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Abstract

Evolutionary dynamics have been traditionally studiechiimitely large homo-
geneous populations where each individual is equallyyikelinteract with every
other individual. However, real populations are finite amdracterised by com-
plex interactions among individuals. In this work, the iefhece of the population
structure on the outcome of the evolutionary process isoeggl

Through an analytic approach, this study first examinesttiehastic evolution-
ary game dynamics following the update rules of the invapracess, an adaptation
of the Moran process, on finite populations represented t@ethimple graphs; the
complete graph, the circle and the star graph. The exactulaerfor the fixation
probability and the speed of the evolutionary process udifi@rent conditions are
derived, and the effect of the population structure on eatihese quantities is stud-
ied.

The research then considers to what extent the change otrtegy update
rules of the evolutionary dynamics can affect the evolwrgrprocess in structured
populations compared to the process in homogeneous wedlehpopulations. As
an example, the evolutionary game dynamics on the extreteedgeneous structure
of the star graph is studied analytically under differerdafe rules. It is shown that
in contrast to homogeneous populations, the choice of tloateprules might be
crucial for the evolution of a non-homogeneous population.

Although an analytic investigation of the process is pdesithen the contact
structure of the population has a simple form, this is uguafieasible on complex
structures and the use of various assumptions and appriosinsaas necessary. This
work introduces an effective method for the approximatibthe evolutionary pro-
cess in populations with a complex structure.

Another component of this research work involves the useaofi@theory for
the modelling of a very common phenomenon in the naturaldvdrhe models de-
veloped examine the evolution of kleptoparasitic popatati foraging populations
in which animals can steal the prey from other animals foir tharvival. A basic
game-theoretical model of kleptoparasitism in an infinibenegeneous well-mixed
population is extended to structured populations reptesgehby different graphs.
The features of the population structure that might favberdppearance of klep-
toparasitic behaviour among animals are addressed.

In addition, a game-theoretical model is proposed for tivestigation of the
ecological conditions that encourage foraging animalshtres their prey, a very
common behaviour occurring in a wide range of animal species






CHAPTER 1

Introduction

Evolution of populations has been an issue of great coneethed last centuries.
Although evolution is a broad term, one can simply define & @socess by which
populations change in the heritable characteristics avex.tThere have been vari-
ous theories proposed in order to explain evolutionary gham populations. In the
middle of the 18" century, Charles Darwin published a book, entitled ‘On the Or
gin of Species by Means of Natural Selection’, suggestirgyalutionary theory to
explain evolution. Populations evolve by natural selettiodividuals occasionally
mutate. Mutation is a genetic change due to an error in theodegtion process.
These alterations generate differences among individnalgeir ability to survive
and reproduce. If the new individuals have a survival andogyictive advantage in
their environment, then they reproduce at higher ratesmass their characteris-
tics to their offspring. Disadvantageous individuals havewer chance of survival
and reproductive success and thus they are more likely toudiever time. Neutral
mutant individuals, i.e. mutants that are neutral with eg$go natural selection,
might incorporate into the population by neutral drift. Mat selection acts on in-
dividuals, but only the population of individuals evolvesotime. The time needed
for a population to evolve depends on the nature of the p&ipuland might vary
from minutes to millions of years. A population might be a lmmpopulation, an
animal population, a population of cells, multicellulaganisms, molecules such as
DNA and proteins, or any other evolving population. An ootgth of Darwinian
evolution is the cultural evolution which refers to cultuaad social changes that
occur over time (for example an erroneous imitation of be&haal traits, changes
in the human language, ideas and opinions, strategic chetce).

Evolutionary game theory has been proven to be a powerfutenaatical tool
for the description and the study of the evolution of popalts consisting of in-
teracting individuals, including the evolution of poputets of cells and viruses,
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the evolution of virulence in host-parasite interactiotige evolution of opinions
through social interactions, and the evolution of popalaiof animals competing
either over territory, mates, food or other biological nr@®es, or for social status,
using different strategies.

This chapter is an introductory chapter in game theory amdu@enary graph
theory. It introduces the basic concepts of the classicdleanlutionary game the-
ory and some of the fundamental tools for the study of evohary game dynamics
in finite homogeneous well-mixed populations of constar¢ $hrough a stochas-
tic approach. The famous Moran process is described andriamayuantities in
the stochastic evolutionary process are considered. Bwetytionary dynamics in
structured populations and the basic idea of studying @éeolwf populations rep-
resented by graphs are discussed. Applications of gameytirethe modelling of
kleptoparasitism are also presented. At the end, the totins and the outline of
this work are provided.

1.1 Classical game theory

Game theoryis the study of strategic decision-making of individualsan@ the-
ory has a long history with origin in the 1920s when John voniNann published
a series of papers (summarised later in the book von NeumadhiMargenstern
(1944)), although discussions of game theory had startechrearlier, at the be-
ginning of the 18 century. It has been applied to study individuals’ behaviau
decision making problems in a wide variety of fields, inchgleconomics, biology,
ecology, computer science, sociology, psychology andipalisciences.

A strategic gameés a model of interacting decision-makers, fhayers At each
stage of the game, each of the players has to takecton The player’'sstrategy
determines the action taken at every possible stage of time.g&ach player has
a preference relation on the set of action profiles, whiclepesented by the so-
calledpayoffsi.e. the payoffs define a preference ordering. In other sjaagayoff
represents the motivation of a player to choose a specititegly, the “award” of a
choice. The payoff of each player might be affected not oglytdown action but
also by the action chosen by the other players that it isactarg with. In each case,
the players try to attain the maximum possible payoff by dig an appropriate
action. The players might use pure strategies or mixedesgfied. Apure strategy
defines a specific action that a player will take at every pssitage of the game.
The number of pure strategies can be either finite or infiltemixedstrategy is
a strategy according to which a player uses each of the Alaifaure strategies
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with a certain probability. Since a probability can be angl reumber between 0
and 1, there is an infinite number of mixed strategies. A msteategy is usually
represented by a row vector (probability vector) whid®entry is the probability
that a player uses th#& available pure strategy.

Depending on the nature of the strategic game, there aerdliff ways to de-
scribe it. A commonly known type of game is the gamaanmmal form(or strategic
form). Games in this form consist of a finite number of playarset of pure strate-
gies available for each player to use, and the payoff funatibich determines the
payoff of each player depending on its strategy and theegfyadf its opponents.
In normal form games all individuals play a strategy simmgtausly, or individuals
are not aware of the strategy of their opponents. When therguat two players
and the number of available strategies for each player i®fithe game is usually
called aBimatrix game In such games, the outcome of the payoff function can be
represented by a matrix, the so-calleayoff matrix Assume two players, Player 1
and Player 2, where Player 1 has a finite strategysef S, ..., Sy} and Player 2
a finite strategy set = {Ty,...,Tq}. The column of the payoff matrix represents
the strategic choices of the one player and the row the gtcatboices of the other.
Each element in rowand columnj of the matrix is an ordered pa(s;, tj), where
s represents the payoff received by the “row player” anthe payoff received by
the “column player” when the row player plays stratégyand the column player
plays strategylj. For every possible combination of pure stratedies < [1,m,
andTj, j € [1,n], there is a corresponding pair of numbésst;). This game can be
represented by the following payoff matrix

Player 2 (Column Player)

Strategyy T .. T; ... Th
S (s,t1) ... (sut) ... (snta)
Player 1 : : : s L 1.1)
(Row Player) S (s,t1) ... (s,t) ... (s,t)

In the case oBymmetric games.e. games where both players have the same
strategic choicess= {S;...S,}, and the payoff obtained by using each strategy is
irrespective of the player that uses it, the game can be ibescby a square x n
payoff matrix, whose element in th® row andj™ column represents the payoff of
the row player when using strate§yagainst the column player that uses strat8gy
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For example, in a two-player symmetric game in normal fornesghthere are two
possible strategies for each player, A and B (such gamessarealled 2< 2 games),
the interactions between the individuals can be descrilggtddopayoff matrix

(1.2)

o o>
o o|®

A
B

An individual playing strategy A (A individual) obtains ayf a when interacting
with another individual playing A and a paydiffivhen interacting with an individual
playing B (B individual). Similarly, an individual playingtrategy B obtains payoffs
c andd when interacting with an individual playing A and an indival playing B,
respectively.

In this work, we will consider two-player symmetric gamesiormal form.

1.1.1 Dominant strategies and Nash equilibria

In this section, we present in a simple way some importanniieins and main
solution concepts of the classical game theory.

The best responsstrategy is the strategy (or strategies) that when it is used
against a given strategy offers the highest possible paldffis strategy is unique,
l.e. it results in a strictly higher payoff against a giverattgy then it is called the
strict best response to that strategy.

A dominant strategystrictly dominant strategy) is a strategy that is a (strict) best
response to every other strategy, i.e. it results in thedsgpayoff compared to the
other available strategies no matter what the opponent does

A Nash equilibrium(Nash, 1951) is a set of strategies consisting of a strategy
for each player. The strategy of each player is a best resporthe other players’
strategy, i.e. if any of the players chooses a differentegsaand the strategies
of the other players remain unchanged, its payoff will eittegnain the same or
decrease. If the decrease in payoff is the only possibldtressuch a choice, then
the set of strategies is calleds#rict Nash equilibrium. If a player has a strictly
dominant strategy, then this strategy is obviously the tia¢ is used in the Nash
equilibria of the game. In mathematical terms, in a two-plagymmetric game, a
strategyi is a Nash equilibrium iE(i,i) > E(j,i) V], and a strict Nash equilibrium
if E(i,i) > E(],i) V] #1i, whereE(X,Y) represents the payoff for playing strategy
X against strategy Y. A game can have either a pure-strategymoixed-strategy
Nash equilibrium. Although in general pure strategy Nadhildagia may not exist,
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it is proved (Nash, 1951) that in a finite game (a game that Hasgte number of
players and actions) there always exists a Nash equilibiiundividuals can use
mixed strategies.

Two concepts which are sometimes important are those ofdeffeciency and
risk-dominance. A strategy is calléthreto efficien{or Pareto optimal) if there is
no any other strategy that can improve the payoff of a play#romut reducing the
payoff of at least one other player. Note that a Nash equulibris not necessarily
Pareto efficient; there might be sets of strategies whichnesylt in better outcomes
for both players but are not Nash equilibria. A strategy itedaisk dominantf it
has the largest basin of attraction, i.e. it becomes morenatele in cases where the
uncertainty about the strategy of the opponents incredsmsexample, in a % 2
game described by the payoff matrix (1.2) where strategiagadB are strict Nash
equilibria, i.e.a> candb < d, if a> d then A is Pareto efficient, but&é+b < c+d
then B is risk-dominant, given that each player assignsaiiiby 0.5 to each of
the strategies A and B. It is often interesting to considerwbelection favours
the Pareto efficient Nash equilibrium over the risk domirtdash equilibrium, for
example in coordination games (see Sections 1.3.3 ang.3.4.2

1.2 Evolutionary game theory

In contrast to the classical game theory where individuddy p static game and
choose the strategy that offers them the maximum possillefipaiven that all
individuals behave rationally, evolutionary game the@raidynamic theory which
studies the evolution of populations where individualgsiiatt repeatedly with other
individuals. The different strategies might be thought sfdéfferent types of in-
dividuals and the payoffs obtained by each individual wheeracting with other
individuals are interpreted &igness which determines the reproductive and survival
success. Therefore, depending on the payoff values, theséitof each individual
might be either constantg¢nstant fithnegsor dependent on the frequency (relative
proportion) of the other types of individuals in the popidat(frequency dependent
fitness.

The evolutionary process is mainly determined by the selea@nd mutation
process. In terms of the evolutionary game theory, undecseh individuals with
the highest payoff (and thus fitness) are more likely to pagbeir traits (genetic or
cultural) to subsequent generations. Consequently, toedrecy of these individu-
als increases. Similarly, the frequency of the less subtdesslividuals decreases.
Mutation can be interpreted as a change in the strategicehai individuals in
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subsequent generations.

Evolutionary game dynamics have been traditionally stlidweinfinitely large
unstructured populations where every individual is equiédely to meet every other
individual. There are two traditional approaches to evohdry game theory. The
firstis the approach of Maynard Smith and Price (1973) whmdhiced the concept
of an Evolutionarily Stable Strategy. The second approaties the variation in
the frequency of the different types of individuals overdithrough the construction
of a dynamical system of equations, the replicator equation

1.2.1 Evolutionarily Stable Strategies

A strategy is arEvolutionarily Stable Strateg{ESS) (Maynard Smith and Price,
1973) if a population adopting that strategy cannot be iadaoly a small number
of individuals playing any alternative strategy (mutamatdgy), i.e. if it is stable
with respect to changes in strategic choices of individuBlst let us consider the
definition of an ESS in mathematical terms.

Consider an infinitely large resident population where allviduals use a strat-
egy (pure or mixed), R. Assume that initially all individudiave a background
(initial) fitness equal tdfy and letAf(X,Y) be the change in fithess for an individ-
ual of a subpopulation that plays strategy X (X individuahem interacting with an
individual of a subpopulation that plays strategy Y (Y indival) (this is equal to
the payoff of an X individual when playing against a Y indival). The expected
fitness of an individual of a population where all individsiake strategy R, is

fR: fb—i—Af(R, R). (1.3)

Assume that this population is invaded by a very small propoe of mutant indi-
viduals that play strategy M. In this case, the expectedd#re# a random R indi-
vidual of the population is given by

fr= fo+ (1—&)Af (R R) +eAf(R M), (1.4)
and the expected fitness of a random individual playing theantstrategy is

fu = fo+ (1—)AF(M,R) + eAf (M, M). (1.5)
Mutant individuals playing strategy M cannot invade a pagioh of individuals
playing strategy R, if

fr > fu, (1.6)

6
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for all the possible strategies M R. Sincee is a very small proportion close to
zero, this is true if

Af(RR) > Af(M,R) or (1.7)
Af(RR) =Af(M,R) andAf (R M) > Af(M,M). (1.8)

A strategy R is an ESS if either the condition (1.7) or the ¢tooal (1.8) holds for all
the available strategies M, M R. In words, the condition (1.7) means that a very
small proportion of mutant individuals playing strategy Ehaot invade a popula-
tion of resident individuals playing R if an individual plag strategy R compared
with an individual playing strategy M has an advantage whath Iplay against an
individual that plays R, i.e. if R is a strict best responsdgelf. The condition (1.8)
means that even if a resident individual does equally wethwaimutant when play-
ing against a resident, the mutants cannot invade the popukss long as a resident
does better when playing against a mutant, i.e. if R is a beggponse to M, than
M to itself.

It follows from conditions (1.7) and (1.8) that a necessamdition for a strat-
egy to be an ESS is for it to be a Nash equilibrium, and thusyels&S is a Nash
equilibrium. But note that a Nash equilibrium is not necesan ESS. If a strat-
egy is a strict Nash equilibrium, then condition (1.7) musithand thus every strict
Nash equilibrium is an ESS.

It should be noted that there might be conditions under wthehe are many
possible ESSs simultaneously and the population stathilig® one of these. On
the other hand, there might be circumstances in which threra@ESSs.

A limitation of the evolutionarily stable strategy concépthat it begins from
the state in which all the members of the population play Hraesstrategy with-
out considering how this state has been reached. In additioansiders only the
stability of the population strategy in isolated changethm strategic choices of a
very small proportion of the population, without considgriany mutations during
the evolutionary process. Furthermore, the concept haldisrey as the population
size is infinite, and population structure and stochagtanié ignored.

1.2.2 Replicator Dynamics

In contrast to the concept of evolutionarily stable streteghereplicator dynamics

describe how the frequencies of strategies within a pojpuahange in time.
Consider a homogeneous well-mixed population of infinite sihere individu-

als can use only pure strategies from a finite$et{S;,..S,}. Let us consider the



Introduction

simplest case where individuals can use either strategy gtrategy B. The game
played between the individuals is described by the payoffimi@l.2). The expected
fitnesses of individuals playing strategy A and B are giveapeetively by

fa = fp+Xxaa+ Xgb, (1.9
fg = f, +XaC+ Xgd. (1.10)

Xa is the frequency of individuals playing strategy A, aggthe frequency of indi-
viduals playing B. The average fitness of the population is tfiven by

F :XAfA+XBfB~ (111)

Since the population consists only of individuals that péier strategy A or strat-
egy B,xa+ xg = 1. The evolution of the population can be described by tHewasl
ing dynamic equation,

Xa = Xa(fa—F). (1.12)

This is called theeplicator equation(Taylor and Jonker, 1978; Hofbauet al.,
1979; Hofbauer and Sigmund, 1998, 2003).

From equation (1.12), it is obvious that at any time, if thedgs of individuals
playing A is higher than the average fitness of the populatiogir frequency will
increase. If their fitness is lower than the average fitnetisegbopulation, then their
frequency will decrease. Hence, the replicator equatiaermiges the deterministic
selection process where more successful strategies sipréag population. As in
the approach discussed in the previous section, mutatioot isonsidered.

Substituting equations (1.9)—(1.11) into (1.12) we obtain

Xa = Xa(1—xa)(fa— fg) (1.13)
=xa(1—xa)(Xa(@—b—c+d)+b—d). (1.14)

From (1.14) we see that there are three generic equilibrioimg

X5 =0, (1.15)
X =1, (1.16)
x*—i fora>candb<d, orfora<candb>d (1.17)
A" b+c—a—d’ ’ ' '

Note that as in the ESS concept, the background fithess ofiddils is irrelevant
and only the values of the payoffs matter.
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There are three distinct generic scenarios for the evalatpprocess:

I. Dominance In this case, either strategy A is always better no matteatwine
opponent does and thus the equilibrium poiit= 1 is stable (the case where
a> candb > d), or B is always better than A and thus the equilibrium point
xy = 0 is stable (the case wheee< c andb < d). In each case, the better
strategy is a strict Nash equilibrium and therefore an ESS.

ii. Bistability.: The two equilibrium points; = 0 andx, = 1 are both strict Nash
equilibria, and thus strategies A and B are both ESSs. Thailagun point
given by (1.17) is unstable. Evolution will result in the fibcan of As when their
frequency is abovg,, and in their extinction when their frequency is belgjyv
This is the case where> c andb < d.

iii. Coexistence The interior equilibrium point (1.17) is stable while theipts
Xy = 0 andxj, = 1 are both unstable. This is the case wherec andb > d.

In the non-generic cases whexe> c andb > d, ora > c andb > d, strategy A
also dominates B. In the cases whare c andb < d, ora< candb <d, B also
dominates A.

In the non-generic case wheae= c andb = d, i.e. fo = fg for all values of
Xa, the two strategies do equally well and thus the frequensyridution of the
strategies remains constant. This case is calledé¢ral case Although this case
is not much of interest in the replicator dynamics, as we sék in Chapters 2 and
3, itis an interesting and important case in the stochastitugonary dynamics of
finite populations.

Note that constant selection, where individuals have emdttness indepen-
dent of the interactions with other individuals and thushe tomposition of the
population, can be obtained in the special case whetd andc = d.

The replicator equation can be generalisedtfdifferent strategic types of indi-
viduals. Consider a population where each individual irdsran equal likelihood
with any other individual and can use one of thavailable pure strategies of the set
S. The change of the frequencigsi € [1,n], of the different types of individuals
over time is described by the equations

X =x(fi—F), (1.18)

wheref; is the expected fitness of an individual that uses strafegnd is given by
fi=fp+ Z?:]_XjAf (S,Sj), andF is the average fitness of the entire population and
is given byF = 37 ; x fi.
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1.3 Some classical games

In this section, we present some of the classical gamesdlatlieen widely studied
and applied in different fields.

1.3.1 The Hawk—Dove game

The Hawk—Dovegame (Maynard Smith and Price, 1973; Maynard Smith, 1982) is
possibly the most classic evolutionary game. This game bas bsed extensively
for the modelling of competition of animals over food, matesritories, and other
biological resources. According to this game, individuateract with each other
over a resource of valug by playing either aggressively using the Hawk strat-
egy (H) or non-aggressively using the Dove strategy (D)t individuals playing
Hawk meet, a fight takes place. At the end of the fight, the winhéhe game gets

a payoffV while the loser pays a co€t Therefore, the two players obtain a payoff
on average equal t/ —C)/2. If two Doves meet, they either equally share the
resource (if divisible) or with equal probability one of theo takes the whole re-
source with no cost. Thus, in this case Doves obtain an aggraypff equal t&/ /2.

If a Hawk meets a Dove, the Dove retreats leaving the resdarite Hawk without
any cost, and thus the Hawk obtains a paydffwhile the Dove gets nothing. This
game is described by the following payoff matrix:

|
H | a=¥%°¢

2
D c=0

< I
[N w)

< <

b=V . (1.19)
d

Itis clear that sincé > d, the Dove strategy is never evolutionarily stable because a
population of Doves can always be invaded by a Hawk. If theevalf the resource
outweighs the cost of the fight, i.e. ¥ > C = a > c, sinceb > d, an individual
always does better by playing the Hawk strategy no mattet wiesopponent does
(the Hawk strategy is strictly dominant). Thus, in an inBnitomogeneous well-
mixed population the Hawk strategy is the unique pure ES#kHsalso the unique
pure ESS wheW =C, becausd > d. If V <C=-a< ¢, itis better to play Dove
when Hawks are common. Since it is better to play Hawk whereBare common,
this leads to an evolutionarily stable mixed strategy. Assuhat with probability

p € (0,1) individuals use the Hawk strategy, and with probability p they use the
Dove strategy. In order a mixed strategy,1— p*) to be an ESS, in a population
playing strategy(p*,1— p*), the fithess of an individual playing the Hawk strategy

10
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must be equal to the fitness of an individual playing the Daxegeyyy, i.e.

p*\%CJr(l—p*)V: p* 0-|-(1—p*)\é. (1.20)
Solving for p* we obtain thap* =V /C. Itis easy to show that an individual playing
the mixed strategyV /C,1—V /C) in a population playing any other strateqy, 1 —
p), p € [0,1], has a higher fitness than an individual of that populatiorend,
according to condition (1.8), there is a unique mixed ESSredividuals play
Hawk with probabilityV /C and Dove with probability +V /C. The mixed ESS
can also be found by using the approach in Section 1.2.2.

Note that here we assumed a monomorphic population wheliadmiduals
choose randomly between the pure strategies according iieea grobability dis-
tribution, and thus all individuals play the same mixedtsgg. A similar method
could be followed in the case of a polymorphic population sehedividuals use dif-
ferent pure strategies. In this case, the mixture of stragag a polymorphic mixture
of individuals where a proportion of the population equal & uses the pure Hawk
strategy and a proportion-1V /C uses the pure Dove strategy. Mathematically, in
infinite unstructured populations, the two cases are etpnvéecause in either case
an individual of the population has a probabilfgyf meeting an individual playing
Hawk and a probability + p of meeting an individual playing Dove.

1.3.2 The Prisoner’s Dilemma game

ThePrisoner’s DilemmgAxelrod, 1984; Poundstone, 1992) is one of the most pop-
ular games in game theory and has been commonly applied dosttidy of the
evolution of cooperation.

Assume a population where individuals either cooperate $trategy C) or de-
fect (use strategy D). Mutual cooperation results in a pair@feward) while mutual
defection results in a payoR (punishment).T (temptation) is the payoff obtained
by a defector against a cooperator &@ucker’s payoff) is the payoff of a cooper-
ator against a defector. The game is described by the paydffxm

(1.21)

=1 0O
T »n!|O

C
D

In the Prisoner’s Dilemma, the order of the elements of th@ffanatrix (1.21)
isT >R> P> S Thus, in this game, mutual cooperation results in a highgof
than mutual defection and therefore a population of all evajrs does better than

11
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a population of all defectors. However, sinte> RandP > S it is always better
to defect regardless of what the partner does and thus naetedtion is the unique
Nash equilibrium, and defection is the only ESS.

In its simplest form, the Prisoner’s Dilemma can be descdréethe game where
a cooperator provides a benddito its partner at a co€t to itself. A defector just
receives the benefit from a cooperator without paying any. cbise payoff matrix
of the game in this form is

\ C D
cC|B-C -C, (1.22)
D B 0

with B> C > 0.

1.3.3 Coordination games

A coordination gamas a game with multiple pure strategy Nash equilibria. In
a two strategy game described by the payoff matrix (1.2), adination game is
defined bya > c andb < d, and thus strategies A and B are both Nash equilibria.
The replicator dynamics also predicts an unstable intexaurilibrium where the
population fraction of A individualsx,, is given by (1.17). Usually, one of the
strategies in this game is Pareto efficient while the otherismisk dominant.

A famous coordination game is the so-called Stag Hunt garkgit®, 2004)
wherea>c>d > b.

1.3.4 The Snowdrift game

The Snowdrift gaméSugden, 1986) is a game described by the payoff matrix J1.21
with payoff rankingc > a > b > d. Hence, in this game the best strategy depends on
what the opponent plays and, as in the Hawk—Dove game foV, it is better to do

the opposite of what the opponent does. The Snowdrift gametiglly a version of
the Hawk—Dove game described in Section 1.3.1 but it has Wwedsly used in this
form for the study of the evolution of cooperation, wheratgy A is described as
the cooperative strategy and B as the defective strategy.

12
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1.4 Stochastic evolutionary dynamics in finite homo-
geneous populations — The Moran process

The traditional evolutionary game theory has provided irtgot insights into the
evolutionary game dynamics. However, both the concept ofutionarily stable
strategies and the replicator dynamics describe a sefgutaxess in infinitely large
populations and they are usually not effective to deschleedtynamics of real pop-
ulations of finite size, especially in cases where the sizb@population is small.
A better understanding of the evolution of finite populasioequires a stochastic
approach.

TheMoran processs a classical stochastic model originally formulated fardn
elling population genetics (Moran, 1958, 1962) and latex Iaen applied for the
study of evolutionary game dynamics in finite populationswidket al., 2004; Tay-
lor et al., 2004). It is a process which has been commonly used forttidy of
the evolution of finite homogeneous populations consistingvo types of individ-
uals, where each individual is equally likely to interactiwevery other individual.
Assume a finite population of siz¢ which consists of two types of individuals.
According to this process, in each time step a random indaliceproduces an off-
spring of the same type and a random individual dies. Thaosesh each step there
Is exactly one birth event and exactly one death event, tpelpton size remains
constant. In the case where the two types of individualsarpthpulation have differ-
ent fitness the process is described as follows: in each tepearandom individual
of type T is chosen for reproduction with probability proportionalits fitness, i.e.
with probability ’

ITj

Z?I:l i
wheref; denotes the fitness of an individual of typeandi the number of the indi-
viduals of that type. Hence, the type of individual which tize fithess advantage
will be selected for reproduction with higher probabilifor example, for two types
of individuals, A and B, an A individual is chosen for reprotian with probability
ifa/(ifa+(N—i)fg), wherei is the number of individuals of type A. The individual
chosen for reproduction produces an identical offspringcivieplaces a randomly
chosen individual (Figure 1.1). It should be noted that delpgy on the nature of the
process, the offspring can replace its parent or not. Invtbik, we assume that the
offspring cannot replace its parent. Due to the finitenesh@population size and
since in the process there are no mutations, eventually oie dwo types of indi-
viduals will replace all the individuals of the other typeddixate in the population.

