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Abstract 

This thesis deals with a new solution for the problem of eigenstructure assignment 

in control systems design. A wide range of challenging issues is examined involving 

the problem of eigenstructure assignment and associated system properties through 

different forms of complexity which are strongly related to control system design. In 

this thesis, specific attention has been given to the issue of skewness of the closed-

loop eigenframe of the state matrix.  In fact, the aim is to develop a new 

methodology for determining the best angle between closed-loop eigenvectors by 

optimising the minimal condition number of the closed-loop eigenvector matrix.  

This problem is strongly linked to sensitivity of eigenvalues to parameter 

uncertainty, perturbations to model parameter uncertainty. The importance of this 

methodology can be expressed in terms of results related to the Sensitivity of 

eigenvalues, Relative measures of controllability and observability and also 

deviations from strong stability to overshooting behaviour. Among this variety of 

eigenstructure assignment methods, special consideration has been paid to 

Geometric Theory [4], [5], which introduces an alternative solution to the 

assignability of spectrum of controllability subspaces (cs) based on an eigenvector 

approach and then develops a new pole assignment algorithm based on open-

loop/closed-loop spectra as a practical application of this approach. In order to 

tackle the problem of measuring the skewness of angles between closed-loop 

eigenvalues, some measures for Eigenframe skewness have been defined in general 

and so the necessary and efficient conditions have been derived for the angle 

between some subspaces in a direct sum decomposition to be maximized. This has 

been done via three metrics; Condition Number, Determinant of Gram Matrix and 

Singular Values.  The thesis presents the parametrisation of closed-loop eigenframes 

result by the method generated in [4]. Within this thesis, a non-smooth algorithm has 

been developed in order to select the most orthogonal closed-loop eigenframe and so 

the influence of selected closed-loop spectra.  Also, the parametrisation of 

controllability subspaces in a standard direct sum decomposition using matrix 

fraction description (MFD) has been derived. Within this thesis the construction and 
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the existence of controllability subspaces connected to (A,B)-invariant subspaces, has 

also been studied. In addition, an algebraic description of the total system behaviour 

which leads to an algebraic characterisation of the total input, state and output 

behaviour in an implicit formulation is given based on properties of MFD 

descriptions, a topic which remains open for future studies. 
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CHAPTER 1 

 

INTRODUCTION 

1.1. Introduction 

The purpose of this thesis is to study the problem of eigenstructure assignment in 

control systems design. This is achieved via a new methodology which relies on the 

minimisation of the skewness of the eigenframe of the state matrix. This reduces the 

sensitivity of the system’s eigenvalues to model perturbations and has as a result 

improvement of robustness of the system. The problem of eigenstructure assignment 

has a long history going back to the works done in 1975 [40], [98], [99].  

Despite considerable work in this area, a number of fundamental issues still remain 

open and a number of key problems have not been properly addressed. In this work, 

the main emphasis has been on defining frames which are as orthogonal as possible. 

This guarantees minimal eigenvalue sensitivity due to a classical result by Wilkinson 

[1], applicable to the case of real distinct eigenvalues. The result in [6] has been the 

main motivation behind the minimisation of sensitivity of eigenvalues to     

parametric uncertainty. 

The property of minimal eigenvalue sensitivity is important both for Numerical 

Analysis and for Control. In Numerical Analysis, uncertainty arises due to finite 

precision effects and the accumulation of numerical errors during the execution of 

various steps of an algorithm. In Control, uncertainty normally arises due to model 

errors and is in the form of model-structured uncertainty (i.e. uncertainty arising due 

to incorrect model structure), parametric uncertainty (e.g. imprecise knowledge of 

coefficients of a differential equation) or unstructured uncertainty (e.g. due to 

ignoring high-frequency dynamics or ignoring high-frequency modes when 

approximating a distributed system by a finite-dimensional model). In such cases, 
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insensitivity of the eigenvalues of the (closed-loop) state matrix is a highly desirable 

property of the feedback system since it can provide robust stability and robust 

performance properties to the design, i.e. avoiding loss of stability of performance 

characteristics due to the effects of model uncertainty.  

The overall area of research in this field may be grouped to a number of areas, where 

particular aspects of the problem are considered. We may distinguish: 

Problem Area I - System Properties and Eigen-frames: This area is crucial for design 

and relates to the problem of distribution, selection of poles and eigenstructure and 

overall system performance. Robustness, seen in a partial way, has been the 

dominant driving force in recent works done in the area of control.  

Problem Area II - Parameterization of Eigen-frames: Additional work is needed in 

providing alternative descriptions that may be suitable for addressing different 

design issues. Evaluation of existing parameterizations, Minimal bases 

parameterisation of eigen-structures, Open-closed loop spectra parameterisation and 

related topics belong to this area. 

Problem Area III - Design of Compensation Schemes for Achieving Desired                                                    

Frame Spectrum: The design of compensation schemes involves the selection of 

spectra and eigen-frames which satisfy certain criteria and their realization via 

specific feedback scheme configurations. In particular the following two problems 

can be distinguished: 

     (i) Selection of Eigen-frames 

    (ii) Feedback Realisation of Selected Eigen-frames 

The key issue in the first area is the development of measures for orthogonality and 

other properties of eigenframes and then the definition of appropriate optimization 

problems that can produce the “best” - in some sense - frames.  

Problem Area IV - System Potential for Delivering Eigenstructure Solutions and 

Integrated Design: The basic properties of the parameterisation schemes, as well as 
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the nature of optimal solutions and the feasibility of their realisation depends on the 

properties of the system model on which the various problems are posed. 

Investigating the links between system model and its potential for a design solution 

is the subject of the work here.  

The essence of the work is to use this knowledge at the stage of design, redesign of 

system model, when there is the possibility to enhance the potential of the model to 

deliver solutions for multi objective and multi constraint type problems. 

The above four areas are strongly interrelated. Note that most of the work so far has 

been in areas (II), (III), some in (I), but little in (IV) [3]. Within the current research 

and from the above problem areas, various problems related to the orthogonality of 

eigen-frames and robustness have been studied. These include the optimal choice of 

eigen-frames [6] which guarantees minimal eigenvalue sensitivity via a 

generalization of a classical result by Wilkinson [1], the definition of appropriate 

measures of “skewness” and the optimal choice of controllability subspaces in a 

standard direct sum decomposition using matrix fraction description (MFD).  

This present research aims to develop a new methodology for determining the best 

angle between closed-loop eigenframes by computing the minimal condition 

number of the closed-loop eigenvector matrix.  The importance of this methodology 

can be expressed in terms of results related to the Sensitivity of eigenvalues, Relative 

measures of controllability and observability and also deviations from strong 

stability to overshooting behaviour. 

1.2. Objectives  

Our main focus within this presented thesis has boon on the following objectives:  

Objective (1): Review Existing Methodologies for Eigenstructure Assignment. 

Objective (2): Develop Eigenstructure Parameterisations suitable for Eigenstructure 

Assignment. 

Objective (3): Define measures for Eigenframe skewness. 
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Objective (4): Develop optimisation algorithms for selection of the most orthogonal 

frame and consider the influence of selected closed-loop spectra in such 

optimisations.  

In fact, similar to any other research, we first will review some of existing 

methodologies around Eigenstructure assignment in order to explore the 

fundamentals and also to evaluate their pros and cons.  

Among this variety of eigenstructure assignments and within this current research, 

the main attention has been paid to method introduced by Prof. Karcanias [4]. He 

first presents an alternative solution to the assignability of spectrum of 

controllability subspaces (cs) based on an eigenvector approach and then a new pole 

assignment algorithm has been derived as a practical application of this approach.  

In order to tackle the second objective, we then have developed a parametrisation on 

the closed- loop eigenvectors obtained from the method in [4].  The purpose here is 

to then work on this parametrisation and to improve the stability of the closed-loop 

control system with the direct attention to the condition number of the closed-loop 

eigenvector matrix.  This in fact will result in a better closed-loop system 

performance based on the fact that the overall sensitivity of the system or the 

skewness of closed-loop eigenframes is minimized.  

In general, the problem that frequently emerges in the study of performances of 

linear systems is the issue of “skewness” of eigenframes. This problem is linked to 

sensitivity of eigenvalues to parameter uncertainty, perturbations, as well as 

sensitivity of Nyquist diagrams to model parameter uncertainty. These skewness 

properties are also linked to measures of controllability and observability, when 

these are assessed in their model setting.  

So far, the measure of skewness has been considered for eigenframes corresponding 

to distinct eigenvalues via standard tools which include the Gramian, Singular Value 

Decomposition and Condition Number. For eigenframes corresponding to repeated 

eigenvalues or complex eigenvalues, however, there are no uniquely-determined 

basis-sets, despite the fact that the corresponding subspaces are uniquely defined.  
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Consequently, prior to determination of objective Two, we have addressed a general 

problem of development of measures of “skewness” between subspaces, defined via a 

direct sum decomposition of the state space and by developing the concept of angle 

between subspaces.  Three measurement tools have been applied in order to develop 

desirable outcomes for this objective. These tools are: Condition Number, 

Determinant of Gram Matrix and Singular Value Decomposition (SVD).  Using these 

measurement tools, the objective is to derive necessary and sufficient conditions in 

each case, such that, the overall angle between subspaces in a direct sum 

decomposition is minimised.  

Finally, the last objective will be to select the most orthogonal closed-loop 

eigenframe through development of a non-smooth optimisation algorithm and so 

considering the impact of selected closed-loop spectra in such optimisations.  In fact, 

the problem will be to use one of those measurement tools applied to previous 

objective and generate the most orthogonal closed-loop eigenvector matrix such that 

error is minimised.  

1.3. Main achievements 

This thesis provides a structured and powerful new approach based on the results 

from Geometric Theory [5], [100], [101] which is an alternative to the work of 

Kaustky et al., [6], on the problem of perturbation of the eigenvalues and 

corresponding eigenvectors, by optimizing the condition number of the closed-loop 

eigenvector matrix. 

The main achievement of the thesis is the development of a closed-loop eigenframe 

based on the following main principles: 

i. A parameterisation of controllability subspaces (cs) leads to a family of direct 

sum decompositions of the state space. 

ii. In every controllability subspaces (cs), a set of possible closed loop 

eigenvectors associated with a given spectrum can be defined. 
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iii.  Define measures for the skewness of direct sum decompositions of the state 

space. 

iv.  Develop necessary conditions for minimising the skewness of the direct sum 

decomposition of the state space and algorithms for selection of the most 

orthogonal set of closed-loop eigenvectors in a cs.  

In fact controllability subspaces are (A, B)-invariant subspaces with the property that 

any two points may be connected by some appropriate trajectory generated by a 

control input such that the trajectory always remains in the given space [9]. Their 

spectra are not fixed, and so the question arises as to whether or not such subspaces 

may assume any given spectrum. An alternative to the solution, already established 

based on an eigenvector approach, [10], is proposed here and involves the 

construction of characteristic bases having as a spectrum the set of assignable 

frequencies. We, however, have focused on the alternative parameterisation of 

eigenframes, [4], based on the property that such frames are arbitrarily assignable 

spectra that are characteristic bases of controllability subspaces, where we are 

searching for stabilisation, rather than exact eigenvector selection based only on 

frequency assignment. 

Then, by defining and using three measurement tools which have been introduced 

earlier during this chapter, we have provided detailed and necessary conditions for 

the skewness of direct sum decompositions of the state space to be minimised.  

Finally, a non-smooth optimisation algorithm has been developed in order to select 

the most orthogonal set of closed-loop eigenvectors in a cs. Numerical examples 

have been presented in order for accuracy of the results to be tested where it has 

been necessary. The selection of the most appropriate stable spectrum leading to 

optimization of the orthogonality of the eigenframe has been considered for small 

dimension systems and the development of a procedure for the general dimension 

case remains an open question. 

1.4. Summary of upcoming chapters 

The structure of the thesis is as follows:  
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Chapter Two shall give a brief account of some of the mathematical and control 

topics which will be required in the reminder of this present research. Through its 

mathematical section, the definitions and/or theorems corresponding to some key 

concepts such as Condition number, Gram matrix, Singular value decomposition, 

Jordan Block, Vandermond matrix, etc are presented and proofed whenever it is 

strongly linked to the practical techniques which are used subsequently.  The same 

work has been also done on some control-related fundamentals which are well 

connected to our main objectives of this presented thesis. These elements include 

Matrix Fraction Description (MFD), Minimal Bases of Matrix Pencils and their 

structures.  These will lead to the study of controllability subspaces, which includes 

the important topic of matrix parameterisation of controllability subspaces through 

later chapters. 

Chapter Three contains the literature review on Eigenstructure assignment 

including the relative basic concepts and background results. Throughout this 

chapter, a brief review of the concept of eigenvalues and eignevectors and their 

corresponding theorems is given. Then by reviewing the link between closed-loop 

eigenvalues and feedback, the problem of eigenstructure assignment has been 

reminded and reviewed through state and output feedbacks. Then some of main 

results achieved around state and output feedbacks have been presented including 

parametric cases. 

The main part of this chapter is to study the theory of perturbation, introduced by 

Wilkinson, [1], and the corresponding results achieved by Kautsky et al., on robust 

eigenstructure assignment, [6], which have been presented in details.The importance 

of this part is under the fact that our main achievement of the presented thesis is in 

parallel to the work done by Kaustky et al., where in our presented method, we 

consider  a set of possible closed loop eigenvectors associated with a given spectrum 

in a controllability subspaces (cs) and use a new parameterisation of closed-loop 

eigenvectors based on the polynomial characterisation of controllability subspaces 

[8], [96].  Finally, this chapter will review some other important results in the area of 
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eigenstructure assignmnets in order for a reader to obtain some more useful 

information around this subject.  

 

Chapter Four presents the concepts of A- and (A,B) –invariant subspaces, followed 

by the construction and the existence of  controllability subspaces connected to  

(A,B)-invariant subspaces.  Through this chapter and from the geometric theory’s 

point of view, firstly the motion of eigenvectors within an A- invariant subspace of a 

linear system is reviewed and then by extending this matter to the (A,B)-invaraint 

subspaces, the Rectilinear motion of Nonautonomous system in the input output 

and state spaces is studied and presented. This will follow by the study of link 

between Simple Rectilinear Motion and one or R-dimensional (A,B)- invariant 

subspaces. Finally the concept of controllability subspaces is discussed in depth as 

the result of characteristic decomposition of (A,B)- invariant subspaces. 

Within Chapter Five, the problem of eigenvector frame parameterisations is 

considered via two different parameterisations: first is the parameterization of 

closed-loop eigenframes based on the open and closed loop spectra and the second is 

based on the algebraic characterization and parameterization of controllability 

subspaces.  These methods are in fact produced by Prof. Karcanias, [4], through his 

tremendous works done on the area of control system design theory.  

Through this chapter, the relative fundamentals of each method are well-explained 

and then by introducing the Minimal Dimension Controllability Subspaces, 

assigning the spectrum of a controllability subspace is discussed and reviewed. This 

is then led to the Eigenvalue Placement algorithm based on mobility of Open to 

Closed Loop Spectra introduced by Prof. Karcanias [4].  

In this presented thesis we have used this algorithm and as the result have generated 

a general parametrisation of corresponding closed-loop eigenvectors and so have 

introduced an optimisation problem in order to select the most orthogonal closed-

loop eigenvectors and so to obtain a closed-loop system with the minimum 

sensitivity. The solution to this optimisation problem itself will then be presented in 
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Chapter Eight where this problem has been tackled and solved by a non-smooth 

optimisation method.  

Chapter Six contains one of the main topics of this research: This is the problem of 

minimising the angle between subspaces in a direct sum decomposition which will 

be used in order to obtain the solution for the optimisation problem introduced at 

the final part of Chapter Five. During this chapter we tend to overview the issue of 

“skewness” of eigenframs in general which is linked to sensitivity of eigenvalues to 

parameter uncertainty, perturbations, as well as sensitivity of Nyquist diagrams to 

model parameter uncertainty. The objective of this chapter is to develop some 

measures of “skewness” between subspaces defining a direct sum decomposition of 

the state space and thus develop a concept of angle between these sets of subspaces. 

In fact our main aim in this chapter is to provide the required new concept of the 

relative positioning between subspaces that can be used in quantifying Sensitivity of 

eigenvalues as well as Relative measures of controllability and observability and also 

Deviations from strong stability to overshooting behaviour and for this purpose we 

will use  The Gramian (determinant to be maximized), The Condition number (to be 

minimized ) and The Spread of singular values or a deviation measure of the 

singular values (which is minimized), as our three measurement tools. In this 

chapter we will proof that no matter which measurement is used, in all these cases 

the optimal condition arises when orthogonality conditions apply. The theoretical 

results are also supported by a number of numerical examples. 

Chapter Seven presents an algebraic description of the total system behaviour which 

allows the study of closed loop eigenvectors in a systematic way by providing new 

parameterisations. This will then leads to an algebraic characterisation of the total 

input, state and output behaviour in an implicit formulation and it is given based on 

properties of MFD descriptions which will remain open for future studies. 

During this chapter, a description of an implicit system is given followed by its 

relative issues such as Duality and corresponding system behaviour. Then the 

computation of input-state generator pairs, [4], is reviewed followed by Closed Loop 

Eigenvectors and their link to the frequency Transmission. Then we will study the 
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impact of pole assignment using output feedback on closed-loop eigenvectors, this 

time via MFD’s. This will follow by a brief review of the link between system 

frequency and poles and zeros of the system since each of these is strongly link to 

the overall behaviour of the system. We then introduce new route for designing of 

State Feedback Controllers by using Eigenvector parametrisation and through 

ordered minimal bases, [33], [7], as the use of minimal bases suggests a simple 

procedure for selection of an independent eigenframe.  

In fact in this chapter, the selection of the full rank eigenframe and its relation to the 

definition of state feedback along with the problem of minimal basis 

parameterization and its role to the shaping of frames are considered and deeply 

reviewed. This comes from the fact that each full rank closed-loop eigenframe can be 

written as the product of a matrix of ordered minimal bases (of matrix pencil) and a 

matrix containing all the existing eignevalues of the system in the form of 

Vandermonde matrix.  As one can see, the matrix of ordered minimal bases has such 

importance as this is used to produce the controllability subspaces of closed-loop 

system and so if the optimal matrix is chosen then the stability of the system is 

guaranteed. This factor has led to the parametrisation of these minimal bases which 

is presented towards the end of Chapter Seven via Toeplitz form. In fact by 

exploiting the general parameterisation of the minimal bases, the general formula for 

any other minimal bases with the same degree can be computed using a Toeplitz 

matrix construction and the controllability subspaces separated by the largest 

possible angles can be identified. In each case, the theoretical results are illustrated 

with a numerical example. One interesting topic could be to use this parametrization 

and find a best choice of minimal bases such that the angle between these bases and 

consequently between the resulted controllability subspaces is maximized. 

Chapter Eight presents the main achievement of this thesis, i.e. to obtain the 

minimum angle between closed-loop eigenvectors via a non-smooth optimisation 

method in order for the angel between closed-loop eigenvectors (Refer to Chapter 

Five) to be maximised. This is done through finding the solutions of minimizing the 

condition number of the gram matrix as one of the measurement tools introduced in 
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Chapter Six to assign and to reduce the Sensitivity of closed-loop eigenvetors for any 

controllable system(s), such that the system is robust to any perturbation injected to 

the eigenvalues or their relative eigenvectors, i.e. the error is minimized. The 

development of a robust and efficient optimization algorithm needs further 

consideration due to the non-convex nature of the optimization problem.  

For this purpose, firstly, the concept of non-smooth optimisation has been derived 

[11]. Then by introducing the generalised gradient of condition number of any 

square symmetric matrix or its Gram matrix, the concepts of smoothing 

approximation following by non-smooth optimisation is described along with nay 

essential theorem and corresponding proof.  Then by introducing an algorithm of 

relative optimisation method, our conditioning problem presented in Chapter Five is 

solved and some numerical results have been also derived. 

Finally, Chapter Nine contains the main conclusions of the work and suggestions for 

future research.  Within this chapter, a deep summery of what has been studied and 

established as the result of this research is presented. In addition, some important 

open issues have been presented and discussed which could be used as future topics 

of study in this field.  These include finding the best choice of ordered minimal bases 

matrix such that the angle between these bases is maximised. This for instance will 

guarantee the best choice of resulted controllability subspaces and so improves the 

stability of the closed-loop system as much as possible.
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CHAPTER 2 

 

MATHEMATICS AND CONTROL 

BACKGROUND 

2.1. Introduction 

In this section we give a brief account of some of the mathematical and control 

concepts which are required in future chapters of this work. Note that no attempt 

has been made to give complete proofs of all the fundamental theorems, unless these 

are strongly linked to the theory developed. 

2.2. Mathematics background 

2.2.1. Vector space.   This is a set V  of vectors over a field F  which is closed 

under the operation of addition (associative and commutative) and has an identity (

0 ) and additive inverse included within the set. The set is also closed under an 

operation of left multiplications of the vectors by any scalar of F with the following 

properties: 

For ,a b∈F and ,x y∈V : 

( )

( )

( ) ( )

a x y ax by

a b x ax bx

a bx ab x

ex x

+ = +

+ = +
=

=

 

where e∈F and it is the multiplicative identity. ([12], [13], [14], [15]). 
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2.2.2. Subspace. Let X  be a nonempty subset of a vector space V  over fieldF , 

that is: X ⊆ V . If  X  is also a vector space over FieldF  for the same addition and 

multiplication operations, then X  is called a subspace of V , i.e. if and only if: 

,x y X x y X∈ ⇒ + ∈  

and 

x X ax X∈ ⇒ ∈ for all  a∈F .  ([12], [14]) 

 

2.2.3. Orthogonal and Orthonormal vectors.  Let the angle θ  between each 

two vectors of set of vectors 1 2, ,..., n
kx x x ∈ℂ    is defined as:    

cos
t
i j

t
i j

x x

x x
θ =   

where  
1

n
t
i j i i

i

x x x x
=

=∑  is the inner product of these two vectors. Then the whole set is 

said to be a orthogonal set if 90θ Ο= or in other word 0t
i jx x =  where 1 i j k≤ ≤ ≤ .   

Additionally, these vectors are said to be orthonormal if each of them is normalized,

1t
i ix x = , 1, ,i k= ⋯ . Note that an orthonormal set of vectors is linearly independent. 

[Refer to Horn and Johnson, 1985, Theorem 2.1.2, for complete proof]. ([12], [14], [15], 

[16], [17]) 

2.2.4. Unitary Matrix.  [12] A matrix nU ∈M  is said to be Unitary if and only if 

tU U I= ,  where tU  is the conjugate transpose of matrix U .  

2.2.5. Vector norms.  For any vector 1 2[ , , , ]nx x x x= ⋯   where ( )n nx or∈ℂ ℝ , then the 

p-norm of vector X is given by 

1/

1

:
pn

p

ip
i

x x
=

 =  
 
∑ where 1p ≥ . For this vector x , 

there are some very famous norms, which are used frequently and are defined as 

follow: 

 (i) Euclidean norm (2-norm), is defined as : 

2 2
1: nx x x= + +⋯ or

1/2
2

2
1

:
n

i
i

x x
=

 =  
 
∑  
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(ii) 1-norm , is represented as:     
1

1

:
n

i
i

x x
=

=∑  

(iii) ∞ -norm (Maximum norm), is defined as: 

1: max( , , )nx x x
∞

= ⋯  ([12], [14], [17]). 

2.2.6. Matrix norms.  Because m n×ℂ is a vector space of dimension .m n, magnitudes 

of matrices m nA ×∈ℂ can be “measured” by employing any vector norm on m n×ℂ ([14]). 

In this work the following two matrix norms are used ([12], [14], [15], [17]): 

 (i) Frobenius matrix norm is defined by  

min( , )
2 2

1 1 1

( )
m nm n

t
ij iF

i j i

A trace A Aα σ
= = =

≡ = =∑∑ ∑  

where ijα  denotes any element of matrix A , tA  is the conjugate transpose of matrix 

A and iσ  defines any singular values of A. 

(ii)  Matrix 2-norm 

The matrix norm induced by the Euclidean norm is  

2

max2 21
max
X

A Ax λ
=

= =  

where maxλ is the largest eigenvalue such that tA A Iλ−  is singular. In other words: 

max2
( )tA A Aλ= , 

tA  is the conjugate transpose of matrix A.  

(iii) Matrix 1-norm is defined as follow: 

1
1 11

max max ij
X j

i

A Ax a
=

= = ∑  

which is in fact the largest absolute column sum of the matrix. 

(iv) Matrix ∞ -norm 
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The matrix norm induced by vector ∞ -norm is as follows: 

1
max max ij
X i

j

A Ax a
∞

∞ ∞=
= = ∑ . 

i.e. the largest absolute row sum of a matrix. 

2.2.7. Hadamard’s inequality theorem. Let 1 2( , , , )na a a⋯ be columns (vectors) 

in nℝ and 1 2( , , , )nA a a a= ⋯ be the corresponding n n×  matrix. The Hadamard’s 

inequality states that: 
1

det
n

n
n

A a
=

≤ ∏ ,  where .  is the Euclidean norms on  vectors 

in nℝ . ([18], [19]). 

2.2.8. Gramian (Gram) Matrix. [17] Consider vectors 1 2, , , n
nx x x ∈⋯ ℝ . The Gram 

matrix of the collection is the m m×  matrixG with elements
t
i jijG x x= . The matrix can 

be expressed compactly in terms of the matrix 1[ , , ]nX x x= ⋯ , as 

( )
1

1 .

t

t
m

t
m

x

G X X x x

x

 
 

= =  
 
 

⋮ ⋯      

By construction, a Gram matrix is always symmetric, meaning that ij jiG G= , for 

every pair ( , )i j . It is also positive semi-definite, meaning that 0Tu Gu≥ , for every 

vector nu∈ℝ  (this comes from the identity 
2

2

tu Gu Gu= ). 

