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Do Analysts Who Understand Accounting Conservatism 
Exhibit Better Forecasting Performance? 

 
 
Abstract 

This study investigates the performance of analysts when they match the asymmetric timeliness of 

their earnings forecast revisions (i.e., asymmetric forecast timeliness) with the asymmetric 

timeliness of firms’ reported earnings (i.e., asymmetric earnings timeliness). We find that better 

timeliness-matching analysts produce more accurate earnings forecasts and elicit stronger market 

reactions to their forecast revisions. Further, better timeliness-matching analysts issue less biased 

earnings forecasts, more profitable stock recommendations and have more favorable career 

outcomes. Overall, our results indicate that analysts’ ability to incorporate conditional 

conservatism into their earnings forecasts is an important reflection of analyst expertise and 

professional success. 

 

Keywords: Conditional Conservatism; Asymmetric Timely Loss Recognition; Equity Analyst; 

Forecasting Performance; Stock Recommendation; Career Outcome
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1. Introduction 

This study examines whether analysts exhibit better performance when they match the 

asymmetric timeliness of their earnings forecast revisions (hereafter, asymmetric forecast 

timeliness) with the asymmetric timeliness of firms’ reported earnings (hereafter, asymmetric 

earnings timeliness). A number of studies document that firms recognize bad news in a timelier 

manner than good news in their earnings; this is referred to as conditional conservatism (e.g., Basu, 

1997).1 Furthermore, prior studies find that conditional conservatism exhibits substantial time-

series and cross-sectional differences (see Watts, 2003b; for a comprehensive literature review). 

That is, the level of conditional conservatism changes over time (Beaver et al., 2012) and varies 

according to accounting practices, to economic conditions, and to institutional factors, which can 

differ across firms, industries and countries (Ball et al., 2000, 2003; Barth et al., 1999, 2005; and 

Lara et al., 2009). 

Since one of the major tasks of sell-side analysts is to produce accurate earnings forecasts 

by utilizing all available public and private information (e.g., Mikhail et al., 1997, 1999; Hong et 

al., 2000; and Hong and Kubik, 2003), analysts may have an incentive to decipher and incorporate 

the differing levels of conditional conservatism into their earnings forecasts. Accordingly, 

researchers have examined whether analysts incorporate conditional conservatism into their 

forecasts. For example, Helbok and Walker (2004) and Sohn (2012) find that analysts are, on 

average, aware of the conditionally conservative nature of reported earnings and update their 

earnings forecasts accordingly. However, Louis et al. (2008) and Pae and Thornton (2010) find 

                                           
1 In this paper, we focus on the concept of conditional accounting conservatism. This contrasts with unconditional 
accounting conservatism, which lowers earnings or book value of equity independently of news. See Ball and 
Shivakumar (2005) and Beaver and Ryan (2005) for further discussions. We use conditional conservatism and 
asymmetric earnings timeliness interchangeably throughout the paper. 
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that analysts fail to fully incorporate the implications of conditional conservatism into their 

earnings forecasts, resulting in inefficient forecasts. The aforementioned studies often limit their 

investigations to addressing only the question of whether analysts—on average—incorporate 

conditional conservatism in their forecasts; they for the most part ignore differences among 

individual analysts.  

Hugon and Muslu (2010) explore how analysts’ forecasting performance is affected by the 

issuance of conservative forecasts. More specifically, they find that analysts elicit greater market 

reactions to their forecast revisions when they are more conservative than their peers, but they do 

not condition their results on a firm’s conditional conservatism. Hugon and Muslu attribute the 

finding to investors’ demand for more conservative analysts, owing to a pervasive optimism among 

sell-side analysts.  

Our study extends the literature by introducing a measure that captures the extent to which 

an analyst revises her forecast revision asymmetrically and matches the levels of asymmetric 

timeliness in her forecast revisions and earnings of the firm she follows. Our measure of the 

timeliness match is designed to capture analysts’ understanding of conservative accounting 

practices and to apply this property when they revise their forecasts. We thus develop the following 

hypotheses regarding the effects of the timeliness match on analyst performance.  

First, we predict that analysts who better match their asymmetric forecast timeliness with 

firms’ asymmetric earnings timeliness provide more accurate earnings forecasts (H1). Given the 

large variation in the levels of conditional conservatism across firms, we posit that analysts will 

differ in their ability to discern and incorporate the differing levels of conditional conservatism 

across firms into their forecast revisions. If an analyst is conservative but does not know the level 

of a target firm’s conditional conservatism, then being conservative may not necessarily improve 
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her performance. For instance, she may be overly conservative for a firm that has a low level of 

conditional conservatism. However, astute analysts will be capable of inferring the level of 

conditional conservatism of a firm by observing its past reported earnings and news reflected in 

stock returns. In effect, they can avoid over- or under-shooting their asymmetric forecast timeliness 

by correctly incorporating the level of the target firm’s asymmetric earnings timeliness into their 

forecast revisions.  

Clement et al. (2011) view analysts’ understanding of public signals (e.g., stock returns) as 

their capability of fine-tuning the use of public signals based on the level of signal informativeness. 

Similarly, we argue that analysts who can understand conditional conservatism and can decipher 

its implication for future earnings will fine-tune their asymmetric forecast timeliness in accordance 

with asymmetric earnings timeliness. That is, astute analysts will match the extent to which they 

reflect bad versus good news into earnings forecasts (i.e., asymmetric forecast timeliness) with the 

extent to which the firm they follow reflects bad versus good news into its reported earnings (i.e., 

asymmetric earnings timeliness). To the extent that the timeliness-matching behavior reflects an 

analyst’s well-informed response to or expertise in understanding conditional conservatism, 

analysts who match better will exhibit superior forecast accuracy.   

Second, we predict that the market responds more strongly to forecast revisions of analysts 

who better match their asymmetric forecast timeliness with firms’ asymmetric earnings timeliness 

(H2). Prior research suggests that the market values analysts who produce accurate earnings 

forecasts (e.g., Stickel, 1992; Park and Stice, 2000; and Brown and Mohammad, 2010). It also 

suggests that the market responds more strongly to analysts who understand the informativeness 

of public signals and who accordingly fine-tune the use of these signals (Clement et al., 2011). 

Further, Barth et al. (2014) find that price adjustments to the announcements of conservative 
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earnings are delayed. They attribute the finding to the conservative nature of earnings that requires 

investors to spend more time in interpreting the earnings information. Therefore, if some analysts 

better understand cross-sectional differences in conditional conservatism and successfully match 

their asymmetric forecast timeliness with the target firm’s asymmetric earnings timeliness, then 

such matching behavior could be one way of signaling their superior expertise. The market will 

factor in analysts’ timeliness-matching performance when responding to these analysts’ forecasts. 

It is important to note that we are not trying to examine the effect of analysts’ conservatism 

traits on their forecasting performance as in Hugon and Muslu (2010). Hugon and Muslu define 

an analyst as conservative if she responds to bad news more strongly than her peer analysts when 

revising her forecasts. Thus, they focus on distinguishing more conservative analysts from less 

conservative ones. However, in our study, given large variations in the level of conditional 

conservatism across firms, analysts need not necessarily be more conservative to be identified as 

competent timeliness-matching analysts. In fact, being more conservative could lead to poor 

timeliness-matching for an analyst. The following real-life example in Figure 1 illustrates two 

cases where an analyst, Jane, outperforms her peer analyst, John as she better matches her 

asymmetric forecast timeliness with the target firms’ asymmetric earnings timeliness.2 

Panel A of Figure 1 shows the first case where two analysts, Jane and John, follow an 

aggressive firm, Union Pacific Corp (the level of asymmetric earnings timeliness is -0.015). 

According to our measure of an analyst’s asymmetric forecast timeliness, Jane issues aggressive 

forecast revisions whereas John issues conservative forecast revisions for the firm (Jane: -0.072 

vs. John: 0.150). Thus, as a result of her better timeliness matching, Jane issues relatively more 

                                           
2 While Figure 1 is based on actual analysts’ forecasts for Union Pacific and Landstar System, analysts’ names are 
pseudonyms and not associated their real names and gender.  
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accurate forecasts for the firm as well as elicits stronger market reactions to her forecast revisions, 

compared to John who issues conservative forecast revisions for the aggressive firm. In Panel B, 

the two analysts follow another firm, Landstar System, Inc., which is conservative according to 

the level of asymmetric earnings timeliness (0.069). In contrast to Panel A where Jane issues 

aggressive forecast revisions for Union Pacific Corp., she now revises her forecasts in a more 

conservative way, compared to John, in order to better match her asymmetric forecast timeliness 

with the conservative firm’s asymmetric earnings timeliness. As a result, compared to John, Jane 

continues to exhibit higher forecast accuracy and elicit stronger market reactions to her forecast 

revisions when following Landstar System, Inc. As such, our measure of timeliness-matching 

between forecast revisions and firms’ earnings is distinct from Hugon and Muslu’s (2010) analyst 

conservatism.  

Our empirical results support the importance of matching the level of asymmetric forecast 

timeliness with that of asymmetric earnings timeliness. First, consistent with the first hypothesis, 

we find that our measure of the timeliness-matching is positively associated with forecast accuracy. 

We also find a negative relation between our timeliness-matching measure and forecast bias, 

suggesting that timeliness-matching analysts provide less optimistically biased forecasts. 

Second, consistent with the second hypothesis, we find stronger market reactions to 

forecast revisions by better timeliness-matching analysts. The result suggests that the market or 

investors appreciate analysts’ ability to match their asymmetric forecast timeliness with the target 

firm’s asymmetric earnings timeliness.  

Third, given that stock recommendations are another key output of sell-side analysts 

(Bradshaw, 2004), we also examine whether timeliness-matching analysts provide more profitable 

stock recommendations. Loh and Mian (2006) and Ertimur et al. (2007) show that more accurate 
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analysts issue more profitable stock recommendations, suggesting a possible channel through 

which timeliness-matching ability influences the profitability of stock recommendations. We find 

a positive relation between an analyst’s timeliness-matching performance and the profitability of 

her stock recommendations.  

Finally, we examine the relation between analysts’ timeliness-matching performance and 

their career outcomes. We find that, all else being equal, better timeliness-matching analysts are 

less likely to experience turnover and more likely to stay longer in the profession. Overall, these 

results suggest that analysts’ timeliness-matching ability is an important reflection of their 

expertise and professional success. 

The remainder of the paper is organized as follows. Section 2 describes the measurement 

of timeliness match and Section 3 outlines the sample selection procedure and shows descriptive 

statistics for the variables. Section 4 presents the main results. In Section 5 we provide the results 

for additional tests and robustness checks. Section 6 concludes the paper. 

2. Measurement of Timeliness-Matching 

2.1. Asymmetric Earnings Timeliness 

 In our study, we primarily use the following piecewise-linear regression of earnings on 

stock returns (Basu, 1997) to estimate a firm-year measure of asymmetric earnings timeliness.3  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿𝐴𝐴𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿

=  𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐷𝐷 + 𝜀𝜀,    (1a) 

where Actual EPS is the I/B/E/S actual earnings per share, LagPrice is the stock price at the 

                                           
3 Khan and Watts (2009) develop a firm-year measure of conditional conservatism, C-SCORE, by expressing the 
incremental timeliness for bad news over good news (i.e., asymmetric earnings timeliness) as a linear function of the 
market-to-book ratio, size and leverage. However, in our study, C-SCORE is not an appropriate measure because we 
should estimate analysts’ asymmetric forecast timeliness in the same way the firms’ asymmetric earnings timeliness 
is estimated in order to assess how closely the levels of two different timeliness are aligned with each other. 
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beginning of the fiscal year, RETAnnual is the market-adjusted, buy-and-hold return over the fiscal 

year, D is a dummy variable equal to 1 when RETAnnual is negative and 0 otherwise, and β3 is the 

asymmetric timeliness coefficient (ATC), which has been widely used as a measure of conditional 

conservatism (e.g., Pope and Walker, 1999; Giner and Rees, 2001; Pae, 2007; Ball et al., 2013; and 

Barth et al., 2014). In our study, we estimate Equation (1a) at the firm-year level using a firm’s all 

past earnings and return information available from 1990 up to the preceding fiscal year for which 

the most recent earnings announcement is made. We define the firm’s asymmetric timeliness 

coefficient of β3 as our firm-year measure of asymmetric earnings timeliness (Firm.ATCL).4 We 

ensure the reliability of our measure by requiring at least eight observations, including the 

minimum of two positive and two negative values of returns (RETAnnual) in estimating Equation 

(1a) (Hugon and Muslu, 2010; Clement et al., 2011; and Heflin et al., 2014).5 We use the I/B/E/S 

actual earnings rather than GAAP earnings because the majority of analysts forecast pro forma 

earnings (i.e., street earnings) that exclude special items such as restructuring charges and asset 

impairments from GAAP earnings and the I/B/E/S provides pro forma earnings after adjustments 

to facilitate its comparability with what analysts actually forecast (Bradshaw and Sloan, 2002; and 

Brown et al., 2014).6 

Next, we propose another firm-year measure of asymmetric earnings timeliness. 