(1.23)

Pi
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Figure 1.1: The Moran process with frequency dependent fitness. A finite populedion
sists of two types of individuals, A and B. In each time step, an individuahmslomly
selected for reproduction with probability proportional to its fithess. Anviddial is cho-
sen for death at random. An identical offspring of the individual chdse reproduction
replaces the dead individual. Hence, in each time step the population sizesemiastant.

So, there are some reasonable questions: What is the priopéimit a particular
type will fixate? How long will it take to fixate given that thvgill happen? How
long will it take for one of the two types to fixate?

Consider a population consisting of two types of individuxlsnd Y. Thefixa-
tion probabilityof type X is the probability that at the end of the evolutionarocess
the population will consist only of X individuals, i.e. thegbability that X individ-
uals will spread over the whole population and fixate. Tean absorption timgor
unconditional fixation time) is the mean number of time stepsded to reach one
of the two absorbing states of the dynamics, i.e. the reduinee for the process to
end up either in the state where all individuals are of typea Kahe state where all
individuals are of type Y. Thenean fixation tim¢or conditional fixation time) of X
individuals is the number of time steps required for X indials to take over the
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entire population, given that this will happen. Another ity of potential interest

that we introduce in this work is theean number of transition® absorption or

fixation, where the number of transitions is defined as inithe,texcept that events
where the population size of one type of individuals (andstthat of the other) is

unchanged are not counted.

Expressions for the fixation probability as well as the megatibn time were
derived in Karlin and Taylor (1975). The fixation probalyilitas later been consid-
ered in populations of finite size (Nowak al., 2004; Tayloret al., 2004). Complete
derivations of the formulae of the fixation probability at@ tmean time to absorp-
tion and fixation in a homogeneous population of finite size lva found in Antal
and Scheuring (2006) and Traulsen and Hauert (2009). In A¢ipeA we repro-
duce these derivations and in some cases we present alterioamulae. Note that
these formulae can be applied to stochastic evolutionasggases where there is
no mutation and in each time step the number of individualsnaf type increases
by one, decreases by one or remains the same, and thus tHatmopsize remains
constant.

Consider a population of sizd with two types of individuals, A and B. Ac-
cording to the Moran process, the number of A individualsachetime step can
increase by one, decrease by one or remain the same, withzoimabilities that
depend only on the current state of the system. Hence, tloegsas a Markov pro-
cess, which is essentially a discrete random walk on states<ON with absorbing
boundaries. The transition matrix of the process is a agdnal matrix with entries

ifa N—i )
o . <i<N-— .
(N—i)fg i |
L . <i<N-— .
P = i (N=i)fs N—1 T='=N-L (1.25)
Pii=1—pPii+1— Pii-1, 1<i<N-1, (1.26)

and zero everywhere else. He; is the element in thé" row andj™ column of
the transition matrix and denotes the transition probgbitom the state with A
individuals to the state with A individuals. At the absorbing statggs o = pn.n = 1.

The fixation probability of € [1,N] A individuals in a finite well-mixed popula-
tion of B individuals,*R, is given by (see Appendix A.1)

i-1 j
T
AR =70 (1.27)

N—1 ]
1+ 5 1 %
j=1k=1
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whereqy is the ratio of the probability of the number of A individudieing de-
creased by onepy k-1, and the probability of the number of A individuals being
increased by on€py k11, i-€. Ok = Pxk—1/Prk+1. Clearly, the probability of A in-
dividuals dying out, i.e. the fixation probability &f —i B individuals,BR, is given
by BR = 1— AR which leads to

N-1 j

2 1 G

=1 k=1
N—1 j

1+ 5 1 %
j=1k=1

Bp _ (1.28)

The (average) fixation probability of a single individuahying strategy X} Py, will
be denoted by P.

In the case where each of A individuals has relative condiizeiss equal to,
when compared to the fitness of a B individual, the transiarbabilities are

ir N —i .
o ) <i<N-— .
N—i i .
= - <i<N-— .
pl7l 1 ir N —| N_1’ 1_|_N 17 (130)
Piji =1—piir1—pPiji-1, L<i<N-1, (1.31)
Poo = PNN =1, (1.32)

and equal to zero in any other case. In this agse 1/r, and thus from the formula
(1.27) we obtain that in the Moran process the fixation pradibglf i € [O,N] A
individuals which have a constant fithasemes higher than that of B individuals,
APwi, is given by the simple formula

1—rd

Ap . _
PMu—m;

r+1 (1.33)
(the fixation probability of a single mutant A in the Moran pess will be denoted
by APw). Hence, in contrast to the deterministic replicator dyiwanisee Section
1.2), although individuals with fitness> 1 are favoured by selection (their fixation
probability is higher than that of a neutral individua},N) their fixation is not cer-
tain, even in an infinitely large population. Similarly,faugh selection opposes the
fixation of individuals with fitness < 1 (their fixation probability is less thary )
and thus their extinction is more likely, this is not certalimis occurs due to the fact
that even the fittest individual might not be chosen for rdpation and even the
least fit individual might be chosen for reproduction. Thasdom effect is called
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random driftand is very important in the evolution of finite populatioaspecially
when the population size is small. Foe 1, we have the case of so-calledutral
drift, where all individuals have the same fitness. In this casleoadh there is no
natural selection, the frequencies A and B individuals ahilft until one strategy
takes over the entire population. The fixation probability As in this case is equal
toi/N. This should be expected, since every individual can repredr die with
equal probability. Thus, every single individual has piabty 1 /N to take over the
entire population and fixate no matter its type; since theee endividuals of type
A, their probability to fixate i$/N.

The mean time to absorption wheér [1,N] A individuals are introduced in a
population of B individualsT;, is given by (see Appendix A.2)

i—1 1 i—-1 |

= PZ IOJ j+1 |Z I_l "2 2, J1 % -

S k=j+1 =1 Pii+1 Sk= e

The (average) time to absorption starting from a singleviddal playing strategy
X will be denoted by*T.

The fixation time ofi € [1,N] A individuals in a population of BS}F;, is given
by (see Appendix A.3)

N-1 Ap. N-1 | Pric1 1 i-1 Ap, i-1 | Pkt
S Pjj+ 1S kejan Pkl =1 Pj, 1+1| k=1 Pkkil

The (average) fixation time of a single individual playingagegy X,*F;, will be
denoted by*F. The derivation of the mean time to fixation of B individuaknc
be found in Antal and Scheuring (2006) and Traulsen and H#&2@09). However,
these can also be derived from the formula (1.35) by symnasgyments.

The above formulae are effectively a re-organisation obites in Traulsen and
Hauert (2009).

Note that in the Moran process, the mean fixation time of alsiAgndividual
when it is introduced into a population of B, is the same as the mean fixation
time of a single B when it is introduced into a population of, B, for every
intensity of selection and for all games. Thd$, = BF irrespective of which of
the two types of individuals has the highest chance to fixatea population of the
other type. This does not hold in the cases where more thaimdivdual of one
type invades in a population of individuals of the other typaylor et al., 2006).

In order to find the mean number of transitions before abswrgiccurs, as well
as the mean number of transitions before the fixation of Aviddials, we consider
a process where in each of the time steps we have a transitiopndne state to a
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different state, i.e. in each time step the number of A irdinals either increases
or decreases by one. The transition matrix of this proceasguare matrix where
only the entries below and the entries above the main didgange non-zero. The
elements of the transition matrix are

fa .
= A i<i<N-1, 1.36
Thit1 fat fo SIS ( )
fg .
=B 1<i<N-1, 1.37
Thi-1 fA+fB =1= ( )

and zero everywhere else.

The mean number of transitions before absorption and fixaifoA individu-
als occurs, starting frome [1,N] As, is given by the formulae (1.34) and (1.35),
respectively, wherej i1 = 751 andpjj_1 = 75 1.

1.5 The effect of spatial structure on the outcome of
the evolutionary process

As we have seen in the previous sections, the traditionatyt@f evolutionary game
dynamics is based on the assumption that populations angéhfilarge and well-
mixed. However, real populations, ranging from biology &edlogy to computer
science and socio-economics, are of finite size and exhibiesnhon-homogeneous
structure where any two individuals have not the same piibtyato meet. For
example, individuals might have a higher probability teenaict with neighbouring
individuals than with distant individuals.

At its simplest, the spatial effects on the evolutionary gatynamics have been
considered by assuming that the individuals of the popuriedire distributed over a
spatial array and interact with their nearest neighbows {sr example, Nowak and
May, 1992, 1993; Nowak, 2006; Killingback and Doebeli, 198&atd and Toke,
1998; Hauert, 2002; Hauert and Doebeli, 2004; $zaihd Fath, 2007). This might
be a one-dimensional array, a two-dimensional array (gigngular lattice, square
lattice, hexagonal lattice) or higher dimensional arrag.(eubic). However, biolog-
ically only lattices of dimension one, two and three are ¢éiiest. Each individual
adopts a strategy from a finite number of strategies avaitablise. Individuals up-
date their strategy following either deterministic or s$tastic update rules. In the
deterministic evolutionary dynamics (in discrete time)every generation each in-
dividual updates its strategy and adopts the strategy wiashobtained the highest
total payoff among its strategy and its neighbours’ striateg The total payoff of
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Figure 1.2: A spatial evolutionary game. Here, individuals of the population occupy the
cells of a square lattice and each of them interacts with its 8 neighbours.ahe glayed
among the individuals is described by the payoff matrix (1.2). The payaaoh individ-

ual at the end of each round is the sum of the payoffs obtained by thesgalmed with
each of its neighbours in the round. Every individual compares its paytf that of its
neighbours and adopts the strategy which resulted in the highest payefffigure shows
the neighbourhood of an individual playing strategy A (black cells) wihsnintroduced in

a population of individuals playing strategy B (white cells), from the end effittst round

to the end of the second round in the case wihered and & > c+ 7d.

each individual is the sum of the payoffs resulting from thteractions with each of
the connected neighbours. The update of individuals’essats synchronous, i.e.
all individuals update their strategy simultaneously scdete time steps (see Figure
1.2). In stochastic evolutionary dynamics the update @itsgies is asynchronous.
Randomly selected individuals update their strategy sdellgnfollowing some
stochastic update rules (but in each generation the nuniilseich updates is equal
to the number of individuals occupying the sites of the dattso that on average
every individual updates its strategy once). For exampiendividual is chosen at
random and updates its strategy adopting the strategy eidmna neighbour with a
higher payoff with a probability proportional to the diféerce of their payoffs. Nu-
merous investigations of evolutionary games on differattides and under different
dynamical processes have shown that the results of thetewtdny process might
be quantitatively and qualitatively different from theuéts obtained in the classical
evolutionary game theory. For example, although the adatsvolutionary game
theory predicts that cooperators can never invade defeitt@ Prisoner’s Dilemma
type of game, in the deterministic spatial Prisoner’s Ditean under some condi-
tions the survival of cooperators is possible and the twategjies can coexist in a
dynamic equilibrium (e.g., Nowak and May, 1992; Nowak, 2006the evolution-
ary process is described by a stochastic process, eventigdictors take over the
entire population. However, the two strategies might cstefar a very long time
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Figure 1.3: A population represented by a graph. Each individual of the populationmes
a vertex of the graph. The edges of the graph represent interacgbmedn individuals.

before absorption. Similarly, in the spatial Hawk—Dove gadepending on the up-
date rules and the parameter values, the Hawk strategy dogtetter or worse than
what it does under the assumptions of the classical gameytifeq., Killingback
and Doebeli, 1996; Hauert and Doebeli, 2004).

In real populations, the interactions among individualsally form more com-
plex connectivity structures. These structures can beesepted and modelled as a
collection of interacting units. At its simplest, a graph (@twork) is a collection
of vertices representing well defined units that interaataviset of edges. Lieber-
manet al. (2005) have used tools from graph theory to model evolatipdynamics
in structured populations. The idea was to represent thalptpn of sizeN by a
graphG(V,E), whereV is the set of vertices of the graph akdthe set of edges.
Each of theN individuals of the population occupies a vertex of the gragtd thus
|V| = N. The edges of the graph represent the interactions betwdamduals, and
thus determine who can replace whom (see Figure 1.3). Thetstes in the models
of spatial games described before are special cases ofggraph

The most widely considered evolutionary process in strectypopulations rep-
resented by graphs is tievasion proceséP) (or birth-death process with selection
on the birth). The IP is an adaptation of the Moran processraplt. Initially, a
number of mutant individuals X invades a population of residndividuals Y by
replacing an equivalent number of Ys at random. Then, at @@ehstep an individ-
ual is randomly selected for reproduction with probabititpportional to its fitness.
The offspring of that individual, which is a perfect copy té parent, replaces a
neighbouring connected individual which is chosen at ramdd he probabilities
that the offspring of an individualreplaces an individuaj, w; j, can be described
by the weight matrixV = [w; j|, where 1<i <N, 1 < j < N. Obviously, since the
offspring of each individual always replaces one otheniiutial, the sum of the ele-
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ments of each row of the matri%¥ must be equal to 1, igﬂ-\‘zlwm- =1Vie[1,N],
and thudV is a (right) stochastic matrix. Hence, the maifixdescribes the process
and since it also represents which vertices are connectetlitt other vertices, it
also determines the graph.

All graphs we study in this work are simple graphs, where éadividual occu-
pies exactly one vertex, there are no self-loops, i.e. tisare edge which connects a
vertex to itself, and there are no multiple-edges, i.e.\etgo vertices are connected
by at most one edge. In addition, the graphs are undireatatine can move from
vertexi to vertex ] we can also move from vertexto vertexi, and unweighted.
Lastly, all the graphs we consider are connected graphsheee is a path from any
vertex to any other vertex in the graph, and static, i.e. theegot change over time.

On the unweighted complete graph, where every individuabimected to ev-
eryone else and the offspring of each individual can rep&ueother individual
with equal probability (so this is a special case of a weidltemplete graph where
all the weights associated to the edges are equal(fd X 1)), the IP is equivalent to
the Moran process. Hence, the fixation probability ©f0, N] mutants with relative
fithess equal to on the unweighted complete graph withvertices is equal to the
fixation probability ofi mutants in the homogeneous well-mixed population of size
N in the Moran process, given by the formula33) forr # 1 and byi /N forr = 1.

Liebermanet al. (2005) have proved a theorem, the so-caltadhermal theo-
rem, which states that in the case of constant fitness, the IP oapdgs equivalent
to the Moran process, and thus mutants on that graph havefixabbability equal
to that in the Moran process, if and only if the graph is isati. Anisothermal
graphis defined to be a graph where the sum of all the weights thdtteavery
vertex is the same, i.e. the graph whgr{élwiyj is equal to 1 for every € [1,N],
and thus the matri}V is doubly stochastic (the sulY ; w;  for some vertex is
called thetemperatureof vertex j). Such graphs are for example the symmetric
graphs wherav; j = wj i for all i and | (e.g., regular graphs such as spatial lattices
and circle graphs, where all the edges have the same welightpt all isothermal
graphs are symmetric.

The isothermal theorem is generalised for a broader clagsaphs, where the
weights of the edges can be any non-negative real numbetshas\W is not nec-
essarily stochastic. Consider a process on such a graphe @heach time step the
offspring of an individual replaces an individugl with probability proportional to
the weight of the edge/ ; € R>o multiplied by the fitness of the individual This
process is equivalent to the Moran process if and only if thre ef the weights that
lead to a vertex is equal to the sum of the weights that leaaevigrtex, for all the
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vertices of the graph, i.e. if and only ¥ ;wij = ™ wj; Vi € [1,N]. Such
graphs which have this property are cal@ctulation graphs The above theorem
is called thecirculation theorem

Hence, in the case where individuals have constant fitnlesse ts a large fam-
ily of graphs, the circulation graphs, that affect neithelestion nor random drift,
leaving the probability of fixation unaffected. Howeveryalt be shown in Chapter
2, although the fixation probability on circulation grapksdentical to the fixation
probability in the Moran process, the mean time to absangind fixation might be
remarkably different.

One question that is raised is the following: are there gsaplat amplify or
suppress selection and therefore increase or decreasédheecof advantageous
mutants to fixate compared to their fixation probability ie toran process? Fur-
thermore, what happens in the case where the fithess of dodilg is not constant
but depends on the interaction with their neighbouringviials, as happens in
many natural systems? Liebermanal. (2005) have taken some first significant
steps in this direction. They have shown examples of graghshnamplify (sup-
press) selection over drift, i.e. graphs on which the fixapoobability of an advan-
tageous mutant is higher (lower) than its fixation probapih the Moran process
(similarly, the fixation probability of a disadvantageoustant is lower (higher) than
its fixation probability in the Moran process). The star drégpan example of such
an amplifier graph. The star graph is the graph which has oriexyeghe centre,
connected to all other vertices, the leaves. It has beenrskiwat in the IP, the fix-
ation probability of a randomly placed mutant with relatfiteessr on a very large
star ofN individuals(N — ) is approached by

1-—
1—

e

(1.38)

Papp=

_‘
T

Hence, the fixation probability of a randomly placed mutaithwelative fithess

on a large star graph in the IP is approximately equal to tlaifim probability of a
mutant with fithess? placed in a homogeneous well-mixed population of the same
size in the Moran process. In other words, the star graphifesgpthe relative fit-
ness of a mutant individual fromto r?, i.e selection is enhanced. This is because
the probability of mutants to increase their number on theds of the star, given a
resident in the centre, i€ times higher than the respective probability of residents
given a mutant in the centre. Thus, the spread of an advasniageutantr( > 1) is
favoured on the star while the spread of a disadvantageotasris inhibited. There
are also graphs in which the amplification (suppressionheffitness of an advan-
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tageous (disadvantageous) mutant can be increased everttmarthe star graph,
and the fixation probability can become arbitrarily closed t(zero) by increasing
the number of the vertices in a specific way (e.g., the suiaerthe funnel and the
metafunnel, see Liebermaat al. (2005)). However, on such graphs the mean time
required for the system to reach fixation is extremely lonigisTs demonstrated in
Chapters 2 and 3 where the evolutionary process on the staln gganvestigated
analytically.

In the case where the fitness of individuals depends on tleeactions with
neighbouring individuals, and thus on the composition ef plopulation, the evo-
lutionary process is more sensitive to the graph structée.is demonstrated in
Chapter 2, in this case, even on circulation graphs the fixgarobability might be
significantly varied.

Based on Liebermast al. (2005), a large amount of interesting studies have
followed giving insight into the effect of the populatiomtture on various evolu-
tionary processes (e.g., Ohtsekial. (2006); Ohtsuki and Nowak (2006a,b); Santos
et al. (2006b); Ohtsukket al. (2007a,b); Tayloet al. (2007); Broom and Ryckf
(2008); Ohtsuki and Nowak (2008); Tarni& al. (2009); Broomet al. (2010a);
Hadjichrysanthotet al. (2011); van Veelen and Nowak (2012). See also Noetak
al. (2010) and Shakariagt al. (2012) for reviews).

1.6 Models of kleptoparasitism

Game theory has facilitated the mathematical modelling/sfesns emanated from
natural and social sciences. In this work, based on the rinogléfamework pro-
vided by game theory, we model and study a very common fogalg@haviour of
animals, kleptoparasitism.

Kleptoparasitismis a form of feeding, where animals attempt to steal food al-
ready discovered by others. Different forms of kleptop#iabehaviour are ob-
served in many species in the animal kingdom, for exampleisp®f spiders (e.g.,
Coyleetal, 1991), birds (e.g., Brockmann and Barnard, 1979), snads, (§engar,
2002), lizards (e.g., Cooper anéiieéz-Mellado, 2003), fish (e.g., Hamilton and Dill,
2003), primates (e.g., Janson, 1985), carnivores (e.gho@eaet al.,, 2005) and in-
sects (e.g., Erlandsson, 1988). This behaviour of anins$ken well documented
in a review paper (lyengar, 2008). The biological phenomeoickleptoparasitism
has attracted the interest of many researchers from diffareas. There are a num-
ber of theoretical models focused on the kleptoparasiti@abeur of animals using
different mathematical methods, in particular evolutiyngame theory. Two of the
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fundamental game-theoretical models that consider kbgpasitic behaviour are the
producer-scrounger model, originally introduced by Badreamd Sibly (1981), and
the model of Broom and Ruxton (1998).

Inits original form, the producer-scrounger game is a fezy-dependent game
where animals forage for food using two strategies. Théyeesearch for food (pro-
ducer’s strategy) or search for opportunities to kleptapiise (scrounger’s strat-
egy). The scrounger strategy does better when scroungerararand worse when
they are common. When the frequency of the two strategie<Is that the payoff
obtained by each strategy is the same, there is a stablebequm where the two
strategies coexist. Many variations of this model haveofedld in order to consider
different factors that might affect the foraging procesg.(e€Caraco and Giraldeau,
1991; Vickeryet al.,, 1991; Dubois and Giraldeau, 2005). One key feature of this
type of model is that food is usually discovered in patches @an be easily split
between foraging animals. Hence, the concept of food shasicentral to these
models. In addition, in these models costs from aggressiagegies are energetic,
rather than time, costs. Thus, the different strategiesoddinectly affect the distri-
bution of feeding and foraging animals, and the main effégiopulation density is
to reduce the “finder’s share”, the portion of the food eatga lfinder before other
foragers discover it.

The model of Broom and Ruxton (1998), based on the mechanistaehof
Ruxton and Moody (1997), follows a different approach. Usangame-theoretical
approach, the authors have considered the ecological tocmmgliunder which at-
tacking to steal the food from other animals when the oppistlarises is the best
strategy that foraging animals should adopt in order to mese their food intake
rate and consequently their fitness. Food in this model coms#gle indivisible
items, which must be consumed completely by an individullsl food can never
be shared and challenging animals attempt to steal the \iteohefrom the owner,
or not. Note that the population density has a direct effe¢his model as fights
take time; this loss of time is the cost to more aggressiaegires, and thus the
more potential kleptoparasites there are, the more timeasted on fighting. The
present research work studies the evolution of kleptogargepulations under dif-
ferent circumstances based on the model of Broom and Ruxt®@8)1%hus, let us
discuss this model in more detail.

According to this model, each of the animals in a populatibforagers either
searches for food, has already acquired and is handlingdaifexm prior to its con-
sumption, or fights with another animal over a food item. Letdenote byP the
population density, by the density of searchers, by the density of handlers and
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Table 1.1: Notation of the basic game-theoretical model of kleptoparasitism of Broam an
Ruxton (1998)

Population’s densities Meaning
P Density of the population
SH,F Density of searchers, handlers and fighters
Model Parameters Meaning
vi f Rate at which foragers find undiscovered food
vhH Rate at which foragers encounter handlers
t _Expe_ctlef:l time for a handler to consume a foog
item if it is not attacked
ta/2 Expected duration of a fight
a The probability that the attacker wins the fight
Strategies Meaning
0 The probability that a searcher attacks a handler

when they meet

by F the density of animals which are involved in a fight over a faech. When a
foraging animal encounters an animal in the handling siiatan either decide with
probability p to attack in order to steal the prey, or with probability- J to ignore
the handler animal and continue searching. There is a aurdgasity of food items
f available and searchers cover an aveger unit time whilst searching for food,
so animals find food at rate f. The unit of time can vary depending on the animal
species, but this is usually the second or the minute (seextomple, Hocket al.,
1989). If a handler animal is not attacked, it consumes il fitem in a time drawn
randomly from an exponential distribution with meign Attacked animals always
defend their food and a fight takes place. Searchers enaduantdlers and engage
in a fight at ratepvyH. A fight lasts for a time drawn randomly from an exponential
distribution with mearty/2. At the end of the fight, each of the two animals wins
the food with equal probability, i.e. with probability 0.9:he loser returns to the
searching state while the winner starts handling the fomm.itThe model notation
IS summarised in Table 1.1.

The system of equations constructed to describe the dysashibe three sub-
populations is the following:

ds 1 1

— = =H+=F —v{ fS— pvySH 1.

at & +ta vi fS— pvpSH, (1.39)
dH 1 1

—— = vifS+—F——H-— H 1.4
gt = vifs+ oy pvhSH, (1.40)
dF 2

— =2 H— =F. 1.41
at pvhS @ (1.41)

25



Introduction

Broom and Ruxton (1998) considered the optimal valug @b be the value
which minimises the mean time required for a searcher thajust encountered a
handler to start handling a food item, as the less the redjtinee, the higher the
food intake rate.

The food intake ratey, is given by

= — 1.42
P (1.42)

whereH is the proportion of handlers in the equilibrium state angiven by

—(thpvsf+1 thvs f + 1)2 + 4ptitavs fuaP
H— (thve f + )+\/(hz‘;ftavv; )%+ 4ptatavs f vy ' (1.43)

It has been shown that there is always a unique ESS that andaialuse. For ev-
ery set of parameter values, the intake rate of a searchexismised when it either
challenges a handler at every opportunity, or it alwaystiga@ handler and contin-
ues searching for another food item for itself. It is proviedttthe optimal strategy
that should be adopted depends only on the fight duratjgd, and the rate at which
a food item is discovered)s f. In particular, it is shown that whegvs f > 1, i.e.
when food can be discovered within a short time or/and anyesggye interactions
have a high time cost, a searcher animal should never attiengéal a food item
from a handler. Hence, under these conditions the optimatiesty isp = 0. On the
other hand, itavs f < 1, i.e. the fight time cost is low or/and the available food is
scarce, then searchers should attempt to steal the fooddinother animal at every
opportunity, i.e. the optimal strategy 5= 1. In the case whergv;f = 1, the
choice of the strategy of the searcher is irrelevant.

Despite the simplicity of the model of Broom and Ruxton (1998)eresting
predictions are made about the ecological conditions undiéch animals should
attempt to steal food from other animals. However, this rhagbased on various
assumptions. One of the main assumptions is that the onlgeliar a handler an-
imal when it is challenged is to defend its food, and thus is tlase a fight always
takes place. In addition, it is assumed that animals ingblmean aggressive inter-
action are equally likely to win the fight and obtain the foBdoomet al. (2004), in
order to relax these assumptions, have later reconstrtiotechodel of Broom and
Ruxton (1998) in a more general and realistic framework. istiodel, an attacked
animal has, apart from the possibility to defend its food, plssibility to surrender
its food to the attacker and resume searching for anothet item, avoiding the
time cost of a fight. In addition, different competitive aidls between the attacker
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and the attacked animal are introduced, i.e. the probglofithe attacking animal
winning and obtaining the foody, varies between 0 and 1, as happens in natural
situations. In general, the circumstances under whichdigbtur might give a high
advantage to defender or attacker (the attacker might lwawatth the defender in
the air, but the defender may be hampered by a heavy food @ath¥o this prob-
ability may be significantly less or greater tha®.0In this extended model, it has
been shown that there are three possible ESSs; the Haw&gstrahere animals
challenge handlers at every opportunity and defend theut fehen challenged, the
Marauder strategy where animals always attempt to stedbtigefrom other ani-
mals but never defend their food when attacked, and the R&taktrategy where
animals never attack other animals to steal their food, bvays resist and defend
their food when attacked. In contrast to the original moddéBmom and Ruxton
(1998), where for every set of parameter values there isyal\a@ainique ESS, in the
extended model there are cases where between two regiomsameter space in
each of which there is a unique ESS, there might be a regionethe two ESSs are
possible to exist simultaneously. In the case where eadtedito animals which are
engaged in a fight are equally likely to win and obtain the foed a = 0.5 (thisis a
main assumption of the model of Broom and Ruxton (1998)), thalRé&dr strategy

is never an ESS and depending on the ecological parametiees tie Hawk or the
Marauder strategy is the unique ESS or both are ESSs togéthparticular, it is
shown that increasing; f, i.e. increasing the rate at which food items are discov-
ered, or increasing the fight duratityy2, discourages any aggressive interactions
over food making the Marauder strategy the optimal stratbigye that in this case
the occurrence of the Hawk strategy as an ESS is independfi¢éiné parameters

P, v, andt,. However, the variation of these parameters affects tharosece of
the Marauder strategy as an ESS. For example, the decreagl of the decrease
of t, make this strategy less attractive. In the general caseeatherattacker and
the attacked animal do not have as equal probability to wenfigiht (@ # 0.5), it

has been shown that wheégy2 anda are high, then the defence of a food item is
not favoured, whilst attacking handlers that surrenderr foed without a fight are
favoured. In particular, whety/2 is very high, the Marauder strategy is the only
ESS. This also occurs whenis very high, given that,/2 is not very small. As one
could expect, whety/2 is small and the probability that a handler defends its food
successfully, - a, is high then the Retaliator strategy is favoured. Note that t
Retaliator strategy is an ESS only when handlers have priityaddfiat least 0.5 to
win the fight, otherwise this strategy is invaded by attagldtrategies. Whety /2 is
small and the probability of defending a food item succdlsis neither very high
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nor very small, the Hawk strategy might be an ESS. The othempeterspP, v f,
vy andty, are also very important for the strategic choices of arsmiabr example,
as we have seen in the case where each of the contestantsdwasahprobability to
win, the increase of; f favours the Marauder strategy.

