-12 2200 2128 103.41 116.01 2468
Aug-08 3360 2230 13961 100,60 2244 May-12 273F  21.62 126.51 102.48 22.13
Sap-08 3060 2220 13786 10031 2226 Jum-12 3220 2186 14730 10077 2203
Oct-08 2300 21.78 105.63 34,51 20.38 Jul-12 3465 2196 157.78 98.25 21.38
New-0B 1620 2162 7493 10244 2215 Aung-12 3430 2207 15539 0794 21.62
Dec-08 1000 21.70 4609 94 76 20.56 Sep-12 2935 2228 13396 97 46 21.72
Jan-0% 820 21.68 37.82 93.39 2025 Oet-12 2340 2246 113.10 101.20 2273
Feb-09% 12,10 2133 5620 121.82 2623 Ne=-12 1775 2239 TO28 10838 2427
Mar-09 1340 2129 62.54 97.79 20.82 Dec-12  11.33 22.30 30.90 104.63 2333
Ape-09 1820 2123 85.75 S6.20 2042 Jan-13 8.80 2226 3952 97.58 21.73
May-09 2640 2125 12421 100.62 2139 Feb-13 10.8F 2223 43581 105.79 23.532
Jum-09 3220 2132 151.06 103.34 22.03 Mar-13 1500 22.22 67.52 10491 2331
Jul-09 3380 21536 13678 3763 21.05 Apr-13 0 2200 2211 2951 111.64 2468
Aug-09 3250 21.72 15147 2347 20.74 May-13 2570 2201 116.75 94 57 20.82
Bap09 2760 2186 12627 91.87 20.08 Jun-13 3165 21.96 14410 938 58 21.65
Qo0 2440 2203 110,76 99.11 21.83 Jul-13 3440 2152 156,96 9774 2142
New-09 1550 22.06 7026 S6.05 2119 Ang-13 3370 2192 153.72 9689 2124
Dec-09 1220 2206 55.30 113.69 2508 Sep-13 3015 2191 13762 10013 2194
Jan-10 11.80 22.14 33.29 131.58 29.13 Oet-13 2250 2183 103.05 892.21 20.13
Feb-10 1240 2235 5549 12027 2688 Ne=-13 1835 2177 8430 11524 2509
Mar-10 1640 2266 72.38 112.47 2548 Dec-13 9.60 21.73 4418 20,34 15,74
Am-10 1930 2285 34.46 9476 21.65 Jan-14 @40 21.64 4343 10724 2321
May-10 2610 2303 11336  91.8B2 21.14 Feb-14 1040 2160 4814 10434 22.54
Jum-10 3250 23.19 14014 95.87 2233 Mar-14 1310 2153 70.0% 108.91 2346
Jul-10 3540 2308 15339 3551 22.04 Apr-14 2010 2159 2310 104 44 2255
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Period  Data lg:.:uf.i SE Irregular :jf;ﬂj'_
May-14 2605 2160 12059 9768 2010
Tm-14 3030 2153 14071 9626 2073
Jl14 3370 2149 15678 9763 2099
Aug-14 3350 2142 15638 9857 2111
Sep-14 2890 2134 13546 9855 2103
Oct-14 2485 2128 11677 10448 2223
Nov-14 1630 2129 7658 10469 2228
Dec14 1000 2132 4690 9643 2056
Jaml5 807 2139 3772 9313 1992
Feb15 098 2144 4654 10087 2163
Mar-15 1344 2150 6252 9715 2088
Apr-15 2047 2139 9572 10738 22.96
May-15 2578 2017 12077 9864  20.88
15 3142 21.50
Rl15 3434 21.38
Aug-15  34.06 21.47
Sep-15  29.60 21.54
Oct-15  21.50 1924
Nov-15  14.50 19.82
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Appendix-B

Table 6.Estimated Autocorrelations Function (ACF) and Partial Autocorrelations Function (PACF)
for Erbil adjusted Mean Temperature in °C.

