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Abstract 

A generalized structural time series modelling framework was used to analyse the monthly records of 

mean temperature, one of the most important environmental parameters, using classical stochastic 

processes. In this paper we are using the SARIMA Box-Jenkins model and obtain a medium-term 

(10 years) forecast of the mean temperature in Erbil. A prediction of the monthly mean temperature 

during the past 287 months (~ 24 years) using the SARIMA(0,1,2)(0,1,1)12 model predicts that the 

average temperature in the governorate of Erbil will be stable for the next 10 years. The evaluation of 

prediction accuracy shows that our model performs equally well when applying it to different periods 

of time for which data is available. The method used here could easily be applied by the decision 

makers responsible for providing water and electricity in the Kurdistan Region. 

 

Keywords Climate change, Stochastic Process, Fourier method, forecasting, Kurdistan Region of 

Iraq, SARIMA Model. 

 

1. Introduction 

In 2009, the United Nations Environment Programme (UNEP) reported a sudden surge in global 

temperature of approximately 0.5
o
C. However, to this day there is no consensus among scientists on 

how to gauge the magnitude of climate change and its effects on a regional level. It was widely 

assumed that its effects on surface and ocean temperature would appear gradually and slowly due to 

their weak and delayed response to the greenhouse gas levels (i.e. carbon dioxide, water vapour, 

ozone, methane, various nitrous oxides, and other industrial gases). Since the emission of these gases 

is coupled to world population growth and technological advances, it is hard to predict when (if at 

all) this phenomenon will reach a stable equilibrium again (UNEP, 2009). Climate variation over any 

region has become a topic of interest all over the world, due to its immediate effect on the daily lives 

of humans (Ghahraman, 2006). The Kurdistan Region of Iraq is affected by changes in climate 

conditions in the fields of agriculture, architecture, road construction etc. Situated in the north of 
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Iraq, Kurdistan has been facing the consequences of severe drought in the Fertile Crescent since the 

1970s (El-Kadi, 2001).  

 

In terms of the Koppen classification of climes, Kurdistan exhibits an arid to semi-arid climate. It is 

hot and dry in summer and cold and wet in winter, with short spring and autumn seasons (Turkes, 

1996c). In winter, the weather is shaped by Mediterranean cyclones passing Iraqi Kurdistan on their 

way to the northeast as well as Arabian Sea cyclones moving northward across the Persian Gulf, both 

of which typically carry a great amount of moisture leading to a large amount of precipitation. Other 

sources of rain and snow include occasional European winter low-pressure systems moving eastward 

to the southeast part of Turkey and the adjacent Kurdish territories (Turkes, 1999). In summer, the 

region falls under the influence of sub-tropical high pressure belts and Mediterranean anticyclones 

which carry sand and dust to the region. Temperatures may reach up to 50
o
C in summer and drop as 

low as -10
o
C in winter (Keller and Blodgett, 2006). The statistical analysis of the climatological 

records contributes to the understanding of the underlying causes of drought and consequently 

facilitates taking measures to prepare for (if not prevent altogether) natural disasters such as crop 

failures or flooding or dust storms. 

 

As pointed out by Al-Kubaisi and Gardi (2012), who compared mean air temperature, the number of 

dust storms and precipitation figures over a period of 11 years from 1998 to 2009, there is an 

unmistakable interrelation between the three. While the mean temperature fell from 22.7°C in 1998 

to 22.5°C in 2000 and 21.3°C in 2009, annual rainfall at first decreased from 310.3 mm to 268.5 mm, 

finally climbing back to 295.6 mm and the number of dust storms went from 63 to 94 and back down 

to 64, respectively (Al-Kubaisi and Gardi, 2012). 

 

Kurdistan has been going through a period of drought over the past few years; as a result many of the 

inhabitants of rural areas left their villages and migrated to the cities where the water scarcity issue is 

becoming more pressing due to increasing population (Zakaria et. al., 2013). The situation is 

complicated further by the political circumstances, such as mass immigration from southern Iraq and 

Syria. Another study by Khalid (2014) and Eklund and Pilesjö (2012) showed that in the last two 

decades, Erbil had expanded significantly both in population size and in area, a process in which 

much of the natural soil was removed. As a result, the microclimate of these cites has changed and 

now exhibits the Urban Heat Island (UHI) phenomenon. The temperature records make this evident: 

While the average maximum temperature in Erbil city was 14.34°C in 1975-1990, it had reached 

14.74°C in 1985-2000 and 15.70°C in 1995-2012 (see Saeed and Abas, 2012). 
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In order to accurately determine the need for electricity and water and plan their provision 

accordingly, a precise quantitative understanding and monitoring of various climate parameters, such 

as temperature, precipitation, humidity and wind, is indispensable. This study aims to examine the 

time evolution of the mean temperature in Erbil between January 1992 and November 2015 by 

separating seasonal effects from long-term trends and, using the Seasonal Autoregressive Integrated 

Moving Average (SARIMA) method, create a model that accurately predicts the monthly mean 

temperature until December 2025, thus enabling the political authorities to make informed decisions 

on climate related matters. 

