

City, University of London Institutional Repository

Citation: Pino, L., Spanoudakis, G., Krotsiani, M. & Mahbub, K. (2020). Pattern Based

Design and Verification of Secure Service Compositions. IEEE Transactions on Services
Computing, 13(3), pp. 515-528. doi: 10.1109/tsc.2017.2690430

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17218/

Link to published version: https://doi.org/10.1109/tsc.2017.2690430

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Pattern-Based Design and Verification of
Secure Service Compositions
Luca Pino, George Spanoudakis, Maria Krotsiani and Khaled Mahbub

Abstract— Ensuring the preservation of security is a key requirement and challenge for Service-Based Systems (SBS) due to
the use of third party software services not operating under different security perimeters. In this paper, we present an approach
for verifying the security properties of SBS workflows and adapting them if such properties are not preserved. Our approach
uses secure service composition patterns. These patterns encode proven dependencies between service level and workflow
level security properties. These dependencies are used in reasoning processes supporting the verification of SBS workflows
with respect to workflow security properties and their adaptation in ways that guarantee the properties if necessary. Our
approach has been implemented by extending the Eclipse BPEL Designer and validated experimentally. The experimental
evaluation has produced positive results, indicating that even for complex workflows and large sets of secure service
composition patterns verification can be performed efficiently.

Index Terms— Design Tools and Techniques, Security and Protection, Services Composition, Systems analysis and design

—————————— u ——————————

1 INTRODUCTION

ECURITY assurance is important for any software ap-
plication but acutely so in the case of service-based sys-

tems (SBSs), i.e., systems composed of distributed software
services, which can be deployed on different and hetero-
geneous infrastructures and operate without common
ownership and centralised control.

Assessing and providing assurance about the security
of SBSs is a complex problem that has no comprehensive
solution to the best of our knowledge. Existing solutions
(e.g., [2][3][6][8]) rely on different forms of model check-
ing and theorem proving to verify security properties of
service compositions. These approaches typically require
the specification of: (a) behavioural models of the software
services used by the SBS, (b) the component that orches-
trates them to provide the SBS functionality (i.e., the ser-
vice orchestrator), and (c) the security properties that need
to be guaranteed in some temporal logic language. There
are two main difficulties with such approaches. The first is
that creating accurate specifications of (a)-(c) for realistic
SBSs is a non-trivial and time-consuming task. The second
is that, even if SBS specifications are available, performing
automated static analysis might be computationally in-
tractable.

In this paper, we present an alternative approach for
designing, adapting and verifying the security properties
of SBSs, which is based on pattern driven verification. Our

approach assumes that an SBS is designed and imple-
mented by a service orchestration process (aka service
workflow), which invokes (and receives responses from)
the individual services that constitute the SBS (aka partner
services) and may perform various computations upon the
data exchanged with these services.

To support the verification of security properties, our
approach uses secure service composition (SCO) patterns.
These patterns encode proven dependencies between ser-
vice level security properties (i.e., security properties of the
individual services of an SBS) and workflow level security
properties (i.e., security properties of the entire orchestra-
tion/workflow of the SBS). The encoding of such depend-
encies in SCO patterns enables the inference of service
level security properties, which – if satisfied by the indi-
vidual services of the SBS – would guarantee the satisfac-
tion of workflow level security properties for it.

The inference of service level security properties re-
quired for verifying workflow level properties of an SBS is
the basis of our approach since – once these properties are
identified – verification can be based on checking whether
the specific services that constitute the SBS satisfy the se-
curity properties required of them. Checking this is based
on digital security certificates, which are assigned to ser-
vices following a certification process. Such certificates
encode: (i) the service that is certified, (ii) the endpoint at
which this service can be accessed, (iii) the service level
security property that is certified for the service, and (iv)
the evidence demonstrating that the security property is
satisfied by the service [20].

The inference of service level security properties using
the SCO patterns enables also the generation/adaptation
of an SBS service workflow in a manner guaranteeing that
it will satisfy required workflow level security properties.
More specifically, the inference process establishes all the

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

S

————————————————
L. Pino is with Department of Computer Science, City, University of Lon-
don, Northampton Square, London, EC1V 0HB, UK, E-mail: Lu-
ca.Pino.2@city.ac.uk.
M. Krotsiani is with Department of Computer Science, City, University of
London, E-mail: Maria.Krotsiani@city.ac.uk.
G. Spanoudakis is with Department of Computer Science, City, University
of London, E-mail: G.E.Spanoudakis@city.ac.uk.
K. Mahbub is with School of Computing and Digital Technology, Bir-
mingham City University, Millennium Point, Birmingham B4 7XG, UK,
E-mail: khaled.mahbub@bcu.ac.uk. Note: This work was carried whilst the
author was with City, University of London.

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

alternative combinations of security properties of the in-
dividual partner services of the SBS (referred to as security
plans in the rest of the paper) that could ensure the satis-
faction of workflow level security properties by it. Driven
by such security plans, SBS adaptation is realised as a
search process that locates potential partner services for
the SBS workflow that satisfy the required security prop-
erties. The main benefits of our approach are that:
• It can be used both for the verification of workflow

level security properties of existing service workflows
(SBSs), and the adaptation of such workflows in ways
that are guaranteed to preserve security properties.

• It is computationally feasible since the verification of
security properties is based on finding combinations of
the pre-specified SCO patterns that would entail them.
Although this process may, in principle, have a com-
binatorial complexity, experimental results have
shown promising average performance even for large
SCO pattern sets.

• It can be extended through the incorporation of new
SCO patterns.
It should be noted that, although our approach pro-

vides sound and feasible verification analysis, it is not
complete in performing security verification. This is be-
cause, there is no guarantee that SCO patterns will encode
ALL the combinations of service level security properties
that can guarantee a workflow level security property.
Hence, a failure of the pattern driven verification process
does not mean that the security property in question does
not hold for the workflow.

The work we present in this paper extends our previ-
ous work described in [24][25][26][28]. The work in
[24][25] presented an initial proof-of-concept realisation of
our approach for pattern-driven generation of secure ser-
vice compositions without, however, addressing verifica-
tion. In our original work, patterns were modelled using
OWL-S [19] and Situation Calculus [16]. This, however,
turned out to be inefficient for both specifying and apply-
ing patterns for secure service composition. In [26], we
presented the initial version of the algorithm for inferring
service level from workflow level security properties, and
provided an overview of how it could support workflow
verification/adaptation without any algorithmic details
for these processes. In [28], we presented formal proofs of
some SCO patterns (e.g., integrity) and an initial proto-
type of our approach focusing on security-driven service
discovery.

The pattern proofs approach introduced in [28] was
based on modelling patterns using the Security Modeling
Framework SeMF [13]. SeMF provides an adequate formal
framework for modelling basic service workflows (e.g.,
sequential, split-join, OR-orchestrations) in SBS systems
and proving pattern properties [27]. However, it cannot
support the application of patterns once they are proven.

The main contributions of this paper, with respect to
our earlier work, are:
(a) It extends the SCO patterns representation scheme

with additional conditions about pattern activity in-
puts and outputs, which are required for matching
patterns with SBS workflows, and provides a scheme

for expressing patterns in Drools [9], to enable pattern
application (matching).

(b) It introduces the verification algorithm that is based
on the extended form of SCO patterns and can verify
if a service workflow satisfies specific security proper-
ties required of it.

(c) It presents and discusses the outcomes of an experi-
mental evaluation of our approach.

The remainder of this paper is structured as follows.
Section 2 presents a scenario showing the need for and the
ways of using the pattern driven verification approach.
Section 3 introduces SCO patterns and describes their
specification in Drools. Sections 4 and 5 present the securi-
ty verification and the secure workflow generation pro-
cesses, respectively. Section 6 describes the tool we im-
plemented to realise our approach. Section 7 presents the
outcomes of the experimental evaluation of our approach.
Section 8 discusses related work. Finally, Section 9 pro-
vides conclusions and outlines directions for future work.

2 SCENARIO
To exemplify our approach, consider the SBS service

workflow fragment that is shown in Fig 1. This fragment
(called Checkout) corresponds to the last part a purchasing
process realised by an SBS. More specifically, upon receiv-
ing a purchasing request consisting of a list of items to be
purchased, the credit card details and address of the pur-
chaser, Checkout takes payment (see activity Payment in
Fig. 1) for the purchased items, places the order in a pur-
chase repository (see activity PlaceOrder in Fig. 1), and
creates an order report (see activity WriteReport in Fig. 1).
The activities Payment, PlaceOrder and WriteReport of
Checkout are realised through the invocation of operations
of partner services, which are assumed to have identical
names with the relevant workflow activities.

Fig. 1. Example of SBS service workflow – Checkout.