Lag ACF Lag PACF
1 0.38° 1 038"
2 -0.07 2 -0.25°
3 -0.07 3 -0.25°
4 0.08 4 011
5 -0.03 5 0.11
& -0.02 ] -0.11
7 0.02 7 -0.06
8 -0.02 g -0.08
9 0.00 9 -0.07
10 0.00 10 -0.05
11 0.32° 11 0.40
12 -0.49™ 12 -0.227
13 0.12 13 -0.10
14 0.00 14 -0.10
15 0.03 15 -0.16
16 -0.07 16 -0.16
17 0.06 17 -0.09
18 0.04 18 -0.04
19 -0.02 19 -0.03
20 -0.05 2 -0.09
21 0.02 21 -0.09
22 0.08 22 -0.02
23 -0.13 23 0.17
24 0.04 2 -0.127
25 -0.05 25 -0.16
26 0.07 2 0.10
27 0.04 27 -0.02
28 0.04 28 -0
29 -0.08 2 20.07
30 -0.01 30 -0.04
31 0.03 31 0.02
32 0.04 32 0.00
33 -0.01 33 -0.02
34 -0.11 34 -0.10
35 0.15 35 022
36 -0.127 36 -0.137
37 0.16 7 0.02
38 -0.08 38 -0.02
39 -0.06 39 -0.08
40 -0.01 40 -0.01
41 0.05 41 0.04
42 0.01 42 0.01
43 -0.03 43 0.02
44 0.00 44 0.02
45 0.00 43 0.01
46 0.11 46 0.06
47 026 47 0.06
A nne AR non

*non-seasonal terms, ** seasonal terms, ***non-seasonal and seasonal terms.

Table 6 shows the estimated autocorrelations (partial autocorrelations) between values of adjusted Mean Temperature in
°C at various lags. The lag k autocorrelation (partial autocorrelations) coefficient measures the correlation between values
of adjusted Mean Temperature at time t and time t-k (t+k).



Appendix-C

Table 7A. SARIMA(3,1,3)(3,1,3)12 model terms selection procedures.

SARTMA(3.1.3)(3.1.512 SARTMA(3.1.3)(3.1. 212 SARTMA(3.1.3)(3.1. 1012
. Sind. P- . Sind. P- . Sind. P-
Parameter Estimate Frror  vahie Parameter Estimate Frror  vahe Parameter Estimate Frror  vahie
AR -0.368 1.181 0.735 AR -0.339 1291 0731 AR -0.535 1446 0712
AR -0192 0889  0.B30 AR -0192 0939 0841 AR -8 0941 0880
AR 0.112 0379 0.768 AR 0.118 0408 0772 AR 0.1489 0449 0.741
KA 0.185 1.173 0ET& KA 0.194 1282 0.B30 KA 0.019 1435 0939
KA 0.214 1.081  0.843 KA 0.210 1.134 0.B39 KA 0.331 1133 0774
KAL) 0.399 0911 0662 KAL) 0.404 098 0682 KAL) 0.437 1052 0.6635
SAR(L) -0282 0 1049 0881 SAR(L) -0.274 18384 0835 SAR(L) -0016 0083 0798
SARLY 0.050 1566 0974 SARLY 0.014 0065 0827 SARLY 0.015 0.060 0805
SAR(S) -0.029 0071 0683 SAR(S) -0.025 0073 0734 SAR(S) -0.008 0.060 0895
ShACT) 0.658 2046 0748 ShACT) 0.665 1883 0725 ShACT) 0.525 0.01%  0.000
SMA) 0.289 1595 (.83 ShIAL) 0.243 1754 08
ShLALT) -0.036 1460 0930
(@ (b) (c)
SARTMA(3. 1,302,112 SARTMA(3.1.3)(1,1. 102 SARTMA(3.1.3)(0,1. 102
. Sind. P- . Sind. P- . Sind. P-
Parameter Estimate Frror  vahie Parameter Estimate Frror  vahe Parameter Estimate Frror  vahie
AR -0.538 1358 0693 AR -0.439 1532 0775 AR 0564 1424 0798
AR -iled 0900 0836 AR -019s 1038 0831 AR -(.189 1012 0832
AR 0.144 0427 073 AR 0.145 0467  0.761 AR 0.123 0430 0.775
KA 0.016 1.34% 0991 KA 0.117 1522 0939 KA 0.192 1416 0892
KA 0335 1.08% 0738 KA 250 1290  0.E46 KA 0214 1273 0.B67
KAL) 0.451 1001 0633 KAL) 0.445 1123 0692 KAL) 0.406 1.049 0699
SAR(L) -0014 00683 0820 BAR(]) -0018 0066 0.782 ShLA]) 0525 0017 0.000
SARLY) 0.019 0.062 0.762 ShACL 0.525 0018 0.000
ShACL 0.927 0017  0.000
@ @ ®
SARTMA(Z 1,300,112 SARTMA(L. 1,300,112 SARTMA(D,1.3)(0,1. 112
. Sind. P- . Sind. P- . Sind. P-
Parameter Estimate Frror  vahie Parameter Estimate Frror  vahe Parameter Estimate Frror  vahie
AR -0.387 0 0739 0601 AR -0.242 0521 0842 KA 0.560 0.060  0.000
AR 0.099 0336 0.769 KA 0319 0516 0537 KA 0.194 0068 0005
KA 0.162 0757 0831 KA 0.336 0321 0298 KAL) 0.115 0.058 0.035
KA 0511 0718 0477 KA 0.171 0.139 0218 ShACT) 0.526 0017 0.000
WA 0.137 0164 0404 ShlAl) 0.527 0017 0000
ShACT) 0.932 0.014  0.000
(2 () L£Y]
SARIMA(0,1,2)(0,1,1)12
. Sind. P-
Parameter  Eomate Emor  value
TN 0.588 0.03%  0.000
WAL 0.237 0038 0.000
ShIACT) 0533 0016 0.000
)]