 

To model a time series event as a function of its past values, analysts identify patterns in past values 

and project them into the future. In particular, the Box-Jenkins methodology could be applied to any 

environmental parameters e.g. wind speed, precipitation, humidity and evaporation. Box-Jenkins 

methodology has been used by many researchers starting with the studies by Intergovernmental 

Panel on Climate Change, IPCC (2013), Lee and Ko (2011), Ghil et. al., (2002), Mann (2008) and 

Mann and Park (1996) who predicted the variation in temperature in different places in the world by 

using different statistical approaches, including bivariate time series models, and time series 

smoothing both in the univariate and multivariate setting. The most significant feature of the 

univariate time series model is its ability to determine the trend and random residuals about the time 

series data by using an autoregressive integrated moving average (ARIMA) (Romilly, 2005).  

 

Autoregressive Integrated Moving Average (ARIMA) and Seasonal Integrated Moving Average 

(SARIMA) techniques have been broadly applied to forecast how variables change over time. These 

techniques typically use (seasonal) autoregressive terms and seasonal moving average terms to 

forecast the changes of time series. As generally reported, these forecasting techniques regard both 

the preceding values of a variable and the corresponding error terms as essential information in 

forecasting future values. Given a large time series dataset, ARIMA and SARIMA methods show 

high forecast accuracy. Forecasting analysis in a variety of fields such as air temperature, electricity 

demand, wheat prices, inflation, unemployment, reliability and fishery landings have demonstrated 

the validity of ARIMA and/or SARIMA models (Choi, et. al., 2015). In other instances, the 

deterministic stochastic combined technique has been successfully used by Ye et al. (2013) to predict 

global temperature as recorded by the National Climate Data Centre (NCDC); and a time series 

approach has been implemented by Mraoua and Bari (2007) to accurately model weather derivative 

pricing in Morocco. SARIMA itself has been applied to local temperature forecasting in the Ashanti 

region of northern Ghana by Asamoah-Boaheng (2014). 
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Regional changes were observed in the mean temperatures in Turkey from 1950-1994 over the 

course of a study conducted by Can and Atimtay (2002) using time series analysis of mean 

temperature data. Their study established a statistically significant cooling trend at 21 stations as well 

as a warming trend at one station and no trend at 36 stations. Hansen et al. (2006) in their study 

focused on global temperature change while Rahmstorf et al. (2007) compared recent climate 

observations to projections. Zakaria et al. (2012) applied ARIMA models for weekly rainfall data 

from four rainfall stations in the North West of Iraq: Sinjar, Mosul, Rabeaa and Talafar, for the 

period 1990-2011. Four SARIMA models were developed for the above stations: (3,0,2)(2,1,1)30, 

(1,0,1)(1,1,3)30, (1,1,2)(3,0,1)30 and (1,1,1)(0,0,1)30 respectively. 

 

In the current paper, Box-Jenkins methodology, and in particular the method of the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model will be applied to temperature data 

from the Kurdistan Region of Iraq. 

 

2. Methods  

 

2.1 Data 

The data covers the 287 month period from January 1992 to November 2015 and was compiled using 

measured results made available via the Kurdistan Regional Statistics Office (KRSO), the Ministry 

of Planning - Kurdistan Region 2015 Bulletin and the Environmental Statistics Bulletin - Iraq (CSOI) 

2014. 

The maximum and minimum temperature data in degrees centigrade is recorded in different 

locations in the Kurdistan Region by the General Directorate of Meteorology and Seismology office 

in Erbil. They send the data to the Central Statistical Organisation branches in Erbil and Baghdad; 

after that the data will be ready for publication. The data can be also obtained from the United 

Nations Food and Agriculture Organisation Coordination Office for North Iraq and from the General 

Directorate of Agriculture in Erbil at Agro-Meteorological Sub-sector Department. The data was 

analysed using the Statgraphics Centurion XVII software package. 

 

2.2 Box-Jenkins Methods  

An integral notion in the Box-Jenkins framework is that of a stationary stochastic process. A 

stochastic process is called stationary if its probability distribution is independent of time. This 

immediately implies that the mean and variance functions of a stationary process are time-
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independent. In particular, stationary processes cannot exhibit any sort of trend. The basic idea of the 

Box-Jenkins method is to transform any given stochastic process into a stationary one by separating 

the trend from the noise. A stationary process is completely determined by its mean, variance and 

autocorrelation function, i.e. the correlation between two values separated by a lag of k time steps. 

Comparing the autocorrelation of a given model to the one obtained from a dataset is a crucial step in 

identifying accurate and reliable models (Chatfield, 2004). 

 

2.2.1 Autoregressive Moving Average Process (ARMA) or Mixed Process  

In order to reproduce autocorrelation patterns, a more general approach is needed. One option is to 

use a combination of autoregressive and moving average methods, namely the ARMA(p,q) model, 

which treats a variable as a linear function of the p preceding values and the statistical errors 

associated to the q previous values (Jeffrey, 1990). The most general form that this model can take 

is: 

qtqtttptpttt aaaayyyy    ...... 22112211
, which can be more succinctly 

expressed as in Equation (1): 
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where  denotes the backward shift operator ( 1 tt yy ),   and  are polynomials of degree p and 

q, respectively, at denotes a purely random process and  is a constant. 

