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Robust Detection of Non Regular Interferometric
Fringes from a Self-Mixing Displacement Sensor

using Bi-Wavelet Transform
Olivier D. Bernal,Member, IEEE, Han Cheng Seat,Member, IEEE, Usman Zabit,Member, IEEE,

Frédéric Surre,Member, IEEE, and Thierry Bosch,Senior Member, IEEE

Abstract—An innovative signal processing method based on
custom-made wavelet transform (WT) is presented for robust
detection of fringes contained in the interferometric signal of
Self-Mixing (SM) laser diode sensors. It enables the measurement
of arbitrarily-shaped vibrations even in the corruptive pr esence
of speckle. Our algorithm is based on the pattern recognition
capability of bespoke WTs for detecting SM fringes. Once the
fringes have been correctly detected, phase unwrapping methods
can be applied to retrieve the complete instantaneous phaseof the
SM signals. Here, the novelty consists in using two distinctmother
waveletsΨr(t) and Ψd(t) specifically designed to distinguish SM
patterns as well as the displacement direction. The peaks, i.e.
maxima modulus of WT, then allow the detection of the fringes.

Index Terms—Wavelet Transform, Self-Mixing interferometry,
Speckle, Fringe Detection, Displacement Sensor

I. I NTRODUCTION

SELF-MIXING or optical feedback interferometry has been
regularly used for metrological applications during the

last two decades as it enables a simple, compact, self-aligned,
and low-cost sensor to be achieved [1], [2]. SM effect occurs
in a laser when a fraction of the beam is backscattered by
a target into the laser cavity to cause interference with the
emitted beam, thus modifying the spectral properties of the
laser [3], [4]. For displacement sensing, the modified optical
output power (OOP) of the laser diodeP (t) can be processed,
in a manner similar to classical interferometry, by applying the
following two steps: fringe detection and phase unwrapping
[5].

There has been continuous interest to propose various phase
unwrapping methods, principally under stable optical feedback
coupling, providing varying degrees of measurement precision
ranging from λ/8 to λ/40 [5]–[10]. However, such results
can never be attained unless individual fringe detection is
correctly carried out. Thus, the apparently simple task of fringe
detection plays a fundamental role in the success of phase
unwrapping methods. In fact, its correct execution cannot be
guaranteed if stable optical feedback coupling is not ensured,
a condition which becomes unavoidable for practical sensing
applications.
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Fig. 1. Simulated SM signals obtained for a sinusoidal displacement (a) with
α = 4 andλ =785 nm for differentC factors: (b) 0.2, (c) 0.6, (d) 1, (e) 1.5,
(f) 2.5; showing the effect ofC on the shape and amplitude of the fringes.

This difficulty resides in the complex nature of SM in-
terferometric signals whose shape and amplitude [11], [12]
are a function of the optical feedback coupling factorC as
well as the laser diode (LD) linewidth enhancement factor
α [13]–[16]. Robust fringe detection for such a rich variety
of SM signals is thus necessary for a practical SM sensor
as significant variations in the target reflectivityRt and the
distance to the targetD(t) cannot be avoided for real-world
applications.

The strength of theC factor [14] has a determining role
in SM interferometry and generally manifests itself as distinct
operating regimes, of which three of the most significant are
briefly summarized below [16]:

• 0.1 < C < 1: weak optical feedback regime with
asymmetric SM fringes devoid of discontinuities [17].

• 1 < C < 4.6 : moderate optical feedback regime with
sawtooth-like SM fringes exhibiting hysteresis [11].
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• 4.6< C : strong optical feedback regime that ultimately
leads to a chaotic SM signal [12], [16], [18].

The effect ofC on the shape and amplitude of the SM signal
fringes is highlighted in Fig. 1 through the SM behavioral
model [12]. Subsequently, each SM regime would require spe-
cific signal processing for accurate displacement retrieval [19].
Nonetheless, if the optical feedback regime could be controlled
then the moderate feedback regime is generally preferred
for displacement sensing as its supposedly straightforward
signal shape [5], [11] leads to simplified signal processing
[8]. However, such a regime cannot always be obtained and/or
maintained, especially outside laboratory conditions.

Further, in the case of non-cooperative target surface and
long displacement range, the occurrence of the speckle phe-
nomenom can additionally affect the SM signals since speckle
depends on the target surface roughness, the laser spot size
as well as the laser wavelengthλ [20], [21]. Consequently,
speckle can not only induce SM signal amplitude fading but
can also engender a change in theC factor (e.g. from weak
to moderate or vice versa [21]).