SARIMA model coefficient summary. (a) - (j): Starting from SARIMA(3,1,3)(3,1,3):,, we arrive at our final model
SARIMA(0,1,2)(0,1,1)1, by, at each step, dropping the term with the highest p-value associated to it and re-estimating
the remaining parameters until all p-values for all estimated parameters are below 0.05.
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Table 7B. (2, 1, 3)(3, 1, 3)12 model terms selection procedures.

SARIMA(2 13031302 SARIMAZ 1.3)(3.1,.2m2 SARIMAZ 1,331,100
. wind. P- . Stnd. B- . Stmd. B-
Parameter Estimate Froor  vahe Parameter Estmate Frror  value Parameter Estmate Frror  vahs
AR -0.5335 0748 0833 AR(1) -0.401 0.73% 0332 AR 0420 0707 0533
AR 0012 0313 0970 AR 0.077 0326 0B84 AR 0.145 0335 (0.666
KA 0.220 0745 0.763 KAL) 0.154 0.737  0.833 KA 0.139 0.705  Q.E44
hA 0.397 0672 035353 WAL 0.496 0689 0472 KA 0.570 0691 0410
MALT) 0.176 0.165 0281 WA 0.154 0.163 0343 KA 0.117 0.167 0434
SARLL -0.281 2146  0.B98 SARLL -0.260 1692 Q873 SARLLY -0013 0061 0.B28
BAR() 0.056 1357 0871 BAR() 0.016 0,064 0803 SAR(D) 0.018 0.03% 0734
SAR(%) -0.027 0075 0723 BAR(3) -0L026 0073 0.720 SAR(Y) 0003 0.060 09352
BMACTY 0662 2142 0737 EhLACD 0.682 1690 0887 BMLALLY 0.529 0018 Q000
BRLACY 292 1388 QB3 Shiafdy 0.231 1590  0.823
SMAR) -0.034 1455 0979
(c)
(a) (b)
SAEIMA13)2.1,102 SARTMA(Z 1.331.1. 1012 SARTMA(21.3%0.1.1012
. wind. P- . Stnd. B- . Stmd. B-
Parameter Estimate Froor  vahe Parameter Estmate Frror  value Parameter Estmate Frror  vahs
AR -0.425 0686 0536 AR -0425 0682 03534 AR S0.397 0 0738 0.0l
AR 0.134 0326 0681 AR 0.144 0330 0663 AFRL) 0.099 033 0769
KA 0.133 0684 0B4s MIALTY 0.133 0681 0843 wacly 0.152 0.757 0831
hLA) 0.362 0667 0400 KAL) 0571 0665 0354 KA 0.511 0718 0477
hALT) 0.124 0.166 0455 WAL 0.117 0.168 0436 KAL) 0.137 0.164 0404
BAR(IL) 0012 0061 0.B43 BAR(1) -0.017 0,063 0.787 EMAN 0532 0014  Q.000
SAR() 0.022 0061 0715 A 0.529 0016 0.000
EMA 0931 0016 0.000
(£)
(d) (e)
SAFTMA(L1.3)0,1,12 SARTMWA{D,1.3%0.1. 1012 SARIMA(0,1,2)(0.1.1)12
. dind. P- . Stnd. P- . Stmd. P-
Parameter Estimate Foor  valne Parameter Eztimate Froor  valos Parameter Eztimate Foor  valus
AR -0.242 0521 D42 KIALLY 0.560 0,060 0,000 KA 0583 0035 0000
KEALTY 0.319 0516 0537 MAD 0.194 0,068 0.003 KA 0.237 0038  0.000
KA 0.336 0321 0293 WAL 0.115 0,038 0033 SMACLY 0533 0016 0,000
MA 0.171 0139 0218 EhLACD 0.526 0,017 0.000
BMALCLY 0927 0017 0.000
(g) (k) (i