A series of publications has appeared developing the @iginodel of Broom
and Ruxton (1998) in a number of ways (e.g., Broom and Ruxton3;2Boom
and Rychér, 2007; Luthert al., 2007; Yates and Broom, 2007; Broanal., 2008;
Broom and Rycl#r, 2009, 2011). Crowet al. (2009) provide a brief review on the
main theoretical work on kleproparasitism prior to the stigation of a stochastic
model of kleptoparasitism in finite populations. A compandetween some main
models of kleptoparasitism is discussed in Vahl (2006) amdlgernative model
is presented. There is also a series of related mecharbsticyot game-theoretic,
models which investigate interference competition wherading animals engage
in aggressive interactions in order for example to defemr tterritory, resulting
in negative effects on their foraging efficiency (e.g., Bedgon, 1975; Ruxtoret
al., 1992; van der Meer and Ens, 1997; Vahl, 2006; Smallegange@an der Meer,
2009; van der Meer and Smallegange, 2009).

1.7 Contributions

In this work, we have considered analytically the evolutighgame dynamics in
populations represented by a complete graph, a circle atar gaph. Although
there have been numerous studies carried out for the igegisin of the influence
of the population structure on the evolution of populatjoimsmost of these the
results have been derived under strong assumptions, for@&ainder the assump-
tion that the population size is very large, or they are basedpproximation mod-
els and numerical simulations. We have derived the exaatienok of some of the
most important quantities in a stochastic evolutionarycpss. These include the
fixation probability and the speed of the evolutionary pescender different condi-
tions, starting from any initial composition of a populaticonsisting of two types
of individuals (see Chapters 2 and 3). Especially, the foamwf the mean time
to absorption and fixation on the star graph are the first géhermulae for ab-
sorption and fixation times derived on an irregular graphesehsolutions give the
possibility of a detailed consideration of the evolutionprocess in different cases,
for example for different population sizes, different gana&d so on. In previous
studies a great emphasis has been given to the fixation plibjpabd the study of
the speed of the evolutionary process is relatively raravéder, this quantity is also
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very important, especially in cases where evolution fagadlie existence of a mixed
population. In such cases, the fixation probability mightlesufficient to describe
the evolutionary dynamics of the system. For example, as ilse&e in Chapters

2 and 3, although a star graph favours the fixation of an adgaatus mutant with
respect to its fixation probability, the time needed for kafion might be extremely
long. A big part of this work has been published as two sepaestearch articles in
Proceedings of the Royal SocietyFhese are the articles Broamhal. (2010a) and

Broomet al. (2010b).

A step forward in the research on the influence of the streatfithe population
on the evolutionary process is the investigation of the @ssainder different strategy
update rules. In this work, through an analytic approacé shiown that the choice
of the update rules might be crucial when the population hasrahomogeneous
structure (see Chapter 3). This work has been published asearoh article in
Dynamic Games and ApplicationEhis is the article Hadjichrysanth@t al. (2011).

The possibilities of an analytic investigation of the etmoary dynamics on
graphs are very limited and the resort to numerical and aqpedion methods is
necessary for the exploration of the dynamics in compleplgga This work (see
Chapter 4) proposes an effective approximation method sthdy of the evolu-
tion of structured resident populations when invaded byamiLtlypes of individuals.
This is a very promising method that can be applied to a widgeaf graphs and
can significantly contribute to the consideration of therahteristics of the graphs
that affect the evolution of populations in different sceos This work has been
published as a research article in thmurnal of Theoretical Biology This is the
article Hadjichrysanthoat al. (2012).

A basic game-theoretical model of kleptoparasitism has loeasidered in the
case where the population of foraging animals forms a nandggneous structure
(see Chapter 5). This relaxes some of the strong implicitapions of some classic
models, such as the homogeneously mixing of animals anchfimeténess of the
population size. Although the steps taken in this direciimnfew, this work sets the
foundations for the study of some classic evolutionary nediforaging behaviour
of animals in a more realistic framework.

Cooperative and food sharing behaviour has been observedvideavariety
of animals and has attracted the research interest of stefrom different fields.
Many mathematical models have been constructed in ordetpgiore the reasons
why animals share their food. However, many of these modets wot sufficient to
explain why in many situations animals present this behavim this work, based
on some classic models of kleptoparasitism, we have carnetia game-theoretical
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model for the examination of food sharing behaviour of ahéna kleptoparasitic

populations (see Chapter 6). Although this work is based omnaber of assump-
tions, it gives some important answers and raises somerobsgestions for further
study on understanding this interesting animal behavidhis work has been pub-
lished as a research articleBehavioral Ecology This is the article Hadjichrysan-
thou and Broom (2012).

1.8 Outline

In Chapter 2, we investigate analytically the evolutionagyng dynamics on the
complete graph, the circle and the star graph. We derive staet dormulae for
the fixation probability and the speed of the evolutionargcess under different
conditions. These formulae can be applied to stochasticegs®es where there is
no mutation and the size of each type of individuals in eacte tstep can vary at
most by one. We apply the results derived following the raethe IP. Through
numerical examples we compare the impact of the three stegton the above
guantities. We do this comparison in two specific cases.tlfinge examine the
case where individuals have constant fitness. Then, we shelgase where the
fitness is not constant but depends on the composition ofdpelation. The widely
used Hawk—Dove game is considered as an example.

In Chapter 3, we investigate the evolutionary dynamics utigere important
update rules additional to the IP and we explore the influeficke change of the
update rule on the evolutionary process when the populaasra non-homogeneous
structure. We study analytically an evolutionary game leetwtwo strategies inter-
acting on the extreme heterogeneous star graph. The ewwdinyi process is con-
sidered in different scenarios: the constant fithess caséhafrequency dependent
fitness case when the individuals of the population play akd@eve game, a Pris-
oner’s Dilemma and a coordination game.

In Chapter 4, we propose an approximation method to modelitgohry game
dynamics on complex graphs. Comparisons of the predictibiseomodel con-
structed with the results of computer simulations reveal ¢ffectiveness of the
method and the improved accuracy that it provides when, amgle, compared
to well-known pair approximation methods. As an example,investigate how
the Hawk and Dove strategies in a Hawk—Dove game spread ip@agimn repre-
sented by a random regular graph, a random graph and a sealeetwork, and we
examine the features of the graph which affect the evoluifidhe population when
individuals play this particular game.
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Chapter 5 discusses a simple model of the evolution of klegpasitic popula-
tions in the case where the animal population has a struapresented by a graph.
Using the pair approximation method as well as through stsibh simulations we
explore the evolution of the population when it is repreedrity a regular graph, a
random graph and a scale-free network, and consider thacatkastics of the graph
that might influence the evolution of such populations.

In Chapter 6, we propose a game-theoretical model for theoeaqpdn of those
ecological conditions that favour food sharing among afsnmekleptoparasitic pop-
ulations. Analysis of the model shows that food sharing &hoccur in a wide range
of ecological conditions. In particular, if food availabjlis limited, the sharing
process does not greatly reduce the short-term consumgaierof food, and food
defense has a high cost and/or a low probability of succles,the use of the food
sharing strategy is beneficial.

In Chapter 7, we summarise the main conclusions and conbrizibf this work
and we discuss some research topics of future interest.
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CHAPTER 2

Evolutionary dynamics on simple
graphs

2.1 Introduction

In this chapter, we study analytically the stochastic etohary game dynamics of
finite populations represented by three simple graphs;dheptete graph, the circle
and the star graph. We consider the evolution of populatiaging a strategy B
when invaded by a number of mutant individuals that play &rbht strategy, a
strategy A. The game played is described by the payoff méir).

The complete graph (see Figure 2.1a) is the graph where awemjdual is
connected to every other individual. This graph is the r@ggtaph with the highest
degree, equal ttl — 1, whereN is the population size. The homogeneous well-
mixed population is a special case of a complete graph whierdges have identical
weights.

The circle (see Figure 2.1b) is a graph where each vertexneemed to two
other vertices. It is the regular graph with the smallesteegequal to 2. The circle
is a graph which has been widely used in different fields. Mudutionary process
on the cycle has been investigated in various scenarios (gefermaret al., 2005;
Nowak, 2006; Ohtsuki and Nowak, 2006a; Ohtsekal., 2006; Grafen, 2007; Ma-
suda, 2009; Tarnitat al., 2009; Broonet al., 2010a; van Veelen and Nowak, 2012).

The star graph (see Figure 2.1c) is an irregular graph wheeetices, the leaves,
are connected to only one vertex, the centre. Thus, the ataaerage degree equal
to 2n/(n+1). For very large population size this approaches the dedréeir-
cle. However, as we will see later, the evolutionary proaesshe two graphs is
remarkably different. Evolution on a star-structured dapan has been commonly
studied (e.g., Liebermaat al., 2005; Nowak, 2006; Broom and Ry&ht2008; Fuet
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B
a) B B b) B B C) A

Figure 2.1: Structured populations represented by graphs With6 vertices, two of which
are occupied by individuals playing strategy A (black vertices) while teeakthe vertices
are occupied by individuals playing strategy B (white vertices). (a) A detagraph, (b) a
circle graph, and (c) a star graph. The center vertex of the star andfdhen = 5 leaves
(i = 1) are the vertices occupied by individuals playing strategy A.

al., 2009; Masuda, 2009; Tarnig al., 2009; Broonet al., 2010a). As we have seen
in Section 1.5, the fixation probability of a single mutandindual with relative
fitnessr introduced into a resident population structured as a s#arfiwst consid-
ered in Liebermart al. (2005) following the rules of the invasion process (IP) and
assuming a large population size. An exact formula of thetiGrgprobability in
this case was given later in Broom and Ry&Eh{R008) (see also Masuda, 2009).
This has been extended in Bro@tal. (2010a) to the more complicated case of fre-
guency dependent fitness by applying evolutionary gameyh&othe same paper,
the absorption and fixation time of a mutant under the IP hisgelseen considered.
In Broomet al. (2009), it is shown through a numerical investigation thiakeast
for small graphs, under the IP the star is the structure irckvhi randomly placed
mutant has the highest chance of fixation.

The graph structures we study are all commonly consideredtates in part
due to their symmetry and lack of complexity. In general, dnalytic investiga-
tion of the evolutionary process in structured populatisngery limited mainly due
to the large number of complex equations that one has to .sdiive number of
equations corresponds to the number of distinct stateseogrdph (mutant-resident
formations) that the system can reach. For an arbitraryhgocdN vertices, since
every vertex can be occupied by either a resident or a mutdividual, there are"?
possible states that the system can reach. However, in ntaphgmany of these
states are identical, in the sense that one state can beettmom the other due
to symmetries of the graph, and thus the system of equatimm$e significantly
reduced. For example, on a complete graph dily 1 of the N possible states are
distinct. The number of the distinct states is the same onithke given that mutant
individuals always form a connected segment, otherwiserthimber is much larger.
On the star the number is larger, equal d. Broom and Rycl# (2008) (see also
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Broomet al,, 2010b) using graph automorphisms have calculated thériatnber
of the distinct states on an arbitrary graph, and thus detraied the large number
of equations in the system and the complexity of analytiestigations.

In Sections 2.2 and 2.3, we derive the exact solutions of ¥a¢idin probability
and the mean absorption and fixation time starting from amybar of A individuals
placed on a complete graph, a circle (as a segment) and arapdr. grhe solutions
are general and can be applied to stochastic evolutionagepses where there is
no mutation, just selection, and in each time step the numbeutants increases
by one, decreases by one or remains the same. In Section@ahply our results
to the widely used IP. In section 2.5, we find appropriate @it under which
one strategy is favoured over the other on each of the grapten, in Section 2.6,
through numerical examples we compare the impact of thelpbpn size and the
individuals’ fitness on the quantities we consider, on tmedtgraphs under the rules
of the IP. We note that the solutions of the mean time to aleor@nd the mean
fixation time of mutants in this process have the same betaa®the individuals’
fitness and the population size vary. However, when mutativioluals become
extinct it usually happens in a short time, so the numberroéisteps needed for
mutants’ fixation in each case is higher; in this work we withinly focus on the
mean time to absorption.

2.2 Evolutionary games on the complete graph and
the circle

Since the uniformly weighted (or unweighted) complete bregpidentical to a ho-
mogeneous well-mixed population, the fixation probabhititg mean time to absorp-
tion and the mean fixation time starting frarg [1,N] individuals playing strategy
A is given by the formulae (1.27), (1.34) and (1.35), respebt

On the circle, the spread of a single A individual (or a nuntdfeh individuals
placed initially on connected vertices) always leads tormected segment of As.
This obviously holds only in processes where there is no namaotherwise the
segments of As and Bs could split by the replacement of an Avithgial by a B
individual which is the offspring of a neighbouring A, or eiversa. Thus, any
transition from one state to a different state happens ohlgnaan individual in the
boundaries of the two connected segments (one consistiAg ahd one of Bs) is
replaced by the offspring of a neighbour of different types. @k a complete graph,
on a circle any two formations ofAs andN — i Bs are equivalent. Thus, the fixation
probability and the mean time to absorption and fixationtistgufrom any number
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of individuals playing strategy A on a circle graph (giveattthese are connected)
are also given by the formulae (1.27), (1.34) and (1.35peetvely.

2.3 Evolutionary games on the star graph

In this section, we consider analytically and find exact folae for the fixation
probability, the absorption and fixation time, and the meamiper of transitions
before absorption and fixation occur, starting from any nemdf A individuals
placed at any possible position on a star of any size. As alvese@assume that in
the evolutionary process there is no mutation.

Let p,><Y denote the transition probability from a state with individuals on the
leaves and an X {A,B} individual in the center to the state wijhA individuals
on the leaves and a&/{A,B} individual in the center. Since in the process there
IS no mutation and the number of A individuals can increasdgegrease at most by
one, onIy ,+1, piPandpt=1-p¥i, —p? (0<i<n-1),andpP?,, p?*and
pBB i pI 1 JA A<i<n)can be non-zero.

2.3.1 Fixation probability on the star graph

Consider a star graph withleaves being at the state where an X individual is in the
centre, and X individuals andn—i Y individuals, 0<i <n-—1, are on the leaves.
In the next time step, the number of X individuals on the |sazen increase by one,
the number of X individuals on the leaves can remain the sarhthb individual in
the centre be replaced by the offspring of a Y individual anl#aves, or the system
can remain at the same state because of a replacement oftbgh¢ individual in
the centre by the offspring of an X individual on the leavesa oeplacement of an
Xindividual on the leaves by the offspring of the centralividiual.

Let us denote by'P* (*PB) the probability that individuals playing strategy X
fixate in a population originally consisting oA individuals on the leaves and an A
(a B) individual in the centre.

The fixation probabilitie$P* and”P? are given by the solutions of the following
system of equations

= AR+ P ARR 4 (1-pf — ) AR 0<i<n-1 @)

A —pllAAPA‘i‘plBFlAl (1 pll _p|| 1>ARB7 1§i§n7 (2-2)
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with conditions on the absorbing states

ARP =0, (2.3)
AP =1. (2.4)

Rearranging equations (2.1)—(2.2) yields

=it .+1+71A-BAP.B, 0<i<n—1, (2.5)
n;BAAPAJrrqB PB,, 1<i<n, (2.6)

wherert denotes the transition probability conditional on the sgshot remaining
in the same state, i.e.

pAA
i =1-mP= s 0<i<n-1, (2.7)
H—l—i_pAB
pPA .
A B 1,1
A—1 BB = T jojcn 2.8)
! - AR
Equation (2.5) can be written as
APA — L P - n'Al' LARB L 1<i<n-L (2.9)
1| 1|
From equation (2.6) and (2.3), foe 1 we get
APP = iy AP, (2.10)

From (2.9), for = 2 we get

APA _ 1 —APA_ nf?A PB (2.10 (1 nlA?nBA> ApA (2.11)
2 —_— —_— 1 . .
ms ot omy 5
But, 7 = 1— npg and gy = 1— 3. Thus, from (2.11) we obtain
i o
ApA — (1 74 ApPp. (2.12)
From (2.6), for = 2, using (2.10) and (2.12) we get
8+ mBr5h
APE — ( PO+ A + L2022 nf,lgo 22 | AP, (2.13)
2
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From (2.9), fori = 3, using (2.12)—(2.13) we get
) :( 1 SR mgngy mimSngt  mitnds ns\BnBA>APA
S\ s m s )
(2.14)

Using thatrip? = 1— 1pg, m'% = 1— '3, 15 = 1— mg and 755 = 1— 157, from
(2.14), after some calculations we obtain

B
AP = (1 nAanB + HA@ZBTQBO> APA (2.15)

Continuing in the same way, we find that

APA=D(Li*P, 1<i<n, (2.16)

where Tnf
DI,m) =1+ § n® R 2.17
z! ” k+1 ( )

From (2.16) and (2.4) we obtain

(2.18)

Therefore, substituting (2.18) into (2.16) we find thRf* (1 < i < n) is given by

= i<n. .
I D(l, n)7 | = n (2 19)
From equation (2.6) and (2.3) we find
ARB — z o APR |‘| Mok, 1<i<n (2.20)
= k=j+1
From (2.5) and (2.3) we get that fo&= 0,
APg = ) AP = 601 2.21
and from (2.20) we get that for=1
BA
ApB AA 1,1
P2 — PA = ) 2.22
1 n:El 1 D(l, n) ( )
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The average fixation probability of a single A individual damly placed on the
star,”P, is given by

1 APA | n APB_nnEﬁqué/f 1

Ap = = :
n+1 ° "n+1 !t n+1 D(1,n)

(2.23)
(see also Tarnitat al. (2009) for an alternative formula for the fixation probéipil
of a single mutant on the star).

2.3.2 Mean time to absorption on the star graph

As before, starting from a state with an X individual in th@tre and X individuals
andn—i Y individuals on the leaves, € i < n—1, in one time step (this corre-
sponds to the addition of 1 in the equations (2.24) and (d2Bw) we might have
a replacement of a Y individual on the leaves by the offspahtihe X individual in
the centre, a replacement of the X individual in the centréheyoffspring of a Y
individual on the leaves, or a replacement of an individudyan individual of the
same type.

Let us denote by’, ( ) the mean time to absorption starting fror individ-
uals on the leaves and an A (a B) in the cen@.and T, are the solutions of the
system

= P TA+ PAPTR (1 - PIP) TR+ 1 0<i<n-1 (224)

- p| ATA+ pl = 1T|B1+ (1_ piB.,iA_ piB-,iB—1> TiB+ 17 1 S i S n, (2'25)
B0, (2.26)
TA=0. (2.27)

Rearranging equations (2.24)—(2.25) we obtain the follgveystem

1 .
= AT T e OSi<nol (229
|+1
1 .
= mATA+ e TR+ BB A LIS (2.29)
pl Ji— 1+ p

Equation (2.28) can be written in the following form

B
St 1 .
TA= _— TA - Li lTiBl 1<i<n-1. (2.30)

TqAAi' ._Alvi ) niAA:\Ll ( Bll 1>
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Solving the system of equations (2.29)—(2.30) and (2.262+) inductively, as be-
fore, we find

TA=D(1, TP - leu 1<i<n, (2.31)
where qA Taf
M1 e 1 1
E(l) = —= ! ( ) + . (2.32)
Y £ p?? 1+ P P
Fori =n, T2 = 0. Hence, from (2.31) we get
1 n
=——Y D(,n)E(l). (2.33)
B(Ln) I; (LmE()

Substituting (2.33) into (2.31) and using (2.19) we find fRat(1 < i < n) is given
by _
TiA:AP,AliD(I,n)E(I) —I;D(I,i)E(I), 1<i<n. (2.34)

From equation (2.29) and (2.26) we find

=]+

:anA<TA e > |‘| Mop1, 1<i<n (2.35)
J N

From (2.28) and (2.26) we have that foe 0,

L &
T = T +1= D(I,nNE(1)+1 2.
§=76AT + 1= 5y 2 DOME() +1, (2.36)
where we have used thg§? + pp5 = 1.
From (2.35) we have that for= 1
1 L 1
T2 = 4T + : DI,ME(N+ 555z  (2.37)
' Y pBR+ o34 (1,n)|gz P58+ pB4

Hence, the average time to absorption starting from a sighelividual randomly
placed on the stafT, is given by

1 TA n
— T 2.38
n+1 Tot n+ (2.38)
1
+

A4n n
DILNE(N)+1+ —w——=% |- 2.39
( o 2,2 ED + 1 e ) (2:39)

AT —
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2.3.3 Mean time to fixation on the star graph

Let *FA (*FP) denote the mean fixation time of individuals playing striteg
starting from the state withAs on the leaves and an A (a B) in the centre. Following
the same method as in Antal and Scheuring (2008, and”F2 are given by the
solution of the system

AZA |+1 Zﬁi—l‘i'phBAB <1 |+1 pAB>AZA+APA 0<i<n-1,
(2.40)

AP = A B A (1o A B AR AR, 1<i<n, (241)
where?z* = APA AREA and”Z2 = APB ARB, At the absorbing states,

Az = 0 becauséPF =0, (2.42)
Az = 0 becauséF = 0. (2.43)

Rearranging equations (2.40)—(2.41) we obtain the follgveystem

PA

AZA n‘Aﬁ\_l Z:‘_l—f—fl‘ABAZP"'_pAA +pAB’ 0<i<n-1, (2.44)
i+1
ApB

A I DS S P P (2.45)

PR 1+ P
Equation (2.44) can be written in the following form
AB APA

A 1| 1A_B
Z|A1— 41—

1| 1| ( +|OA1, 1)

AZA:

(2.46)
Solving the system of equations (2.45)—(2.46) and (2.4243)) as before, we find

A=D1, 4 - %Dn (), 1<i<n (2.47)
= ARA = AFl——;Dll ), 1<i<n, (2.48)

where

7817I = ApB APA
G(l) = nipipil Z( pBA I_l nﬂBk 1) pAAll (2.49)

PPS 1+ Pl
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Fori =n, AR = 0 and”P% = 1. Hence, from (2.48) we get
n
ARA = %D(I,n)G(I). (2.50)
Substituting (2.50) into (2.48) we find th&EA (1 <i < n) is given by

:liD(l,n)G(l)—%li%D(l,i)G(l), 1<i<n. (2.51)

From equations (2.45) and (2.42) we find
A N A':)jB i B ,
Z'B:Z ﬂﬂ Zﬁ@ kl__llﬁfjkl, 1<i<n, (2.52)
= I/ k=it

A B i
FB APBZHBA<APAAFA+—> [ e ., 1<i<n  (253)

I j=1 i,j /) k=j+1

From (2.44) and (2.42) we have that fot O,

A
M Ay A o AEp 01 P (2.54)
0

where we have used thp§? + pgg = 1. But"RS* = 51 APy Therefore, we obtain
that .
AR =AFA+1= %D(I ,MG(1) + 1. (2.55)
|_

From (2.53) we have that for= 1

A ApA
AFP = Lo R (2.56)
APP PTo+ PP
But PP = PPy, Therefore,
1 n 1
ArB _ A-A
FP="Ff+ ez = 5 DILMG() + 5o (2.57)
PLo+ PPA 2, PLo+ PT1

The average fixation time of a single A individual randomligigetd on the staf\F,
is given by

n+1 p10+p
(2 58)

Ap = _Loapa, N oage 1 (n+1) nD(l n)G(|)+1+L
- " "h+1 ! T n+1 ,; ’ '
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Note that by symmetry, replacingf? ; by pa%; , ; 1, PP by pRA is PB4 by
pﬁénn—iﬂ’ piI?iA by pﬁfBi,nfi' APAby 1-APD; =BR% ; and”R® by 1-"Ry ; = BRyY,
in the above formulae, we find the respective formulae of tk&tibn probability
and absorption and fixation times of B individuals when theyiatroduced into a
population of As.

2.4 Evolutionary games on the complete graph, the
circle and the star graph under the update rules
of the invasion process

In this section, we investigate the evolutionary processhencomplete graph, the
circle and the star graph following the update rules of th@monly used IP (see
Section 1.5). Here, the fitness of each individual is assutodze equal tof =

fp + WP, a linear function of the average paydifobtained by the games played
with neighbouring individuals.fy is a constant background fitness amd: [0, o)
represents the intensity of selection which determinestmribution ofP to fit-
ness. Whenv — 0, the payoffP of each individual has a small contribution to the
overall fitness and we have so-calledak selectionThus, in this case the fitness
differences between the different types of individualssamall and the stochastic ef-
fects of the process are more pronounced. WhenO all individuals have the same
fitness and thus we have the case of neutral drift. Finallyerwi— o« the con-
tribution of P to the fithess becomes arbitrarily large, and the effect ok@paund
fitnessfy, becomes negligible. Although the intensity of selectiomrislevant in the
traditional evolutionary game dynamics (since this casnoelt), it is very important
in stochastic evolutionary dynamics in finite populations.

Note that since in the evolutionary process the probalofign individual being
chosen for reproduction is proportional to its fitness and pinobability must be
non-negative, the fitness of individuals must be non-negati

Depending on the nature of the game and the evolutionaryepspthe individ-
ual’s payoff, P, can be considered in different ways. Alternatively, foamwle,
the total payoff of an individual could be considered as fostsum of the payoffs
obtained by each game played with each of its neighboursifagiated payoff).
Although the choice of computing the payoff between theseways does not in-
fluence the outcome of the evolutionary process on reguégtgrwhere each indi-
vidual has the same degree (for example circles and comgplaphs), it is crucial
on irregular graphs and depending on the evolutionary dycsgand the population

43



Evolutionary dynamics on simple graphs

structure, might yield remarkably different outcomes (B@eexample, Santos and
Pacheco, 2006; Masuda, 2007; Tomassinal., 2007; Szolnoket al., 2008). For
example, in the IP on a star graph the fitness of the individu#the central ver-
tex is significantly diminished when taking the average flayand the chance of
this individual to survive and reproduce is reduced. In st the contribution of
the accumulated payoff to the fitness makes the individuéthéncentre much fit-
ter (given positive payoffs) and its chance of survival aedroduction is higher.
However, in evolutionary dynamics where in each time stemdividual first re-
produces or dies at random, the fitness of the central ingitvidoes not matter and
since the individuals on the leaves interact just with tteviidual in the centre, the
way of computing the payoff is irrelevant. In this work, assng that at each time
step individuals interact with neighbouring individuaksthe same rate, the total
payoff of each individual in each step is considered to beatrerage of the ob-
tained accumulated payoff. Alternative fitness functioagehalso been considered,
for example the exponential function of the paydff= exp(wP) (Traulsenet al.,
2008). These fitness functions are usually used for modgtlia evolution of finite
structured populations represented by graphs. Differamds functions have also
been introduced for the modelling of evolutionary dynanfiegond the framework
of pairwise interactions between individuals (e.g., Broard Rychér, 2012).

