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Abstract 

 A numerical method based on modified scalar finite element method (SC-FEM) is presented and 

programmed on MATLAB platform for optical fiber modeling purpose. We have estimated the dispersion 

graph, mode cut off condition, and group delay and waveguide dispersion for highly complicated chirped 

type refractive index profile fiber. The convergence study of our FEM formulation is carried out with 

respect to the number of division in core. It has been found that the numerical error becomes less than 2 % 

when the number of divisions in the core is more then 30. To predict the accurate waveguide dispersion 

characteristics, we need to compute expression 
      

    numerically by the FEM method.  For that the 

normalized propagation constant   (in terms of  ) should be an accurate enough up to around 6 decimal 

points. To achieve this target, we have used 1 million sampling points in our FEM simulations. Further to 

validate our results we have derived the higher order polynomial expression for each case. Comparison 

with other methods in calculation of normalized propagation constant is found to be satisfactory. In 

traditional FEM analysis a spurious solution is generated because the functional does not satisfy the 

boundary conditions in the original waveguide problem, However in our analysis a new term that 

compensate the missing boundary condition has been added in the functional to eliminate the spurious 

solutions. Our study will be useful for the analysis of optical fiber having varying refractive index profile.   

Keywords: Chirp Type’s refractive index profile, waveguide dispersion, group delay, finite element method 

(FEM)  

1. Introduction 

In this paper, a modified finite element method (FEM) based on a variational formulation for 

cylindrical coordinates system, which can consider complicated refractive index profile is presented 

and results are simulated on MATLAB platform. Like the other numerical methods, the FEMs are 

widely utilized methods. The SC-FEM presented in this paper has a certain advantages over the 

vectorial FEM, like SC-FEM has no spurious problem. Due to this facilitation since the matrix size 

for our analysis is one-third to two-thirds smaller than that for traditional analysis, required memory 

and CPU time become very small. The result of our computation is well agreed with the previously 

published results by other methods like vector-FEM, finite difference method, etc.  
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The optical fibers can be in various structural dissimilarities just like in photonic crystal fiber has 

various size or shapes of holes. Many critical steps may involve during these type of optical fibers 

fabrication process [1-5]. The modeling process plays an important role in the development of optical 

fibers and related devices by evaluating the geometrical design performance such as guiding 

properties, mode confinement capability to mention few.  Optical waveguide modeling techniques can 

be divided into analytical and numerical methods. Numerical methods are preferred whenever the 

analytical solution is not possible for certain geometry like in photonic crystal optical fiber. For the 

numerical methods, several approaches, this includes the scalar or vectorial finite difference method, 

scalar or vectorial finite element method, and Beam propagation method are preferred. Apart of that a 

semi-analytical method has also developed to analyze a taper optical waveguide [6-12]. Instead of 

finite element method, finite difference method may also be preferred in certain cases due to easier 

formulation procedure; however accumulation of truncation error and long computation time may 

reduce the method feasibility. In order to overcome these problems in this paper we opted the finite 

element method analyses in order to produce acceptable simulation results while shorten the time. In 

case of weakly guiding approximation, we can efficiently use the scalar wave equation solution 

instead of fully vectorial method for complicated waveguides. Indeed in this paper we use the weakly 

guiding approximation throughout for all the cases like chirped/alpha power refractive index profile. 

It then obtained the scalar wave equation by ignoring the terms for the interaction between two 

polarized field components in the vectorial wave equations. Since in our FEM formulation we are 

dealing with a single mode fiber with degenerate mode (HE11 mode having same polarization state in 

principal), hence the error generated by scalar FEM while compared to vectorial FEM is negligible 

[13-31].    

2. Finite element method analysis of optical fibers 

 

In this section, variational formulation based on FEM analysis of the HE11 mode in optical fibres 

having a complex refractive-index profile is described. Figure 1 reveals the core region        

where the refractive index can be an arbitrary profile. The maximum refractive index of the core is 

denoted as          and that in the cladding as            . The wave equation correspond to 

HE11 mode is given, by with     as [12-14] 
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where   denotes electric field. The boundary condition is given by the continuity for   and        

at    . 
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Fig. 1: Refractive-index distribution and schematic of  - power refractive index distribution of inhomogeneous 

optical fiber, where ‘a’ is the core radius.   