                                           
4 Some prior studies use the ratio of negative return response to positive return response, (β3+β1)/β1, as a measure of 
accounting conservatism (e.g., Givoly and Hayn, 2000). We do not use the ratio measure because the ratio is hard to 
interpret when its denominator (β1) is negative. In Table 1, we find that nearly half of β1 estimates are negative. 
Furthermore, the ratio takes extreme values when β1 is close to zero. Barth et al. (2014) also discuss a problem with 
using this ratio as the return coefficient (β1) is often negative or insignificantly different from zero in the post-1990 
periods. 
5 The maximum number of observations used in the estimation is 20. 
6 Heflin et al. (2014) find evidence on the asymmetric timeliness in pro forma earnings although its magnitude is 
smaller than that in GAAP earnings. 
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(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸−𝐿𝐿𝐴𝐴𝐿𝐿 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸)
𝐿𝐿𝐴𝐴𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿

=  𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐷𝐷 + 𝜀𝜀,     (1b) 

where Lag of Actual EPS is the preceding fiscal year’s I/B/E/S actual EPS. β3 from Equation (1b) 

is our second measure of asymmetric earnings timeliness of a firm in a year, which will be denoted 

by Firm.ATCC. Similar to Equation (1a), we estimate Equation (1b) using a firm’s all past earnings 

and return information available from 1990 up to the preceding fiscal year for which the most 

recent earnings announcement is made. We also impose the same estimation constraints as 

Equation (1a) by requiring at least eight observations, including two positive and two negative 

return observations.  

Note that we use the change in actual EPS, rather than the level of actual EPS, for the 

dependent variable in Equation (1b). While using Equation (1b) is not the most popular approach 

to estimate the asymmetric timeliness in a firm’s earnings, it has often been employed in previous 

studies (e.g., Ball et al., 2013). We utilize this change specification of Equation (1b) to introduce 

an alternative measure of a firm’s asymmetric earnings timeliness because we use a similar change 

specification when estimating the asymmetric timeliness in analysts’ forecast revisions, which we 

will discuss in more detail in the next subsection. We expect our two measures of asymmetric 

earnings timeliness to complement each other and help us mitigate a potential measurement error 

in our match measures.7 The match measures will be discussed in Subsection 2.3.  

                                           
7 We thank the Editor for drawing our attention to the on-going debate on Basu’s (1997) asymmetric timeliness 
measure (Patatoukas and Thomas, 2011, 2016; Ball et al., 2013; Cano-Rodríguez and Núñez-Nickel, 2015; and Dutta 
and Patatoukas, 2016). Ball et al. (2013) show that the bias is primarily cross-sectional in nature and can be addressed 
by controlling for firm specific effects or by using unexpected earnings and returns. The way we measure asymmetric 
earnings timeliness is consistent with the suggestions by Ball et al. (2013) because we estimate Equations (1a) and 
(1b) in time-series for each firm and also use unexpected earnings (i.e., a change in earnings, adjusted by one-year-
lagged earnings) in Equation (1b) and use market-adjusted rather than raw returns (RETAnnual) in both Equations (1a) 
and (1b). In addition, our key variable of interest is a measure of timeliness-matching (MATCH) which is the absolute 
difference between a firm’s asymmetric earnings timeliness (Firm.ATC) and an analyst’s asymmetric forecast 
timeliness (Analyst.ATC). To the extent that we measure Firm.ATC and Analyst.ATC in analogous manners, any 
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2.2. Asymmetric Forecast Timeliness 

 Our measure of analysts’ asymmetric forecast timeliness is motivated by the model of the 

relation between analyst forecast revisions and stock returns, introduced in studies that have 

examined the information content of analysts’ earnings forecast revisions (e.g., Givoly and 

Lakonishok, 1979; and Lys and Sohn, 1990). These studies find a positive association between 

analysts’ earnings forecast revisions and stock returns, and they conclude that analysts partially 

incorporate public information that is reflected in stock returns (Lys and Sohn, 1990). We extend 

the model used by those studies by adding an indicator variable for negative stock returns and its 

interaction term with stock returns.8 The resulting regression model is specified as  

𝑅𝑅𝑅𝑅𝑅𝑅 �= (𝐶𝐶𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴−𝐸𝐸𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝑃𝑃𝐿𝐿𝐴𝐴𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴)
𝐿𝐿𝐴𝐴𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿

�  

=  𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐷𝐷 + 𝜀𝜀,    (2) 

where REV is a change in an analyst’s two consecutive EPS forecasts for a firm (i.e., forecast 

revision). Current EPS forecast is an analyst’s EPS forecast for the current fiscal year’s earnings 

of a firm; Preceding EPS forecast is the analyst’s EPS forecast for the same firm and fiscal year 

that immediately precedes Current EPS forecast; LagPrice is the stock price at the end of the 

month in which the analyst’s preceding EPS forecast is made; RET is the market-adjusted, buy-

and-hold return over the revision period starting from the date of the preceding forecast and ending 

on the current forecast date; and D is a dummy variable equal to 1 when RET is negative and 0 

otherwise.  

β3 captures the asymmetric timeliness in an analyst’s forecast revisions with respect to 

                                           
potential biases in those measures are likely to be cancelled out. Nevertheless, we acknowledge that the values of our 
asymmetric timeliness measures need to be interpreted with caution. 
8 Hugon and Muslu (2010) use a regression model similar to Equation (2) in their robustness checks (see their footnote 
9). 
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good and bad news, which we refer to as asymmetric forecast timeliness. This corresponds to the 

Basu’s (1997) asymmetric timeliness coefficient in Equations (1a) and (1b). β3 is our measure of 

an analyst’s asymmetric forecast timeliness for a firm in a year (Analyst.ATC). We estimate 

Equation (2) at the analyst-firm-year level using all past EPS forecast revisions for a firm issued 

by an analyst between 1990 up to the firm’s most recent earnings announcement date. For each 

estimation of Equation (2), we require at least eight observations including the minimum of two 

positive and two negative return observations. 

2.3. Measure of Timeliness Match  

After estimating the level of an analyst’s asymmetric forecast timeliness for a firm 

(Analyst.ATC) and that of the firm’s asymmetric earnings timeliness (Firm.ATCL or Firm.ATCC), 

we measure the extent to which an analyst’s asymmetric forecast timeliness matches with the firm’s 

asymmetric earnings timeliness in the following way: 

𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 (𝐶𝐶)(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = −1 × |𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡.𝑀𝑀𝑅𝑅𝑀𝑀(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) − 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹.𝑀𝑀𝑅𝑅𝑀𝑀𝐿𝐿 (𝐶𝐶)(𝑗𝑗, 𝑡𝑡)|,        (3) 

where i, j and t represent the analyst, firm and year, respectively. Superscripts L or C next to 

MATCH (i, j, t) indicate that we use Firm.ATCL or Firm.ATCC as a measure of the firm’s 

asymmetric earnings timeliness when computing the extent of timeliness match. MATCH (i, j, t) 

captures an analyst’s firm-year specific ability to match or align her asymmetric forecast timeliness 

with the firm’s asymmetric earnings timeliness. In our empirical analyses, we measure MATCH (i, 

j, t) at firm j’s most recent earnings announcement date, preceding analyst i's current forecast date 

in year t. This ensures that, particularly in our tests of market responses, information about an 

analyst’s timeliness-matching performance is known to the market investors before they react to 

the analyst’s forecast revisions. 
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3. Sample  

3.1. Sample Selection 

We obtain data from I/B/E/S, CRSP and Compustat. First, we use the I/B/E/S Detail EPS 

File to collect analysts’ forecasts of current fiscal year earnings per share (EPS), which are referred 

to as one-year-ahead forecasts in I/B/E/S, and the actual EPS for U.S. firms over the period 1990 

to 2010.9 Unless stated otherwise, we use earnings forecasts that are issued after the most recent 

year’s actual earnings announcement date and prior to the current year’s earnings announcement 

date.10 We obtain analysts’ stock recommendations, stock returns and other fundamental data from 

the I/B/E/S Detail Recommendations File, CRSP and Compustat.  

We impose several restrictions on the sample. First, we delete observations with a stock 

price less than $1, in order to avoid the effect of penny stocks and that of small denominators. Next, 

we only consider analysts who have made at least eight earnings forecast revisions, including a 

minimum of two positive and two negative revision period stock returns for a firm from 1990 up 

to the fiscal year preceding the current forecast date (e.g., Hugon and Muslu, 2010). Finally, after 

merging all data sources, we eliminate observations with missing values and mitigate the effects 

of outliers by winsorizing all continuous variables at the 1% and 99% levels. Our final sample for 

MATCHL (MATCHC) contains 116,284 (106,503) analyst, firm-year, forecast-horizon observations 

over the period from 1998 (1999) to 2010, made by 2,287 (2,170) unique analysts covering 1,565 

(1,414) unique firms.11 

                                           
9 Our sample period starts in 1990 because we need accurate forecast revision dates to measure market responses. 
Before the early 1990s, the forecast release date in I/B/E/S is often different from the actual forecast date (see Clement 
and Tse, 2003; and Hugon and Muslu, 2010). The results are qualitatively the same when we start the sample period 
in 1983. 
10 For example, if a firm’s fiscal year ends on December 31 and the firm announces its actual earnings on February 
25 every year, we use forecasts issued between two consecutive announcement dates (from February 26, 2010 until 
February 24, 2011) for its fiscal year 2010. 
11 Since we use earnings change as the dependent variable in Equation (1b), the MATCHC sample becomes available 
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3.2. Summary Statistics 

Panel A of Table 1 reports the distribution of our first measure of asymmetric earnings 

timeliness, Firm.ATCL, for 7,574 firm-year observations. Consistent with prior research on 

conditional conservatism (e.g., Basu, 1997), both mean and median Firm.ATCL (0.016 and 0.009) 

are positive, indicating that our sample firms are on average conservative. Panel B reports the 

distributions of our second measure of asymmetric earnings timeliness, Firm.ATCC, for 6,792 firm-

year observations. Overall, Panel B shows similar figures to those in Panel A.  

Panel C reports the distribution of our measure of asymmetric forecast timeliness, 

Analyst.ATC, for 27,092 analyst-firm-year observations. We find that mean (median) Analyst.ATC 

is 0.005 (0.002), which is consistent with prior findings that analysts update their forecast revisions 

in a conservative fashion (Helbok and Walker, 2004; and Sohn, 2012). A comparison of 

Analyst.ATC with Firm.ATCL and Firm.ATCC indicates that analysts’ earnings forecast revisions 

are on average less conservative than reported earnings, consistent with analysts downplaying bad 

news while highlighting good news (e.g., Francis and Philbrick, 1993; and Hayes, 1998).  

Lastly, Panel D reports the distribution of our measures of the match between an analyst’s 

asymmetric forecast timeliness and asymmetric earnings timeliness of the firm she follows. While 

the distributions of two match measures are highly similar to each other, MATCHC figures are 

relatively higher than MATCHL figures.  

Table 2 presents summary statistics of the variables used in our analyses. Overall, the 

summary statistics are in line with those of prior research. For example, the mean of analysts’ 

forecast revisions (REV) is slightly below zero (-0.001), indicating that analysts on average revise 

                                           
a year later than the MATCHL sample. 
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their earnings forecasts downwards as the year progresses (e.g., Lys and Sohn, 1990). The means 

of analyst- and firm-specific characteristics such as firm-specific experience (FEXP), the number 

of firms the analyst follows (NFIRM), brokerage size (BSIZE), book-to-market ratio (BM), and 

firm size (SIZE) are also similar to those in Clement et al. (2011).12 

Next, in Panel A of Table 3, we show whether and how our first measure of timeliness 

match, MATCHL, is associated with analyst, forecast and firm-specific characteristics. A higher 

MATCHL indicates a better match between an analyst’s asymmetric forecast timeliness and 

asymmetric earnings timeliness of the firm she follows. Since we rank analyst-firm-year 

observations into quintiles based on MATCHL, the mean value of MATCHL monotonically 

increases from -0.269 in quintile 1 (worst match quintile) to -0.009 in quintile 5 (best match 

quintile).  

Univariate comparisons of analyst, forecast, and firm characteristics between the best and 

worst MATCHL quintiles in Panel A indicate the following. First, a lower MATCHL score is 

associated with a higher value of a firm’s asymmetric earnings timeliness (mean Firm.ATCL: 0.054 

in quintile 1 vs. 0.004 in quintile 5) and a higher value of an analyst’s asymmetric forecast 

timeliness (mean Analyst.ATCL: 0.008 in quintile 1 vs. 0.004 in quintile 5). That is, while analysts 

are on average more conservative in their forecasts when they cover more conservative firms, they 

err to a greater extent in aligning their asymmetric forecast timeliness with asymmetric earnings 

timeliness.  

Second, Hugon and Muslu’s (2010) “analyst conservatism” measure (HM_CONSV) is 

relatively constant across MATCHL quintiles (3.03 in quintile 1 vs. 3.06 in quintile 5). It appears 

                                           
12 Variable definitions are provided in Appendix. 
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that there is no systematic relation between analysts’ timeliness match and the level of relative 

analyst conservatism, suggesting that our MATCHL measure captures a different aspect of analyst 

characteristics than what Hugon and Muslu (2010) measure does.  