Assume that each vector ix  is normalized: 
2

1ix = . Then the coefficient ijG  can be 

expressed as cosij ijG θ= , where ijθ  is the angle between the vectors ix  and jx . 

Thus ijG  is a measure of how similar ix  and jx  are ([12], [20]).  

Geometrically, the Gram determinant is the square of the volume of the 

parallelotope formed by the vectors. Obviously by having all the vectors orthogonal 

to each other, the Gram determinant will be maximum. 
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2.2.9. Condition Number. For any n n×  matrix A, the condition number 1κ(Α) ≥ , 

based on matrix 2-norms, is defined to be : 1.A Aκ −(Α) = . Similarly, the condition 

number could be also defined using the singular values of matrix A  as follows:    

1( )
( )

( )n

A
A

A

σκ
σ

=  where 1σ is the largest and nσ is the smallest singular value of matrix 

A([12], [21]). 

A matrix is so called: “well-conditioned” if its value of condition number is low and 

is called to be “ill-conditioned” if its condition number is high. 

2.2.10. Vandermonde matrix.  A   n n×  Vandermonde matrix A  is a matrix of 

form 

0 1
0

1 1 1
0 1

1 1 1

( , , ) n
n

n n n
n

x x x
A A x x

x x x− − −

 
 
 = =
 
 
 

⋯

⋯
⋯

⋮ ⋮ ⋮

⋯

        

where 1, , nx x ∈⋯ F , that is, ijA a =    with 
1j

ij ia x −= .  The determinant of this matrix can 

be computed as: 

, 1

det( ) ( )
n

i j
i j
i j

A x x
=

>

= −∏  

A is nonsingular if and only if all the parameters 1, , nx x ∈⋯ F are distinct. 

Note that the Vandermonde matrix evaluates a polynomial at a set of points; 

formally, it transforms coefficients of a polynomial   2 1
0 1 2 1

n
na a x a x a x−

−+ + + +⋯  to 

the values the polynomial takes at the points αi. The non-vanishing of the 

Vandermonde determinant for distinct points αi shows that, for distinct points, the 

map from coefficients to values at those points is a one-to-one correspondence, and 

thus that the polynomial interpolation problem is solvable with unique solution. 

([12], [13], [17], [21], [22]). 
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2.2.11. The Jordan Canonical Form of a Matrix.  For an n n×  complex matrix 

A, there exists a non-singular matrix T such that    1
1( , , ),kT AT J diag J J− = = ⋯ where: 

   

1 0

1

0 1

i

i

i

i

J

λ
λ

λ

 
 
 
 =
 
 
  

⋱ ⋱

⋱

 

is 1 and i i km m m m n× + + =⋯ . The matrices iJ  are called Jordan matrices or Jordan 

blocks, J is called the Jordan Canonical Form (JCF) of A and , 1,2, ,   i i kλ = ⋯ is the 

eigenvalue of A with multiplicity of im . The same eigenvalue can appear in more 

than one block ([12], [17], [21]). 

2.3. Control background 

This part of the chapter describes a very important tool which is used to the study of 

controllability subspaces. This leads to one of the main topics of the current research 

which involves the best parameterization of the controllability subspaces in a direct 

sum decomposition in order to compute the minimal basis of the whole 

controllability space. 

2.3.1. Matrix Fraction Description (MFD) 

We first introduce the basics of MFD and then review the problem statement related 

to the controllability subspaces by studying some basic concepts and definitions. 

The first step when studying and designing a control strategy for a physical system 

is the development of mathematical equations that describe the system. The linear 

equations used to describe linear systems are generally limited either to:  

-  input-output description (external description) 

or  

- the state-variable equation description ( internal description) 
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Prior to 1960, the design of control systems had been mostly carried out by using 

transfer functions. However, the design had been limited to the single variable, or 

single-input-single-output (SISO) case. Its extension to the multivariable, or multi-

input-multi-output (MIMO) case had not been successful.  

The state-variable approach was developed in the sixties, and a number of new 

results were established in the SISO and MIMO cases. At that time, these results 

were not available in the transfer-function, or polynomial approach, so the interest in 

this approach was renewed in the seventies. Now most of the results are available 

both in the state-space and polynomial settings. Refer to [2], [5], [8], [13] and [71] for 

some of these results. 

2.3.1.1. Scalar systems 

- Rational transfer function (RTF) 

Although there are too many different interpretations related to Rational Transfer 

Function, here we will present the fundamental summary of RTF including major 

definitions and the way that RTF is constructed ([13], [23], [30]).  

Assuming that the knowledge of the internal structure of the system is not available, 

the transfer function description of a system gives a mathematical relation between 

the input and output signals of the system.  

Assuming zero initial conditions, the relationship between the input uand the 

output y  of a system can be written as 

( ) ( ) ( )y s G s u s=  

where s is the Laplace transform variable in continuous-time (for discrete-time 

systems, we use the z -transform) and ( )G s  is the scalar transfer function of the 

system. ( )G s is a rational function of the indeterminate s that can be written as a 

ratio of two polynomials where ( )n s is a numerator polynomial and ( )d s is a 

denominator polynomial in the indeterminate s. 
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In the above description of a transfer function, it is assumed that polynomials ( )n s  

and ( )d s are relatively prime. The degree of denominator polynomial ( )d s is the order 

of the linear system. 

Here we give some of useful definition relative to the matrix fraction description 

area: 

Monic polynomial: The polynomial with leading coefficient equal to one ([13], [23], 

[30]). 

Nominal transfer function: When the denominator polynomial is monic, then the 

transfer function is normalized or nominal ([97]). 

Column-reduced: A polynomial matrix with non-singular column leading 

coefficient matrix ([13], [23], [30]). 

Greatest common divisor: A highest degree common factor that can be extracted 

from two polynomials ([13], [23], [30]). 

Hermite form: A triangular canonical form of a polynomial matrix ([13]). 

Irreducible: A transfer function is irreducible when its numerator and denominator 

polynomials are relatively prime ([13], [23], [30]). 

Leading coefficient matrix: The constant matrix whose entries are built from 

coefficients of highest powers of the entries of a polynomial matrix ([13], [23]). 

Left MFD: An MFD where the denominator polynomial matrix enters from the left 

([13], [23], [30]). 

Matrix fraction description: Ratio of two polynomial matrices describing a matrix 

transfer function ([13], [23], [30]). 

Minimal: A state-space realization is minimal if it has the lowest possible dimension 

([13], [23]) 

Proper: A matrix transfer function is proper if the degree of the denominator 

polynomial of each entry is greater than or equal to the degree of the numerator 
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polynomial. If the degree is greater, then the transfer function called the strictly 

proper ([13], [23], [30]). 

Rational vector space: The linear vector space over ( )sℝ  contains all the rational 

functions in s  having real coefficients ( ( )m n s×∈ℝ ) ([33]). 

Relatively prime: Two polynomials or polynomial matrices are relatively prime if 

they have no common factor ([13], [23], [30]). 

Right MFD: An MFD where the denominator polynomial matrix enters from the 

right ([7], ([13], [23], [30]). 

Row-reduced: A polynomial matrix with non-singular row leading coefficient 

matrix ([13]). 

Unimodular: A polynomial matrix with a non-zero constant determinant ([13], [23], 

[30]). 

For a system: 

,E x Ax Bu y C x= + =ɺ  

with n  variables, m  inputs, and p  outputs, the transfer function 1( ) ( )G s C sE A B−= −  

is a p m×  matrix whose elements are rational functions. 

A closer analogy to the SISO case is the matrix fraction description: 

1 1( ) ( ) ( ) or ( ) ( ) ( )R R L LG s N s D s G s D s N s− −= =  

where , , ,R R L LN D N D  are polynomial. 

We can define a right matrix fraction description, or right MFD for short,

1( ) ( ) ( ) R RG s N s D s−=  

Alternatively, we can also define a left MFD 

1 ( ) ( ) ( )L LG s D s N s−=  
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It is always possible to go from right MFD’s to the left and vice versa. 

There can be many right and left matrix fraction description (MFDs) of ( )G s . Indeed, 

given a right MFD, an infinity of others can be obtained by choosing any non-

singular polynomial matrix ( )U s such that: 

( ) ( ) ( ),     ( ) ( ) ( )R R R RN s N s U s D s D s U s= = . 

We call ( )U s  a right divisor of ( ) and ( )R RN s D s . Moreover, since

deg det D (s) = deg detD (s)+deg detU(s)R R , it holds: 

deg det D (s)  deg detD (s)R R≥  

which means that the degree of a MFD can be reduced by removing right divisors of 

the numerator and denominator matrices.  

Obviously, we will get a minimum-degree right MFD by extracting a greatest common 

right divisor (gcrd) of ( ) and ( )R RN s D s . In other words, a gcrd from ( ) and ( )R RN s D s  is 

extracted if and only if deg det D (s) = deg detD (s)R R . 

If ( ) and ( )R RN s D s have only unimodular right gcrds, then these two matrices are right 

coprime and the right MFD 1( ) ( ) ( ) R RG s N s D s−= is irreducible. Similar statements can be 

given for left MFDs ([13], [23], [30]). 

For every transfer function 

( )
( )

( )

n s
G s

d s
=   

 there is an unlimited number of state-space realizations. Some of them such as 

canonical realizations, known as the controllable and observable forms which are 

commonly used depend on the application and requirement.  

If ( ) [ ]n pV s s×∈ℝ  is a polynomial matrix basis for the rational vector space, then we 

have the following definitions for ( ) [ ]n pV s s×∈ℝ : 
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Least degree basis: ( ) [ ]n pV s s×∈ℝ  is a least degree basis if the greatest common 

divisor of all its m m×  minors is equal to 1 ([25]). 

Minimal basis: The basis  ( ) [ ]n pV s s×∈ℝ  is called minimal if it is row proper and it 

has least degree ([7], [33]). 

The degree of ( )V s : The degree d  of the basis ( ) [ ]n pV s s×∈ℝ  is the highest degree 

among all the m m×  minors of the matrix ( )V s  ( [25], [33],). 

The complexity of ( )V s : ([13], [23], [30]). The complexity c of the basis ( )V s  is the 

sum of the degrees of its row vectors, i.e.., 

1

m

i
i

c δ
=

=∑ . 

Note that normallyc d≥ , ( )V s  is so called row-proper if and only if c d= . For any 

full rank polynomial matrix ( )M s which is  ( )m p m p× > , we can create a module 

MM , by multiplying from the right to a uni-modular matrix ( )Q s , p p× , and 

( ) 0Q s c= ≠ , such that ( ) ( ) MM s Q s = M ( The degree of MM  is the maximum degree 

of ( ( ))pC M s  where ( ( ))pC M s is the exterior product of minor p  of ( )M s ).  

So for any other bases '( ) ( ) ( )M s M s Q s= , the degree of ( ) & '( )M s M s  is the same. If 

we introduce ( )M s  to be: 

1( ) ( ), , ( )pM s m s m s =  ⋯   

and 1, , pδ δ⋯  are the degrees of each row polynomial vector   

1 0( ) i i
i i i i im s m s m s mδ δ= + + +⋯ , where each i

imδ contains the coefficients related to the 

highest degree of its polynomial .  

Denote vector i

imδ
 as 

h
im ; then the row highest coefficient matrix of ( )M s  is the 

matrix 1 2
h h h

phM m m m =  ⋯  which contains just the constants value and ( )M s  

can be written as: 
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1

2

1 2

0

( )

0 p

h h h
p

s

s
M s m m m

s

δ

δ

δ

 
 
  = +   
 
  

⋯ ⋯
⋱

. 

Note that ( )M s  is row proper if and only if, hM is full rank. ([25]) 

2.3.2. Minimal bases of matrix pencils and coprime matrix descriptions 

In this part, we review the problem of constructing coprime MFD’s from a minimal 

state space realization of a transfer function matrix. This part is widely used in the 

analysis and design of linear systems described by transfer function matrices using 

MFD’s.  The main results in this section are taken from Karcanias (2002) [7], [8], 

[100]. 

Consider the minimal system described by  

x Ax Bu

y Cx

= +
 =

ɺ
                                                                                                                 (2.3.1) 

where , ,n n n p m nA B C× × ×∈ ∈ ∈ℝ ℝ ℝ  and with transfer function matrix ( ) ( )m pG s s×∈ℝ . 

The problem here is to find the right and left coprime MFD’s for ( )G s , i.e. to express 

( )G s  as : 

1 1( ) ( ) ( ) '( ) '( )G s N s D s D s N s− −= =                                                                                     (2.3.2) 

where  ( ), '( ) ( ),     ( ) ( ),   '( ) ( )m p p p m mN s N s s D s s D s s× × ×∈ ∈ ∈ℝ ℝ ℝ  and (N(s),D(s))are right 

coprime and ( '( ), '( ))D s N s are left coprime.  

It can be shown [7] that the computation of coprime MFD’s from state space 

description is reduced to computation of coprime MFD’s of the transfer functions: 

 1 1( ) ( ) ,    ( ) ( )IS SOH s sI A B H s C sI A− −= − = −                                                                    (2.3.3) 

where ( )ISH s is the input-state description and ( )SOH s is the state-output description.  
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It is evident that the above descriptions are dual and thus treatment of the first 

provides also solution for second. Let us consider ( )ISH s and right MFD’s, i.e. 

1 1( ) ( ) ( )sI A B N s D s− −− =
( ) ( )

 [ , ] 0,    ( )
( ) ( )

N s N s
sI A B T s

D s D s

   
⇒ − − = =   

   
                           (2.3.4) 

Given that ( ( ), ( ))N s D s  is right coprime, from the full rank property of pencil

[ ],sI A B− − , we have the following results: 

Proposition  2.1: Every least degree polynomial basis of: 

{ }, ,  Z ( ) [ ( ) ; ( ) ]t t t
r rsI A B s X s U s− − =N , i.e.     

( )
[ , ] 0

( )

X s
sI A B

U s

 
− − = 

 
                        (2.3.5) 

Defines a right coprime MFD for ( )ISH s = 1( ) ( )N s D s − , where 

( ) ( ), ( ) ( )N s X s D s U s= = .             

Proof: See [7] for full proof.       

 

The above result stated for least degree base is also valid for minimal bases. If  

(( ) ) †,  n p n p nN B− × ×∈ ∈ℝ ℝ  is a pair of left annihilator, left inverse of B ( 0NB = , rank 

rank N n p= − , †
pB B I= ), then  

†

( ) ( ) 0

( ) ( ) ( )

sN NA X s

U s B sI A X s

− =

= −
                                                                                                      (2.3.6) 

The pencil sN NA− has ( )n p n− × dimension and its significance is emphasised by the 

following result. 

Proposition 2.2: The pair ( ( ), ( ))X s U s defines a minimal basis ( )rZ s  for 

{ }[ , ]r sI A B− −N , if and only if ( )X s  is a minimal basis for [ ]r sN NA−N ([7], see 

p.247 for proof).  
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During next section, we will review the methodologies used to obtain the minimal 

bases of matrix pencil in more detail. 

2.3.3 Construction of minimal bases of matrix pencils and coprime matrix fraction 

descriptions using Toeplitz matrix 

Since coprime MFDs have been used widely in linear control theory, several 

methods for their computation have been developed ([7], [13]).  A first approach was 

developed in Rosenbrock (1970) [26].  

This method requires elementary row operation on polynomial matrices and is 

therefore difficult to implement on a computer and can be numerically unstable. 

There are two other main approaches that have emerged so far: the reduction to the 

block Hessenberg form (BHF) and the minimal design problem (MDP). 

The BHF approach uses state space realisations starting from controllable 

realizations and then by suitable transformations that reduces to the Hessenberg 

form. In other words, the approach consists of a transformation from state space 

model ( , , , )S A B C D  to reduced model ( , , )S F G H where the matrix F is the lower 

(upper) block Hessenberg matrix. Orthogonal transformations are preferred for the 

reduction to BHF because of their attractive numerical stability properties. 

Reduction to the block Frobenius form (BFF) can also be employed, i.e. the model 

( , , )S F G H  can be reduced to the form ( , , )S F G H , where F  is in BFF. By 

permutation of the state space variables of ( , , )S F G H  a canonical representation 

( , , )c c cS F G H  similar to the Lueberger canonical form is obtained. 

The MDP approach starts form a left, not necessarily coprime, MFD and computes a 

right coprime MFD using the theory of minimal bases of rational vector spaces, 

Forney (1975). This approach uses the properties of Sylvester matrices, obtained by 

the equivalent formulation of the algebraic problem into real matrix computations. 

([27], [28], [29]).  
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The main disadvantage of these methods is that they involve operations on matrices 

whose orders may often be much higher that the dimension of the state space of the 

given system. 

Another method for obtaining relative prime MFD from a state space representation 

of the transfer function is given by Wolovich (1974) [30], [31]; Wolovich & Falb (1969) 

[32] and Datta & Gangopadhyay (1992) [28].  

This method is most commonly used for computation MFD’s since it is the easiest to 

implement on a computer and can be used for high-order system. The disadvantage 

is that the state space system must first be transformed to the Lueberger canonical 

form which can be quite sensitive numerically.  

Here we give two methods of computation of coprime MFD’s using Toeplitz matrix 

by Karcanias (2002) ([7], [96], [100]). These are the indirect and direct methods which 

are based on the construction of minimal bases for the kernels of the state-space-

based pencils[ , ], [ , ]t tsI A B sI A C− − − − . 

2.3.3.1. Computation of minimal bases for { }[ , ]r sI A B− −N  using the Toeplitz 

structure: the indirect method [7], [100] 

First essentials notation and definitions are introduced:  

For the pencil ( )R s sNA NA sF G= − = −  we first note the following: 

If ( ) [ , ]T s sI A B= − −  and ( )R s sNA NA= − and Z andX respectively their rational, 

right null spaces respectively, then: 

The ordered set of Forney dynamical indices [33] ofX , or column minimal 

indices (cmi) of the corresponding pencils are denoted by: 

{ }1( ) ( , ), ,0i i i µε ρ µ ε ε= ∈ ≤ ≤ ≤…
ɶ

I X                                                                            (2.3.7) 

{ }1( ) ( , ), ,0i i i µε ρ µ ε ε= ∈ ≤ ≤ ≤ɶ ɶ ɶ ɶ…
ɶ

I Z                                                                            (2.3.8) 
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Note that i iρ ρ= ɶ , 1,i i iε ε µ= + ∀ ∈ɶ
ɶ

. In the above, ,i iρ ρɶ  denote the multiplicity of the 

distinct value of ,i iε εɶ . The iεɶ  are known as the controllability indices of the ( , )S A B  

system.  

- Any minimal basis matrix of X , ( )X s  is called an ordered minimal basis matrix 

(OMBM)  if it may be expressed as : 

1 1 0( ) ( ); ; ( ) ,    ( ) [ ]i i

i

ni i i
iX s X s X s X s s X sX X sε ρ

µ ε
× = = + + + ∈ ⋯ ⋯ ℝ                             (2.3.9) 

- If the Toeplitz matrix related to iX  for every ik ε≥  with 0i if k ε= − ≥ ,is as : 

 

1

( 1) ( 1)0

1

0

0 0

0
( )

0

0 0

i

i i

i

i

i

i

i
k n fk

i i

i

i

X

X

X
T X

X

X

X

ε

ρ
ε

ε

+ × +

 
 
 
 
 
 = ∈ 
 
 
 
 
 
 

⋯ ⋯

⋮ ⋱ ⋮

⋱ ⋮

ℝ
⋱

⋱ ⋱ ⋮

⋮ ⋱ ⋱

⋯ ⋯

                                                          (2.3.10) 

 

also known as the kth Toeplitz matrix of ( ).iX s  

Then the kth Toeplitz matrix of ( , )F G  pair is defined as: 

( 2) ( 1)

0 0

0 0
( , )

0

0 0

k q k n
k

F

G F

G
T F G

F

G

+ × +

 
 − 
 −

= ∈ 
 
 
 

− 

⋯ ⋯

⋮

ℝ
⋮ ⋮ ⋱

⋮ ⋱ ⋱

⋯ ⋯

,   0,1,2,k = ⋯ .                             (2.3.11) 
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So above notations and results provide the means for the construction of special 

basis matrices k
rN  spaces, which in turn lead to the construction of minimal bases 

for  space { }[ , ]r sI A B− −N . 

Here is the indirect algorithm ([7], [96]): 

Part (I): Computation of ( )I X . For all the 0k ≥  compute rank ( , )kT F G = kσ ,

0,1,2,k = ⋯ . 

The right nullity of ( , )kT F G defined by ( 1) , 1,2, .k kr k n kσ= + − = ⋯ This defines the 

sequence { }2 1( , ) : 2, 0, 0r kF G r k r r k− −= ≥ − = = ∀ ≥C . 

By computing the gap sequence  

2 1 2 12 , 0, , 0k k k kr r r k r rδ − − − −= + − ≥ =                                                                                 (2.3.12) 

the distinct values of iε are defined by those values of k for which 0kδ >  and the 

corresponding multiplicity iρ  is the value of 0kδ > .  

This defines { }1( ) ( , ), ,0i i i µε ρ µ ε ε= ∈ ≤ ≤ ≤…
ɶ

I X . 

Part(II): Computation of a set of state generator ΩI
X . Having 

{ }1( ) ( , ), ,0i i i µε ρ µ ε ε= ∈ ≤ ≤ ≤…
ɶ

I X  the computation of a set { },
i

N iε µΩ = ∈
ɶ

I

X  

involves the following steps: 

Step(1): For 1k ε= , compute any basis matrix for 1
r
εN  and let this be 1 1

1

( 1)nN ε ρ
ε

+ ×∈ℝ . 

Step(2):For 2k ε= , compute 2

1 1
( )T Nε

ε ε  and complete it to a basis for 2
r
εN . This defines

2 2

2

( 1)nN ε ρ
ε

+ ×∈ℝ . 

Step(i) (General step): Let { }
1 1
, ,

i
N Nε ε −
⋯  be the matrices defined by the previous step 

for 1ik ε −= .For ik ε=  compute 
1 1

( , , )i

i
T N Nε

ε ε −
⋯  and complete it to a basis of  i

r
εN . 

This defines
( 1)i i

i

nN ε ρ
ε

+ ×∈ℝ . 



 

29  
 

The procedure is completed in µ  steps and this leads to a set of state generators 

{ }( 1), ,i i

i i

nN N iε ρ
ε ε µ+ ×Ω = ∈ ∈ℝ

ɶ

I

X . 

Part (III): Computation of the OMBM of X . Each of the matrices 
i

Nε in 0

{ }( 1), ,i i

i i

nN N iε ρ
ε ε µ+ ×Ω = ∈ ∈ℝ

ɶ

I

X  can be partitioned as shown below: 

1

1

0

, , 0,1, , ,

i

i

i

i

i

i

ni
j i

i

i

X

X

N X j i

X

X

ε

ε
ρ

ε ε µ
−

×

 
 
 
 

= ∈ ∀ = ∀ ∈ 
 
 
 
 

⋮ ℝ ⋯
ɶ

 

and thus we define the OMBM by: 

1 1 0( ) ( ); ; ( ) ,    ( ) [ ]i i

i

ni i i
iX s X s X s X s s X sX X sε ρ

µ ε
× = = + + + ∈ ⋯ ⋯ ℝ . 

2.3.3.2 Direct method for computing a minimal basis for the right null space 

[ , ]sI A B− −  

Opposite to the indirect method, in this method we will consider the direct method 

introduced by Karcanis in his published paper in 2002 [7], which although it 

involves larger dimension pencil, [ , ]sI A B− −  instead of sN NA− , it has the more 

convenient form, which avoid Toeplitz matrix computation. 

Let ( ( ), ( ))X s U s   be a pair of polynomial matrices such that: 

( ) ( ) ( )sI A X s BU s− =                                                                                                      (2.3.13) 

where ( ) ( ), ( ) ( ),n q p qX s s U s s× ×∈ ∈ℝ ℝ  and the scalar degree of ( )U s is k and thus that of 

( )X s  is 1k − . We may call such pair as ( , )k q -order right pair and write them as  

1
0 1 1( ) k k k k

kX s X sX s X−
−= + + +⋯                                                                                       (2.3.14)  

1
0 1 1( ) .k k k k k k

k kU s U sU s U s U−
−= + + + +⋯                                                                           (2.3.15) 
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By substituting these two in equation (2.3.13), we will get the following equation 

1

1

2

2

1

1

0

0

0

0 0 0

0 0 0

0 0 0

0.

0 0 0 0

0

0 0

k
k
k
k
k
k
k
k
k
k

k

k

k

k

UI

XA B I

UA B I

X

U

X

UA B I

XA B

U

−

−

−

−

 
 −   

   −    −          =       
   
   −   
    

 
 

⋱

⋱

⋮⋱

                        (2.3.16) 

                                  = ( , )                                               =Zk kT A B  

The Toeplitz matrix  ( , )kT A B  characterizes the minimal bases. This equation even 

can be made simpler which it has been made simplified during the work done by 

Karcanias (2002) [7].  By some more calculations he shows that the whole solution 

can be done in the easier way as the following proposition: 

Proposition 2.3.  A ( , )k q -order right pair of ( , )S A B  , for which ( )B pρ = , described 

as: 

1
0 1 1( ) k k k k

kX s X sX s X−
−= + + +⋯                 

1
0 1 1( ) .k k k k k k

k kU s U sU s U s U−
−= + + + +⋯   

is defined from the set { }0 1, , ,k k k
kU U U… which is the solution of the equation 

           
1

1

1

0

, , , , 0.

k
k
k
k

k k

k

k

U

U

A B A B AB B

U

U

−
−

 
 
 
   =   
 
 
 

… ⋮                                                                       (2.3.17) 

ˆ           = ( , )                      =k kQ A B U  
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  Proof: Refer to [7] for full details. 