 

2.2.2 ARIMA Models 

The ARMA model can be further refined by passing to the Auto-Regressive Integrated Moving 

Average or ARIMA(p,d,q). “Integration” here refers to the process of differencing in order to turn a 

non-stationary time series into a stationary one. The parameter p stands for the number of 

autoregressive terms, q is the number of statistical errors taken into account, representing the 

moving-average approach, and d is the number of non-seasonal differences (Chatfield, 2004). A 

model of this type can be expressed as in Equation (2):  
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2.2.3 SARIMA Models 

Lastly, a problem arising in many applications is that of periodicity. In our case, the mean 

temperature clearly follows, to some degree, annual cycles, and these patterns need to be taken into 

account separately. Box and Jenkins (1970) incorporated seasonality into existing ARIMA 

approaches, arriving at the Seasonal Autoregressive Moving Average Model or 

SARIMA(p,d,q)(P,D,Q)S which can be written as  
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where  again denotes the backward shift operator, and S denotes the number of data points in a 

season, so that Stt

S yy   is a shift of a full season (in our case S=12 representing 12 months in a 

year). P and Q are equivalent terms to p and q, except they are applied to the series in steps of size S 

to remove seasonality, before the ARMA transformation with p and q is carried out; 
QqPp  ,,, 

are polynomials of degree QqPp ,,, , respectively. ta  denotes a purely random process and tW  is  a 

differenced series used if the original process ty  is not stationary. The differencing refers to 

subtracting the earlier value of the time series observations from the present value and can be written 

as: 
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dd )1(   being the non-seasonal differencing and DsD

S )1(   the seasonal differencing. 

The superscripts d and D indicate the order of the non-seasonal and seasonal differencing, 

respectively (Ye et al., 2013: Chatfield, 2004).  
 

 

2.3 Fitting Box-Jenkins Models 

Following Box and Jenkins (1970), forecasts can be derived from the above model in four steps: (1) 

Model identification; (2) estimation of model parameters; (3) diagnostic checking and (4) application 

of the model forecasting (Box, et.al., 1994). The standard approach to model identification is to 

match both the autocorrelation function (ACF) and the partial autocorrelation function (PACF), 

which serves to isolate particularly strong self-correlations, e.g. due to seasonality effects, to the ones 

exhibited by a given dataset (Pankratz, 1983); this procedure not only allows for model identification 
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but also gives a first estimate of the model parameters. This estimate is then refined by other 

statistical methods, e.g. a mean-squares or maximum likelihood fit.  

 

In the next step, the chosen model is checked against the time series by analyzing the series of 

residuals, sample correlations and the residual histogram and performing a diagnosis test (Chatfield, 

2004). One such test is the Ljung-Box lack-of-fit test which amounts to computing the following 

quantity: 
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where h is the maximum considered lag, n is the number of observations in the series and kr  is the 

autocorrelation at lag k. Denoting by m the number of model parameters fitted to the data, and under 

the null hypothesis the statistic Q is assumed to have a chi-square distribution with (h-m) degrees of 

freedom. This hypothesis, and thus the model, is then rejected or accepted accordingly. 

 

In general, among the models that pass this test, the ones with fewer parameters yield more accurate 

forecasts. Different models are compared by using either Akaike's Information Criterion (AIC) 

(Zakaria et al., 2012) or the Schwarz Bayesian Information Criterion (SBIC) (Schwarz, 1978). When 

we add parameters to the fitted models, the value of the likelihood will raise and cause the problem 

of over fitting. AIC and SBIC are used to deal with this problem, by initiating a penalty term for the 

number of parameters in the model, this value being greater in SBIC than in AIC (Schwarz, 1978).  

 

The AIC amounts to minimizing the following quantity: 

 

)6()(2)(log2 CQPqpLAIC e   

 

where: 

L= Maximum likelihood,  

p= non-seasonal Autoregressive order, q= non-seasonal Moving average order,  

P= seasonal Autoregressive order, Q= seasonal Moving average order,  

C= constant of the model. 
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The SBIC is computed as; 

  )7(log)(2)log(2 nCQPqpLSBIC 
 

 

where n is the sample size. 

 

2.3.1 Fitting Box-Jenkins Models for a Seasonal Model 

A seasonal model is identified using the following steps: 

Step 1:  Examine the time series plots for seasonality and trend (i.e. check for stationarity).  

Step 2:  Carry out the necessary transformation of the data according to whether or not the data 

exhibits trend and seasonality effects, turn the data into a stationary series using both seasonal and 

non-seasonal differencing and apply e.g. a natural log normal transformation. 

Step 3:  Examine the ACF and PACF of the new data, transformed data and (if necessary) 

differenced data as they are the principal tools used to identify the AR and MA terms. Generally, to 

select non-seasonal terms we check the early lags of estimated ACF and PACF coefficients. Spikes 

in the ACF indicate non-seasonal MA terms while spikes in the PACF are a sign of non-seasonal AR 

terms. As for the seasonal terms, we study the patterns across lags that are multiples of S. For 

example, for monthly data, we look at lags 12, 24, 36, 48 and so on.  The ACF and PACF may then 

be examined for spikes at the seasonal lags in the same way as we did for the earlier lags. 

Step 4:  When the model is selected, its parameters can be estimated using statistical techniques, such 

as Maximum Likelihood, least-squares or the Yule-Walker method. The selected model(s) should be 

those that might be reasonable on the basis of Step 3, including the transformation and any 

differencing we made on the original data before looking at the ACF and PACF.  

