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BRIEF REPORT
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# The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract This paper presents two experiments that examine
the influence of multiple levels of knowledge on visual work-
ing memory (VWM). Experiment 1 focused on memory for
faces. Faces were selected from continua that were construct-
ed by morphing two face photographs in 100 steps; half of the
continua morphed a famous face into an unfamiliar one, while
the other half used two unfamiliar faces. Participants studied
six sequentially presented faces each from a different contin-
uum, and at test they had to locate one of these within its
continuum. Experiment 2 examined immediate memory for
object sizes. On each trial, six images were shown; these were
either all vegetables or all random shapes. Immediately after
each list, one item was presented again, in a new random size,
and participants reproduced its studied size. Results suggested
that two levels of knowledge influenced VWM. First, there
was an overall central-tendency bias whereby items were re-
membered as being closer to the overall average or central
tokens (averaged across items and trials) than they actually
were. Second, when object knowledge was available for the
to-be-remembered items (i.e., famous face or typical size of a
vegetable) a further bias was introduced in responses. The
results extend the findings of Hemmer and Steyvers
(Psychonomic Bulletin & Review, 16, 80–87, 2009a) from
episodic memory to VWM and contribute to the growing lit-
erature which illustrates the complexity and flexibility of the
representations subtending VWM performance (e.g., Bae,

Olkkonen, Allred, & Flombaum, Journal of Experimental
Psychology: General, 144(4):744–63, 2015).

Keywords Visual workingmemory .Memory

One of the most fundamental functions that memory performs
is to enable the past to support our current interactions with the
world. The research presented herein examines how prior
knowledge affects our memory for recently encountered visu-
al stimuli (visual working memory; VWM).

The intellectual lineage of our experiments can be traced to
a seminal paper by Janellen Huttenlocher and her
collaborators. Huttenlocher, Hedges and Vevea (2000) exam-
ined how the distribution of exemplars within a single dimen-
sional category influenced stimulus judgment. Observers were
presented with one stimulus at a time and after a brief 2-
second pause, they were asked to reproduce one of its charac-
teristics from memory. Across experiments, to-be-
remembered features included the length of horizontal lines,
the grayness of squares, and the Bfatness^ or width of sche-
matic fish. The distributions from which these stimuli were
sampled were varied in terms of their mean, dispersion, and
form (e.g., uniform or normal distributions) and the influence
of these variations on the remembered features was systemat-
ically explored.

The judgment tasks just described can easily be construed
as one-item VWM tasks, so the reported findings inform us
with respect to knowledge effects in VWM. The Huttenlocher
et al. (2000) results strongly suggested that VWM is construc-
tive as they showed that memory was biased towards the cen-
tral values of the categories called upon. For instance, if a
studied line was shorter than the overall average line length,
participants remembered the line as being somewhat longer
than the one actually studied – in other words they
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remembered the line as being closer to the average than it
actually was. The authors referred to this phenomenon as the
central-tendency bias.

At the heart of the model that underpinned their predictions
and conclusions was the idea that the central-tendency bias is
adaptive. Over many trials, if estimates are biased towards the
more prototypical exemplars, performance will be less error
prone on average. For example, if I remember an extreme
value for a given item – considering the fallibility and impre-
cision of memory – there is a good chance that the said mem-
ory is inaccurate; the actual value is likely to be closer to the
mean of the relevant category. Hence, over time, the central-
tendency bias should produce behavior that is beneficial rather
than detrimental.

A number of studies have explored alternative explanations
of this basic phenomenon while others have replicated and
extended it. In 2005, Sailor and Antoine provided further ev-
idence of a central-tendency bias for single item memory but
also suggested that the bias could be explained through the
influence of immediately preceding stimuli; if a stimulus from
one end of a distribution is presented, the preceding stimulus
is more likely to be a less extreme value. Sailor and Antoine
(2005) showed that such sequential dependencies could pro-
duce a central-tendency bias. However, Duffy, Huttenlocher,
Hedges, and Crawford (2010) directly tested this hypothesis
against the central-tendency bias view; they reported two ex-
periments that showed that participants adjust their estimates
towards the mean of all the stimuli encountered previously
rather than towards a smaller and more recently encountered
subset. They note that these findings do not mean that there is
never an influence of recent, prior stimuli; rather, their results
imply that such an influence is generally far smaller than the
influence of the entire distribution. Sailor and Antoine (2005),
as well as DeCarlo and Cross (1990), reported evidence to the
effect that both the distribution as a whole and the immediate-
ly preceding stimulus affected estimates, but the influence of
the immediately preceding stimulus was minor, relative to the
influence of the entire distribution. In summary, there is no
strong evidence for an explanation of the central tendency bias
as a memory distortion caused by a subset of immediately
preceding stimuli.