For each of the graphs we consider, the complete graph, ttitle and the star
graph, we first derive the transition probabilities follogithe update rules of the IP
and then, using the formulae of Sections 2.2 and 2.3, wealén exact solutions
of the fixation probability, the mean absorption and fixatiore as well as the mean
number of transitions to absorption and fixation in this psx

Let us denote the following terms, which are useful in subeegcalculations.
Let

i+ (N-1-)B
iy+(N-1-0)5
Vi = N1 (2.60)

be the fitness of an A and a B individual, respectively, thatighbouring with As
andN — 1—i Bs (this is equal to the fitness of an individual in the centex star with

I As on the leaves, or an individual witmeighbouring As anywhere in a complete
graph). We have set = fp,+wa, g = fy+wb, y= f,+wcandd = f, +wd.
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2.4.1 Evolutionary games on the complete graph under the up-
date rules of the invasion process

On a complete graph consisting iohdividuals playing strategy A and —i indi-
viduals playing B, the fitness of an A individual fa = f, + wPy and that of a B
individual fg = f, + whs, where

(i—1)a+(N—i)b

Pa= N1 : (2.61)
_ic+(N—-i—1)d
P = N1 . (2.62)

Note that these payoffs are identical to the payoffs obthlmean A and a B indi-
vidual, respectively, in a homogeneous well-mixed popoiabf sizeN since an A
individual interacts another A with probability— 1) /(N — 1) and a B with proba-
bility (N—1i)/(N—1), while a B individual interacts an A with probability(N — 1)
and a B with probabilityN —i —1) /(N —1).

Transition probabilities

The number of € [1,N — 1] A individuals on a complete graph in processes without
mutation can increase by one if the offspring of any A repdaaey B individual.
Similarly, their number decreases by one if the offspringuf of theN —i B indi-
viduals replaces any of the A individuals. Following theagubf the IP, the probabil-
ities of the number of A individuals increasing or decreasing on a complete graph
are given by

if N—i
P = (N—i)fs N—1
- (=) 1<i<N-1 (2.63)
(N=D)(ig-1+(N=i)v)" =~ ~ 7 .
(N=i)fg i
P = (N—)fs N—1
{(N=D)v 1<i<N—1, (2.64)

TN (i1 + (N=)w)

and zero in every other case. The probability of the systenanmgng at the same
state is obviouslyij = 1—pjj+1— pii—1 Vi€ [O,N].
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Fixation probability

Substituting the transition probabilities (2.63)—(2.6#p (1.27) we get that the fix-
ation probability ofi € [1,N] A individuals introduced on a complete graph where
vertices are occupied by B individuals is given by

Ap _ A0,i—-1)
A= A(O,N—1)’ (2.69)
where
m |
A(j,m) = z |_| (2.66)
I:Jk=J+l

Mean time to absorption

The mean time before absorption occurs starting framl, N] individuals playing
strategy A on a complete graph is given by the formula (1.3&)bstituting the
transition probabilities (2.63)—(2.64) into this we obtai

N—-1
Ti_APZh A(j,N—1)— Zh (j,i—1 (2.67)

where

(N=1)(imy-2+(N=j)v;)

(= Dy 1 (2:69)

h(i) =

Mean time to fixation

The substitution of the transition probabilities (2.63:64) into (1.35) give us the
mean fixation time of € [1,N] A individuals when the update rules of the IP are
applied. This is given by the formula

N-1

"Fi= Y “Ah()AGN-1)~ ZAPJ AGi-1).  (269)
=1

Mean number of transitions before absorption/fixation occus

Here, we count just the number of time steps in which the nurabA individuals
either increases or decreases by one. Hence, we conditidtrearumber of As in
every step not being the same with that in the previous sepiii+1 + pii—1 = 1.
The non-zero conditional probabilities of transition oa tomplete graph following

46



Evolutionary dynamics on simple graphs

the rules of the IP are given by

Hi-1 :
ir1=——, 1<i<N-1, 2.70
Thi+1 Ui 1+ v SIS ( )

Vi .
i1=—, 1<i<N-L1 2.71
-1 Hi—1+ Vi - ( )

Substituting the transition probabilities (2.70)—(2.#1td the formula (1.34), where
pi,j =1 Vi, ], we find the mean number of transitions needed before alisorpt
occurs starting fromn € [1,N] individuals playing strategy A on a complete graph.
Similarly, the mean number of transitions before the fixatdi < [1,N] indi-
viduals playing strategy A is obtained by substituting 3-€2.71) into (1.35).

2.4.2 Evolutionary games on the circle graph under the update
rules of the invasion process

Transition probabilities

On the circle, every individual is connected either to twadividuals playing strategy
A, to two individuals playing strategy B, or to one individyalaying each of the
strategies. An individual between two As has fithess it is an A individual and
fitnessyifitis a B individual. Note that a B individual is between tws whenever
it is the only individual playing B in the population. An inddual between two
Bs has fitnes$ if it is an A individual and fitnes® if it is a B individual. As
before, an A individual is between two Bs only if it is the onlgeoof its type in
the population. Finally, an individual between an A and a B fiamess equal to
(a + B)/2 when playing strategy A and fithess equal({ot+ d)/2 when playing
strategy B. The number of A individuals can increase (dee)dag one only if an
A (a B) individual on the boundary between the two segments, amsisting of
As and the other of Bs, reproduces and its offspring replacesiaected individual
playing the other strategy. The non-zero probabilities of/img from one state to
another on the circle under the rules of the IP are the foligwi

_ B
P12 = B+(N—Dv’ (2.72)

a+p

20 DatBryr(N_1ns) - =NTh BT

Piji+1=
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y+o0 .
1= . 1<i<N-2 2.74
Pii-1 2((i-Da+B+y+(N-1-i)8)" ~~ — (2.74)
4
_IN—2= : 2.75
PN-1,N-2 (N—Dpn o4y (2.75)

and zero in any other case. The probability to remain in timeesstate isp;j =
1—-pijir1—pii-1,Vie[ON].

Fixation probability

Substituting the transition probabilities (2.72)—(2.7&p (1.27) we obtain that, in
the IP, the fixation probability of € [1,N — 1] A individuals on the circle®R, is
given by

y+5 Z (51?3)1

AP: , N>3, (2.76)
| 1+ wan
where N—2—] k N—2—]
—2-] —2-]
: y+6) <y+6> 2y
B(i) — + . 2.77
W) kgo (G+B a+pB a+p ( )

Mean time to absorption

The mean time to absorption on a circle is given by formul@4)L. Substituting
the transition probabilities (2.72)—(2.75) we obtain timathe IP the mean time to
absorption starting frome [1,N — 1] A individuals, Tj, is given by

Ti = “RC1(N) —Cy(i), (2.78)
where
B(1) NZBU) 1
Q)= p12 Pj.j+1 pN IN (2.79)
L1y y+o
Gl = pl,zk;(a+ﬁ) pJ j+1 kZJ < B) ' (2.80)

Mean time to fixation

The mean number of time steps before the fixation of A indialdistarting from
i € [1,N] As on the circle is given by formula (1.35). In the IP it is falitnat

i 1
AP FJ'“—--—C 2.81
Zz pj j+1 prl,N AR 2(l) (2.81)
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where

. Ap -2 S\K i-1 Ap i-j-1 5\ X
oty = P (v+ )_+ s <V+ ) . (282)
P2 &\ 0+ B SPiiv & \a+B

Mean number of transitions before absorption/fixation occus

In the case where the offspring of each individual can repkac individual of the
other type only, the process on the circle can be thought affascess where only
the individuals on the boundaries of two segments of thefit types can compete
for reproduction. These are the one A individual and the twevBen there is only
one A individual in the population, the two As and the two Bs ba boundaries
when there are at least two As and two Bs, and the two As and taéBpwhen
there is only one B individual in the population. Hence, iis ttase, the conditional
probabilities of transition on the circle are given by

Tho2= %, (2.83)
mpzzﬁggg, (2.84)
mlea:%géig,ZgigN—Z (2.85)
myiza:%é%Ig,ZgigN—z (2.86)
TN-1N = %ﬂ (2.87)
TN-1N-2= ﬁ, (2.88)

and zero in any other case.

Substituting the transition probabilities (2.83)—(2.8&)o the formula (1.34),
wherep; j = 75 V i, ], one can obtain the mean number of transitions before ab-
sorption occurs when starting frome [1,N — 1] A individuals on a circle. The
mean number of transitions before= [1,N] A individuals fixate on the circle is
obtained by substituting (2.83)—(2.88) into the formula&g).
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2.4.3 Evolutionary games on the star graph under the update
rules of the invasion process

On a star graph witlh As andn—i Bs on the leaves, the fitnesses of an A and a B
individual placed in the centrdac(i) and fgc(i) respectively, are given by

a4+ (n—i)B

fac(l) = ————, (2.89)
fae(i) = M (2.90)

The fitness of an A (a B) individual on the leaves is equalrt¢y) when playing
against an A individual in the centre agd(d) when playing against a B individual
in this position.

Transition probabilities

The number of A (B) individuals on the leaves of a star can mseeby one, and
thus the number of Bs (As) decrease by one, if a B (an A) indalidu the leaves
(given there is one) is replaced by the offspring of an A (a Bpitlual in the centre.
An individual in the centre changes type whenever an ind@iaf the other type is
chosen for reproduction.

The transition probabilities between the different stateshe star graph in the
IP are given by

A fac(i) n—i i n—i

i’i+1:fAC(i)JriorJr(n—i)y n :ia+(n—i)y+ui. n’ Osisn-1,
(2.91)
P8 — (n—1)y B U}/ 0<i<n-1, (2.92)
M fa(i) Fia 4+ (n—i)y  ia+(n—i)y+u’ - T
—_ fee(i) i Vi i .
P = T iB+ (08 0 iBr(nnsry o Lo = (@99
oBA _ B B 1<i<n  (2.94)

T fee) + 1B+ (=18 B+ (n—1)d+v’

and zero in any other casply* = 1— pf¥} ; — pP Vi € [0,n] andpP® = 1—-pPE ; -
pPAVie[on].

Fixation probability

Substituting the transition probabilities (2.91)—(2.94p the formulae (2.19) and
(2.20) we find the fixation probability df(1 <i < n) A individuals on the leaves

50



Evolutionary dynamics on simple graphs

and an A individual in the centréP?, and the fixation probability df(1 <i < n) A
individuals on the leaves with a B individual in the centtB2, respectively. These
are given by the following formulae.

ApA — | <i<
pA B(Ln)’ 1<i<n, (2.95)
i i
ApB _ B Apa e 1<i<n 2.96
L &AnB v Jk:m+1nB+Vk - (2:90)
where
L v (ny+ )
D(I,m) =1+ (2.97)
Z nV+HJ i c(nB+ve)
From equation (2.21), we obtain tH&®' is given by
Apl = B 1 (2.98)

(B+ny)D(1,n)’

Using the formula (2.23), we get the average fixation prdiglof a single A indi-
vidual randomly placed on the st&R, when the update rules of the IP are followed

being given by
1 n’g B 1
AP = . 2.99

n+1(nﬁ+v1+B+ny) D(1,n) ( )

Mean time to absorption

The mean time to absorption starting frorfl <i < n) A individuals on the leaves
and an A individual in the centr&?”, and the mean time to absorption starting from
i A individuals on the leaves with a B individual in the cenffé, in the IP are given
by the following formulae.

TiA:AplAnDL E —iDI,'EI, 1<i<n, 2.100
|;(n>(>|;(l)() i<n ( )
T _j;(np+vaJ “’)kﬂlnﬁm’ 1<i<n 2.101)

where
L 2 B = R K 2102
()—ul_ljzl Jk_l?!_lnﬁ—f—Vk + K1 ( )
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and
=" lar(=Dy+ (2.103)
n—i T
. n ip+(n —|)6+v|
A= Biv (2.104)

These have been derived by substituting the transitiongtidbes (2.91)—(2.94)
into the formulae (2.34) and (2.35), respectively. Fron3¢2.we derive that the
mean time to absorption starting from a single individualeld in the centre of the

star is given by
oo P ! i D(,nE()+1 (2.105)
°  B+nyD(Ln) & ' '
Using (2.39), we obtain that the average time to absorptanisg from a single A

individual randomly placed on the StafT, is given by

_ 1 "B B 1 0
AT_”+1<(HB+V1+B+nV> DL 2 D<',n>E<'>+nA1+1>- (2.106)

Mean time to fixation

Substituting the transition probabilities (2.91)—(2.94tp the formulae (2.51) and
(2.53), we obtain that the fixation time bf1 < i < n) A individuals on the leaves
and an A individual in the centréFA, and the fixation time of (L <i <n) A
individuals on the leaves with a B in the cent?E-,B, are given respectively by

n

ARA = S D(1,n)G APA %m i) 1<i<n, (2.107)
|= i
aps_ 1 '2< nB APAAFA+)\-AP-B> h 1<i<n, (2.108)
1 AP|BJ , nB_|_ ] J ] il nB+Vk7 110
where

Hi—1 =1 k=j+1 nB+Vk

From (2.55), the mean fixation time of a single A individuadged in the centre of
the star graph,F$\, is given by

qy 1-1 -1,
G(l)= - AP T )+ kPR

ARS = %D(I,n)G(I)Jrl. (2.109)
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The average fixation time of a single A individual randomlgg#d on the staf\F,
when the update rules of the IP are followed, is given by

1

n
AF = ( (n+1) Z +n/\1+1> (2.110)

Mean number of transitions before absorption/fixation occus

On the star graph, if the offspring of an individual can replanly an individual of
the other type, thepf¥ 1 + pf\°> = 1,Vi e [0,n—1], andpPE ; + p* = 1,Vi € [1,n].
Hence, in this case the transition probabilities are given b

id+(n—1i)B .

'7i§-1:ia+(n£i)ﬁln2y7 0<i<n-1, (2111)
B — "’y 0<i<n-1 (2.112)
T ia+ (n—i)B+n2y’ - ’ '

gg  iyt+(n—i)d e

“E}'*l_n23+iy+(n—i)5’ 1<i<n, (2.113)
n’p .

o= 1<i<n, (2.114)

n’B+iy+(n—i)d’

and zero in any other case. Substituting the transitiongbiibies (2.111)—(2.114)
into the formulae (2.34), (2.35) and (2.36), whege’ = 175’ Vi, j andV X,Y €
[A, B], one can derive the mean number of transitions before atisoigccurs start-
ing from every possible state on the star graph. The mean eupfttransitions
before A individuals fixate on the star can be similarly otéal by substituting
(2.111)—(2.114) into the formulae (2.51), (2.53) and (2.55

2.5 Favoured strategies on the complete graph, the
circle and the star graph under the update rules
of the invasion process

In evolutionary games, the comparison of the fixation prdltf a single indi-
vidual playing strategy A in a population of individuals piilag strategy BAP, with
that of an individual playing strategy B in a population adividuals playing AEP,

is of interest. Strategy A is said to be favoured by naturlcd®n over strategy B
if it is more abundant (its average frequency is higher) engtationary distribution
of the stochastic process. In evolutionary processes vithere is no mutation, the
stationary distribution is non-zero only on the absorbitages, where the population
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consists only of individuals playing one of the two stragsgi Hence, in this case,
the condition for strategy A to be favoured over strategy @uces to the condition
AP > Bp. When”P = BP, an A individual introduced into a population of Bs does
equally well as a B individual when it is introduced into a ptgiion of As. The
conditions under which one strategy is favoured over therdtiave been found for
several graphs and update rules under the assumption ofsgésdtion (see Tarnita
et al, 2009). In general, many analytic results have been dénivehe limit of weak
selection, because in this limit complicated non-linearctions can be approached
by linear functions, making the analytic investigationieadn this section, we de-
rive the appropriate (general) conditions for strategy Ad¢davoured over strategy
B on the complete graph, the circle and the star graph.

On a complete graph and a circle, the fixation probabilitysihgle B individual,
Bp, is equal to the probability that — 1 A individuals do not fixate but die out.
Hence,

Bp_1_Ap,_, (2.115)
N-2 j N-1
1+ Z |_| Ok kl_llqk N—1
_1_ k=1 _ = _A
=1 = = Pk|j|1qk (2.116)
1+.Z I'IQk 1+ 5 1 B
j=1k=1 j=1k=1
A N—1
P [] Bkt (2.117)
P k—1

Let pg, denote the ratiéP/BP under the update rule UR on the graph G. Hence, a
strategy A is favoured over a strategy B on the graph G undeuplidate rule UR if
PG > 1.

On a complete graph, substituting the transition prob@sliin the IP, (2.63)—
(2.64), into (2.117) we obtain that

w A (k=Da+(N—KpB N-1 (k—1)a+(N—k)p
Pl = |_| :exp<kzlln v (N—k-1)d ) (2.118)

iy ky+(N—k-1)%
For largeN, the sum in (2.118) can be approached by the following imdegr

|:/1N|n(((‘i’/:§)):isg> dk~ N/ ( ‘;?g 11))::11) dx  (2.119)
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Evaluating the integral we find that for large | is approximated by

o) (%)
| =In %({;—“B) L a4B, Y40, (2.120)
5\ sy

y

Thus, on a large complete graph we find that under the IP

B N
(5) (%)
a\B)
5 (2) ()
y
(see Fudenbergt al., 2006; Antal and Scheuring, 2006). Hence, As are favoured

(s

. ) (3%) - . .
over Bs if o (%) >0 <‘€,) . In the limit of weak selectionw — 0, it
follows that individuals playing strategy A are favoureceoindividuals playing B
if a+b > c+d. This is the condition for strategy A to be the risk dominarategy.

_B_ A
Note thata+ b > c+d does not imply thatr (%) () >0 (%) (‘H).
On a circle, substituting the transition probabilitieste 1P, (2.72)—(2.75), into

(2.117) we obtain that ; ; -
c a+
P = v ( v 6) : (2.122)
Hence, on a large circle, A individuals are favoured over @vuals if the simple
conditiona+b > c+d holds.

On a star graph graph withleaves, a single B individual placed on a leaf has
fixation probability equal to the probability an A in the centandn— 1 As on
the leaves are eliminated. Similarly, a single B placed m ¢kntre has fixation

In(pc®) ~ In a+£B,y+5 (2.121)

probability equal to the extinction probability ofAs on the leaves. Hence,

szﬁ(l_ApE)+$<1—APﬁ‘1), (2.123)

Using (2.5)-(2.6), the fact that'}}; + 1}° = 1 = 7"+ 132, and also (2.19) for
I =n—1, (2.123) can be written as

n—1 BB
Bp — i( ) <|‘| TEE“) D(i 5 (2.124)

n+1 K=1 TQ@+1
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Using (2.124) and (2.23) we obtain

L = AR

[ . (2.125)
a CRRRIU AT | "E,E—l
In the IP, as shown in Appendix B.2.1, for largeve find
B a
a\aB 0\ v
pe>1lsap (E) > yo <T’) , a#pB, y#0. (2.126)

In the case of weak selection, from the condition (2.126)s btained that on a
large star strategy A is favoured over strategy B if and ohly+b > c+d. This
agrees with the r(;:;sult of Tarnitt al. (2009). Note that+ b might be less than
c+dbutap (%) “ higher tharys <%,> %V.

In general, it has been shown (Tarnéial., 2009) that in a game between two
strategies, A and B, played on a structured population, irithie of weak selec-
tion strategy A is favoured over strategy B (given that thratiral assumptions are
satisfied) if the linear inequality

cga+b>c+od (2.127)

holds. o is a parameter that depends on the population structurpoghdation size,
the update rule and the mutation rate, but not on the paybafesa

2.6 Numerical examples

2.6.1 The constant fithess case

Although our emphasis will be on the frequency dependenédgircase which is
considered in the next section, we start by the case wheradinaduals of the
population have constant fithess. Assume that mutant A ichaiys have relative
constant fitness equal toand resident B individuals have fithess equal to 1. In this
case, the fitness of each individual depends only on its typ#gnt or resident) and
is not affected by its interactions with other members ofgbpulation. Therefore,
the configuration of the population is irrelevant. This caaa be considered as a
special case of an evolutionary game wathk-b=r,c=d =1, w=1andf, =

0. We consider and compare the fixation probability, the giigmm and fixation
times as well as the mean number of transitions before atiso@nd fixation occur
when a single mutant is introduced on the three differenicaires. Many of the
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observations will then be carried over to the more compddatase of frequency
dependent fitness.

The fixation probability of a single mutant

Here, we compare the fixation probability of a single mutamtaacomplete graph
and a circle, which in this case is identical to the fixatioakability in the Moran
process and on every circulation graph (see Liebermah, 2005), with the average
fixation probability of a mutant on a star. This comparisos also been considered
in Broom and Rycl#r (2008).

The fixation probability of an advantageous mutant-(1) on the star is gener-
ally greater than the fixation probability in the Moran pregeSimilarly the fixation
probability of a disadvantageous mutant<{ 1) on the star is lower than the fix-
ation probability in the Moran process. Hence, the star l[ymaphances selection
in the evolutionary process when the rules of the IP arevi@th On the star, the
average fixation probability of an advantageous mutanesses with the increase
of the population size and approaches the solution (1.38)etkby Liebermaret
al. (2005) in the case of very large populations. This tendsdorestant given by
1—1/r?. In contrast, the fixation probability in the Moran processmases and
converges to + 1/r (see Figure 2.2a). In the case where a disadvantageoustmutan
invades, the increase of the number of individuals reduzesliance of mutants to
fixate to zero, both on the star and in the Moran process.

Note that on a star graph, the variation of the fixation prdiglof a mutant on
the leaves is very different from that of the fixation protigpiof a mutant in the
centre as the population size increases. In particulaharR, if the first mutant is
placed in the centre, the larger the population size, thgetathe probability of a
resident individual on the leaves being chosen for reprooloicand thus the higher
the probability for the mutant in the centre being killed aegdlaced by the offspring
of the resident individual. Hence, the fixation probabiliiya mutant in the centre
decreases with the increase of the population size. Howgwe first mutant is
placed on the leaves, it has a higher chance of being choseadmduction than
the resident in the centre, and this chance increases asplagion size increases
resulting in an increase of the probability of mutant fixati&Gince the probability
the first mutant to be placed on the leaves is higher and isesaaith the population
size, the average fixation probability increases as thelptipn size increases (at
least for not very small populations).

For constant population size, the fitter the mutant, thedrighe probability to
be chosen for reproduction. As a result, the greater thesBtoé mutants is, the
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Figure 2.2: Comparison of the average fixation probability of a single mutant on a stain gra
(crosses) under the rules of the IP, with the approximation solution (1d88gf line) and

the fixation probability in the Moran process (1.33) (solid line), in the condiiaess case
where (a)y = 1.5 and the number of vertices increases, (b) the number of vertices ik equa
to 60 and the fitnessincreases.

higher their probability to fixate. In Figure 2.2b we obsettve rapid increase in the
fixation probability of mutants on both the star graph andhim Moran process as
the fithesg varies from values less than 1 to values higher than 1. Esibetor
relatively large populations, the change in the fixationbattality is almost a step
change at = 1.

The mean time to absorption starting from a single mutant

In this section, we consider the average required timesgorabion starting from a
single mutant on a star graph and compare with the timesnextjoin a circle and a
complete graph.

As has been shown in Liebermanal. (2005), the fixation probability of mutants
introduced on any circulation graph (and thus on a completptgand a circle) is
equivalent to the fixation probability in the Moran proceewever, in contrast to
the fixation probability, considering the mean times to apson and fixation we ob-
serve that different circulation graphs might yield sigrafitly different absorption
and fixation times. In our comparison between the circle &edcomplete graph
we observe that absorption and mutant fixation is reachddrfas the complete
graph than the circle and as the population size increasespeed to absorption
and fixation decreases more on the circle. This is due to tttetlfat the number
of mutant-mutant and resident-resident replacementsd®afusorption is higher on
the circle than on the complete graph. In addition, compagf the time before
absorption and fixation occur on the circle and the competplgwith that on the
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Figure 2.3: Comparison of the mean time to absorption starting from a single mutant on a
star graph (crosses), a circle (circles) and a complete graph (hoxes) the rules of the IP,

in the constant fithess case wherer(a 1.5 and the number of vertices increases, (b) the
number of vertices is equal to 60 and the fitnesxreases.

star have shown that the absorption and fixation on the stfae islowest (see Figure
2.3). Hence, the advantage of the high probability that aamtuhbas to fixate on a
star graph is accompanied by the disadvantage of the higtstiraeded to absorp-
tion and fixation. Note that on a star, for larde the first mutant is placed on a
leaf with very high probability, thus a mutant placed on & Isajuite safe, being
killed at each time step with probability of the order gIN?; this increases the time
needed for mutant elimination. For exactly the same reaswes when all individ-
uals but the last one (which is inevitably on a leaf) are mistaat each time step
the probability of mutant fixation is again of the order gNF, which increases the
time needed for mutants to fixate.

In Figure 2.3a it is observed that the increase of the pojonaize increases
the time to absorption in all structures, as expected. Fostemt population size,
the mean time to absorption is an increasing functiom af (0, rgjowesy and the
time then decreases to a constantrfor rgowesi in all three graphs. The constant
corresponds to the number of steps needed for absorptien gimutant is selected
for reproduction at every time step. Again, the limit is ksgfor the star (as there
the mutant-mutant replacements are most frequent), fellioy the circle and then
by the complete graph. The valuemjwestis different for different structures, but
approaches 1 in each caseMsncreases. This means that absorption times are
slowest in the case of neutral drift for large populationisisTis because in this case
individuals of the different types drift until an absorbistte is reached. For~ 0,
on the circle and the complete graph the mean absorptiongiareundN — 1 (since
a mutant never gives birth, and the probability that it isekilat each time step is
1/(N —1)). However, on the star the mean absorption time is much faapout
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((N—1)3+1)/N, since if the mutant is placed in the centre it is killed imriagely,
and otherwise it is killed at each step with probability(ll — 1)? (see Figure 2.3b).

For a more detailed consideration of the fixation probabgihd the times to
absorption and fixation of a mutant on a star graph in the chserstant fitness,
see Section 3.4.1.

The mean number of transitions before absorption occurs staing from a single
mutant

In this section, we compare the effect of the three strustarethe mean number of
transitions before one of the two types of individuals resctixation, starting from
a single mutant.