Step 5:  Perform tests on the residuals in order to determine whether the model is adequate for the 

data. It is sensible to use a p-value threshold of 0.05 (and equivalently a confidence level of 95%), 

since this is the most widely used value and allows comparison to other studies. Test for the model's 

in-sample fitting performance, which is measured by the stationary R-square and R-square model fit, 

as well as AIC and SBIC. Test for the model's out-of-sample forecasting accuracy, the magnitude of 

error, which is measured by the root mean squared error (RMSE), the mean absolute error (MAE), 

and the mean absolute percentage error (MAPE). Also check for bias in the estimators, for instance 

the mean error (ME) and mean percentage error (MPE) are used as measures of biased estimators. It 
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is necessary to check for the assumptions of normality and homoscedasticity, and also to check for 

autocorrelations (using the Ljung-Box test), in addition to plotting ACF. It is essential to compare 

AIC or SBIC values if several models have been tried (Ye et al., 2013). We recommend this 

procedure, with the full range of diagnostic tests, for SARIMA model selection for similar data in 

general. 

If the results are unsatisfactory, we must go back to Step 3 or maybe even Step 2 (Chatfield, 2004), 

and try a different set of parameters. At this stage we can select different models if any individual 

coefficients fall outside some specific interval around zero. In that case we can depend on the 

estimated ACF and PACF coefficient values to be more accurate and comparing them with the 

appropriate confidence interval, which can be found by referring to cumulative distribution function 

(cdf) for a normal distribution. For example, the 0.975 probability point of the standard normal is 

1.96. The 95% confidence interval for ACF and PACF coefficients is therefore n96.1  , where n is 

the number of observations in the series. Any coefficients outside this critical interval are evidence 

that the coefficients are significantly different from zero at the 95% confidence level and this interval 

is called the Bartlett range (Box et al., 1994). 

3. Results 

 

3.1 Pattern of the Erbil mean temperature 

The most common patterns in time series data are increasing or decreasing overall trend, cycles, 

seasonality, and irregular fluctuations. These are identified by plotting the original mean temperature 

data vs. monthly recorded data over 32 years, Figure 1(a). It appears from Figure 1(a)-(f), that there 

is a seasonality effect on the mean temperate data. The overall mean temperature during the studied 

period January 1992 - November 2015 appears to exhibit a slight trend. In addition there is a regular 

cycle with a period of 12 months, rising to peak in July or August during the summer months and 

falling off in December (Figure 1(d)). Thus the seasonal time series decomposition method is 

suitable for our data. 

 

Generally it is difficult to detect any pure cycle and trend in Figure 1(a), but the spectral density of 

the data in the periodogram (Figure 1(b)) shows a sharp spike at exactly the right frequency, thus 

indicating a hidden cycle. Although we are certain of a cyclical effect in the mean temperature data 

we still used a periodogram based on Fourier decomposition; it fits the data to a sum of sine waves of 

different frequencies (Gottman, 1981). For strongly seasonal data, e.g. one cycle every 12 months 

there will be a large spike at 1/12. The multiplicative seasonal decomposition has been applied on 
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Kurdistan temperature data. Figure 1(c) displays the trend and cyclical effects in the original dataset, 

a moving average of length equal to the seasonal order has been added. The moving average 

estimates the combined trend and cycle components, which are not usually separated (Dagum, 2010 

and Grieser et al., 2002), and the seasonal indices estimate the seasonal component.  

 

Figure 1. Time sequence and the decomposed plot of monthly Erbil mean temperature. (a) time 

series plot of the original data. (b) temperature periodogram. (c) plot of Trend-Cycle component. (d) 

plot of seasonal indices. (e) plot of irregular or residual component. (f) Seasonally adjusted data. 

 

When using a multiplicative model, the indices are expressed as percentages. Figure 1(d) shows the 

seasonal indices for each season, scaled such that an average season corresponds to 100. The indices 

range from a low of 40.504o
C in January to a high of 160.589o

C in July. This indicates that there is a 

seasonal swing from 40.504% of the average to 160.589% of the average throughout 12 months. For 

example the index 0.91 in April indicates that the mean temperature is at 91% of the baseline. Note 

the strong seasonal effect for the temperature data, rising from a low in January to a peak in July or 
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August and then falling off again. Finally the Irregular Component is displayed in Figure 1(e). For 

the multiplicative model, this component is also expressed on a percentage basis, with the average 

value scaled to equal 100. In January of 1993, the irregular component rose to approximately 133%, 

implying that temperature during that month was 33% more than expected, while in January 2008 the 

figure shows that the irregular component has declined to approximately 65% less than expected. 

The region has faced the same situation when in December 1994 the temperature was 64% below the 

average. 

 

Once the decomposition has been performed, we can take the original data and divide it by the 

estimated seasonal indices to obtain the seasonally adjusted data tY   (Chatfield, 2004), defined by: 

t

t

t
S

Y
Y   ,                                                                                                (8) 

where tY  is the seasonal component. The seasonally adjusted data is plotted in Figure 1(f). Appendix 

A shows the mean temperature seasonal adjusted time series data in centigrade with the other 

components. Table 5 of Appendix A explains each step of the seasonal decomposition. The trend-

cycle column shows the results of a centred moving average of length 12 applied to temperature. The 

seasonality column shows the data divided by the moving average and multiplied by 100. Seasonal 

indices are then computed for each season by averaging the ratios across all observations in that 

season, and scaling the indices so that an average season equals 100. The data is then divided by the 

trend-cycle and seasonal estimates to give the irregular or residual component. This component is 

then multiplied by 100 (see Yi-Hui, 2011 and Theodosiou, 2011). 