Brady, Konkle, and Alvarez (2009) offered another illus-
tration of how prior knowledge can be integrated with noisy
representations to support VWM performance. In their exper-
iments, observers were presented with displays consisting of a
small number of circles which varied in color; they were asked
to remember the colors as well as their locations. In their task
design, covariance was introduced between colors in a display
so that over trials some color pairs were more likely to appear
than other color pairs. Their findings showed that these redun-
dancies led to more efficient encoding – i.e., after being ex-
posed to stimuli with these built-in regularities, observers can
store more information in working memory.

The latter finding extended influential slot models of
VWM which suggested that the capacity of VWM is limited
to a fixed number of slots (e.g., Zhang & Luck, 2008). A
number of extensions to these fixed capacity models have
been proposed in order to account for additional factors that
affect VWM performance (e.g., Bae, Olkkonen, Allred, &
Flombaum, 2015; Bae, Olkkonen, Allred, Wilson &
Flombaum , 2014; Bays, Catalao, & Husain, 2009; Bays,
Wu, & Husain, 2011; van den Berg, Shin, Chou, George, &
Ma, 2012). For instance, Bae et al. (2015) proposed amodel of
color VWM where memory for a very recently encountered
color is significantly influenced by knowledge of color cate-
gories as well as by the specific color value encountered. Bae
et al. (2015) reported a central tendency bias for color
memory as well as evidence suggesting that the bias orig-
inated in perception (see also Sims, Ma, Allred, Lerch, &
Flombaum, 2016).

The studies reviewed so far have called upon simple/
abstract stimuli and most have also examined the effects of
knowledge developed over the course of the experiment.
What of the knowledge that participants bring to the experi-
ment, i.e. longer-term knowledge of more familiar and mean-
ingful stimuli? As far as we are aware, there are no studies
systematically examining the biasing effects of this type of
long-term knowledge on VWM; this was one of the objectives
of the work reported here. In effect, our aim was to test a series
of hypotheses derived from a general Bayesian perspective
(see Hemmer & Steyvers, 2009b) which predicts that multiple
levels of knowledge impact performance. Our work calls upon
novel strategies in the study of VWM and differs from previ-
ous work in a number of important ways. We systematically
examine the influence of well-established knowledge for com-
plex and meaningful stimuli on VWM. In doing so, we report
the impact of hierarchical levels of knowledge, i.e. knowledge
that relates to the category from which studied items are taken
(e.g., fruit sizes) and one that relates to item-specific
knowledge (e.g., typical apple size). This means the interplay
of multiple levels of representations can be considered, i.e. the
representation of the to-be-remembered item, the representa-
tion of the relevant ensemble statistics, as well as the relevant
item-specific long-term knowledge that is brought to the ex-
perimental task. For example, if the task is to remember the
size of the most recently encountered apple, the assumption is
that the response will mainly be based on the representation of
said apple. However, two further knowledge-based sources
can play a role: one would be the knowledge of what the
typical size of an apple is (item-specific categorical
knowledge) and the other would be the average size of all
the fruit encountered in the experiment (superordinate cate-
gorical knowledge).

The work reported here extends the recent findings on
VWM (Bae et al., 2015; Brady et al., 2009, 2011; Duffy
et al., 2010) by examining hierarchical knowledge-based
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effects with concrete, familiar and complex stimuli. Finally,
using familiar stimuli allowed us to test knowledge-based
biases while being confident that the observed effects were
the result of the knowledge brought to the experiment rather
than an artifact of sequential dependencies (e.g., Sailor &
Antoine, 2005).

Experiment 1 was designed to investigate whether prior
knowledge can bias VWM for faces. Experiment 2 borrowed
from Hemmer and Steyvers (2009a) and examined the effect
of prior knowledge on VWM for the size of familiar and
unfamiliar objects.

Experiment 1

In Experiment 1, participants were asked to remember short se-
ries of photographs of six different faces. Each of these faces was
taken from a set of Bfamilies^ created bymorphing two faces and
generating a continuum of stimuli that went from one face to the
other (see Fig. 1). To manipulate prior knowledge, half of the
morph continua were created by going from a famous face to an
unfamiliar face (famous continua) while for the control set both
faces were unfamiliar (non-famous continua).