We first note that since on every circulation grgmh-1/pii+1 = 1/r, as for the
fixation probability (see Liebermaet al. (2005), Section 1.5), the mean number
of transitions before absorption and mutants’ fixation el identical with that in
the Moran process. Using the formula (1.34) wigh 1 = i1 =r/(r+1) and
pii—1=Ti—1 = 1/(r +1), we obtain that the mean number of transitions before
absorption starting from a single mutant A in a B residentypajon of sizeN in
the Moran process, M, is given by

N N NN
My =Py Z(N—J)<r—j) =" N_1 Z(N—J)(T>- (2.128)
=1 =1

APy is the fixation probability of a single mutant A in the Moraropess given by
(1.33). Similarly, using (1.35), the mean number of traosi before As’ fixation
starting from a single AYMy, is found to be

N—1 N-1, N _ (N—j
AMw = jZlAPMJ-(N— i) (%1) — j;%m— i) (%) . (2129)
whereAPMj is the fixation probability off A individuals in the Moran process.

The increase of the population size increases the numbeartditions until ab-
sorption in all structures. In particular, the number ofiiéions on the star increases
much more than that in the Moran process, since the incréddke population size
increases the chance of the first mutant being placed on aTéedg results in the
large number of replacements of the individual which ocesppine central vertex by
an individual of the other type before one of the two absayisitates is reached (see
Figure 2.4a).

As for the absorption and fixation times, for constant poporasize, the in-
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Figure 2.4: Comparison of the mean number of transitions until absorption starting from
a single mutant on a star graph (crosses) under the rules of the IP, withedue number

of transitions in the Moran process, in the constant fithess case whare=-(&5 and the
number of vertices increases, (b) the number of vertices is equal todbtharfitness
increases.

crease of the fitness of disadvantageous mutantsl() increases the mean number
of transitions before one of the types of individuals in tlipplation fixates, in all
structures. In particular, the less the mutants’ fitnesthe faster the spread of resi-
dentindividuals, and asapproaches zero, the number of transitions before resident
fixation approaches 1, which is the transition where therimstant is replaced by a
resident. In each case, above a value wfich approaches one as the population
size increases and at which the mean number of transiti@thes the maximum
value, the fitter the mutants, the lower the mean number okitians before their
fixation. As the fitness of mutants becomes infinitely large rhean number of tran-
sitions before absorption tends to the initial number oifd@st individuals N — 1),

in all structures, since then in each time step a residentichdhl is replaced by the
offspring of a mutant (see Figure 2.4Db).

2.6.2 The frequency dependent fitness case — The Hawk—Dove
game played on graphs

In the previous example, we have assumed that the fithesdividoals is constant.
However, in natural systems, the fitness of individuals ddpen their interactions
with other individuals of the population (see for examphaynard Smith and Price,
1973; Maynard Smith, 1982). In this section, we compare tkegitin probability,

the mean times to absorption and fixation and the mean nuniliesrsitions to

absorption and fixation, when individuals use the strategfea Hawk—Dove game
(Maynard Smith and Price (1973); Maynard Smith (1982). 3se Section 1.3.1)
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on a complete graph, a circle and a star graph.

The Hawk—Dove game is particularly interesting becausdéninfinite well-
mixed population the evolutionary game dynamics yields stuné of individuals
playing Hawk or Dove.

The fixation probability of a mutant

On a star graph, a Dove has a higher fitness than a neighbddanvg in very few
cases, moreover only in those where the fixation of the Havakéady very likely
(if N is not small). Indeed, if a Dove is in the center, then its 8&is no more than
fo+wV /2 while the fitness of a Hawk on a leaffig+wV. If a Dove is on a leaf with
a Hawk in the center, then the fitness of the Dove is equal tbdlokground fitness,
fp, while the fitness of the Hawk ranges fraih + wV (with no other Hawks in the
population, i.e. when there is the highest danger of Hawketion), continuously
going down to almost, +w(V —C) /2 (if there are Hawks on almost all other leaves,
I.e. when Hawks are almost fixed in the population).

The increase of the co€tin relation with the value of the resour@e decreases
the probability of Hawks being chosen for reproduction (wlleey interact with
other Hawks) and thus their fixation probability on all of tteee structures de-
creases a€ increases (see Figure 2.5c and 2.5d). It is observed thatdhgields
the highest fixation probability for a single mutant Hawk gquared to the other
two structures (see Figure 2.5). On the star graph, it is shihat if the values
of the payoffs are such that Hawks are favoured over Dopgs>(1), then an in-
crease of the population size increases the average fiyatdability of a randomly
placed mutant Hawk;'P (see Figure 2.5a). In this casép is found to approach
WV (3f, 4 2wWV) /2( f, +WV)?, and thus it becomes independent of the fight st
(for a detailed consideration of the limits of the fixatiompability of a single mu-
tant on the star graph in various scenarios, see Chapter 33.isThecause when
there is a large number of mutant Hawks on the star, thoseeledtves only play
against the central individual, their fitness is independéC when playing with a
resident Dove in the central position and they are fitter thabhDove. If extinction
happens it is very likely to happen early on (due to bad luckgmvthere are few
Hawks, and in a large population if there are few Hawks theéisnof (the central)
Hawk individuals does not depend much uganThus, the increase of the popula-
tion size decreases the effect of the c@st,In contrast, on a circle or a complete
graph, the increase in the population size yields loweribrgprobability (see Fig-
ures 2.5a and 2.5b). Note that, in our example, for siddle expected pattern of
declining fixation probability with population size happgen the star as well. On a
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Figure 2.5: Comparison of the average fixation probability of a single mutant Hawk on a
star graph (crosses), a circle (circles) and a complete graph (hmx@s) the rules of the IP,

in the Hawk—Dove game described by the payoff matrix (1.19) in the caseewhp/ = 1
andC =0.2, (b)V =1 andC = 4.7, and the number of vertices varies, (c) the number of
vertices is equal to 10/ = 1 andC varies, (d) the number of vertices is equal t0 %05 1
andC varies. In all casedy = 2 andw = 1.

large circle, if Hawks are favoured over Doves, i.€Ci& 2V (see Section 2.5), then
from the formula (2.76) we find that as the population sizedases!'P decreases
and approaches

H Aw( fp+wV)(2V —C)

P~ : 2.130
11(wWV)2 — 5wV C+ 24fwV — 8fpwC+ 16f2 ( )

On a large complete graph, if the Hawk is the favoured styetiegn™ P approaches
wV /2( f, +wV) with increasing population size. Therefore, in this caséyappens
on a star graph, the larger the population size, the smalkedependence of the
fixation probability on the cost of the figlit In the case where Dove is the favoured
strategy ps < 1), the increase of the population size reduces the fixatiobgbility

of Hawks rapidly to zero, in all structures (see Figure 2.98gpecially on a large
complete graph and a large star the fixation probability ofvkkais almost a step
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function with the step occurring wheaf® ~ 1 andp? ~ 1, respectively (see Figure
2.5d).

Whether the fixation probability of Hawks is greater on theleior on the com-
plete graph depends on the values/odndC (see Figures 2.5c and 2.5d). When
C is small, Hawks do better on the circle than on the complea@lgr This is be-
cause even when the Hawk population is small, competing ldamki Doves both
gain their payoff from 50% Hawks and 50% Doves (given theeeraore than two
Hawks and two Doves in the population), and this is advamtagéo a Hawk when
C is small, when compared to the well-mixed population case.eMhis large,
Hawks again do better on the circle. Here, the Hawk’s chandeation in either
case is low, and it needs good luck to reach a high proportighe population. If
this occurs, then on the complete graph it must achieve dratith a payoff derived
mainly from contests against Hawks, which will be low forgacC, as opposed to
the case on the circle, which is still from 50% Hawk and 50% ®ow@ntests. It is
also observed that the population siges also very important in this comparison.
Values ofV andC which yield higher fixation probability on the circle than tive
complete graph for small population size, might result ghier fixation probability
on the complete graph for large population size.

The behaviour of the solution of the fixation probability osiagle individual
playing the Dove strategy when it is introduced into a popoifaplaying the Hawk
strategy is almost symmetric on the three graphs. When thetd fight,C, and
the payoff obtained when the fight is wow, are such that all the graphs favour
the evolution of the Hawk strategy over the Dove strategn tiine star is the worst
graph for Doves with respect to their probability of fixatidallowed either by the
circle or the complete graph, depending on the valu&saridC, and the population
size (see Figure 2.6a). In this case, the increase of thelggapusize reduces the
fixation probability of Doves to zero, in all structures. WkeerC is high compared
toV such that the Dove strategy is favoured over the Hawk styaiagll the three
graphs we consider, the numerical examples indicate thatttnce of Doves to fix-
ate is higher on the complete graph followed by that on eitiwestar or the circle,
depending on the size of the population. In this case, tharddge of Doves with
respect to their fixation probability on both the completaayrand the star increases
with the increasing population size (if the population i$ tom small) while that of
the circle decreases (see Figure 2.6b). As one could expeagreater the value of
the cosC, i.e. the less the chance of Hawks to be chosen for repraoustien con-
nected to other Hawks, the higher the probability of Doveske over a population
of Hawks in all structures (see Figures 2.6¢ and 2.6d). Hsalhe large popula-
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Figure 2.6: Comparison of the average fixation probability of a single mutant Dove on a
star graph (crosses), a circle (circles) and a complete graph (hox@s) the rules of the IP,

in the Hawk—Dove game described by the payoff matrix (1.19) in the caseewhp/ = 1
andC =0.2, (b)V =1 andC = 4.7, and the number of vertices varies, (c) the number of
vertices is equal to 10/ = 1 andC varies, (d) the number of vertices is equal t0 %05 1
andC varies. In all casedy = 2 andw = 1.

tions, onceC increases to values such that the Dove strategy becomeavieréd
strategy, then a rapid increase in the fixation probabilit@ves occurs.

Mean time to absorption starting from a single mutant

As already mentioned in the example of the constant fitness, tiae increase of the
population size increases the mean time to absorption straittures. Depending
on the values o€, this increase might be much higher on the star (see Figures 2
and 2.8). Our numerical examples suggest that the star alyialds the highest
absorption time, while depending on the values/ofC and the population size,
absorption is reached faster either on the complete graph tive circle.
On the complete graph and the star graph, since the prdlyadfila Hawk's re-

production decreases with the increas€ @¢ivhen it interacts with at least one other
Hawk), the time to Hawks’ fixation increases in increasthgOn the other hand,
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Figure 2.7: Comparison of the mean time to absorption starting from a single mutant Hawk
on a star graph (crosses), a circle (circles) and a complete grapbsjoaaxder the rules of

the IP, in the Hawk—Dove game described by the payoff matrix (1.19) in tewhere (a)

V =1andC=0.2, (b)V =1andC =4.7, and the number of vertices varies, (c) the number
of vertices is equal to 1&, = 1 andC varies, (d) the number of vertices is equal to'6G; 1

andC varies. In all casedy = 2 andw = 1.

sinceC matters only when there are enough Hawks in the populatienchange
of C does not much affect the time of Hawks being eliminated (@sfig at the
beginning of the invasion). Consequently, for snidilithe mean time to absorption
increases with the increase ©f(see Figure 2.7c). WheN is large, there is a cer-
tain tendency for the number of Hawks to stabilise aroundritexnal equilibrium
point of the stochastic process. However, the extinctiositbier Hawks or Doves is
inevitable and the evolutionary process ends at absorpiiento stochasticity in a
finite population, as opposed to the result of evolutionagspure. Hence, on each
of the complete graph and the star the process takes theimestvhen the average
fixation probability of a single Hawk is equal to the averagatibn probability of a
single Dove, i.e. whep:® ~ 1 andp; ~ 1, respectively (see Figure 2.7d).

On the circle, when a single Hawk is introduced into a poportadbf Doves,
in small populations, although a decrease in the absorpitios is observed a€
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Figure 2.8: Comparison of the mean time to absorption starting from a single mutant Dove
on a star graph (crosses), a circle (circles) and a complete grapbsjoaaxder the rules of

the IP, in the Hawk—Dove game described by the payoff matrix (1.19) in tewhere (a)

V =1andC=0.2, (b)V =1andC =4.7, and the number of vertices varies, (c) the number
of vertices is equal to 1&, = 1 andC varies, (d) the number of vertices is equal to'6G; 1

andC varies. In all casedy = 2 andw = 1.

increases, this is not significant since absorption ocaladively fast. However, in
very large populations there is a pronounced decrease oféhe time to absorption
whenC becomes higher tharvV2 This is because, whe@ > 2V, a Dove on the
boundary between two segments, one consisting of more tharHawk and one
consisting of more than one Dove, becomes fitter than a neigiiy Hawk and
thus Hawks are more likely to go extinct in significantly Iéisse (see Figure 2.7).

A symmetric situation occurs when in a population of Hawksgle individual
uses the Dove strategy. Whéhincreases compared ¥, the Hawks lose their
advantage and it thus takes longer to eliminate Doves. \Whegreases above the
value at whichC =~ 2V, then on a large circle there is a significant increase of the
absorption time, since in this case, a single Dove spreatigipopulation playing
the Hawk strategy and eventually fixates (see Figure 2.8).
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Figure 2.9: Comparison of the mean number of transitions until absorption starting from a
single mutant Hawk on a star graph (crosses), a circle (circles) anudpiet graph (boxes)
under the rules of the IP, in the Hawk—Dove game described by the pawbifix (1.19) in

the case where (3 =1 andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices
varies, (c) the number of vertices is equal to Y0= 1 andC varies, (d) the number of
vertices is equal to 6@/ = 1 andC varies. In all casedy = 2 andw = 1.

The mean number of transitions before absorption occurs

Here, through numerical examples we compare the mean nuohib@nsitions to
absorption on the three different structures. We presereles in the cases where
a single individual playing one strategy invades into a pafan playing the other
in a Hawk—Dove game (see Figures 2.9 and 2.10). In this agalkaty dynamics, the
behaviour of the solutions of the mean number of transitlmfsre absorption and
fixation are similar to the behaviour of the solutions of theam time to absorption
and fixation. Clearly, the mean number of transitions befbeefixation of either
strategy is lower than the respective time to fixation, afparh some extreme cases
where the two quantities can be equal.

As we have seen in the constant fitness case, the mean numtransitions
before absorption increases as the population size ireseagth the increase on the
star to be much larger than that on a circle and a completéhgegpecially when
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Figure 2.10: Comparison of the mean number of transitions until absorption starting from a
single mutant Dove on a star graph (crosses), a circle (circles) andplete graph (boxes)
under the rules of the IP, in the Hawk—Dove game described by the pawbifix (1.19) in

the case where (3 =1 andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices
varies, (c) the number of vertices is equal to Y0= 1 andC varies, (d) the number of
vertices is equal to 6@/ = 1 andC varies. In all casedy = 2 andw = 1.

the cost of playing Hawk against a Hawk is very high (due tohitgh number of
transitions before Hawks take over the entire populatiahfasate).

Note that as for the fixation probability, the mean numberrafgitions is no
longer identical on all circulation graphs in the frequenigpendent fithess case.
Here, depending on the values of the payoffs and the populaize, the mean num-
ber of transitions before absorption is either greater ercticle or on the complete
graph.

In addition, although in our examples, especially thoseigufes 2.7c and 2.7d,
the mean time to absorption in most of the cases is higher wigividuals are
placed on a circle than when they are placed on a completé gitamean number
of transitions before absorption is higher on the completgly. This verifies that
absorption on the circle is usually reached slower than erctimplete graph due to
larger number of replacements between individuals of theesgpe.
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2.7 Discussion

In this chapter, we have studied analytically the stochastolutionary game dy-
namics in finite structured populations represented byetsmaple graphs; a com-
plete graph, a circle and a star graph. We first derived thetes@utions of the
fixation probability, the mean absorption time, the meartitixetime as well as the
mean number of transitions before absorption and mutamegidin occur, starting
from any number of mutant individuals introduced into theethgraphs. Using these
results we have obtained conditions under which the muteategy is favoured over
the population strategy. The solutions are general and eapplied to stochastic
evolutionary processes where in each time step there isidthehd one death event
and there is no mutation, just selection. We have applieddbelts in the IP and,
through numerical investigation, we have considered tfecedf the three popula-
tion structures on the above quantities when a single mutdividual invades into
a resident population. We have first studied the case wheritess of individuals
does not depend on the interactions with neighbouring iddals but remains con-
stant. We have then adapted the classical Hawk—Dove ganveligien on graphs.

In the constant fithness case, an advantageous mutant has avegher proba-
bility to fixate on the star than on a circulation graph, suglh aomplete graph and a
circle, where the fixation probability is equal to the fixatjgrobability in the Moran
process. Similarly, a disadvantageous mutant has a lowaercehto fixate on the
star. Thus, the star graph acts as an amplifier of the fithekem@mances selection.
However, the star graph costs to mutants a very long timeréeifeir fixation. We
have also demonstrated that although the fixation proltyabii the complete graph
and the circle (and every circulation graph) is identicahvihe fixation probability
in the Moran process, the absorption and fixation times dfereint. The complete
graph is the quickest of the three graphs for mutant indadsland the star the slow-
est. For large population size, for each graph, times agelsirin the case of neutral
drift, where mutants’ fitness is identical to that of resigen

Applying the Hawk—Dove game we have seen that there is nohsigtent rela-
tionship between the three graphs regarding which givebitteest mutant fixation
probability and the fastest time to absorption and fixatsange this depends on the
cost of the fightC and the payoff of the wiv. The size of the population is also
very important in such comparisons as a strategy might detsrbon one graph
than on other graphs in populations of small size but wordarger populations.
In addition, even on a specific graph, a strategy might beuii@a over the other
strategy for small population sizes but not for large pofiottesizes. However, there
are certainly features of interest. For example, on the ¢et@graph and the star
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we observe that values @fandV such thafpg ~ 1 yield very slow fixation times
for large population sizes, as selection pressure favbersixture of the two strate-
gies. Thus the two strategies coexist for a long time befoeesitinction of one of
the two strategies, an inevitable event due to the finitené$ise population. In-
deed, it would be of interest to consider the quasi-statiodsstribution of such a
population, conditional on such extinctions not occurrftigs may resemble more
accurately the results of simulations, for instance). lBohs/alues o€ andV there

is also a step change in the fixation probability of a singlevijawith a significant
non-zero probability fopS > 1, and a near zero value otherwise. Hence, although
the detailed consideration of the absorption and fixatioretis particularly novel, it
is demonstrated that this is a significant quantity for thecdgtion of the evolution-
ary process, especially in cases where evolution favoersdbxistence of strategies,
as the fixation probability itself in such cases is not sudfitito describe the evo-
lution of the system. The circle, which is another regulapdy, exhibits different
behaviour. As on the complete graph and the star, vihandV take values such
thatpS < 1, the fixation probability of a single Hawk decreases ragiolizero, while

a significant decrease of the absorption and fixation time@isurs. An interesting
relationship between the circle and the complete graphssmied, where low and
high values ofC, compared t&/, give higher fixation probabilities on the circle than
the complete graph, with intermediate values higher on timepdete graph.

The structure of the population can significantly affectdbiecome of the evolu-
tionary process. It has been shown that the magnitude oétfast depends on the
population size and the fitness of individuals. Anotherriegéing factor that might
influence the evolutionary process is the update rules oétbtitionary dynamics.
In the next chapter, we investigate the impact that theegjyatipdate rules might
have on the evolution of a population by considering thewumhary process on the
extreme structure of the star graph under various updags.rul
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CHAPTER 3

Evolutionary dynamics on graphs
under various update rules

3.1 Introduction

In Chapter 2, it has been shown the significant role that theilptipn structure
might play in the evolutionary process following the updaikes of the invasion
process (IP). Moreover, there are a number of update rudésdm be followed. This
has not been of great importance historically, since théudenary process on ho-
mogeneous populations is not significantly affected by bweae of the update rules.
However, recent studies suggest that different update might result in signifi-
cant differences in the evolutionary process in populatieith a non-homogeneous
structure (for example, Antat al., 2006; Soockt al., 2008; Masuda, 2009). In this
chapter we consider analytically the stochastic evolatigiprocess following four
commonly used update rules on the simplest heterogeneapbk,ghe star graph.

The fitness of each individudl as in Section 2.4, is assumed totbe f, +wP,
wherefy is the constant background fitness of every individiak the average of
the payoffs obtained by the games played against all thehheiging connected
individuals andwv € [0, ) represents the intensity of selection.

We assume a certain number of individuals playing a stra¥eggy introduced
into a finite population of individuals playing a strategyDte to the finiteness of
the population, through evolution the population will eteally reach a state where
all individuals play the same strategy. For four differeptlate rules, we investigate
the fixation probability and the mean absorption and fixatiioes (see Section 1.4),
when the individuals of the population are placed on a s@plgrstarting from any
population composition.

In Section 3.2 we first present the update rules we will carsatid the transition
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probabilities under each of them on the star graph. Theitrangrobabilities under
the different update rules on the circle and the completplgeae also presented.
In Section 3.3, for each of the update rules we derive theap@ate conditions
under which one strategy is favoured over the other. In 8e@i4, we apply our
results to two specific cases; the case where individuals bamstant fithess, and
the frequency dependent fithess case where the fitness witinglis depends on the
interactions with the different types of neighbouring induals. In the latter case,
we study three example games; the Hawk—Dove game, the Bris@ilemma and
coordination games.

3.2 Evolutionary games on star graphs under various
update rules

3.2.1 Update rules — Transition probabilities

In Chapter 2, the evolutionary process on the star has beesidenaed analytically
under the update rules of the IP. Here, we consider threetepdies additional to
the IP;the birth-death process with selection on the dg&b-D), thebiased voter
model(VM) (or death-birth process with selection on the deatld) tredeath-birth
process with selection on the bir(BB-B).

Consider a game between two strategies, A and B, interactirggsiar graph
with nleaves. The game played is described by the payoff matr23.(1.

The BD-D process (Masuda, 2009) is a process where at eaclstéman indi-
vidual is chosen for reproduction at random and then itpoffg replaces a neigh-
bouring individual which is chosen with probability invetg proportional to its
fitness for death. Thus, in this process, the number of A iddals on the leaves
of the star increases (decreases) by one if an A (a B) indiglaaed in the center
is chosen for reproduction at random, with probabiliyfri+ 1), and its offspring
replaces a B (an A) individual on the leaves which is choseersely proportional
to its fitness. Thus, the fitness of the individual in the cemrthis case is irrelevant.
The individual in the centre is replaced by the offspringmfradividual of the other
type whenever an individual of the other type is chosen ramgdor reproduction,
and thus irrespective of the fitness of individuals. Theditgon probabilities from
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one state to another under this process are

YR B ) MO, B 3.
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and zero in any other case/y* = 1— pY}; — pi° andpPP = 1—p% , — pi/\ v

i €[0,n]. We recall thatpffjY denotes the transition probability frbm a state with
I A individuals on the leaves and an X individual in the centethe state with

j A individuals on the leaves and a Y individual in the centare($Section 2.3).
a="fy+wa p="f+wb y=fy+wcandd = fp+ wd.

In the VM (Antal et al., 2006), an individual first dies with probability invergel
proportional to its fitness, and thus fitter individuals arerenlikely to survive, and
is then replaced by the offspring of a randomly chosen neighbln this process,
the number of A individuals on the leaves increases (dees2d®y one given an A
(a B) individual is placed in the centre, whenever a B (an AMiaidial on the leaves
is chosen for death, since in this case the individual in #&re will inevitably
reproduce and its offspring will replace the dead individughe individual in the
centre is replaced by an individual of the other type when#vwe chosen for death
and a random individual of the other type on the leaves farodyction. Thus, the
non-zero transition probabilities are

o %,(n—i) B (n—i)(ia+(n—i)B)a (35)

i+l = Lo +il+(n-i)l ~nay+ (ia+(n-i)B) (iy+ (n—ia)’ '

0B _ fA:(i) _n—i _ (n—i)ay

T A FiE e (—0E 0 nay o (n-0)B) (v (D)
(3.6)

e _ 5i _ i5(iy+(n—i)d) a.7)

Y Hik (=i} nBo+ (iy+(n-i)o)(is+(n-NB)

1 , i35
=2 L @9

it +(n-ni n "~ B3+ (iy+(n—1)3) (i5+ (n—i)B)

it =1-pY - pPandp?® =1-pPE, — p’ Vi [0,n]. Recall thatfac(i)
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Evolutionary dynamics on graphs under various update rules

(fee(i)) is the fitness of an A (a B) individual placed in the centre ofea giithi As
andn—i Bs on the leaves (see Section 2.4.3).

In the DB-B process (Ohtsulet al., 2006), in each time step an individual dies
at random. Then, the gap is occupied by the offspring of ahteigring individual
chosen with probability proportional to its fithess. In cu#tl evolution and learning
on social networks, this process can also be described lagv$ola random indi-
vidual is chosen to update its strategy (or idea, opinion) etnd adopts one of its
neighbours’ strategies proportional to their fitness. Ia gnocess, the number of A
individuals on the leaves increases (decreases) by oren giv A (a B) individual
is in the centre, whenever a B (an A) individual on the leageshiosen to die at
random. Thus, the increase (decrease) of individuals otedwes is unaffected by
the fitness of individuals. An individual in the centre is leeged by an individual
of the other type if it is chosen for death at random, with pimbity 1/(n+ 1), and
is replaced by the offspring of an individual of the otherdygpvhich is chosen for
reproduction from among the individuals on the leaves wittbpbility proportional
to its fitness. Thus, the probabilities of moving from ondesta another in this
process are given by

a1 ‘ y(n—i) (n—i)y

| ia+(n—i)y (n+1)(ia+n-i)y)’ (3-10)
BB __ I
Pici= o | | (3.11)
oA L B _ 'B (3.12)

T n+1 iB+(n—)8  (n+1)(iB+(n—i)d)’

and zero in any other casg(\*=1—pf¥}; — pff andp?® = 1-p3°%, — pPA v
i €1[0,n].

We observe that far= c andb = d the BD-D and DB-B processes are equivalent
to the respective cases of neutral drift, because then ardA@hindividual on the
leaves have equal fithess when playing against either an ABoindividual in the
centre, and the central individual is selected at randoasprective of its fithess.

In all processes, at every time step an individual givelarid an individual
dies. Thus, the population size remains constant. As inRhit ils assumed that in
the evolutionary processes there is no mutation, justsefedt should also be noted
that to be meaningful in the context of all of the above stethalynamics, since
the transition probabilities from one state to another aop@tional or inversely
proportional to fitness, the fitness of each individual hasetaon-negative (in some
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Evolutionary dynamics on graphs under various update rules

cases strictly positive), and we assume this throughosittbrk.

Surprisingly, we observe that far= c, the conditional transition probabilities
(2.7)—(2.8) are equal in the VM and the DB-B process. Thusigdase the fixation
probabilities of any number of mutants placed at any pasitio the star are equal
in the two processes, irrespective of what the populatioe and the elements of the
payoff matrix are.

For informational reasons, in Appendix B.1 we also presemtrdmsition proba-
bilities on the circle under the three additional updatesull he fixation probability,
the absorption and fixation times as well as the mean numbearmditions before
absorption and fixation on the circle under the differentatpdules can be con-
sidered by using the formulae derived in Chapter 2. The evlaty process on
the circle under different update rules has also been studi®htsuki and Nowak
(2006a).

On a complete graph of finite si2¢, the transition probabilities under the IP
have been derived in Section 2.4.1.