In this scenario, a designer might wish to verify wheth-

er the Checkout workflow preserves the confidentiality of
the credit card and address information of the user. To en-
sure this, it is necessary to verify that all the services,
which are orchestrated by Checkout (i.e., Payment, PlaceOr-
der and WriteReport), preserve the confidentiality of credit
card and address information, as well as the confidentiali-
ty of additional information that is exchanged internally
within the workflow (i.e., paySuccess and orderSuccess) if
the latter also includes any information about the credit
card and address information of the user. Furthermore, the
preservation of confidentiality will need to be checked
against the transmission, processing and storage of any of
the information items that need to remain confidential.

Payment

items,
credit card,
address

PlaceOrder

items,
address,
paySuccess

WriteReport

Checkout

items,
name,
orderSuccess

report

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 3

3 SECURE COMPOSITION PATTERNS
3.1 Overview of pattern structure and semantics

SCO patterns encode proven dependencies between
security properties of individual services (i.e., service level
security properties) and security properties of the entire SBS
service workflows (i.e., workflow level properties). As dis-
cussed in Sect. 1, the encoding of such dependencies ena-
bles: (i) the verification that the service workflow of an
SBS satisfies certain security properties, and (ii) the gener-
ation (and adaptation) of an SBS workflow in a way that is
guaranteed to satisfy required workflow level security
properties. The specification of an SCO pattern consists of
four parts:
(i) The workflow (WF) part – This part of the pattern de-

fines the form of the workflow (i.e., service orchestra-
tion) that the pattern applies to. WF is specified as an
orchestration of abstract activity placeholders. When a
pattern is matched against the workflow of an SBS,
the placeholders in its WF may be bound to invoca-
tions of operations of specific partner services of the
SBS or sub-workflows of it.

(ii) The RSP properties part – This part of the pattern
defines the workflow level security properties (re-
ferred to as “RSP properties” in the following) that
the pattern can guarantee for the workflow specified
in its WF part.

(iii) The ASP properties part– This part of the pattern
defines the service level security properties (referred
to as “ASP properties” in the following), which are
required of the activity placeholders in the workflow
of the pattern, in order to guarantee the RSP proper-
ties specified in the pattern.

(iv) The CONDITIONS part – This part includes condi-
tions, regarding the inputs and outputs of the activi-
ty placeholders of the pattern.

The semantic interpretation of an SCO pattern having
the above structure is that if the ASP properties, which
have been specified for the activity placeholders in the
workflow of the pattern, and the conditions of the pattern
are true, then the RSP property specified in the pattern is
also true for the entire WF of it. Formally, this can be ex-
pressed as: 𝐴𝑆𝑃 	𝑊𝐹 ∧ 	𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑅𝑆𝑃 where ⊨
denotes the entailment relation that has been established
by the proof of the pattern.

SCO patterns cover basic control flow patterns sug-
gested by the Workflow Management Coalition [36]),
namely the sequential, parallel split and exclusive choice or-
chestrations, and the security properties of confidentiality
and integrity [27][23]. In the following, we give an exam-
ple of an SCO pattern to demonstrate the use of the above
structure.

3.2 Example of an SCO pattern
Our first example is an SCO pattern regarding the se-

curity property of confidentiality, i.e., a property requir-
ing that no non-authorised disclosure of information
should be possible in a system. Confidentiality has been
commonly defined based on the concept of information
flow (IF) [34] IF-based definitions of confidentiality strati-

fy the users of a system in classes with different access
rights to information, and distinguish the information
flows within it according to the class of users that they
should be accessible to. Typically, the user classes used in
IF-approaches are low-level users with restricted access to
information, and high-level users having full access.
Based on the above principles, there have been several
definitions of properties, whose intent is to express the
concept of confidentiality. The definition that we focus on
is that of Perfect Security Property (PSP) [34]. PSP requires
that a low-level user, allowed to access only public infor-
mation, should not be able to determine anything about
high-level (i.e., confidential) information.

WF

	
ASP:	
PSP(A,	 VA,	 CA)	 and	 VA	 ⊆	 VP	 and	 CA	 ∩	 VP	 =	 ∅	
PSP(B,	VB,	CB)	and	VB	⊆	VP	and	CB	∩	VP	=	∅

Conditions:	
INP 	=	INA 	

OUTA 	=	INB 	

OUTB 	=	OUTP 	RSP:	SecReqP	=	PSP(P,	VP,	CP)		

Fig. 2. PSP SCO Pattern.

Fig. 2 shows the SCO pattern for preserving PSP on a
sequential service workflow P, i.e., a service workflow
with two activity placeholders (A and B), in which A is
executed before B. The structure of P is shown in the WF
part of the figure. Further conditions that define P are
specified in the Conditions part. These are: (a) the inputs of
A are the inputs of the workflow (INP = INA), (b) the inputs
of B are the outputs of A (INB = OUTA), and (c) the outputs
of P are the outputs of B (OUTP = OUTB).

Let us assume that for each x in {P, A, B}
• INX and OUTX are the sets of inputs and outputs of

x, and EX = INX∪ OUTX ;
• VX and CX are two disjoint subsets of EX , which par-

tition it into public parts VX (i.e., parts visible to
low-level users) and confidential parts CX (i.e., parts
visible only to high-level users)

Then, as proven in [18], PSP holds on the workflow P if,
for all activity placeholders x ∈ {A, B}: (a) the actions of x
that reveal public information are part of the actions of P
that reveal public information (i.e., VX ⊆ VP), and (b) the
confidential actions of x that reveal confidential infor-
mation do not include any action of P that reveals public
information (i.e., CXÇ VP = Ø). The conditions (a) and (b)
are expressed as ASP properties of the pattern, and entail
the PSP property on P. The latter is expressed by
PSP(P,VP ,CP) in the RSP part of the pattern.

3.3 Encoding of SCO patterns in Drools

3.1.1 Overview of rule language
SCO patterns are expressed as Drools production rules

[9]. The reasons for choosing this approach to specify pat-

 <A> "INA = INP"

OUTA"

INP"

"INB = OUTA"

OUTB"

OUTP = OUTB"

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

terns is that Drools is supported by rule engine, which
realises a rule based reasoning process based on the Rete
algorithm [11], i.e., an efficient pattern-matching algo-
rithm known to scale well for large numbers of rules and
data sets. Hence, the choice of Drools enabled us to have
an efficient implementation of the pattern based reasoning
process.

In the following, we introduce the scheme for encoding
SCO patterns in Drools and then show how the two pat-
terns introduced in Sect. 3 are encoded in this scheme.

A production rule in Drools has following structure:
rule name <attributes>*

when <conditional element>* then <action>* end
The antecedent (i.e., when) part of the rule specifies a set of
conditions and the consequence (i.e., then) part of the rule
specifies a list of actions. When a rule is applied, the
Drools rule engine checks whether its conditions are satis-
fied by (i.e., match with) the facts in the KB and, if they
are, the actions of the rule are executed. Rule actions are
typically used to modify the KB by inserting, retracting or
updating the objects (facts) in it. Such modifications are
encoded through the standard Drools actions “insert”,
“retract” and “update”, respectively. The conditions of a
rule are expressed as patterns of objects that encode the
facts in the Drools KB. These patterns define object types
and constraints for the data encoded in objects. These con-
straints may be atomic or complex. Complex Drool object
constraints are defined through logical operators (e.g.,

and, or, not, exists, forall). A presentation of the
full grammar of the Drools rule language is beyond the
scope of this paper and may be found in-
http://docs.jboss.org/drools/release/6.1.0.Final/drools-
docs/html_single/. Table 1 provides an overview of the
main specification constructs of this language, to enable
the reader understand the SCO patterns specifications
given in the paper.

3.1.2 Extensions of the rule language for specifying
SCO patterns

Drools rules are used to encode relations between the
ASP and RSP security properties in SCO patterns. The
encoding scheme is set to enable the inference of the ASP
properties, which are required of the activity placeholders
of the workflow of the SCO pattern, for this workflow to
have the RSP property guaranteed by the pattern. More
specifically: (i) the when part of the rule encodes the WF
part of the pattern, the conditions regarding the inputs
and outputs of the activities of WF, and the RSP property
guaranteed by the pattern for WF; and (ii) the then part of
the rule encodes the service level security properties ASP,
which if satisfied by the WF’s activity placeholders would
guarantee the workflow level property RSP. Hence, a
Drools rule expressing an SCO pattern encodes the impli-
cations: WF Ù Conditions Ù RSP Þ ASPi (i=1,...,n) where
ASPi are the ASP properties required of the individual
services bound to the activity placeholders of the SCO
pattern. Note that this implication expresses the opposite
of the dependency relation proven in the pattern, i.e.,
𝐴𝑆𝑃 	𝑊𝐹 ∧ 	𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑅𝑆𝑃. This encoding enables
the inference of the ASPi properties, which if satisfied by
the individual services of a workflow would guarantee
RSP for it, during the WF verification and adaptation pro-
cesses (see Sect. 4 and 5 below).