We made predictions based on the assumption that two
sources of available knowledge combine with the most recent
representations to produce a response. Although the specific
faces called upon were unfamiliar at the outset, people have
considerable expertise in processing faces generally. Also,
each family of faces was encountered repeatedly across the
experiment. We expected that summary representations of
each continuum would develop – in a similar fashion to what
is observed with item sizes in other studies; we assumed that
this would include an average representation that corresponds
approximately to the middle of the series. This experiment-
based knowledge was predicted to lead to a central-tendency
bias where reconstruction should be pulled towards the center
of each continuum. For famous continua, we expected the
same central-tendency bias but with the added influence of
the knowledge brought to the experiment: The prediction
was that these faces would be remembered as being somewhat
closer to the famous face than they actually were.

Method

Participants Thirty psychology undergraduates took part in
this study and received course credits for participating.

Materials Forty-eight grayscale images from Eimer, Gosling
and Duchaine (2012) were used. As in Eimer et al., the faces
were presented within an oval through which only the central
features of each face were visible. These 48 images were or-
ganized into 24 pairs so that within-pair items had broadly
similar characteristics; these included gender, approximate

age, facial expression, head orientation (or gaze direction),
and other salient details (e.g., size of smile; see Fig. 1a).
This matching allowed the morphing process to proceed more
smoothly from one face to the other, i.e. each morph continu-
um was based on one of the matched face pairs. Of the 24
pairs, 12 contained a famous face while the other 12 did not.
We therefore created 12 famous continua and 12 non-famous
continua (usingWinMorph 3.01). From each pair we obtained
100 image-steps; the image positions or numbers referred to
below are related to those 100 steps. Figure 1 provides exam-
ples sampled from one famous and one non-famous continu-
um and illustrates the list construction process.

The procedure required six faces from different continua to be
presented on each trial. To achieve this, the 24 face continua
were randomly divided into four sets of six, each set contain-
ing three famous and three non-famous continua. This random
division was performed 12 times, to create a total of 48 sets of
six continua, each with the same property of having three
famous and three non-famous continua. For each of these 48
sets of six, an individual face on each of the six continua was
then selected for presentation by choosing an image at random
from the range on the morphing scale of 20–79, subject to the
constraint each half of the continuum had to be sampled from
equally often. Figure 1b illustrates this process.

Only one of the six continua was tested on a given trial.
Hence, from each of the 48 lists, a to-be-tested continuum was
selected at random with two constraints: each of the 24 con-
tinua had to be tested twice across the experiment (each half of
the continuum tested once) and each of the six study positions
had to be tested equally often. One of the faces from the to-be-
tested continuum had to be presented at the point of
responding. The starting position of that test item was selected
at random from position 10–89, with one constraint: the test
image had to be a least ten steps away from the studied item.
The testing range (10–89) was 20 images wider than the study
range (20–79) as this allowed the test face to be at least ten
steps either side of the studied face, even for the extreme
morphs. The full range (from 1 to 100) of faces was not used
as the first and last few images within each continuum did not
have the slight blurriness that the other faces included due to
the morphing process. Finally, at test, the relevant continuum
was flipped on half the trials so that each end was to the left or
right as often. Each face was presented at the center of a 15-in.
monitor within a gray rectangle that was 6.5 cm high by
4.5 cm wide. Responses were provided using a mouse-
controlled slider that made the displayed face change so that
it travelled through the face continua under consideration.
Figure 1c illustrates the study and test phase of a trial.

Procedure Participants were individually tested in a sound-
attenuated room during a 30-min session. The experimenter
first explained the task and answered questions; participants
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then provided consent. A reminder of the instructions was
presented on screen followed by two practice and 48 experi-
mental trials. On each trial, the six faces appeared sequentially
for 1,500 msec each, with a blank of 500 msec after each
image. After the sixth item, there was a blank screen, present-
ed for 2 s, and then the test stimulus appeared along with a
mouse-controlled horizontal slider bar used for responding.
Participants could thenmove up and down the face continuum
by using the mouse-controlled slider; they were instructed to
identify the studied face and then click on a BNext^ button to
start the following trial. Upon completion of the experiment,
participants were thanked and debriefed.