For any solution of above equation the parameters 0 1 1, , ,k k k
kX X X −  … are defined by 

 

1

2 1

1
2 3

1 2
1 2

0 1

0 0 0

ˆ

0

k k
k k
k k
k k

k

k kk k

k kk k

BX U

AB BU U

X

A B A B BU U

A B A B AB BU U

−

− −

−
− −

− −

    
    
    
    = =
    
    
        

⋯

⋯ ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮⋮ ⋮

⋯

⋯

.                                                 (2.3.18) 

                                      ( , )kR A B=  

The matrix that determines the overall solvability is the kth order controllability 

matrix of the system and it is defined by 

1( , ) , , , ,k k
kQ A B A B A B AB B− =  …  

Here is the algorithm for finding OMBMs of Z : 

Part (I): Computation of ( )I Z . For all the 0k ≥  compute rank ( , )k kq Q A B= ,

0,1,2,k = ⋯ , and thus the sequence  

{ }2 1( , ) : 2,  ( , ), 0 and , 0 .r k k kA B q k q rank Q A B k q p q∗
− −= ∀ ≥ − = ∀ ≥ = =C   

By computing the gap sequence:  

1 22 , 0k k k kq q q kδ − −= − − ∀ ≥ɶ                                                                                            (2.3.19) 

the distinct values of iεɶ are defined by those values of k  for which 0kδ >ɶ  and the 

corresponding multiplicity iρ  is the value of 0kδ >ɶ . This defines

{ }1( ) ( , ),1 , .i i iµε ρ ε ε µ= ≤ ≤ ≤ ∈
ɶ

ɶ ɶ ɶ…
ɶ

I Z  
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Part(II): Computation of a set of state generator Ω ɶI
U . Having 

{ }1( ) ( , ),1 , .i i iµε ρ ε ε µ= ≤ ≤ ≤ ∈
ɶ

ɶ ɶ ɶ…
ɶ

I Z  the computation of a set { },
i

Q iε µΩ = ∈ɶ

ɶ

ɶ

I

U  

involves the following steps: 

Step(1): For 1k ε= ɶ , compute any basis matrix for { }
1 1

( , )r Q A Bε ε=ɶQ N  and let this be

1 1

1

( 1)pQ ε ρ
ε

+ ×∈ ɶ

ɶ ℝ . 

Step(2):For 2k ε= ɶ , compute 2

1 1
( )T Qε

ε ε
ɶ

ɶ ɶ and complete it to a basis for 2
r
εɶQ . This defines

2 2

2

( 1)pQ ε ρ
ε

+ ×∈ ɶ

ɶ ℝ . 

Step(i) (General step): Let { }
1 1
, ,

i
Q Qε ε −ɶ ɶ⋯  be the matrices defined by the previous step 

for 1ik ε −= ɶ .For ik ε= ɶ  compute 
1 1

( , , )i

i
T Q Qε

ε ε −

ɶ

ɶ ɶ⋯  and complete it to a basis of  i
r
εɶQ . This 

defines
( 1)i i

i

pQ ε ρ
ε

+ ×∈ ɶ

ɶ ℝ . 

The procedure is completed in µ  steps and this leads to a set of state generators 

{ }( 1), ,i i

i i

pQ Q iε ρ
ε ε µ+ ×Ω = ∈ ∈ɶ ɶ
ɶ ɶ ℝ

ɶ

I

U . 

Part (III): Computation of a set of state generator ΩI
X . Having computed 

{ },
i

Q iε µΩ = ∈ɶ

ɶ

ɶ

I

U  we may compute a set { }, 1,
i i iN iε ε ε µΩ = = − ∀ ∈ɶ

ɶ

I

X . 

Part (IV): Computation of the OMBM of Z . Having computed a set of compatible 

input, state generator { }( , ),
i i

Q N iε ε µΩ = ∀ ∈ɶ

ɶ

I

Z , then we construct the associated 

polynomial matrices ( ), ( )X s U sΩ Ω
I I  and ( ) ( ) [ ( ) , ( ) ]t t tZ s s X s U sΩ Ω Ω=I I I  is an OMBM of  

Z . 

2.4. Conclusion 

During this chapter, the essential and required mathematical and control 

backgrounds reviewed and presented. One of the major applications of the 

mathematical notations such as condition number, SVD, Gram determinant will be 
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during the study of the measurement of the angle between subspaces in a direct sum 

decomposition when these will be used as measurement tools (Chapter Six). 

In other side, the computation of the minimal basis of pencils [ ],sI A B− − nd 

[ ]sN NA−  leads to the computation of the controllability subspaces of the system 

defined by ( , )A B , which is strongly connected to the current presented thesis and 

will be Studied in chapter Four and Five. 
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CHAPTER 3 
 
LITERATURE REVIEW ON 
EIGENSTRUCTURE ASSIGNMENT: 
BASIC CONCEPTS AND 
BACKGROUND RESULTS 
3.1. Introduction   

There has been a substantial amount of work performed in the field of control theory 

over the past three decades that examines the control of systems through the 

restructuring of the eigenvalues and eigenvectors, namely eigenstructure 

assignment. More recently, these techniques have been successfully applied to the 

control of flexible structures, especially in the area of enhancing modern flight 

control systems where existing systems are often hampered by the limitations 

exhibited by the classical control methods. The eigenstructure assignment problem 

therefore has a very important role to play in order to guarantee successful controller 

design in the sense of stability and robustness. It must be stated however, that 

eigenstructure assignment can only be carried out if the system is described by state 

space equations, which are made up from physical variables. In this case, it makes 

sense to impose conditions on the eigenframe which is linked to variables with a 

physical significance. The countenance of this thesis exhibits issues concerning 

robustness. A desired effect of a closed loop system is that its response is impervious 

to modelling errors and external disturbances. Close attention has to be paid to 

sensitivity minimisation and control system robustness. Therefore it is necessary to 

devise an algorithm that reduces the sensitivity of the closed loop eigenvalues to 

such undesired features. 

In view of the problems of stability and robustness that arise in an open loop 

configuration, it may be necessary to reassign, or shift, certain modes and reshape 
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the eigenframe of a system by [4],[36] implementing some kind of feedback, so as to 

improve the dynamical response and properties of the system. This chapter will start 

off by a brief review of the basics related to rectilinear motions and so A- and A,B- 

Invariant subspaces. We should point out to the fact that due to the fact that (A,B)-

invariant subspaces hold controllability property,  a study on the concept of (A,B)- 

invariant subspaces has been presented in next chapter and so we will review only 

some of the basics and properties of these two subspaces and will reserve the main 

discussion on these subspaces for later. The main focus in this chapter will be on the 

background on eigenvalues and eigenvectors, especially the relationship with 

rectilinear motions. The theoretical analysis will then go on to examine the notion of 

transmission subspaces, and the association of closed loop eigenvalues with 

feedback. Finally there will be a review of the results in the literature concerned with 

methods of assigning the eigenstructure of a system. 

3.2. Background on Eigenvalues and Eigenvectors 

3.2.1 Rectilinear motions 

 

To begin with, it will be necessary to examine the theory related to rectilinear 

motions in the state space for free motions, which is primarily concerned with the 

internal workings of a linear system. Subspaces of the state space that are of a one 

dimensional nature which have the property of retaining any free motion for every

, are in fact the eigenvectors of the dynamic map A. The corresponding motions 

are of the exponential type eλt x 0( ) , where  is the eigenvalue related to the 

corresponding eigenvector. Such motions are called rectilinear. The ensuing problem 

is thus to restrict the free motion in a one-dimensional subspace with a view to find 

the pairs of a vector and a frequency satisfying the eigenvalue-eigenvector 

relationship. 

 

The problem of keeping the state trajectory of a linear system within a given 

subspace of the state space is of great importance in a number of control problems. 

t ≥ 0

λ
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This section will concentrate on the restriction of the free motion in a given subspace, 

and will begin with by stating the following theorem. 

 

Theorem 3.1: [34], [35] Let ( ),  ,  , A B C DS  be a linear system and V  an r-dimensional 

subspace of the state space X . A necessary and sufficient condition for the free 

motion part of the state trajectory x(t) to be kept within V  ∀ ≥t 0  whenever the state 

is released from any initial condition ( )0x ∈V  is 

(i) For every trajectory ( )x t ∈V  there exists another trajectory ( )x t′ ∈V  such that 

          Ax t x t tb g b g= ′ ∀ ≥  0                                                                                            (3.2.1.a) 

(ii) A ∈V V                                                                                                                  (3.2.1.b) 

 

Proof: Refer to [34] for full details. 

 

The subspace V  satisfying the above conditions is called an A-invariant subspace.  

The above theorem provides links with the fundamental notion of rectilinear 

motions [36]. We will study the motion along eigenvectors and the A- invariant 

subspaces of a linear system more in depth within Chapter Four (refer to section 4.2). 

A-invariance is strongly linked to the study of the problem of restricting the free 

motion of a system inside a subspace V  for any initial condition 0x ∈V  [36].  

Such subspaces are also linked to the zero input problem whilst the state and output 

trajectories are rectilinear. This can be illustrated in the following diagram. Both x t( )  

and x 0( )  exist within the subspace V . But what happens to the frequencies and 

their associated rectilinear motions when u t( ) ≠ 0? This is where A-invariance is 

extended to (A,B)-invariance, and will be dealt with later in this chapter and more 

precisely within next chapter. 
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Figure 3.1: Zero input problem 

 

The above notions have shown that the free motion of a system starting from an 

initial condition is called rectilinear, which is in fact a motion along an eigenvector. 

The frequency corresponding to this motion is called an eigenvalue. A-invariance is a 

condition for the free motion part of the trajectory to be kept within the boundaries 

of a certain subspace when released from an initial point. The definition of A-

invariance is given by equation (3.2.1). 

 

3.2.2 Summary of spectral characterisation 

As a recollection from earlier, an eigenvector ui that corresponds to an eigenvalue  

is a nontrivial solution of 

                                                                                                                 (3.2.3) 

The spectral decomposition of A in the case of distinct eigenvalues is of the form 

                                                                                                                           (3.2.4) 

where U  is the matrix of eigenvectors and 1V U −=  is the matrix of dual eigenvectors 

and Λ = diag iλb g . If B and ′B represent the eigenbasis and dual eigenbasis described 

by u un1, ,…l q  and v vn1, ,…l q  respectively, then 

λ i

λ i n iI A u− = 0

A U V

VA V

=
=

Λ
Λ
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VU

v

v

u u I

v u

t

n
t

n n

i
t

j ij

=
L

N

M
M
M

O

Q

P
P
P

=

⇒ =

1

1⋮ …, ,

δ

                                                                                         (3.2.5). 

 

Consider an n × n linear multivariable system, described by the following state space 

model 

ɺx Ax Bu

y Cx

= +
=

                                                              (3.2.6) 

The system transfer function matrix is given by 

G s C sI A Bnb g b g= − −1
                                        (3.2.7) 

If U and V satisfy condition (3.2.4), and A  is of simple structure and Λ = diag iλb g , 
the transfer function matrix can be expressed in the dyadic form below 

G s
Cu v B

s
i i

t

ii

n

b g =
−=

∑ λ1

                                                       (3.2.8) 

As can be seen from equation (3.2.8), eigenvalues, eigenvectors and dual 

eigenvectors have an important role to play in the formulation of the system transfer 

function. 

 

3.2.3 Controllability and Observability issues 

One of the issues arising frequently in the area of control design is related to the 

problems concerning controllability and observability, so a link between these two 

qualitative properties and the eigenstructure of a system has to be established. Take 

the system described by equation (3.2.6), where A has distinct eigenvalues, and the 

modes of interest are ,  and . Accroding to [37], the complete mode 

λi , ui , vi
t( ) is uncontrollable if 

β
i

t = vi
t B = 0

vi
t λi I n − A( ) = 0

    .                                                                                                            (3.2.9) 

The mode λi , ui , vi
t( ) is unobservable if 

λ i ui vi
t



 

39  
 

γ
i
= Cui = 0

λi I n − A( )ui = 0
.                                                         (3.2.10) 

A mode λi , ui , vi
t( ) is said to be: 

♦ Controllable and observable if  and  

♦ Controllable and unobservable if  and  

♦ Uncontrollable and observable if  and  

♦ Uncontrollable and unobservable if  and  

The conditions  and  provide the basis for a geometric 

characterisation of uncontrollability and unobservability. In fact condition (3.2.10) 

implies that the left eigenvector vi satisfies the geometric condition 

( )i lv N B∈ ≡ N
                                                                                                             

(3.2.11) 

Likewise, equation (3.2.10) implies that the right eigenvector satisfies the geometric 

condition 

( )j ru N C∈ ≡ M                                                                                                              (3.2.12) 

The above geometric conditions are expressed as conditions on spaces and thus they 

may be used to provide measures of the “degree” on controllability and of 

observability by measuring the proximity of the left eigenvector to the N  space 

and the proximity of the right eigenvector to the M  space. Although controllability 

is invariant under state feedback and observability invariant under output injection 

[34], [36], [38], their respective degrees are not. Thus in shaping the closed loop 

eigenframe by feedback, the degree of controllability and observability due to 

positioning of the resulting closed loop eigenframes is an important indicator that 

can be considered as a design parameter. 

 

 

β
i

t ≠ 0 γ
i

≠ 0

β
i

t ≠ 0 γ
i

t = 0

β
i

t = 0 γ
i

≠ 0

β
i

t = 0 γ
i

t = 0

β
i

t
i
tv B= = 0 γ

i iCu= = 0
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3.3. Forced rectilinear motions and closed-Loop 

       Eigenstructure 

3.3.1 Physical problems 

In Subsection 3.2.1, the problem of rectilinear motions for zero input conditions was 

examined. An extension of this problem can be stated as follows [4], [98]: 

 

Problem 3.1: [36] Given the system ( , , , )A B C DS and a subspace of X , V , find under 

what conditions, for any 0x ∈V  there exists a control input which restricts the state 

trajectory in V , . 

Here, the case when u t( ) ≠ 0  will be looked at. So the question that must be posed is 

whether the rectilinear motion problem can be extended to forced systems or not, i.e. 

when u t( ) ≠ 0 . In order to examine this, it is necessary to make use of the input-state 

pencil [36] 

sIn − A, −B





x̂

û













= x0                                                                         (3.3.1) 

From equation (3.3.1), the input-state pencil is given by ( ) [ ],ns sI A B= − −C , and is 

used to help describing the coupling between the input and the state. Taking into 

consideration the initial condition x 0( ) = x0, and the system description of equation 

(3.2.6), the problem of forced rectilinear motions can be formulated as follows 

 

Problem 3.2: [36] Is it possible to find a specific  and u t( )  such that x t( ) = eλit x0 , 

, for some iλ ∈C ? 

In order to tackle this problem, it is necessary to look back at Section 3.2, where the 

study of A-invariant subspaces and rectilinear motions within them was introduced. 

For the case of forced systems a more general situation arises. Apart from the 

internal mechanism characterised by the A matrix, and the way it is coupled to the 

environment via the output map C, the way in which the outside is coupled to the 

system via the input map B is taken into consideration. Thus the initial concept of A-

invariance is now extended to (A,B)-invariance. Unlike the case of A-invariant 

∀ ≥t 0

x0

∀ ≥t 0
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subspaces, (A,B)-invariant subspaces may not be described in terms of a frequency 

only, and this is associated with a generalised eigenvalue-eigenvector problem. As we 

have mentioned before, more in detailed properties of (A,B)-invariant subspaces will 

be give within next chapter. 

 

3.3.2 Characterisation of Transmission  

The difference between the frequency and vector correspondence for the two cases 

of A and (A,B)-invariance can be summarised in the following way. The spectrum 

σ x0{ }  = s0  can uniquely characterise a 1-dimensional A-invariant subspace x0{ } . 

Each spectral frequency 0s  has a unique characteristic vector . For (A,B)-

invariant cases, each subspace x0{ }  (for ) is uniquely characterised by a 

generalised spectral frequency 0s , but unlike A-invariance, there is no unique 

corresponding characteristic vector x0. Any vector x0 satisfying 

( ) 0 0

0

N sI A x

NB

− =
=

                                                                                                               (3.3.2) 

where N is a basis matrix for ( )lN B , is (A, B)-invariant and is uniquely characterised 

by s0. However, equation (3.3.2) has more than one solution for x0. In order to be able 

to distinguish between the correspondence of frequencies and characteristic 

subspaces for the two cases of A- and (A,B)-invariance it is necessary to introduce 

concepts relating to the frequency transmission through forced systems. 

 

The first concept is the transmission subspace of s0, 0( )sT  [35], to be the subspace 

spanned by the totality of the solutions of x0 for the same frequency s0. The second 

concept is that the frequency s0 corresponding to 0( )sT  is called the frequency content 

of the frequency subspace. 

 

The concept of 0( )sT  is quite an important one. In order for the successful 

transmission of a particular frequency s0, the initial condition x0 and the associated 

trajectory x(t) must remain within 0( )sT . Furthermore, because the transmission 

w s x0 0=

{ }0 0x =∩B
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subspace is uniquely characterised by a frequency, rectilinear motions sustained in 

any subspace of 0( )sT  will enable the transmission of the frequency s0 only. It must 

be noted that these statements only hold true for (A,B)-invariant subspaces that do 

not intersect B . 

 

Remark 3.1: [35] An (A,B)-invariant subspace that intersects with B  has part of its 

spectrum arbitrarily assignable and contains a controllability subspace. 

 

Proposition 3.1: [35] All transmission subspaces of a system ( , )A BS , where A and B 

are of sizes n×n and n×l respectively, for which  have an intersection with B .  

Otherwise, when , then such an intersection generally does not exist. 

 

Proof: Before looking at a way to compute the transmission subspace, it is necessary 

to look at its physical significance with respect to frequency propagation. The 

transmission of the frequency s0 only takes place in subspaces of the transmission 

subspace 0( )sT . Conversely, every subspace of 0( )sT  only allows the transmission 

of the frequency s0. This focuses attention solely on the behaviour of the state vector 

without taking into consideration the type of input vector required to initialise a 

frequency transmission. This can be justified by looking at equation (3.3.2), where 

the existence of a solution for x0 immediately implies a solution for u0, which is 

indicated by 

u0 = B+ s0I − A( ) x0                                                   (3.3.3) 

where B+B = I l( ). An interesting exercise would be to identify the particular 

subspace in the input space U  from which 0( )sT  in X  may be reached. The 

subspace in U is defined as the input transmission subspace, and is denoted by 0( )u sT .  

 

With this in mind, the following proposition can be made: 

 

Proposition 3.2: [35] 0( )u sT  coincides with the whole input space U for all 

frequencies if B  does not intersect with any 0( )sT . If there is an intersection, then 

l n> 2

l n≤ 2
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the same applies to all frequencies s0 again, except for those that belong to the 

controllable part of the spectrum of A. 

 

Proof: All vectors in 0( )sT  for any frequency s0 which is not an eigenvalue of A are 

given as 

x0 = s0I − A( )−1
Bu0                                                  (3.3.4) 

From the above condition, any vector u0 leads to a vector 0 0( )x s∈T . But if , 

λi ∈σ A( ) ,  

                                                                                                              (3.3.5) 

when this is projected onto the eigenframe of A, the following condition arises 

                                                                                                                          (3.3.6) 

where  is the left eigenvector of A corresponding to the eigenvalue . Thus it is 

still possible to use any vector as so long as , that is ( )u iλ =T U  if  is an 

uncontrollable mode. If , then  may not assume values for which 

Bu0 ∈ wi{ } , where  is the eigenvector of A that corresponds to .  

 

Equation (3.3.6) gives the totality of vector solutions for , where 0 0( )x s∈T  for any 

frequency s0 such that s0 is not in the spectrum of A, i.e. s0 ∉σ A( ). Therefore 0( )sT  

can be expressed as 

( ){ }1

0 0( ) ranges s I A B
−= −T                                                                                          (3.3.7) 

 

Remark 3.2: [35] For the general case, 0s ∈C , where s0 ∈σ A( ), the transmission 

subspace is defined as the  vector solutions of s0N − NA( ) x0 = 0.                              

 

3.3.3. Feedback and closed-loop Eigenvalues 

The transmission of the frequency s0 is generally affected from any input u0 in the 

input space U . However it may only be propagated along a direction belonging to a 

given subspace of the output space Y . It is required that such transmissions are only 

s i0 = λ

Ax x Bui0 0 0= −λ

v Bui
t

0 0=

vi
t λ i

v Bi
t = 0 λ i

v Bi
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wi λ i
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possible if the state vector is restricted to the transmission subspace 0( )sT , and that 

the ensuing trajectories in the input, state and output spaces are all of the rectilinear 

type. The rectilinear motions in U , X and Y  all share the same frequency s0. The 

need for an external excitation in the form of a controlled input u(t) could be 

eliminated by deploying suitable feedback connections from either the states or the 

outputs back to the inputs. Therefore applying an appropriate state feedback 

operator sK , or output feedback operator 0K  such that 

                                                                                                                          (3.3.8) 

or 

                                                                                                                          (3.3.9) 

it is possible to generate the control input u(t) needed to sustain the rectilinear 

motions by closing the loops around the system S  in the manner indicated below: 

 

 

 

 

                            Figure 3.2: Feedback systems 

K x us 0 0=

K y uo 0 0=
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The top right of the diagram shows a state feedback configuration, and the bottom 

part shows an output feedback one. The actual physical interpretations of these 

diagrams do not need an external input, and can be considered as free responding 

systems. The associated problem can be linked to restricting the state vector (and 

output vector) of an autonomous system. So now the vector x0 which originally was 

seen as a member of a transmission subspace becomes a member of a closed-loop 

eigenspace.  Then, it can be shown that 

s0I − A− BKs( )x0 = 0                                                                                                      (3.3.10) 

s0 − A− BKoC( ) x0 = 0                                                                                                     (3.3.11) 

are obtained.  and  are the closed-loop state matrices under state 

and output feedback respectively. These play a huge part in the problem of the 

placement of closed-loop poles and eigenvectors. 

 

3.3.4. The problem of eigenspace assignment 

An adequate way of summarising the above subsection would be to say that 

frequency transmissions along (A,B)-invariant directions could be self generated by 

the utilisation of an appropriate family of feedback operators connecting the states 

(or outputs) back to the inputs. Therefore, rectilinear motions of the type  

stimulated by an input  could be made to be self perpetuating if the input 

signal was generated by a combination of the state (or output) variables and the 

action of a feedback operator. To keep things simple, only state feedback will be 

considered, such that . 

 

It has been documented that any motion in a general r-dimensional (A,B)-invariant 

subspace may be broken into a number of simple and higher order rectilinear 

motions, each linked to a specific spectral frequency that take place along the 

generalised eigenspace defined by the vectors . Such motions are 

sustained by inputs that consist of rectilinear type components, of which each are 

associated with one particular frequency . These frequencies take place along the 

A BKs+b g A BK Co+b g

exp s t x0 0b g
exp s t u0 0b g

K x us 0 0=

s
i0

x x x
i i i0

0
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input characteristic vectors, defined by . Therefore the state 

feedback law of (3.3.8) may be restated in order to satisfy the conditions of r-

dimensional (A,B)-invariant subspaces as follows 

                                                                                                                       (3.3.12) 

and in matrix form 

                                                                                                                        (3.3.13) 

The action of the matrix sK  as a feedback operator has already been illustrated in 

Figure 3.2. The diagram shows how the restriction of the state trajectory ( )x t ∈V  can 

be achieved by a closed-loop system without the necessity of a control input u(t). 

Thus the concept of (A,B)-invariance can be extended to ( )sA BK+ -invariance, which 

leads onto the problem of eigenspace assignment. The equivalence between the two 

can be investigated by first considering a derivation of equation 0 0 00Ax s x Bu= −

which is needed to be solved in order for 0x to be found [36],  

                                                                                                           (3.3.14) 

where RJ  is the Jordan block diagonal canonical form of = diag . If 0U  from 

(3.3.13) is substituted into (3.3.14), then 

                                                                                                         (3.3.15) 

which in turn can be expressed in vector space notation by 

( )sA BK+ ⊂V V                                                                                                               (3.3.16) 

The following theorem states under what circumstances the assignment of an 

eigenspace can be considered: 

 

Theorem 3.2: [36] The sufficient and necessary condition for the assignability of a 

given vector as a closed-loop eigenvector is that it belongs to a transmission 

subspace, of which the frequency content designates the corresponding closed loop 

eigenvalue.                                                                                                                               

 

With this in mind, the general form of the eigenstructure assignment problem can be 

formulated as follows: 

u u u
i i i0

0
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Problem 3.3: Given the system ( , )A BS , find a set of independent vectors associated 

with the frequencies , i = 1, …, r, find an appropriate feedback operator (either 

sK for state feedback or 0K  for output feedback) that makes the frequencies  

closed-loop eigenvalues, and the corresponding closed loop eigenvectors while at 

the same time the resulting eigenframe satisfies some given properties. 

 

Basically the point of eigenstructure assignment is to shift certain undesirable 

characteristic frequencies to new locations and to exercise some control over the 

resulting eigenvectors. The latter, in tandem with the input and output maps B and 

C respectively, are vital for the problem of well conditioning controllability and 

observability properties. It is well known that the controllability and observability 

properties have certain invariance properties under feedback/output injection as 

stated below. 

 

Theorem 3.3: [13], [36] Given the system ( , , , )A B C DS , the following hold true: 

(i) The controllability properties are invariant under state feedback. 

(ii) The observability properties are invariant under output injection.  