 

3.2 Fitting a SARIMA model  

The model development process begins by studying the original plot, autocorrelation function 

(ACF), partial autocorrelation function (PACF) and objective test of the raw data to ensure that the 

assumption of stationarity is met. Figures 2(a) and 2(b) from the correlogram, most of the spikes in 

both the ACF and the PACF were found to be outside the confidence limits. Also the ACF and 

PACF show a cyclic or seasonal variation of the correlations in the form of sinusoidal waves. 

Furthermore both the ACF and the PACF show decay of the spikes indicating that the series has 

component problems. This is a clear indication of a seasonality of order 12. 

 

The next step is to difference the series; by taking one regular difference to remove the seasonal 

trend in the data and then one seasonal differencing to take out a seasonal random walk type of non-
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stationarity. In order to make the series stationary around its variance, we applied a natural log 

transformation. Following the Box-Jenkins technique we depend on ACF or PACF plots to fit the 

order of the seasonal model (Chatfield, 2004). 

 

From Figures 2(c) and 2(d) we can choose our model, depending on the ACF and PACF spikes at 

low lags. To determine the non-seasonal AR terms, we look at the PACF which show clear spikes at 

lags 1, 2 and 3. So the non-seasonal AR terms are determined to be of order 3. There are three spikes 

at lags 1, 11 and 12 in ACF so we have three terms for non-seasonal MA. Now for the seasonal part 

of the model, in this case we look at lags 12, 24, 36 and 48 for both ACF and PACF.  From the 

PACF we indicate that there are three significant spikes at lags 12, 24 and 36; thus the order of the 

seasonal AR is three. In the ACF, there are two spikes at lags 12 and 48; this means that the order of 

the seasonal MA is two. Therefore our base model is SARIMA(3,1,3)(3,1,2)12. The model coefficient 

summary is given in Table 1(a)-(i). 

 

 

Figure 2. Correlogram plots. (a) estimated autocorrelations for mean temperature (ACF), shows the 

correlogram for the original mean temperature data. Here the 12, 24, 36 and 48 autocorrelation 

coefficients are statistically significant at the 95.0% confidence level. (b) estimated partial 

autocorrelation (PACF). (c) estimated autocorrelation for adjusted mean temperature (ACF). (d) 

estimated partial autocorrelation function for adjusted mean temperature (PACF). 
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Table 1. SARIMA model terms selection procedures. 

 

SARIMA model coefficient summary. (a) - (i): Starting from SARIMA(3,1,3)(3,1,2)12, we arrive at our final model 

SARIMA(0,1,2)(0,1,1)12 by, at each step, dropping the term with the highest p-value associated to it and re-estimating the 

remaining parameters until all p-values for all estimated parameters are below 0.05. 

 

Table 6 in Appendix B shows the estimated autocorrelations (partial autocorrelations) between 

values of adjusted Mean Temperature in degrees centigrade at various lags. We get two alternative 

models from it depending on the 95% confidence interval for ACF and PACF coefficients. For the 

Bartlett range, where n=287, they are significantly different from zero at the 95% confidence level. 

The models are SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)12 when we select first and 

second spikes in the PACF instead of three (the PACF accounts for the correlations at all lower lags). 

Steps of estimating SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)12 parameters are shown in 
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Tables 7A and 7B of Appendix C. The main conclusion between these models is that all three reduce 

to the same SARIMA(0,1,2)(0,1,1)12 model, which is the model that we select. This model is 

appropriate for predicting future values from 2015(Dec)-2025(Jan-Dec). It is stable when we delete 

from or add years to the original period from 1992(Jan-Dec) to 2015(Jan-Nov) and attempt to predict 

the given data e.g. selecting the 1993(Jan-Dec) to 2010(Jan-Dec) period to predict year 2011 and so 

on. This model is a final model which works under all conditions for various periods. 

 

3.2.1. Model Estimation and Evaluation 

Table 2 shows summarized results of seven tests run on the residuals to determine whether the model 

is adequate for predicting the mean temperature in Erbil and on the basis of historical data from 

1992(Jan-Dec) to 2015(Jan-Nov).The magnitudes of error in the model are 1.696°C, 1.294°C and 

7.796% respectively, relative to the average of the predicted temperature at 21.028°C. The model 

shows no sign of biased estimations across the entire duration of the prediction period (10 years), 

based on the values of both ME and MPE as they are too close to zero. The fitted model is supported 

by the small amount of AIC and SBIC. Since no tests are statistically significant at the 95% or higher 

confidence level, the proposed model, SARIMA(0,1,2)(0,1,1)12, passes all tests. Therefore, it is 

considered a good model for forecasting.  

 

Table 2. Model Testing. 

Model RMSE MAE MAPE ME MPE AIC SBIC 

SARIMA(0,1,2)(0,1,1)12 1.696 1.294 7.796 0.143 -0.294 1.078 1.116 

 

Model selection and validity model testing criteria for mean temperature forecasting, where: RMSE= Root Mean Squared 

Error, MAE= Mean Absolute Error, MAPE= Mean Absolute Percentage Error, ME= Mean Error, MPE= Mean 

Percentage Error, AIC= Akaike's Information Criteria  and SBIC= Schwarz Bayesian Information Criteria. 