As regards other analyst-specific characteristics, we find that better timeliness-matching 

analysts have longer firm-specific experience (FEXP: 6.31 in quintile 1 vs. 6.94 years in quintile 

5), have longer general experience (GEXP: 9.81 vs. 10.32 years), and cover more diverse industries 

(NIND: 3.78 vs. 3.99 industries). Forecast revisions of better timeliness-matching analysts are 

characterized as being issued less frequently for a firm (FREQ: 6.27 vs. 5.74 revisions), later in a 

year [Avg (HORIZON): 175.62 vs. 172.78 days] and more immediately after other analysts’ 

forecast revisions [Avg (DaysElapsed): 10.95 vs. 9.75 days]. As for firm characteristics, we find 

that better timeliness-matching analysts cover firms with lower book-to-market ratios (BM: 0.56 

vs. 0.39), larger size (SIZE: 14.97 vs.15.46), less volatile stock returns [Avg (RetVolatility): 0.121 

vs. 0.108], and better earnings quality (EarnQuality: -0.030 vs. -0.029). Lastly, we find that the 

timeliness-matching expertise is positively related to past accuracy (AvgAccuracy: -0.016 vs. -

0.005) and past forecast error (AvgFE: -0.005 vs. -0.001). 

In Panel B of Table 3, we find that our second measure of timeliness match (MATCHC) is 

negatively related to the number of firms followed by an analyst (NFIRM) but positively related 

to the size of her brokerage house (BSIZE), suggesting that better timeliness-matching analysts 

cover fewer firms in a year and work with larger brokerage houses. For the rest of the variables, 

Panel B provides similar results to those in Panel A. 

In Panel C, we further examine the association between timeliness-matching performance 

and analyst, forecast and firm-specific characteristics using regression analyses. The dependent 

variables are MATCHL in the first two columns and MATCHC
 in the next two columns. Across the 
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columns, we find that coefficients on almost half of the independent variables are statistically 

significant, suggesting that those characteristics play a significant role in explaining the timeliness-

matching performance. For example, an analyst’s timeliness-matching performance is significantly 

associated with the firm-specific experience (FEXP), the number of industries following (NIND), 

firm size (SIZE), and the past forecast accuracy (AvgAccuracy). We also find that analysts tend to 

match the asymmetric timeliness between forecast revisions and earnings better when they have 

fewer firms in their coverage portfolio (NFIRM) or when they cover firms with lower book-to-

market ratio (BM). 

4. Empirical Results 

4.1. Timeliness-Matching Analysts and Forecast Accuracy 

In this subsection, we investigate whether an analyst’s timeliness-matching performance is 

associated with her forecast accuracy. Specifically, we estimate the following OLS regression:  

ACCURACY = 

α0 + α1 MATCHL (C) + α2 Firm.ATCL (C) + α3 HM_CONSV  

+ α4 FEXP + α5 GEXP + α6 NFIRM + α7 NIND + α8 BSIZE + α9 FREQ 

+ α10 HORIZON + α11 DaysElapsed + α12 BM + α13 SIZE 

+ α14 RetVolatility + α15 EarnQuality + α16 AvgAccuracy + α17 AvgFE  

+ Ʃ αy Year fixed effects + Ʃ αz Industry fixed effects + ε,                  (4)  

where ACCURACY is negative one times the absolute difference between an analyst’s earnings 

forecast and the firm’s actual earnings, scaled by the stock price on the last trading day of the 

month in which the analyst’s forecast is made. MATCHL (C) is our measure of an analyst’s 

timeliness-matching performance, calculated as negative one times the absolute difference 

between an analyst’s asymmetric forecast timeliness (Analyst.ATC) and a firm’s asymmetric 

earnings timeliness (Firm.ATCL (C)). In Equation (4), we control for firm, analyst, and forecast-
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specific characteristics that are known to affect forecast accuracy (e.g., Clement and Tse, 2005; 

and Clement et al., 2011): Hugon and Muslu’s (2010) analyst conservatism (HM_CONSV), firm-

specific experience (FEXP), general experience (GEXP), number of firms following (NFIRM), 

number of industries following (NIND), brokerage size (BSIZE), forecast frequency (FREQ), 

forecast horizon (HORIZON), days elapsed since last forecast (DaysElapsed), book-to-market 

ratio (BM), firm size (SIZE), return volatility (RetVolatility), earnings quality (EarnQuality), past 

average forecast accuracy (AvgAccuracy), and past average forecast error (AvgFE). In addition, we 

include year and industry fixed effects in the regression model. Standard errors are clustered by 

firm and year to allow for intra-group correlations in residuals within each firm and analyst group 

(Petersen, 2009; and Gow et al., 2010). Detailed variable definitions are provided in Appendix. 

Our prediction for the first hypothesis (H1) is that the coefficient on MATCHL (C) will be positive 

(i.e., α1 > 0).  

Table 4 shows the estimation results from OLS regressions of Equation (4). We report the 

results based on MATCHL in columns (1) to (3) and MATCHC in columns (4) to (6). Since we obtain 

inferentially similar results irrespective of the measure of timeliness match, we mainly discuss the 

results based on MATCHL in columns (1) to (3).  

In column (1), we find a positive and significant coefficient (0.031, t-statistic = 5.90) on 

MATCHL, consistent with our first hypothesis (H1).13 In particular, we note that the result is not 

only statistically significant but also economically meaningful: one-standard deviation increase in 

                                           
13 It may be possible that analysts’ discretion about what components of GAAP earnings to be excluded in their 
earnings forecasts could affect forecast accuracy. However, this alternative explanation is less likely to be a main 
reason for the results in Table 4, because we measure analyst forecast accuracy against pro forma earnings provided 
by the I/B/E/S to mitigate the effect of exclusion. Furthermore, exclusion of transitory items may not explain our other 
findings such as stronger market reactions, profitable stock recommendations, and better career outcomes. 
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the timeliness-matching performance is associated with an improvement in forecast accuracy by 

11.8% of its standard deviation.14  

In Column (2), we control for analyst, forecast, and firm-specific characteristics, including 

the average of past forecast accuracy (AvgAccuracy) and the average of past signed forecast error 

(AvgFE). A significant and positive coefficient on MATCHL (0.008, t-statistic = 2.11) suggests that 

analysts’ timeliness-matching performance has incremental explanatory power beyond control 

variables such as past forecast accuracy and past forecast bias in explaining forecast accuracy of 

the current earnings forecasts. Most of the estimated coefficients on other control variables are in 

line with prior studies (e.g., Kumar, 2010; and Kim et al., 2011). For instance, we find a negative 

and significant coefficient (-0.055, t-statistic = -11.69) on HORIZON, which indicates that analysts 

provide more accurate forecasts as the actual earnings announcement date comes closer. We also 

find a positive and significant coefficient (0.001, t-statistic = 2.69) on SIZE, which indicates that 

analysts provide more accurate earnings forecasts when they follow larger firms, for which more 

information is available. Also, we use RetVolatility as a proxy for forecasting difficulty, and we 

find a negative and significant coefficient (-0.076, t-statistic = -4.46), suggesting that analysts 

provide less accurate forecasts when they follow a firm with highly volatile stock returns. 

Next, we further investigate whether the relation between our match measures and forecast 

accuracy is driven by the effects of other conservatism-related dimensions. To address this concern, 

in column (3), we additionally control for analyst conservatism (HM_CONSV) and firms’ 

asymmetric earnings timeliness (Firm.ATCL), both of which are known to affect forecast accuracy 

(Louis et al., 2008; Hugon and Muslu, 2010; and Pae and Thorton, 2010). We find that our results 

                                           
14 This calculation of 11.8% = (0.110×0.031)/0.029 is based on the standard deviation of MATCHL of 0.110 (in Panel 
D, Table 1) and the standard deviation of ACCURACY of 0.029 (in Table 2). 



18 

continue to remain significant after controlling for analyst conservatism and firms’ asymmetric 

earnings timeliness. Finally, we report similar results when MATCHC is employed in columns (4) 

to (6). The coefficients on MATCHC are consistently significant across all specifications.  

Overall, in Table 4 we find supporting evidence for our first hypothesis (H1) that analysts 

provide more accurate earnings forecasts when they better match their asymmetric forecast 

timeliness with the asymmetric earnings timeliness of the target firm. Moreover, the evidence lends 

additional support to our notion that matching timeliness between an analyst’s forecast revision 

and earnings of the firm she follows is more important than just her being conservative or covering 

less conservative firms. 

4.2. Timeliness-Matching Analysts and Market Responses 

In this subsection, we examine whether the market participants respond more strongly to 

the forecast revisions of analysts who better match their asymmetric forecast timeliness with 

asymmetric earnings timeliness of the firm they follow (H2). In examining the effect of analysts’ 

timeliness-matching performance on market reactions to earnings forecasts, we estimate the 

following OLS regression: 

CAR (-1, +1) = γ0 + γ1 REV + γ2 MATCHL (C) + γ3 REV × MATCHL (C) 

+ Ʃ γm Controls + Ʃ γn REV × Controls 

+ Ʃ γr Year fixed effects + Ʃ γs Industry fixed effects + ε.           (5) 

CAR (-1, +1) is the three-day market-adjusted, cumulative abnormal return for a firm from trading 

day -1 to trading day +1, where trading day 0 is an analyst’s forecast revision date. REV is an 

analyst’s forecast revision for the firm, measured as the difference between the analyst’s two 

consecutive (i.e., current and immediately preceding) earnings forecasts, scaled by the closing 
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stock price on the last trading day of the month in which the analyst’s immediately preceding 

forecast is made. MATCHL (C) is our measure of an analyst’s timeliness-matching performance. 

Controls refers to the vector of control variables that are used in Equation (4). We further include 

the interaction terms between forecast revision (REV) and control variables, year and industry fixed 

effects. Standard errors are clustered by firm and year (Petersen, 2009). Detailed variable 

definitions are provided in Appendix. For our second hypothesis (H2), we predict that the 

coefficient on REV × MATCHL (C) will be positive (i.e., γ3 > 0).  

In Table 5, we report the estimation results from the OLS regression model of Equation (5). 

We use MATCHL in columns (1) to (3) and MATCHC in columns (4) to (6). Irrespective of the 

measure of an analyst’s timeliness-matching performance, we find consistent results across 

columns in Table 5. First, in columns (1) and (4), we estimate the regression of Equation (5) 

without control variables. We find positive and significant coefficients on the interaction term 

between forecast revision and our measure of timeliness match, REV × MATCHL (C), supporting 

our prediction (H2).  

In columns (2) and (5), we control for analyst, forecast, and firm characteristics that are 

known to affect short-term market reactions to analyst forecasts (e.g., Clement et al., 2011). We 

find that the coefficient estimates on REV × MATCHL (C) remain significant and positive.  

In columns (3) and (6), we further control for Hugon and Muslu’s (2010) analyst 

conservatism and firms’ asymmetric earnings timeliness. Consistent with Hugon and Muslu’s 

finding, positive and significant coefficients on REV × HM_CONSV indicate that the market reacts 

more strongly to forecast revisions of analysts who issue more conservative forecasts. More 

importantly, the coefficients on REV × MATCHL (C) remain positive and significant even after 

controlling for analyst conservatism and firms’ asymmetric earnings timeliness.  
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In sum, the results in Table 5 are in support of our prediction (H2) that analysts who better 

match their asymmetric forecast timeliness with asymmetric earnings timeliness of the target firm 

elicit stronger market reactions to their forecast revisions. 

4.3. Overall Timeliness-Matching Ability 

 Thus far, we have demonstrated that analysts who match the levels of asymmetric forecast 

timeliness and asymmetric earnings timeliness exhibit better forecasting performance. However, 

since our timeliness-match measure (MATCH) is defined at the analyst-firm-year level, it also 

seems possible that we may also capture some analysts who randomly achieve a higher level of 

timeliness match for a firm by luck, not by their ability to understand conditional conservatism.15 

Thus, in this subsection, we specifically address this concern by using an alternative measure of 

timeliness match, which we believe can mitigate this measurement error.  

Specifically, we use the mean level of an analyst’s timeliness-match for all firms she 

covers in a year (Mean of MATCH). The rationale for using the mean value is very straightforward. 

An analyst may occasionally achieve a superior timeliness match for a certain firm by luck. 

However, if the analyst does not have good understanding of the asymmetric timeliness of earnings, 

such superior matching performance will not be repeated because it is very unlikely to have a 

continuation of luck. From this perspective, we take the average of an analyst’s timeliness-

matching performance (MATCH) for all firms that she covers in a given year and use the average 

level (Mean of MATCH) as an alternative measure that captures the analyst’s overall timelines-

matching ability. 

 In Table 6, we re-estimate Equations (4) and (5) after replacing MATCH with Mean of 

                                           
15 We appreciate the editor for pointing out this possibility.  
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MATCH, which is defined at the analyst-year level. In Panel A, we find that our results for the first 

hypothesis (H1) remain strong and significant across all columns, suggesting that better timeliness-

matching analysts do have higher forecast accuracy. We also find that, in Panel B, our results for 

the second hypothesis (H2) that better timeliness-matching analysts elicit stronger market reactions 

to their forecast revisions hold qualitatively the same as those in Table 5. Taken all together, the 

results in Table 6 alleviate the concern that our findings are mainly attributable to analysts who 

randomly achieve a superior timeliness-match for a firm. 