                                                                                                                                                  

 

The above suggests that state feedback cannot make a controllable system 

uncontrollable, but it can affect the degrees of controllability when these are suitably 

defined. However, state feedback can make the system unobservable, if the system 

has zeros and a suitable feedback is selected [36],[40]. Similar arguments can be 

made for the output injection. Thus the general eigenstructure assignment involves a 

simultaneous selection of a suitable closed loop set of frequencies and a suitable 

eigenframe that can guarantee some additional properties. 

More details on the above argument will be given in next chapter, where by using 

the properties of (A,B)- Invariant subspaces, necessary conditions for the selection of 

a suitable state feedback has been presented based on open-loop/ closed-loop 

spectra,  in order for eigenstructurs to be assigned.  

λ il q
λ i
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In the next section, a review of some of the literature dealing with some of the 

methods formulated to tackle the problem of eigenstructure assignment is made. 

 

3.4. Review of results on Eigenstructure assignment 

3.4.1 Early results 

The progression of work done in formulating methods that attempt to solve the 

eigenstructure assignment problem will now be reviewed. The response of a control 

system is largely dependent on its eigenvalues and eigenvectors, namely its 

eigenstructure. The eigenvalue assignment problem was first addressed by Wonham 

[39] in 1967. The author proved that a system was controllable if and only if state 

feedback could be applied and calculated so as to make the newly formed closed 

loop system have an arbitrary set of self-conjugate scalars as its poles.  

Since this paper, there have been hundreds of publications dedicated to the subject 

of pole placement and its applications, which go on to discuss the assignment of 

eigenvectors as well. A handful set has been selected in order to give an insight into 

some of the methodologies that have been developed for both output and state 

feedback cases. 

 

The problem of using eigenvectors and assigning them was first considered by 

Karcanias [4], [98] and was used by Shaked and Karcanias [40] as part of the wider 

issues of model reduction of linear systems. The problem was also defined 

independently by Moore (1976) [99].  The aim of their work was to find a state 

feedback matrix such that the closed loop system had the maximum number of 

eigenvectors possible in the kernel of the output matrix C. An algorithm was 

developed whereby the maximum number of newly assigned eigenvectors, which 

corresponded to stable modes, lay in the kernel of C. This meant that the maximum 

possible number of stable modes became unobservable. This took advantage of the 

fact that the observability properties of a system are not invariant under state 

feedback.  
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At around the same time, Moore [41] established the fact that state feedback could be 

used to assign the closed loop system and desired self -conjugate set of eigenvalues, 

if and only if the open loop system was controllable.  

The purpose of his paper was to identify the freedom (other than the choice of 

eigenvalues to be assigned) offered by state feedback. It was shown that the freedom 

available was a choice of one particular set from the class of “allowable” sets of 

closed loop eigenvectors. Porter and D’Azzo [42] presented a set of results for closed 

loop eigenstructure assignment by state feedback in multivariable linear systems 

which took advantage of the freedom available due to the pole placement method by 

Moore [41]. The results provided a method for the direct computation of the state 

feedback matrix which can be used to assign prescribed Jordan canonical forms, 

eigenvectors and generalised eigenvectors to the plant matrices of closed loop 

systems.  

Also it is pointed out that even in the case of systems for which the pair (A,B) is 

uncontrollable, certain prescribed eigenvectors of the feedback system (A + BKs) can 

be assigned by state feedback. In the case of systems with asymptotically stable but 

uncontrollable modes, they state that it is often possible to achieve significant 

improvements in the dynamical behaviour of such systems by the introduction of 

appropriate state feedback controllers. The results from this paper led to a further 

development by Porter and D’Azzo [43]. The algorithm presented is based along 

solving 

                                                                                                       (3.4.1) 

for sK by arbitrarily assigning a vector  to find the set of eigenvectors ui which 

satisfy the relationship . The nature of the computations is simple due to 

the case of the elementary column operations involved. 

 

The early results of eigenstructure assignment described here pioneered further 

investigations into this novel control problem. These early studies opened a new 

channel in control design that steered away from standard classical techniques 

A BK I us i i+ − =λ 0

ω i

K uS i i= ω
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(second order PID controllers) to allow more complex feedback controllers to be 

designed and implemented. 

 

3.4.2. State feedback results 

The poles of a system are also the roots of the characteristic equation that gives rise 

to the eigenvalues of a system. Therefore the term “pole-shifting” means the same as 

relocating the eigenvalues of a system to obtain improved behavioural patterns. In 

view of this, Retallack and MacFarlane [44] derived a straightforward state feedback 

pole-shifting algorithm, which relates the open and closed loop characteristic 

frequencies of multivariable feedback systems to the Bode return difference of the 

system.  

The useful algorithm developed provided an interesting link between state-space 

and transfer function matrix representations in the treatment of pole shifting. 

Although many algorithms exist for the solution of the pole placement problem 

using state feedback, it can generally be concluded that most of them are 

numerically unstable, yet the paper by Minimis and Paige [45] attempted to prove 

that their algorithm was numerically stable.  

 

They suggested a direct algorithm for the computation of the linear state feedback 

matrix for multi-input systems such that the resultant closed-loop system matrix has 

specified eigenvalues. This method has the added advantage of an extra degree of 

freedom which can be used in different ways, for example to decrease some norm of 

the feedback matrix and hence the control effort or to improve the condition of some 

eigenvalues of the closed loop matrix. The algorithm devised uses unitary 

transformations for numerical reliability, and its stability results from the use of 

explicit shifting for the allocation of each eigenvalue.  

 

Another numerically stable and efficient computational algorithm for pole 

assignment of linear multi-input systems was proposed by Petkov et al. [46]. The 

preliminary stage of the algorithm involves the reduction of the state matrices into 

an orthogonal transformation of the closed loop system matrix into an upper quasi-
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triangular form whose diagonal blocks correspond to the desired poles. The 

computed gain matrix, due to its numerical stability, is also exact for a system with 

slightly perturbed matrices. It works equally well with real and complex, distinct 

and multiple poles and is also applicable to ill-conditioned and high order problems. 

 

The problem with using state feedback is that the states of a system are not always 

readily available. This creates the problem of the inability of the designer to shift all 

the states of a system. This is where output feedback has an advantage, where the 

states can be fed back as functions of the output. 

 

3.4.3. Output feedback results 

In 1978, Porter and Bradshaw [47] derived a method for entire eigenstructure 

assignment which was applicable to the design of multivariable continuous-time 

tracking systems incorporating error-actuated dynamic controllers. The method was 

illustrated by designing an error-actuated dynamic controller which caused the 

output of a second order continuous time plant to track a constant command input 

in the presence of an unmeasurable constant disturbance input. The feedback matrix 

0K  is solved using the eigenvalue-eigenvector relationship 

                                                                                                     (3.4.2) 

where A, B and C are the state, input and output matrices respectively.  represents 

the eigenvalues to be assigned, and ui is the corresponding eigenvector set of the 

new system.  

A new approach was developed by Alexandridis and Parakevopoulos [48], which 

identifies the eigenspaces for the desired set of all the closed loop eigenvalues. In 

order for the desired set of eigenvalues to be successfully assigned, necessary and 

sufficient conditions are established and met.  

The proposed approach is based on the idea of breaking down the problem of the 

output feedback pole assignment in the following two steps. In the first step, an 

expression for 0K  is derived which relates the output feedback gain matrix to the 

A BK C I uo i i+ − =λ 0

iλ
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eigenstructure assignment for the set Λ1 of the closed loop eigenvectors. In the 

second step, the remaining closed loop eigenvectors are assigned to be in the set Λ2 

without affecting the assignment of the first set of Λ1 eigenvalues.  

The problem of determining the free parameters in 0K  either to a bilinear system of 

real algebraic equations in the general case or to a linear system is achieved by 

algebraic manipulations. Sobel et al [49] also presented a comprehensive use of 

eigenstructure assignment design methodology using output feedback. The 

implementation of their technique is applicable to the design of advanced flight 

control systems. Their method enables the designer to satisfy damping, settling time 

and mode decoupling specifications by directly choosing the eigenvalues and 

eigenvectors. They also tackle the problem of eigenvalue sensitivity, which arises 

due to the incremental change in the eigenvalues as a result of incremental changes 

in the stability of the aircraft and control derivatives. Duan [50] proposed a simple 

and effective algorithm for robust pole assignment in multivariable linear systems 

via output feedback.  

The presented method gives a robust solution in the sense that the closed loop 

eigenvalues are as insensitive as possible to perturbations in the system coefficient 

matrices. The solution to the problem involves three steps, the first of which is aimed 

at trying to find a proper eigenvalue sensitivity index. The second step involves 

stating the freedom of the control system and in the final step, the freedom of the 

system is optimised by minimising the proposed eigenvalue sensitivity index.  

The eigenvalue sensitivity index can be described appropriately by the condition 

number of the eigenvector matrix of the closed loop system. The algorithm 

conveniently includes closed loop eigenvalues as optimising parameters and it also 

possesses stable numerical properties, as well as being fairly simple to implement. 

Kabamba and Longman [51] produced a note addressing the problem of the 

assignability of the eigenvalues of the matrix 0A BK C+  by the choice of the feedback 

matrix 0K . This mathematical problem corresponds to pole assignment in the direct 
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output feedback problem, and by proper changes of variables it also represents the 

pole assignment problem with dynamic feedback controllers.  

The key to the solution presented by the authors is the introduction of the concept of 

local assignability which in loose terms is the arbitrary perturbability of the 

eigenvalues of 0A BK C+  by the perturbations of 0K . If n is the order of the system, 

they show that if 0A BK C+  has distinct eigenvalues, a necessary and sufficient 

condition for local complete assignability at Ko is that the matrices  be 

linearly independent for .  

In special cases, this condition can be reduced to known criteria for controllability 

and observability. Although such properties are necessary conditions for 

assignability, the paper also addresses the question of assignability of uncontrollable 

and unobservable systems, both by direct output feedback and dynamic 

compensation. Fletcher et al [52] presented a set of necessary and sufficient 

conditions for closed loop eigenvector assignment by output feedback in time 

invariant linear multivariable control systems. The basis of the paper is a simple 

condition on a square matrix, which is necessary and sufficiently adequate for it to 

be the closed loop plant matrix of a given system.  

It is employed to obtain a condition concerning the assignment of an eigenstructure 

consisting of the eigenvalues with a mixture of left and right eigenvectors. Thus their 

arguments suggest that the analysis of the closed loop eigenstructure should be 

carried out in terms of a mixture of left and right eigenvectors. 

The disadvantage of the output feedback approach is that it is limited by a lack of 

degree of freedom. The output feedback matrix is restricted by the size of the output 

matrix, C, whereas state feedback is not. The nature of the control problem dictates 

whether state or output feedback is used. 

3.4.4. Combined state and output feedback approach 

An interesting result was produced by Lovass-Nagy et al [53] where the output 

feedback matrix can be calculated from knowledge of the state feedback matrix. A 

C A BK Co

i+ −1

1≤ ≤i n
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method using matrix generalised inverses is developed for the computation of the 

matrix sK  (state feedback) such that the matrix sA BK+  has prescribed eigenvalues 

which need satisfy only the condition that a certain number of them are distinct and 

real.  

A feedback law of the form  is used to achieve the desired eigenvalue 

placement. The method does not require the solution of sets of non-linear equations 

or manipulation of polynomial matrices, and no knowledge of the eigenvalues 

and/or the eigenvectors of A is necessary. If the computed matrix sK  and the given 

matrix C satisfy a consistency condition, then the output feedback matrix 0K  can be 

found from the relationship , and the desired eigenvalue placement can be 

realised by the output feedback law . 

This interesting result allows direct information of the state space to be used to 

calculate an output feedback controller. It is worth further investigation in order to 

check system responses that indicate just how valid the approach is. 

 

3.4.5. Approach that reduces controllers complexity  

A note dealing with the use of feedback to approximate the closed loop 

eigenstructure of a system to a prescribed set of values was proposed by Calvo-

Ramon [54] in order to reduce the controller complexity based on eigenvalue 

sensitivity concepts. Output feedback is used to approximate the closed loop 

eigenstructure of the system to a desired set of values. The method is quite 

systematic and the design of a constrained output feedback system from a 

prescribed eigenstructure is well established. Residue analysis (based on left and 

right eigenvectors) is used to estimate the effect on the eigenvalues of constraints in 

the feedback gains. The numerical results show that some eigenvectors can be 

approximately preserved, although eigenvector sensitivities have not been 

considered. The main drawback of this method is that the eigenvector sensitivities 

are estimated, which may lead to inaccurate controller designs as stronger poles may 

be mistakenly overlooked. 

u v K xs= +

K C Ko s=

u v K yo= +
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3.4.6 Results obtained from a subspace theme 

The problem with Wonham’s [39] fundamental state feedback result is that in most 

practical situations the state is not available directly. Kwon and Youn [55] attempted 

to find a condition under which the system is eigenvalue assignable despite the 

system having incomplete state observation.  

They presented a generalisation of an entire eigenstructure assignment method for 

linear time-invariant multivariable systems, without using assumptions and with the 

eigenvalues of the closed-loop system being distinct or different from any of the 

eigenvalues of the open-loop system. The presented method has sufficient 

conditions that show that the closed loop eigenstructure assignment by output 

feedback is constrained by the requirement that the generalised right and left 

eigenvectors lie in certain subspaces.  

Following on from the subspace theme, Søgaard, Trostmann and Conrad [56] 

presented a method whereby all the residuals assignable by state feedback must be 

characterised geometrically in terms of subspaces. These subspaces are defined by 

the freely selectable closed loop eigenvalues. Any desired residual may be selected 

from these subspaces. The applicability of this result is complimented by the fact that 

basic control design objectives like I/O response and robustness can be expressed in 

terms of the residuals. 

The approach here stimulates further analysis into the assignable spectra of 

controllability subspaces, and will be studied in greater detail in Chapter 8. 

 

3.4.7. Parametric state feedback results 

Roppenecker [57] derived an explicit parametric expression for the controller gain 

matrix of a linear state-variable feedback system. It is based on a modal analysis of 

the input control vector u(t) under linear state-variable feedback conditions. The 

parameterisation of the class of all state feedback controllers that assign a prescribed 

set of distinct eigenvalues was found in terms of certain parameter vectors which are 

functions of the gain matrix and the new eigenvectors to be derived.  
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The same algorithm, provided the prescribed eigenvalues are distinct and that the 

system is completely controllable, can always calculate the controller gain matrix. 

The method for deriving the controller parameters is also applicable to the case 

where all the open-loop eigenvalues are required to be shifted by an appropriate 

control action. Fahmy and O’Reilly [58] devised another parametric solution for 

closed-loop eigenstructure assignment via state feedback in a linear multivariable 

system with n states and r control inputs. This was achieved by introducing a lemma 

on the differentiation of the determinant of the matrix , the class 

of assignable eigenvectors and generalised eigenvectors associated with the assigned 

eigenvalues can be explicitly described by a set of free parameter vectors.  

Fahmy and O’Reilly followed this up in another paper [59], where a general 

eigenstructure assignment (EA) problem for linear multivariable systems was 

formulated and solved within the framework of the parametric eigenstructure 

assignment methodology derived earlier [58]. It was shown that EA control is 

achievable by means of a family of classes of state feedback controllers. The number 

of classes is equal to the number of admissible Jordan forms of the closed loop 

system. Each class is characterised by a specific minimum number of free parameters 

(degrees of freedom) in the parametric form of the feedback gain matrix. The class of 

EA controllers with the greatest value of free parameters is used for the assignment 

of the eigenstructure. 

 A significant advantage of this method occurs when not all of the eigenvalues need 

to be shifted, thus releasing extra free parameters for other design purposes. 

 

3.4.8 Parametric output feedback results 

There have also been methodologies for the output feedback case that follow the 

parametric approaches devised under state feedback conditions. Fahmy and O’Reilly 

[60] proposed the development of an effective multistage parametric approach for 

eigenstructure assignment in linear multivariable systems by output feedback 

control.  

I K I A Br s i n− − −λb g 1
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The sets of closed loop eigenvalues and associated eigenvectors are suitably divided 

into subsets and the entire eigenstructure is constructed by parts in two (or more) 

consecutive stages. The eigenvalue-vector subset assigned in a certain stage is 

intermediately protected, i.e. made invariant under output feedback, so that another 

subset can be assigned in a subsequent stage without disturbing the former subset. 

This allows the subsets of right and left eigenvectors to be assigned in separate 

stages, which relaxes the computational algorithm from the orthogonality 

conditions.  

The number of effective free parameters beyond the eigenvalue assignment is also 

determined, and the notion of redistributing these parameters among the assignable 

right and left eigenvectors is introduced. The approach as a whole is remarkably 

simple and systematic, and it provides much insight into the mechanism of 

eigenstructure assignment by output feedback control. Duan [61] introduced another 

complete parametric approach for eigenstructure assignment by decentralised 

output feedback. By using a complete parametric solution of a generalised Sylvester 

matrix equation, parametric representations of both the left and right closed loop 

eigenvectors and generalised eigenvectors and two series of partially free parameter 

vectors are established.  

The whole problem is therefore divided into two subproblems. The first is concerned 

with the solution of two generalised Sylvester matrix equations, and solved by using 

a complete parametric solution to the generalised Sylvester matrix equation. The 

second subproblem is concerned with the solution of a series of real matrices 

satisfying two sets of linear matrix equations. The obtained algorithm does not 

require any conditions on the closed loop eigenvalues, and provides a high number 

of degrees of design freedom for the eigenstructure assignment problem. 

3.4.9. Perturbation Theory 

So far the problem of stabilization of the control systems through the eigenvalue and 

eigenstructure assignment by state/output feedback has been defined and reviewed. 

Of course there are so many different algorithms relative to these theories which can 
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be used in practice in order to satisfy the various specifications asked by different 

designers.  

But the important point to be considered is that there are the practical problems 

involved in computation such these solutions on a digital computer and in 

determining the accuracy of the computed eigensystems.  

A major problem will be that of the estimating the effort of the various errors which 

are inherent in the formulation of the problem and its solution. Wiliknson in 1965 [1] 

has grouped these kinds of errors in three major parts: 

(i) The elements of the given matrix in the initial computation of the 

mathematical model may be determined directly from physical 

measurements, and therefore be subject to the errors inherent in all 

observations. In this case, the state matrix  corresponding to these 

measurements, is in fact an approximation to the original matrix .  

In fact if it can be asserted that the error in every element of is bounded 

by  ,then the true matrix is , where  is some matrix for which 

  A complete solution of the practical problem then involves not 

only the determination of the eigenvalues of A , but also an assessment of 

the range of the variation of the eigenvalues of all matrices of the class 

. We are thus led to the consideration of the perturbations of the 

eigenvalues of the matrix corresponding to the perturbations in its 

elements. 

(ii) The elements of the matrix may be defined exactly by the mathematical 

formula but we may still be prevented by the practical considerations from 

presenting a digital computer with this exact matrix. The matrix , for 

instance, may be defined as the product of several matrices each of which 

has elements with the full number of digits normally used on the 

A

A

A

δ ( )A E+ E

.ije δ<

( )A E+

A
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computer. In this case, we are facing with much the same as the first case 

and  is the true state matrix.  

(iii) Even if we can regard the matrix presented to the digital computers as 

exact, the same will not be true, in general, of the computed solution. Most 

commonly the solution is computed will involve the calculation of a 

sequence of similarity transforms of the original matrix , and 

rounding errors will be made in carrying out each of the transformations.  

Frequently we shall be able to show that computed matrices  from the 

original matrix , are exactly similar to matrices , where  have 

small elements which are functions of the rounding errors. Thus again we 

are led to consider the perturbations of the eigenvalues and eigenvectors 

of a matrix corresponding to perturbations in its elements. 

It  should be mention that the major work regarding the perturbation ,done during 

the current research is the extend to the original work by Wlikinson on the real 

distinct eigenvalues and their relative eigenvectors, which will be studied for the 

complex eigenvalues and  the space of the  direct sum decomposition of the 

eigenvectors with more than one dimension. 

The importance of the theory of the perturbation is that leads to the calculation of the 

sensitivity of the eigenvectors of any system which is strongly connected to the angle 

between these eigenectors which is a way to the robustness of the system by 

maximize the angle or in other word by minimize the sensitivity of the eigenvalues 

and their relative eigenvectors.  

3.4.9.1. Perturbation theory for simple eigenvalue 

Consider two matrices  and  such that for each element of them: 

 

( )A E+

1 2, , ,A A ⋯ A

iA
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And let be a simple eigenvalue of . We wish to examine the corresponding 

eigenvalue of , where is the error (  too small) added to the original 

matrix .  If the characteristic equation of  is: 

 

Then the characteristic equation of  is given by 

, 

Where  is a polynomial of degree  in  such that 

. 

This is immediately obvious of we examine the explicit expression for

. We may write 

. 

Now since  is a simple root of   for sufficiently small  there is a 

simple root of  given by a convergent power series 

 

Clearly  Note that  independent of the 

multiplicities of other eigenvalues ([1]). 

3.4.9.2. Perturbation of corresponding eigenvector 

It has been shown by Wilkinson [1] that: ” if the eigenvector 1x is corresponding to a 

simple eigenvalue  of matrix , then the eigenvector of  will be 1( )x ε . 

Clearly the elements of 1( )x ε  are polynomials in  and , and since the power 

series for  is convergent for all sufficiently small , we see that element of 1( )x ε  

1λ A

( )A Bε+ Bε ε

A A

1 2
1 2 0det( ) 0n n n

n nA c c cλ λ λ− −
− −= + + + + =⋯

( )A Bε+

1 2
1 2 0det( ) ( ) ( ) ( ) 0n n n

n nA c c cλ ε λ ε λ ε− −
− −= + + + + =⋯

( )rc ε ( )n r− ε
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det( )I A Bλ ε− −

2
1 2 .( ) n r

r r r r r n rc c c c cε ε ε ε −
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1λ det( )I A Bλ ε− − ε
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is represented by a convergent power series in , the constant term in which is the 

corresponding element of 1x . We may write 

2
1 1 1 1( )x x x xε ε ε= + + +⋯  

where each component of the vector series on the right is a convergent power series 

in . Corresponding to the result we had for the perturbation of simple eigenvalue, 

for the eigenvector, we have :  

1 1( ) 0( )x xε ε− = , 

An again there are no fractional powers of . 

3.4.9.3. First-order perturbations of eigenvalues and eigenvectors 

Based on what has been presented in section 3.4.9 so far, the first order perturbations 

of eigenvalues and eigenvectors have been computed [1] as followings:  

We let 2
1 1 1 1( )x x x xε ε ε= + + +⋯  and 

j
y , j = 1,2, ... , n, be the right and left 

eigenvectors of the closed-loop system matrix  , corresponding to 

eigenvalue  is the set of closed-

loop eigenvalues of the system, that is:  

, t t
j j jj j

M x x y M yλ λ= =  

If is non-defective, that is,  has  linearly independent eigenvectors, then  is 

diagonalizable and it can be shown, [1], that the sensitivity of the eigenvalue to 

perturbations in the components of  and state feedback depends upon the 

magnitude of the sensitivity , where 

221 1
jj

j t
j

jj

y x
c s y x

= = ≥ ,  

ε

ε

ε

M A BF= +
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In the case of multiple eigenvalues, a particular choice of eigenvectors is assumed. 

(For real  the sensitivity  is just the cosine of the angle between the right and left 

eigenvectors corresponding to ). 

More precisely, if a perturbation O( ) is made in the coefficients of the matrix , 

then the corresponding first-order perturbation in the eigenvalue  of  is of the 

order of .  

If is defective, then the corresponding perturbation in some eigenvalue is at least 

an order of magnitude worse in , and therefore, system matrices which are 

defective are necessarily less robust than those which are non-defective. 

We observe that a bound on the sensitivities of the eigenvalues is given by 

 

where  is the condition number of the matrix [ ]1 2, , , nX x x x= ⋯  of eigenvectors. 

Furthermore, the condition numbers take minimum value  = 1, for all , 

if and only if  is a normal matrix, that is t tM M MM= . In this case the eigenvectors 

of may be scaled to give an orthonormal basis for nℝ  and then matrix  is 

perfectly conditioned with =1 ([1], [6]). 

We expect the eigenvectors corresponding to the simple eigenvalue  to be very 

sensitive to perturbations in  if  is close to any of the other eigenvalues, and this 

is indeed true. When  is well separated from the other eigenvalues and none of the 

 (j=2,3,….,n) is small we can certainly say that the eigenvector 1x  is comparatively 

insensitive to perturbations in ([1]). 

3.4.9.4. Robust pole placement 
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The state-feedback pole assignment problem in control system design is essentially 

an inverse eigenvalue problem. The solution is, in general, underdetermined, with 

many degrees of freedom. 

A desirable property of any system design is that the poles should be insensitive to 

perturbations in the coefficient matrices of the system equations. This criterion may 

be used to restrict the degrees of freedom in the assignment problem, and to produce 

a well-conditioned or robust solution to the inverse eigenproblem. Based what has 

been said about the perturbation, the problem of the robust pole placement can be 

defined [6] as follows: 

Given and  (as in 2.6.3), find real matrix  and non-singular matrix satisfying 

 where , such that some measure  of the conditioning, 

or robustness, of the eigenproblem is optimized.  

We remark that the measure  could, for example, be chosen to be  where 

 is the vector of condition numbers corresponding to the selected 

matrix  of eigenvectors.  

Alternatively, we could take as a measure of robustness the condition 

number of matrix which has been considered as one of the main tools of 

measurements within this presented thesis.  The measure then gives an upper 

bound on the measure  and both measures attain their (common) minimum value 

simultaneously.  There also exist some other measures which will not be discussed in 

this presented chapter and can be found in [6]. 