SARIMA model coefficient summary. (a) - (i): Starting from SARIMA(2,1,3)(3,1,3)12, we arrive at our final model
SARIMA(0,1,2)(0,1,1)1, by, at each step, dropping the term with the highest p-value associated to it and re-estimating the
remaining parameters until all p-values for all estimated parameters are below 0.05.



Appendix-D

Table 8. Forecast value of Erbil Mean from Dec. 2015 to Dec. 2025.

No. of Lower  Upper No. of Lowar Upper
the Period  Forecast a5% 95% the Pariod  Forecast 93% 95%
288 Dec-13 10.03 7.83 12.69 326 Feb-19 9.87 6.76 1442
239 Tan-16 3.38 6.50 10.30 127 War-19 13.58 9.27 19.90
300 Fab-16 533 7.60 12.72 138 Apr-19 19.03 12.94 2797
201 Mar-16 13.52 1041 17.55 329 May-19 2370 17453 3791
292 Apr-16 18.94 14.34 24.67 330 Tun-19 30.82 20.83 45.53%
393 May-16 2558 19.58 3343 131 Tul-19 3386 22382 5024
204 Tun-16 30.67 2341 4020 132 Ang-l9 3334 2253 4992
195 Tul-16 33.70 25.63 44.30 333 Sep-19 29.06 1947 43.3%
206 Ang-16 3338 2531 4402 334 Oet-19 2337 15.60 34.99
297 Sep-16 28.93 21.87 3826 133 Nov-19 15342 1026 23.16
208 Oct-16 23.26 17.53 30.85 136 Dec-19 10.18 6.74 15.38
209 Nov-16 13.35 1133 2042 137 Jan-20 8.43 356 12.78
300 Dec-16 10.14 7.57 13.56 338 Feb-20 9.89 6.50 15.04
101 Tan-17 8.39 6.25 1127 139 Maz-20 13.60 892 20.75
302 Feb-17 5,84 7.30 13.27 140 Apr-20 19.06 1243 20.17
103 Mar-17 1354 10.01 18.31 14] May20 2573 16.77 39.53
104 Apr-17 1897 1398 2573 2 Fum20 3087 2004 47.55
105 May-17 25.62 18.83 34.87 143 Ful-20 3391 2195 5240
306 Fn-17 30.72 2251 4193 344 Anz-20 3336 2167 32.07
07 Tul-17 33.73 2463 4621 1435 Sep-20 2911 18.72 4326
308 Auz-17 3343 2435 4582 146 Oct-20 23.40 15.00 36.50
109 Sep-17 2897 21.03 39.91 47 Nov-20 1544 9.87 24.16
310 Oct-17 2329 16.86 32.18 348 Deac-20 10.20 6.49 16.04
111 Wor-17 15.37 11.0% 21.30 149 Tan-21 844 535 13.33
312 Dec-17 10.15 7.29 14.14 130 Feb-21 8.51 6.25 15.69
313 Tan-18 840 6.01 11.75 351 Mar-21 13.62 8.57 21.65
314 Fab-18 686 7.03 13.83 132 Apr-21 19.09 1197 3043
113 Mar-18 13.36 9.63 19.09 133 May-21 2579 16.12 41.24
316 Apr-18 19.00 13.45 26.83 354 Jun-21 3082 19.27 49.60