5. Additional Tests 

5.1. Timeliness-Matching Analysts and Forecast Bias 

We investigate another aspect of analysts’ forecast properties, optimistic bias, in this 

subsection. A number of prior studies document analysts’ systematic tendency to issue 

optimistically biased forecasts (Hong and Kubik, 2003; Ke and Yu, 2006; and Barron et al., 2013). 

Thus, we examine the relationship between the timeliness-matching measure and bias in analyst 

forecasts. In Table 7, we present results for analyst forecast bias tests using the OLS regressions 

of Equation (4) after replacing the dependent variable with Forecast Optimism. Forecast Optimism 

is measured as the difference between an analyst’s earnings forecast for a firm and the firm’s actual 

earnings, scaled by the stock price on the last trading day of the month in which the analyst’s 

forecast is made. 

 A higher value of Forecast Optimism corresponds to a more optimistically biased 

forecast. In column (1), we find a negative and significant coefficient on MATCHL (-0.017, t-

statistic = -4.42), suggesting that better timeliness-matching analysts provide less optimistically 

biased forecasts. In other columns, we find inferentially same results irrespective of the measure 
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of timeliness match or set of control variables we use. Overall, the results in Table 7 with those in 

Table 4 indicate that analysts with better timeliness-matching expertise provide less biased and 

more accurate earnings forecasts. 

5.2. Timeliness-Matching Analysts and Stock Recommendation 

 Analysts’ stock recommendations that reflect their opinions about a firm’s intrinsic value 

relative to current stock price (e.g., Stickel, 1985) are one of the key outputs of sell-side analysts. 

In this subsection, we examine whether analysts with better timeliness-matching performances 

provide more profitable recommendations than those analysts who poorly match their asymmetric 

forecast timeliness with asymmetric earnings timeliness. 

Since analyst recommendations retain investment values at least up to six months and their 

recommendations are rarely revised or reiterated in a year (Womack, 1996; and Bradshaw, 2004), 

we focus on recommendation profitability over three, six months and one year in the empirical 

analyses. Specifically, we measure 3-Month Profitability, 6-Month Profitability, and 1-Year 

Profitability as the market-adjusted buy-and-hold return for a firm over the period starting from 

the day before the recommendation date and ending on the earlier of three, six, or twelve months 

or two days before the recommendation is revised or reiterated, respectively. Following Mikhail et 

al. (1999), we assume that we take a $1 long position in strong buy and buy recommendations 

(I/B/E/S codes=1 and 2) and a $1 short position in strong sell and sell recommendations (I/B/E/S 

codes=4 and 5).16  

 Table 8 reports the results from the OLS regressions of stock recommendation profitability 

                                           
16 Hold recommendation may reflect either an analyst’s true neutral opinion or unfavorable opinion about the stock, 
owing to the analyst’s incentive to avoid sell recommendations. Thus, we only use buy and sell recommendations to 
reflect analysts’ unambiguous opinions about stocks in this analysis. 
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on the measure of timeliness-matching performance, analyst and firm-specific characteristics, and 

year and industry fixed effect dummies. Across the three different holding periods, we find 

consistent results: our measures of timeliness match (MATCHL and MATCHC) are significantly and 

positively associated with the profitability of stock recommendations, suggesting that analysts 

make more profitable stock recommendations when they match the asymmetric timeliness between 

forecast revisions and earnings better.  

5.3. Timeliness-Matching Analysts and Career Outcomes 

 We have thus far examined the relation between analysts’ timeliness-matching ability and 

various aspects of their forecasting performance. In this subsection, we explore whether analysts 

with better timeliness-matching ability have more favorable career outcomes. We examine three 

different types of analysts’ career outcomes: Turnover, Stay in Profession and Promotion.  

Turnover is equal to one if an analyst moves from one brokerage house to another on 

I/B/E/S, leaves the profession, or moves to another brokerage house not included on I/B/E/S in the 

following year and zero otherwise (Mikhail et al., 1999). Stay in Profession is equal to one if an 

analyst remains on the I/B/E/S in the following year and zero otherwise (Clement and Law, 2014). 

Promotion is equal to one if an analyst moves from a low-status to a high-status brokerage house 

in the following year and zero otherwise. We define a brokerage house with more than 25 analysts 

as a high-status brokerage house (e.g., Hilary and Hsu, 2013; and Clement and Law, 2014). As an 

analyst’s career outcomes are determined on an annual basis and are affected by her performance 

regarding all firms she covers, we construct the average level of an analyst’s timeliness-matching 

ability for all firms she covers in a year (Mean of MATCHL (C)). 

Table 9 provides results for the tests on analysts’ career outcomes. In columns (1) and (2), 
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we report the results from the probit regression in which the dependent variable is Turnover and 

the variable of interest is Mean of MATCHL (C). We find a significant and negative coefficient on 

Mean of MATCHL (C), suggesting that better timeliness-matching analysts are less likely to 

experience turnover in the following year. In columns (3) and (4), we estimate the probit regression 

of Stay in Profession and find a significantly positive coefficient on Mean of MATCHL (C), 

suggesting that better timeliness-matching analysts are more likely to stay in the profession in the 

following year.17 In columns (5) and (6), we perform our analysis using the subsample of analyst-

years that experience turnover. We do not find statistically significant relations between the 

analysts’ timeliness-matching expertise (Mean of MATCHL (C)) and Promotion, suggesting that 

better timeliness-matching analysts are not more likely to get promoted to a high-status brokerage 

house when they experience turnover. The insignificant results may be partly attributable to a small 

sample size which in general lowers the power of the test. 

5.4. Analysts’ Expertise in Matching Gain and Loss Timeliness 

In this subsection, we measure analysts’ match in terms of gain timeliness and loss 

timeliness separately and combined. Unlike our primary measure of analysts’ timeliness match, 

which focuses on the incremental timeliness in recognizing bad news over good news, we now 

disaggregate the measure of conditional conservatism into two components, which are gain and 

loss timeliness.18 We first measure an analyst’s match of gain timeliness (GAIN_MATCHL(or C)) as 

negative one times the absolute difference in gain timeliness (β1) between the analyst’s forecast 

revisions and earnings of the firm she follows using Equation (2) and Equations (1a) or (1b), 

                                           
17 Our results on Stay in Profession need to be interpreted with caution because some analysts who disappear from 
I/B/E/S are promoted to research executives following brokerage mergers (Wu and Zhang, 2009). 
18 We are very grateful to an anonymous referee for this suggestion. 



25 

respectively.19 Then we measure the analyst’s match of loss timeliness (LOSS_MATCHL(or C)) as 

negative one times the absolute difference in loss timeliness (β1 + β3) between the analyst’s forecast 

revisions and the firm’s earnings using Equation (2) and Equations (1a) or (1b). Next, we also 

measure the analyst’s overall performance in matching gain and loss timeliness 

(AVG_GL_MATCHL(or C)) as the average of the two abilities in matching gain and loss timeliness 

(GAIN_MATCH L(or C) + LOSS_MATCH L(or C)). 

In Table 10, we present results for our main hypotheses (H1: Accuracy Test and H2: 

Market Reaction Test) using the three measures of analysts’ matching performance in gain and loss 

timeliness. Consistent with our main findings for the analyst expertise in timeliness-matching, we 

find that analysts’ performance in matching gain and loss timeliness separately or combined is also 

informative in explaining their forecast accuracy and market reactions to forecast revisions.20 

5.5. Analyst Conservatism versus Timeliness Match 

 Thus far, by controlling for Hugon and Muslu’s (2010) analyst conservatism measure 

(HM_CONSV) throughout the regression analyses, we have shown that matching asymmetric 

timeliness between forecast revisions and earnings (MATCH) plays a distinct role from simply 

being conservative. In this subsection, we delve into this question further using subsample analyses. 

Specifically, we divide the sample into two subsamples according to the sample median level of 

analyst asymmetric forecast timeliness (Analyst.ATC) and examine the effect of MATCH in each 

subsample.  

 In untabulated tests, for each subsample of analyst conservatism, we re-estimate all 

                                           
19 𝐺𝐺𝑀𝑀𝐺𝐺𝐺𝐺_𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀𝐿𝐿 (𝐶𝐶)(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = −1 × |𝛽𝛽1(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) 𝑓𝑓𝐹𝐹𝑓𝑓𝐹𝐹 𝑅𝑅𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑖𝑖𝑓𝑓𝐴𝐴 (2) − 𝛽𝛽1(𝑗𝑗, 𝑡𝑡) 𝑓𝑓𝐹𝐹𝑓𝑓𝐹𝐹 𝑅𝑅𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑖𝑖𝑓𝑓𝐴𝐴 (1𝐴𝐴) 𝑓𝑓𝐹𝐹 (1𝑏𝑏)| 
20  In untabulated tests, we find similar results for forecast bias, stock recommendation profitability and career 
outcomes using the analyst expertise in matching gain and loss timeliness. We do not tabulate the results for brevity. 
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regression models from Table 4 for accuracy tests to Table 9 for career outcome tests. Overall, we 

find that, even among conservative analysts, timeliness-matching still plays an important role in 

achieving superior forecasting performance.21 As a robustness check, we find that results in this 

subsection are not qualitatively different when we make subsamples using Hugon and Musulu’s 

(2010) measure of analyst conservatism (HM_CONSV) or when we use the industry-year median 

of analyst asymmetric forecast timeliness (Analyst.ATC). The results in this subsection provide 

further supports to our notion that matching the asymmetric timeliness captures a new aspect of 

analyst expertise that is distinct from an analyst being simply conservative.  

5.6. Robustness Checks 

We check robustness of our findings as follows. First, we attempt to enhance the 

comparability between the measure of asymmetric forecast timeliness (Analyst.ATC) and that of 

asymmetric earnings timeliness (Firm.ATC). More specifically, we estimate analyst asymmetric 

forecast timeliness using a return variable (RET) that is more comparable to the return variable 

(RETAnnual) that is used when estimating the asymmetric earnings timeliness. Note that in preceding 

sections, we have measured the return variable (RET) in Equation (2) to estimate the asymmetric 

forecast timeliness over the forecast revision period (an average of 61 days) that is significantly 

shorter than the length of a fiscal year, over which the measure of RETAnnual for Equations (1a) and 

(1b) is defined to estimate the asymmetric earnings timeliness. As a robustness check, we define 

an analyst’s unique forecast revision for each firm-year as the difference between the last two-

year-ahead earnings forecast issued before the preceding year’s earnings announcement date and 

                                           
21 For career outcome tests in Table 9, we find that results become insignificant when we use the subsample of low 
analyst conservatism. The insignificant results could be attributable to weak statistical power owing to the smaller 
subsample size. 
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the last one-year-ahead earnings forecast for the current fiscal year.22 As a result, the average 

length of analysts’ unique forecast revision periods extends considerably from 61 days to 372 days. 

In un-tabulated tests, we re-estimate Equation (2) using those extended forecast revisions and find 

that our main findings remain inferentially the same, ensuring that the difference in the length of 

return windows does not affect our findings. 

Second, we repeat all analyses using total assets per share or book value of equity per share, 

instead of stock price, as alternative deflators for the actual EPS, change in the actual EPS, analyst 

forecast revision, and forecast accuracy in Equations (1a), (1b), (2), and (4), respectively. In un-

tabulated tests, we find that, in general, our results for forecast accuracy, market reaction, and 

forecast bias tests remain significant using theses alternative deflators whereas results for stock 

recommendation profitability and career outcome tests become weak or insignificant. 

Third, we vary the minimum number of required observations from 8 to 6, 10, 12, or 15 

and the minimum number of required negative (or positive) return observations to 1, 4, or 5 in the 

estimation of Equations (1a), (1b) and (2). In un-tabulated tests, we find that our results hold 

qualitatively the same when we impose different constraints.23  

Lastly, to further ensure that our findings are not sensitive to the choice of analyst 

conservatism control, we re-estimate all regression models for accuracy tests (Table 4) to career 

                                           
22 For example, suppose a firm with a December 31 fiscal year end. The firm announces its actual earnings on March 
31 every year. If an analyst issued her two-year ahead forecasts for the firm’s earnings of fiscal year 2010 in June 
2009, October 2009, and in February 2010 and one-year-ahead forecasts in June 2010, in October 2010, and in 
February 2011, we calculate her revision using the last two-year-ahead forecast in February 2010 and the last one-
year-ahead forecast in February 2011 in order to force the revision window close to one year. 
23 Our main findings for accuracy test (H1) and market reaction test (H2) remain qualitatively the same, but results 
for forecast bias, stock recommendation profitability, and career outcome are rather weak. In untabulated tests, we 
only vary constraints imposed on Equation (2) while holding the constraints for Equations (1a) and (1b) constant. We 
find that results remain robust even when at least 30 total, 10 positive, and 10 negative return observations are required 
in estimating Equation (2). 
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outcome tests (Table 9) after controlling for Hugon and Muslu’s (2010) measure of analyst 

conservatism (HM_CONSV) in addition to our measure of an analyst’s asymmetric forecast 

timeliness (Analyst.ATC). In untabulated tests, we find that results remain qualitatively the same. 