Following the update rules of the BD-D process described @pibxe transition
probabilities on the complete graph are given by

(-DiI+(N-DE

fg

[ (N=i)((i—Da+(N-i)B)

TN (N=D((-Da+(N-DB)+ ([ —1)(iy+(N=i—1)3)’ (3.13)
- N—i #i
Pii—1 N |fi_|_(N_|_1>f_18

_ N-i ;(IV+( —i—1)d) 010

N  (N=i—1)((i—Ya+(N=i)B)+iiy+(N—=i—1)3)

wherefa = fp + WP (fg = fp + W) is the fitness of an A (a B) individual on the
complete graph. The payofs andPs are given by (2.61)—(2.62).
In the VM, the transition probabilities on the complete drape

(N i

p|7l+1_if—lA+(N—|)fi.N 1

(N=i)((i—L)a+(N—i)B) i
+

(N=)(([i—Da+(N-i)B)+ (|y+(N—i_1)5)'N_17 (3.15)
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. h N
Pii-t L (N—i)f N-1
B i(iy+(N—i—1)9) N-i
T (N=D)((—Da+(N=)B) +i(iy+ (N-i—1)5) N-1 (3.16)
In the DB-B process, the transition probabilities are givgn b
o N-i ifa
pl,H—l— N 'ifA—l—(N—i—l)fB
_ NI i(i—-1)a+(N-i)B)
N i((i-Da+(N=D)B)+(N=i—1)(iy+(N-i—-1)5)’ (3.17)
] (N—i)fs
Pt =N —Dfat (N=i)fs
:i (N=i)(iy+(N—i—1)9) (318

N (i—1)((i—1)a+(N=i)B)+(N—i)(iy+(N—i—1)3)

The detailed consideration of the evolutionary processhencomplete graph
under different update rules is of less interest, espgoretien the population size
is relatively large. Figure 3.1 shows the fixation probapiéind the mean time to
absorption of a single Hawk in a Hawk—Dove game, describetthéypayoff matrix
(1.19), as the cost varies. It is observed that mutants have almost the same prob
ability to fixate under the different dynamics (especiatiylarge populations) with
those in the IP and the VM being identical. In general, it isveh that the fixation
probability of any number of mutants under these two praessidentical on all
regular graphs of the same size for all games (Aetall., 2006; Soockt al., 2008).
The mean time needed for the system to reach absorption atahtfixation is also
almost independent of the choice of the update rule.

3.3 Favoured strategies on a star graph under various
update rules

In this section, we present the appropriate conditions uwtiech one of the strate-
gies, A or B, is favoured over the other, i.e. the conditiongrelthe fixation proba-
bility of a single individual playing the one strategy X in agulation of individuals
playing the other strategy ¥P, is higher than the fixation probability of a single
individual playing Y in a population of individuals playing, YP. Hence, we seek
conditions onpg, % 1 (see section 2.5). We recall thaf, is defined as the ratio
XP/YP on a graph G under the update rule UR. The analytic derivatidneocon-
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Figure 3.1: (a) The fixation probability of Hawks, and (b) the mean time to absorption,
starting from a single mutant Hawk on a complete graph With 60 vertices under the IP
(crosses), the BD-D process (diamonds), the VM (circles) and thé3[pBocess (boxes),

in the Hawk—Dove game described by the payoff matrix (1.19) as the figit@ovaries.
V=1, f,=2andw=1.

ditions is shown in the Appendix B.2. The respective conditiothe IP has been
derived in Section 2.5.
In the BD-D process, for largewe find (see Appendix B.2.2)

B s
po.zle (g) s (%) T aty A6 (3.19)

In the VM, for largen we find (see Appendix B.2.3)

B

p5, =16 a(B+d) (%)ﬁ > 8(y+a) (g) 0 £B. y£5.  (3.20)

In the DB-B process for largewe find (see Appendix B.2.4)

¥y B

phez1ea@re)(T) oo (5)7 arvpre Ga

In the limit of weak selection, i.e. whem — 0, as in the IP, from (3.19), (3.20)
and (3.21) it follows that on a large star, under all dynarmdissare favoured if and
only if a4+ b > c+d, which is in agreement with the results of Tarretzal. (2009)
where the IP and the DB-B process in this case are considered.

It is shown (see Appendix B.2.5) that in the BD-D and DB-B proesss

Poo=leaBZys, VN, (3.22)
PSss % leap % yo, V n. (3.23)
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In the case of weak selection, it follows from (3.22) and 83 that under the BD-D
and the DB-B processes, As are favoured if and ordyitb > c+d, V n; this agrees
with Tarnitaet al. (2009) where the DB-B process is considered. In these dyssami

for GB = V5 plAéH pn i,n—i—1» piA,|B_ pEAln i p|B|Bl = pAAm i+1 and pBA
PhSin_i- HenceAPA =BpD,, APB = BpM, TA=T2,, TP = T2, and therefore

n—i-
AT =BT, and*F* =BFB ;, ARB = BE2, and thereforéF = BF, vo< i <n.

Note that for the two birth-death processes (the IP and thédBibecess) there
is a step change ipS, going from O to infinity in the limiting case of large, so
that for a small change in parameter values there is a hugggeha the relative
probabilities of fixation of the two strategies, whereaschange is gradual for the
death-birth processes (VM and DB-B process).

On a complete graph, the condition for each of the stratagié® favoured in
the VM is equivalent to that in the IP (see formula (2.121)mitarly, we find that

pSs in the BD-D and DB-B processes also satisfies (2.121) in the chadarge

population. Hence, As are favoured over Bsri(%) () > 6 <V>< ) and the
step change described above occurs, in all processes. ifhing two processes
where births occur first, evolution on a large star has simgitearacteristics to that
on the complete graph of the same size, with the interacfitimowhole population
occurring through the central individual, which is contisly replaced. Note that
for B =y, pp = pst and fora = 9, ps,, = P°. In the other two processes there is
a big difference between the star and the complete graphc¢laarege in the central
individual has a big impact on subsequent evolution on a star

3.4 Numerical examples

3.4.1 The constant fithess case

In this case we assume that A individuals have constantiwelatness equal to
and B individuals fitness equal to 1.

The average fixation probability of a single mutant

In all dynamicsAP§ 1/(n+1) if and only if r % 1, and thus selection favours
(opposes) the fixation of As whar> 1 (r < 1). The relationship between fixation
probabilities under the different dynamics we considehisan in Table 3.1. Note
that forn > 3, there is one and only one valuero$ 1, r1(n), and one and only one
value ofr < 1, rp(n) (the exact values afi(n) andrz(n) depend om), such that
APuoo = AP (*Pus denotes the fixation probability of a single individual glay
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strategy X following the update rule UR). Asincreasest;(n) increases rapidly to
infinity while ro(n) decreases rapidly to zero (the behaviourgh) andry(n) as
the population size increases is shown in Figure 3.3). Téxsept for values of
more extreme than these critical values, as observed frdme Bal, the birth-death
processes yield a higher chance of fixation for a random nwutdinr > 1 and less
for a mutant withr < 1. The average fixation probability in some specific cases is
shown in Figure 3.2.

Whenn is large we find that (see Appendices B.3.1 and B.3.2)

1-1/r?

AP~ — 1 3.24

P 1_1/r2n7 r# ) ( )
1-1/r

A ~ _A

PBDD 1—1/!‘” - PM7 r;& 17 (325)

where”Py, is the fixation probability of a single mutant in the Moran gees and
on every circulation graph (see Section 1.5). Substitung)—(2.8) into (2.23) and
using (3.5)—(3.12) appropriately, we get (see AppendixB.tat in the case of
constant fitness,

+1) r’—1 r+1
Ap rn(r 2
"D 5 (mer )L AL (820
r_<r(n+r)>
1 1 r m+1 r+1
APpss = 3.27
oo n+l(n+1+n+2r—1> r+1 n-1 (3.27)

and thus, in contrast to the birth-death processes, for e¢aghebirth processes the
increase of the population size decreases the chance abfixatzero. For < 1
the fixation probability of a mutant decreases witim all dynamics.

Asr decreases, the fixation probability under all dynamicseses. Moreover,
decreasing to 0, the fixation probabilities under all dynamics but DB-Beagach 0;
AP . s converges to A(n+ 1)2. Thus, following the DB-B process, even an invader
mutant with almost zero fitness has a non-negligible chaméi@dte, especially for
smalln. Asr increases to infinity®P,, and”P,,, tend to 1, while*P,,, converges
to (1/(n+1))(1/(n4+1)+n) and*Pyg; to (n/(n+1))(1/(n+1) +1/2). Hence,
under the BD-D and DB-B processes, even for an infinite fitnesise fixation of
a mutant in a finite structured population can be signifigaletis than 1. This case
appears even in a homogeneous well-mixed population o fae under the DB-B
process where the fixation probability of a single mutandi$eto 1— 1/(n+ 1) asr
tends to infinity. This is due to the fact that fit individuakve a chance of not being
chosen for reproduction, and individuals with low fithessena chance to survive
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Figure 3.2: The average fixation probability of a single mutant on a star graph undée the
(crosses), the BD-D process (diamonds), the VM (circles) and th&[PBicess (boxes), in
the constant fithess case wherer(a) 3 andn varies, (b)h = 60 andr varies. The solid line

represents the fixation probability in the Moran process and the dasitedttine represents
the fixation probability of a single mutant in the case of neutral driftn}-1).

and reproduce, and eventually through evolution to spradeéhiminate the individ-
uals with higher fitness. Although in infinitely large homaogeus populations these
replacements have negligible impact on the outcome of &@golthey might be im-
portant in finite populations, especially if these have a-homogeneous structure
under some evolutionary dynamics.

Mean time to absorption starting from a single mutant

Although the fixation of an advantageous mutant randomiggulan the star is more
likely in the birth-death processes (except some specgd)aabsorption in these
processes is reached slower than in the death-birth prexésscept some extreme
cases ofn > 4 andr ~ 0). The comparison of the absorption times between the
different dynamics is shown in Table 3.1. Figure 3.4 repnesthe absorption times
for some specific values ofandn.

Here, we show explicit approximations of the absorptioresnstarting from a
single mutant given by (2.39) for extreme values .of

Forr ~ 0, in the IP and the VquAB rqBBl ~landm)}; ~ 84~ 0. In the
BD-D process, foil # 0, 1}° ~ 1 and 7}, ~ 0. In the DB-B process, fair# n,
nB, 1~ landr® ~ 0. Given these apprOX|mat|ons following the same procedur
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as that shown in Section 2.3, we find thatfae O

ATIP ~ n(n - 1) +1> ATDB-B; (3.28)
2
n“+1 1
ATBD-D ~ n—1 + m ATVM7 (3.29)
AT ~ 1, (3.30)
DBBNm ( )+m+n> Teop (forn>4) (3.31)

(*T . denotes the mean time to absorption starting from a sindigigual playing
strategy X following the update rule UR).

Forr>> 1, in the IP and the VMt {® ~ 8% ~ 0 andr?Y}; ~ i3~ 1. In the
BD-D process, foi # n, 32, ~ 0 andrﬁAN 1. Finally, in the DB-B process, for

i #0, M}~ 0andm}}; ~ 1. Using these approximations and the formula (2.39),
we find that for large > n

n—1 /;
AT, ~ Z)n“l )T, (3.32)
& n—I
n-1
ATwo N ( N+ L Zi 1 +n+ EEENS AT e, (3.33)
n+1/ & i n+1
AT ~N% > AT s, (3.34)
+3)"1/1\ n(n+1)+2
ATDB-B ~ n(n = L L A — 3.35
2(n+1) i; | + 2(n+1) (3-35)

Note that in the DB-B process once there is an A individual oea &nd in the
centre, then the mean absorption time does not dependpecifically, substituting
(3.9)-(3.12) and (2.7)—(2.8) appropriately into the folangiving TlA, (2.31), after
some calculations it is proved thaf = (n+1) 3" 1/i.

Using the formulae of Section 2, we find that in the limit of egka population
size, in the birth-death processes absorption occurs imdauof time steps that is
O(n?Inn). However, in the death-birth processes, absorption iseghmuch faster,
in O(n) time steps.

In a large population, Figure 3.4 suggests that following tlirth-death pro-
cesses, absorption is reached slower for a valueatdse to 1 (this value tends to
1 as the population size increases). Thus, in large popuaktieutral mutants yield
higher absorption times. However, following the deathFoprocesses absorption
time increases with the increaserin
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Table 3.1: Comparison of the average fixation probability and the mean times to absorption
and fixation of a single mutant on a star graph in the constant fithess dasehdhe IP, the
BD-D process, the VM and the DB-B process. The variation; @), r2(n), r3(n), ra(n),

rs(n) andrg(n) with nis shown in Figure 3.3. Apart from some extreme cases, the two birth-
death processes (IP and BD-D) yield a higher fixation probability foaathgeous mutants

(r > 1) and a lower fixation probability for disadvantageous mutarnts1) compared to the
death-birth processes (VM and DB-B). On the other hand, death-bitiepses yield much

lower absorption and fixation times than birth-death processes

Comparison of fixation probabilities
. >, AP, = AP, = APy =r/(r+1)
< r/(r+1) = APapp = *Pogs = 1/2
N3 r>1 APp > APy > APy > APgpp > APpgs > 1/(n+1)
’ r<l1 APp < APy < APy < APapp < APoss < 1/(n+1)
1<r<ri(n) | APp > APy > APepp > APy > APpes > 1/(N+1)
154 1<ri(n)<r | APp > APy > APy > APgpp > APpes > 1/(N+1)
- r<ran) <1l | APp < APy < Py < APgpp < APpes < 1/(N+1)
ra(n) <r<1 | APp < APy < APgpp < APy < APpes < 1/(n+1)
vn r=1 APIP = APM = APBD-D = APVM = APDB-B = 1/(”“‘ 1)
Comparison of absorption times
n=1 vr ATIP = ATBD-D = ATVM = ATDB-B =1
1<r<rz(n) AT > ATeoo > ATw > *Toes
n=2 | 1<ran<r ATeoo > AT >ATwn > *Toes
r<1 ATeoo > AT > AToss > AT
1<r<rz(n) AT >ATeoo > ATwu > AToss
n>3 1<rg(n)<r ATeoo > AT > AT > AToes
- r<rg(n)<1* AT >ATeps > ATpss > ATy
ra(n)<r<1 ATeon > AT > ATpes > AT
vn r=1 AT =ATeoo > ATww = Toss
Comparison of fixation times
n=1 vr AF e ="Feop ="Fuu = Fpgs =1
1<r<rs(n) AFp > AFepp > “Foas > AFuy
n=2 | 1<rs(n)<r AFeoo > AFp > AFoss > AFuy
r<l1* AFBD-D > AF|p > AFVM > AFDB-B
1<r<rs(n) AFp > AFgop
1<rs(n)<r AFepp > AFp
n>3 | 1<r<rg(n) AFoes > AFwu
1<rgn)<r AFw > *Foes
r<i* AFepo > AFip > AFum > AFpes
vn r=1 AR =*Feop > AFum ="Fogs

*Forn>4andr ~0,°Tp > Tpes > “Teoo > ATum.
“* Forr ~ 0, Fgpp > “Fuu > *Fpp > *Frps.

84




Evolutionary dynamics on graphs under various update rules

4001

3001

Z 2004

1001

4 6 8 10 12 14 16 18 20
a) n

- kk kY - R
! *.*‘** ***********»*-**
= *

¢ etk A K
{**’{*m
-

d)

0.044

0.031

e 0.024

0.014

~ 4

I~
N
Tk kk ok Kok kTR A*FFE AT KKK K

Figure 3.3: The behaviour of (a)1(n), (b) r2(n), (c) r3(n) (dotted line) and4(n) (dashed
line), and (d)s(n) (dotted line) andg(n) (dashed line), as increases (see Table 3.1).

Mean time to absorption

Figure 3.4: The mean time to absorption starting from a single mutant on a star graph under

b)

Mean time to absorption

the IP (crosses), the BD-D process (diamonds), the VM (circles) amdB+B process
(boxes), in the constant fitness case where (a8 andn varies, (b)n = 60 andr varies.

Mean fixation time of a single mutant

As in the case of the absorption time, apart from some speagss of ~ 0 where
AR, for example, increases rapidly, the fixation time is gelhetsgher in the
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Figure 3.5: The mean fixation time of a single mutant on a star graph under the IP (crosses
the BD-D process (diamonds), the VM (circles) and the DB-B processe), in the con-
stant fitness case where (a3 3 andn varies, (b)h = 40 andr varies.

birth-death processes than the death-birth proce$8gs (lenotes the mean fixation
time of a single individual playing strategy X following thgpdate rule UR). The
comparison of the fixation times for various scenarios issshim Table 3.1. Figure
3.5 shows an example of the mean fixation times of a singlemhatathe population
size and the mutant’s fitness vary.

In the limit of a larger (r — o), the fixation time of a single mutant in the IP
and VM, AF . and”F,,,, are equal t6'T . given by (3.32) andT,, given by (3.34),
respectively. In the BD-D and DB-B processes we find that

n—1
AF g0 ~ N(N41) Zx (%) +n+ Fll (3.36)
N nl/71\ nin+1)+2
AFpse = (N+1) i; (T) + 2D (3.37)

The fixation times in the limiting case of— 0 are of less interest since in this case
the chance of fixation of the mutant individual is very smallave condition on its
fixation.
It should be noted that, especially in large populatids, is affected less by

the change im than the fixation times under other dynamics (as seefifigs, and
AT ves @bOVeE).

In the limit of large population size, the fixation time in thieth-death processes
is O(n®) while in the death-birth processes the limitQgninn). Numerical exam-
ples suggest that in large populations, following the bd#ath processes, as the

absorption time, the mean fixation time of a neutral mutattieshighest.
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3.4.2 The frequency dependent fitness case — example games on
star graphs

In this section, we apply the results obtained in the prevsections to cases where
the fitness of each individual depends on the compositiom@fpopulation (fre-
quency dependent fitness). We consider various evolutjogames which in an
infinite well-mixed population result in different evolatiary outcomes.

A Hawk—-Dove game on the star graph

The average fixation probability of a single mutant Hawk

Consider a Hawk—Dove game (see Section 1.3.1) describectIpagfoff matrix
(1.19) played on a star graph.

The illustration of the dependence of the average fixatiobability of a single
Hawk on the star™ P, on the population size and the fight coSt, is shown in
Figure 3.6 in an example. For comparison, in Figure 3.6b éspective fixation
probabilities of a single Hawk when invading in a completapiris also presented.
As we have seen in Section 3.2.1, on the complete graph theteipdles do not
much influence the fixation probabilities, especially irat®ely large populations.
As in the constant fithess case, there is a step change in &teffixprobability in all
dynamics. IfpSe > 1, mutants fixate with a probability almost independer&dfor
pSs < 1, the fixation probability presents a rapid change and ntsit@afimination
becomes almost certain. However, different update rukdd gonsiderably different
results on a star graph.

Here, we can observe two qualitatively different behagdpone for birth-death
processes and another for death-birth processes. In ttiedaiath processes, for
largen, " P exhibits a step function behaviour basedggyg in fact, for largen we
find that (see Appendices B.3.1 and B.3.2)

yo
B2 1 yd s
— E~1-8 pi>1
P~ { 1-(%) g (3.38)
0, pp<1
( 1_g %1—% p;DD>1
) ’ -
Py~ { 1-(5) . (3.39)
07 pBSD-D < 1

On the other hand, in the death-birth processes, B8ty and"P,,, are bounded
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Figure 3.6: The average fixation probability of a single mutant Hawk on a star grapérund
the IP (crosses), the BD-D process (diamonds), the VM (circles) amdB+B process
(boxes), in the Hawk—Dove game described by the payoff matrix (1.19kicdse where
(@ V =1,C= 15 andn varies, (b)n =60,V = 1 andC varies. f, =2 andw= 1. The
thick lines represent the respective case on the complete graph andstiezldintted line
represents the fixation probability of a single mutant in the case of neuifitalldi{n+ 1).

above by(f + 9)/d(n+1) (see Appendix B.3.3) and thus decrease to @ as
creases to infinity.

Figure 3.6b suggests that when Hawks are favoured over Dovbe different
update rules, the complete graph promotes the fixation ofddaswmpared to the
star graph in the BD-D, VM and DB-B process. Moreover, in théd¥®ured Hawks
have much higher chance to fixate on a star graph.

Note that in the case of weak selection, in large stars and&tengraphs,
Hawks are favoured over Doves if the simple conditi®r: 2V holds, in all up-
date rules.

In the case where a mutant Dove invades into Hawks, all theeatesults can
be easily obtained by interchanging the two strategiesbieexchangingx and?d,
andp andy.

Mean time to absorption and fixation starting from a singleantiHawk

A comparison of the absorption times for varying populatsize and varying
fight cost,C, for the game with payoff matrix (1.19) is shown in Figure.3The
absorption times on the complete graplCasries are also presented in Figure 3.7b
for comparison. As shown in Section 3.2.1, the time needednittants to either
fixate or die out on a complete graph is almost unaffected byftdate rule fol-
lowed. In large populations, values of the payoffs such gt~ 1 lead to the
highest times before absorption and fixation occur, in @lupdate rules. In con-
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Figure 3.7: The mean time to absorption starting from a single mutant Hawk on a star graph
under the IP (crosses), the BD-D process (diamonds), the VM (cirahekthe DB-B process
(boxes), in the Hawk—Dove game described by the payoff matrix (1.19kicdse where
(aV =1,C=15andnvaries, (b)n=60,V = 1 andC varies.f, = 2 andw = 1. The thick

lines represent the respective case on the complete graph.

trast to the case of the complete graph, on the star graph,ths iconstant fitness
case, we observe that the speed to absorption and fixatidm significantly vary
when following different update rules. There is again a gt@iive and qualita-
tive distinction between birth-death and death-birth peses. In most of the cases
the birth-death processes yield much higher absorptiorfigation times than the
death-birth processes. In large populations, both therptisn and fixation times in
the two birth-death processes achieve local maxima fompetexr values such that

>~ 1 andp, . ~ 1, since then the two strategies coexist for a long time leedbr
sorption/fixation occurs. In the VM and DB-B process, althotlie absorption and
fixation times increase &3increases, they are affected less by the variatidt. dh
our example, we can see that for the VM@s> 5 (i.e. the fitness of a Hawk indi-
vidual when playing with just another Hawk tends to'07J,,,, (and similarly™F.,,)
sharply increases. An initial Hawk on a leaf can be elimiddtg chance, but if it is
not, eventually it will occupy the center. At that moment, avk on the leaves has
a very very small fitness, so it will be eliminated and repthlg an offspring of the
individual in the center; this process will be repeated miamgs before absorption
occurs.

Figure 3.7b suggests that the process on the star might melof the two

absorbing states much slower than on the complete graph felewing the birth-
death update rules, but much faster when following the demth update rules.
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Prisoner’s Dilemma on the star graph

Consider a Prisoner’s Dilemma game (see Section 1.3.2)idedcby the payoff
matrix (1.22) played on a star graph.
A cooperator and a defector in the centre of the star, relspdgthave fithess

iB
fo, = fb+w(lﬁ—c), (3.40)
fo, = fb+w§, (3.41)

giveni cooperators on theleaves. A cooperator on a leaf has fithéss- w(B —C)
against a cooperator in the centre and fitnigsswC against a defector in the centre.
Similarly, a defector on a leaf has fithess equafga- wB against a cooperator in
the centre and fitness equalfipagainst a defector in the centre. Thus, a cooperator
always does worse than a defector no matter its positionteddmposition of the
population. By (3.22) and (3.23), in the BD-D and DB-B processesperation is
never favoured over defection for any intensity of selecaad any population size.
By (2.126) and (3.20) this is true under the IP and the VM as imdlrge popula-
tions. Moreover, by (2.91)-(2.94) and (3.1)—(3.12), thebar of cooperators from
any state and in any population size increases (decreages)ebwith probability
less than (greater than) or equal to the respective pratyaipilthe case of neutral
drift. Thus, the fixation probability of cooperators stagtifrom any possible state
will always be less than that of neutral mutanfgn+ 1) (apart from the DB-B pro-
cess which can be equalitdn+ 1)). Hence, the star graph is not a good graph for
the evolution of cooperation.

Numerical examples suggest that a single cooperator akiways has the high-
est chance of fixation following the two death-birth proesssvith that in the DB-B
process the highest and that in the IP the smallest one (geeeF3.8). Similarly,
the birth-death processes favour the fixation of a singleatef into a population
of cooperators while in the death-birth processes the catms’ population has a
higher chance to resist the invasion of a defector, with tkatitin probability of
the defector close to/In+ 1), especially for a sufficiently large population. As in
the Hawk—Dove game, the absorption and fixation times in itttle-death processes
have important quantitative and qualitative differengesifthose in the death-birth
processes. The times to absorption and fixation in the bietith processes are
much higher, mainly due to the large number of defectoratefaeplacements be-
fore their fixation.

Comparisons with the complete graph (see Figure 3.8b) itelitat in the IP,

90



Evolutionary dynamics on graphs under various update rules

Fixation probability

Figure 3.8: The average fixation probability of a single mutant cooperator on a stghgra
under the IP (crosses), the BD-D process (diamonds), the VM (cirahesthe DB-B process
(boxes), in the Prisoner’s Dilemma game described by the payoff matrix)(ih 22e case
where (aB =2,C = 1 andnvaries, (b)h = 60,B = 1 andC varies.f, = 10 andw= 1. The
thick lines represent the respective case on the complete graph andstiezldintted line
represents the fixation probability of a single mutant in the case of neuifitatlldi{n+ 1).

the star graph impedes cooperation while in the BD-D, VM and BDBrocesses
it promotes cooperation (although as we have seen the pghitypalb cooperators
fixating is very small in all of these processes).

Coordination games on the star graph

Consider a Stag Hunt game (see Section 1.3.3) described Ipayiodf matrix (1.2)
played on the star graph. Strategy A is Pareto efficiant () and strategy B is risk
dominant &+ b < c+d). On a large star graph, in the case of weak selection the risk
dominant strategy is always favoured over the Pareto dftigtategy (since+d
is higher thara+ b), in all the update rules. For any non-zero intensity of c@a,
sincea+b<c+danda>c>d>b, ap is lower thanyd as well and thus the
BD-D and DB-B processes always favour the risk dominant gfyateer the Pareto
efficient strategy on a star graph of any size. It is shown migaky that this holds
for the IP and the VM as well. Numerical examples also indi¢hat in none of the
update rules is the fixation of strategy A favoured by setecti.e.”P is always less
than /(n+ 1) in all update rules.

However, in a coordination game where B is not the risk domtisérategy, i.e.
A is both the Pareto efficient and risk dominant strategyy d anda+b > c+d),
then A might be favoured over B for any non-zero intensity elestion in all the
update rules. In addition, it is shown that selection migivolir the fixation of A
and oppose the fixation of B, i.€’P > 1/(n+ 1) > BP, under any of the update
rules. Moreover, the chance of As’ fixation remains reldgiv@mall. Figure 3.9
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Figure 3.9: The average fixation probability of a single mutant playing strategy A on a star
graph under the IP (crosses), the BD-D process (diamonds), thecdleg) and the DB-B
process (boxes), in a coordination game in the case wheae{&p andn varies, (b)h = 60
andavaries.b=3,c=5,d =4, f, = 2 andw = 1. The thick lines represent the respective
case on the complete graph and the dashed-dotted line represents the fisGtiainility of

a single mutant in the case of neutral driff(f+ 1).

shows the average fixation probability of a single A on thefstaan example set of
parameters, as the population size and the payofary. The respective probability
in the case of the complete graph is also presented in Figbe B/e again observe
that in large stars, in the two birth-death processes IP andDBialues of payoffs
such thatp? < 1 andpg,, < 1 result in an almost zero fixation probability while a
rapid increase in the fixation probability occursaisandps, , become bigger than
1. The most advantageous update rule for the fixation ofegiyad can be either the
IP, the BD-D process or the DB-B process. Numerical exampléisate that the
fixation probability of strategy A under the VM is always lovtean that in the DB-
B process. In this game, the speed of the evolutionary psdsegjain much slower
in the birth-death processes with the fixation time of mgantlarge populations
highest wherp? ~ 1 andps,, ~ 1.