The specification of SCO patterns in Drools makes also
use of placeholder and (security) requirement objects. The
types of these objects are specified as shown in the UML
diagram of Fig. 3. Activity placeholder objects (or simply
“placeholders”) represent the partner services (or compo-
sitions of partner services) that are already bound or
should be bound to the workflow of an SCO pattern.
Placeholders can be of three different types:
• PartnerLinkActivity (PLA) placeholders – These are used

to represent partner services that are already bound to
and can be invoked by the WF of an SCO pattern. PLA
placeholders contain information about the services
bound to WF and the security properties that have
been certified for them.

• OrchestrationPattern (OP) placeholders – These are
used to represent sub-workflows of the overall WF of
the pattern. OP placeholders can be Sequential, Parallel
(i.e., AND-OPs) and Choice (OR-OPs) representing ac-
tivities, which are executed sequentially, in parallel or
alternatively, respectively.

• Unassigned Activity (UA) placeholders, representing
activities, which are yet to be bound to an individual
service or a service orchestration in order to have an
executable WF. UA placeholders contain the structural

TABLE	1:	HIGH	LEVEL	DROOLS	RULE	SPECIFICATION	CONSTRUCTS	
Construct	 Meaning/Usage	
Conditional	element:	
conditionalElement:

and-CE | or-CE | not-

CE | exists-CE |

forall-CE | from-CE |

collect-CE | accumu-

late-CE | eval-CE

Conditional	elements	are	used	to	specify	con-
ditions	 in	 the	when	part	of	a	 rule	and	 in	con-
straint	 expressions	 (see	 Pattern	 construct).	
Conditional	 elements	 realise	 basic	 logical	
operators	 (e.g.,	 and,	 or,	 not);	 quantified	 logic	
operators	(forall	and	exists);	and	object	collec-
tion	operators	(e.g.,	collect,	accumulate).	

Pattern	
Top level syntax:

Pattern: <pattern-

Binding ":" > Pat-

ternType "(" Con-

straints ")"

Patterns	 are	 matched	 with	 elements	 in	 the	
working	memory.	The	pattern	binding	 is	 typi-
cally	a	variable	and	the	pattern	type	refers	to	
declared	 object	 types	 that	 could	 be	matched	
with	 the	pattern.	Constraints	are	 specified	by	
logical	 expressions.	 Such	 expressions	 can	 be	
constructed	by	logic	conditional	elements	(see	
above);	object	collection	elements,	unification	
operators	 (:=);	 relational	 (<,	>,	=<,	>=,	 !=,	==);	
arithmetic	(e.g.,	+,-,*,/,%);	property/list	access	
operators;	 data	 accumulation	 functions	 (e.g.,	
min,	 max,	 average,	 count,	 sum);	 regular	 ex-
pression	 matching	 operators	 (e.g.,	 matches,	
contains,	str);	and	temporal	(Allens)	operators	
(e.g.,	before,	after,	coincides).	

Actions:	
Top	Level	Syntax:	
	

Actions	used	in	our	approach	are:		
Modify	–	This	action	modifies	 the	contents	of	
a	fact/object.	
Insert	 –	 This	 action	 insert	 a	 new	 fact/object	
into	the	knowledge	base.	
Retract	–	This	action	deletes	a	fact/object.	

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 5

(i.e., WSDL) specification of the service or orchestra-
tion that is eligible for instantiating it.

Fig. 3. SCO Pattern specification object types

A security requirement object expresses a security
property ASP that is required of a placeholder of the SCO
pattern (i.e., an ASP property). The required security
property is expressed by the secProp opposite association
end (field) of security requirement objects, and the place-
holder that the property refers to is expressed by the sub-
ject field of the same object. A security requirement object
may also contain: (a) a set of Parameters indicating the in-
puts or outputs of the placeholder that the security prop-
erty refers to, and (b) further requirements (inferredReqs
field) that may have been deduced as sufficient for the
security property expressed by the requirement to hold.
Security property objects contain the security property
name (propertyName field) and an optional set of attribute-
value fields (attributesMap field) allowing the expression
of extra conditions over the property. The set of all the
ASP properties that are inferred for the different services
of a workflow by an SCO pattern are aggregated into
SecPlan objects.

3.1.3 Example of Drools specification of SCO pattern
Based on the above scheme, the SCO pattern express-

ing the PSP notion of confidentiality that we discussed in
Section 3.2, can be represented as shown in Table 2. The
when part of this rule specifies: (i) the two activity place-
holders A and B of the PSP pattern (see object variables
$A and $B in lines 2-3 and 4-5); (ii) the order in which $A
and $B should be executed (see variable $WF), (iii) the
conditions between the outputs of $A, and the inputs of
$B as required by the PSP pattern (lines 6-8); and (iv) the
RSP property that can be guaranteed through the applica-
tion of the pattern, i.e., the PSP property in this case (see
variable $RSP in lines 9-10). (i) and (ii) constitute the spec-
ification of the WF part of the pattern.

The then part, the rule specifies actions, which generate
a security plan indicating the security properties ASP that,
if satisfied by the activity placeholders of the pattern’s
workflow WF, would make WF to satisfy RSP. According
to the proof of the pattern, each of the placeholders should

satisfy the “PSP” property. Hence, “PSP” is set as the ASP
property that should be satisfied ASP_A and ASP_B (see
lines 15 and 20, respectively).

The additional conditions needed by the pattern (i.e.,
the conditions VA ⊆ VP and CA ∩ VP = ∅	for A, and the con-
ditions VB ⊆ VP and CB ∩ VP = ∅	for B) are added to ASP_A
(see lines 16 and 17) and ASP_B (see lines 21 and 22). The
specification of these additional conditions refers to the
class Operation (see lines 16-17 and 21-22). This operation
is provided by the query language (and the discovery en-
gine implementing it), which is used for finding suitable
matches (see Sect. 5 and Sect. 6).

4 VERIFICATION PROCESS
The process for verifying if an SBS workflow SBS-WF sat-
isfies required security properties has two main phases.

In the first of these phases, all the SCO patterns that
can guarantee the RSP property required of SBS-WF are
identified and, if their workflow structure matches the
structure of SBS-WF, they are used to infer the ASP prop-
erties, which if satisfied by the individual services of SBS-
WF, would guarantee RSP for it. This phase may generate
alternative combinations of ASP properties for the ser-
vices of SBS-WF, which would guarantee RSP. Each of
these combinations is what we call a security plan in our
approach. In the second phase of the verification process,

TABLE	2:	DROOLS	RULE	FOR	PSP	PATTERN	
1. rule	"PSP	on	Cascade"	

when	
2. 	 $A:			 Placeholder($input	:	parameters.inputs,		
3. 	 	 	 	 	 $intData	:	parameters.outputs)	
4. 	 $B:			 Placeholder(parameters.inputs==$intData,		
5. 	 	 	 	 	 $output	:	parameters.outputs)	
6. 	 $WF:		Sequential(parameters.inputs	==	$inputs,	
7. 	 	 	 	 	 parameters.outputs	==	$outputs,		
8. 	 	 	 	 	 firstActivity==$A,	secondActivity==$B)	
9. 	 $RSP:	Req(propertyName	==	"PSP",		
10. 	 	 	 	 	 subject	==	$WF,	satisfied	==	false)	
11. 	 $SP:		 SecPlan(requirements	contains	$RSP)	

then	
12. 	 SecPlan	newSecPlan	=	new	SecPlan($SP);	
13. 	 newSecPlan.removeRequirement($RSP);	
14. 	 Set	V_P	=	$RSP.getAttributesMap().get("V");	
15. 	 Req	ASP_A	=	new	Req($RSP,	"PSP",	$A);	
16. 	 ASP_A.getAttributesMap().put("V",	new		 	

	 Operation("subset",	V_P));	
17. 	 ASP_A.getAttributesMap().put("C",	new		 	

	 Operation("subset",	new	Operation("complement",V_P)));	
18. 	 newSecPlan.getRequirements().add(ASP_A);	
19. 	 insert(ASP_A);	
20. 	 Req	ASP_B	=	new	Req($RSP,	"PSP",	$B);	
21. 	 ASP_B.getAttributesMap().put("V",	new		 	

	 Operation("subset",	V_P));	
22. 	 ASP_B.getAttributesMap().put("C",	new		 	

	 Operation("subset",	
	 	 new	Operation("complement",V_P)));	

23. 	 newSecPlan.getRequirements().add(ASP_B);	
24. 	 insert(ASP_B);	
25. 	 insert(newSecPlan);	

end	

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

each of the security plans generated in the first phase are
used to drive a search process. This process checks if the
individual services of SBS-WF referred to in the security
plan satisfy the ASP property required of them by the
plan. In the following, we present the algorithms that real-
ise the two phases of the verification process.

4.1 Phase 1: Inference of Security Requirements
 The algorithm for generating different security plans,

i.e., the possible alternative combinations of security
properties of activity placeholders of a workflow WF that
would make it satisfy a workflow level security property
RSP is listed in Table 3.