 

Before transforming eq. (1) into a variation expression, the waveguide parameters are normalized as 

 
  

 

 
               

 

 
                                                                 

 

 

where     and     corresponds to the core and cladding interface. Following this normalization, 

the wave equation and the boundary condition are rewritten as  
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Here the transverse wavenumber  , the normalized frequency   and the normalised refractive index 

profile       are given by 
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The solution of the wave eq. (3) under the constraint of the boundary condition can be obtained as the 

solution of the variational problem that makes the functional stationary: as follows [15-25] 
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The validity of eq. (5) is proved in a similar manner to that in ref [24, 26]. Having to solve the eq. (5) 

field profile in the core is dicretised and expressed as  
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where       are the field values at the sampling points to be solved and    is 0
th
 order modified 

Bessel function. Also 
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The solutions in the cladding and the substrate are given by the analytical functions. The sampling 

function  
 
    becomes unity at    

 
 , becomes zero at the neighboring sampling points    

   
 

and    
   

, and is zero throughout all other regions. The precise expressions of  
 
    are given by, 
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Since the sampling function here is a linear function of  , eq. (6) means that the continuous function 

     is approximated by the broken lines. The normalized refractive index distribution      is also 

approximated, by using the sampling function, as 

     ∑    
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Substituting eq. (6) in eq (5), we obtain the functional 
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The detail derivation of above eq. (13) is given in Appendix-I (“A.1”). 
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3. Modeling of Graded Types Refractive Index Profile of Single mode Optical fiber 

 

Once the eigenvalue equation for matrix     as described in “Appendix A.2 is solved to find the 

allowed values of wave propagation constant   leading to obtain the corresponding eigenvector 

            by simple matrix operation. Here           is obtained with respect to      

  , while    is still yet to find out. The total optical power   has to be normalized to obtain   . Figure 

1, show the  -power refractive index profiles given by [23, 25], for an optical fiber and planar slab 

waveguide respectively 
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The planar slab waveguide is a basic structure through one can design various types of integrated 

optical waveguide structure. In this paper the objective is to compare the circular core fiber case with 

planar slab waveguide case. This is because the coordinates are different but the wave equation is 

same for both the cases [32-34]. Hence the validity of the results can be established better. Next, we 

shows the results of FEM analyses for HE11 of optical fiber while comparing with TE modes of planar 

slab waveguide in the  -power refractive-index profiles given by eq. (14). We consider the total core 

radius to be “2a” and the sampling point in the core      .  The step-index slab waveguide is also 

analyzed by setting     in eq. (14).  Figure 2 reveals the normalized cut off frequency   . It is 

apparent   tends to be       correspondingly              . To know the accuracy of the 

computation in our FEM formulation, the percentage of numerical error            ⁄          

for the cut off normalized frequency in case of step index profile (where     is the cutoff frequency 

for step index profile) is computed with respect to the number of core divisions N. Figure 3 reveals 

the validity of our simulation by the fact that if the number of core division is around 70 the error 

even become less than 1 %. Figures 4-6 shows the normalized propagation constant  , field vector and 

propagation constant in terms of   ⁄  for the     mode of optical fiber while comparing with     

mode of planar slab waveguides with  -power refractive-index profiles respectively. Here, we 

assumed                     and          hence        .  
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Fig. 2: Cutoff normalized frequency    of optical fiber for HE11 mode with  -power refractive-index profiles. 

From the observation of  the Figure 4 , it is apparent that the planar slab waveguide behaves more or 

less similarly as an optical fiber near cut off frequency (low  -number range of          for any 

type of profile. However the triangular profile shows much difference in their behvior far from cut off 

region. We can also conclude that the fundamental mode of an optical fiber HE11 behaves in a similar 

way as TE01 mode of planar slab waveguide for step index profile case.  

 

Fig. 3: Percentage error for the cut-off normalized frequency with respect to the number of core divisions   in 

FEM analysis for step index profile for HE11 mode. 
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Fig. 4: Normalized propagation constant     of optical fiber (HE11 mode) and planar slab (TE01 mode) 

waveguides with  -power refractive-index profiles. 

Figure 4 also reveals that in case of triangular profile case the power of fundamental mode is more 

tightly confined in the core region of optical fiber hence these properties can be used for strongly 

guided fiber applications.  Cross sectional view of the electric field   and magnetic field   vectors for 

the case of      is shown in Fig. 5. It is apparent from this plot that   vector is perpendicular to   

field vector.  The plot of    component for the case of      mode is shown in Fig. 6. Figures 5 and 6 

corresponds to                   and       (      and      ) at           

while computed allowed value of          
 

  
. Once the propagation constant   is known for 

entire wavelength of interest to us we can predict the dispersion characteristics of an optical fiber or a 

waveguide having a complex refractive index profile. After knowing the normalized propagation 

characteristics we can calculate 
      

  
 and  

       

    for any type of refractive index profile case.  