6. Conclusion 

This study investigates whether the extent to which an analyst matches the levels of 

asymmetric timeliness in her forecast revisions and earnings of the firm she follows affects her 

forecasting performance. We find that analysts produce more accurate earnings forecasts and elicit 

stronger market reactions to their forecasts when they better match or align their asymmetric 

forecast timeliness with firms’ asymmetric earnings timeliness. We also find evidence that such 

timeliness-matching analysts issue less biased earnings forecasts, more profitable stock 

recommendations, and have more favorable career outcomes. We document that the effect of the 

analyst’s timeliness-match on their performance and career outcomes is distinct from those of pre-

existing determinants or other analyst attributes related to conservatism. Overall, our results imply 

that analysts’ ability to understand firms’ conditional conservatism and thereby adjust their 

asymmetric timeliness in forecast revisions in accordance with that of earnings serves as an 

important source of analyst expertise.  

Our findings on the benefits of analyst timeliness-matching expertise may offer practical 

implications for market participants. Flexibility of accounting standards, coupled with managers’ 

diverse reporting incentives, engenders a wide variation in the levels of asymmetric earnings 

timeliness over time, and across firms and countries (Watts, 2003b). Analysts and investors can 

benefit from analyzing factors that influence the level of asymmetric earnings timeliness, such as 

contracting, litigation, and political costs (Watts, 2003a). Brokerage houses can also benefit from 
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our study. They often hire scientists or engineers as analysts; however, the accounting knowledge 

of those analysts is incommensurate with their superb technological and industrial expertise. For 

instance, half of Morgan Stanley healthcare analysts do not have formal accounting education at 

the undergraduate or graduate level (Morgan Stanley, 2012). To further improve such specialist 

analysts’ forecasting performance, brokerage houses may consider fostering their analysts’ 

development of accounting expertise by, for example, offering some forms of in-house training. 

Our study also offers a methodological contribution to the analyst literature by proposing 

a direct measure of analysts’ understanding of accounting information. Prior studies have used 

indirect measures such as analysts’ experience as a proxy for their understanding of accounting 

information (e.g., Bradshaw et al., 2001; and Drake and Myers, 2011). In contrast, we directly 

measure the extent to which analysts understand accounting practices and choices by comparing 

the levels of analysts’ asymmetric forecast timeliness and firms’ asymmetric earnings timeliness.  

Finally, we conclude by offering avenues for future research. It would be interesting to 

focus on analysts’ matching expertise in other areas than conditional conservatism. Also, given the 

heterogeneous level of conditional conservatism across countries (Giner and Rees, 2001), future 

research may examine whether there exists a shift in the determinants or consequences of analysts’ 

timeliness-matching expertise across countries with different regulatory regimes and legal 

traditions (e.g., civil, code, and common law). Lastly, in light of the on-going debate on the bias 

in Basu’s (1997) asymmetric timeliness measure, it would also be worth to develop alternative 

measures of conditional conservatism that can be applied to both of firms’ earnings and analysts’ 

forecasts and examine the effect of match between the two.
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Appendix  
Variable Definitions 
Variable Description 
ACCURACY The measure of an analyst’s forecast accuracy. ACCURACY is computed as  

-1×|Actual EPS –Forecasted EPS|, deflated by the stock price on the last trading day of the 
month in which an analyst’s earnings forecast is made. ACCURACY is calculated for an 
analyst's forecasts of current fiscal year earnings. 

Analyst.ATC The measure of an analyst's asymmetric forecast timeliness for a firm, measured at the 
firm’s most recent annual earnings announcement date. Analyst.ATC is measured by the 
coefficient (β3) on RET×D of Equation (2): (Current EPS forecast – Preceding EPS 
forecast)/LagPrice = β0 + β1 RET + β2 D + β3 RET × D +ε, where Current EPS forecast is 
an analyst’s one-year-ahead EPS forecast for a firm and Preceding EPS forecast is the 
analyst’s one-year-ahead EPS forecast for the same firm and fiscal year that immediately 
precedes Current EPS forecast. LagPrice is the stock price on the last trading day of the 
month in which the analyst’s preceding EPS forecast is made. RET is the market-adjusted, 
buy-and-hold return over the revision period between the date of Preceding EPS forecast 
and that of Current EPS forecast. D is a dummy variable equal to 1 when RET is negative 
and 0 otherwise. Analyst.ATC (β3) is estimated using the analyst's all past one-year-ahead 
EPS forecasts issued for the firm from 1990 up to the firm’s most recent earnings 
announcement date. We require at least eight observations including the minimum of two 
positive and two negative return (RET) observations to estimate Equation (2). Analyst.ATC 
is defined at the analyst-firm-year level. Analyst.ATC is available from 1991 to 2010. 

AvgAccuracy The average forecast accuracy (ACCURACY) of an analyst's all past one-year-ahead 
earnings forecasts for a firm issued from 1990 up to the preceding fiscal year. 

AvgFE The average signed forecast error of an analyst's all past one-year-ahead earnings forecasts 
for a firm issued from 1990 up to the preceding fiscal year. Forecast error (FE) is measured 
by the difference between Actual EPS and Forecasted EPS, scaled by the last closing stock 
price on the month of the forecast date. 

BM Book-to-market ratio of a firm at the end of the preceding fiscal year. 
BSIZE The size of the brokerage house that employs the target analyst, measured by the total 

number of analysts employed by the brokerage house during the preceding fiscal year of 
the current forecast that the target analyst issues. 

CAR (-1, +1) The three-day market-adjusted, cumulative abnormal returns for a firm from trading day -
1 to +1, where trading day 0 is an analyst’s earnings forecast date. 

D A dummy variable that is equal to 1 if RET (or RETAnnual) is negative, and 0 otherwise.  
DaysElapsed Number of days elapsed since the most recent forecast by other analyst issued for the same 

firm-fiscal year. 
EarnQuality A firm’s earnings quality, measured as negative one times the standard deviation of a firm's 

residuals (εj,t) over the past five years, where a firm-year-specific residual is obtained from 
the following cross-sectional regression (Francis et al., 2007): TCAi,t = CFOi,t-1 + CFOi,t + 
CFOi,t+1 + △REVi,t + PPEi,t + εi,t. TCAi,t is firm i's total current accruals in year t, CFOi,t 
is firm i's cash flow from operation in year t, △REVi,t is firm i's change in revenues, and 
PPEi,t is firm i's gross value of property, plant, and equipment. All variables are scaled by 
average total assets. The regression is estimated for each of the Fama and French 48 
industry groups with at least 20 firms in a given year. We use the lagged value of a firm’s 
earnings quality, assuming that earnings quality for firm i in year t becomes available to 
the market in the fourth month following the end of fiscal year t+1. 

FEXP An analyst's firm-specific experience, measured as the number of years the analyst has 
issued at least one one-year-ahead earnings forecast for the firm up to the preceding fiscal 
year. 
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Appendix continued 
Variable Description 
Firm.ATCL The measure of a firm's asymmetric earnings timeliness, measured as the coefficient 

(β3) on RETAnnual ×D of Equation (1a): Actual EPS/LagPrice = β0 + β1 RETAnnual + β2 
D + β3 RETAnnual × D +ε. Actual EPS is the I/B/E/S actual EPS. LagPrice is the stock 
price at the beginning of the firm’s fiscal year. RETAnnual is the market-adjusted, buy-
and-hold return over the fiscal year. D is a dummy variable equal to 1 when RETAnnual 
is negative and 0 otherwise. Firm.ATCL (β3) is estimated at the firm-year level using a 
firm's all past earnings and return data from 1990 up to the preceding fiscal year for 
which the most recent earnings announcement is made. We require at least eight 
observations including two positive and two negative return (RETAnnual) observations 
to estimate Equation (1a). Firm.ATCL is available from 1998 to 2010. 

Firm.ATCC The measure of a firm’s asymmetric earnings timeliness, measured as the coefficient 
(β3) on RETAnnual × D of Equation (1b): (Actual EPS – Lag of Actual EPS)/LagPrice = 
β0 + β1 RETAnnual + β2 D + β3 RETAnnual × D +ε. Firm.ATCC. Actual EPS is the I/B/E/S 
actual EPS. Lag of Actual EPS is the firm’s Actual EPS lagged by one year. LagPrice 
is the stock price at the beginning of the firm’s fiscal year. RETAnnual is the market-
adjusted, buy-and-hold return over the fiscal year. D is a dummy variable equal to 1 
when RETAnnual is negative and 0 otherwise. Firm.ATCC (β3) is estimated using a firm’s 
all past earnings and return data available from 1990 to the preceding fiscal year for 
which the most recent earnings announcement is made. Firm.ATCC is defined at the 
firm-year level and is available from 1999 to 2010. We require at least eight 
observations, including two positive and two negative return (RETAnnual) observations. 

Forecast Optimism The measure of an analyst’s forecast optimism, computed as (Forecasted EPS- Actual 
EPS) deflated by the stock price on the last trading day of the month in which an 
analyst’s earnings forecast is made. Forecast Optimism is calculated for an analyst's 
annual one-year-ahead earnings forecast. 

FREQ Number of an analyst's one-year-ahead earnings forecasts issued for the firm’s 
preceding fiscal year. 

GEXP An analyst's general experience. It is measured as the number of years the analyst has 
appeared in I/B/E/S up to the preceding fiscal year. 

HM_CONSV An analyst's relative conservatism measure introduced by Hugon and Muslu (2010). 
HM_CONSV is the quintile rank of an analyst's conservatism score measured in the 
preceding fiscal year. An analyst's conservatism score is (β0+β1)/β0 from Equation (1) 
of Hugon and Muslu (2010). 

HORIZON Forecast horizon. It is defined as the number of days between the analyst's earnings 
forecast date and the earnings announcement date. 

MATCHL (or C) The measure of an analyst expertise in matching the analyst’s asymmetric forecast 
timeliness with a firm’s asymmetric earnings timeliness. It is measured by the absolute 
difference between Analyst.ATC and Firm.ATCL (or C), multiplied by -1:  
MATCHL (or C) = -1×|Analyst.ATC - Firm.ATCL (or C)|. 

NFIRM Number of firms an analyst covered in the preceding fiscal year. 
NIND Number of industries an analyst covered in the preceding fiscal year. 
Promotion An indicator that is equal to one if an analyst moves from a low-status to a high-status 

brokerage house in the following year. A brokerage house with more than 25 analysts 
is defined as a high-status brokerage house. 

RET The market-adjusted, buy-and-hold returns between the prior forecast date and the 
current forecast date of an analyst. Return data is obtained from the CRSP Daily File. 
The two forecasts are annual earnings forecasts for the same firm and fiscal year. 

RETAnnual A firm's market-adjusted, buy-and-hold returns from nine months before its fiscal 
year-end to three months after its fiscal year-end (Basu, 1997). 
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Appendix continued 
Variable Description 
RetVolatility Standard deviation of monthly stock returns of a firm during the past 12 months 

relative to an analyst's annual earnings forecast date. 
REV An analyst's one-year-ahead earnings forecast revision. It is the difference between 

the two consecutive (current and immediately preceding) earnings forecasts of the 
analyst for the same firm and fiscal year, scaled by the closing stock price on the last 
trading day of the month of the immediately preceding forecast.  

SIZE Natural logarithm of the firm's market value of equity at the end of the preceding fiscal 
year.  

Stay in Profession An indicator that is equal to one if an analyst remains on I/B/E/S in the following year. 
Turnover An indicator that is equal to one if an analyst moves from one brokerage house to 

another on I/B/E/S, leaves the profession, or moves to another brokerage house not 
included on I/B/E/S in the following year. 