TABLE 3: INFER SECURITY PLANS ALGORITHM
Algorithm: INFERSECURITYPLANS(WF, Req, SecPlans)
Input: WF /* workflow */
 Req /* security requirement for WF */
Output: SecPlans /* Security plans with ASPs */
1. INFERRECURSION(WF, Req, [], SecPlans)
Algorithm: INFERRECURSION(PH, Req, InPlans, OutPlans)
Input: PH /*activity placeholder*/
 Req /*security requirement for PH*/
 InPlans /* list of current plans*/
Output: OutPlans /*list of inferred security plans*/
1. If there is no pattern P such that

 P.RSP matches Req and P.WF matches WF then
2. OutPlans:= InPlans
3. Else
4. For each pattern P such that P.RSP matches Req and

P.WF matches WF do
5. SecPlansP := security requirements inferred

 by the inference rules of P
6. Remove Req from InPlans
7. Add SecPlansP to InPlans
8. EndFor
9. For each R in InPlans where R.subject is a work-

flow do
10. INFERRECURSION(R.subject, R, InPlans, OutPlans)
11. EndFor
12. EndIf
13. EndFor

The algorithm is invoked having as input a workflow

(WF) and a security property (RSP) required of it, which is
encoded with the security requirement Req. Based on the-
se two inputs, the algorithm derives the security require-
ments (i.e., ASP properties) that should be satisfied by
partner services that may be bound to the different activi-
ty placeholders in WF in order to guarantee RSP. Given
WF and a security requirement Req requiring the property
RSP, the algorithm tries to apply all the SCO patterns that
would be able to guarantee RSP. A pattern P is applied if
its workflow (P.WF) matches with the input workflow
WF. In this case, the security plans that can be derived
from the pattern (through the application of its rules) are
computed (line 5). These plans replace the initial require-
ment Req (see lines 6-7 in INFERRECURSION). If the updated
list of security plans contains only ASP security properties
that are required of individual activities (i.e., not of Or-
chestrationPattern placeholders), the algorithm terminates.

Otherwise, if the security plans include security proper-
ties required of activity placeholders that are themselves
(sub) workflows, the algorithm attempts to find SCO pat-
terns that match the workflow structure of the sub work-
flows and could guarantee the security property required
of these sub workflows, recursively (see lines 9-11 in IN-
FERRECURSION). This process terminates when a list of se-
curity plans includes workflow placeholders matching
with no available SCO patterns (see lines 1-3 in INFERRE-
CURSION).

INFERSECURITYPLANS may generate alternative security
plans, i.e., SecPlans may be a list of alternative security
plans [(R11,…,R1n),(R21,…,R2m),…,(Rk1,…,Rkl)]. Each of these
plans includes a set of ASP properties for the individual
services of the input workflow WF of the algorithm. If all
the ASPs of a plan are satisfied by the individual services
that they refer to, the security property RSP that is re-
quired of the original workflow will be also satisfied. This
is due to the definition of SCO patterns, according to
which for each security plan SecPlan it holds that SecPlan
Þ RSP, and thus: (R11 Ù … Ù R1n) Ú (R21 Ù … ÙR2m) Ú…Ú (Rk1

Ù… ÙRkl) Þ RSP. INFERSECURITYPLANS realises a breadth-
first inference of all the possible security plans that could
guarantee RSP for WF and is used to support both the
processes of workflow verification and the process of
workflow generation/adaptation. The way in which it is
used for each of these purposes is described next.

4.2 Phase 2: Verification of service properties
The process of checking if a given workflow satisfies a

required security property is realised by the algorithm
VERIFYWORKFLOW that is listed in Table 4.

TABLE 4: WORKFLOW VERIFICATION ALGORITHM
Algorithm: VERIFYWORKFLOW(WF, Req, VPlan)
Input: WF /* workflow */
 Req /*security requirement to verify */
Output: VPlan /*verified security plan for WF */
1. INFERSECURITYPLANS(WF, Req, SecPlans)
2. VPlan := nil
3. For each Plan in SecPlans do
4. If VERIFYREQUIREMENT(WF, Plan) then
5. VPlan:= Plan
6. Exit
7. Endif
8. EndFor

Given a request to check if a workflow WF satisfies a
given security property expressed by the security re-
quirement Req, VERIFYWORKFLOW firstly invokes the algo-
rithm INFERSECURITYPLANS to identify the list of the alter-
native possible security plans that would guarantee the
property expressed by Req. These plans are stored in the
variable SecPlans. Subsequently, it calls the algorithm VER-
IFYREQUIREMENT to check if the service level security re-
quirements (i.e., Ri1 ,…,Rim) of each specific plan in SecPlans
is satisfied by the services that they refer to. The algorithm
terminates as soon as it finds the first satisfied security
plan (see line 6).

The algorithm VERIFYREQUIREMENT is listed in Table 5.
As shown in the table, VERIFYREQUIREMENT is invoked
with a workflow (WF) and an individual security plan

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 7

that needs to be verified for it (i.e., (Ri1 Ù … ÙRik)) as inputs,
and tries to find if each security requirement Rij in the plan
is satisfied. To check this, it tries to find a certificate for the
service that is bound to the activity placeholder, which
Rij.subject refers to, certifying the security property re-
quired by Rij (i.e., Rij.secProperty). In cases where Rij.subject
is a sub workflow, the algorithm reports that the security
property required of it cannot be verified. This is because
INFERSECURITYPLANS has already tried to decompose work-
flows to individual services and security properties for
them that would make a sub workflow satisfy the security
property required of it. Hence, having a sub workflow in
a security plan means that there was no SCO pattern
could be used to decompose it to individual services and
properties that would make it satisfy the security property
required of it. Similarly, if the subject of a requirement is
an unassigned activity placeholder (UA), i.e., a placehold-
er with no concrete individual service bound to it, the se-
curity property required of the placeholder according to
the plan cannot be verified and the algorithm reports that
the entire workflow cannot be verified.

The algorithm VERIFYREQUIREMENT can also be used to
verify a security plan against workflow fragments, i.e.,
parts of a workflow delimited by a control flow activity.
In case of BPEL, for example, workflows fragments corre-
spond to scope or control flow activities (i.e., sequence, flow,
while, forEach, repeatUntil, if-then-else or pick activity) that
may contain multiple service invocations.

4.3 Example
As an example of verifying security requirements con-

sider the case where an SBS designer wishes to check that
the Checkout process of Fig. 1 preserves the confidentiality
of information regarding the credit card and address of
the process user. In this case, confidentiality can be ex-

pressed through requiring that a low-level user (i.e., a
user who should be able to access only public infor-
mation) should not be able to determine anything about
the high level (confidential) information of credit card and
customer address (i.e., the PSP property discussed in Sect.
3). Checkout can be seen as a sequential workflow consist-
ing of the atomic activity Payment and a sub-workflow
that follows it (SubWF), which itself is a sequential work-
flow involving two atomic activities: PlaceOrder and
WriteReport (see Fig. 3).

Fig. 4. The inference process on the sub-workflows of
Checkout SBS process workflow.

To verify Checkout, the algorithm INFERSECPROPERTIES
will be called initially. In the first iteration of it, the PSP on
Cascade SCO pattern will be applied on Checkout, return-
ing two security requirements: (1) a requirement for the
service Payment requiring confidentiality for credit card,
address and paySuccess, and (2) a requirement for the sub
workflow SubWF, requiring confidentiality for address and
paySuccess. In its second iteration, the algorithm applies
again the same pattern, but this time on SubWF. In the
second application of the pattern, INFERSECPROPERTIES
creates and adds two security requirements to the ongo-
ing security plan: (3) a requirement for PlaceOrder requir-
ing confidentiality for address, paySuccess, name and order-
Success and (4) a requirement for WriteReport, requiring
confidentiality for name and orderSuccess. After these
steps, the security plan will consist of only individual ser-
vices and security properties required of them. Subse-
quently, VERIFYWORKFLOW invokes VERIFYREQUIREMENT
to check whether the services bound to the workflow have
the required properties. This check is carried out by
searching for security certificates that can confirm the re-
quired ASP properties for the particular services, i.e., PSP
for address, paySuccess and orderSuccess of PlaceOrder, and
for name and orderSuccess of WriteReport. The process of
searching for such certificates is discussed in Sect. 6.