The degrees of freedom available in the choice of the feedback are reflected 

precisely by the degrees of freedom available in the selection of the matrix  of 

eigenvectors. In the case , if exists,  is uniquely determined (up to scaling), 

and the condition numbers  cannot be controlled. In the case  and may 

always be chosen to be orthogonal, ( suffices) and hence to be such that

.  

( , )A B Λ F X

( )A BF X X+ = Λ { }1 2 , , , nλ λ λΛ = ⋯ v

v 1v c
∞

=

1 2[ , , , ]T
nc c c c= ⋯

X

2 2( )v Xκ=

X

2v

1v

F

X

1m = F X

jc m n= X

X I=

1,jc j= ∀



 

64  
 

For a general multi-input system ( ) we may control the sensitivities of the 

assigned poles to a restricted extent by an appropriate choice of the eigenvectors 

comprising . We observe that in the robust pole placement problem, the choice of 

eigenvectors which may be assigned is restricted such that the resulting system 

matrix is non-defective. This restriction implies certain simple conditions on 

the multiplicity of the poles which may be assigned.  

3.4.9.5. Robust eigenstructure assignment 

Given real matrix pair  and eigenvalue set , our objective is to choose 

eigenvectors given by  satisfying  and such that the conditioning 

of the eigenproblem is minimized.  

No restriction on the controllability of   is made, and we remark that although 

the uncontrollable modes of the system cannot be affected by the feedback . 

The corresponding eigenvectors may be modified and the conditioning of 

uncontrollable modes may be improved by an appropriate choice of . 

Kautsky and et al. (1985)  proofed that  for a given non-singular matrix and  

, there exists , a solution to   if and only if 

   where   with  orthogonal and Z non-

singular. Then F is given explicitly by .             

Robust pole assignment problem can be  reduced [1] to the problem of selecting 

independent vectors  , corresponding to the assigned eigenvalues 

 such that eigenproblem  is as well-conditioned as possible. 

3.4.10. Other approaches 

To conclude the review, a couple of unconventional assignment methods will be 

looked at. Datta [62] proposed a conceptually simple algorithm to assign eigenvalues 

in a Hessenberg matrix. The method is based on the evaluation of a simple recursive 
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relation. A matrix  is an upper Hessenberg matrix if  whenever 

. Such a matrix is unreduced if .  

Datta considered the problem of replacing the first row of a given unreduced upper 

Hessenberg matrix such that the resulting matrix has the desired spectrum of 

eigenvalues. Murdoch and Shriba considered the same problem [63], however, one 

disadvantage of their method is that the case of the assignment of repeated 

eigenvalues cannot be considered without considerable alterations to the algorithm.  

Yet it does have a couple of advantages, the first of those being that the required first 

row elements are yielded by the solution of a set of linear equations for which 

reliable algorithms exist in program libraries. The second advantage is that the effect 

of each assigned eigenvalue on the solution is easily identified, as each is associated 

with one row of respective equations. Olbrot [64] considered arbitrary robust 

eigenvalue placement by static state feedback.  

The author demonstrated that robust eigenvalue placement in the disk of an 

arbitrary radius r centred at –2r, can be achieved by a static state feedback controller 

for systems with so called matched perturbations of uncertain parameters in the 

state coefficient matrix A (i.e. with perturbations of A in the range of the input matrix 

B). This implies that such systems can be robustly stabilised with an arbitrarily fixed 

degree of exponential decay. 

Next chapter will deal with the significance of eigenvectors with a view to robust 

eigenvector assignment using open/close loop eigenvalues. It is well known that 

due to the presence of uncertainty or the variation of parameters, there is a need to 

an accurate mathematical model of a control system in order to have the best 

approximation of its corresponding physical problem, especially when it comes to 

the problem of robust control. The analysis of stability robustness or performance 

robustness has been very important for control systems under perturbations. From a 

practical point of view, the analysis of robustness is one of the most important 

problems that attempts to obtain a quantitative measure of the perturbations under 

which the systems still maintain the desired performance.  

H hij= d i hij = 0

i j> +1 hi i, − ≠1 0
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A condition for robustness is the orthogonality of the eigenframe, which was 

examined primarily by Wilkinson [1] in 1965. Since then, several papers have been 

dedicated to the issue of assigning the eigenstructure to satisfy robustness criteria. 

Juang, Hong and Wang [65] based their robust pole assignment method upon the 

Lyapunov approach [66], where the upper bounds of the perturbations are obtained 

to retain the system eigenvalues located within an arbitrarily chosen region in the 

complex plane.  

The bounds derived by the proposed method provide useful quantitative measures 

in consideration of both the stability robustness and performance robustness of 

uncertain systems. However Wang and Lin [67] argued that the robustness bounds 

for eigenvalue assignment could be obtained without the need to solve the 

Lyapunov equation.  

The analysis of the problem of eigenvalue assignment is based on some essential 

properties of the induced norms and certain matrix measures, which eliminate the 

heavy computational burden of the Lyapunov approach. However the Lyapunov 

approach was taken a step further by Wilson, Cloutier and Yedavalli [68].  

They presented a generalised eigenstructure assignment procedure for designing a 

controller which has the best eigenstructure achievable while simultaneously 

maintaining stability robustness to time varying parametric variations. The problem 

was approached by constraining the minimisation of the difference between the 

actual and desired eigenstructure. This minimisation is made subject to the 

constraints of the eigenstructure equation and the closed loop Lyapunov equation.  

3.5. Summary and conclusion  

Eigenstructure assignment has attracted a lot of attention but it has focussed on a 

standard parameterisation of possible eigenstructures and has addressed mainly the 

robustness of performance using as a test the orthogonality of the eigenframe. Other 

features and implications of the eigenstructure have not been considered with the 

exception of the effect of the eigenstructure on the degrees of controllability and 

observability. In this thesis the above robustness criteria are extended by introducing 
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a new property that demonstrates the effect of the eigenstructure on the state 

overshoots of corresponding systems. 

Most of the techniques on eigenstructure assignment deal with ways to maximise the 

orthogonality of the eigenframe, which is one particular problem and is indeed only 

one issue within the eigenstructure design problem family. Issues such as the best 

selection of closed loop spectrum that guarantees the most orthogonal solution are 

not sufficiently addressed. However, in this thesis, a new result on this problem will 

be introduced and reviewed through non-smooth optimisation (Chapter Eight) 

where the closed loop eigenframes are obtained through the method introduced by 

Karcanias [4] using open/close spectra.   

Eigenstructure assignment algorithms which can handle a multitude of performance 

criteria require more flexible parameterisations. Specifically, what is required, are 

parameterisations tuned to the needs of the specific criteria. The new algebraic 

criterion to be introduced in Chapter Five seems to be the most flexible since it 

provides an explicit description of the structure of the eigenframe based on the 

properties of the open loop/closed loop spectra. This new form has the potential to 

study problems such as specification of closed loop spectra that can guarantee the 

most orthogonal closed loop eigenstructure. The alternative test based on open loop 

and closed loop spectra is also important since it permits the linking of state 

feedback design to pole mobility using energy considerations or norm of the 

feedback matrix used. 

In light of the literature review that examined numerous methodologies for the 

application of procedures that assign the eigenframe of a system to a new 

predetermined state so as to enhance its performance, it is evident that such 

techniques can be split into the following categories: 

 

� Effect of the eigenstructure on system performance 

� Eigenstructure assignment using a state feedback approach 

� Eigenstructure assignment using an output feedback approach 

� Eigenstructure assignment by parameterising the eigenvectors 
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Before examining the way the eigenstructure can be changed by certain forms of 

compensation, it is important to examine the role of the eigenstructure on different 

aspects of system performance. The issues that are fundamental to this are: 

(i) Eigenstructure and system properties such as controllability, observability, 

robustness, stability, etc. 

(ii) Measuring the degree of orthogonality of the eigenframe and its effects on 

system properties. 

(iii) The selection of desirable spectra and its effect on resulting orthogonality. 

(iv) Alternative forms for parameterising eigenframes. 

Such properties are very important and have not been paid the appropriate attention 

in the study of eigenstructure assignment problems. 

The state feedback approach is centred on the solutions for ui and sK  of equation 

(3.4.1). Pivotal to the method that uses output feedback is equation (3.4.2), which is 

used to find solutions for ui and 0K . The third procedure is the parametric approach, 

whereby either of the relationships for state or output feedback are used to 

formulate methods that make use of parametric equations to determine solutions for 

the respective feedback matrices and corresponding eigenvectors. Generally, 

feedback has an effect on the closed-loop characteristic polynomial of a system, and 

thus affects stability and system performance. The advantage of state feedback is 

that it presents the designer with extra freedom with which multivariable control 

systems can be successfully applied. However, there are systems in which the states 

are not measurable, and so the use of full state feedback is impractical. Therefore 

eigenstructure assignment by output feedback is used. 

It is essential that the solutions obtained are such that the sensitivity of the assigned 

eigenvalues to system modelling discrepancies and external disturbances is 

minimised. In this thesis it will be shown that a degree of closed loop system 

robustness can be achieved by ensuring that the eigenvector matrix is as orthogonal 

as possible. This presents another hurdle with respect to measuring the 

orthogonality of a matrix, or a frame. 
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Another criterion central to the theme of the work carried out in this thesis is the 

requirement to accommodate system controllability (and observability). It is desired 

to maintain these two properties when assigning the eigenstructure of a system. As 

discussed earlier, this is achieved by ensuring that the eigenvectors are in the left 

null space of the input matrix and the right null space of the output matrix for 

controllability and observability respectively. Therefore the fundamental problem to 

be considered is that given the system matrices A and B and a set 

 of stable, controllable eigenvalues, find an appropriate 

feedback matrix F, and an eigenvector matrix U  such that a measure of the 

conditioning, or robustness, is minimised. With regards to feedback, because open 

and closed loop systems have the same restricted input-state pencil ( sN NA− ), the 

controllability properties of a system are invariant under state feedback, yet the 

observability properties change.   

 

 

 

 

 

 

 

 

Λ = diag λ λ λ1 2, , ,… nl q
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CHAPTER 4 

 

BASIC CONCEPTS OF 

EIGENSTRUCTURE ASSIGNMENT 

FROM GEOMETRIC THEORY  

4.1. Introduction 

The concept of A-invariant and (A,B)-invariant subspaces has been given 

considerable attention in recent years. This along with the concept of controllability 

subspaces established a geometric setting which has suggested new methods of 

attacking synthesis problems in many fields of linear system theory [38], such 

methods have proved to be intuitive and economical. 

It is believed that new insight could be gained in a number of problems of this 

efficient geometric setting introduced from a physical viewpoint rather that an 

abstract mathematical one; the vehicle for such an apparatus is the concept of 

rectilinear motions in the input and state spaces, a generalization of the motions 

along eigenvectors. 

One-dimensional subspaces of the state space having the property of retaining any 

free motion for every  turns out to be eigenvectors of the dynamic map A- the 

corresponding motions are of the exponential type exp( )tλ , where λ is the eigenvalue 

corresponding to the eigenvector, and are called rectilinear. Thus, the problem of 

restricting the free motion in a one dimensional subspace reveals the existence of 

pairs consisting of a vector and a frequency satisfying an eigenvalue-eigenvector 

problem. These elementary results provide a modification for the search of 

subspaces having a spectrum associated with them and characterized by rectilinear 

motions. 

0t ≥
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Generalizing the eigenvector - eigenvalue results on the lines discussed above, we 

are led to the concept of A-invariant subspaces; this is briefly presented in next 

section, where the characteristic decomposition, the spectrum and the general 

rectilinear motions are also discussed.  

This will be followed by studying the problem of  finding control inputs to restrict  

the trajectory in a given subspace which yields the concept of the (A,B) – invariant 

subspaces. Such subspaces are distinguished into two categories: those with an 

intersection with the range of input matrix B,  and those having no intersection 

with . For the first class, it is shown that there exists a unique characteristic 

decomposition and spectrum and that the associated control inputs are of the 

exponential type; furthermore, it is proved that there is an infinite number of one 

dimensional (A,B) – invariant subspaces with an arbitrary spectrum in any subspace 

of this class. The results derived from the study of (A,B) – invariance are used for the 

study of the eigenvector shifting problem; necessary and sufficient conditions for the 

assignability of a set of independent vectors as closed–loop eigenvectors of the 

system by state and output feedback are given. 

Since (A,B)-invariant subspaces having controllability property, so controllability 

subspaces (c.s.) are  discussed  as the result of having such property. It will be shown 

that they belong to the second class of (A,B) – invariant subspaces and that they have 

the minimal property. The construction of characteristic bases with an arbitrary 

defined spectrum for a controllability subspace also will be discussed to give an 

alternative proof to the Wonham and Morse theorem for the assignability of the 

spectrum of c.s. [39]. 

For a certain class of cs having intersection with , an eigenvector approach to pole 

assignment by state feedback based on the construction of the closed-loop 

eigenvectors using open-loop eigenvalues and their corresponding eigenvectors 

along with the minimization of the relative closed-loop eigenvector matrix will be 

formulated and studied in later chapters. 

( )B

( )B

( )B
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4.2. Motion along eigenvectors and the A- invariant 

subspaces of a linear system 

The problem of keeping the state trajectory of a linear system in a given subspaces of 

the state space is of great importance in a number of control problems. Two versions 

of this problem may be considered. First, the problem of restricting the free motion 

in a given subspace and the second the problem of keeping the total state trajectory 

in a given subspace by making use of the control input. We will study the first case 

in this chapter. 

Theorem 4.1: Let ( , , , )A B C DS be a linear system and an r-dimensional subspace of 

. Necessary and sufficient condition for the free motion part of the state trajectory 

to be kept in for  whenever the state is released from is  

i) For every trajectory there exists another trajectory  such 

that: 

                                                                                    (4.2.1) 

ii)                                                                                                            (4.2.2) 

                                                                                                                                                

The subspace  satisfying these conditions is called A-invariant subspace [5].  

Proof:  See [4] for full details.                                                                                                                                                                                                                        

For one-dimensional subspace , the free motion of the system starting on  is then 

                                                                                                                  (4.2.3) 

and is called a simple rectilinear motion or a motion along an eigenvector. We 

conclude the following: 

Result 4.1: One dimensional A-invariant subspaces ofX are the simple eigenspaces 

of A. Each of them is characterized by a unique frequency  which is the eigenvalue 

corresponding to the simple eigenvector.   
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Let now  be an r-dimensional A-invariant subspace and  be a basis 

for . By definition (cond. (4.2.2)) we can find vectors  such that  

  

or 

 

Where . Because  is a basis for we may write 

  or   

                                                                                                                          (4.2.4) 

The matrix A is an having as characteristic decomposition. If we define a 

new basis by the transformation  then we have       

.                                                                                                                         (4.2.5) 

The matrices are called restrictions of A on the subspace  with respect to the 

bases V or U [38]. The matrix  might have a simple or non-simple structure 

including Jordan blocks, thus for the defined bases called the characteristic basis 

of , the following conditions hold 

                                                                                                   (4.2.6) 

or, if  has ,say, one Jordan block: 

 

                                                                                    (4.2.7) 

The basis is unique (unless we have repeated ’s and simple structure) and it is 

spanned by eigenvectors or pseudo-eigenvectors of the matrix A. The subspaces 

corresponding to the Jordan blocks are called Jordan eigenspaces. 
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The set of frequencies taking into account their multiplicity as this is expressed 

by the dimensions of the Jordan blocks, is called the spectrum of . If we denote the 

characteristic basis of by and if for the sake of simplicity we assume that 

A has a simple structure, then transform of the state trajectory  is  . 

For an initial condition  , condition (4.2.7) yields 

. 

4.3. Rectilinear motion of Non-autonomous system in the 

input output and state spaces and the concept of (A,B) – 

invariance 

The concept of rectilinear motions, introduced in the previous section, was found to 

be strongly related to the concept of A-invariance.  

The existence of directions characterised by a frequency and an associated rectilinear 

motion for autonomous systems stimulates our interest for the search for similar 

directions for non-autonomous systems. Thus, A-invariance is extended to (A,B)- 

invariance and the eigenvector problem to the generalized eigenvector eigenvalue 

problem. Finally, the structural similarities of A-invariant and (A,B)- invariant 

subspaces are demonstrated by introducing the characteristic decomposition of an 

(A,B)-invariant subspace and by defining the spectrum associated with that 

decomposition. 

As we discussed in previous chapter (Problem 3.1.), we are looking for conditions 

such that for a given the system ( , , , )A B C DS  and a subspace of  and , for any 

, there exists a control input which restricts the state trajectory in  for . 

An initial answer to this, together with a general characterisation of subspaces  

with such properties is given by the following theorem: 
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Theorem 4.2: [9], [35] Let ( , , , )A B C DS  be a linear system and an r-dimensional 

linear subspace of . Necessary and sufficient condition for the existence of an 

input  such that any state trajectory released from  is kept in for , 

is  

i) For every trajectory  there exists and such that   

                                                                                       (4.3.1) 

ii)                                                                                                              (4.3.2) 

where is the range space of B. 

Proof: The proof can be seen in [38]                                                                                    

Subspaces  satisfying condition (4.3.2) are called (A,B)- invariant and they have 

been  introduced by Wonham [9].  

4.4 Simple rectilinear motion and the one-dimensional 

(A,B)- invariant subspaces 

The problem of restricting the state trajectory in one dimensional subspaces for non 

autonomous systems is now studied in the following theorems. 

Theorem 4.3: Let S be a linear system described by   

                                                                                                                                 (4.4.1)      

and is a subspace of such that . There exists a uniquely defined 

control input such that for any initial condition  the state trajectory 

remains in for   iff 

                                                                                      (4.4.2)  

                                                                                                                   (4.4.3) 

V

X

( )u t 0x ∈V V 0t∀ ≥

( )x t ∈V '( )x t ∈V ( )u t

( ) '( ) ( )Ax t x t Bu t= −

A ⊂ + BV V
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x Ax Bu= +ɺ
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{ }0x 0t∀ ≥

0 0 0 0 0            , lAx s x Bk s k= − ∈ ∈C C

{ } { }0 0      A x x⊂ + B
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It can be proofed that the control input and the state trajectory are then uniquely 

expressed by 

                                                                                                                            (4.4.4a) 

                                                                                                                         (4.4.4b). 

 

Thus in fact the above equations proof that in subspace : complementary of  

with respect to , there exist directions characterized by a uniquely defined 

frequency  , input direction  , and an associated rectilinear motion; condition 

(4.4.3) under which such directions exist, now clearly defines a generalized 

directions in the subspace  is given by the following theorem.  

Theorem 4.4: [4] Let S be a linear system described by  

 

and a subspace of such that or that  where  is a non -

zero constant vector. A unique form of input exists  

                                                                                          (4.4.5)   

such that the state trajectory  remains in  for and for any initial 

condition  if and only if for  

                                                                                                  (4.4.6)  

 

Under such conditions the state trajectory is expressed by  

                                                                                                                          (4.4.7)    

Proof: The proof can be seen in [4], [35].                                                                                                           
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The frequency  and the associated input vector  are uniquely characterized 

whenever ; however, the pair  in only one solution pair out of the 

whole class that exist when  

Corollary 4.1: Let be a one dimensional linear subspace of . If a control input 

which restricts the state trajectories in  for  exists then it is always of 

the form , the resulting state trajectories also expressed by  where they 

satisfy the necessary and sufficient condition  

                                                                                                               (4.4.8) 

 and  are unique if  and there is an infinite number of pairs  if

 .                                                                                                                            

In general, for , we can find  such that for a matrix L and: 0Lx k=  [35], [36], 

we see that there exists a class of feedback schemes which assign  as an eigenvalue 

of the corresponding closed-loop system. This simple observation leads to the study 

the assignability of the spectrum of controllability subspaces, a subject which will be 

studied in the following section.   

4.5. Rectilinear motions in r-dimensional (A,B)- 

invariant subspaces, characteristic decomposition of 

(A,B)- invariant subspaces 

The study of one dimensional subspaces undertaken in the previous section has 

revealed the strong association of the concept of (A,B) – invariant with rectilinear 

motions in the input , state and output spaces.  It was also shown that the subspaces 

with no intersection with are characterized by a unique frequency , called 

spectrum of the subspace, and that subspaces with an intersection with may have 

any desirable spectrum corresponded to them. 
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Our main proposition here is to show how the association of rectilinear motion tie 

up with (A,B)- invariant subspaces and how the concept of the spectrum can be 

generalized to any dimension (A,B)- invariant subspace. Investigation of this kind 

leads to the definition of the characteristic decomposition of an (A,B)- invariant 

subspace in a manner similar to the one introduced for A-invariant subspaces.  

We start off by establishing the existence of simple (A,B)-invariant subspaces 

contained in an r-dimensional (A,B)- invariant subspace. 

Lemma 4.1: Let  be an r-dimensional (A,B)- invariant subspace of . There always 

exists a basis and set of frequencies  such that for some 

the following conditions hold: 

                                                                                                   (4.5.1) 

Proof: Let  be any basis for . By definition there exist vectors    and 

 such that 

                                             

Since are linearly independent, there exists a matrix L such that  

                                                                                                                                     (4.5.2) 

Substituting for in the last condition we have 

 

Or, in matrix form 

                                                                                                                        (4.5.3) 

where V, W are matrices formed by the column vectors  and . Expressing the 

matrix W with respect to the basis condition (4.5.3) yields 

                                                                                                                           (4.5.4) 
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If  is the characteristic decomposition of and if we define by 0X  , a new 

matrix we may write  we may write 

                                                                                                                      (4.5.5) 

If has a simple structure then conditions (4.5.1) immediately follow where by  

we denote the 0
iLx  vectors.                                                                                                                                                                                                          

In the proof of the lemma above it was assumed that has simple structure. In 

general, however, some of the eigenvealues of may be repeated and may be 

associated with Jordan blocks. In such cases an inspection of equation (4.5.2) and 

(4.5.5) readily establishes that the vectors and  and the frequencies that 

correspond to the general decomposition will be given by 

                                                                                             (4.5.6) 

where  0
01, , ,    1, , ,   ( ) 0i r xσ σ σσ ρ= = =⋯ ⋯   and  

Obviously, for frequencies with  vectors, conditions (4.5.1) are satisfied. 

There are two important roles played by this lemma. First it bridges the concept of 

(A,B)-invariance to the concept of A-invariance and second it provides the tool for the 

generalization of the results derived for A-invariant subspaces to (A,B)- invariant 

subspaces. 

Thus, condition (4.5.1) implies the following remark: 

Remark 4.1: (A,B)- invariant subspaces are A-invariant subspaces of the system 

formed after the application of state feedback through appropriate operator L, yields  

                                                                                                                            (4.5.7) 

Another important conclusion derived from this lemma is the following: 
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Remark 4.2: Every (A,B)- invariant subspace contains a number of simple, or Jordan 

structure (A,B)-invariant subspaces with the property that each of them is 

characterised by a frequency. Each of the simple subspace satisfies the 

condition 

                                                                                                                       (4.5.8a) 

while each of the vectors spanning a Jordan structure subspace with an associated 

frequency are defined by  

 .                                                     (4.5.8b) 

Pre-multiplying the last two conditions by N  (left annihilator of B), we have a new 

set of necessary and sufficient condition which basis  and the associated 

frequencies  must satisfy.  These conditions are independent of the control inputs 

and can be given as  

                                                                                                                              (4.5.9a) 

or 

                                                (4.5.9b) 

The problem remaining unanswered by the discussion above is the uniqueness of 

the established basis. If this basis is unique, then the simple or Jordan subspaces and 

the frequencies associated with them are characteristics of the (A,B)-invariant 

subspaces . One dimensional (A,B)-invariant subspaces which intersect with  

have an arbitrary spectrum associated with them. That suggests distinguishing the 

(A,B)-invariant subspaces into two categories: subspaces which intersect and 

subspaces which do not intersect with the range space of B, .  Our attention is first 

focussed on subspaces for which      

                                                                                                                                   (4.5.10) 
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The vectors of the basis (4.5.1) and the associated frequencies are uniquely 

defined.  

Now let  be an (A,B)-invariant subspace such that ,  the uniquely 

defined basis of  and the set of input directions , then the linear 

independence of the  implies that a class of matrices  L exists which satisfies the 

following conditions: 

                                                                                                               (4.5.11) 

This class  of matrices L defines the totality of state feedback schemes 

generating the control inputs associated with as combinations of the states. 

Making use of condition (4.5.11), conditions (4.5.1) or (4.5.2) yields 

                                                                                          (4.5.12) 

or 

                                                                                                 (4.5.13) 

where  and  

Thus, the vectors of characteristic basis  become closed-loop eigenvectors for 

any L satisfying condition (4.5.11). It is easy to see that the control input ( )u t  can be 

generated from state vector if a feedback operator L satisfying condition (4.5.11) 

is used.  

Such connection clearly converts a controlled open-loop system to a free-responding 

closed-loop system. Thus through the feedback connection L it is possible to 

establish the equivalence between (A,B)- invariance and ( )A BL− –invariance.  Thus 

any (A,B)-invariant subspace maybe thought as -invariant subspace 
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corresponding to a matrix derived by applying an appropriate state 

feedback. 

Such considerations together with the fact that an (A,B)-invariant subspace  of 

dimension r can be composed by a number of simple (A,B)-invariant subspaces, 

brings new light to the problem of assigning a set of independent vectors, as closed-

loop eigenvectors of the pair (A,B). The following theorem gives the necessary and 

sufficient conditions for the set of vectors  to be assignable as 

eigenvectors of some closed-loop matrix  by state feedback. 

Theorem 4.5: Necessary and sufficient conditions for the set of independent vectors

 to be assignable as eigenvectors by state feedback is that each of the 

vectors ’s or groups of the other vectors to be simple (A,B)- invariant subspaces of 

the pair (A,B). 