Comparisons of the results on the star with those on the caengtaph suggest
that apart from cases where the payoi much larger than the other payoffs and the
population size is relatively small, in the two birth-deptbcesses the heterogeneity
of the star graph inhibits the spread of strategy A. Howevethe two death-birth
processes, the star might be a better graph for As to spread.

3.5 Discussion

In this chapter, we have investigated analytically stotbavolutionary processes
on the simplest irregular graph, the star graph. Using thadtae of the fixation
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probability and absorption and fixation times derived inti®ec2.3, we have studied
the process under different update rules, in various eeolaty games which re-
sult in different evolutionary outcomes in infinitely largemogeneous well-mixed
populations. It has been shown that although the choiceeofiffdate rule of the
evolutionary process does not significantly affect the @wh of mutants on ho-
mogeneous populations, it might cause considerable diftas if these invade in
a population with a non-homogeneous structure. Howevemast of the cases,
these differences are mainly due to the extreme structuteegfraph rather than the
dynamics themselves.

The IP in combination with the specialness of the star, ecdmusignificantly
the selection pressure and outweighs drift. At least fordhses where a mutant
always does better (worse) than a resident individual, xamgle in the constant
fithess case and the Prisoner’'s Dilemma, the fixation préibabf mutants is al-
ways higher (lower) than the respective probability on a glete graph of the same
size. This happens only in the IP. In the DB-B process the sBetepressure is con-
siderably nullified and random drift is emphasised partlg thuthe dynamics itself
but mainly due to properties of the star graph. When an indadieon a leaf dies
randomly, which is the usual event, especially in large petmns, it is inevitably
replaced by the offspring of the individual in the centree(fiiness of individuals
does not contribute to the process). If the individual ind¢bkatre dies (with prob-
ability 1/(n+ 1)) then it is replaced by the offspring of an individual on teaves
which is chosen with probability proportional to fithessdahus the fitness of the
individual in the centre is irrelevant. Hence, especiatiyldarge populations, the
spread and fixation of mutants happens almost randomly.elB@-D process, al-
though the first event happens randomly as well, since threase or decrease of
mutants on the leaves depends on the fitness of the indigidluahis position, the
contribution of the fitness in the BD-D process is much highantthat in the DB-B
process. Finally, in the VM, although selection operatesianl individuals (as
in the IP), the process on the star is a strong suppressoneséit In this process,
especially in large populations, the individual in the cem$ quite safe and occupy-
ing this position at the beginning of the process is highlyaaiageous. However,
the most likely initial position is a leaf, a position from igh the role of the fit-
ness is diminished. Hence, in most of the cases, birth-deattesses yield higher
(lower) fixation probabilities of advantageous (disadegebus) mutants than the
death-birth processes. However, these processes useqllire exceedingly long
times to fixation, which are much larger than the respectives in the death-birth
processes.
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For the BD-D and DB-B processes, where the first event happenomay,
we have seen that even a mutant with infinite fithess has a ehafrot fixating
which is independent of its fitness. On the other hand, in tBeBDprocess, even an
invader mutant with almost zero fitness has a small chancgétefivhich does not
depend on its fitness. Hence, both the update rule and tretseof the population
might result in a relatively high chance of fixation of thedédi individuals and the
elimination of the fitter individuals even in these extrerases.

Most of the previous studies of evolutionary processes apltg have consid-
ered the case of weak selection. It has been shown that icdkes following the
rules of the IP and DB-B process, mutants on a large star gastimtegy A are
favoured over residents playing strategy B b > c+d (Tarnitaet al., 2009). We
have shown that this condition holds for the BD-D process aerdtM as well. In
addition, for each of the dynamics we have found appropdatelitions for strat-
egy A to be favoured over strategy B for any intensity of sibec Especially in the
BD-D and DB-B processes, we have shown that mutant individalalsng strategy
A on a star of any size are favoured over Bs if the simple comlii3 > yd holds.
In the case where 3 = yd, the fixation probability as well as the absorption and
fixation time of a number of individuals of either type in a pdagion of the other
type are identical for any population size.

When a strategy A loses the advantage it has over strategy Baicome
favoured, the average fixation probability of a mutant irdinal playing strategy A
on a large star tends rapidly to zero when following the twithbileath processes.
At this point, the fixation time takes the highest value. T happens in the well-
mixed population. Birth-death dynamics on a star effecyiadt like a well-mixed
population when the population size is large, as the cemgdéx is continuously
replaced and all the others have the same relationship toaher through it. For
death-birth dynamics this does not happen since the dysaane very different.
The central vertex is highly important and occupying it igeag advantage. In both
processes, the increase of the population size resultsim@ortant decrease of the
contribution of the fitness in the evolutionary process dredarobability of fixation
is close to ¥(n+ 1), as occupying the centre or not at the start is the key evant.
particular, in the DB-B process, a single random event casechig changes in the
evolutionary process on the star irrespective of the fitoégwdividuals.

Considering the evolution of cooperation in the Prisoneileima we have
seen that the heterogeneity of the star is an inhospitakleoement for cooperation
to evolve. Itis proved that cooperation is never favouredddgction while defection
is always favoured, in all update rules. However, it has bs@wn that there are
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update rules under which cooperation is encouraged moraestar than on the
complete graph. In a similar way, in a Stag Hunt type of ganmdifficult for the
Pareto efficient strategy to evolve on the star. In partigulas shown that in all
update rules the risk dominant strategy is always favouved the Pareto efficient
strategy, and selection never favours the Pareto efficieategy.

The investigation of the evolutionary process on the staplgunder four update
rules has demonstrated that both the structure of the piopuland the update rule
when applied in a non-homogeneous structure might have jportamt influence on
the outcome of the evolutionary dynamics. However, it isglear to what extent
the reported characteristics depend upon the unique dbamaicthe star. So far,
almost all the other analytical investigations have inedlvegular graphs where the
differences of the evolutionary process under differerdate rules are relatively
minor. On the other hand, it is likely that whilst other ircggr graphs may display
properties of the star, behaviour will in general not be aseexe as that observed
on the star (see Broormt al, 2009). Thus, it would be of interest to investigate
whether, and to what extent, some of the observed phenonadthéohlarger classes
of graphs.
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CHAPTER 4

Evolutionary dynamics on complex
graphs

4.1 Introduction

In Chapters 2 and 3, we have seen that an analytic approach e¥ditutionary dy-
namics is possible when individuals of the population ogdine vertices of simple
graphs with a lot of symmetry and lack of complexity. Suchpiisare the complete
graph (Tayloret al,, 2004), the circle (Ohtsuki and Nowak, 2006a; Broetral.,
2010a), the star (Broom and Ryéaht2008; Broomet al., 2010a; Hadjichrysanthou
et al, 2011) and the line (Broom and Ryé&ht2008). See also Liebermaat al.
(2005). Moreover, real populations have some complex &ires where the ana-
lytic investigation of the dynamics is usually impossitdspecially when the fithess
of individuals depends on the composition of the populatilure to the large number
of the possible configurations of the population throughwgian. In such cases the
use of approximation methods is essential. The investigati evolutionary models
on complex graphs is often limited to individual-based B&stic simulations that
can be difficult to validate, time consuming to run and theltegenerated can lack
generality. To tackle this problem, researchers from ckffi¢ areas have developed
different techniques that allow us to derive low-dimengsio@DE (ordinary differ-
ential equation) models that, under certain assumptioositabe structure of the
network and the dynamics running on it, can approximate thelaverage outcome
from stochastic network simulations. Establishing theaclelation between the
exact-stochastic and approximate model is challengingedinis requires a mathe-
matical handle on both solutions as well as the formulaticanappropriate limit in
which the exact-stochastic model approaches the detesticifimit. One such well
known class of approximate models is that of fr@rwise modelge.g., Matsuda

97



Evolutionary dynamics on complex graphs

et al,, 1992; van Baalen and Rand, 1998; Keeling, 1999; Eames arloh&e2002;
House and Keeling, 2011) where the dynamics at the verte!, leva population
with graph-like contact structure, is described in termghef dynamics of pairs of
individuals, and the hierarchical dependence on highesratluctures is cut off via
an appropriately constructed closure. In recent yeargrattodels of similar na-
ture have been derived, for example, Brebability Generating Functioapproach
(Volz and Meyers, 2007; Volz, 2008) and more notably Bifective Degree model
(Lindquistetal., 2011). These models have arisen in the context of epidegyidut
their formulation and properties makes them amenable tesbd for the modelling
of evolutionary game dynamics on graphs.

In this chapter, using the techniques of the Effective Degnedel (Lindquist
et al., 2011) we consider evolutionary game dynamics when iddads interact on
different complex graphs playing two strategies, A and B. giame played is de-
scribed by the payoff matrix (1.2). Individuals update ttstrategies following the
update rules of the biased voter model (VM) as described ati@e3.2 (see also
Antal et al., 2006). VM type dynamics is one of the classical interacparticle
systems which has been applied to many evolutionary presg®m opinion and
culture dynamics to processes in population genetics ametiks of catalytic re-
actions (e.g., Liggett, 1985; Frachebourg and Krapivs®g6l San Miguekt al.,
2005; Castellanet al., 2009), and has received considerable attention.

We show that for randomly or proportionately mixed networkih or without
degree heterogeneity, the model constructed, calletléighbourhood Configura-
tion model, provides an excellent approximation to output fromugation models,
even for relatively small graph sizes. Following the samelwionary dynamics
we also construct a pairwise model and highlight its menis shortcomings when
compared to the Neighbourhood Configuration model. As an pigwe consider
the evolutionary process in a Hawk—Dove game when playdu @ettypes of graph
which have been widely used; a random regular graph, a ramggaph and a scale-
free network.

4.2 Approximate models of evolutionary game dynam-
ics on graphs

4.2.1 Pairwise model

In this section, we first approach the evolutionary procgssding the pair approx-
imation method (Matsudet al., 1992; van Baalen and Rand, 1998; Keeling, 1999;
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Eames and Keeling, 2002; House and Keeling, 2011). This ietaad where the
frequency of higher order moments, such as triples compofktulee vertices con-
nected in a line, is approximated by the frequency of loweleomoments, such
as pairs and single vertices. This method works well withpgsawith no or little
heterogeneity in the number of connections, but can be d&teto more heteroge-
neous graphs with a significant increase in the number oftesa Such methods
assume that the underlying graphs have undirected edgethainthese are either
unweighted or uniformly weighted. This approximation nuetthas been used in
previous work for the investigation of the evolutionary @ess in structured popu-
lations under different update rules (e.g., Morris, 199@uett and Doebeli, 2004;
Hauert and Szal) 2005; Ohtsuket al., 2006; Ohtsuki and Nowak, 2006b; Morita,
2008; Fuet al., 2010). Here, we follow a similar procedure to approachpttoeess
when the update rules of the VM are followed.

Assume a population d individuals playing either strategy A or strategy B
placed on a regular graph of degrke Let pa (pg) denote the proportion of A
(B) individuals in the population angag the frequency of AB pairs. Let alsgya
denote the conditional probability that a neighbour of asamA individual is a B
individual, i.e. ggja = Pag/(Paa+ PaB) = Pas/Pa (thus 1—dgja = daja = Paa/PA
denotes the conditional probability that a neighbour of asem A individual is
another A individual). The equivalent expressions alsalfiof gag andggs. The
edges of the graphs we consider are assumed to be undirectedeseforepag =
Pea.

Since all the vertices of the graph are assumed to be topalbgiequivalent,
every pair of A (B) individuals is equally likely to be connedtwith probabilitygaa
(dgjg)- The probability that from th& connections of an A individual,of them are
with other As (and thuk —i are with Bs)Ja(i), is approximated by assuming that it
follows a binomial distribution. This is given by

la(i) = (t() qA|Ai (1_QA|A)k_i = i!G(l(—ii)!QAAiQBmki- (4.1)

Similarly, the probability that a B individual is connecteath i As andk—i Bs is

assumed to be given by

k!

(i) = (T) (1_qB|B)i Oeis< ' = mQA\BiQBBk_i- (4.2)

As defined in Section 2.4 , the fitness of each individual isi@esl to be equal
to f = fp +wP, whereP is the average payoff obtained by the games played with
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neighbouring individualsf, is a constant background fitness of individuals and
[0,0) represents the intensity of selection which determinesain¢ribution ofP to
fitness. An A individual which is connected withother A individuals has fitness

equal to
. ia+(k—i)b
fa(i) = fb+w(¥) . 4.3)
A B individual which is connected withAs has fithess equal to
. ic+(k—i)d
fii) = fb+w(#) . (4.4)

Let us denote by the sum of the inverse of the fithesses of all individuals,

k
a(i) IB(l)
4.
Z} 0 Tall)’ (4.5)
The probability that an A individual dies (with probabilityversely proportional to
its fitness) and is replaced by a randomly selected neigimgpBrindividual,Pa_, g,
is given by
_Pa N( ) k—i

One of the B individuals dies with probablllty inversely puaotional to its fithess
and is replaced by a random neighbouring A individual witblability

lg(i) i
— . 4.7
o) K (4.7)
The rate of increase of the frequency of A individuglg, (given one transition in
each iteration step) is given by the following equation

I:)B%A =

'r|||'0
OM*

=

1

_PB—>A_ NPA_)B
1 (k— 1 ! o ) i k—i
~NE Z),, (quA|B QB|B IW - pAQA|A|q8\A IT(i)) . (4.8)

When an A individual connected ftoother As is replaced by a B individual, the
number of AA pairs decreases bynd therefore the frequency of AA paingaa,
decreases by/(kN/2) (kN/2 is the total number of edges). This happens with
probability

il) k—;' (4.9)

T|||'U

Paa—aAB =

=
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Similarly, the number of AA pairs increases bynd thereforegpaa increases by
i/(kN/2) when a B connected ticAs is replaced by an A. This happens with prob-
ability

PaB—aAA = F ) K (4.10)
According to the above, the rate of increase of the frequeh&A pairs (given one
transition in each iteration step) is given by the followeguation

2y <2
pAA—i; KN AB—AA i;} KN AA—AB

2 &£ (k-1) e ke
~ kNF i; (i—2D)(k—i)! (quAB quBk #(i) — Padaja qB|Ak T(';) .
(4.11)

Since,pa+ ps = 1, Pa = Pa = Pa — Paa andpeg = 1 — paa— 2pas, the system
can be described by just two dynamical equations, say (4@&)411). Note that
the frequency of larger clusters can be approximated byrdwiEncies of the pairs.
For example, the frequency of the three cluster X¥¥y z, can be approximated by

Pxy Py z/ Py-

4.2.2 Neighbourhood Configuration model

The effective degree model (Lindquist al., 2011) stems from a model first pro-
posed by Ball and Neal (2008) in the context of &IR type infectious disease
transmission model, where vertices in a graph are accodatatbt only by their
disease status but also by their number of suscepfilaled infected neighbours,
referred to as the effective degree of the vertices. Keejpauk of recovered neigh-
boursR is not important as they play no part in the dynamics. Lindget al
(2011) formalised this model by categorising each verteomting to its disease
state as well as the number of its neighbours in the varigesade states. Based on
heuristic arguments and on the assumption of proportianatig, Lindquistet al.
(2011) derived a system of ODEs in terms of susceptible aiedted vertices with
all possible neighbourhood configurations. In this chapter adopt this method
to approach the stochastic evolutionary dynamics in a tnategyy game played on
complex graphs.

Assume, as above, that a resident population of B indivapkced on an undi-
rected and connected static graph is invaded by a number @inmd individuals.
The evolutionary dynamics of the evolutionary process scdbed by the update
rules of the VM. Each individual on the graph is classifiedoading to its strategy
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and the number of its connected individuals playing eacthefstrategies. Let us
denote byMm (Rmy) the number of individuals in the class where individuaksypl
the mutant (resident) strategy and each of them is connéat@bther mutant in-
dividuals and residents. Considen andr as the number of edges that start from
an individual of arMp,; or R class and end at a mutant or a resident, respectively.
Assume that the maximum degree of a vertex on the grafhix and therefore
m>0,r > 0 and 1< m+r < Dpax Hence, the number of different classes is equal
to YPm2(k+ 1) = Dmax(Dmax+ 3)-

The sum of the inverse of the fitnesses of all individuBlsis given by

Dmax

_ 1 1
i k;i}_k(M"’<ia+JB>/<i+1>*R”<iv+16>/<i+1>>’

(4.12)

wherea = fp+wa, = fp,+wb, y= fp+wcandd = fy+wd. Let us also define
some terms which will be useful in subsequent calculatibesLyy be the number
of edges which connect an individual of type X to an individotype Y (with X
and Y being the start and destination vertex, respectivaliggre X and Y denotes
either a mutant (M) or a resident (R) individual.

Dmax Dmax
Lvr = Mijj, Lrm = iRij,
k; i+Jz:k k; i+JZ=k
Dmax Dmax
Lvv = iMi;j, Lrr= jRij- (4.13)
kzl i+12—k kzl i+12—k
In addition, we use the following notation:
=Sy o), =3y SRi-a
== : . i, 5 = : . , 5
& ifGia+ 1B ! r & igzxy+io J r
Dmax i2 Dmax j2
Hz = Rij: Hy = ———Mij, (4.14)

kzliHZ_kivHé kzliﬂz—kia"'jﬁ

wherecSrirj,r is a function defined as

. 1, i=mj=r
o= . (4.15)
0, otherwise

An individual might move from one class to another, eithethmsy change of its
strategy or due to the change of a neighbour’s strategy. Tdlgapility that an A
mutant individual of theMy,, class is replaced by a B resident individual and move
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to theRy, class is equal to the probability that this individual ises¢éd for death
(with probability inversely proportional to its fitness)dais replaced by the offspring
of one of its neighbouring residents (which is chosen atoand This probability is

equal to
1

(ma+rB)/(mir) T r
F m+r  F(ma+rB)’
Similarly, an individual of theRyn class moves to thkly, class with probability

(4.16)

-1
(my+r5)/(m+r) . m m
F m-+r  F(my+rd)

(4.17)

A mutant connected to other mutants andresidents leaves thdn, class and en-
ters theMm, 1,1 class when a neighbouring resident is replaced by a mutdngt. T
probability of such a movement is approximated in the follaywvay. The proba-
bility that a resident individual from aR; ; class is selected to die and is replaced
by an offspring of a mutant neighbour is equal to

S S
C(iy+io)/(+D) i i

We now use an approximation to estimate the probability ahasident individual
which is replaced by a mutant is connected to a mutant fronVkheclass. This is
assumed to be equal to the probability that a randomly chedge which connects
a resident individual with a mutant (starts from a resident ands at a mutant), is
an edge which connects the replaced resident with that mimdinidual from the
Mm, class ( edges connect the replaced resident with a mutant aages connect
an individual of theMm,r with a resident, and so there aralifferent ways of having
such a connection). This probability is given by

ir

> IR
k=1 i+j=k

(4.19)

Dmax

Hence, the probability that a mutant from Mg, class moves to thilm, 1 1 class
can be approximated by

1
D . . . .
max (iy+jo)/(i+)) i ir Har
> Ry E/ s =3 (4.20)
K=t i1 7=k 4] Pmax S iR

K=1 i+ 7=k
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In the same way, the probability that a mutant individuahfrtheMp,, class moves
to theMnm_1r41 class is equal to the probability that a neighbouring mutdnhat
individual is replaced by a resident. The probability oflsactransition is approx-
imated by the probability that a mutant individual of the plapion dies, is then
replaced by a neighbouring resident individual, and théaxeal individual is con-
nected to the mutant from thé,, class, i.e. by the probability

1
Dmax i Ga+iB) /(+) ] im Him

(Mij = &) ——=———- = = .
. ’ | Drmax . —
K= i =k F + s M —m F(Lpm —m)
KE1iT=k

(4.21)
The termM; j — i represents the number of mutants inNpy; class that can be
replaced by a resident such that the transition of a mutant theMy,, class to the
Mm-1r+1 class is possible. Whan=mandj =r, 1 is subtracted frorM,,, because
the movement of an individual from théy,, to theMm,_1 ;1 cannot be a result of
its own replacement. In other words, if a mutant from Mg, class dies and is
replaced by a resident, there are othlg{, — 1 mutants from that class that might be
connected to it and thus move to tkig,_1 (1 class. The teran;“fx Yitj=kiMij—m
corresponds to the number of edges that connect any mutartir(g from it), except
the specific one from th®y, class, to other mutants. The death and replacement
events have already happened and we are looking for the lplityp#hat a random
edge that goes from a mutant to another mutant is an edgeathia¢cts the replaced
mutant to a mutant from thiél,,, class. This edge obviously cannot be any ofrthe
edges of that individual.
By symmetric arguments, the probability that an individeaMes thdRm,, class
and enters th&y,1r—1 class is given by
N S
Dmax Z (R, —3il) (iv+jr5%/(i+j) IJIr - jr __ Hor (4.22)
K=1 i4]=k ) Hmax S Rt F(Lrr—T)
k=1 i+j=k

while the probability of leaving th&,, class and moving to thBm_1 41 class is
given by

1
Dmax (a+iB)/+i) ] jm Ham

i = e == . (4.23)
k—1i+Jz—k F P > M LR
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Hym B Hor

= = Ronr
4 FLyg F(Lgg —1) " >
R,
HQ(T‘ + 1) H4(7TL + 1)
= Rn-1,+1 = mt1,r—1
F(LRR - (7“ + 1)) ! FLur !
m r
— R, = M,
Fmy+7r8) ™| | F(ma+r8)" ™"
Hym Har
% A'fmm 7—57 M, mr
. F(Lyiyg — m) FLrm >
H3(r +1) M _ Mim+1) M,
FLRM Mm—1,r+1 F(LI\[M — (7TL T 1)) m+1,r—1

Figure 4.1: Diagram showing all the probabilities of transition from and to the clalskgs
andRny.

The transition probabilities of moving from and to th,, andRy, classes are
represented schematically in the diagram in Figure 4.1

The dynamics of th®mnax(Dmax+ 3) different classes of the population is de-
scribed by the following differential equation based compantal model

Moo :_i ( Har Him N r ) N Hi(m+1) -
’ F\Lrem Lum—m ma+rpB " F(Lmm — (m+1)) ’
I R (4.24)
Rmr = _% (LF:21 rt E;:Jr myTr(S) R + %Rﬁlﬁ_l
+ f(lejiJ(rrl—)k Ty ottt f(mar+ [B) s (4.29)

for {(mr):m>0,r > 0,1 <m+r < Dmax}-

The density of As in the population is given lpy = ZEL“TX S mir=kMmr/N, and
the density of Bs byog = 5 2™ 41— Rmr/N.

Note that for very large population sizes, the subtractmin® andm-+ 1 from
Lmm, andr andr + 1 from Lgg as well as those oj,i#;r in the termdH, andH,, in the
model (4.24)—(4.25), can be omitted since their effect gdigile (see for example
Lindquistet al. (2011) and Gleeson (2011) where in models of a similar raguch
subtractions are avoided). However, this would reduce tlearacy of the solution
of the model when the population size is small. Moreoverhdwd be mentioned
that the above subtractions might result in negative vatdied,,, and/orRm, for
some values om andr. This is due to the fact that the numerical solution of the
system might lead to non-integer values of these quantitiesh lie between 0 and
1. As aresult, the termsym —m, Lym — (Mm+1), Lkr—r andLrr— (r + 1) might
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become negative. This problem can be solved by setting tee®s to be bounded
below by 1, which is the minimum natural value that these tecan take.

4.2.3 Numerical examples and comparisons with stochastic sim-
ulations

In this section, we examine the effectiveness of the two@ppration models de-
scribed in Sections 4.2.1 and 4.2.2; the pairwise modell@mtleighbourhood Con-
figuration model. As specific examples we consider the emludf the population
when individuals play Hawk—Dove type games (see Sectio2(Maynard Smith
and Price, 1973; Maynard Smith, 1982).

We consider Hawk—Dove type games played on three commoatyfasnilies of
graphs; the random regular graphs, the random graphs arsddlefree networks.
The random graph we consider is an &dRenyi type random graph (Ebd and
Rényi, 1959) generated as described in Lindgatsal (2011). Assume a popula-
tion of N vertices with no connections between them. Firstly, eveon{connected)
vertex is connected to a random vertex with degree less lleamaximum allowable
degreedDmax. In order to ensure that the graph will be connected (theltdowia path
between every two vertices of the graph), initially a paiveitices is connected, and
then each of the remaining (non-connected) vertices isexied to a randomly cho-
sen vertex which is already connected, sequentially. Afterconnection of all the
vertices, two vertices with degree less thpax are chosen at random and become
connected. The last step is iterated until the desired geetlagree of the graph,
(k), is reached. The random regular graphs are generated irathe way as the
random graph by assuming tHag,ax = Kk, i.e. with the restriction that every vertex
has the same number of connections. The scale-free netalgraphs that have
power-law (or scale-free) degree distributions. Thesgarerated following the al-
gorithm of preferential attachment (Baéah and Albert, 1999; Albert and Baradd,
2002). The initial graph consists of a small numbemgivertices connected witly
edges. A new vertex of degree equahd@< my) is added to the graph and each of
its edges is connected to one of the existing vertices. Tolegtility that one of the
m edges is connected to vertewith degreek; is equal tok;/ z'j\‘zl Kj (preferential
attachment). This process is repeated until the networknsposed o vertices.
Given that this happens afte.= N — g iteration steps, the number of new edges
that will be added in the graph will be equalrta. Therefore, the network obtained
has average degree equal(io = 2(mt+1g) /N, which for sufficiently largeN is
well approximated by 2. Note that in all the graphs we consider, it is assumed that
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Proportion of Hawks in the population

Figure 4.2: Change over time in the proportion of individuals playing the Hawk strategy
in a Hawk—Dove game played on a random regular graph kvith4, a random graph with

(k) = 4 andDmax = 10, and a scale-free network witk) = 4. The solid lines represent
the solution of the Neighbourhood Configuration model, the dashed-dotegiripresent
the solution of the pairwise model, and the circles represent the averdd® atochastic
simulations. A 95% bootstrap confidence interval for the mean of the simulasuits is
also presented. The upper curves of each sub-figure represarddé of a game described
by the payoff matrix (1.19) wher¢ = 6, C = 10, f, = 4 andw = 1. The lower curves
represent the case of a game whére 4,C = 10, f, =4 andw = 1.

the edges between vertices are undirected, every two @efie connected with at
most one edge and there are no self-loops.

In all the examples, itis assumed that at the initial stata@process the popula-
tion consists of 50% of individuals playing the Dove strgtagd 50% of individuals
playing the Hawk strategy, randomly distributed among twiees of the graph, so
that there is no initial advantage to either of the strateglde population sizéy, is
relatively smallN = 400. The results of the pairwise model and the Neighbourhood
Configuration model are compared with the average of 100rdiitenetwork reali-
sations. The equilibrium densities of the strategies haenlmwbtained by averaging
the frequency over the last 5000 iteration steps in 4000@tite steps (for each
graph convergence to an equilibrium state was effectiveliyewed at a significantly
earlier time).