5 GENERATION OF SECURE WORKFLOWS
5.1 Algorithm

When an existing workflow does not satisfy a required
RSP security property due to a particular partner service
(or a fragment of it), it might be possible to replace the
responsible service (or workflow fragment) in order to

TABLE 5: REQUIREMENTS VERIFICATION ALGORITHM
1. Algorithm: VERIFYREQUIREMENT(WF, SecPlan): Boolean
2. Input: WF /* workflow */
3. SecPlan /* plan of security requirements */
4. Output: true or false /* verification outcome */

1. Plan := SecPlan
2. HoldsSP := true
3. While there are more requirements R in Plan

 and HoldsSP do
4. R:= next requirement in Plan
5. If R.subject is a PartnerLinkActivity placeholder
6. then
7. If exists certificate CRT in

 R.subject.certificates such that
 CRT.secProperty = R.secProperty

8. then HoldsSP:= true
9. else HoldsSP:= false
10. EndIf
11. else /*		OrchestrationPattern	or	UnassignedActivity	*	/
12. HoldsSP:= false
13. EndIf
14. Remove R from Plan
15. EndWhile
16. Return (HoldsSP)

Payment

items,
credit card,
address

items,
address,
paySuccess

Checkout

report SubWF

PlaceOrder

items,
address,
paySuccess

WriteReport

SubWF

items,
name,
orderSuccess

report

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

restore the required RSP. This modification is handled by
the algorithm listed in Table 6. This algorithm starts by
trying to find appropriate workflows based on a query
(Q) expressing structural, behavioural and security re-
quirements for the service or process fragment that should
be modified. To do this, initially it tries to identify abstract
(i.e., not instantiated) workflows that can provide the re-
quested functionality by searching for appropriate func-
tional workflows in a repository of reference workflows (see
lines 1-2). This repository contains abstract workflows
encoding reference process models providing standardised
functionalities in different domains. Examples of such
reference process models exist for several domains includ-
ing, for example, financial services (e.g., SWIFT) [32] and
electronic data interchange in fields such as manufactur-
ing, logistics and telecommunications (e.g., RosettaNet
Partner Interface Processes (PIPs) [29] and IBM Industry
Packs [14]). The abstract workflow matching process is
based on a structural matching algorithm described in
[35].

For workflows that match a query Q at an abstract lev-
el, GENERATESECUREWORKFLOWS creates a list of security
plans that could guarantee RSP (see lines 3-4). Each plan
in this list specifies either service level security properties

(ASPs) for the individual partner services of the matching
workflow or for the services of sub workflows that could
be used to replace them. Following the identification of
the alternative security plans (if any), GENERATESECURE-
WORKFLOWS tries to discover individual services that can
be bound to the abstract service in question. This is real-
ised through the call of the algorithm SERVICEDISCOVERY
(see line 15). If such services can be identified for all the
abstract partner services of an AW, GENERATESECURE-
WORKFLOWS replaces the abstract services in AW with
concrete services and/or workflows (see lines 16-25) and
returns the instantiated workflow as part of the possible
solutions list (see line 30).

5.2 Discovery process
The discovery process is realized by the algorithm SER-

VICEDISCOVERY, listed in Table 7. This algorithm takes as
input the specification of an activity A in an abstract
workflow and a security plan SPlan and finds concrete
services (Servs) that can be matched with A from a struc-
tural and a behavioural point of view, whilst also satisfy-
ing the security properties specified for A in SecPlan. The
description of A includes the different inputs and outputs
of the activity in the abstract workflow. For the activity
Payment in Fig. 3, for example, the inputs are items,
creditCard and address and the outputs are items, address,
paySuccess. The activity description in the workflow also
specifies the types of these inputs and outputs.

TABLE 7: SERVICE DISCOVERY ALGORITHM
Algorithm: SERVICEDISCOVERY(A, SPlan, Servs)
Input: A /* workflow activity */
 SPlan /*security plan from A’s workflow */
Output: Servs /*list of Ids of services matching A*/
1. Servs	:=	{}
2. CONSTRUCTQUERY(A, SecPlans, Q)
3. CONSTRAINTMATCHING(Q.constraints, Repository, Servs)
4. STRUCURALMATCHING(Q.structuralPart, Servs, Servs)
5. BEHAVIOURALMATCHING(Q.behaviouralPart, Servs, Servs)

The first step of the algorithm is to construct a query
expressed in A-SeRDiQueL, i.e., an XML based query lan-
guage developed in ASSERT4SOA in [20] (see line 2 of the
algorithm). A query in this language has four parts:
(1) A parameter part defining generic parameters of the

query process (e.g., the matching algorithm that will
be used for structural and behavioural matching, the
maximum distance threshold for accepting candidate
services, whether service composition should be trig-
gered in cases where no single candidate service can
match the query).

(2) A structural part specifying the interface, i.e., the set of
operation signatures of A and the data types of the pa-
rameters of these operations.

(3) A behavioural part specifying behavioural conditions
regarding A that candidate services should match.

(4) A constraints part that specifying the security properties
and any other constraints, which services that can sub-
stitute for A should satisfy. Constraints are specified
by logical expressions defining atomic or complex
conditions over the contents of service descriptors in

TABLE 6: SECURE WORKFLOW GENERATION ALGORITHM
5. Algorithm: GENERATESECUREWORKFLOWS(Q, ResultSet)
6. Input: Q /* query for required placeholder */
7. Output: ResultSet /* set of generated secure WFs */

1. For each known abstract workflow AW do
2. If STRUCTURALMATCHING(Q, AW) == true then
3. RSP := GETSECURITYREQUIREMENTS(Q)
4. SecPlans := INFERSECURITYPLANS(AW, RSP)
5. For each security plan SP in SecPlans do
6. Push (WF,SP) into WST /* WST:stack of WFs */
7. EndFor
8. EndIf
9. EndFor
10. ResultSet := Æ
11. If WST is not empty then
12. While there are more (WF,SP) pairs in WST do
13. (W,SP) := get top workflow/ plan pair from WST
14. A := Get first unassigned activity in W
15. Services := SERVICEDISCOVERY(A, SP)
16. If Services is not empty then
17. For each service S in Services do
18. WS := substitute A with S in W
19. If another unassigned activity exists in WS
20. then Push (WS,SP) into WST
21. Else /* all activities of Ws assigned */

22. ResultSet = ResultSet È {WS}
23. Remove (WS,SP) from WST
24. EndIf
25. EndFor
26. Else /*no services found for unassigned A */
27. Remove (W,SP) from WS
28. EndIf
29. EndWhile
30. EndIf

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 9

service registries. In the case of security constraints,
these conditions refer to service security certificates
specified according to the ASSERT4SOA security cer-
tificates schema. Every constraint has a weight that de-
termines the effect that its satisfaction will have in
ranking services in the final answer set of a query, and
a type that determines whether it is “hard” or “soft”.
Hard constraints must be satisfied by all services in the
answer set of a query. Soft constraints may be violated
by services in this set but they affect the ranking of
services in this set depending on whether they are sat-
isfied and their weight.

TABLE 8: QUERY FOR PAYMENT (STRUCTURE, BEHAV-
IOUR)
<?xml version="1.0" encoding="utf-8"?>

<tns:StructuralQuery>

<definitions xmlns:tns="http://samples.otn.com" >

<types> <schema>

 <complexType name="Items"> … </complexType>

 <complexType name="CCard"> … </complexType>

 <complexType name="Address"> … </complexType>

 </schema> </types>

<message name="PayReqMes">

 <part name="Items" type="tns:Items" />

 <part name="CreditCard" type="tns:CCard" />

 <part name="Address" type="tns:Address" />

</message> …

<portType name="PaymentService">

 <operation name="payment">

 <input message="tns:PayReqMes"name="PayReq" />

 <output message="tns:PayResMes" name="PayRes"/>

 </operation>

 <operation name="CancelPayment">

 <input message="tns:CancelReqM" name="CancelReq" />
 <output message="tns:CancelResM" name="CancelRes"/>

</operation> </portType>

</definitions>

</tns:StructuralQuery>

<tnsb:BehaviourQuery>

 <tnsb:LogicalExpression> <tnsb:Condition>

 <tnsb:GuaranteedMember IDREF="payment" />

 </tnsb:Condition></tnsb:Expression>

 <tnsb:LogicalOperator operator="AND" />

 <tnsb:OccursBefore immediate="false"

 guaranteed="true">

 <tnsb:Member1 IDREF="payment" />

 <tnsb:Member2 IDREF="cancelPayment" />

 </tnsb:OccursBefore> <tnsb:LogicalExpression>

</tnsb:BehaviourQuery>
 Table 8 shows the structural and behavioural parts of a

query for the Payment activity in the workflow of Fig. 3,
and Table 9 shows the security constraints of the query. In
A-SeRDiQueL, the structural part of a query is specified
as an abstract service interface specification in WSDL[5].
The behavioural part of the query is specified through
constrains regarding the order of execution of the differ-
ent service operations, whether iterative executions must
occur, and the mode of operation execution (i.e., synchro-
nous or asynchronous).

 Following the constraint checks, the discovery algo-

rithm carries out the structural matching between a ser-
vice and a query. This matching is attempted between the
operations in the WSDL part of the query and the opera-
tions of candidate services. To carry out this matching the
algorithm creates graphs representing the query and ser-
vice operations and the data types of their input and out-
put parameters of the operations. It then matches the
graphs by using a variant of the VF2 algorithm to detect
morphisms between the service and query graphs [35].
The variant allows matches between data type graph edg-
es, whose names have a synonym in WordNet and their
origin/destination nodes have matching incom-
ing/outgoing edges. The behavioural matching process
checks if the behavioural conditions of a query are satis-
fied by the behavioural model of a services. This is based
on model checking. Further, details of the matching pro-
cess for non-security querying criteria are beyond the
scope of this paper and have been discussed in [35].