Further we can calculate the waveguide dispersion by using the following expression [23-25], 
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Fig. 5: Cross sectional view of the a) electric field and b) magnetic field vectors for the case of        
         mode. 

 

 

 

Fig. 6: Plot of electric field vector    component for the case of                  mode. 
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Fig. 7: Normalized delay 
     

  
 of optical fiber with  -power refractive index profiles.  

 

Fig. 8: Normalized waveguide dispersion parameter  
      

    of optical fiber with  -power refractive index 

profiles. 

Figure 7-8 reveals the normalized delay 
      

  
 and the normalized waveguide dispersion  

       

    

respectively computed by FEM method. The ripples in these figures are due to a limited 

computational capability of double derivatives terms in waveguide dispersion characteristics. To 

better represent these graphs we have adopted the higher order polynomial expression scheme which 
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is discussed in next section. To compute the waveguide dispersion the value of normalized 

propagation constant should be an accurate enough up to at least 6 decimal points.  

4. Modeling of Linearly Chirp Types Refractive Index Profile of Single mode Optical 

fiber 

In this section we will apply our finite element formulation further to estimate the waveguide 

dispersion for chirped refractive index profile. Now here we define a variety of more complicated 

than previous case a generalized linear chirp type refractive index profile and is defined as [31-32], 
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where    is the refractive index at the center of the waveguide at    ,   controls the growth or 

decay of the profile envelope,    is the number of cycles in a core radius,   is the core radius and    

is the cladding refractive index. The refractive index profile can be divided into two parameters. One, 

the fiber parameters like  ,        and other, the profile parameters like   and   . By varying these 

parameters                  , we can generate profiles from simple step index type to complex 

multiple cladding type as shown in Fig. 9. For an example the profile parameters are      and 

    respectively for step index profile. Figures 10-12 shows the normalized propagation constant  , 

propagation constant in terms of  
 

 
 and normalized group delay 

      

  
 for the      mode of optical 

fiber having linear chirp types of refractive-index profiles. The waveguide dispersion can be 

computed straight forward from the Fig. 12 and eq. (15). 

 

 

Fig. 9: Various kinds of chirp type refractive index profiles produce by controlling the refractive index profile 

parameters.   
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Fig. 10:  Normalized propagation constant     of optical fiber with linear chirp types of refractive-index 

profiles. 

 

Fig. 11: Propagation constant in terms of 
 

 
 as a function of   for optical fiber with linear chirp types of 

refractive index profiles. 

It is apparent from the Figures 10-13 that the waveguide dispersion can be substantially reduced, 

when we deployed the optical waveguide having a complicated refractive index profile. The ripples in 

the Fig. 12 are due to the limited accuracy of FEM simulation. However this problem can be solved 

by deriving the appropriate higher order polynomial for Fig. 10 and Fig. 12. In order to obtain the 
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more accurate results we have derived the higher order polynomial equations, which established the 

relationship mathematically between   and  -number. Using the described polynomial equations, we 

can get the similar result and more accurate response of the waveguide dispersion. The polynomial 

equations, which describe the relation between   and  -number represented in Fig. 4 can be shown by 

the Table 1. 

 

Fig. 12: Normalized delay 
     

  
 of optical fiber with linear chirp types of refractive index profile. 

Table 1:  The Polynomial equation derived for the Fig. 4 

The Value of 

    

                           

       
  

 
      
         

     
 

Derived Polynomial (      ),  

where          

   
           

  

 

 

 

       
       

      
      

      
      

      
  

                  
       

              ,   

Where 

For optical fiber For planar slab waveguide 

  p1 = -0.00024904 

  p2 = 0.0049387 

  p3 = -0.041975 

  p4 = 0.19927 

  p5 = -0.57533 

  p6 = 1.0223 

  p7 = -1.045 

  p8 = 0.42761 

  p9 = 0.19092 

  p10 = -0.018197 

  p11 = -8.6465e-00 

  p1 = 0.000204 

  p2 = -0.004029 

  p3 = 0.033876 

  p4 = -0.15822 

  p5 = 0.45012 

  p6 = -0.81141 

  p7 = 0.96319 

  p8 = -0.8419 

  p9 = 0.6101 

  p10 = -0.072611 

  p11 = 0.0010013 
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              ,   

Where 

For optical fiber For planar slab waveguide 

    p1 = -0.00037675 

  p2 = 0.007179 

  p3 = -0.058293 

  p4 = 0.26239 

  p5 = -0.70978 

  p6 = 1.1518 

  p7 = -0.98619 

  p8 = 0.11705 

  p9 = 0.50663 

  p10 = -0.028838 

  p11 = -0.00082955 

  p1 = 0.00024924 

  p2 = -0.0052164 

  p3 = 0.046329 

  p4 = -0.22793 

  p5 = 0.6825 

  p6 = -1.3001 

  p7 = 1.6465 

  p8 = -1.514 

  p9 = 1.0357 

  p10 = -0.096414 

  p11 = 0.00048899 

 