Proof: Let us assume that the vectors are closed-loop eigenvectors of 

some matrix =A-BL. Then each of them should satisfy the condition 

                                                                                                                       (4.5.14) 

Or in the case of Jordan structures  

                                                                                                           (4.5.15) 

With  and . By defining  or , it is easily seen that ’s 

should be simple (A,B)-invariant subspace of the pair (A,B); this proves the necessity 

of the theorem. 

The sufficiency follows easily if given the pairs we define a matrix L such that  

                                                                                                                 (4.5.16) 

Because of the linear independent of the ’s, matrix L exists and the vectors

 become eigenvectors of the closed-loop matrix =A-BL.                         
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It becomes clear that it is not always possible to assign as closed loop eigenvectors by 

any given set of linearly independent vectors. It is for this reason that the 

approximate eigenvector shifting problem becomes important. This problem is 

formulated as follows: Given the set of linearly independent vectors find a assert 

of linearly independent simple (A,B)-invariant subspaces approximating the ’s in 

the best possible way. 

4.6. Controllability Subspaces 

For the solution of a number of control problems, it is important to know whether or 

not a given system has the property that it may be steered from any given state to 

any other given state. This leads to the concepts of controllability and of controllable 

subspaces which first introduced by Wonham & Morse in 1970 [9], [10]. The study of 

the relation between the concept of controllability and the concept of 

invariance forms the main objective of this section. 

An invariant subspace  has the property that for any  a control 

input  can be found such that  for all . If further, the condition that 

every is reachable from the origin in finite time and the associate trajectory 

belonging to is imposed, we are then led to a special structure of invariant 

subspaces; the controllability subspaces. For such space the generic symbol  is 

used. We will present a detailed discussion of controllability subspaces within the 

next chapter.  

Two different approaches may be adopted for the introduction of such a class of 

subspaces; the one is to give the mathematical definition first [4] and then derive the 

physical properties; the other is to base the definition of physical arguments and 

from this derive the necessary and sufficient conditions for the characterization of 

the subspaces. Here the second approach will be adopted. 

Definition 4.1: [9] Let  be a subspace of the state space  having the following 

two properties. First, for every  there exists an input such that the state 
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iu
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trajectory is restricted in R  for . Secondly, every state  is reachable from 

the origin in finite time and the associated trajectory lies wholly in R . Such a 

subspace is called a controllability subspace.                                                                    

The first condition implies that  is an invariant subspace of the system or 

that for some  

  for .                                                                                (4.6.1) 

The second condition implies that R   must have the properties of a controllable 

subspace of the system, if every state in R  is reachable from the origin in finite time. 

The subspace R  must be also the largest controllable subspace influenced by a 

control vector since the trajectory bringing the system from  state to any state 

 does not leave R . Obviously if R  is not the largest subspace for some class of 

inputs there is no reason why the trajectory from  to  should be restricted in 

R rather than move in larger subspace controllable from the same control inputs. 

Thus, as R  is both an invariant and a controllable subspace, it must have 

the general form  where  is an appropriate subspace of  associated 

with the set of the control inputs for which R  becomes the maximal subspace 

satisfying the condition 

 

 .                                                                                            (4.6.2) 

In other words, a controllability subspace R  is associated with the existence of a 

control input 

 

                                                                                                                      (4.6.3) 

where  is a state feedback matrix and  is an  “gain” matrix connected 

at the inputs of the system and defining a subset of the inputs BG such that 

. This will be followed by below definition:    

Definition 4.2: [9], [10] A subspace R  of X  is a controllability subspace (c.s.) of the 

pair  if there exist maps  and  such that  
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.                                                                                                        (4.6.4) 

Now it becomes clear that R is the controllable subspace of the pair  

where  belongs to a certain class  matrices.  

 

For the single-input system corresponding to a pair  the family of c.s. 

obviously comprises simply the  and . However, in the multi-input situation 

where , this family is in general not trivial. Wonham and Morse [10] have 

proved that if a pair of  exist such that condition (4.6.4) is satisfied then the 

following definition is equivalent to the one given previously. 

 

Definition 4.3: [9], [10] A subspace R  of X  is a controllability subspace of the 

system if there exists a map  such that  

,                                                                                                     (4.6.5) 

if R is a controllability subsapce then there exists a class  of  matrices for  

which condition (4.6.5) is satisfied.                                                                                      

 

The last definition yields the following more general criterion for the 

characterisation of the c.s. [70].  

 

Theorem 4.6: [9], [10], [4] The necessary and sufficient condition for a subspace R  of 

X  to be a controllability subspace of the pair  are 

                                                                                                                    (4.6.6)

                                                                                                                        (4.6.7) 

and there is no proper subspace of R  satisfying these two conditions.                                                                                                                     

 

It is interesting to note that theorem (4.6.1.) provides the means for an alternative 

definition of c.s. the main difference lying in the fact that the minimal property 

excludes the zero subspace 0 . This minimal property differentiates the concepts of 
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invariant and of controllability subspaces considerably. It simply implies 

that a c.s.  can never be written as a direct sum of simpler controllability 

subspaces; however, the same subspace  considered as invariant is always 

expressed as a direct sum of simpler invariant subspaces.  

4.7. Conclusion 

This chapter discussed the concept of (A,B)-invariant subspaces (one and higher 

dimensional) and their impact on input, output and state feedbacks. The main 

emphasis was given to (A,B)-invariant subspaces which do not intersect with ; 

subspaces of this kind are characterised by the uniqueness of their spectrum and 

their decomposition into a number of simple or Jordan subspaces. Considering this 

type of (A,B)-invariant subspaces,  the construction of controllability subspaces c.s.  

as a property of this case of (A,B)-invariant subspaces  is presented in details.  
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            CHAPTER 5: 

DECOMPOSITION OF STATE 

SPACE INTO CONTROLLABILITY 

SUBSPACES 

 

5.1. Introduction  

In this chapter the problem of eigenvector frame parameterisations is considered and 

new parameterisations are presented having different advantages from the design 

point of view. We consider two different parameterizations; one is a 

parameterization of closed-loop eigenframes based on the open and closed loop 

spectra and the other is based on the algebraic characterization and parameterization 

of controllability subspaces [8], [71], [102]. Those two alternative parameterizations 

have different advantages and these will be exploited in subsequent chapters 

demonstrating their potential for design. The development of the two 

parameterizations uses results of the geometric theory and especially the notions of 

( ),A B -invariant and controllability subspaces [9], [103] and in particular their 

algebraic characterization [7], [71], [102]. The fundamental notions of the geometric 

theory are reviewed first and then we develop the main results on the 

parameterizations. 

 

5.2. (A, B) – invariant subspaces intersecting with B  

The discussion in the previous chapters has shown how important it is for an 

( ),A B − invariant subspace to be disjoint from B ; it was shown that for this case 

their spectrum, their decomposition into simpler ( ),A B − invariant subspaces and the 
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associated control inputs are uniquely defined; subspaces of this kind have a fixed 

spectrum. It was also shown that ( ),A B − invariant subspaces of an open loop system 

become ( )A BL+ − invariant subspaces of a closed loop system whenever we close 

the loops with a state feedback matrix ( )L∈L V ; thus by closing the loops through 

L  the spectrum and the simple subspaces of an ( ),A B − invariant subspace become 

closed loop poles and closed loop eigenspaces of the derived system. Arguments of 

this kind clearly provide the motivation for the study of ( ),A B − invariant subspaces 

with an assignable spectrum. A strong lead to the study has already been provided 

by the properties of ( ),A B − invariant subspaces that intersect with B . For this 

reason we initiate our investigation by concentrating on ( ),A B − invariant subspaces 

V  for which ∩ ≠V B 0 . The following two lemmas prove the existence of infinite 

number of simple and Jordan ( ),A B − invariant subspaces contained in an ( ),A B −

invariant subspace V  which intersects with B .    

Lemma 5.1: [4] Let V  be an r − dimensional ( ),A B − invariant subspace of the pair 

( ),A B  and let ∩ ≠V B 0 . For any frequency , iµ µ λ∈ ≠ℂ  where { }iλ  is the spectrum 

of a characteristic basis of V  there exist vectors ( ) nu µ ∈ɶ ℂ  and ( ) lk µ ∈ɶ ℂ  such that:

( ) ( ) ( )Au u Bkµ µ µ µ= + ɶɶ ɶ                                                                                                  (5.2.1) 

 

Proof: Let as assume that { }iu  is a characteristic basis of V  and let us make the 

further assumption that { }iu  has a simple structure. The vectors iu  satisfy the 

following conditions 

, 1,...,i i i iAu u Bk i rλ= + =   .                                                                                               (5.2.2) 

Any vector u′∈V  may then be expressed with respect to that basis as 
1

r

j j
j

u a u
=

′ ′=∑  

and using the equation (5.2.1) it is easy to see that the following identity holds for 

µ∀ ∈ℂ  
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( ) ( )
1 1

r r

j j j j j
j j

I A u a u B a kµ µ λ
= =

′ ′ ′− = − −∑ ∑                                                                          (5.2.3) 

Let us now consider another vector u ∈ ∩V B  which is expressed by  

1

r

j j
j

u a u Bm
=

= =∑  .                                                                                                            (5.2.4) 

By choosing ( )u µɶ such that ( )/ , 1,...,j j ja a j rµ λ′ = − =  where iµ λ≠  and substituting 

into identity (5.2.3) it follows that: 
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r r
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I A u a u B a kµ µ µ λ
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1

/
r

j j j
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B m a k Bkµ λ µ
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 
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 
∑ ɶ  

 

from which 

( ) ( ) ( )Au u Bkµ µ µ µ= + ɶɶ ɶ                                                                                                         

 

This first Lemma shows that in ( ),A B − invariant subspace V  which intersects with 

B , there is an infinite number of one-dimensional ( ),A B − invariant subspaces 

having an arbitrary spectrum; equivalently we may say, that for any frequency 

0s ∈ℂ  we can find at least a 1− dimensional ( ),A B − invariant subspace which 

belongs to V  and has 0s  as its spectrum. If we choose any vector u ∈ ∩V B  

expressed by equation (5.2.4) then the vectors ( )u µɶ  and ( )k µɶ  are given by 

( )
1

r
j

j
j j

a
u uµ

µ λ=

=
−∑ɶ                                                                                                          (5.2.5a) 

( )
1

r
j

j
j j

a
k m kµ

µ λ=

= − +
−∑ɶ .                                                                                               (5.2.5b)  

The following Lemma deals with the problem of finding Jordan subspaces of an 

arbitrary spectrum in an ( ),A B − invariant subspace, which intersects with B . 
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Lemma 5.2: [4] Let V  be an r − dimensional ( ),A B − invariant subspace of the pair 

( ),A B  and let ∩ ≠V B 0 . For any frequency , iµ µ λ∈ ≠ℂ  where { }iλ  is the spectrum 

of a characteristic basis of V  there exist vectors ( ) ( ) ( )1 2, ,...,u u uτµ µ µɶ ɶ ɶ  and 

( ) ( ) ( )1 2, ,..., ,k k k rτµ µ µ τ ≤ɶ ɶ ɶ  such that:                          

( ) ( ) ( )1 , 1,...,i i i iAu u u Bk iµ µ µ µ τ−= + + =ɶɶ ɶ ɶ , ( )0 0u µ =ɶ .                                                  (5.2.6) 

 

Proof: Making the same assumptions as in the proof of the previous Lemma and 

repeating the same arguments, we derive against identity (5.2.3). The first of 

conditions (5.2.6) follows from Lemma (5.1). The proof of the remaining conditions 

(5.2.6) follows immediately if we define an appropriate set of vectors 2 3 4, , ,...,u u u uτɶ ɶ ɶ ɶ . 

Thus to begin with, choose ( )2u µɶ  as ( ) ( )2
2

1

r

j j
j

u a uµ
=

=∑ɶ ɶ where 

( ) ( ) ( ){ }22 1 1j j j ja a µ λ µ λ= − − − ; then using identity (5.2.3) we have: 

( ) ( ) ( )
( )2

2
1 1 1

r r r
j

j j j j j
j j jj

a
I A u a u u B a kµ µ

µ λ= = =

 
− = − −  

−  
∑ ∑ ∑ɶ    

                        ( ) ( )2
1

1

r

j j
j

B m a k u µ
=

 
= − − 

 
∑ ɶ  

from which  

( ) ( ) ( ) ( )2 2 1 2Au u u Bkµ µ µ µ µ= + + ɶɶ ɶ ɶ  

In general by defining the vectors ( ) ( ),u kτ τµ µɶɶ  as 

( ) ( )

1

r

j j
j

u a uτ
τ µ

=

=∑ɶ ,     ( ) ( )

1

r

j j
j

k m a kτ
τ µ

=

= − +∑ɶ  

with 

( )

( ) ( )
( )

( )
1

2 3

11 1 1
....j j

j j j j

a a
τ

τ
τµ λ µ λ µ λ µ λ

− − = − + − + − − − −  

 

 

the general condition (5.2.6) is satisfied.                                                                             

 



 

91  
 

Thus, assuming that the characteristic basis of V  is simple, the vectors 

( ) , 1,...,uρ µ ρ τ=ɶ  where rτ ≤  that span the Jordan subspace of V  which is 

characterised by the frequency µ  and the corresponding input directions ( )kρ µɶ  are 

given by 

 ( ) ( ) ( ) ( )

1 1

,
r r

j j j j
j j

u a u k m a kρ ρ
ρ ρµ µ

= =

= = − +∑ ∑ɶɶ                                                                      (5.2.7a)  

( )

( ) ( )
( )

( )
1

2 3

11 1 1
.... , 1,...,j j

j j j j

a a
ρ

ρ
ρ ρ τ

µ λ µ λ µ λ µ λ

− − = − + − + = − − − −  

.                         (5.2.7b) 

 

Because of the extensive use of the vectors ,u kɶɶ  in the sequel we summarise the 

expressions for these vectors, when the more general basis { }iu  having a Jordan 

block of dimension v  is considered. Thus, if the vectors { }iu  satisfy the following 

conditions 

1 1 0, 1,..., , 0i i i iAu u u Bk i v uλ −= + + = =  

, 1,...,j j j jAu u Bk j v rλ= + = +                                                                                          (5.2.8) 

 

The vectors ( ) ( ),u kρ ρµ µɶɶ  satisfying the general condition 

( ) ( ) ( )1 , 1,..., ,Au u u Bk rρ ρ ρ ρµ µ µ µ ρ τ τ−= + + = ≤ɶɶ ɶ ɶ                                                         (5.2.9) 

with ( )0 0u µ =ɶ  are given by conditions (5.2.7a) with the ( )
ja ρ  defined by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 , 1 2 1, 1
1 2

1 2, 1 1, 1
1 1

1, 1

, , , ,...

...., , , ,

, , 1,...

v v

j j j j
j j

v v

j j v v v
j v j

i i

a a a a

a a a a

a a i v r

ρ ρ
ρ ρ

ρ ρ
ν ρ ρ

ρ
ρ

δ µ λ δ µ λ

δ µ λ δ µ λ

δ µ λ

−
= =

− − +
= − =

= =

= =

= = +

∑ ∑

∑ ∑                                                      (5.2.10) 

 

The constants ja  are defined by condition (5.2.4) while the functions ( ), , iτ ρδ µ λ  are 

given by 
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 ( ) ( )
( )

( )
( )

( ) ( )
( )

1

, 1 1

1 2
, .... 1i

i i i

s s sρτ τ τ
τ ρ τ τ τ ρ

ρ
δ µ λ

µ λ µ λ µ λ
−

+ + −= − + + −
− − −

                                     (5.2.11) 

where by ( ) , , 1,...s v vτ τ =  we denote the elements of the sequence 

( ) ( ) ( )11 1s v s v s vτ τ τ −+ − = +                                                                                            (5.2.12) 

 

These results highlight a very important structural property of ( ),A B − invariant 

subspace V  which intersectsB ; namely that such subspaces contain an infinite 

number of simple or higher order ( ),A B − invariant subspaces which may assume an 

arbitrary spectrum. In conclusion, therefore, one may assert that unlike the case 

 = ∩V B0 , ( ),A B − invariant subspaces which intersect B  do not possess a unique 

characterisation. Finally, for such a class of subspaces, the problem of finding the 

form of control inputs restricting the state trajectory in V  may be tackled in a 

manner similar to the one used for non-intersecting subspaces; the control inputs are 

again expressed as sums of vector exponentials. However the frequencies associated 

with the vector exponentials and the corresponding input directions are no longer 

unique.     

 

5.3. Algebraic characterization of Controllability 

Subspaces 

The concept of controllability subspaces (c.s.) introduced by Wonham and Morse 

(1970) [10] has emerged as a powerful tool in the theory of decoupling, pole 

assignment, disturbance rejection etc. It has been shown [10] that the solution of 

problems relating to the above topics depends on the existence of suitable sets of 

controllability subspaces. 

In this section the input state pencil sN NA− , a matrix pencil which emerges from 

the study of generalized free response and generalized forced response problems 

[35] is used to simplify the presentation of the Warren & Eckberg (1975) [71] results. 

It is also shown that when the pair ( ),A B  is expressed in the controllable companion 
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form ( ),A Bɶ ɶ  the corresponding pencil sN NA− ɶɶ ɶ , takes the Kronecker canonical form 

[17].    

5.3.1. Problem statement 

If the state-space realization of any system is as form: 

x Ax Bu= +ɺ  

,n n n lA B× ×∈ ∈ℝ ℝ , by considering X to be the controllability space of ( , )A B , we have 

the following. 

Theorem 5.1: [96], [102], [104] A subspace ⊂R X of dimension r is a c.s. if and only 

if there exist polynomial vectors ( ) [ ] and ( ) [ ]n lp s s u s s∈ ∈ℝ ℝ  such that for some 

initial value 
tp ∈R : 

(i) deg  ( )u s =k and deg  ( ) 1p s k= − for some k r≥ . 

(ii)   ( ) ( )  ( )  tsI A p s B u s p− = −  

(iii)  1

1 1 0
 ( ) k

k
p s s p s p p−

−
= + + +⋯ ,                                                                           (5.3.1) 

In this case R = { },
k i

span p i k
−

∈ ɶ . In particular, if k r= , ( )p s  can be chosen such that 

the set of vectors { },
r i

p i r
−

∈ ɶ form a basis forR . These conditions also satisfied with 

0tp = .                                                                                                                                       

Considering the above results, the set of { },
r i

p i r
−

∈ ɶ  can be selected to form a basis 

for R . A characterization of the c.s. R  in terms of the ( )p s alone can be derived if 

we apply the full rank transformation: 

†

†
( 0, )l

N
NB B B I

B

 
= = 

 
                                                                                                     (5.3.2) 

such that  
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†

( ) ( ) 0

( ) ( ) ( )

N sI A p s

u s B sI A p s

− =

= −
                                                                                                       (5.3.3) 

where †B  is a left inverse of B .   

Generally for a c.s. R  of dimensions r , there is no unique minimal degree 

polynomial that corresponds to R  . So there exists a minimal degree polynomial 

solution to the equations in (5.3.3.) for each impulse direction b  where,  

{ }1
, ,

r i r
p i r p b

− −
∈ =ɶ . These solutions can form a basis which can be written in matrix 

form as: 

0 1 1 1
,

r r
P p p p p b

− −
 = = ⋮ ⋮…⋮                                                                                            (5.3.4) 

and the polynomial ( )p s  from above basis P  corresponding to the generator 1rp b− =  

can be written as  

1
0 1 1( ) r

rp s p sp s p−
−= + + +⋯                                                                                              (5.3.5) 

or 

0 1 1

1

1

( )
r

r

s
p s p p p

s

−

−

 
 
  =    
 
 

⋮ ⋮…⋮
⋮

                                                                                           (5.3.6) 

 So we can introduce minimal basis
1 2

( ) [ ( ), ( ), , ( )]
l

P s p s p s p s= ⋯ , with the set of  

indices 1, , lε ε⋯  respectively. These indices are so called the controllability indices, 

since by this basis, the whole controllability space can be generated or, basically the 

set {
0 1 1
, , ,

r
p p p

−
… } of any 1( )rP s−  spans the whole controllability space: 

{ }0 1 1
, , ,

r
sp p p p

−
⊂… X . 

In other words, because the impulse directions of these vectors are linearly 

independent, each of these polynomial vectors defines a minimal c.s. R , such that  
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{ }0 1 1
, , ,

r
p p p

−
= ⋯R  is of dimension r, and the whole controllability subspace will be: 

1 2 r= ⊕ ⊕ ⊕⋯X R R R                                                                                                       (5.3.7) 

where in general, the dimension of subspaces are from 1δ  to rδ  respectively. 

Note that the set of minimal polynomials 1( )rp s−  dictates a decomposition on the 

state space X  which, however, owing to the non-uniqueness of the fundamental 

series{ }1
, ,

r i r
p i r p b

− −
∈ =ɶ , is itself not unique, then the different parameterisation can 

be written for this controllability space. 

Also the input-state pencil sN NA− corresponding to the pair ( , )A B  and its 

Kronecker canonical form [104], is invariant under state/output feedback, that is, for 

the closed-loop pair ( , )A BL B− we have: ( )sN N A BL sN NA− − = − , since 0NB = .  

Thus by finding any 
1
( )

r
p s

−
 from the minimal basis matrix

1 2
( ) [ ( ), ( ), , ( )]

l
P s p s p s p s= ⋯ , basically the closed-loop eigenvector matrix of the 

original ( , )A BL B− −  for any certain set of closed-loop eigenvalues 0 1 1{ , , , }rs s s−⋯ has 

been found.  

Any relative bases 
1
( ) ( ) 

r
p s P s

−
∈ will be of form  

1 2 1
1 2 1 0 1 1

1 1 1
1 2 1

1 1 1

( ) [ ( ) ( ) ( )] [ , , , ] r
r r

r r r
r

s s s
p s p s p s p s p p p

s s s

−
− −

− − −
−

 
 
 = =
 
 
 

⋯

⋯
⋮ ⋮⋯⋮ ⋯

⋮ ⋮ ⋯ ⋮

⋯

                        (5.3.8) 

where 1 2 1

1 1 1
1 2 1

1 1 1

r

r r r
r

s s s

s s s

−

− − −
−

 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

 is the Vandermonde matrix generated by the distinct 

frequencies of the system.  Clearly, and as we discussed earlier, 
0 1 1
, , ,

r
p p p

−
 
 ⋯ is 

full rank.  
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It can be seen that the optimal choice of the Vandermonde matrix can have a big 

effect on the properties of the choice of minimal bases for the kernel of sN NA− , for 

any  choice of the closed-loop poles.  

By finding the optimal choice of the bases and also by considering the fact that the 

dimensions of all the controllability subspaces are assumed to be fixed, within our 

current research, one result has been derived achieving the algebraic parametrisation 

of (5.3.7) using Toeplitz matrix representation.  

This parametrization is useful where the best (minimal)  selection of controllability 

subspaces is needed in order to form a controllability space X , i.e. the dimension of 

each subspace remains fixed but the angle between subspaces to be maximised. 

5.3.2 Minimal dimension Controllability Subspaces          

Consider a set of linearly independent polynomial vectors ( )
1

, 1,2,...,
i

p s i l
σ −

=ɶ  of 

minimal degrees that span the kernel of the input-state pencil sN NA− ɶɶ ɶ . Because the 

impulse directions of these polynomial vectors are linearly independent, each of the 

polynomial vectors ( )
1i

p s
σ −
ɶ  defines a minimal c.s. 

i
R
σ

 of dimension . The set of 

subspaces  is a linearly independent set and 

 .                                                                                                (5.3.9) 

Thus, the set of minimal polynomials ( )
1i

p s
σ −
ɶ  dictates a decomposition on the state 

space  which, however, owing to the non-uniqueness of the fundamental series 

( ){ }1
,

i

p s i l
σ −

∈ ɶɶ , is not unique. It can be readily verified that each of the subspaces  

covers the basis vector  of  where: 

                                                                         (5.3.10) 

The problem of finding the minimal c.s. which is constrained to contain a given 

subspace of  has been discussed by Warren and Eckberg (1975) [71] and it was 

iσ

{ },
i

i lR
σ
∈

2
...

i l
X R R R

σ σ σ
= ⊕ ⊕ ⊕

X

i
R
σ

ˆ
i

e
σ B̂

1

ˆ 0 0 0 01 0 0 , 1,...,
i

i

T

e i l
σ

σ σ

 
 = =
 
 
… ⋮…⋮ … ⋮ …����� ������

B
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developed as far as geometric theory in [96]; it is our intension here to use the 

structure of the basis matrix to derive these results in a simpler way.  

The study of the polynomial vectors ( )p s  restricted in the kernel space of the pencil 

, has used the Kronecker canonical form of the pencil. It was shown that if 

is the coordinate transformation bringing the pair  in the controllable 

companion form, then a mere multiplication of  on the right by  brings 

the pencil in the Kronecker canonical form. The transformation  belongs to the 

class of strict equivalent transformations and, as such, does not affect the Kronecker 

canonical form.   

In fact, it has been shown [4] that any state transformation T that brings the pair (A, 

B) to its Luenberger form  has a corresponding pencil  in its Kronecker 

form. This result will be used for the parameterization of controllability subspaces. 

Another important set of transformations on the pair , is the set of state/output 

feedback transformations; the input-state pencil that corresponds to a closed loop 

pair  is , since . Thus we are led to the 

following theorem. 