5.3 Example

TABLE 9: QUERY FOR PAYMENT (SECURITY CONSTRAINTS)
<AssertQuery name="AQ1" type="HARD" assertScope="SINGLE">
<LogicalExpression><Condition relation="SUBSET">
 <Operand1> <AssertOperand facetType="Assert">
 //ASSERTCore/ToC/Assets/Asset
 [@Type='InParameter'or @Type='OutParameter']/Name
 </AssertOperand>
 </Operand1>
 <Operand2>
 <Function name="WSDLLookup"><Arguments>
 <Argument WSDLElementType="message"
 WSDLElementName="creditCard" />
 <Argument WSDLElementType="message"
 WSDLElementName="address" />
 <Argument WSDLElementType=" message"
 WSDLElementName="paySuccess" />
 <Argument WSDLElementType="message"
 WSDLElementName="name" />
 <Argument WSDLElementType="message"
 WSDLElementName="orderSuccess" />
 </Arguments></Function>
 </Operand2>
</Condition>
<LogicalOperator>AND</LogicalOperator>
<LogicalExpression><Condition relation="EQUAL--TO">
 <Operand1> <AssertOperand facetType="Assert">
 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory
 </AssertOperand>
 </Operand1>
 <Operand2> <Constant type="STRING">PSP_C</Constant>
 </Operand2>
</Condition>
</LogicalExpression>
</LogicalExpression>

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

In our Checkout process example, let us assume that the
service bound to the activity Payment does not satisfy the
confidentiality property for customer information, i.e., the
customer’s credit card and address information. To re-
store this property there are two options: (1) to find an
alternative service for Payment for which there is a securi-
ty certificate indicating that the service satisfies the prop-
erty, or (2) to generate a workflow of services that would
satisfy the property. In (2), Payment could, for example, be
substituted for by a PayPal like service, which does not
require credit card details. Assuming, however, that the
latter service is based on a workflow like the Express
Checkout Purchase of PayPal (www.developer.paypal.com),
Payment in Checkout would need to be replaced by a work-
flow of three activities: SetExpressCheckOut, Express-
CheckOutPayment and PrepareOrder, as shown in Fig. 5. As
in PayPal, the former of these activities creates a transac-
tion token that is used to take payment from a customer
without passing on his/her credit card details.

Fig. 5 Modified Checkout process
The change in the Checkout workflow shown in Fig. 5 is

realised as follows. When the algorithm GENER-
ATESECUREWORKFLOWS is called with a query Q for replac-
ing the service Payment in the original Checkout process, it
retrieves the PayPal like payment services workflow
shown by the grey activities in Fig. 5. This workflow
matches structurally and behaviourally with Payment (see
line 2 of the algorithm). Subsequently, GENERATESECURE-
WORKFLOWS infers the alternative security plans for this
workflow using the confidentiality property that Payment
failed to satisfy, and tries to find services that (a) match
with the abstract PayPal workflow and (b) satisfy the secu-
rity properties in one security plan.

6 PROTOTYPE
To realise our approach, we have implemented a proto-

type tool, called Assurance aware BPEL Designer (A-BPEL
Designer). A-BPEL Designer supports the design and adap-
tation of SBS workflows in ways that are guaranteed to
satisfy given security properties, based on SCO patterns
and the algorithms described in the previous sections. A-
BPEL Designer is based on the BPEL Designer of Eclipse
IDE (see http://www.eclipse.org/bpel/), which supports the
authoring, testing, debugging and deployment of WS-
BPEL 2.0 processes. Our tool extends BPEL Designer by
implementing the workflow security verification and ad-
aptation capabilities presented in Sect. 4 and 5. To do this,
it integrates and makes use of the security certificate
based service discovery capabilities of the ASSERT4SOA
service discovery engine [20].

Fig. 6 A-BPEL designer

A-BPEL Designer supports the specification of security
properties required of BPEL processes and/or specific
atomic activities (placeholder) or a group of activities
within them. A required security property may also be
specified for an asset of a BPEL process partner service
(e.g., operation input, operation output). Following this
specification, designers can request the verification of the
required property for the BPEL process, and the adapta-
tion of the process if the property is not satisfied. Re-
quired properties are specified as BPEL process elements
annotations and are transformed automatically into A-
SerDiQueL queries to enable the verification. Fig. 6 shows
the outcome of the verification for the query for the verifi-
cation of the confidentiality property for the service Pay-
ment of the Checkout process. The SerDiQuel Query tab in
the figure shows the query generated by A-BPEL Designer
to verify Confidentiality. The tab Security Property Verifica-
tion Status shows that the Payment service does not satisfy
confidentiality (see status message “Service does not satis-
fy security requirements”). It also shows alternative ser-
vices/service compositions that could undertake the func-
tional role of Payment in the workflow to satisfy this prop-
erty, namely the workflow Express Checkout Purchase dis-
cussed in Sect. 5.

7 EVALUATION
In the following, we present the results of a set of ex-

periments that we conducted to evaluate the performance
of framework. The evaluation focused on the time re-
quired to verify service workflows, i.e., a key indicator for
the scalability of our approach.

7.1 Experimental Setup
To set up the experiments, we used 100 SCO patterns

and 100 workflows. The used SCO patterns were generat-
ed randomly from a pattern template with three different
abstract pattern workflows structures (WF) and five
RSP/ASP properties (each WF structure RSP/ASP prop-
erty have had an equal probability of selection). The ab-
stract WF of the template were: (a) sequence WFs, (b) flow
WFs, and (c) if-then-else/pick WFs. From this template, we
generated 10 different sets of SBS workflows to be veri-
fied. Each of these sets included 10 different workflows of

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 11

equal size, i.e., they had exactly the same number of activ-
ity placeholders/services. The size of workflows in the
different sets increased from 10 to 100 services (i.e., set -1
had 10 workflows with 10 services each, set-2 had 10
workflows with 20 services each and so on up to set-10
which had 10 workflows with 100 services each). It should
be noted that, although the patterns used in the experi-
ments were synthetic and therefore did not express prov-
en relations between the RSP/ASP properties in them,
from a performance evaluation perspective their use of
did not compromise the validity of the results.

The evaluation was based on 100 combinations of
workflows of 10 different sizes N (N=10, 20, 30, …, 100
services) and sets of SCO patterns of 10 different sizes M
(M=10, 20, 30, …, 100 patterns). Each SCO pattern was
created as a combination of a WF, one RSP property and
as many ASP properties as the activity placeholders in the
WF of the pattern.

The verification time recorded for each workflow instance
was computed as VTS = TC + TU where (i) TC is the time re-
quired to find a security plan that could verify the RSP prop-
erty required of it; and (ii) TU is the time required to confirm
that the services bound to the activity placeholders of the
given workflow satisfied the ASP properties required of
them by the security plan. VTW was measured up to the
point where the first security plan satisfying the RSP
property required for a workflow was found or no securi-
ty plan was found. Also for each individual workflow,
VTW was calculated as the average of 5 different execu-
tions of algorithm VERIFYWORKFLOW in order to minimise
the possibility of a bias due to interference of background
system processes on the machine used for the experiment
(e.g., scheduled system jobs, Java garbage collection). The
verification time required for a workflow set and a given
SCO pattern set (VTS) was calculated as the average of the
VTW measures across all the 10 different workflows in the
workflow set. The tests were executed on an iMac with an
Intel Core i3 CPU (3.06 GHz) and 4 GB RAM (DDR3, 1333
MHz) running Mac OS X 10.9.5. During the execution of
the experiments no non-system level processes were ac-
tive on the iMac.

7.2 Results
Fig. 7 shows the average verification execution time

(VTw) for workflow and SCO pattern sets of different sizes
upper and lower part of the figure, respectively). The VTS
measures shown in the figure are averages calculated over
250 executions of the algorithm VERIFYWORKFLOW, i.e., 5
executions for 5 different RSP security properties, and for
each of the 10 workflows in each workflow set. As the
figure indicates even for the most complex case of verify-
ing workflows with 100 services using 100 SCO patterns,
the time that it took to verify a workflow did not exceed
300 milliseconds (the exact maximum VTw was 287.12 mil-
liseconds with a standard deviation of 56.28 milliseconds).
Fig. 7 indicates that VTS increased almost linearly with
respect to the workflow size, and did not exceed 150 milli-
seconds for pattern sets having up to 80 patterns. Howev-
er, it showed a steeper increase for workflow sets with 90
and 100 services and SCO pattern sets with 90 and 100

patterns. The same effect is also by the graphs showing
VTS with respect to SCO pattern sets of different sizes in
the lower part of the figure. For SCO pattern sets with up
to 80 patterns, VTS increased almost linearly with respect
to the workflow size and then showed a steeper increase
for workflows with more than 50 activities.