 

  

 

 

 

       
       

      
      

      
      

      
  

                   
     

              ,   

For optical fiber For planar slab waveguide 

p1 = -0.00031762 

  p2 = 0.0065332 

  p3 = -0.057385 

  p4 = 0.28011 

  p5 = -0.82426 

  p6 = 1.4626 

  p7 = -1.399 

  p8 = 0.32131 

  p9 = 0.54558 

  p10 = 0.0070741 

  p11 = -0.00037985 

    p1 = -3.6107e-005 

  p2 = 0.0010183 

  p3 = -0.011741 

  p4 = 0.071828 

  p5 = -0.25014 

  p6 = 0.47631 

  p7 = -0.34605 

  p8 = -0.35521 

  p9 = 0.78986 

  p10 = -0.028264 

  p11 = 0.0004006 
 

  

 

 

 

       
       

      
      

      
      

      
  

                  
     

              ,   

where 

For optical fiber For planar slab waveguide 

  p1 = 0.000305 

  p2 = -0.0060284 

  p3 = 0.050768 

  p4 = -0.23862 

  p5 = 0.69406 

  p6 = -1.3341 

  p7 = 1.8337 

  p8 = -1.9496 

  p9 = 1.4209 

  p10 = -0.078954 

  p11 = 0.00066221 

  p1 = -0.00021593 

  p2 = 0.0043746 

  p3 = -0.037495 

  p4 = 0.17534 

  p5 = -0.47508 

  p6 = 0.69546 

  p7 = -0.28413 

  p8 = -0.70926 

  p9 = 1.0689 

  p10 = -0.042595 

  p11 = 0.00017185 

    

 

 

 

       
       

      
      

      
      

      
  

                  
     

              ,  

Where 

For optical fiber For planar slab waveguide 

  p1 = -0.00058377 

  p2 = 0.011559 

  p3 = -0.096856 

  p4 = 0.44456 

  p5 = -1.1997 

  p6 = 1.8512 

    p1 = -0.00014847 

  p2 = 0.0033176 

  p3 = -0.031052 

  p4 = 0.15682 

  p5 = -0.45173 

  p6 = 0.68015 
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On the basis of the polynomial mentioned in table 1, we can obtain the same result represented in the 

Fig. 4, Fig. 7 and Fig. 8 as shown in the Fig. 13. 

 

Fig. 13 Simulation result obtained by the derived polynomial represented in the Table 1: (a)       -number 

relation (b) 
      

  
     - number relation (c)  

       

  
    -number relation (d) Waveguide dispersion for 

different value of  . 

 

Figure 13 shows that, we are able to obtain the similar results using the derived polynomials 

represented in the table 1. Fig. 13(a) shows the   versus  -number relation similar to the Fig. 4. On 

the basis of this, we can calculate the response for  
      

  
    

       

    represented in the Fig. 13(b) and 

13(c), respectively. Finally, we can calculate the waveguide dispersion, represented in the Fig. 13(d). 

Hence, this shows that we can consider the derived polynomial as an appropriate mathematical 

equation for the calculation of the waveguide dispersion. In the same manner, we can show the higher 

  p7 = -1.2765 

  p8 = -0.41813 

  p9 = 1.1734 

  p10 = -0.041564 

  p11 = -0.00018982 

  p7 = -0.21595 

  p8 = -0.91033 

  p9 = 1.2558 

  p10 = -0.040894 

  p11 = -0.00046561 
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order polynomial equations, which show the similar result equivalent to the Fig. 10 and Fig. 12. The 

table 2 shows the derived polynomial equation. 

 

Table 2:  The Polynomial equation derived for the Fig. 11 

Derived Polynomial (      ) 

                           
       

  
 
      

   
 

where          

   
           

       
       

      
      

      
      

       
        

       
              , 

 

Where, the constant in above relation for various parameter values are 

        

    

        

      

        

      

        