3-Month/6-Month/1-year  
Profitability  

The market-adjusted buy-and-hold returns to a stock recommendation made by an 
analyst for a firm. The abnormal returns are calculated over the period starting from 
the day before the recommendation date until the earlier of 3/6/12 months or two days 
before the recommendation is revised or reiterated. 
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Figure 1 
A Real-Life Example: EPS Forecasts, Performance, and Timeliness-Matching Ability of Two Different 
Analysts 

Panel A: When following an aggressive (i.e., low conservatism) firm  

 

 

Company Name: Union Pacific Corp. Jane Doe John Doe 
The level of asymmetric forecast timeliness: -0.072 0.150 
(Analyst.ATC) (less conservative) (more conservative) 
The level of asymmetric earnings timeliness: -0.015 -0.015 (Firm.ATCL) 
The degree of matching two asymmetric timeliness: -0.057 -0.165 
MATCHL = -1×|Analyst.ATC – Firm.ATCL| (better match) (worse match) 
Absolute forecast error: $0.035  $0.080  
AFE = |Actual EPS – Forecasted EPS| (more accurate) (less accurate) 
Absolute market reaction to forecast revision: 1.743% 1.012% 
|CAR (-1, +1)| around the forecast revision date (stronger reaction) (weaker reaction) 
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Figure 1 continued 

Panel B: When following a conservative (i.e., high conservatism) firm 

 

 

Company Name: Landstar System, Inc. Jane Doe John Doe 
The level of asymmetric forecast timeliness: 0.027 -0.001 
(Analyst.ATC) (more conservative) (less conservative) 
The level of asymmetric earnings timeliness: 0.069 0.069 (Firm.ATCL) 
The degree of matching two asymmetric timeliness: -0.042 -0.070 
MATCHL = -1×|Analyst.ATC – Firm.ATCL| (better match) (worse match) 
Absolute forecast error: $0.050  $0.060  
AFE = |Actual EPS – Forecasted EPS| (more accurate) (less accurate) 
Absolute market reaction to forecast revision: 4.157% 2.960% 
|CAR (-1, +1)| around the forecast revision date (stronger reaction) (weaker reaction) 
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Table 1 
Summary Statistics for Firms’ Asymmetric Earnings Timeliness, Analysts’ Asymmetric Forecast 
Timeliness, and Analysts’ Timeliness Match 
Panel A: Firms’ asymmetric earnings timeliness based on Equation (1a), Firm.ATCL 

Parameter estimates N Mean Lower 
quartile Median Upper 

quartile Std. Dev. 

RETAnnual 7,574 0.004*** -0.017 0.001*** 0.026 0.069 
RETAnnual × D (Firm.ATCL) 7,574 0.016*** -0.035 0.009*** 0.059 0.132 
RETAnnual + RETAnnual × D 7,574 0.019*** -0.021 0.012*** 0.050 0.105 
  
Panel B: Firms’ asymmetric earnings timeliness based on Equation (1b), Firm.ATCC 

Parameter estimates N Mean Lower 
quartile Median Upper 

quartile Std. Dev. 

RETAnnual 6,792 0.007*** -0.006 0.002*** 0.019 0.064 
RETAnnual × D (Firm.ATCC) 6,792 0.011*** -0.019 0.005*** 0.038 0.110 
RETAnnual + RETAnnual × D 6,792 0.018*** -0.008 0.008*** 0.036 0.089 
  
Panel C: Analysts’ asymmetric forecast timeliness based on Equation (2), Analyst.ATC 

Parameter estimates N Mean Lower 
quartile Median Upper 

quartile Std. Dev. 

RET 27,092 0.007*** -0.003 0.003*** 0.015 0.046 
RET × D (Analyst.ATC) 27,092 0.005*** -0.012 0.002*** 0.021 0.072 
RET + RET × D 27,092 0.013*** -0.003 0.005*** 0.023 0.053 
  
Panel D: Match between a firm’s asymmetric earnings timeliness and an analyst’s asymmetric forecast timeliness 
for the firm based on Equation (3), MATCHL(or C) 

Parameter estimates N Mean Lower 
quartile Median Upper 

quartile Std. Dev. 

MATCHL 27,092 -0.093*** -0.119 -0.055*** -0.023 0.110 
MATCHC 24,747 -0.073*** -0.090 -0.035*** -0.012 0.100 

This table presents summary statistics for the parameter estimates from the 7,574 firm-year regressions of Equation 
(1a) in Panel A, the parameter estimates from the 6,792 firm-year regressions of Equation (1b) in Panel B, and the 
parameter estimates from the 27,092 analyst-firm-year regressions of Equation (2) in Panel C. In Panel D, we report 
summary statistics for analyst-firm-year measures of timeliness-matching ability. All parameter estimates are 
winsorized at the 1% and 99% levels. See the Appendix for variable definitions. ***, **, and * indicate statistical 
significance based on two-sided tests at the 1%, 5%, and 10% levels, respectively.
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Table 2 
Summary Statistics for Analyst, Firm, and Forecast Characteristics  
Variable Mean Lower quartile Median Upper quartile Std. Dev.  
REV -0.001 -0.003 0.000 0.002 0.012 
ACCURACY -0.012 -0.011 -0.004 -0.001 0.029 
Forecast Optimism 0.003 -0.004 0.000 0.004 0.027 
CAR (-1, +1) 0.000 -0.030 0.000 0.031 0.064 
HM_CONSV 3.059 2 3 4 1.390 
FEXP 6.5 4 6 8 3.3 
GEXP 10.0 6 9 13 5.0 
NFIRM 18.4 13 17 21 8.3 
NIND 3.7 2 3 5 2.3 
BSIZE 71.0 25 60 120 53.4 
FREQ 7.0 5 6 9 3.3 
HORIZON 175.8 104 184 251 86.1 
DaysElapsed  8.8 1 3 9 15.3 
BM 0.464 0.252 0.389 0.584 0.319 
SIZE  15.458 14.320 15.439 16.547 1.592 
RetVolatility 0.111 0.071 0.098 0.135 0.059 
EarnQuality -0.028 -0.034 -0.023 -0.015 0.021 
AvgAccuracy -0.009 -0.010 -0.005 -0.002 0.014 
AvgFE -0.002 -0.003 0.000 0.001 0.011 

This table presents summary statistics for analyst, firm, and forecast-specific characteristics in the sample of 116,284 
firm-year, analyst-forecast horizons between 1998 and 2010. All continuous variables are winsorized at the 1% and 
99% levels. See the Appendix for variable definitions. 
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Table 3 
The Association of Timeliness Match with Analyst-, Forecast- and Firm-specific Characteristics 
Panel A: Summary statistics by MATCHL quintiles 
  MATCHL Quintiles 
  1 (worst) 2 3 4 5 (best)   
  N=5,418 N=5,419 N=5,418 N=5,419 N=5,418 t-test 
Mean value of  MATCHL -0.269 -0.103 -0.056 -0.029 -0.009 (Wilcoxon z) 
  Mean (Median)   
Firm.ATCL 0.054 0.024 0.013 0.006 0.004 -14.62*** 
  (0.088) (0.049) (0.026) (0.009) (0.004) (-15.88)*** 
Analyst.ATC 0.008 0.007 0.005 0.004 0.004 -2.11** 
  (0.002) (0.003) (0.003) (0.002) (0.002) (0.68) 
HM_CONSV 3.03 3.03 3.04 3.06 3.06 1.15 
  (3.00) (3.00) (3.00) (3.00) (3.00) (1.13) 
FEXP 6.31 6.68 6.89 7.00 6.94 10.05*** 
  (6.00) (6.00) (6.00) (6.00) (6.00) (11.18)*** 
GEXP 9.81 10.31 10.32 10.43 10.32 5.34*** 
  (9.00) (9.00) (9.00) (10.00) (9.00) (6.21)*** 
NFIRM 18.95 18.47 18.29 18.47 18.84 -0.63 
  (17.00) (17.00) (17.00) (17.00) (17.00) (-0.01) 
NIND 3.78 3.85 3.80 3.94 3.99 4.43*** 
  (3.00) (3.00) (3.00) (3.00) (4.00) (5.37)*** 
BSIZE 68.63 69.13 69.13 71.43 69.80 1.15 
  (59.00) (57.00) (56.00) (59.00) (59.00) (1.43) 
FREQ 6.27 5.99 5.87 5.79 5.74 -9.60*** 
  (6.00) (5.00) (5.00) (5.00) (5.00) (-7.84)*** 
Avg (HORIZON) 175.62 174.10 175.31 171.14 172.78 -2.87*** 
  (177.45) (175.25) (175.71) (172.92) (174.80) (-2.97)*** 
Avg (DaysElapsed) 10.95 10.78 9.72 10.10 9.75 -4.49*** 
  (5.33) (5.20) (5.00) (5.25) (5.20) (-2.92)*** 
BM 0.56 0.47 0.43 0.40 0.39 -26.55*** 
  (0.48) (0.40) (0.36) (0.34) (0.32) (-27.85)*** 
SIZE 14.97 15.33 15.50 15.56 15.46 15.96*** 
  (14.95) (15.30) (15.52) (15.50) (15.37) (15.14)*** 
Avg (RetVolatility) 0.121 0.108 0.105 0.106 0.108 -11.47*** 
  (0.105) (0.094) (0.093) (0.094) (0.096) (-9.18)*** 
EarnQuality -0.030 -0.029 -0.029 -0.029 -0.029 3.79*** 
  (-0.024) (-0.024) (-0.024) (-0.023) (-0.025) (0.24) 
AvgAccuracy -0.016 -0.009 -0.007 -0.006 -0.005 37.11*** 
  (-0.009) (-0.005) (-0.004) (-0.003) (-0.002) (49.54)*** 
AvgFE -0.005 -0.002 -0.001 -0.001 -0.001 17.06*** 
  (-0.001) (-0.000) (-0.000) (-0.000) (-0.000) (14.25)*** 
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Table 3 continued 
Panel B: Summary statistics by MATCHC quintiles 
  MATCHC Quintiles 
  1 (worst) 2 3 4 5 (best)   
  N=4,949 N=4,950 N=4,949 N=4,950 N=4,949 t-test 
Mean value of MATCHC -0.233 -0.076 -0.036 -0.016 -0.005 (Wilcoxon z) 
  Mean (Median)   
Firm.ATCC 0.023 0.012 0.007 0.006 0.003 -6.70*** 
  (0.033) (0.013) (0.008) (0.006) (0.001) (-9.98)*** 
Analyst.ATC 0.009 0.007 0.004 0.004 0.003 -2.83*** 
  (0.003) (0.004) (0.003) (0.002) (0.002) (-0.17) 
HM_CONSV 3.02 3.02 3.07 3.04 3.03 0.32 
  (3.00) (3.00) (3.00) (3.00) (3.00) (0.31) 
FEXP 6.01 6.51 6.83 7.10 7.36 20.89*** 
  (5.00) (6.00) (6.00) (6.00) (7.00) (20.83)*** 
GEXP 9.50 10.07 10.34 10.52 10.83 13.20*** 
  (8.00) (9.00) (9.00) (10.00) (10.00) (14.46)*** 
NFIRM 18.77 18.30 18.16 18.18 18.21 -3.27*** 
  (17.00) (17.00) (17.00) (17.00) (17.00) (-4.48)*** 
NIND 3.63 3.87 3.98 3.88 3.85 4.65*** 
  (3.00) (3.00) (4.00) (3.00) (3.00) (5.01)*** 
BSIZE 67.95 69.86 70.92 70.97 72.48 4.16*** 
  (55.00) (57.50) (57.00) (60.00) (60.00) (4.78)*** 
FREQ 6.48 6.27 5.91 5.68 5.51 -17.16*** 
  (6.00) (6.00) (5.00) (5.00) (5.00) (-16.00)*** 
Avg (HORIZON) 176.80 176.59 174.20 171.84 170.98 -5.58*** 
  (178.00) (177.88) (175.20) (174.00) (172.80) (-5.80)*** 
Avg (DaysElapsed) 11.41 10.96 9.87 9.38 9.24 -7.86*** 
  (5.75) (5.28) (5.00) (5.00) (5.00) (-6.59)*** 
BM 0.59 0.51 0.44 0.38 0.33 -40.59*** 
  (0.51) (0.45) (0.36) (0.32) (0.28) (-41.72)*** 
SIZE 14.72 15.18 15.46 15.68 15.90 36.62*** 
  (14.65) (15.13) (15.46) (15.63) (15.84) (33.84)*** 
Avg (RetVolatility) 0.130 0.113 0.106 0.101 0.097 -27.48*** 
  (0.113) (0.099) (0.094) (0.089) (0.086) (-27.48)*** 
EarnQuality -0.032 -0.030 -0.029 -0.028 -0.028 9.22*** 
  (-0.025) (-0.024) (-0.024) (-0.023) (-0.024) (8.06)*** 
AvgAccuracy -0.018 -0.010 -0.007 -0.004 -0.003 46.28*** 
  (-0.011) (-0.006) (-0.004) (-0.003) (-0.002) (68.48)*** 
AvgFE -0.005 -0.002 -0.001 -0.001 0.000 19.62*** 
  (-0.002) (-0.001) (-0.000) (-0.000) (0.000) (22.64)*** 
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Table 3 continued 
Panel C: Regressions of timeliness match on analyst, forecast and firm characteristics 
Dependent variable: MATCHL  MATCHC 
Variables (1) (2)  (3) (4) 
Firm.ATCL -0.171*** -0.158***    
 (-4.65) (-4.64)    
Firm.ATCC    -0.099 -0.071 
    (-1.54) (-1.24) 
HM_CONSV -0.534 -0.349  -0.970** -0.664 
 (-1.06) (-0.86)  (-2.06) (-1.61) 
FEXP  2.765***   3.181*** 
  (4.51)   (4.94) 
GEXP  -0.396   -0.305 
  (-1.53)   (-1.51) 
NFIRM  -0.411*   -0.486*** 
  (-1.93)   (-3.42) 
NIND  1.570**   2.193*** 
  (2.04)   (3.62) 
BSIZE  -0.014   0.002 
  (-1.09)   (0.09) 
FREQ  0.349   -0.347 
  (0.87)   (-0.79) 
Avg (HORIZON)  -0.004   0.005 
  (-0.24)   (0.27) 
Avg (DaysElapsed)  -0.067   0.008 
  (-0.80)   (0.12) 
BM  -0.021***   -0.030*** 
  (-3.78)   (-3.19) 
SIZE  0.003**   0.006*** 
  (2.32)   (3.03) 
Avg (RetVolatility)  0.094**   0.012 
  (2.35)   (0.28) 
EarnQuality  0.002   -0.068 
  (0.02)   (-0.80) 
AvgAccuracy  2.208***   2.299*** 
  (6.32)   (5.50) 
AvgFE  -0.054   -0.458 
  (-0.25)   (-1.53) 
Constant -0.067** -0.128***  -0.076 -0.157*** 
 (-2.03) (-3.58)  (-1.24) (-3.80) 
      