Theorem 5.2: [96], [104] The input-state pencil  corresponding to the pair 

 and its Kronecker canonical form are invariant under state/output feedback.                                                  

                                                                                                                                        

We note finally that for a given polynomial vector ( )p s  satisfying condition: 

( ) ( ) 0sN NA p s− =                                                                                                          (5.3.11) 

the input polynomial vector corresponding to ( )p s  is defined by: 

 †( ) ( ) ( )u s B sI A p s= − .                                                                                                 (5.3.12) 

( )sN NA−

T ( ),A B

( )sN NA− 1T−

1T−

( ),A Bɶ ɶ sN NA− ɶɶ ɶ

( ),A B

( ),A BL B− ( )sN N A BL sN NA− − = − 0NB=

( )sN NA−

( ),A B
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By using the Luenberger form for (A,B) [104], the pencil sN-NA is expressed in the 

Kronecker canonical form  and this has the following canonical description 

that allows parameterization of the controllability subspaces. 

 

                  (5.3.13) 

 

The canonical description of the restriction pencil  above provides the 

means for parameterizing all polynomial vectors  which satisfy the equivalent 

conditions (5.3.11) and this in turn provides the means to refer back the results to the 

original frame by using the inverse transformation . In fact, note that (5.3.11) is 

equivalent to 

1( ) ( ) 0 ( ) ( ) 0, ( ) ( )sN NA T T p s sN NA p s p s T p s−− = ⇔ − = =ɶɶ ɶ ɶ ɶ                                          (5.3.14) 

and thus any parameterization defined on   may be transferred back to the 

original frame.  

The polynomial vector ( )u s  described above is one of the input polynomials 

associated with the c.s. defined by ( )p s ; it has a further property that if the state 

feedback operator  defined by the set of conditions 

,d id i
L p u i d−−

= ∈ ɶ                                                                                                             (5.3.15) 

sN NA− ɶɶ ɶ

1 0 0 0

0 1 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

s

s

s

sN NA

s

s

s

O

O

 − 
 − 
 
 
 

− 
 

− =  
 
 − 
 − 
 
 
 

−  

…

…

⋮ ⋮ ⋮ ⋮ ⋮

…

ɶɶ ɶ ⋱

…

…

⋮ ⋮ ⋮ ⋮ ⋮

…

sN NA− ɶɶ ɶ

( )p sɶ

1T−

sN NA− ɶɶ ɶ

L



 

99  
 

is applied around the system, then the c.s. , becomes cyclic under  with 

as generator the vector d id i
p Bu −−

=  for which ( ) 0d

d i
A BL p

−
+ = .  

The Kronecker canonical form of the input-state pencil ,   used in 

the derivation of the basis matrix description of the polynomial vectors that lie in the  

 and its parameterization [8], [96] is described in chapter  Seven.  

The decomposition into minimal dimension controllability subspaces also introduces 

an alternative algorithm for pole assignment that results directly into a full rank state 

feedback which is an issue treated in the following section. 

5.4. Assignability of the spectrum of a Controllability 

Subspace 

5.4.1. Problem Statement 

The family of controllability subspaces [9], [103] are special types of (A,B)-invariant 

subspaces that intersect with the range space .  In fact controllability subspaces 

are (A,B)-invariant subspaces with the property that any two points may be 

connected by some appropriate trajectory generated by a control input with the 

property that the trajectory always remains in the given space [9]. Their spectra are 

not fixed, and so the question arises as to whether or not such subspaces may 

assume any given spectrum. An alternative to the solution already established, [4], 

based on an eigenvector approach is proposed here and involves the construction of 

characteristic bases having as a spectrum the set of assignable frequencies.  This 

section provides an alternative parameterisation of eigenframes based on the 

property that such frames are arbitrarily assignable spectra that are characteristic 

bases of controllability subspaces explained in [4]. The results in this section provide 

an eigenvalue assignment algorithm that conveniently follows the approach 

mentioned above. 

 

dR ( )A BL+

( )sN NA− sN NA− ɶɶ ɶ

( )Ker sN NA− ɶɶ ɶ

B
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5.4.2. Assigning the spectrum of a Controllability Subspace 

An alternative establishment of the classical result of the geometric theory is 

considered here [4]. Consider first the following lemma: 

Lemma 5.3: [4], [36] Let  be a c.s. of the pair (A,B) and {uj} a characteristic basis for 

. A vector control input  can always be found such that                                                                       

                                                                                     (5.4.1) 

 

Proof: [4] With respect to the basis {uj}, the vector u may be written as 

                                                                             (5.4.2) 

where G (p×r) (p≤r) is the input transformation gain matrix such that the space  is 

generated by vectors in the range of , , i.e. . For some state 

feedback matrix L the vectors of the basis {uj}, 1, ,j r= ⋯ , become a subset of the 

eigenvectors of the matrix ( )A BL+ defined by the columns of the matrix U. If V 

defines the dual eigenvector frame to U and if  is the controllable subspace of the 

pair ˆ( , )A BL B+ , then matrix  has no row that contains all zero elements. 

Multiplying (5.4.2) on the left by V gives 

                                                                                                                           (5.4.3) 

where  denotes the rows of V. Since none of the  rows are zero, r can always be 

chosen such that . Then m = Gr. Having established this lemma the main 

results of this section will now be stated, which is the assignment to  of a 

characteristic basis having any given spectrum.                                                               

       

Theorem 5.3: [4], [36] Let  be a c.s. of the pair (A,B) and {uj}, j = 1, …, r a 

characteristic basis of , r = dim . A new characteristic basis  of  can 

R

R u∈ ∩R B

1

0   ,  1, , ,  dim

r

jj
j

j

u a u Bm

a j j r r

=
= =

≠ ∀ = =

∑

… R

u u u u

a

a

a

BGr Brr

r

=

L

N

M
M
M
M

O

Q

P
P
P
P

= =1 2

1

2
…

⋮
ɵ

R

ɵB B̂ ( ){ }ˆA BL= +R B

R

VBɵ

a v Bri i
t= ɵ

vi
t v Bi

t ɵ

ai ≠ 0

R

R

R R u
iµn s R
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always be found such that the spectrum associated with  is any given , i = 

1, …, r. 

 

Proof: For the sake of simplicity it is assumed that {ui} is a characteristic basis of  

and has a simple structure that corresponds to eigenvalues with a diagonalisable 

Jordan form.  Then 

                                                                                                            (5.4.4) 

Making the further assumption that the assignable spectrum , i = 1, …, r consists 

of distinct frequencies, then  

(i) Assume that   i, j, i, j = 1, …, r, where 0 is the zero space. 

Making use of Lemma 5.3, a vector  with  and 

vectors  can be found such that 

                                                                                        (5.4.5) 

           where 

  . 

                                                                                                            (5.4.6) 

The set of r vectors defined this way can be written in a matrix form as 

follows 

                                                                                                                  (5.4.7) 

where  designates the matrix having as columns the vectors , U is 

the matrix having as columns the vectors ui, Da the diagonal matrix of the 

ai elements, and finally by  the matrix with its entries defined by 

. Because the elements of Da are nonzero, it always 

has full rank. Furthermore the matrices always have full rank 

u
iµn s µ il q

R

Au u Bki i i i= +λ

µ il q

{ } { }i jµ λ∩ = ∅ ∀

u a u Bmj j
j

r

= =
=
∑

1

ai ≠ 0

u k
i iµ µ,  

Au u Bk
i i iiµ µ µµ= +

u u u u

a

a

a

u u u a
i r

i
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whenever the sets  have no common element between them. 

Thus the matrix  has full column rank and the vectors  form a 

basis for R with the desirable spectrum. 

(ii) Now assume that the  sets have some common elements. In that 

case a new distinct spectrum, , may be defined such that 

 and  . To the spectrum , there 

will correspond a new basis  which according to condition (5.4.7) can 

be derived from: 

                                                                                                           (5.4.8) 

The vector  is now expressed with respect to the new basis 

 as                 

                                                (5.4.9) 

                    with 

                                                                                                  (5.4.10) 

By Lemma 5.3 it is evident that . The new basis  with the 

desired spectrum  can be easily determined using (5.4.7) with the 

assumption that . 

The above theorem implies that, given the characteristic basis {ui} for a c.s., , all 

that is needed to generate a new characteristic basis  which will have as its 

spectrum the prescribed set of frequencies  is a vector . It thus 

appears appropriate to refer to the vector u as the “generator” of the c.s. . It is 

worth noting that due to the minimal property of a c.s. , that the generator u can 
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be chosen to be any vector . The characterisation of the basis  in 

terms of its spectrum is given in matrix form by the following condition, 

 

                                                                                                         

(5.4.11) 

where for generality the matrix  is assumed to have a Jordan block structure. 

Since  has full column rank, a state feedback matrix L can always be found such 

that 

 .                                                                                                                   (5.4.12) 

 

Then (5.4.11) and (5.4.12) yield 

                                                                                                       (5.4.13) 

                                                                                                                                                   

These results may be summarised in the following corollary. 

 

Corollary 5.1: [4], [36] Given a c.s.  and a set of frequencies , i = 1, …, r, r = 

dim , there always exists a state feedback matrix L such that the restriction 

 has the set  as its spectrum.                                                                                                                                                                             

 

If the pair (A,B) is controllable, then the whole state space  is a c.s. since 

 and . Thus the theorem for the assignability of 

the poles by state feedback stated [4] follows immediately if Corollary (5.1) is used. 

This theorem is stated as follows. 

 

Theorem 5.4: [4], [36] Let (A,B) be a controllable pair and let , i = 1, …, n, be a set 

of complex numbers symmetrically distributed along the real axis. There always 

exists a state feedback matrix L which assigns the frequencies ’s as closed loop 

eigenvalues of the dynamic map Ac = A – BL.                                                                   
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The above theorem provides a closed loop eigenvector based alternative proof to the 

assignability of the spectrum of a c.s. Unlike the original approach in [4] which was 

based on the definition of characteristic polynomials of cyclic subspaces, the 

treatment given in this section constitutes an eigenvector approach in as far as it is 

based on the construction of characteristic bases. Next, a pole assignment algorithm 

is proposed which is based on the concepts outlined. 

 

5.4.3 Eigenvalue placement algorithm based on mobility of open to 

closed loop spectra 

The above eigenvector approach to the fundamental theorem of assignability of the 

closed loop eigenvalues yields an algorithm for eigenvalue placement that involves 

the following fundamental steps based on [4]: 

PROCEEDURE FOR EIGENVALUE PLACEMENT 

 

The assignment problem follows the subsequent steps: 

(i) Given A, the set of eigenvalues and the corresponding eigenvectors  

are first found. The vectors ui form a basis for the c.s.  with the 

corresponding input directions . 

(ii) If  is the assignable spectrum it is safe to always assume that 

. This is admissible since if  then it may 

necessary to resort to the technique suggested by equations (5.2.8) and 

(5.2.9) and thus define a new basis with spectrum  for which 

. Alternatively it is possible to initially apply an arbitrary 

state feedback which without changing the controllability properties of the 

pair (A, B) that scatters the closed loop poles to a new spectrum  such 

that . 

{ }, ii uλ
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(iii) A generator u of the c.s. is in the form . If  denotes the 

eigenvectors dual to ui, then the set ai is given by 

                                                                                              (5.4.14) 

Since the pair (A,B) is controllable, none of the  vectors are zero and the 

vector m may be chosen such that each ai is non zero. 

(iv) Given the sets of the frequencies  such that  and 

having found the coefficients of ai, the basis  may be defined by 

using the  following conditions 

                                                                                           (5.4.15) 

where the coefficients  are defined by the following expressions                    

                                                                                             (5.4.16) 

where the functions  are given by 

                    (5.4.17) 

where  denote the elements of the sequence 

                                                                                             (5.4.18) 
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                                                                               (5.4.19) 

           Since every kj = 0  j = 1, …, n every A-invariant subspace is also (A,B)-   

invariant with zero input directions. 

(vi) The state feedback matrix is now defined to be 

        .                                      (5.4.20) 

Because  is linearly independent the matrix  exists and 

                 
                                                                                 (5.4.21) 

(vii) The closed loop dynamic map Ac is then given by 

                                                                                 (5.4.22) 

and thus can be computed without needing to work out the state feedback  

matrix L.                                                                                                                                                                                                                                           

 

 It is worth noting that the eigenvalue assignment algorithm presented here yields a 

unity rank state feedback matrix L. This is due to the fact that the matrix of the input 

directions corresponding to the closed loop eigenvectors is of unity rank. An 

alternative approach leading to a full rank state feedback matrix can be formulated 

as follows. 

Given A, an arbitrarily state feedback with a matrix 0L  having full rank may be 

applied. For the new matrix 0 0A A BL= − , the previously described algorithm may be 

applied, yielding a unity rank state feedback matrix Lu assigning the poles of 0A  at 

the desirable locations. The controller 0 uL L L= +  is in general in full rank and assigns 

the eigenvalues of A at the desired locations. 

 

The essence of the proposed modification is that instead of using the eigenframe of A 

as a characteristic basis of  with an associated set of input directions zero, any 

other characteristic basis of  may be used with a full rank set of corresponding 

input directions.  
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Such a basis may be defined as the eigenframe 0U  of some closed loop matrix 

0 0A A BL= − , where 0L  is a state feedback matrix having full rank. The input 

directions corresponding to this new eigenframe are given by 
00 iL u and the resulting 

matrix formed, 0K  is of full rank. The successive application of the steps detailed 

above yield a full rank state feedback matrix L in general.  

 

5.4.4. Numerical examples 

Example 5.1: Let us assume that for an open-loop state-state model, we have the 

following A and B matrices: 

 

Then the set of eigenvalues of A and their corresponding eigenvectors are: 

 

 

The system is controllable and therefore is pole assignable. 

i) Assume the desirable closed-loop frequencies to be 

, then we have that  and hence no    

modification to the A matrix is needed.  

ii) Considering the fact that any generator u of the c.s. is in the form of 

 and using equation (5.4.14): , where t
iv  

denotes the eigenvectors dual to ui,a non-zero vector m will be chosen such 

that any coefficients ia is non-zero. 
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  or 
1

0
m

 
=  
 

 

It is easily seen that 

 

or that . 

iii) From conditions (5.4.15) we have that 

 

           and therefore the vectors are 

            

iv) The input directions then are given 

              

v) So that the state feedback matrix L can be derived as follow 

            

vi) Finally the matrix  

 

              having -1, -2, -3  as eigenvalues and the ’s as eigenvectors. 

Example 5.2: Let A and B be 
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and let the assignable spectrum be . The above pair is controllable 

and . 

1. Choosing the generator vector u as 

     

     mt = [0 9] and a1 = 1, a2 = -3, a3 = -4. 

2. The closed loop eigenvectors are given by 

       

where 
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and 

        

3. The input directions corresponding to the vectors  are 

          

4. The state feedback matrix is given by 

  

5. For the matrix L the closed loop matrix Ac = A – BL becomes 
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The eigenvalues of cA  are at  while  is an eigenvector and  

and  are pseudo-eigenvectors if Ac. 

The final example given here is intended to illustrate the modified algorithm which 

yields a full rank matrix L. 

 

Example 5.3:  Let A and B be 

         

By applying an arbitrary state feedback by the matrix 0L  

  

a closed loop matrix 0cA A BL= −  is obtained having the following set of eigenvalues 

and eigenvectors 

  

The input directions corresponding to the ui set are defined by ki = L0ui or 
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The state feedback matrix L assigning the set of frequencies  as eigenvalues of 

the closed loop matrix  is 

 

1
36 45 6

324 810 174
36 90 18

36 90 18
27 9 1

L

−
 

− − −   = − − −      − − 

 

which has full rank. 

 

5.5. Selection of  the most orthogonal eigenvectors and 

sensitivity of closed-loop system based on the open 

loop -closed loop spectra method 

Choosing the best possible eigenvectors for a closed-loop control system, is generally 

one of the most important issues whenever it comes to the area of strong stability 

and robustness.  

So based on this fact, there have been lots of works done in this area in order to 

achieve a closed-loop control system with the set of eigenvectors with the minimum 

condition number which results to low sensitivity of the whole system. 

Considering above descriptions, our intention in this part is to formulate an 

optimization problem regarding closed-loop eigenvectors and represent the main 

variables of the formula which will be involved for the optimization problem. Note 

that the solution for the optimization problem will be presented in chapter 8.  

5.5.1. Problem statement 

Considering equation (5.4.6), then for any open-loop controllable system with  

eigenvalues and relative eigenvectors, each closed-loop eigenvector 
i

u
µ

 

corresponding to a closed-loop eigenvalue , will be given by the following: 

µ il q
A A BLc = −

n

iµ
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                        (5.5.1) 

Let’s take  to be the matrix of all the eigenvectors
i

uµ ’s computed from above 

equation, to be the matrix having as columns the vectors ui, Da the diagonal matrix 

of the ai elements, and finally by the matrix with its entries defined by 

.  

So equations (5.5.1) can be written as follows: 

                                                                        (5.5.2)                           

 

Based on conditions (5.4.14)   :  .   

This along with (5.5.2) will construct the following equation: 

                                                                       (5.5.3)                                       

 

In above equation (5.5.3)  represents the closed-loop eigenvector matrix, U is the 

open-loop eigenvector matrix, B is the input matrix of the system, left eigenvector 

[ ] [ ]
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is corresponding to any open-loop eigenvalue , m is a nonzero vector  and are 

the desired closed-loop poles. 

Now the problem arises here is to select the most orthogonal closed-loop 

eigenvector, so that the condition number of the  matrix (or its Gramian matrix) is 

minimized (or equally, the determinant of its Gramian matrix is maximized). 

Clearly the optimization problem will be dependent on the choice of vector and 

also closed-loop poles iµ ’s, since other parameters of equation (5.5.3) are fixed and 

are not to be changed. 

So based on above description, there are two optimization problems to be solved. 

One is to optimize by taking vector as the only degree of freedom, considering a 

fixed set of desirable closed-loop poles and the other case is to optimize by 

considering an affixed vector  and the closed-loop poles to be varied. 

For both the above cases, one needs to use non-smooth optimization method, as for 

some points, the function of condition number of the closed-loop eigenvector matrix 

(or it’s Gramian) may not be differentiable.  

In this thesis, the condition number of the Gramian of closed-loop eigenvector 

matrix has been considered to be optimized over vector (or equivalently the 

determinant of Gram matrix to be maximized) assuming to have fixed closed-loop 

eigenvalues. So the optimization formula will be as following: 

- Suppose each entry of ( )V x  is a continuously differentiable function of mx∈ℝ

, then each entry of ( ) ( ). ( )tA x U x U xµ µ=  is also a continuously differentiable 

function of x. We consider the following minimization problem: 

                                   minimize             ( ( ))A xK  

                                  subject to              x∈X                                                                (5.5.4) 

                                     where X is a convex set in . 

iλ 'i sµ

Uµ

m

m

m

m

mℝ
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5.6. Conclusion 

The purpose of this chapter was to introduce alternative parameterizations of 

potential closed loop eigenstructures based on the properties of the fundamental 

concepts of invariant, invariant and controllability subspaces, c.s. 

Such results enable the derivation of a new approach based on the assignment of 

eigenvectors corresponding to the assignable spectrum rather than the assignment of 

characteristic polynomials. 

 The alternative formulation of the problem in terms of eigenvectors not only 

deepens the insight into the significance of c.s. but also yields solutions to the 

problem of pole assignment by state feedback and allows the introduction of new 

criteria related to the properties of the eigenframe, such as maximization of degree of 

orthogonality of the frame, role of pole mobility in the shaping of eigenframe 

properties etc.  

This work led to the parametrization of the closed-loop eigenvectors obtained from 

this method which was also presented along with the optimization problem which 

will be studied in detail in chapter Eight, where by using non-smooth optimization 

algorithm, the best choice of closed-loop eigenframes will be computed by 

optimizing the condition number of Gram matrix related to the closed-loop 

eigenvector matrix.   

 

 

 

 

 

 

 

( ),A B − ( ),A B −
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CHAPTER 6 

 

MEASUREMENT OF ANGLE 

BETWEEN SUBSPACES IN DIRECT 

SUM DECOMPOSITION 

6.1. Introduction 

The problem that frequently emerges in the study of performances of linear systems 

is the issue of “skewness” of eigenframes. This problem is linked to sensitivity of 

eigenvalues to parameter uncertainty, perturbations, as well as sensitivity of Nyquist 

diagrams to model parameter uncertainty. 

These skewness properties are also linked to measures of controllability and 

observability, when these are assessed in their model setting. So far, the measure of 

skewness has been considered on eigenframes corresponding to distinct eigenvalues 

and thus standard tools such as the Gramian, Singular Value Decomposition, 

Condition Number, Sdur compliment can be used. However, frequently, we have 

eigenframes corresponding to repeated eigenvalues, complex eigenvalues, where a 

vector basis set is not uniquely defined, although the corresponding subspaces are.  

The problem that is addressed here is the development of measures of “skewness” 

between subspaces defining a direct sum decomposition of the state space and thus 

developing a concept of angle between sets of subspaces. 

The aim of the chapter is to provide the required new concept of the relative 

positioning between subspaces that can be used in quantifying: 

• Sensitivity of eigenvalues 

• Relative measures of controllability and observability. 
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• Deviations from strong stability to overshooting behaviour. 

Our work is based on developing: 

1. General properties of positioning of subspaces in direct sum decomposition. 

2. Development of measures of skewness using: 

• The Gramian 

• Condition number 

• Spread of singular values 

Our intention in this chapter is to produce some results which could provide the 

bases for the computation of the most orthogonal decomposition of the state space 

into controllability spaces. This is considered as a first step in selecting a set of closed 

–loop eigenvectors which are nearly orthogonal and thus achieve reduced 

sensitivity. This discussion involves parametrising the family of controllability 

subspaces using results on the parameterisation of minimal bases. The solution to 

the problem of finding the most orthogonal decomposition still remains open (future 

research).    

6.2. Problem statement and preliminary results 

Let us consider the direct sum decomposition of in terms of some spaces   such 

that , dim = ,   i.e.      

                                                                                                        (6.2.1) 

The set of such spaces  will be referred to as a decomposing set of . 

Clearly these spaces are linearly independent. What we want to investigate is the 

relative “degree” of independency between these spaces.  

The spaces  are assumed given and may represent the generalised eigenspaces 

associated with repeated eigenvalues, or the two dimensional space associated with 

a pair of complex conjugate eigenvalues, or the higher order spaces associated with 

repeated complex  eigenvalues. 

nℝ iV

n
i ⊂ ℝV iV iρ 1,2, , .i k= ⋯

1 2
n

k= ⊕ ⊕ ⊕ℝ ⋯V V V

{ },i i k∈V nℝ

iV
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Let be a basis of   defined as: 

 1 2 kV V V V =  ⋯                                                                                                        (6.2.2) 

where  is a basis of . We can always assume that the columns of   are 

normalised to unit length. Clearly and so for any square matrix  such that: 

    ,     and ,    

any other basis of , consistent with the (6.2.1) decomposition is given by: 

1

2

1 2 1 2

1

0 0 0

0 0 0

0 0

0 0 0

0 0 0

k k

k

k

Q

Q

V V V V V V V

Q

Q
−

 
 
 

     = =      
 
  

⋯

⋮

ɶ ɶ ɶ ɶ⋯ ⋯ ⋮ ⋱ ⋮

⋯

⋯

.                                       (6.2.3) 

Bases such as those defined above, will be referred to as -structured bases of . 

Of special interest are the so called normal- -structured bases which are defined 

by the property that the columns of each n
iV ∈ℝ  are orthonormal, i.e. 

i

t
i iV V Iρ=                                                                                                  (6.2.4) 

Normal-{ }i k
V -structured bases are examined first. One may preliminary compare 

the structure of singular values corresponding to any two normal-{ }i k
V -structured 

bases as following: 

Proposition 6.1.  Let iV  and  be two normal- -structured bases, then and  

have the same singular values. 

V nℝ

iV iV iV

in
iV ρ×∈ℝ Q
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0 0 0

0 0 0
k
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⋯

⋮
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⋯

⋯

i i
iQ ρ ρ×∈ℝ 0iQ ≠ 1,2, , ,i k= ⋯

nℝ

{ }i k
V nℝ

{ }i k
V

1,2, , .i k= ⋯

iVɶ { }i k
V iV iVɶ



 

119  
 

Proof: 

If  and  are normal- -structured bases, then they are related as:  

 

1

2

1 2 1 2

1

0 0 0

0 0 0

0 0

0 0 0

0 0 0

k k

k

k

Q

Q

V V V V V V V

Q

Q
−

 
 
 

     = =      
 
  

⋯

⋮

ɶ ɶ ɶ ɶ⋯ ⋯ ⋮ ⋱ ⋮

⋯

⋯

 

where  are orthogonal i.e. ,    

Clearly:  and since diag  are orthogonal, then  and 

 have the same singular values.                                                                                        

As we expected the above result suggests that any selection of orthogonal bases 

leads to the same singular values (all equal to one).  

However, the main question arises when one of the bases is not necessarily 

orthogonal. We will investigate this as following: 

Problem 6.1: Given the direct sum decomposition as in (6.2.1), where , 

1 2, , ,
ii i e iiV v v v =  ⋯  an orthonormal basis of generates alternative bases for ,  

1 2, , ,
ii i e iiV v v v =  

ɶ ɶ ɶ ɶ⋯ , not necessary orthonormal such that 1jiv =ɶ , ,   

. 

Proposition 6.2: If 1 2, , ,
ii i e iiV v v v =  ⋯ ,  are orthonormal bases of , then 

1 2, , ,
ii i e iiV v v v =  

ɶ ɶ ɶ ɶ⋯  is also a basis with 1jiv =ɶ , if and only if , 

1 2
, , ,

i
i i i e i

Q q q q =
 

⋯ , in which , , . 

Proof:   and  are linked as: 

V Vɶ { }i k
V

iQ t
i iQ Q Iρ= 1,2, , .i k= ⋯

{ }. . { }t t t
i iV V diag Q V V diag Q=ɶ ɶ { }iQ V

Vɶ

dim( ) ie=V

iV iV

1, ,i k= ⋯

1,2, , ij e= ⋯

1, ,i k= ⋯
iV

i i iV V Q=ɶ

1jiq = 1,2, , ij e= ⋯ 1, ,i k= ⋯

iVɶ iV
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. 