Hence, robust SM fringe detection is essential for practical
SM displacement sensing systems. In this regard, different
methods have previously been proposed. Techniques based on
envelope tracking and adaptive threshold scheme [21] were
shown to improve the robustness of displacement reconstruc-
tion but in some cases, fringes might not be detected. A
Hilbert transform-based algorithm [22] was then proposed to
extract the instantaneous SM phase. Nevertheless, it cannot
inherently determine the target direction and sub-wavelength
displacements could be wrongly interpreted. Wavelet Trans-
from (WT) [23] was also shown to be an efficient way to
analyze SM signals as non-stationary signals. However, such
approaches were hitherto based on available mother wavelets.
Consequently, differential and evolutionary algorithms [24]
were necessary to detect the fringes, but at a cost of significant
computational requirements. More recently, a method based
on the Morlet complex wavelet has been proposed [25] to
detect the fringes and changes in displacement direction as
well as to remove parasitic noise more efficiently. However,
this method has been developed forC values lower or close
to 1. Further, even if such a method is more robust against
speckle, the processing decision on the displacement direction
could be misled by speckle and by the kind of displacement
to be measured as it is indirectly inferred by the presence of
dips in the generated envelope detection.

Thus, in this context, it will be shown in this paper that the
robustness of fringe detection can be enhanced by the use of
dedicated mother wavelets specifically defined for SM signals.
It not only 1) improves fringe detection and 2) intrinsically
determines displacement direction but also 3) greatly alleviates
the computational requirements. The following sections are
devoted to detailing the signal processing scheme, simulation
and experimental results to demonstrate our method for an SM
displacement sensor.

II. SIGNAL PROCESSING

For a better understanding of the algorithms typically used
to retrieve the target displacement from SM signals, the theory

D(t)

Focusing
Lens

Laser DiodePhotodiode

Laser Package
PZT

P (t)

Fig. 2. Self-Mixing displacement sensor set-up with a piezoelectric transducer
(PZT) used as a target

of SM interferometry is briefly detailed below [3], [26]. Forthe
sake of clarity, the classical SM experimental setup is shown
in Fig. 2.

A. SM Interferometry and Displacement Retrieval

Let D (t) represent the instantaneous distance between the
LD driven by a constant injection current and a remote surface
that back-scatters a small amount of optical power into the LD
cavity.

When this optical feedback phenomenon occurs, the LD
wavelength is no longer a constantλ0 but is slightly modified
to become a function of timeλF (t) varying with D (t). The
wavelength fluctuations can be found by solving the phase
equation [4]:

Φ0 (t) = ΦF (t) + C sin [ΦF (t) + arctan (α)] (1)

where ΦF and Φ0 represent two phase signals (subject to
feedback and under free running conditions, respectively)and
are directly related toD (t). Then, as a function of the
wavelengthsλF (t) andλ0:

ΦF (t) = 2π
D (t)
λF (t)

2

= 2πνF (t) τ (t)

Φ0 (t) = 2π
D (t)
λ0

2

= 2πν0 (t) τ (t) (2)

whereτ (t) = 2D (t) /c is the round-trip time andc the speed
of light. νF (t) andν0 represent the optical frequencies with
and without optical feedback, respectively.

The value ofΦF (t) can then be extracted from the OOP
of the LD P (t) using:

P (t) = P0 {1 +m cos [ΦF (t)]} (3)

whereP0 is the emitted LD power under the free running state
andm a modulation index [16]. ViaΦF (t), Φ0 (t) can first
be retrieved using the nonlinear equation (1) followed by the
vibration displacement as shown in [5].

Based on (1-3), the signal processing methods used to re-
trieveD(t) are generally divided into two principal stages [5],
[9]: (1) a rough estimation̂ΦF of ΦF based on fringe detection
and (2) the phase unwrapping step within each fringe. In this
present work, the study is primarily focused on developing
a robust SM fringe detection scheme even under continuous
variation of the signal amplitude and optical feedback regime,
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Fig. 3. Original Pattern based on SM rising (a) and decreasing (b) fringe
obtained forC=1.5 andα=4 (solid blue line) and its Adapted WaveletsΨr

(a) andΨd (b) (dashed green line)

which ensures a displacement precision ofλ/2. Subsequently,
further processing (i.e. unwrapping of phase) can be employed
to achieve more accurate measurements.

B. Wavelet transform and non-stationary signals

Contrary to Fourier Transform, WT can provide information
on spectrum changes with respect to time [27]. Hence, WT are
better suited to analyze non-stationary signals. The wavelet
transform decomposes the signal into different scales with
different levels of resolution by dilating a single function
named the mother waveletΨ. The definition of the wavelet
transform of a signalf (t) is as follows:

W f (s, t) = f (t) ∗Ψs =
1√
s

∫ ∞

−∞

f (u)Ψ

(
t− u

s

)
du (4)

whereW f (s, t) is the wavelet transform coefficent,Ψ the
mother wavelet and s the scale parameter which provides
information regarding the signal frequency.