The numerical examples shown in Figure 4.2 indicate thatherhree types of
graph we consider, the prediction of the change in the frecjes of strategies over
time given by the solution of the Neighbourhood Configuratimydel (4.24)—(4.25)
agrees very well with the results of computer simulatiortge umerical results also
indicate that the more detailed model provides an appraxmavith improved ac-
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V=4, C=10, L:4, w=1 V=6, C=10, L:4, w=1
0.66

o
w
<3

0.657

o
w
X
T
oon

0.641

o
w
N
T
oon

0.63r o

o
w
T

o
0 0.62¢

o
N
©
T
o

0.61r

o

N

<)
T

0.61 o
o

Proportion of Hawks in the equilibrium

o
N}
N

0.59
4

5 6 7 8 9 1 5
Average degree of the graph

Figure 4.3: The proportion of Hawks in the equilibrium on random graphs of differen
average degreék). The maximum degree of a vertéay, in each of the graphs is equal
to (k) + 6. The squares represent the solution of the Neighbourhood Caatfiyumodel,
the diamonds represent the solution of the pairwise model, and the circleseapthe
average of 100 stochastic simulations.

curacy compared to the solution of the pairwise model. Altjtoit is observed that
contact structure has little effect on such evolutionanyatyics, the effectiveness of
the Neighbourhood Configuration model is clearer on hetereges graphs and in
general on graphs of low degree, when compared with the g@mmodel. As the

average degree of the graph increases, i.e. the homogenéity graph increases,
the predictions of both models are in good agreement withulsition results (see
for example, Figure 4.3).

Although the aim of this chapter is to present this powerfydraximation meth-
od for the approximation of the evolutionary game dynamitstructured popu-
lations, let us consider some main conclusions about tlextedff the population
structure on the outcome of the evolutionary dynamics in avk4d®ove game.
Specifically, we discuss how the Hawk and Dove strategiesaspin a population
represented by a random regular graph, a random graph aradeafie network.
Numerical examples suggest that increasing the heterageriehe graph favours
the emergence of the Hawk strategy. Following the updatsraf the VM, fitter
mutants that occupy vertices of high connectivity have aneiased chance to sur-
vive and reproduce (Soaat al., 2008; Hadjichrysanthoet al., 2011). Therefore, as
is observed in Figure 4.2, scale-free networks provide aowaging environment
for the Hawk strategy. However, the most important featdra graph that affects
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the evolutionary process is its average degree. The refudisr examples indicate
that in all types of graph we consider, a decrease of the ggeramber of neigh-
bours that each individual has tends to deviate the equiiibfrequency of Hawks
from the equilibrium frequency in the case of the well-mixempulation, and this
deviation is more pronounced for lower degree graphs. Ddipgron the values of
the payoffs, the decrease of the average degree of the meighimight enhance or
inhibit the use of the Hawk strategy (and thus the Dove ggateln particular, if
the payoffs are such that the equilibrium frequency of Hainks well-mixed pop-
ulation is less than half of the population, the decreasédefaverage number of
neighbours decreases their frequency at equilibrium ¢omgdi (at least when the
average degree is already sufficiently small). If the payafe such that the equi-
librium frequency in a well-mixed population is higher thhalf, the equilibrium
frequency will tend to increase as the average number ohbeigs decreases (see
in Figure 4.3 the effect of the variation of the average degrfea random graph in
two example games). Note that the improved approximaticgh@Neighbourhood
Configuration model when compared to that of the pairwise rnsdet very clear
in our examples presented in Figure 4.3, mainly due to thiscpdar example games
and the graphs on which the games are played. However, tpe sédhis figure is
to illustrate the effect of the average connectivity of thiap at the equilibrium
state of the system.

It should be noted that, due to the nature of the evolutiodgnamics as well as
to the nature of the game we consider, the evolution of theljadipn is very slow,
especially for graphs of low connectivity, and to speed wpdbolutionary process
and reduce the computation time, we reduce the populateenasid the number of
simulations realised. However, small population sizessandll number of realisa-
tions of stochastic simulations result in larger oscidas of the simulation results
due to the increase of the sensitivity of the process to ssigheffects. Increasing
the population size and the number of realisations, thecefs reduced and the dif-
ference between the predictions of the computer simulatom the predictions of
the Neighbourhood Configuration model decreases.

4.3 Discussion

In this work, we have investigated the stochastic evolatigrgame dynamics in
structured populations following the update rules of the ®{whamics, a dynamics
which is applied in many models that arise in various fields. il8¥lanalytic in-

vestigation of this dynamics is possible when populatioaseha simple structure,
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the study of the dynamics in complex structures requiresifigeof approximation

techniques. Here, we propose a Neighbourhood Configurataehifor the study

of the stochastic evolutionary dynamics of a two-strategiyng on complex graphs.
This modelling framework offers a flexible way to carry outystematic analysis
of evolutionary game dynamics on graphs and to establislrtkbeetween network

topology and potential system behaviours.

As an example, we have considered a Hawk—Dove game playadeia widely
used types of graph; random regular graphs, random graplscate-free networks.
The solutions of the model constructed in comparison wigtotiltcome of stochastic
simulations imply that the method followed is a powerful afctive method for
the approximation of such evolutionary processes. In amgicomparisons with
the results of the extensively used pairwise approximatiaygest that this method
improves the accuracy of the approximation solutions.

Although the aim of this chapter is the introduction of thedtdourhood Con-
figuration model for the approximation of evolutionary gady@mamics on graphs,
we have considered some important characteristics of taghgthat might affect
the evolution of a population when a Hawk—Dove game is plamdng individu-
als. The spatial effects in this evolutionary game haveivedeconsiderable atten-
tion in many previous works, including Killingback and D@#l{1996), Hauert and
Doebeli (2004), Tomassirgt al. (2006), Broomet al. (2010a), Voelkl (2010) and
Hadjichrysanthowet al. (2011). One of the main research questions is whether there
are structures and strategy update rules which favour ttsespence of the cooper-
ative Dove-like behaviour over the Hawk-like behaviour gamed to the evolution
in classical evolutionary game theory under the assumgliahthe population is
well-mixed and infinitely large. Killingback and Doebeli9q96) have shown that,
for a wide range of parameter values, the square latticetstel may favour the
Dove strategy, with respect to the equilibrium frequencipotes in the population
compared to the equilibrium frequency in the classical Hadwve game. On the
other hand, in Hauert and Doebeli (2004), extending thestnyation of the evolu-
tion in this type of game to a broader class of lattices anceuddferent strategy
update rules, the authors concluded that spatial strucsuelly does not promote
the evolution of the Dove strategy. Santos and Pacheco JZb@bved that among
other structures, in Hawk—Dove type games (specificallgherSnowdrift game),
under some specific strategy update rules, the evolutioheoDibve-like (cooper-
ative) strategies are facilitated particularly on scaéefnetworks due to the exis-
tence of highly connected Doves (see also Saatad., 2006a). Tomassiret al.
(2006), based on the results of computer simulations, hawsidered the game
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played among individuals on lattices, random graphs andl-smad networks and
shown that, compared with the case of the well-mixed poriathese types of net-
work might enhance or inhibit the use of the Dove strategy fitoportion of Doves
at the equilibrium state might be either higher or lower ttiaair proportion given
by the theoretical solution of the classical evolutionaayng theory), depending on
the update rule and the rattyC. In Broomet al. (2010a), Voelkl (2010) and Had-
jichrysanthouet al. (2011) it has been shown through an analytical and numerica
investigation that the Dove behaviour is favoured on somesitres with respect to
the probability and time to fixation. In this chapter, througumerical examples we
have shown that the population structure might signifiganfluence the evolution
of the population. The most important feature of the gragt #ifects evolution
in our examples seems to be average connectivity. Decrptsinaverage number
of connections of each individual increases the differdoetsveen the proportion
of Hawks from their proportion in the equivalent infinite hogeneous well-mixed
population, in the direction of the nearest absorptiorestdence, depending on the
values of the payoffs, the decrease of the average conitgdciithe graph enhances
or inhibits the use of the Hawk strategy. In addition, hejereeous graphs have
been shown to facilitate the spread of Hawks. Particuldnky,existence of highly
connected vertices promotes the Hawk strategy and saaaréitworks appear to be
the most hospitable environment among the graphs we hawidevad.

The approximation method presented in this chapter is ustédly a useful tool
which provides an effective way to consider evolutionargawyics on a wide range
of graphs. We believe that its use in future research cowl igisight into the in-
fluence of the population structure on the outcome of suclauahyrs (see Gleeson,
2011). Future work could involve the application of the N#agurhood Configura-
tion model in the investigation of other type of dynamics, égample birth-death
dynamics where the birth event happens first followed by #atldand replacement
events. One extension of the model could be the inclusionnofiation process, a
process that usually occurs in natural systems. For exampaild be assumed that
with a certain probability the offspring of an X individua not a copy of its parent
but is a Y individual. This would add some complication in thedel, because in
this case an X might be replaced by a Y, which is the offspriing meighbouring X
individual. Such an extension would allow us to considerdfiect of mutation on
evolution on graphs, an important factor that has rarelyntstedied. This method
is also amenable to be extended to dynamic graphs and trersfufther potential
advantages to modellers (see a modelling framework in freetibn in the context
of disease propagation in Marceetal. (2010) and Tayloet al. (2012)).
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CHAPTER 5

Models of kleptoparasitism on graphs

5.1 Introduction

The game-theoretical model of Broom and Ruxton (1998) on thiugan of klep-
toparasitic populations (see Section 1.6), as well as & langount of work which
has followed based on this model, assumed that the populatiforaging animals
is an infinitely large and well-mixed population where evarymal is equally likely
to meet any other animal. However, in natural situationsnals usually forage in
small groups forming some complex relationships and satiatture (e.g., Krause
et al, 2007; Croftet al., 2008). A number of stochastic models have been devel-
oped to consider the evolution of kleptoparasitic popatatiof finite size (see Yates
and Broom, 2007; Crowet al., 2009). Moreover, the effect of the structure of such
populations on the evolutionary process remains a signifiegsearch question.

In this chapter, we explore the role of the population striteein the evolution
of kleptoparasitic populations. We extend the original elad Broom and Ruxton
(1998) by assuming that animals occupy the vertices of &cgyaaph. First, we
consider a regular graph, i.e. the case where each animlaé gfdpulation has an
equal number of connections. Then, we examine the evoluidhe population
when animals have more complex structures represented agdom graph or a
scale-free network.

5.2 Models of kleptoparasitism on random regular
graphs — The pair approximation model

In this section, we consider the basic model of Broom and Rui®98) (also
discussed in Section 1.6) assuming that the animals of tpalamon occupy the
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vertices of a regular graph.

In order to consider the dynamics of a population of whichviaials are placed
on a regular graph, we use the pair approximation methodgiMiaiet al., 1992;
van Baalen and Rand, 1998; Keeling, 1999; Eames and Keelifg, 2buse and
Keeling, 2011, see also Section 4.2.1).

Assume that animals of a finite population occupy the vestafea regular graph
of degreek, i.e. every animal has exactkyneighbours. LefX] be the number of
animals in stateX, [XY] the number of pairs between an animal in stétand an
animal in statéy, X —Y, and[XY Z the number of triples of typX —Y —Z. X, Y,
andZ represent any of the states that an animal can be in; thehdegustateS, the
handling statéd and the fighting staté. Note that two connected animals in the
fighting stateF might fight each other or they might fight with another animék
distinguish these different types of pairs of animals inftgkting state by denoting
by [FF;j] the number of pairs of animals which are fighting each other Fj, and
by [FF] the number of pairs of animals which are involved in a fight éne not
fighting each othef: — F.

The total population sizé, is assumed to be constant and so

[S+[H]+[F]=P. (5.1)

Note thatX — X pairs are counted twice (once in each direction, and tKO§ is
always even) whileX —Y pairs are counted once in each direction. There are 10
distinct pairs. However, due to the fact that] = [Y X] and that

[SS+ [HH] + [FF] + [FFj] +2[SH] + 2[SF| + 2[HF | = kP, (5.2)

the dynamics of the 10 pairs, can be described by the dynarhady 6 pairs.

As in the original model, the animals in the searching stathange to the han-
dling stateH at ratev; f, where the time units depend on the animal species, but
they are usually seconds or minutes (see for example, Haatkady 1989). Thus, at
the same rat&5— S, S— H andS— F pairs becom&—H, H —H andH — F pairs,
respectively. Single animals in statemove to stateS at rate Yt, and thus, with
the same rat&—H, H —H andH — F pairs becom&— S, S—H andS— F pairs,
respectively. A pair consisting of a searcher and a han@lleH, engage in a fight at
rate pvy. Hence, at rat@vy, pairsS—H becomer; — Fj. Thus,pvy[SH) single ani-
mals in stateSand pv,[SH] single animals in statd move to staté. If S—H pairs
are connected to an animal already involved in a fighthen the triples — S—H
andF —H — SbecomeF — Fj — Fj, both at ratepv,,. Hence S—F andH — F pairs
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becomer — F pairs at ratepvy[FSH| and pvy[FHS), respectively. If ar5— H pair
engage in a fight and this pair is connected to either an arSmiaan animaH such
thatS— H — Sor H — S—H triples exist, ther5— F andH — F pairs, respectively,
will be generated whil&— H pairs will be reduced. Therefore, the numbeBef F
andH — F pairs is increased with raev,[SHS and pv,[H SH], respectively, while
the number ofS— H pairs is decreased with ra,([SHS + [HSH]). Similarly,
if an S—H pair is connected to aBin a way a tripleS— S— H exists, then the
S— Spairs becom&— F pairs at ratgpv,[SSH. By symmetryH — H pairs become
H — F pairs at ratepv,[HHS. Fights end at rate /2, and therefore with this rate
pairs of animals leave the fighting st&te Half of them move to th& state and half
of them move to thél state. With this ratef; — Fj pairs becom&—H pairs as well.
The pairs of animals which consist of at least one animallirain a fight, i.e. the
S—F,H —F andF — F pairs also becom8—H andS— S H - SandH —H, and
S—F andH — F pairs with rate Yt,, respectively (with probability 0.5 the animal
in stateF of each of the pairs will be either the winner or the loser effight).
According to the above, the dynamics of the different sisglad pairs can be
described by the following system of differential equasion

S = LM+ LIF - e 115 - punlSH, (59
S = TS+ £ [Fl - LH] — pwfSHL 54
dlF] _ 2
T 2pvh[SH| —t—a[F], (5.5)
dEjif? _ é[SH]thE[SF] —2v¢f[SS— 2pun[SSH. (5.6)
—d[Z'H] — v F[SH + 2[HF] — 2[HH] - 2pvy[HHS, (5.7)
t ta th
e = 20w (FSH + [FHS) - [FF ) )
WA 2punisH - 2[FF). (5.9)
Sl = V1594 HH]+ = ([SF+ [HF) + [FF)) -
Vi f[SH — tlh[SH] — pvi ([SH] + [SHS + [HSH)), (5.10)
@ _ tl[HF] + LIFF] 4 pvn ([SHS + [SSH) —
h ta

—vi f[SF — tE[SF] — pvh[FSH], (5.11)
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dHF 1
% = v¢ f[SF + t—[FF] + pvh ([HSH + [HHY) —
a
— 1R = 2[HF] — pulsHE. (5.12)
th ta
The number of the triple\BC| can be evaluated by using the following moment

closure approximation (see for example, Keeling, 1999; Ra8€9)

k— 1) [AB|[BC]

IABC| = ( ; B (5.13)

Note that instead of closing the system of equations at tred t& pairs by approxi-
mating the triples by expressions in terms of pairs, it isspae to close the system
at higher order configurations, for example at the leveliptds by approximating
the forth-order moments by expressions in terms of triptebthus in terms of pairs
(see for example Bauch (2005) for the derivation of a triplerapimation in an SIS
epidemic model). This can result in a better approximatithe solution.

5.2.1 Equilibrium points

The equilibrium points of the system of equations (5.3&fpare the solutions of
the system

di d[H] d[F] d[S§ d[HH] d[FF]

dt dt dt  dt  dt dt
B d[FF;] B d[SH| B d[SF] B d[HF] B
- dt dt  dt dt 0. (5.14)

Approximating the number of triples by the expression ($.4/3d using equation
(5.1) we find that at the equilibrium the number of singlesieg by

[S=m, [H]=tyvifm, [F] = ptatavs funa, (5.15)

and the number of the different pairs by

[S§=nq, (5.16)
[HH] =t5(v )%, (5.17)
(k-1 2 pPt2t2(ve )22
[FF]= < " ) - : (5.18)
[FFj] = ptatavs funq, (5.19)
[SH) =thv fq, (5.20)
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k—1\ ptitaVs f vho?
Fl = 21
s = () P (5.21)
_ (k=1\ ptta(vs f)2ung?
[HF] = ( " ) - . (5.22)
We have set P ot tavs f
P —PhlaVs TVRQ
m= 1tour f (5.23)
and
kP (F = \/F7 = 4pttavi TG
q= , (5.24)
2pthtavhvs FG
where
F =ty f (2kp1;avh +thve f + 2) +1, (5.25)
G = tnvs f (Kptavn +thvi f +2) + 1. (5.26)

Note that in expression (5.24), only the point where the sgjuaot is subtracted
can give a biologically plausible equilibrium solution,da@ise only then cam, in
(5.23), be non-negative.

5.2.2 Effect of the degree of the graph

The decrease of the number of neighbours of each animalakeEs¢he rate at which
animals engage in fights for food. Therefore the number ahalts which are either
searching for food or handling a food item at each time insesgsee Figure 5.1).
However, it is shown that decreasing the number of neighbg@nimals has almost
the same effect as decreasing the rate at which foragersistecchandlers in a
homogeneous well-mixed population, i.e. as decreaginlumerical investigation
has shown that whem, = 1/k, although an increase in the density of animals in
stateF and that of pairsS—S H —H, S—H andF; — Fj is observed with the
decrease of the degree of the gr&plas well as a decrease in the densitieS,df,

F —F,S—F andH — F, these changes in the densities are almost negligible ¢see f
example Figure 5.2). A more pronounced effect of the vamnatif k is observed in
the densities oF — F andF;j — F; pairs. In the example of Figure 5.2b, the actual
number off; — F;j pairs,[FF;], decreases dsincreases due to the fact that the rate
at which animals engage in fights over food is inversely progaal to k (when

vh = 1 the actual numbeFFj] increases ak increases but the density Bf — F;
pairs decreases as well). On the other hand, the density-df pairs increases as
k increases because the higher the number of connectionstofeanal, the higher
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Figure 5.1: Change over time in the density of search@s ltandlers i) and fighters )

on a random regular graph wikh= 4. The circles represent the average of 1000 stochastic
simulations. The respective solution in the well-mixed population is representbe solid
line.ta/2=05t, =1L vif=1Lv,=1p=1P=1
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Figure 5.2: (a) The equilibrium density of handlerkl) and fighters), and (b) the equi-
librium density of the pair& — F andF; — Fj, on random regular graphs of different degree.
ta/2=0.5t, =1 vif =1,vy=1/k p=1,P= 1. Note that in this example the equilibrium
density of searchers and that of handlers are equal.

the chance of an animal being next to another animal whiclyigifig.

Hence, the evolution of a kleptoparasitic population wheimals are placed
on a regular graph is not significantly affected comparedch& dvolution of the
respective homogeneous well-mixed population. This isiyiaue to the fact that
the number of connections is the same for every animal arsbetvery animal has the
same chance to engage in an aggressive interaction. Incaddili animals discover
food items at a constant rate, independently of the pomuatiructure; obviously
this reduces the effect of any population structure in ganer
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5.2.3 Clustering effect

Using the moment closure approximation (5.13) to approientaples in terms of

pairs, we ignore the actual structure of the graph. For el@mysing (5.13), we
count the triples as three vertices connected in a line iggdhe fact that the three
vertices might form a loop. For instance, in a triple wheBamdividual is connected
to anA individual and aC individual, A can also be connected @ The most

commonly used method to take into consideration such takandoops, is to use
the following closure approximation (see Keeling, 1999):

(k—1) [AB][BC]
k B

N [AC]
() 627
@is defined as the ratio of the number of triangles to the nurobersnnected triples
and is usually called thelustering coefficientWheng is small, paired individuals
are more likely to have different neighbours while wigeis large many of the neigh-
bours of two connected individuals will be common. Ko 0 this approximation

is equivalent to (5.13). Similar approximations can be trmiesed for larger loops,
e.g. squares. However, the effect of loops of higher thagetkiertices will be much
less than the effect of the loops of three vertices.

Considering the effect of the ratip on the dynamics of kleptoparasitic popula-
tions described by the system of equations (5.3)—(5.18)shiown that the variation
of ¢ does not greatly affect the dynamics of the different groups ¢ increases,

a small decrease is observed in the density of the subpapulat fighters, and
thus the density of searchers and handlers increases (e B.3a for an exam-
ple). One reason for this is that a searcher in a tripleH — S or a handler in a
triple H — S—H are less likely to fight if the triples form a triangle, i.e.tlfe two
searchers of the first triple and the two handlers of the sktaple are also con-
nected. The number of all of the pairs of animals in the défferstates, apart from
the S— F andH — F pairs, decreases with the increasegofwith the number of

F — F pairs being the most affected (see Figure 5.3b) due to théHfatthe chance
of a searcher or a handler being involved in a fight reduceshis forms a triangle
with anFj — F;j pair. The number o6—F andH — F pairs increases (see Figure
5.3b). This is mainly due to effect of the fact that when a figikes place between
S—H pairs which are connected to a searcher or a handler adinsich as triples

X —H —SandX — S—H exist, then twoX — F pairs are created if those triples form
a triangle, i.e. wheiX andS, andX andH, respectively, are also connected. At the
same time, as mentioned above, the chance of arXnedgaging in a fight in this
case decreases. Thus, the numbex efF pairs increases. The number of the pairs

[ABC| = <1—<p+cp
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Figure 5.3: (a) The equilibrium density of handlerd ) and fightersi), and (b) the equilib-
rium density of the pair& — F andS— F, on a random regular graph of degiee 4 as the
ratio @ varies.ty/2=0.5t, =1, vi f =1 v, = 1/k, p=1,P = 1. Note that in this example
the equilibrium density of searchers and that of handlers are equal.

)

S—F andH —F is the most affected by the variation @fafter the number of — F
pairs. Note that as the connectivity of the graph increabesabove effect of the
ratio ¢ decreases even more.

5.3 Models of kleptoparasitism on random graphs
and scale-free networks

In the previous section, it has been shown that in homogene®eill-mixed klep-
toparasitic populations described by the model of Broom anxtd®u(1998), the
decrease of the number of connections of each animal andh#drge of the actual
structure of the population does not significantly affee évolution of the popu-
lation, given that this decrease is the same for every anitdailvever, numerical
investigations show that evolution might be affected if #remals are placed on
degree-heterogeneous graphs and this effect becomes nooreupced when the
heterogeneity of the graph increases.

Figure 5.4 and Figure 5.5 show the variation in the densitgeairchers, han-
dlers and fighters over time when the structure of the pojomas represented by a
random graph and a scale-free network, respectively (se@8d.2.3 for a descrip-
tion and instructions for the construction of these graptd)hough the effect on
the density of the three subpopulations is not clear whepdpelation structure is
represented by a random graph with low-degree heterogetieite is a pronounced
effect when the population structure has the features otkedee network. The
existence of highly connected animals reduces the numbéglds taking place
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Searchers Handlers Fighters

0.9 0.9

0.8 0.8

0.7 0.7f

0.6 0.6

0.5 0.5f

0.4 0.4r

0.3f b 0.3 0.3f

0.2r 9 0.2 0.2r

0.1r 9 0.1 0.1r

0 2 4 6 8 10 0 2 4 6 8 10 2 4 6 8 10
Time

Figure 5.4: Change over time in the density of search@s ltandlers i) and fighters )

on arandom graph with average degfee= 4 and maximum degree of a vertex equal to 12.
The circles represent the average of 1000 stochastic simulations. Sgectige solution in
the well-mixed population is represented by the solid lig¢g2 = 0.5,t, = 1,vif =1, v, =
1/(k),p=1P=1.
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Figure 5.5: Change over time in the density of search&slfandlersif) and fightersi) on

a scale-free network with average degtke= 4. The circles represent the average of 1000
stochastic simulations. The respective solution in the well-mixed populationrissested
by the solid linet,/2= 0.5t =1, vif =1 v, =1/(k),p=1,P=1.

over food and thus the number of animals searching for foodamdling a food
item increases. This is due to the fact that the lowly coregeanimals placed on a
scale-free network that are linked with a highly connecteidhal have a very small
(or even zero) chance to interact aggressively, eithertaskang searchers or at-
tacked handlers, especially in the case where the highlyexiad animal is already
involved in a fight. This has a direct consequence on the foeodwmption of an-
imals with high connectivity. The higher the number of cortimns of an animal,
the higher its chance of attacking a neighbouring animal seaacher or being at-
tacked by other animals as a handler. Thus, animals withd¢oghectivity most of
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Table 5.1: The equilibrium proportion of searchers, handlers and fighters tlwafpgover-
tices of degreel in a scale-free network with maximum degieg.x. Recall that the degree
distribution of a scale-free network follows a power law, and thus suaphg have few
large degree vertices and many small degree vertices. The resultstpreaee the average
of 200 simulationst,/2 = 0.5,t, = 1,v¢ f = 1,v, = 1/(k), p=1,P = 1. The foraging time
is equal to 100. Note that the average food intake rate of the populatioedpderca scale-
free network is equal to 0.4321 and is higher than the intake rate of the infieitenixed
population described by the model of Broom and Ruxton (1998), whichualdo 0.4142

Degree of the vertices]|

1<d < {Drax | 2Dmax< 8 < ZDmax | Dmax< d < 2D | $Dmax< d < #Dimax | EDmax< d < D
Proportion of Searchers | 0.4394 0.2308 0.1850 0.1500 0.0500
Proportion of Handlers 0.4421 0.2258 0.1650 0.1450 0.0550
Proportion of Fighters 0.1185 0.5433 0.6500 0.7550 0.8450
Per capita food consumption  0.4383 0.2260 0.1691 0.1188 0.0892

the time fight over food with another animal resulting in thduction of their food
consumption rate.

Table 5.1 shows how the animals in the searching, handliddighting states
are distributed over the vertices of different degree inadestree network when the
system reaches an equilibrium state in a simulation modeledl as the per capita
consumption of food items for those animals. Note that algfiothe increase of the
heterogeneity of a graph results in the decrease of the ingn@itio of animals at
highly connected vertices, the average handling ratiotlamsithe food intake rate of
the population, increases compared to that of the resesti-mixed population
of the same size, or the infinite homogeneous well-mixed latjom of the model of
Broom and Ruxton (1998). This is because, increasing the dejreeterogeneity
of the graph, the number of highly connected vertices dseeand thus, the number
of less connected vertices increases. Many of the animaleipoorly connected
vertices have a common connected animal which most of theeftghts with one of
them. Hence, the other animals can search, find and conswa&vith a very small
risk of being engaged in an aggressive interaction.

The average food intake rate calculated from the simulanodel is equal to
0.4321. Thisis smaller than the intake rate predicted byatmaula (1.42) of Broom
and Ruxton (1998). Th