Results and discussion

To facilitate scoring and interpretation, the famous-face con-
tinua were re-organized to have the famous face always at the
same end (zero/left) of the continuum and scores were
corrected to reflect this. The relationship between studied
and remembered positions on the continua was then exam-
ined. Figure 2 illustrates the findings; it presents the average
remembered positions as a function of the studied positions.1

Two elements are noteworthy. First, a comparison of the
slopes of the regression lines with the diagonal line
representing perfect recall suggests that studied faces were
remembered as being closer to the midpoint than they actually
were. In essence, the slopes suggest a central-tendency bias.
Assuming participants build a central representation for each
continuum as the trials progress and that this knowledge is
accessed to support reconstruction, then this tendency to re-
gress towards the Bbest^ representative of each continuum
would be expected. As both functions appear to have very
similar slopes, this bias seems equivalent for familiar and un-
familiar faces.

The second point of interest is the lower intercept obtained
for famous face continua. When the target was a famous
morph, there was an overall tendency to reconstruct more
towards the zero end of the continuum, that is, towards the
famous end of the continua. Simply put, when studied at the
same position as a non-famous face, a famous face will be
reconstructed closer to the famous end of the continuum.
This difference in intercept can be seen as a prior knowledge

bias as its source is most probably the extra familiarity asso-
ciated with the famous face that observers bring to the
experiment.

The central-tendency and the influence of the famous faces
were examined by running a series of per participant regres-
sion analyses where studied position was the predictor and
remembered position was the dependent measure. We first
determined if the central-tendency bias (slopes in Fig. 2) ob-
served for the famous and non-famous continua were compa-
rable. In order to do so, we ran separate regression analyses for
the famous and non-famous conditions for each participant.
The average slopes obtained for the famous (.35) and non-
famous (.30) items were both significantly different from
zero (famous faces: t(29) = 7.1, p < .001; non-famous
faces: t(29) = 6.4, p < .001) but did not differ from each
other (t= − .90, p =.374).

We then turned to the effect of the prior knowledge associ-
ated with the famous continua (intercept difference in Fig. 2).
For each participant, we fitted a model with a single slope
parameter and two intercepts (one for famous and one for
non-famous stimuli) so there could be a test of the apparent
difference in intercepts within the model. The famous or non-
famous status was entered as a binary predictor in the regres-
sion model. Across participants, the mean slope was .33, and
the average intercept values were 24.1 and 30.7 for the famous
and non-famous data respectively. Hence, the average inter-
cepts were ordered as predicted. T-tests confirmed that the
average slope was different from zero, t(29) = 8.1, p < .001,
and that the difference in intercepts was significant, t(29) =
6.2, p < .001.

Fig. 2 Remembered face position as a function of study position on the
morph continua. Each dot represents the average remembered position for
a given studied position; the best fitting regression lines for famous (solid)
and non-famous (dashed) stimuli are also provided. The diagonal dotted
line going from the bottom left corner to the top right corner represents
perfect performance

1 Note that because the study positions were randomly selected for each par-
ticipant the number of observations per study position is not perfectly even;
this is not an issue in the inferential statistics as the regressions were run
independently for each participant.

�Fig. 1 a The top row provides a sample of faces taken from within a
famous face continuum (Obama); the bottom row presents a sample taken
from a control continuum. b Illustration of the item selection process for
each list; three famous and three non-famous continua were randomly
selected; one image is then drawn from each to create a six item list. c
Illustration of the study and test phases of a trial in Experiment 1
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The aim of this study was to assess the influence of prior
knowledge on VWM for photographs of faces. It was predict-
ed that participants would be biased by knowledge in two
ways. First, the familiarity with the stimuli developed during
the experiment was expected to lead to a bias whereby remem-
bered faces were drawn towards the center of the relevant
continuum. Second, for the continua that involved a famous
face, it was expected that prior knowledge would lead to a bias
that would cause participants to remember the studied instance
as being more like the famous face than it actually was. Both
these predictions were born out.

It could be argued that faces are a unique type of stimulus
(Wang, Fang, Tian, & Liu, 2012) and that these findings may
not extend to other categories of objects. Experiment 2 called
upon a different class of stimuli and also required reconstruc-
tion along another dimension: size.

Experiment 2

Experiment 2 was based on prior work by Hemmer and
Steyvers (2009a) who examined the impact of prior knowl-
edge on episodic memory. In their work, Hemmer and
Steyvers compared memory for the size of familiar items
(fruit, vegetables) with memory for the size of unfamiliar
items (random shapes). The task used a form of continuous
recognition where participants were presented with 72 item
lists. Study and test trials were randomly interleaved so that
studied items were tested at random intervals within the list;
on a test trial, participants were first asked if they recognized
the item as having been studied before and were then asked to
resize recognized items to their original studied size. The lag
between study and test could vary between one and 24 trials; it
follows that most lags would be outside what is typical in the
study of immediate/working memory. Moreover, performance
at all lags was averaged in the analyses. The results suggested
that episodic memory of the studied items was affected by (a)
fine-grained, item-specific representations and (b) two levels
of categorical information. For both familiar and unfamiliar
shapes, there was a central-tendency bias as the recalled size
was systematically influenced by the mean size of the stimuli
in the category. The results with familiar stimuli demonstrated
the influence of a second categorical factor: item-level prior
knowledge (e.g., the average size of apples).