For the detection of singularities with WT, the technique
based on the modulus maxima can be used [27]. Here, the
singularities to be detected are the SM fringes. Various mother
wavelets can be used to analyze SM signals such as the symlet
and Daubechies wavelets. However, different results will be
obtained depending on the mother wavelet used [23].

C. Proposed Bi-wavelet transform approach

Instead of detecting singularities, it is also possible to assess
the similarity between a signal and a given pattern and hence
to perform pattern recognition. Scalar products are often used
to estimate the similarity between two signals [28]. Therefore,
WT can also be used for pattern recognition as WT performs
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Fig. 4. Simulated SM signal (b) obtained for the displacement (blue solid
line (a)) for C=1.5,α=4 andλ =785 nm. The modulus maxima coefficient
obtained by theΨr WT of the SM signal (c) allows fringe counting and
displacement reconstruction with a precision ofλ/2 (red dashed line (a)).

scalar products off (t) with 1√
s
Ψ
(
t−u
s

)
(see eq. (4)). In

addition, WT has efficient computational implementations and
allows to estimate the correlation not only with the pattern
itself but also with its scaled versions, as well as the time
locations of possible maximum similarity (see eq. (4)) [29].

Consequently, in order to obtain more accurate information
on the SM signal, we have designed dedicated mother wavelets
which are bespoke for SM signals [29].

Since WT inherently computes the cross correlation along
the scales between the mother wavelet and the input signal,
so if the mother wavelet is defined to look like an SM fringe,
then it can lead to better results as it will address more specific
singularities. As a result, a typical SM signal’s rising fringe
obtained forC=1.5 andα=4 (solid blue line in Fig. 3a) can
be first used as the specific pattern. Theα value has been
chosen accordingly to the laser used in the experiments. Then,
by using the MatlabR© wavelet toolbox, this pattern can be
transformed into an adapted waveletΨr (dashed green line in
Fig. 3a). Once such a wavelet has been defined, SM fringes can
be detected by applying theΨr WT (Fig. 4). Similar to [22],
[25], an add-on routine should be then used to determine the
displacement direction in order to reconstruct the displacement
with a precision ofλ/2 (Fig. 4 (a)).

However, as SM fringes for weak and moderate regimes are
not symmetric for to-and-fro motion of the target [11] (Fig.1
and 4 (b)), it is thus of interest to define not just one but in fact
two mother wavelets. The use of two distinct mother wavelets
not only provides a better sensitivity in fringe detection but
also greatly improves discrimination of the target movement
direction in a intrinsic manner as will be shown later.

Using the MatlabR© wavelet toolbox, another mother
wavelet Ψd (t) is then defined whereΨd (t) is based on a
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Fig. 5. Simulated SM signal (b) (blue solid line) obtained for the displacement
(blue solid line (a)) forC=1.5,α=4 andλ =785 nm, and the detected fringes
(red dashed line). The maxima coefficient are obtained by theΨr (blue dashed
line) andΨd (cyan solid line) wavelet transform of the SM signal (c). The
envelope for both maxima (black x line forΨr and red o line forΨd) allows
then fringe counting and displacement reconstruction witha precision ofλ/2
(red dashed line (a)).

decreasing SM fringe (see Fig. 3b). Note that the chosen
fringe shapes are associated withC =1.5. This value has been
chosen as our SM sensor autofocus system is designed to
achieve SM signals withC close to 1.5 [8]. The functions
Ψr andΨd can be considered to be wavelets as such:∫ ∞

−∞

Ψr,d (t) dt = 0 (5)
∫ ∞

−∞

|Ψr,d|2 (t) dt < ∞ (6)

As in [30], the maxima are selected by fixing a threshold
based on the signal-to-noise ratio (SNR) of the signal mod-
ulus. Finally, a separate tracking envelope of those maxima
calculated for each mother wavelet is used to distinguish the
maxima into corresponding rising or decreasing fringe patterns
(Fig. 5). The proposed approach can be summarized by the
schematic block diagram shown in Fig 6.

III. S IMULATION

Simulations are performed to evaluate the intrinsic perfor-
mances of the proposed method in terms of:

• its ability to determine the displacement direction
• its application range as a function ofC
• its robustness regarding additive noise
The following simulations are then performed with 32 scales

for the wavelets for a 785 nm LD wavelength andα = 4.