317 May-18 25.66 13.12 36.36 135 Tul-21 33.96 21.10 34.66
318 Jun-18  30.77 21.65 43.73 156 Aps-2] 3364 2084 5432
119 Jul-18  33.80 2372 4819 157 Sep21 2915 18.00 4722
120 Aug-18 3349 2342 47.88 158 Oct-21 2344 14.43 38.08
171 Sep-18 29.02 2023 41.62 350 Wov-21 1547 9.49 25.21
112 Oct-18 2333 16.22 33.56 160 Deae-21 1022 6.24 16.73
123 Now-18 15.39 10.67 221 161 Jam-22 846 314 13.91
324 Dec-18 10.17 7.01 14.75 362 Fab-22 852 6.01 16.37
125 Jan-19 342 5.78 12 23 163 War-22 13.65 8.24 22.59
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No. of Lower Upper No. of Lower Upper
the Paniod  Forecast 95% 95% the Period  Forecast 95% 95%
Months Limit  Limit | Months Limit ~ Limit
164 Apr-22 19.12 1151 3175 402 Jun-25 3111 16.35 59.03
363 MEy-22 2583 15.50 43.03 403 Tul-23 34.18 17.95 65.08
366 Jun-22 3096 1852 51.77 404 Ang-25 3385 1.7 64.68
367 Jul-22 3402 2028 37.05 403 Sep-23 2034 15.30 36.24
368 Aus-22 33.70 2003 36.70 406 Oct-23 23.39 1226 4536
369 Sep-22 2920 1730 4925 407 Nov-25 15.56 8.06 30003
37 Oct-22 2347 13.36 3975 408 Dec-23 10.28 330 19.94
a7l Now-22 1549 9.12 26.31
372 Dac-22 1023 5% 1747
373 Jan-23 8.47 454 1452
374 Feb-23 554 5.78 17.09
373 Mar-23 13.67 7.92 23.58
376 Apr-23 19.15 11.06 3315
377 May-23 25.87 1435 4493
378 Jun-23 310l 17.79 3405
a7e Jul-23 34.07 19.48 3958
380 Aug-23 33.75 1924 5921
381 Sep-23 2925 16.62 5148
g2 Oet-23 2331 1331 41352
383 Nov-23 1551 8.76 2748
384 Dac-23 10.25 3.76 18.25
383 Jan-24 B4R 4.75 15.16
386 Feb-24 5.53 5.55 17.85
387 Mar-24 13.69 7.61 2464
388 Apr-24 19.18 10.62 3463
389 Miay-24 591 14.30 46.94
380 Jun-24 31.06 17.08 3647
391 Jul-24 Hn 18.71 62.25
392 Aus-24 33.80 1847 61.87
393 Sep-24 2929 15.95 53.79
304 Oet-24 2355 1278 4339
395 Nov-24 1554 241 28.72
306 Dac-24 10.26 552 19.07
397 Jan-23 8.50 456 15.85
398 Feb-23 5.57 5.33 18.66
309 Mar-23 1371 7.30 235.75
400 Apr-23 19.21 10.19 36.20
401 May-25 2595 13.72 4807

Table 8 shows the forecasted values for mean temperature in °C from December 2015 to December 2025.
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