In Experiment 2, we asked if the findings of Hemmer and
Steyvers (2009a) could also be found in a VWM task. We
used lists containing familiar items (photographs of vegeta-
bles) or unfamiliar ones (random shapes). As before, six items
were sequentially presented, but in this case, at test, partici-
pants were to reconstruct the size of one of the studied objects.

From Hemmer and Steyvers (2009a) normative data were
available for the familiar items; these included the normative
average size (norm hereafter) for each item as well as the

largest and smallest realistic sizes. We assumed these norms
were reasonable approximations of the knowledge partici-
pants brought to the experiment regarding familiar item sizes.
With the help of these data, items could be presented either
above or below the norm. This made it possible to predict the
direction of any knowledge-based bias at the item level.
Specifically, we expected that the remembered size of a famil-
iar object (i.e., the just-seen apple) would drift towards the
object’s norm (i.e., the average apple size). Moreover, as be-
fore, we expected a central-tendency bias for both familiar and
unfamiliar items whereby small items (a mushroom or a small
shape) and large items (a cabbage or a large shape) would drift
slightly towards the average size within the category. In es-
sence, we tested predictions relating to two levels of knowl-
edge: (1) for the familiar items, an object-level bias, where the
size of each item is remembered as being slightly closer to its
prototypical size and (2) for both types of items, a central-
tendency bias where memory is influenced by the overall
mean of item sizes presented within the experiment.
Figure 3 summarizes the assumed influence of knowledge at
both object and experiment levels.

Method

Participants Forty-two undergraduate students volunteered
for the study. Some received course credits for their
participation.

Materials Stimuli were taken from Hemmer and Steyvers
(2009a) and consisted of 24 high-resolution color photographs
of vegetables against a white background as well as 24 images
of random blue shapes.

These images were used to create 48 six-item lists, 24 lists of
familiar items and 24 lists of unfamiliar ones. The familiar and
unfamiliar items were yoked such that the presentation size of
shapes was matched to that of the vegetables.

Study sizes of familiar items were determined as follows.
In each list, two items were presented at their normative mean
size, two items were larger than their normative mean size,
and two items were smaller than said mean. All items were
studied as often in all three sizes; however, tested items were
always studied smaller or larger than their normative mean.

The sizes that were Blarger^ and Bsmaller^ than the norm
were obtained as follows. Recall that normative data contained
three estimates: a normative mean size, a normative Bsmallest
reasonable size^ (e.g., the smallest realistic size for a radish),
and a normative Blargest reasonable size^ (e.g., the largest real-
istic size for a radish). For each item, the range from the mean to
the smallest reasonable size and the range from the mean to the
largest reasonable size were calculated. Items presented smaller
than their normative mean were presented at the size that was at
0.6 of the range from the mean to the smallest realistic size. So, if
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the mean size for a beetroot was 0.25 and the smallest realistic
size for a beetroot was 0.15, then the range was 0.10, and a small
beetroot would be presented at 0.19, that is [0.25 − (0.6 × 0.10)].
Likewise, the size of an item studied larger than its normative
mean was set to be at 0.6 of the range between the mean and the
largest realistic size for said item.

As for list composition, the 24 familiar items (and their
yoked unfamiliar shapes) were divided into two groups based
on their normative size; one group contained the 12 largest
items while the other held the 12 smallest items. Forty-eight
six-item lists were constructed so that: (a) three items were
from the large group and three were from the small group.
Also, items were divided into two sets of 12 items, matched
for size. To improve experimental control, one set was used as
targets for half the participants and the other set was used for
the other half; this strategy allowed us to test the same item
twice for each participant, once in a size above and once in a

size below its normative mean; in essence, each item could be
its own control and across participants, all items were used as
targets. On each trial, a single item was selected from the list
of six for testing. Each sequential position was tested equally
often. Lists of unfamiliar items mirrored the construction of
the familiar lists. There were also two practice trials created
from the same stimuli that had the same structure.