A. Displacement Direction

The ability of the proposed bi-WT method to determine the
displacement direction is based on the inherent asymmetry

SM signal f(t)

Ws,rf(s, t) Ws,df(s, t)

Max(Ws,rf(s, t)) Max(Ws,df(s, t))

>

Peak and Direction Detection

PositivePositive
envelope envelope

Fig. 6. Schematic block diagram of the Peak detection methodbased on the
Bi-wavelet transform

of the SM fringes: shape of the mother wavelet and sign of
the discontinuity. In addition, the wavelet transform allows to
analyze changes on different scales by dilations and contrac-
tions through the scaling of the mother wavelet (eq. 4). As the
instantaneous frequency of the SM signal fringes is directly
related to both the amplitude and velocity of the displacement
to be measured, a linear accelerated displacement has been
used to assess the ability of the bi-WT approach to correctly
determine the displacement direction. If the positive envelope
obtained byΨr (Ψd) is greater thanΨd (Ψr), then the target
is moving away from (toward) the laser. Figs. 7 and 8 show
that the waveletsΨr andΨd can distinguish between a target
displacement away and toward (with an increasing speed) from
the interrogating LD respectively. Note also that as the velocity
of the target increases, both envelopes seem to converge. This
can be explained by a reduced number of samples per fringe
(SPF) for high-velocity displacement. The minimum required
has been determined to be 27 by simulations.

B. Determination of the C Range

As previously mentioned, determining the displacement
direction is based on the pattern recognition capability of
the proposed wavelets. In addition, the asymmetry of the
SM fringes mainly depends on theC factor. Therefore, it is
necessary to assess theC range over which the displacement
direction is correctly determined. Subsequently, an SM signal
generated by a linear displacement and a varyingC ∈[0.01:4]
has been simulated to determine the bi-WT method’s limits
in terms of theC range (Fig. 9). The algorithm is thus not
able to correctly reconstruct the displacement forC < 0.06
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as the maximum coefficients obtained forΨr and Ψd are
similar in values (Fig. 9 (d)). This results in reconstruction
errors (Fig. 9 (e)). For the very weak optical feedback regime,
the fringe asymmetry is almost non-existent (resulting in
sinusoidal shaped fringes, similar to classical interferometry),
which can explain the fact that the bi-WT method cannot
determine the displacement direction for very smallC values.
However, similar coefficient maxima of the bi-WT forΨr and
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Fig. 9. Simulated SM signalP (t) (c) for a linear target displacement away
from the laser of 400µm (a) and aC shift from [0.01:4] with α=4 and
λ =785 nm (b). The maximum coefficients usingΨr (black x) andΨd

(green o) are reported in (d) while the displacement reconstruction error is
displayed in (e).

Ψd can not only be obtained forC < 0.1 but also for target
displacement much smaller thanλ/2. These zones cannot thus
be processed by the proposed method. Nevertheless, the bi-
WT can identify and flag such zones so that the enclosed
information may be subsequently further processed.

It is, however, to be noted that the envelope of the maxima
coefficients is reached forC values close to 1.5, as expected.
This additionally illustrates that our technique is not just
confined to the moderate feedback regime but can also be
applied to an extended operating range, which is a requirement
to process SM signals affected by speckle [21].

Further, the robustness of the approach under the influence
of speckle has also been tested. Fig. 10 shows a simulated SM
signal with an amplitude which is caused to vary over a factor
of 8.C is also varied simultaneously within the range of 1 to 3
(Fig. 10 (b)). The correct detection of all SM fringes contained
in this signal then demonstrates that our method can reliably
reconstruct the target displacement even in the presence of
significant amplitude andC value variations, a combination
regularly encountered in signals corrupted by speckle.

C. Noise performance

To further evaluate the performances of the bi-WT method,
a gaussian white noise is intentionally added to the SM signal.

Table I summarizes the results obtained in terms of SNR
without prior filtering of the SM signal and shows that a higher
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SNR is required to process a signal having lowerC values.
This relationship can again be understood for the same reason

A
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e

Fig. 12. Zoom showing the fringe detection mechanism based on a reverse
biorthogonal mother waveletΨrbio and the modulus maxima method applied
on the SM signal of Fig. 11. In red and green dashed lines, two possible
threshold positions introducing fringe detection errors.

already explained in the first paragraph of section III-B.