 

The model parameters (autoregressive, moving average, seasonal autoregressive and seasonal 

moving average) are estimated using maximum likelihood estimation. The estimates of the 

parameters are shown in Table 1(a)-(i). Based on 95% confidence level, we conclude that all the 

coefficients of the SARIMA(0,1,2)(0,1,1)12 model are significantly different from zero. Furthermore, 

the model reproduces the data under study very well, as indicated by the Stationary R-square (0.514) 

and R-square (0.96). More than half the variance of the original time series is explained by the model 

persistence.  

 

The mathematical equation for the SARIMA(0,1,2)(0,1,1)12 model’s estimated coefficients is  
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Using the parameters we estimate from the data, this gives 

 

  1413122113121 221.0549.0933.0237.0588.0 tttttttttt aaaaaayyyy  

  1428813288122882288128828813288122881288288 221.0549.0933.0237.0588.0ˆˆ aaaaaayyyy

)10(221.0549.0933.0237.0588.00ˆ
274275276286287275276287288 aaaaayyyy   

 

Equation (10) may now be used to forecast the Erbil future mean temperature value for the coming 

10 years (121 months) starting from December 2015, 288ŷ , where ŷ is the predicted value and 288 is 

the number of months that have passed since Jan 1992 (see Appendix D). 

 

 

Figure 3. Residual plot for SARIMA(0,1,2)(0,1,1)12 model: (a) normal probability plot for the 

residual, (b) the standardized plot for residuals, (c) periodogram for residuals and (d) histogram for 

residuals.Figure 4.  
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3.2.2. Model Diagnostics 

In time series modelling, the selection of a best model fit to the data is directly related to whether the 

residual analysis is performed well. One of the assumptions of the SARIMA (Seasonal ARIMA) 

model is that, for a good model, the residuals must follow a white noise process, that is, the residuals 

have zero mean, constant variance (homoscedasticity) and are also uncorrelated with past values. A 

special case of this process is when the residuals are normally distributed, when they are said to 

follow a Gaussian white noise process. It is such a process that we test for here. 

 

For our selected SARIMA(0,1,2)(0,1,1)12 model, normality is tested by a normal probability plot as 

shown in Figure 3(a), the standardized residual Figure 3(b), the periodogram Figure 3(c) and Figure 

3(d) the histogram of residuals. The four figures of residuals for mean temperature data shows that 

the residuals of the model are consistent with a normal distribution assumption. Table 3 indicates that 

the SARIMA(0,1,2)(0,1,1)12 model residuals are uncorrelated as well as independent as all three tests 

indicated. 

 

Table 3. Test for autocorrelation and independence. 

Tests 
Test Statistic 

Value 
p-value 

RUNS: Runs above and below median 0.545 0.586 

RUNM: Runs up and down 0.599 0.549 

AUTO: Ljung-Box Test 15.067 0.819 

Residual autocorrelation and independence test for the selected model, where: RUNS = Test for excessive runs up and 

down, RUNM = Test for excessive runs above and below median and AUTO = Ljung-Box test for excessive 

autocorrelation. 

 

In order to determine whether the residuals are randomly distributed, three tests have been 

performed. In the first step, we counted how often the sequence exceeded the median, finding 143 as 

opposed to 138 which is expected for a random sequence. In the second test, we determined how 

often the sequence increased, finding 187 steps as compared to the expected 182.3. Both of these 

tests result in a p-value that is larger than 0.05, which indicates that there is no reason to reject the 

hypothesis of randomness at a 95% confidence level. Thirdly, the p-value (0.819) for the Ljung-Box 

statistic exceeds 5% as well, indicating that there is no significant departure from white noise for the 

residuals, i.e. there is no indication of autocorrelation in residuals of the selected model. Thus, the 

selected model SARIMA (0,1,2)(0,1,1)12 satisfies all the model assumptions. 
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The estimated white noise variance at 271 degrees of freedom was 0.014 and the estimated white 

noise standard deviation was 0.119, also the difference in variance and difference in mean test were 

"OK", which indicate that our selected model residuals are homogeneous i.e. there are no significant 

departures from white noise for the residuals at 95%. The current model is adequate for the data as 

the selected model SARIMA(0,1,2)(0,1,1)12 satisfies all our model assumptions (Normality, 

uncorrelated residuals and homoscedasticity). Therefore the selected model is considered a good 

model to forecast future values. 

 

Looking at Figure 4, the autocorrelation checks of the residuals indicate that the model is good 

because they resemble a white noise process; that is the residuals have zero mean, constant variance 

and are also uncorrelated. Since the model diagnostic tests show that all the parameter estimates are 

significant and the residual series for the model are random, it can then be concluded that a 

SARIMA(0,1,2)(0,1,1)12 model is adequate for the Erbil mean temperature series. Therefore, 

SARIMA(0,1,2)(0,1,1)12  is used to forecast the future mean temperature series of Kurdistan Region. 

 

 

 
Figure 4. ACF of residuals for SARIMA(0,1,2)(0,1,1)12 model. 