Procedure The procedure was as in Experiment 1 except for
the following. Images were presented for 1,000 msec each,
followed by a 500-msec blank screen. Following the last item
of a list, there was a further 1.5 s with a blank screen and then
one of the items was presented again in a new size, randomly
set to .2 (i.e., at a size corresponding to 20% of the display), .4,
.6, or .8 of the presentation window. To reconstruct target
sizes, participants moved a cursor placed in the center of a
horizontal sliding bar (at bottom of the screen). Moving the

Small objects Large objects 

Distribution of 

mushroom 

sizes 

 

Distribution of item 

sizes within the study 

Small objects Large objects 

 

 

Objects studied at same size 

(1) Influence experiment-wide sizes /

Central-tendency bias

 

 

 

Fig. 3 Schematic representation of the levels of information
hypothetically contributing to the reconstruction of familiar object
sizes. Top and bottom halves represent two different items studied at
the same physical size. However, the item in the top half is studied at a
size that is larger than its normative mean size while the item in the
bottom half is studied at a size that is smaller than its normative mean

size. The pull of the overall sizes (1) presented within the experiment will
be similar in both cases, but the effect of prior knowledge about typical
object sizes (2) will influence reconstruction in opposite directions. For
unfamiliar items, the same predictions hold, except the distribution based
on prior knowledge of object sizes is removed
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mouse-controlled cursor to the left made the target smaller and
moving it to the right made it larger.

Results and discussion

As inHemmer and Steyvers (2009a), the presentation size was
subtracted from the remembered size to obtain reconstruction
error. A positive error indicates the item was remembered
larger than studied; a negative error indicates the reverse.
Figure 4 (a and b) presents the mean reconstruction error as-
sociated with each studied size separately for items studied
larger than their norm, and items studied smaller than their
norm. (For the unfamiliar shapes, the norm was taken to be
the norm of the vegetable with which they were yoked). The
left panel shows the data for familiar items (vegetables) and
the right panel shows the data for the unfamiliar colored shape
items. As expected, negative slopes were obtained in all con-
ditions; small items were reconstructed larger and large items
smaller, consistent with a central-tendency bias. For familiar
items there were two distinct regression lines, corresponding
to the items studied larger or smaller than their norm. In other
words, two items studied at the same objective size can be
remembered differently. If the studied size of one item was
smaller than its norm, then it tended to be remembered as
larger than it actually was. If the size of the corresponding
item studied was larger than its normative size, it tended to
be remembered as being slightly smaller than it was at study.
For the unfamiliar items, the two regression lines were
superimposed. As familiar and unfamiliar items were yoked
in size, the difference must be due to the knowledge associated
with the familiar items.

As before, we ran per participant regressions to analyze
these findings. We first compared the two slopes obtained
for the familiar items as well as those obtained for the unfa-
miliar items. We ran separate per participant regressions for
the familiar items studied smaller than the norm and for those
studied larger than the norm as well as the corresponding
analyses for the unfamiliar conditions; the dependent variable
was the error score and the predictor was the studied size. We
then compared the slopes in a 2 (relative size, lager / smaller) ×
2 (familiarity, vegetables / shapes) repeated measures
ANOVA. There was no effect of relative size (F(1,41)<1,
p=.61), a significant effect of category (F(1,41)= 56.1,
p<0.001, and these factors did not interact (F(1,41)<1,
p=.70). As Fig. 4 suggests, the slopes for each category (fa-
miliar / unfamiliar) are similar for each relative size; however,
the mean slope for the unfamiliar items (−.58) is steeper than
the mean slope for the familiar items (−.27). The slopes for
both vegetables, t(41) = −8.6, p < .001, and shapes, t(41) =
−15.6, p < .001) were significantly different from zero.

Following Hemmer and Steyvers (2009a), we then tested
for the expected interaction between category (familiar/unfa-
miliar) and relative size (smaller/larger) for the intercepts. The
hypothesis was that familiar items would show a knowledge-
based bias through a difference in intercept as illustrated in
Fig. 4a. As the unfamiliar items cannot benefit from equiva-
lent knowledge, there should be no difference in intercept in
this case, as suggested in Fig. 4b. Further per participant re-
gressions were run for the familiar and unfamiliar items with
the error score as the predicted variable. The predictors were
the studied size along with a binary variable corresponding to
whether an item was smaller or larger than its normative size.