TABLE I
REQUIRED SELF-M IXING SIGNAL SIGNAL -TO-NOISERATIO (SNR)

VERSUSC

C 0.2 0.4 0.6 0.8 1 1.2 1.5 2
SNR (dB) 34 24.5 20 20 20 19.5 17 15.5

To illustrate the capability of our bi-WT method, our
algorithm was employed to accurately retrieve displacement
information from a simulated noisy target movement with an
SM sensor operating at a lowC value. Fig. 11 clearly shows
that Ψr (t) andΨd (t) are particularly adapted to rising and
decreasing fringes respectively.

Further, Fig.12 shows the WT of the same SM signal (as
in Fig. 11 c)) using only one standard reverse biorthogonal
mother waveletΨrbio. Compared with the proposed approach,
it is much more complicated to discriminate the relevant sin-
gularities using the modulus maxima approach. For instance, if
the red dashed line in Fig. 12 is defined as the threshold, then
6 false rising-fringes are detected. On the contrary, if thegreen
dashed line is used as the threshold, then one decreasing-fringe
is not detected. Therefore, using two custom-made wavelets
not only allows an inherent detection of the displacement
direction but also provides a robust method to discriminate
the relevant peaks.

IV. EXPERIMENTS AND DISCUSSION

To experimentally validate our bi-WT method, an optical
setup similar to [8] has been employed based on an optical
casing containing both the ARTIC 39N0 liquid lens from
Varioptic R© and a collimation lens. The LD used in the SM
sensor, driven by a constant injection current of 30 mA and
a maximum output power of 50 mW, is a Hitachi HL7851G
emitting at 785.86nm. The variations in the OOP of the LD
P (t) are monitored through the built-in photodiode contained
in the LD package. A Physik Instrumente P-753.2.CD piezo-
electric transducer (PZT) is used as the target placed at 25cm
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PZT

SHAKER

SM Sensor

OSCILLOSCOPE

PZT DRIVER

Function Generator

Fig. 13. Photograph of the experimental set-up used to induce speckle in SM
signals. A piezoelectric transducer (PZT) is employed as the target while the
SM sensor is also made to vibrate by using a shaker
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Fig. 14. Experimentally acquired SM signal affected by speckle (green) (a)
and reconstructed displacement (b) based on fringe counting and direction
discrimination. The encircled area denotes a local drop speed area without a
global change of displacement direction

away. To induce speckle, the SM sensor is also shaken as per
the configuration of [31] as shown in Fig. 13.

Fig. 14 (a) presents the experimentally acquired SM signal
affected by speckle along with the reconstructed displacement
(Fig. 14 (b)) containing both the target and the laser vibrations.
Fig. 15 highlights the correct detection of the fringes. Note that
the displacement speed drops in the encircled area without any
change of direction, which is correctly analyzed. In addition,
despite the speckle affected SM signals containing several
hundred of fringes, the algorithm is able to successfully detect
all the fringes.

However, as mentionned in the previous section, fringes
could be missed for lowC values. These missing fringes can
be caused either by:

• a low C factor: the algorithm detects the presence of
fringes but cannot determine the displacement direction.

• a low C factor and small SM signal amplitude: the peak
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Fig. 15. Zoom of the experimentally acquired SM signal shownin Fig. 14
(green) (a). The fringes (dotted red) as well as their direction are detected and
shown in red line (a) based onΨr (dashed dark blue) andΨd (light blue) (b).
The encircled area denotes a local drop speed area without a global change
of displacement direction
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Fig. 16. Experimentally acquired SM signal (green) affected by strong speckle
(a). The fringes (red) as well as their direction are detected and shown in red
line (a) based onΨr (dark blue) andΨd (light blue) (b). The boxed area
denotes a local lowC and low SM signal amplitude for which the algorithm
does not make any decision.

value corresponding to the fringe is lower than the applied
threshold.

Fig. 16 shows the case where both theC factor and the SM
signal amplitude are low, which induce the missing fringes.

V. CONCLUSION

We have presented an innovative approach exploiting a
bespoke wavelet transform which has enabled robust fringe
detection for displacement measurements using self-mixing
optical feedback interferometry under weak and moderate
feedback regimes. This method can also inherently discrim-
inate the displacement direction and has been successfully
tested on both simulated and experimental SM signals under
different optical feedback regimes as well as in the corruptive
presence of speckle and noise.

The proposed approach can potentially be employed to
efficiently detect real SM signal fringes. However, before
implementation in a real-time system, further studies haveto
be performed to optimize the number of scales required as a
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function of the system sampling frequency and of the ampli-
tude and frequency range of the vibrating target. Note that in
future, additional statistical signal processing can be added to
the present algorithm so that even these low amplitude and
low C value fringes can still be correctly processed. Such
statistical signal processing would make use of periodicity
in fringe occurrence coupled with Bi-wavelet based peaks to
successfully process such deeply affected SM fringes.
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