Fig. 7. Average VTS for different workflow and SCO pattern set

sizes
The high variability of VTS that was observed in these

figures was due to fact that the workflow sets included
both workflows for which the verification algorithm
found a security plan that verified the workflow and
stopped once this happened, as well as in cases where no
such plan was found and therefore an exhaustive search
of all patterns was made.

TABLE 10: SBS WORKFLOWS WITH ONE SECURITY PLAN

To confirm the presence of such an effect, we also cal-
culated the average VTS only for the workflows in each set
for which a security plan verifying them was found. Table
9 shows the number of such workflows for the different
sizes of workflows and SCO pattern sets. As expected the
number of workflows with one verified security plan in-

0"

50"

100"

150"

200"

250"

300"

10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Av
er
ag
e'
Ti
m
e'
(m

ill
ise

co
nd

s)
'

Services'per'workflow'

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0"

50"

100"

150"

200"

250"

300"

10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Av
er
ag
e'
Ti
m
e'
(m

ill
is
ec
on

ds
)'

Secure'Composi7on'Pa9erns'

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

creased along with the size of the SCO pattern set but was
not affected by the size of the workflow.

Fig. 8. Average VTS for workflows and SCO patterns sets of different

sizes for workflows with a verified security plan

The average VTS times computed for workflows with
one verified security plan are shown in Fig. 8. The graphs
in this figure confirmed the observation regarding the ef-
fect of SCO pattern set size and workflow set size on VTS
variability. More specifically, the VTS variability for work-
flows with a security plan was lower than for the VTS vari-
ability for workflows. Fig. 8 also shows more consistent
trends regarding the effect of workflow and the pattern set
size on VTS than the trends shown in Fig. 7. This variability
was caused by the fact that exhaustive search had to be
carried workflows with no security plan.

To find a predictive model for the average VTS time, we
fitted alternative trend lines to the data using statistical
regression. In all these trend lines, we used the size of the
workflow (WFS) and the size of the SCO pattern sets
(SCO) as the independent variables and VTS as the de-
pendent variable.

The regression model with the best fit to the data when
considering workflows with and without a verified securi-
ty plan was the following exponential model:

𝑉𝑇𝑠 = 	 𝑒7.9:;<7.=;=∗?@A<7.7B∗CD?	(1)
This regression model was able to account for 94% of the
variance of VTS (F(2,97) = 760.98, overall p < 0.01, SCO p
<0.01, WSF p <0.01, R2 = 0.94), and was validated for the
homoscedasticity of the residual VTS errors using the
Breusch-Pagan homoscedasticity test (p=0.391) [10]. The
model is consistent with the worst-case scenario in which
INFERSECURITYPLANS algorithm has to search for all possible

ways in which it may match the structure of the workflow of
an SCO pattern with the SBS workflow to be verified. Due to
the prefix-based encoding of pattern and SBS workflows (see
line 6 in Table 2), at each recursion cycle of the INFERSECURI-
TYPLANS algorithm the it is possible to perform this match in
N steps where N is the number of complex activities of the
SBS workflow. However, even if a match is found, there can
be non-atomic activities (i.e., sub-workflows) in the matched
structure of the SBS workflow that will need to be matched
with patterns again and up to the point where no more re-
cursive matching attempts will be possible.

When only workflows with a verified security plan
were considered, the best model that was found was the
following linear regression model:

𝑉𝑇𝑠 = 458.49 − 1.916 ∗ 𝑆𝐶𝑂 + 2.687 ∗ 𝑊𝐹𝑆	(2)
The above regression model was able to account for 92.3%
of the variance of VTS (F(2,97) = 585.19, overall p < 0.01,
SCO p <0.01, WSF p <0.01, R2 = 0.923), and was also valid
with respect to homoscedasticity based on the Breusch-
Pagan test (p=0.43). It should be noted, however, that the
linear decrease of VTS along with the size of the SCO pattern
that is indicated by the model is not plausible. Hence, model
(2) should not be used as more conclusive evidence than the
experimental results shown in Fig. 9 and 10.

Overall, our results are promising although they arise
from an initial evaluation. More specifically, the maxi-
mum average VTS time predicted for the verification of an
SBS workflow by model (1) is 293.98 milliseconds. This
prediction indicates that it is feasible to verify the security
of complex SBS workflows (i.e., workflows involving as
many as 100 services) with complex SCO pattern sets (i.e.,
sets involving as many as 100 SCO patterns). We believe
that our experiments are realistic in testing the efficacy
boundaries of our approach since, although someone may
encounter cases with process models involving more than
100 services, it would be unlikely to use SCO pattern sets
with significantly more than 100 patterns.

8 RELATED WORK
SBS security has been the focus of several strands of re-

search focusing on: (a) the verification of the security of
SBSs, and (b) the design of secure SBSs.

Research approaches focusing on the verification of se-
curity properties of during service workflows design, typ-
ically rely on the use of formal analysis (i.e., model check-
ing or theorem proving). AutoFocus [6], for example, as-
sumes the specification of SBS systems in UML and the
security properties to be verified in CTL [18]. These speci-
fications are transformed into the input language of the
SVM model checker, which is used to verify the proper-
ties. The properties supported by [6] are authentication
and authorisation. Dong et al [8] have used security de-
sign patterns to model inter-process communications as
UML sequence diagrams. The models resulting from this
process are converted into the formal language CCS [21],
and verified for security properties using model checking.
Brucker et al [3] also use model checking to verify service
compositions modelled in BPMN [7] against security
properties specified in LTL [18]. Their approach was im-

0"

50"

100"

150"

200"

250"

300"

10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Av
er
ag
e'
Ti
m
e'
(m

ill
ise

co
nd

s)
'

Services'per'workflow'

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0"

50"

100"

150"

200"

250"

300"

10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Av
er
ag
e'
Ti
m
e'
(m

ill
ise

co
nd

s)
'

Secure'Composi7on'Pa9erns'

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

PINO, SPANOUDAKIS AND MAHBUB.: TITLE 13

plemented as of NetWeaver
(www.sap.com/uk/community/topic/netweaver.html).
Nakajima [22] verified BPEL processes annotated with
with security labels, using model checking. This was
based on transforming annotated BPEL processes into
Promela and using SPIN to detect information leakage.
Most of the above approaches support a limited number
of properties (e.g., [3], [6], [8]). Also verification based on
them is likely to be computationally intractable for large
SBS systems (note that [3], [6], [8] and [22] do not provide
any experimental performance results).

Bartoletti et al [2] have developed a typed extension of
λ-calculus to specify models of service compositions and
check the security-related activities in them (e.g., opening
a socket connection). [2] provide a formal basis for model-
ling verifiable service orchestrations but with some limita-
tions (e.g., no support for incremental verification that is
required at runtime and potential computational intracta-
bility due to formal reasoning). The approach presented in
[31] validates access control policies for data transmitted
within service compositions, using information flow con-
trol rules to define security policy access privileges to be
enforced when passing data from one service to another.
An experimental validation of this approach has shown
that the time required for generating compositions in-
creases exponentially with the composition size (e.g., 30
secs for small sequential compositions of 14 services).

Lelarge et al [15] have used planning techniques to
compose workflows that are compliant with lattice-based
access control models (e.g. multi-level secure systems)
and analysed the complexity of the process for different
sets of security constraints (e.g., whilst the composition
problem is NP-complete, totally ordered constraints lead
to linear time composition).

Albanese et al [1] find compositions of modules (ser-
vices) that satisfy required security properties using logic
programming. In this approach, security properties are
defined for service interfaces and can weak, i.e., satisfied
in an approximate manner. This is similar to the weak
constraints used in workflow generation in our approach.
This approach has been shown to be NP-hard.

Salnitri et al [30] also support checks of security poli-
cies against BPMN processes. Verification in this ap-
proach is not formal; it involves checking security policies
expressed as SecBPMN queries against SecBPMN-ml
specifications (i.e., security enhanced BPMN models) by
searching for the existence of paths in processes that satis-
fy the policy. An experimental evaluation showed that the
verification time increases exponentially with the size of
processes and linearly to the number of properties [30].

Significant work there has also been on the generation
of secure service workflows. Frankova et al [12], for ex-
ample, model security requirements in a formal goal ori-
ented requirements language, called SI*/Secure Tropos, and
– following specific verification checks – they produce a
Secure BPEL workflow through an iterative process of
refinement.

BPA-Sec4Cloud [17] transforms BPMN processes anno-
tated with security requirements into cloud platform spe-
cific services and BPEL processes that comply with the

security requirements at execution time. The Sec-MoSC
tool [33] supports the addition of required security prop-
erties to BPMN processes [7] and the selection of default
mechanisms for implementing them. The BPMN process-
es along with the selected mechanisms are transformed to
BPEL and a security engine is used to realise the security
mechanisms added to the process. Charfi and Menzini [4]
use an aspect-oriented approach to integrate security
specifications in BPEL processes, and use them to identify
security functionalities of special security services, and
integrate them into the process to enforce security.