(a)  Familiar items (b)  Unfamiliar items 
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Fig. 4 Mean reconstruction error as a function of the studied size for each
item, item type [(a) familiar / (b) unfamiliar), and relative study size (i.e.,
larger than normative mean/smaller than normative mean). The latter is

notional for the unfamiliar items, but as they were yoked to the familiar
items, the distinction is maintained for comparison and analyses purposes
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When averaged across participants, for the familiar items the
two average intercept values were 0.12 and 0.16 respectively
for the items studied larger and smaller than their normative
means. For the unfamiliar items, the corresponding intercept
values were .20 and .21. The means slopes were as above.

A 2 (familiar/shapes) × 2 (relative study size: smaller/larger
than norm) ANOVA on the intercepts produced a significant
effect of familiarity, F(1,41)= 20.2, p < .001, study size,
F(1,41)= 42.1, p < .001 and more importantly the two factors
interacted, F(1,41)= 7.7, p= .008. T-tests showed a significant
difference between the intercepts observed for the familiar
objects, t(41)= −6.0, p < .001, but not for shapes, t(41)=
−1.8, p=.08. Thus, for the familiar items, objects studied at
the same size, but respectively larger and smaller than the
norm were not remembered in the same way. Items presented
larger than the norm tended to be underestimated while items
that were smaller than the norm were overestimated.

General discussion

This paper tested the predictions of a general Bayesian view
(see Fig. 3) which predicted that multiple levels of knowledge
would impact VWM performance. In Experiment 1, morph
continua were created between two faces; in half of the cases,
a famous face was used as one of the faces of the morphed
pair. After studying six faces, participants located one of the
studied items along its relevant morph continuum based on
their memory of the studied item. The results showed that
responses were influenced by two levels of knowledge. On
the one hand, a central-tendency bias meant that responses
were pulled towards the center of the continua. On the other
hand, when the studied item was from a continuum involving
a famous face at one end, participants tended to remember the
studied face as being more like the famous face than it actually
was.

Experiment 2 called upon a different type of stimulus.
Participants were presented with six photographs of realisti-
cally sized vegetables or six pictures of unfamiliar shapes.
Their memory for the size of one of the items was tested by
asking them to reconstruct the studied size of the item. Here
also there was a clear impact of two levels of knowledge.
Responses for both vegetables and unfamiliar shapes were
influenced by a central-tendency bias as small items were
remembered as being somewhat larger than they actually
were and large items were remembered as being somewhat
smaller than they were. In addition, when the size of the
studied vegetables deviated from their respective normative
mean size, the remembered size tended to drift towards the

norm. The results extend the findings reported by Hemmer
and Steyvers (2009a) to VWM.

Central-tendency bias: recently developed knowledge?

When reviewing their findings, Hemmer and Steyvers
(2009a) discussed the central-tendency bias that they ob-
served as originating from knowledge of the average size
of all the items within the categories called upon (in their
case fruit and vegetables). One can ask if this is knowl-
edge that is brought to the experiment or if participants
develop a representation of the relevant central values
over the course of the experiment. In the case of unfamil-
iar items such as the random shapes used here, one has to
assume that the mean representation that leads to the cen-
tral tendency bias develops over the course of the exper-
iment as participants did not have prior knowledge of the
specific stimuli called upon. The same would be true in
other studies calling upon simple / abstract stimuli such as
line length and greyness of squares (e.g., Huttenlocher
et al., 2000). In the case of the familiar items however,
both within-experiment knowledge and prior knowledge
about the category could play a role. In Experiment 1, the
similarity in the central-tendency bias for the familiar and
unfamiliar items (slopes) makes it tempting to conclude
that both originate from a common source – i.e., from
statistics computed over the course of the experiment.
However, two considerations suggest that this could be a
hasty conclusion. First, in Experiment 1, the famous faces
although quickly recognisable were most likely new in-
stances for participants; also, generally speaking, people
have a high level of expertise when it comes to processing
faces – whether they are familiar or new. Taken together,
this may have reduced any differences in the impact of
prior knowledge about the faces used in the experiment.
Second, in Experiment 2, the central-tendency bias ob-
tained for familiar items (vegetables) was significantly
smaller than the bias observed for unfamiliar items (ran-
dom shapes); this difference suggests that the knowledge
brought to the experiment can reduce the central-tendency
bias. As we did not include any manipulations or specific
conditions that could disentangle these potential sources,
future research is needed to clarify the issue.