Year fixed effects Yes Yes  Yes Yes 
Industry fixed effects Yes Yes  Yes Yes 
Number of observations 27,092 27,092  24,747 24,747 
Adjusted R-squared 11.51% 19.98%  10.16% 23.40% 

This table reports the relations between analyst, forecast, and firm characteristics and timeliness-matching 
performance. Panel A and Panel B present comparisons of means and medians of analyst, firm, and forecast 
characteristics across the quintiles of MATCHL and MATCHC, respectively. Quintile 1 (5) corresponds to the worst 
(best) timeliness-matching analysts. N represents the number of analyst-firm-year observations for each quintile. Panel 
C presents results from the OLS regressions of timeliness match on analyst, firm, and forecast characteristics. The 
dependent variables are MATCHL and MATCHC

 in columns (1), (2) and (3), (4), respectively. See the Appendix for 
variable definitions. For ease of presentation, we multiply the coefficients on HM_CONSV, FEXP, GEXP, NFIRM, 
NIND, BSIZE, FREQ, Avg (HORIZON), and Avg (DaysElapsed) by 1,000. In parentheses below coefficient estimates 
are robust t-statistics based on standard errors clustered by firm and year (Petersen, 2009). All continuous variables 
are winsorized at the 1% and 99% levels. ***, **, and * indicate statistical significance based on two-sided tests at 
the 1%, 5%, and 10% levels, respectively. 
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Table 4 
Forecast Accuracy and Timeliness-Matching Performance 

Dependent variable: ACCURACY 
Variables (1) (2) (3) (4) (5) (6) 
MATCHL 0.031*** 0.008** 0.007*    
  (5.90) (2.11) (1.86)    
MATCHC    0.048*** 0.014*** 0.014*** 
     (5.68) (3.75) (3.79) 
Firm.ATCL   -0.003    
    (-1.10)    
Firm.ATCC      -0.002 
       (-0.32) 
HM_CONSV   -0.028   -0.045 
    (-0.31)   (-0.55) 
FEXP  -0.236** -0.233**  -0.241** -0.240** 
   (-2.13) (-2.08)  (-2.05) (-2.05) 
GEXP  0.042 0.042  0.030 0.031 
   (0.87) (0.86)  (0.60) (0.63) 
NFIRM  0.016 0.015  0.035 0.033 
   (0.44) (0.42)  (0.91) (0.91) 
NIND  0.239** 0.234**  0.288*** 0.293*** 
   (2.10) (2.04)  (2.90) (2.97) 
BSIZE  -0.002 -0.002  -0.002 -0.002 
   (-0.62) (-0.64)  (-0.59) (-0.57) 
FREQ  -0.229** -0.229**  -0.206* -0.205* 
   (-2.09) (-2.12)  (-1.83) (-1.84) 
HORIZON  -0.055*** -0.055***  -0.055*** -0.055*** 
   (-11.69) (-11.70)  (-11.21) (-11.20) 
DaysElapsed  0.002 0.002  0.002 0.002 
   (0.11) (0.09)  (0.09) (0.09) 
BM  -0.012*** -0.012***  -0.012*** -0.012*** 
   (-2.65) (-2.67)  (-2.61) (-2.60) 
SIZE  0.001*** 0.001***  0.001** 0.001** 
   (2.69) (2.66)  (2.48) (2.50) 
RetVolatility  -0.076*** -0.075***  -0.074*** -0.074*** 
   (-4.46) (-4.46)  (-4.02) (-4.00) 
EarnQuality  0.003 0.002  0.010 0.010 
   (0.29) (0.21)  (0.82) (0.78) 
AvgAccuracy  0.361*** 0.360***  0.340*** 0.339*** 
   (3.94) (3.92)  (3.51) (3.51) 
AvgFE  0.136** 0.137**  0.148*** 0.148*** 
   (2.47) (2.44)  (2.73) (2.72) 
Constant 0.005 0.004 0.004 -0.006* -0.001 -0.001 
  (0.95) (0.61) (0.67) (-1.75) (-0.15) (-0.15) 
        
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 9.74% 24.80% 24.82% 11.52% 25.28% 25.28% 

This table presents the results from the OLS regressions based on 116,284 (106,503) firm-year, analyst-forecast 
horizons from 1998 (1999) to 2010 in columns (1) to (3) [(4) to (6)]. The dependent variable is ACCURACY. See the 
Appendix for variable definitions. For ease of presentation, we multiply the coefficients on HM_CONSV, FEXP, GEXP, 
NFIRM, NIND, BSIZE, FREQ, HORIZON, and DaysElapsed by 1,000. In parentheses below coefficient estimates are 
robust t-statistics based on standard errors clustered by firm and year (Petersen, 2009). All continuous variables are 
winsorized at the 1% and 99% levels. ***, **, and * indicate statistical significance based on two-sided tests at the 
1%, 5%, and 10% level, respectively.
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Table 5 
Market Reactions to Forecast Revisions and Timeliness-Matching Performance  

Dependent variable: CAR (-1, +1) 
Variables (1) (2) (3) (4) (5) (6) 
REV×MATCHL 1.715*** 0.922*** 0.919***    
 (4.44) (4.30) (4.77)    
REV×MATCHC    2.000*** 1.564*** 1.551*** 
    (5.76) (6.33) (6.40) 
REV 1.536*** 5.086*** 4.817*** 1.561*** 5.489*** 5.229*** 
 (8.39) (6.68) (6.32) (9.56) (7.44) (7.04) 
MATCHL 0.009** 0.008*** 0.008**    
 (2.38) (2.67) (2.53)    
MATCHC    0.007* 0.007** 0.008** 
    (1.86) (2.25) (2.36) 
REV×Firm.ATCL   0.030    
   (0.36)    
REV×Firm.ATCC      0.098 
      (0.59) 
REV×HM_CONSV   0.077***   0.071*** 
   (9.96)   (8.75) 
REV×FEXP  -0.004 -0.003  -0.005 -0.004 
  (-0.26) (-0.25)  (-0.36) (-0.33) 
REV×GEXP  -0.005 -0.004  -0.012 -0.012* 
  (-0.66) (-0.58)  (-1.62) (-1.71) 
REV×NFIRM  -0.035*** -0.034***  -0.028*** -0.027*** 
  (-5.24) (-4.81)  (-5.31) (-5.17) 
REV×NIND  0.070* 0.063*  0.061* 0.053 
  (1.94) (1.71)  (1.75) (1.53) 
REV×BSIZE  0.002*** 0.002***  0.002** 0.001** 
  (3.28) (2.99)  (2.53) (2.22) 
REV×FREQ  -0.054*** -0.056***  -0.056*** -0.057*** 
  (-4.93) (-5.21)  (-4.61) (-4.81) 
REV×HORIZON  0.000 0.000  0.000 0.001 
  (0.61) (0.63)  (1.38) (1.40) 
REV×DaysElapsed  0.002 0.002  0.002 0.002 
  (1.15) (1.26)  (1.27) (1.36) 
REV×BM  -0.550*** -0.557***  -0.510*** -0.516*** 
  (-2.78) (-2.84)  (-2.82) (-2.85) 
REV×SIZE  -0.125*** -0.122***  -0.151*** -0.148*** 
  (-2.70) (-2.65)  (-3.46) (-3.41) 
REV×RetVolatility  -2.967*** -2.983***  -2.774*** -2.787*** 
  (-7.94) (-8.33)  (-8.05) (-8.79) 
REV×EarnQuality  -0.037 0.065  0.132 0.256 
  (-0.02) (0.03)  (0.06) (0.11) 
REV×AvgAccuracy  10.352*** 10.526***  11.433*** 11.605*** 
  (4.04) (4.13)  (4.62) (4.74) 
REV×AvgFE  -1.999 -2.458  -1.944 -2.326 
  (-1.06) (-1.22)  (-1.02) (-1.17) 
Firm.ATCL   -0.001    
   (-0.42)    
Firm.ATCC      0.005** 
      (2.17) 
HM_CONSV   -0.159   -0.206 
   (-0.83)   (-1.12) 
FEXP  -0.104 -0.100  -0.128 -0.130 
  (-1.01) (-0.98)  (-1.25) (-1.27) 
GEXP  0.085* 0.081  0.098* 0.091* 
  (1.67) (1.58)  (1.93) (1.80) 
NFIRM  0.053 0.056  0.052 0.057 
  (1.22) (1.30)  (1.02) (1.16) 
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NIND  -0.151 -0.158  -0.198 -0.210 
  (-0.74) (-0.79)  (-0.84) (-0.92) 
BSIZE  -0.007 -0.007  -0.008 -0.008 
  (-1.47) (-1.46)  (-1.56) (-1.55) 
FREQ  0.068 0.068  0.144 0.138 
  (0.65) (0.65)  (1.44) (1.40) 
HORIZON  0.007 0.007  0.006 0.006 
  (1.03) (1.02)  (0.95) (0.94) 
DaysElapsed  0.006 0.006  0.008 0.008 
  (0.30) (0.31)  (0.43) (0.45) 
BM  0.001 0.001  0.001 0.001 
  (0.92) (0.95)  (0.57) (0.62) 
SIZE  -0.324 -0.326  -0.401 -0.392 
  (-1.03) (-1.03)  (-1.21) (-1.17) 
RetVolatility  0.028* 0.028*  0.027* 0.027* 
  (1.94) (1.94)  (1.81) (1.83) 
EarnQuality  0.031 0.031  0.043 0.044 
  (1.08) (1.09)  (1.52) (1.61) 
AvgAccuracy  0.057 0.057  0.065 0.068 
  (1.47) (1.46)  (1.51) (1.59) 
AvgFE  -0.033 -0.031  -0.023 -0.023 
  (-0.73) (-0.69)  (-0.51) (-0.51) 
Constant -0.027*** -0.024*** -0.023*** -0.014*** -0.009 -0.008 
 (-6.67) (-3.07) (-3.02) (-15.33) (-1.42) (-1.26) 
       
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 6.19% 7.54% 7.58% 6.40% 7.80% 7.84% 

This table presents the results from the OLS regressions based on 116,284 (106,503) firm-year, analyst-forecast 
horizons from 1998 (1999) to 2010 in columns (1) to (3) [(4) to (6)]. The dependent variable is CAR (-1, +1). See the 
Appendix for variable definitions. For ease of presentation, we multiply the coefficients on HM_CONSV, FEXP, GEXP, 
NFIRM, NIND, BSIZE, FREQ, HORIZON, DaysElapsed, and SIZE by 1,000. In parentheses below coefficient 
estimates are robust t-statistics based on standard errors clustered by firm and year (Petersen, 2009). All continuous 
variables are winsorized at the 1% and 99% levels. ***, **, and * indicate statistical significance based on two-sided 
tests at the 1%, 5%, and 10% level, respectively.
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Table 6 
Overall Timeliness-Matching Ability across Firms  

 Panel A: Forecast Accuracy Test (H1) 
Dependent Variable: ACCURACY 
Variables (1) (2) (3) (4) (5) (6) 
Mean of MATCHL 0.045*** 0.013** 0.012*    
  (6.549) (2.022) (1.884)    
Mean of MATCHC    0.059*** 0.014** 0.014** 
     (6.022) (2.321) (2.335) 
              
Controls Identical to the corresponding column in Table 4 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 9.17% 24.79% 24.82% 10.25% 25.15% 25.16% 
  
Panel B: Market Reactions to Forecast Revision Test (H2) 
Dependent Variable: CAR (-1, +1) 
Variables (1) (2) (3) (4) (5) (6) 
REV×Mean of MATCHL 3.798*** 2.163*** 2.176***    
  (8.263) (5.108) (4.878)    
REV×Mean of MATCHC    4.233*** 3.277*** 3.235*** 
     (6.494) (5.558) (5.529) 
              
Controls Identical to the corresponding column in Table 5 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 6.33% 7.57% 7.61% 6.48% 7.83% 7.87% 

This table presents the results from the OLS regressions based on 116,284 (106,503) firm-year, analyst-forecast 
horizons from 1998 (1999) to 2010 in columns (1) to (3) [(4) to (6)]. The dependent variables are ACCURACY and 
CAR (-1, +1) in Panel A and Panel B, respectively. See the Appendix for variable definitions. Mean of (·) is a function 
that takes the mean value of the variable in parentheses at the analyst-year level. Control variables in Panel A and 
Panel B are identical to those in the corresponding column of Table 4 and Table 5, respectively. Intercept and control 
variables are suppressed for brevity. In parentheses below coefficient estimates are robust t-statistics based on standard 
errors clustered by firm and year (Petersen, 2009). All continuous variables are winsorized at the 1% and 99% levels. 
***, **, and * indicate statistical significance based on two-sided tests at the 1%, 5%, and 10% level, respectively. 
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Table 7 
Forecast Bias and Timeliness-Matching Performance 