Overall, our approach might not be as general as ap-
proaches that use full formal analysis to support work-
flow verification and generation. This is because its ability
to perform these two tasks depends on the availability of
proven SCO patterns for the security property of interest.
However, our review of the literature shows that our ap-
proach appears to have significantly better performance
than those formal analysis approaches for which experi-
mental results have been reported, Furthermore, pur ap-
proach does not require as complex security property
modelling from SBS designers as formal approaches, since
the relevant property and workflow models are available
in SCO patterns.

9 CONCLUSION
In this paper, we have described a framework for veri-

fying the security of SBS workflows based on patterns.
The verification process is realised by inferring security
properties of the individual services of the workflow
(ASP) which, when satisfied, would guarantee workflow
level security properties (RSP), and checking if the indi-
vidual services have such properties.

The results of an initial evaluation of our approach
were positive: even for workflows with 100 services and
large SCO patterns sets (100 patterns) verification was
performed in less than 0.3 seconds. This efficiency comes
at the expense of completeness in verification. More spe-
cifically, our approach is not complete since it will only be
able to verify an RSP property if: (a) there is an SCO pat-
tern P that can guarantee RSP; (b) the abstract workflow
structure of P, i.e., matches the workflow of interest; and
(c) the partner services the workflow of interest that
match the activity placeholders of the pattern workflow
satisfy the ASP properties required of them by P. Hence,
the identification and development of comprehensive sets
of SCO patterns is a pre-requisite for the effectiveness and
applicability of our approach. Identifying comprehensive
pattern sets requires further research focusing not only on
finding new patterns but also on establishing the right
methodology for doing so and for evaluating the suffi-
ciency of the pattern sets developed using it.

ACKNOWLEDGMENT
The work reported in this paper has been partially funded
by the EU F7 project ASSERT4SOA (grant no. 257351) and
the H2020 project CYBERSURE (grant no. 734815).

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

REFERENCES
[1] Albanese, M., Jajodia, S., and Molinaro, C. (2013). A Logic

Framework for Flexible and Security-Aware Service Composi-
tion. IEEE 10th Int. Conf. on Autonomic and Trusted Computing,
pp. 337-346.

[2] Bartoletti, M., Degano, P., and Ferrari, G. L. (2006). Types and
effects for secure service orchestration. In 19th IEEE Computer
Security Foundations Workshop. pp. 57-69.

[3] Brucker, A. D., Compagna, L., and Guilleminot, P. (2014). Com-
pliance Validation of Secure Service Compositions. In Secure and
Trustworthy Service Composition, pp. 136-149. Springer Int. Pub.

[4] Charfi, A., and Mezini, M. (2005). Using aspects for security
engineering of web service compositions. In Proc. of IEEE Int.
Conf. on Web Services, pp. 59-66.

[5] Chinnici, R., et al. (2007). Web services description language
(wsdl) version 2.0 part 1: Core language. W3C recommendation.

[6] Deubler, M., et al. (2004). Sound development of secure service-
based systems. In Proc. of the 2nd Int. Conf. on Service oriented
computing, pp. 115-124.

[7] Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and
analysis of business process models in BPMN. Information and
Software technology, 50(12), 1281-1294.

[8] Dong, J., Peng, T., and Zhao, Y. (2010). Automated verification
of security pattern compositions. Information and Software Tech-
nology, 52(3), 274-295. DOI: 10.1016/j.infsof.2009.10.001

[9] Drools. Available from: http://www.drools.org/
[10] Dufour, J. M., et al. (2004). Simulation-based finite-sample tests

for heteroscedasticity and ARCH effects. Journal of Econometrics,
122(2), 317-347.

[11] Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern
/ many object pattern match problem. Artificial intelli-
gence, 19(1), 17-37. DOI: 10.1016/0004-3702(82)90020-0

[12] Frankova, G., Massacci, F., and Seguran, M. (2007). From Early
Requirements Analysis towards Secure Workflows. In Proc. of
IFIP Joint ITrust and PST Conferences on Privacy, Trust Manage-
ment and Security, Springer.

[13] Gürgens, S., Ochsenschläger, P., & Rudolph, C. (2005). On a
formal framework for security properties. Computer Standards &
Interfaces, 27(5), 457-466.

[14] IBM, IBM Industry Packs. Available from: http://www-
01.ibm.com/software/integration/business-process-
manager/industry-packs/library/documentation/

[15] Lelarge, M., Liu, Z., and Riabov, A. V. (2006). Automatic com-
position of secure workflows. In Proc. of 3rd Int. Conf. on Auto-
nomic and Trusted Computing, pp. 322-331.

[16] Lin, F. (2008). Situation calculus. Foundations of Artificial Intelli-
gence, 3, 649-669.

[17] Lins, F., et al., (2015). Automation of service-based security-
aware business processes in the Cloud. Computing, pp.1-24.

[18] Maidi, M. (2000). The common fragment of CTL and LTL. In
Proc. 41st Annual Symposium on Foundations of Computer Science,
pp. 643-652.

[19] Martin, D., et al. (2004). OWL-S: Semantic markup for web ser-
vices. W3C member submission, 22, 2007-04. Available from:
https://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/

[20] Mahbub K. et al., Asserts Aware Service Query Language and
Discovery Engine, Deliv. D.2.1, ASSERT4SOA Project, available
from: http://www.assert4soa.eu/deliverable/D2.1.pdf

[21] Milner, R. (1989). Communication and concurrency. Prentice-
Hall, Inc. ISBN:0-13-115007-3

[22] Nakajima, S. (2004). Model-checking of safety and security as-
pects in web service flows. In Int. Conf. on Web Engineering, pp.
488-501. Springer Berlin Heidelberg.

[23] Pino, L. (2015). Security Aware Service Composition (Doctoral
dissertation, City University London). Available from:
http://openaccess.city.ac.uk/13170/

[24] Pino, L., and Spanoudakis, G. (2012). Constructing secure ser-
vice compositions with patterns. In IEEE 8th World Congress on
Services, 2012, pp. 184-191.

[25] Pino, L., and Spanoudakis, G. (2012). Finding secure composi-
tions of software services: Towards a pattern based approach. In
5th IFIP Int. Conf. on New Technologies, Mobility & Security.

[26] Pino, L., Mahbub, K., and Spanoudakis, G. (2014). Designing
Secure Service Workflows in BPEL. In Proc. of the Int. Conference
on Service-Oriented Computing, pp. 551-559.

[27] Pino, L., Spanoudakis, G., Gürgens, S., Fuchs, A., and Mahbub
K., (2012). ASSERTS aware Service Orchestration Patterns, De-
liverable D2.2. ASSERT4SOA Project. Available from:
http://www.cspforum.eu/D2.2-revised.pdf

[28] Pino, L., et al., (2015) Generating Secure Service Compositions.
In Communications in Computer and Information Sciences, Vol 512,
(eds) Helfert M., et al., Springer International Pub.

[29] RossettaNet http://www.edibasics.co.uk/edi-
resources/document-standards/rosettanet/

[30] Salnitri, M., et al. (2015). Designing secure business processes
with secBPMN. Software & Systems Modelling, 1-21.

[31] She W., et al., (2013). Security-aware service composition with
fine-grained information flow control. IEEE Transactions on Ser-
vices Computing, 6(3), pp.330-343.

[32] Society for Worldwide Interbank Financial Telecommunication
(SWIFT). Available from: http://www.swift.com/

[33] Souza, A. R., et al. (2009). Incorporating Security Requirements
into Service Composition: From Modelling to Execution. In Proc.
of 7th Int. Joint Conf. on Service-Oriented Computing, pp. 373-388.

[34] Zakinthinos, A., and Lee, E. S. (1997). A general theory of securi-
ty properties. In Proc. of IEEE Symposium on Security and Privacy,
pp. 94-102. IEEE. DOI: 10.1109/SECPRI.1997.601322

[35] Zisman, A., et al, (2013). Proactive and reactive runtime service
discovery: a framework and its evaluation. Software Engineering,
IEEE Transactions on, 39(7), pp.954-974.

[36] Workflow Management Coalition. Terminology and Glossary
(1999), Technical Report Document Number WFMC-TC-1011,
Issue 3.0, 1999, Available from:
http://www.workflowpatterns.com/documentation/documen
ts/TC-1011_term_glossary_v3.pdf

Luca Pino BSc, MSc, PhD. Luca Pino got his PhD from City, Univer-
sity of London and is now a software engineer at Masabi. His inter-
ests span services and SBSs composition, security and automation.
George Spanoudakis. Bsc, Msc, PhD. George Spanoudakis is Pro-
fessor at City, University of London. His research interests are in
software systems security and service oriented systems.
Maria Krotsiani. BSc, MSc, PhD. Maria Krotsiani is a postdoctoral
research fellow at City, University of London. Her research interests
are in cloud security and continuous security certification.
Khaled Mahbub. B.Eng, M.Eng, PhD. Khaled Mahbub is a Senior
Lecturer at Birmingham City University. His research focus on auto-
mated software engineering, service based and cloud computing.