Knowledge-based support and biases

In both the reported experiments there was a systematic im-
pact of hierarchical levels of knowledge. To explain these
findings, we suggest that performance involved (a) the devel-
opment of a specific representation of the target’s relevant
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features, (b) knowledge from prior experience with similar
items (when available), and (c) a representation of the ensem-
ble central value – all of which inform the reconstruction of
the most recently encountered instance. Our findings hence
highlight that retrieval within a VWM paradigm can be simul-
taneously sensitive to superordinate category knowledge (e.g.,
mean size of items in the category) as well as prior, well-
established knowledge – e.g., famous face or typical item size.

In reporting these knowledge effects we have insisted on
the biases or errors that knowledge introduces in performance.
However, as mentioned in the introduction, it is thought that
knowledge-based biases originate from a process that is adap-
tive / helpful overall. These biases can be considered a rela-
tively minor cost generated by a processing strategy that pro-
duces significant benefits over time (Brady & Alvarez, 2011;
Hemmer & Steyvers, 2009a, 2009b; Huttenlocher et al.,
2000). The suggestion is that our memory systems are de-
signed to auto-correct; when the memory system produces
an extreme value, there is an increased likelihood that this
includes some error and so an adjustment towards more cen-
tral values is adaptive. There is evidence that this auto-
correction is also observed – and perhaps originates – in per-
ception (e.g., Bae et al., 2014; Bae et al., 2015; Allred &
Flombaum, 2014, 2016).

Representations subtending performance

Allred and Flombaum (2016), Bae et al. (2015), and Brady
and Alvarez (2011) have highlighted the importance of ade-
quately characterizing the representations that underlie perfor-
mance in VWM tasks. They noted that past research has large-
ly focused on the nature of underlying limits that restrict the
amount and quality of content that the system can store and
that the nature of the content itself has had less attention. There
is clearly some agreement about the importance of this issue as
there is a growing VWM literature illustrating the complexi-
ties of the representations and processing involved (Bae, et al.,
2014, Bae et al. 2015; Brady, Konkle, Alvarez, & Oliva, 2013;
Oberauer & Eichenberger, 2013; Vergauwe, & Cowan, 2015).

Our predictions were based on a general Bayesian view
where a number of representational levels interact in the re-
construction process; we now turn to a consideration of the
mechanisms that might be involved – although admittedly this
is speculative. In the type of task considered here, the most
recently encountered target item, or at least its most relevant
features – needs to be represented, bound, and probably linked
to context, in order to have an identity and be sufficiently
distinctive. If this was not the case, participants would simply
recall average/prototypical sizes or not recognize the items.
Moreover, there has to be a process through which the ensem-
ble statistics about the items across trials are computed, i.e.,
some system has to support the computation of the dimensions
such as average size (or whatever else is relevant). Finally, a

mechanism for the input from existing knowledge (i.e., the
typical size of an item) needs also to be identified. Further,
we know there must be associations developed between the
current exemplar and the context of its presentation (Cowan,
2009). Perhaps the binding of items to general context can
provide a means of grouping the relevant items and features
so that summary statistics relating to the current task can be
computed. There has to be some means to isolate the group of
items that are relevant to the computation of said statistics;
shared context could be a candidate for this mechanism.

The complexities relating to representation that are being
brought to the fore by recent research onVWMcould possibly
benefit from borrowing from current theories of conceptual
representation that suggest that instances of a concept are rep-
resented through reliance on distributed and flexible brain
networks (see Barsalou, In press, a and b; see Hemmer &
Persaud, 2014 for a similar idea in relation to episodic
memory). One could for example, assume that processing
each exemplar encountered involves a categorization process
where the object is identified, activating a distributed repre-
sentation of relevant features. A further assumption would be
that instance-specific features such as current size, color, lo-
cation, and general context are also activated and bound to-
gether perhaps through attentional processes (see Cowan,
1999; Cowan & Chen, 2009). At the point of retrieval, the
constructed response would be mainly influenced by the focal
encoded instance, but also by the knowledge embedded in
these multiple levels of representation.

Conclusion

The two studies in this paper tested the predictions of a general
Bayesian view of how knowledge combines with the most
recent representations to influence/bias VWM retrieval.
Using very different types of stimuli (faces, objects) and two
different dimensions (resemblance, size), the results showed
the effect of various types and levels of knowledge: memory
was affected not only by the features of the most recently
studied instance, but by experiment-wide item statistics, cate-
gory knowledge, as well as by the item-level knowledge that
the participants brought to the experiment. The results extend
the findings of Hemmer and Steyvers (2009a) to VWM and
contribute to the growing literature which illustrates the com-
plexity and flexibility of the representations subtending VWM
performance.
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