      

p1 = 1.3805e-009 

  p2 = -8.7842e-008 

  p3 = 2.3409e-006 

  p4 = -3.3688e-005 

  p5 = 0.00028054 

  p6 = -0.0013427 

  p7 = 0.0035993 

  p8 = -0.0078156 

  p9 = 0.029432 

  p10 = -0.0091198 

  p11 = 0.0001478 

  p1 = 2.1628e-010 

  p2 = -1.2027e-008 

  p3 = 2.2808e-007 

  p4 = -7.5238e-007 

  p5 = -3.4104e-005 

  p6 = 0.00054423 

  p7 = -0.0032432 

  p8 = 0.0046619 

  p9 = 0.02717 

  p10 = -0.0096538 

  p11 = 0.00013959 

      p1 = 8.3385e-010 

      p2 = -4.6045e-008 

      p3 = 9.5012e-007 

  p4 = -7.3996e-006 

  p5 = -2.8064e-005 

  p6 = 0.00095846 

  p7 = -0.0069776 

  p8 = 0.01881 

  p9 = 0.0050421 

  p10 = 0.00062066 

  p11 = -0.00065062 

  p1 = -1.5755e-009 

  p2 = 1.2441e-007 

  p3 = -4.2415e-006 

  p4 = 8.141e-005 

  p5 = -0.00095935 

  p6 = 0.0070577 

  p7 = -0.031 

  p8 = 0.068473 

  p9 = -0.028334 

  p10 = 0.013013 

  p11 = -0.0014513 
 

 

 

 

Fig. 14 Simulation result obtained by the derived polynomial represented in the Table 2: (a)           -number 

relation (b) 
      

  
         -number relation (c)  

      

           -number  (d) Waveguide dispersion for 

different value of        . 
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On the basis of the derived polynomial equations the waveguide dispersion plot can be represented as 

shown in the Fig. 14 (d). It is apparent while comparing Fig. 13(d) with Fig. 14(d) that in case of 

complicated chirped type profile case, the waveguide dispersion is flat and negative. Earlier also the 

profile as shown in Fig. 9 (c), has been analyzed in greater detail for the case of circular core fiber 

[26]. In literature [26], it has been shown;             ⁄  waveguide dispersion over the band, 

but in our case the waveguide dispersion is even smaller as well as flat over the band as reveal in Fig. 

14(d). From the Fig. 14(d), it is also apparent that the optimum parameter for lower waveguide 

dispersion is             , corresponds to Fig. 9 (c). 

 

5. Conclusion 

In the conclusion of the paper, we have characterized the dispersion property of linearly chirp 

types of refractive index profile. The accuracy of FEM has been tested with respect to the 

number of core division. We have achieved very good agreement with the previously 

published results. It has been demonstrated that the numerical error becomes less than     

for the number of the core divisions in FEM analyses    . Our study also reveals that the 

optimum chirped type of refractive index profile waveguide can be used to achieve the flat 

waveguide dispersion property over the band. This study will be useful in optical 

communication systems where low dispersion link has to be deployed. Commercial software 

which obeys only the certain geometrical guide-lines, instead our method is flexible to 

analyze for all type of geometrical shape of holes in the core for photonic crystal fiber. 

Moreover the accuracy of our FEM method found to be up to 6 decimal points which are 

sufficient enough to compute the waveguide dispersion and performance is well 

comparable to commercial software. 
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Appendix I 

A.1 Derivation of eq. (13) 

Since from eq. (5) 
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We can split the above integration as follow, 
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As we know that  
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Observing the equation (A.1) and (A.2), we can write, since                hence 
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Taking the last two term of eq. (A.4) and putting the values of R using equation (A.3), we can 
write  

 ∫ [
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Since, 
 

  
               , hence we can modify the expression (A.4) as follow 
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Now Since, 
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From Eq. (A.5), 
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∫   
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     ]                                                                                

In the same manner, 
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Now putting the values of the expression from eq. (A.8) and (A.9) in eq. (A.5), we get 
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Finally, we can write the above expression, 
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Since we know the identity, 
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From eq. (A.11) and (A.10), we can write, 
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Putting the value, from eq. (A.12) in the eq. (A.10), we can write 

 
  

     

      

 

  
          

        

      
  

                                                                                          

Hence, we can write, 
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Finally, it turns out to be 
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A.2 Derivation of eigenvalue equation using stationary condition 

The stationary condition of the functional (13) is given by partial differentiation with respect 

to   (i = 0 – N), as  
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Substituting eq. (11) and eq. (12) in Eq. (A.16) and calculating the stationary conditions in 

the same way as those in re [12]         order simultaneous equations are obtained. In 

order that Eigen value equations have nontrivial solutions except for            
   the determinant of the matrix   should 

 
                                                                                                         

where the matrix elements of C are given by 
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where discretization step   is given by      . When the refractive index distribution      
of the fiber and the normalized frequency   are given, the propagation constant   (implicitly 

contained in  ) is calculated from eq. (A.17) and eq. (A. 18). 
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