 

 

3.3 Forecasting using SARIMA (0,1,2)(0,1,1)12 

The performance of SARIMA(0,1,2)(0,1,1)12 model for the Erbil mean temperature is now evaluated 

by forecasting the data one step prediction for years 2014(Jan-Dec)-2015(Jan-Nov) to indicate the 

models adequacy, performance and for comparison purposes. Using the selected model, the 23 

months forecast are shown in Table 4 and Figure 5. 
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Table 4. Forecasted mean temperatures value in 
o
C for January 2014 to November 2015. 

 
Checking the SARIMA(0,1,2)(0,1,1)12 model by predicting the existing mean temperature data in 

January 2014 through November 2015. 

 

 

Figure 5. The forecasted mean temperatures value in 
o
C for January 2014 to November 2015. 

 

 

Figure 6. The Erbil mean temperature forecast from December 2015 to December 2025 
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It appears from Figure 5 that the selected model is very well-suited for predicting the future 

development of the Erbil mean temperature as the differences between the actual data (solid line) and 

forecast data (dashed line) are very small, the lower line represents their residual values as tabulated 

in Table 4. 

 

Figure 6 shows the forecasted values for the mean temperatures for 121 months from December 

2015 to December 2025. The forecast mean temperatures are represented by the solid line and the 

dashed lines indicate the 95% confidence band. In fact this figure does not give us a clear trend of 

future mean temperature, as it may both increase or decrease within the confidence limits. We 

therefore decided to plot the future value for the same period using the data from Jan 1992 to Nov 

2015 as a base for our forecast instead of just using the last month of the existing data, Nov 2015, in 

order to show the more striking graph shown in Figure 7. Table 8 in the Appendix D shows the 121 

months forecast. The forecasted mean temperature in Erbil for next 10 years looks flattened when 

compared to previous values in Figure 7, meaning that the temperature is predicted to be stable with 

the same pattern in the future. 

 

 
Figure 7. The Erbil mean temperature forecast from December 2015- December 2025. 
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7 it appears that the predicted mean temperature in January has decreased from 9.4
o
C in 2014 to 

8.1
o
C in 2015 but is projected to rise in 2016 until 2025, while the average temperature in July, 

August and December for the same period will be generally around 34
o
C, 33.4

o
C and 10

o
C.  

 

4. Conclusions 

The temperature in the Kurdistan Region has changed similarly to many other areas in the world, due 

to climate change. Many researchers have studied these phenomena in different places by using 

various methods and statistical tools, among them the seasonal time series method. In the Kurdistan 

Region, studies on rainfall and on electricity demand in both Sinjar district and Sulaymaniyah 

Governorate have been carried out using ARIMA and SARIMA, respectively. Although Erbil is the 

capital of Iraqi Kurdistan and it shows a significant shift in temperature over the last decades, until 

now no time-series based studies in that direction have been undertaken. 

 

In general the pattern of mean temperatures in Erbil Kurdistan Region from January 1992 to 

November 2015 was observed to be not stationary and increasing over time. The non-stationarity of 

the mean temperature series was verified by the plot of the sample ACF and PACF’s. The data cover 

287 time periods. Currently, a seasonal autoregressive integrated moving average (SARIMA) model 

has been selected by following the procedures of Box-Jenkin's SARIMA model building. The 

underlying assumption is that the best forecast for future data is given by a parametric model relating 

the most recent data value to previous data values and previous noise. Each value of mean 

temperature has been adjusted in the following way before the model was fit: (1) seasonal and non-

seasonal differences are applied to remove the effect of trend and take out a seasonal random walk 

type of non-stationarity, that is to make the series stationary around its mean, (2) a natural log 

transformation was applied to make the series stationary around its variance, (3) a multiplicative 

seasonal adjustment was applied. 

 

Using the ACF and PACF estimated coefficient plots in Figures 2(c) and 2(d), as well as Tables 7A 

and 7B (Appendix C), three models were developed: namely SARIMA(3,1,3)(3,1,2)12, 

SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)12; each of them lead to the same model,  

SARIMA (0,1,2)(0,1,1)12. We get this particular model based on the significance terms in the model. 

Terms with p-values less than 0.05 are considered statistically significantly different from zero at the 

95.0% confidence level. Starting with the base model, SARIMA(3,1,3)(3,1,2)12, p-value for AR(3), 

MA(3), SAR(3) and SMA(2) terms in the model are greater than 0.05, so they are not statistically 

significant. We should therefore consider reducing the order of the terms depending on the maximum 
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p-values among them; this is illustrated in Table 1 (a)-(i). Here at each step, we are dropping the term 

with the highest p-value associated to it and re-estimating the remaining parameters until all p-values 

for all estimated parameters are below 0.05. 

 

The model diagnostics were performed through careful examination of the model residuals. The 

model residuals were found to be following a white noise process with a mean of zero and a constant 

variance, hence uncorrelated. The comparison for choosing the best model to represent the data is 

based on the value of RMSE, MAE and MAPE values 1.696°C, 1.294°C and 7.796% respectively. 

No bias was detected in the model, based on the value of both ME and MPE (0.143 and -0.294, 

respectively) as they are close to zero. The fitted model is supported by the small value of AIC and 

SBIC amount of 1.07 and 1.116 respectively.  

 

As no tests are statistically significant at the 95% or higher confidence level, the existing model is 

sufficient for the data. Furthermore, the model residuals satisfy our assumptions of normality, 

homoscedasticity and being uncorrelated with past values, through a normal probability plot, 

standardized residual plot, periodogram and histogram (see Figures 3 and 4) and the Ljung-Box test. 