Dependent variable: Forecast Optimism 
Variables (1) (2) (3) (4) (5) (6) 
MATCHL -0.017*** -0.009*** -0.009***    
 (-4.42) (-3.20) (-3.04)    
MATCHC    -0.019*** -0.007* -0.007* 
    (-2.96) (-1.81) (-1.91) 
Firm.ATCL   0.001    
   (0.36)    
Firm.ATCC      -0.000 
      (-0.05) 
HM_CONSV   -0.074   -0.063 
   (-0.56)   (-0.44) 
FEXP  0.067 0.066  0.069 0.068 
  (0.68) (0.67)  (0.74) (0.74) 
GEXP  -0.006 -0.007  -0.014 -0.015 
  (-0.13) (-0.15)  (-0.33) (-0.33) 
NFIRM  -0.029 -0.029  -0.035 -0.036 
  (-0.81) (-0.82)  (-0.97) (-0.99) 
NIND  0.120 0.124  0.063 0.066 
  (1.02) (1.05)  (0.49) (0.50) 
BSIZE  -0.001 -0.001  -0.002 -0.002 
  (-0.26) (-0.23)  (-0.50) (-0.48) 
FREQ  0.080 0.081  0.063 0.063 
  (0.66) (0.67)  (0.44) (0.45) 
HORIZON  0.019** 0.019**  0.018** 0.018** 
  (2.47) (2.47)  (2.18) (2.18) 
DaysElapsed  -0.003 -0.003  -0.006 -0.006 
  (-0.30) (-0.29)  (-0.51) (-0.51) 
BM  0.009** 0.009**  0.009** 0.009** 
  (2.48) (2.45)  (2.24) (2.23) 
SIZE  -0.000 -0.000  -0.000* -0.000* 
  (-1.56) (-1.55)  (-1.67) (-1.70) 
RetVolatility  0.017 0.017  0.015 0.015 
  (0.96) (0.96)  (0.81) (0.81) 
EarnQuality  -0.036** -0.036**  -0.044** -0.044** 
  (-2.03) (-2.02)  (-2.33) (-2.36) 
AvgAccuracy  -0.041 -0.041  -0.033 -0.033 
  (-1.04) (-1.04)  (-0.77) (-0.75) 
AvgFE  -0.135* -0.135*  -0.129* -0.129* 
  (-1.80) (-1.79)  (-1.77) (-1.76) 
Constant -0.004 -0.004 -0.004 0.001 -0.000 -0.000 
 (-0.64) (-0.45) (-0.42) (0.10) (-0.02) (-0.01) 
       
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 5.92% 8.76% 8.76% 6.08% 8.68% 8.68% 

This table presents the results from the OLS regressions based on 116,284 (106,503) firm-year, analyst-forecast 
horizons from 1998 (1999) to 2010 in columns (1) to (3) [(4) to (6)]. The dependent variable is Forecast Optimism. 
See the Appendix for variable definitions. For ease of presentation, we multiply the coefficients on HM_CONSV, FEXP, 
GEXP, NFIRM, NIND, BSIZE, FREQ, HORIZON, and DaysElapsed by 1,000. In parentheses below coefficient 
estimates are robust t-statistics based on standard errors clustered by firm and year (Petersen, 2009). All continuous 
variables are winsorized at the 1% and 99% levels. ***, **, and * indicate statistical significance based on two-sided 
tests at the 1%, 5%, and 10% level, respectively.
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Table 8 
Stock Recommendation Profitability and Timeliness-Matching Performance 

Dependent variable: 3-Month Profitability  6-Month Profitability  1-Year Profitability 
Variables (1) (2)  (3) (4)  (5) (6) 
MATCHL 0.048**   0.075**   0.103**  
  (2.10)   (2.35)   (2.52)  
MATCHC  0.043   0.114**   0.144** 
   (1.25)   (2.15)   (2.49) 
Firm.ATCL -0.007   -0.016   0.011  
  (-0.42)   (-0.70)   (0.33)  
Firm.ATCC  0.038   0.059   0.083 
   (1.30)   (1.61)   (1.63) 
HM_CONSV 0.002 0.001  0.003* 0.002  0.000 -0.002 
  (1.44) (0.83)  (1.67) (1.34)  (0.02) (-0.78) 
FEXP -0.001 -0.001  -0.001* -0.001  -0.001 -0.001 
  (-0.84) (-0.84)  (-1.73) (-1.56)  (-0.82) (-0.48) 
GEXP 0.001 0.001  0.001** 0.001**  0.002 0.002 
  (1.32) (1.59)  (1.98) (2.35)  (1.57) (1.59) 
NFIRM -0.001** -0.001**  -0.001*** -0.001**  -0.002** -0.002** 
  (-2.05) (-2.42)  (-2.58) (-2.35)  (-2.47) (-2.47) 
NIND -0.637 -0.483  -0.405 -0.457  -1.610 -1.365 
  (-0.67) (-0.62)  (-0.46) (-0.39)  (-0.88) (-0.68) 
BSIZE 0.041** 0.042**  0.071 0.057  0.054 0.021 
  (2.31) (2.17)  (1.39) (1.02)  (0.66) (0.24) 
FREQ 0.583 0.149  0.434 0.052  -0.204 -0.515 
  (0.93) (0.22)  (0.54) (0.06)  (-0.15) (-0.35) 
BM 0.029*** 0.029***  0.028*** 0.030***  0.013 0.008 
  (3.66) (3.77)  (2.88) (2.73)  (0.62) (0.44) 
SIZE -0.009*** -0.010***  -0.014*** -0.017***  -0.020*** -0.023*** 
  (-3.54) (-4.07)  (-3.83) (-4.18)  (-3.39) (-4.17) 
EarnQuality -0.119 -0.009  -0.053 0.124  0.113 0.300 
  (-0.69) (-0.05)  (-0.26) (0.63)  (0.44) (1.07) 
AvgAccuracy -0.373* -0.399**  -0.242 -0.180  -0.124 0.066 
  (-1.75) (-2.11)  (-0.64) (-0.49)  (-0.28) (0.18) 
AvgFE 0.170 0.226  0.197 0.230  0.547 0.506 
  (0.68) (0.82)  (0.57) (0.62)  (0.86) (0.81) 
Constant 0.209*** 0.204***  0.306*** 0.394***  0.514*** 0.602*** 
  (3.31) (4.75)  (2.64) (3.55)  (3.44) (5.73) 
          
Year fixed effects Yes Yes  Yes Yes  Yes Yes 
Industry fixed effects Yes Yes  Yes Yes  Yes Yes 
Number of observations 11,344 10,335  11,344 10,335  11,344 10,335 
Adjusted R-squared 1.81% 2.13%  2.39% 3.05%  1.93% 2.47% 

This table presents the results from the OLS regressions based on 11,344 (10,335) firm-year, analyst-recommendations 
from 1998 (1999) to 2010 in columns (1), (3), and (5) [(2), (4), and (6)]. The dependent variables are 3-Month 
Profitability in columns (1) and (2), 6-Month Profitability in columns (3) and (4), and 1-Year Profitability in columns 
(5) and (6). See the Appendix for variable definitions. For ease of presentation, we multiply the coefficients on NIND, 
BSIZE, and FREQ by 1,000. In parentheses below coefficient estimates are robust t-statistics based on standard errors 
clustered by firm and year (Petersen, 2009). All continuous variables are winsorized at the 1% and 99% levels. ***, 
**, and * indicate statistical significance based on two-sided tests at the 1%, 5%, and 10% level, respectively.
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Table 9 
Career Outcomes and Timeliness-Matching Performance 

Dependent variable: Turnover   Stay in Profession   Promotion 
Variables (1) (2)  (3) (4)  (5) (6) 
Mean of MATCHL -0.688*   0.731*   2.392  
  (-1.77)   (1.85)   (0.95)  
Mean of MATCHC  -1.162*   1.239*   2.101 
   (-1.88)   (1.79)   (1.38) 
HM_CONSV -0.052*** -0.046***  0.052*** 0.047***  0.119 0.134 
  (-3.02) (-3.05)  (3.60) (3.61)  (1.48) (1.60) 
GEXP 0.002 0.004  -0.004 -0.008  -0.004 -0.003 
  (0.48) (0.93)  (-0.78) (-1.48)  (-0.19) (-0.16) 
NFIRM 0.003 0.003  -0.001 0.000  0.050** 0.043* 
  (0.90) (0.68)  (-0.18) (0.00)  (2.27) (1.88) 
NIND -0.097*** -0.099***  0.088** 0.093**  -0.156 -0.122 
  (-3.34) (-3.26)  (2.05) (2.06)  (-1.54) (-1.23) 
BSIZE 0.000 0.000  -0.001*** -0.001***  -0.033*** -0.034*** 
  (0.14) (0.08)  (-2.89) (-2.63)  (-4.35) (-3.81) 
Mean of AvgAccuracy -4.925* -2.783  4.511* 1.713  -2.210 -2.945 
  (-1.94) (-0.78)  (1.66) (0.48)  (-0.19) (-0.27) 
Mean of AvgFE 4.407 3.917  -3.485 -2.974  13.107 7.806 
  (1.40) (1.11)  (-1.40) (-0.97)  (0.78) (0.40) 
Constant -5.008*** -0.548***  5.074*** 0.665***  -2.259*** -2.311*** 
  (-21.84) (-5.74)  (20.52) (4.57)  (-5.60) (-5.72) 
          
Year fixed effects Yes Yes  Yes Yes  Yes Yes 
Number of observations 7,663 7,096  7,663 7,096  667 638 
Pseudo R-squared 6.33% 5.78%  8.54% 8.18%  34.39% 33.71% 

This table presents the results from the probit regressions based on 7,663 (7,096) analyst-years from 1998 (1999) to 
2010 in columns (1) and (3) [(2) and (4)]. Columns (5) and (6) present the results from the probit regressions based 
on 667 and 638 analyst-years which have a value of one for Turnover. The dependent variables are Turnover, Stay in 
Profession, and Promotion in columns (1) and (2), (3) and (4), and (5) and (6), respectively. See the Appendix for 
variable definitions. Mean of (·) is a function that takes the mean value of the variable in parentheses at the analyst-
year level. In parentheses below coefficient estimates are robust t-statistics based on standard errors clustered by 
analyst and year (Petersen, 2009). All continuous variables are winsorized at the 1% and 99% levels. ***, **, and * 
indicate statistical significance based on two-sided tests at the 1%, 5%, and 10% level, respectively.
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Table 10 
Matching Expertise in Gain and Loss Timeliness 

Panel A: Forecast Accuracy Test (H1) 
Dependent variable: ACCURACY 
Variables (1) (2) (3) (4) (5) (6) 
GAIN_MATCHL 0.022***      
  (3.49)      
LOSS_MATCHL  0.010***     
   (2.93)     
AVG_GL_MATCHL   0.025***    
    (3.64)    
GAIN_MATCHC    0.025***   
     (3.73)   
LOSS_MATCHC     0.010***  
      (2.84)  
AVG_GL_MATCHC      0.026*** 
       (3.73) 
        
Controls Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 24.95% 24.85% 24.98% 25.30% 25.17% 25.30% 
 
Panel B: Market Reactions to Forecast Revisions Test (H2) 
Dependent variable: CAR (-1, +1) 
Variables (1) (2) (3) (4) (5) (6) 
REV×GAIN_MATCHL 1.409***      
  (4.16)      
REV×LOSS_MATCHL  1.512***     
   (7.11)     
REV×AVG_GL_MATCHL   2.713***    
    (8.67)    
REV×GAIN_MATCHC    2.313***   
     (7.13)   
REV×LOSS_MATCHC     1.811***  
      (5.48)  
REV×AVG_GL_MATCHC      3.512*** 
       (7.29) 
        
Controls Yes Yes Yes Yes Yes Yes 
Controls interacted with REV Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Number of observations 116,284 116,284 116,284 106,503 106,503 106,503 
Adjusted R-squared 7.57% 7.64% 7.67% 7.82% 7.83% 7.91% 

This table presents the results from the OLS regressions based on 116,284 (106,503) firm-year, analyst-forecast 
horizons from 1998 (1999) to 2010 in columns (1) to (3) [(4) to (6)]. The dependent variables are ACCURACY and 
CAR (-1, +1) in Panel A and Panel B, respectively. See the Appendix for variable definitions. Control variables in 
Panel A and Panel B are identical to those in column (3) of Table 4 and Table 5, respectively. Intercept and control 
variables are suppressed for brevity. In parentheses below coefficient estimates are robust t-statistics based on standard 
errors clustered by firm and year (Petersen, 2009). All continuous variables are winsorized at the 1% and 99% levels. 
***, **, and * indicate statistical significance based on two-sided tests at the 1%, 5%, and 10% level, respectively. 
 