The statistical analysis leads us to conclude that there is no reason to reject the hypothesis that the 

residuals follow a white noise process at 95% confidence level. In addition, the value of R-square at 

95% confidence level was 0.96 which means more than half of the variance of the original time 

series is explained by the model persistence. Perhaps good indicators that our 

SARIMA(0,1,2)(0,1,1)12 model represents well for this region are the small values of the estimated 

variance and standard deviation for the model input white noise 0.014 and 0.119.  

 

The selected model is further validated by predicting the mean temperature of January 2014 to 

November 2015 and reproducing the known seasonal patterns in its forecasts. It shows that the 

estimated forecast mean temperature was identical or very close to the actual real data. The pattern of 

mean temperatures in Erbil from Dec. 2015 to Dec. 2025 was observed to be stationary, hence does 

not follow any particular pattern (neither increasing nor decreasing). 

 

Similar investigations have been carried out in the wider region by other researchers. Tektas (2010) 

used an ARIMA(2,1,1) model to predict the weather of Göztepe Region in İstanbul-Turkey. This 

involved data from 2000-2008 collected on a daily basis. We note that the model fits their data less 

well than our SARIMA model fits ours (assessed through the standard criteria). A SARIMA 

(0,0,1)(0,1,1)12 model was adopted by Sarraf et al. (2011) to forecast average monthly temperature at 
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Ahwaz synoptic station in Iran, using average monthly temperature data from 1990 to 2010.  This 

model was a good fit to their data, and they used it to predict the average temperature for 2010-2011, 

with a particular applications for agriculture within the region that year.  

 

Air temperature of the southern Caspian Sea (Anzali, Ramsar and Babolsar synoptic stations) was 

modelled by Khajavi et al. (2012) in Iran. A SARIMA(1,0,0)(0,1,1)12 model was chosen to forecast 

future mean monthly temperature at the Anzali and Babolsar stations, while a SARIMA 

(0,0,2)(0,1,1)12 model was used for the Ramsar mean monthly temperature. They compared 

forecasted temperature at all stations with real data for the year 2005-2006, with good predictability.  

The monthly mean temperature at the Shiraz Synoptic Station in the south of Iran was used in a study 

by Babazadeh and Shamsnia (2014). They used a SARIMA (2,1,0)(2,1,0)12 model to forecast the 

future mean temperature in the region, using the historical mean temperature data in the region from 

21 years. Their chosen model again produced reliable forecasts for future mean temperature in the 

Shiraz Region, and was also used to forecast crop productions in year 2008-2009 and 2009-2010.  

 

The fitted SARIMA models that we have discussed are all quite similar in character, and it appears 

that this is a good general model for fitting temperature data, providing a good fit in the cases 

considered. We note, however, that in fitting the above models, none of the named studies carried out 

the full range of tests and procedures that we outline in Section 2.3.1 which we believe should be 

followed (see e.g. Chatfield, 2004). We would recommend the procedure carried out in our paper for 

the selection of SARIMA models for equivalent data elsewhere. Based upon our results and the 

model diagnostics performed, the identified model was found to be a good model for predicting 

future mean temperatures in the Kurdistan Region. Potential applications include the forecasting of 

crop yields as in Babazadeh and Shamsnia (2014) or the prediction of power requirements for 

temperature-sensitive energy usage such as heating and refrigeration, or of adverse weather events. 
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Appendix-A 

Table 5. Seasonal Decomposition Method: Multiplicative of Erbil Mean Temperature in 
o
C from 

Jan. 1992 to Nov. 2015. 
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Appendix-B 

 

Table 6.Estimated Autocorrelations Function (ACF) and Partial Autocorrelations Function (PACF) 

for Erbil adjusted Mean Temperature in 
o
C. 

 
*non-seasonal terms, ** seasonal terms, ***non-seasonal and seasonal terms. 

Table 6 shows the estimated autocorrelations (partial autocorrelations) between values of adjusted Mean Temperature in 
o
C at various lags. The lag k autocorrelation (partial autocorrelations) coefficient measures the correlation between values 

of adjusted Mean Temperature at time t and time t-k (t+k).   
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Appendix-C 

 

Table 7A. SARIMA(3,1,3)(3,1,3)12 model terms selection procedures. 

 

SARIMA model coefficient summary. (a) - (j): Starting from SARIMA(3,1,3)(3,1,3)12, we arrive at our final model 

SARIMA(0,1,2)(0,1,1)12 by, at each step,  dropping the term with the highest p-value associated to it and re-estimating 

the remaining parameters until all p-values for all estimated parameters are below 0.05. 
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Table 7B. (2, 1, 3)(3, 1, 3)12 model terms selection procedures. 

 

SARIMA model coefficient summary. (a) - (i): Starting from SARIMA(2,1,3)(3,1,3)12, we arrive at our final model 

SARIMA(0,1,2)(0,1,1)12 by, at each step, dropping the term with the highest p-value associated to it and re-estimating the 

remaining parameters until all p-values for all estimated parameters are below 0.05. 
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Appendix-D 

 

Table 8.  Forecast value of Erbil Mean from Dec. 2015 to Dec. 2025. 
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Table 8 shows the forecasted values for mean temperature in oC from December 2015 to December 2025. 
 