Hence, 

,      , 

and 

     

,  

due to orthogonality and hence, 1jiv =ɶ  if and only if .                                                                                                 

6.3. Measuring the degree of orthogonality 

In this part and based on the above result, we will use different type metrics to 

define the degree of orthogonality of the decomposition, or alternatively to measure 

the skewness of the direct sum decomposition.  

6.3.1. The Gramian 

A standard test for checking the degree of orthogonality is that based on the volume 

or the Gramian and so based on its description which is presented in Chapter Two, 

the Gramian of the  matrix, in (6.2.3), is given by: 

                                                             (6.3.1) 

and since V is orthogonal with unit length, then  

                                                                         (6.3.2) 
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According to the Hadamard’s inequality theorem [18], [19], the determinant of a matrix, 

when it’s restricted to real numbers, can be bounded in terms of the lengths of it’s 

vectors. Specifically, Hadamard's inequality states that if N is the matrix having 

columns iv , ,, then 

1

det( )
n

i
i

N v
=

≤ ∏                                                                                                                (6.3.3) 

Clearly, in our case, since the length of the vectors belong to G( )  can be varied 

between zero to 1, so as the result the value of determinant of G( ) will be also 

varied  between zero to 1. 

What we are interested in, is to see what is the condition in which this value is 

maximum or in other hand, the vectors in , has maximum angle. 

Proposition 6.3: If 1 2 kV V V V =  ⋯   is any basis corresponding to the 

 decomposition where  is an orthogonal basis of with unit 

length vectors, then: 

(i) The singular values of  are invariant of any selection of orthogonal basis. 

(ii)  The value of   is invariant of any selection of the orthogonal basis. 

Proof:  

Any two orthonormal bases  are related by (6.3.1) as: 
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where  are orthogonal bases i.e. . Thus 

 

and since  are orthogonal, the result follows.                                                                        
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Assume now that the { },iV i k∈ bases are orthogonal but we select another arbitrary 

bases  with unit length vectors, but not necessarily orthogonal. Inspection of 

equation (6.2.3) and the latest result suggest that the value of  really depends 

on the property of the matrix T where T is as following: 

                                            (6.3.4) 

or its determinant defined as  

.                                                                                                                (6.3.4a) 

For any matrix i iQ ρ ρ×∈ℝ , 
1 2
, , ,
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                                      (6.3.5) 
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   .                                                                                      (6.3.6) 

Note that the matrix P is positive definite. Furthermore: 

                                                                                                              (6.3.7) 
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The main issue is now the properties of the  and the investigations of the 

conditions under which we can maximise det{T}. We note first the following lemma. 

Lemma 6.1: For any  matrix positive definite X with constant trace, [ ]tr X α= , the 

determinant is maximised when: 

 .                                                                                                                         (6.3.8)  

Proof: 

Applying Hadamard inequality (6.3.3), the determinant of an  matrix X is 

maximized when the matrix is diagonal, that is, eigenvalues of the matrix are the 

diagonal elements. If ( )1 2, , , na a a a= ⋯ ,  is the vector of eigenvalues of X, 

from majorization theory [72], the vector , , ,ta
n n n

α α α =  
 

⋯ , with all elements equal, 

is majorized by any other vector a.  

Also, a majorization result says that if g is a continues nonnegative function on I ⊂ ℝ

, a function  is schur-concave (convex) on  if and only if log(g) is 

concave (convex) in I. In our case, log(x) is a concave function on +ℝ and 

 is a schur-concave function and it’s maximum is attained for ta . 

Having all eigenvalues equal is equivalent to saying that X is a scaled identity 

matrix, under it’s trace constraint [73].                                                                               

For our case the matrix P which has: [ ]tr P k= , will have its determinant maximised 

when P=I , i.e. the transformation  are orthogonal. This then leads to the following 

main result. 

Theorem 6.1:  Let us consider the decomposition of  as: 
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and let be a basis for each of the  spaces of vectors with unit length. Then the 

Gramian of the basis 1 2 kV V V V =  ⋯  is: 

1

2
1 2( ) det( )

t

t

k

t
k

V

V
G V V V V V

V

 
 
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  

⋯
⋮

 

and it is maximised if and only if the bases  for the  subspaces are orthogonal 

and unit length. 

Proof:  

The invariant of G(V) for the selection of different bases has been established .                                                                  

This together with lemma 6.1. established the result.                                                                                           

The above establishes G(V),where  are any orthogonal ,unit length , as a measure 

of the angle between a set of subspaces ,that will be defined as the Gramian angle of 

the  decomposition. 

6.3.2. Condition Number 

Condition Number could be considered to be used as another measurement tool in 

order to measure the “skewness” of eigenframes. 

As we presented the condition number before (refer to Chapter Two for full details), 

for any matrix A, the condition number is defined as: 

                                                                                                                 (6.3.9) 

where max( )Aσ and min ( )Aσ are maximal and minimal singular values of A respectively. 

 In general: and hence for any normal matrix as all the singular 

values of the normal matrix are equal to 1. 
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Considering the above description of condition number, we will define another 

measure of the degree of orthogonality or another measure of skewness of the 

decomposition. 

Definition 6.1: If is a given matrix, and  (q=min[m,n]), 

then  [12]. 

Lemma 6.2:  For any matrix , there are n singular values such that: 

 ; Where  and  [12].                                                    

Corollary 6.1:  Let  and , then for all ,we will have 

[74].                                                                           

Corollary 6.2:  Let . If n=m and A is non-singular, then:  

 [74]. 

Proposition 6.4: We  consider the direct sum decomposition on  which is : 

                                                                                                  (6.3.10)  

where dim  ,   and all bases  in the decomposition (6.3.10) to 

have unit length vectors. Then the Condition number of the basis 1 2 kV V V V =  ⋯  

is: 

 

and it is minimized if and only if the bases  for the  subspaces are orthonormal. 

Proof:  

Let the columns of  form an orthonormal basis of . Then all other bases of  

consisting of vectors of unit length are given as  where  and all the 

nmMA ×∈ 1 2 0qσ σ σ≥ ≥ ≥ ≥⋯

1A σ=

nnFA ×∈

1 2 0nσ σ σ≥ ≥ ≥ >⋯ max 1σ σ= min nσ σ=

mnFA ×∈ mmFB ×∈ },min{,,1 mni ⋯=

min max( ) ( ) ( ) ( ) ( )i i iA B AB A Bσ σ σ σ σ≤ ≤

mnFA ×∈

1 1
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max

1
( )

( )
A A

A
σ

σ
− −= =

nℝ

1 2
n

kV V V= ⊕ ⊕ ⊕ℝ ⋯

( )k iρ=V 1,2, , .i k= ⋯ i iV ∈V

max

min

( )
( )

( )

V
V

V

σκ
σ

=

iV iV

iV iV iV

i iV Q 0)det( ≠iQ
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columns of  have unit length. Thus all bases of  can be 

written  

as : 

1

2

1 2 1 2

1

0 0 0

0 0 0

0 0

0 0 0

0 0 0

k k

k

k

Q

Q

V V V V V V V

Q

Q
−

 
 
 

     = =      
 
  

⋯

⋮

ɶ ɶ ɶ ɶ⋯ ⋯ ⋮ ⋱ ⋮

⋯

⋯

=  ;  

where  is defined as the set of all block diagonal matrices ,such 

that  and all the columns of  have unit length.  

We should show that and that, the minimum is attained for 

 with all  orthogonal. First by using corollary 6.1., we have: 

.                                                                        (6.3.11) 

Hence and based on Lemma 6.2. and Definition 6.1., we can have from (6.3.11) that: 

For i=1: 

,                                                            (6.3.12) 

Now if the minimum singular value named as , then: 

for i=n 

.                                                                          (6.3.13) 

In order to obtain the condition number of  or equally, , we have: 

. 

iQ 1 2
n

kV V V= ⊕ ⊕ ⊕ℝ ⋯

.V Q Φ∈Q

Φ ),,( 1 kQQdiagQ ⋯=

0)det( ≠iQ iQ

min ( ) ( )
Q

VQ Vκ κ
∈Φ

=

),,( 1 kQQdiagQ ⋯= iQ

min max( ) ( ) ( ) ( ) ( )i i iV Q VQ V Qσ σ σ σ σ≤ ≤

1
max

max
j

j k
j

j k

V
VQ V Q

Q− ∈

∈

≤ ≤ },,2,1{ kk ⋯=

nσ

1

( )
( ) ( ) max

max
n

n n j
j k

j
j k

V
VQ V Q

Q

σ σ σ
− ∈

∈

≤ ≤

Vɶ VQ

max
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( )
( ) ( )

( ) ( )n

VQVQ
V VQ

VQ VQ

σκ κ
σ σ

= = =ɶ



 

127  
 

So from (6.3.11) and (6.3.13), we have: 

                                                                         (6.3.14) 

or equivalently, 

.                                            (6.3.15) 

Note that: 

 and so:       

and so that (6.3.14) is equivalent to: 

                                                                                           (6.3.16) 

where: 

.                                                                                                 (6.3.17) 

From (6.3.16) we get that: 

 for every .                                                                                  (6.3.18) 

Also from (6.3.17) we have that: 

.                                                                                              (6.3.19) 

1
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So by using (6.3.19), in (6.3.18) we have: 

.                                                                                                                (6.3.20) 

Using (6.3.16) and notify that  if and only if  with 

orthogonal [see Lemma 6.2. for proof], thus . Since the condition 

number of is fixed and assumed to be minimum (which is 1) so it means that the 

condition number of is minimum if and only if for all the , Qs are 

orthonormal.                                                                                                                                                                                                                             

Theorem 6.2: Let us consider the decomposition of as:  

                                                                                                     (6.3.21) 

dim( )= , 1,2, ,i k= ⋯ and all bases  in the decomposition (6.3.21) to have unit 

length vectors. Then the Condition number of the basis 1 2 kV V V V =  ⋯  is: 

 

and it is minimized if and only if the bases  for the  subspaces are orthonormal. 

Proof:  

The invariant of  for the selection of different bases has been established. This 

together with Lemma 6.2., Corollaries 6.1. and 6.2., established the result.                                                                                                                  

The above establishes where{ }iV are of orthogonal unit length, also as a 

measure of the angle between a set of subspaces, defined as the Condition Number of 

the  decomposition. 
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6.3.3 The Spread of Singular Values 

So far we have seen two different tools in order to measure the degree of 

orthogonality or to measure the skewness of the decomposition. 

One other way to measure the skewness of the decomposition is to use so called the 

spread of singular values of a space. Note that by “spread of singular values”, we 

mean the difference between the values of singular values of any decomposition.  

What we are interested to, is to show that the spread of singular values of 

decomposition is minimized when the space is orthonormal.  

Problem 6.2: Let us consider the direct sum decomposition of  in terms of 

subspaces   and , dim = ,   i.e. 

                                                                                                     (6.3.22) 

If 1 2 kV V V V =  ⋯  is a normal- -structured bases of  and for any ,

, then any other is expressed as  

  

1

2

1 2 1 2

1

0 0 0

0 0 0

0 0

0 0 0

0 0 0

k k

k

k

Q

Q

V V V V V V V

Q

Q
−

 
 
 

     = =      
 
  

⋯

⋮

ɶ ɶ ɶ ɶ⋯ ⋯ ⋮ ⋱ ⋮

⋯

⋯

=  ;  

where  is defined as the set of all block diagonal matrices , such 

that  and all the columns of  have unit length. Show that for all the 

singular values of , ,  if and only if  is a normal- -

structured bases. 

Solution:   

Let  , then  1 2V V V=    ,  1, ,, , , 1,2
ii i iV v v iρ = = ⋯ .  

nℝ

iV
n

iV ∈ℝ iV iρ 1,2, , .i k= ⋯

1 2
n

kV V V= ⊕ ⊕ ⊕ℝ ⋯

{ }i k
V nℝ iV

1, ,, ,
ii i iV v vρ =  ⋯

.V Q Φ∈Q
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0)det( ≠iQ iQ

Vɶ ( ) ( ) 1i iV Vσ σ= =ɶ 1,2, , .i k= ⋯ Vɶ { }i k
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Since V is a orthonormal bases, then , , and V has full column rank and 

for any : 

. 

Since V has orthogonal columns hence . Now for any other bases

2nV ×∈ɶ ℝ , we have that: 

                                                                                                                            (6.3.23) 

where  and Q is a square matrix ,that is, 
1 2

Q q q =    and 1
i

q = , i=1,2, but Q 

is not necessarily orthogonal. Based on these specifications, let’s choose Q as 

following: ,  and . 

Then from (6.3.23): 

. 

Now in order to obtain the singular values of , the following procedure can be 

done: 

 , i=1,2.                                                          (6.3.24) 

The orthogonality of  gives that:                                                              (6.3.25) 

then (6.3.23) becomes: 

, i=1,2.                                                                                                (6.3.25a) 

Now to obtain the eigenvalues of ( ), we have: 

, 1
i ivρ = 1,2i =
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where .                                                                                (6.3.26) 

And finally:  gives the eigenvalues of  or in fact the eigenvalues 

of . 

 .                                                                          (6.3.27) 

From (6.3.27), the values of two eigenvalues of   will be calculated as following: 

. Obviously based on (6.3.25a), the singular values of   will be: 

. 

We can clearly see that since   is always true, then 

     and     . 

The inequalities will be changed to equalities if and only if Q is also orthogonal.       

The above example simply shows that for any combinations of bases rather than 

those of orthonormals, some of the singular values will be greater than 1 and some 

others less than 1. The above result arises another interesting issue which is strongly 

relative to the above problem and that is, to find the value of minimum singular 

value of any -structured bases chosen from (6.3.22) as following; 

Theorem 6.3:  Let   and suppose that the columns of  

form an orthonormal basis of , , so that  and hence: 

1 2 kV V V V =  ⋯  is a square, invertible matrix. Then ; furthermore, this is 

equality if and only if  for all , so that V is an orthogonal matrix. 

2

2 22

1

1 11

tQ Q
ε δε ε

ε δδ δ

   −
 =  
  − − −   

1

1

X

X

 
=  
 

( ) ( )
1 1

2 22 21 1X εδ ε δ= + − −

det[ ] 0tI Q Qλ − = tQ Q

Vɶ

2 21
0 ( 1) 0

1

X
X

X

λ
λ

λ
− −

= ⇒ − − =
− −

tQ Q

{ }1,2 1 ,1X Xλ = − + Vɶ

{ }1,2 1 , 1X Xσ = − +

0X ≥

1 1 1Xσ = + ≥ 2 1 1Xσ = − ≤

{ }i k
V

1 2
n

kV V V= ⊕ ⊕ ⊕ℝ ⋯ in n
jV ×∈ℝ

iV 1,2, ,i k= ⋯
1

k

j
j

n n
=

=∑

min ( ) 1Vσ ≤

i jV V⊥ i j≠



 

132  
 

Proof:   

Assume that the singular values of V are introduced as  (Since V 

is square, invertible matrix, then all the singular values are positive). A direct 

evaluates gives: 

1

2

1 2 11

2 1 22
1 2

1 2 k

t tt
kn

t tt
knt

k

t t t
k k k n

I V V V VV

V V I V VV
V V V V V

V V V V V I

  
  
    = =     
  
      

⋯

⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯

 

and hence: 

 . 

Thus    . 

Next let . Then we have that  and hence , so 

that  This implies immediately that V is orthogonal 

.Conversely if V is orthogonal then all the singular values of V (including ) are 

equal to 1.                                                                                                                                                                                                                                          

Corollary 6.3:  Let 1 2 kV V V V =  ⋯  with  and , be a non-singular 

matrix with all columns of   normalized to 1, (j=1,2,…,k). Then ; 

furthermore  if and only if V is orthogonal. 

Proof:  Consider that V contains n-one dimensional subspaces as following: 

, then Theorem 6.3 

applies and hence . Furthermore, based on the same theorem  if 

and only if V is orthogonal.                                                                                                                                                
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6.4. Numerical example 

So far and within this chapter, it has been proofed that for any space  

1 2 kV V V V =  ⋯  with , where the angle between the subspaces is fixed, the 

space can be in it’s best condition if and only if, all the subspaces  (normalized to 

1) are internally orthogonal.  

In this section and by using MATLAB tools programming, a simple numerical 

example will be used in order to achieve the optimum conditions for the space. 

Consider the following   space : 

1 2 3 41 2 1 2 , ,H L L L L v v v v= ⊕ =   =       

 

where it’s subspaces L1 and L2 are internally orthonormal. For the matrix , the 

following measurements are true: 

Condition number of H         12.9930 

Gramian determinant of H    0.0197 

 

 What we are looking for is to investigate and observe the effect of changing the 

internal angles of both subspaces L1 and L2 on the sensitivity of the whole space H.   

Let’s take 1 1 2w av bv= +    and   2 3 4w av bv= + .  Note that a,b,c,d are arbitrary scalars. 

In another word, 1w  and 2w  can be introduced as the internal weights for the both 

subspaces, as it has been shown in Figure 6.1: 

in n
jV ×∈ℝ

jV

H

1 2

    -0.5366   -0.4434   -0.6896    0.1873

   -0.5542   -0.4297    -0.4885   -0.3240

   -0.4253    0.3194    -0.4017   -0.5697

   -0.4733    0.7188    -0.3526    0.7317
L L

H





=



 
����
��������
����







H
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Figure 6.1: Internal weights 1w  and 2w  

Obviously  and  are the internal angles of L1 and L2 respectively. As the angles 

change within each internal subspace, the relative weight will move and as the result 

the overall sensitivity’s measurements will be affected. 

In order to normalize , we have: 

1 1 1 2 1 2. 1 ( ) .( ) 1t tw w av bv av bv= ⇒ + + =  

Since 1 2 1v v= =  and 1 2. 0tv v = , then   

2 2
1 1 . 1tw w a b= + = .                                                                                                           (6.4.1) 

Also based on Figure.1:   

                                                                               (6.4.2) 

Then from (6.4.1) and (6.4.2) we can re-define  to be: 

1 1 2 1 21 1cos( ) sin( )w av bv v vθ θ= + = + .                                                                              (6.4.3) 

Obviously by the same calculation we are able to show that: 

2 3 4 3 42 4cos( ) sin( )w cv dv v vθ θ= + = + .                                                                            (6.4.4) 

Next, in order to investigate the effect of the angles on the sensitivity, one can define 

the weighted space H1 to be: 

1 1 3 21 , ,H v w v w=     .                                                                                                         (6.4.5) 

1θ 2θ

1w

1w

1 1 1 2 1 1. ( ) . cos( )T Tw v av bv v a θ= + = =
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For this new space and within the interval of  for the both internal angles 

of both new subspaces, where the interval has been divided to 100 equal points, the 

following graphs can be obtained for both the condition number and Gram 

determinant of H1: 

 

Figure 6.2:  The Graph of the Overall Space’s Condition number based on different values 

for internal angels 1θ and 2θ (in Radians) 

 

Figure 6.3:  The Graph of the Overall Space’s Gram. determinant based on different values 

for 1θ and 2θ (in Radians) 

It is very clear that the minimum condition number of the whole space and also the 

maximum Gramian determinant accrue when both internal angles 1θ and 2θ get very 

[0.3, 0.3]π −
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close to the value of  Radians.  The results might be clearer if we use the relative 

contour graphs of the both measurement tools. Within the following figures (Figures 

6.4 and 6.5), the optimum values of condition number and Gramian determinant 

through different values of  can be observed: 

 

Figure 6.4: The Graph of the contour of Overall Space’s Condition number based on 

different values for 1θ and 2θ (in Radians) 

 

 

Figure 6.5:  The Graph of the contour of the Overall Space’s Gram. determinant based on 

different values for 1θ and 2θ (in Radians) 

2

π

1 2  andθ θ
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Note that the above graphs have been obtained by dividing the interval of 

 to 100 equal points, then as the result, both condition number and 

Gramian determinant of matrix H1 will be matrices of dimensions .  

In the following table the values of the the optimum points of both matrices will be 

the same as we had it for the original matrix H .i.e. 

 
The minimum value of the matrix of 

Condition number of (H1)         

12.9930 

 
The maximum value of the matrix of 

Gramian determinant of  (H1)    

0.0197 

 

6.5. Conclusion 

The problem of the skewness of the eigenframes in a direct sum decomposition, has 

been studied during this chapter and by using two different kind of measurement 

tools: Condition number, Gramian determinant and it has been proved that for a 

fixed angle between subspaces of a direct sum decomposition, the optimum values 

of both condition number and Gramian determinant of the whole space are obtained 

if and only if any individual subspace contains orthonormal vectors. It also has been 

shown that within this situation, the spread of the singular values of the whole space 

is minimized. 

Finally, by using a numerical example, the effect of the internal angle of each 

individual subspace on the value of condition number and Gramian determinant of 

the overall space has been studied and by observing the relative graphs, it has been 

concluded that the optimum points for both of the measurements has been obtained 

when the internal angles of every single subspace is quiet close to . 

[0.3, 0.3]π −

100 100×

221

πθθ ≅=

221

πθθ ≅=

2

π
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By considering the achievements from this chapter, we will study the effect of the 

angle between controllability subspaces in direct sum decomposition where each 

subspace contains orthonormal vectors.  
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CHAPTER 7: 

 

PARAMETERISATION OF 

ORDERED MINIMAL BASES OF 

CONTROLLABILITY SUBSPACES   

7.1. Introduction  

Within this chapter, an alternative algebraic approach that can provide a 

characterisation of the closed loop eigenvectors will be considered, as well as 

introducing a new way of characterising system properties such as poles and zeros 

based on an algebraic characterisation of the behaviour of linear systems.  

An algebraic description of the total system behaviour is presented which in turn 

allows the study of closed loop eigenvectors in a systematic way by providing new 

parameterisations which leads to an algebraic characterisation of the total input, 

state and output behaviour in an implicit formulation and it is given based on 

properties of MFD descriptions.  

This framework allows a novel unifying characterisation of poles and zeros based on 

input and output zeroing problems. The analysis also provides explicit algebraic 

means for characterising the zero structure and providing a new algebraic 

characterisation of the family of closed loop eigenvectors and related input and 

output directions.  

The approach which is introduced here enables the derivation of a new method of 

eigenstructure assignment via state feedback, using minimal basis theory, and this is 

demonstrated via an example. We also develop some ideas how to optimise the 

eigenframe, which contains as parameters the closed loop eigenvalues in order to 

guarantee maximum system robustness by making it as close to orthogonality as 
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possible. This will be done by construction of parametrisation of ordered minimal 

bases [96]. 

7.2. Implicit system description  

For the system ( , , , )A B C ES , which will be assumed to be minimal, i.e. controllable 

and observable, the total behaviour solution of system equations under zero initial 

conditions is expressed by [2] 

  

0( )

( )( )

sI A B x s

y sC E u s

 − −   
=      −− −     

                                                                            (7.2.1a) 

 

or equivalently [75] 

 

( )
0

( ) 0

( )

x s
sI A B

u s
C E I

y s

 
− −    =   − − −   

 

                                                                                        (7.2.1b) 

where the composite vector  will be referred to as the total 

behaviour vector of the system.  

Also, it should be noted that if  and  denote corresponding 

constant vectors, then (7.2.1a) or (7.2.1b) denotes vector solutions of the rectilinear 

motion problem for the given λ. The problem we address is the solution of (7.2.1b) in 

parametric form using the system model structure. Note that the system equations 

are  

                                                                (7.2.2) 

 

Consider now the relationship 

 

                                                                                                     (7.2.3a) 

and let us consider its right MFD factorization 

 

                                                                                                (7.2.3b) 

ξ s x s u s y s
t t t tb g b g b g b g= , ,

s= λ x u yλ λ λb g b g b g, ,

( ) ( ) ( ) ( ) ( ) ( ),  sI A x s Bu s y s Cx s Eu s− = = +

x s sI A Bu sb g b g b g= − −1

sI A B N s D s− =− −b g b g b g1 1
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of the input state transfer function.  

Then 

.                                                                         (7.2.4) 

 

By defining 

                                                                             (7.2.5a) 

 

the output relationship may be expressed as 

                              (7.2.5b)                             

Proposition 7.1: [38] If the system ( , , , )A B C ES  is controllable and observable and 

the state input factorisation in (7.2.3b) is coprime, then a right MFD is defined by 

 

                                                                           (7.2.6a) 

where 

                                                                             (7.2.6b) 

and is a right coprime MFD. 

 

Proof: If the system is minimal, then n = deg . From equation (7.2.6b), it is 

obvious that  defines an MFD since deg  = n = , 

the factorisation is minimal. Substituting (7.2.6a) into (7.2.6b) 

 

                                                                                           (7.2.6c) 

 

and assembling (7.2.6a), (7.2.6b) and (7.2.6c), the following result is obtained.           

 

x s sI A Bu s N s D s u sb g b g b g b g b g b g= − =− −1 1

h s D s u s u s D s h sb g b g b g b g b g b g= =−1
  or  

( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( ) ( ) ( ){ } ( ) ( )

1

1 1
      

      

y s Cx s Eu s C sI A B E u s

CN s D s E u s CN s ED s D s u s

−

− −

= + = − + =

= + = +

G s C sI A B E N s D sb g b g b g b g= − + =− −1 1

N s CN s ED s D s D sb g b g b g b g b g= + =,   

D sb g

CN s E D s D sb g b g b gn s+ ,  D sb g δ M G sb gc h

y s CN s E D s h sb g b g b gn s b g= +



 

142  
 

Proposition 7.2: The total behaviour vector of the system is defined in parametric 

form as 

                                                                  (7.2.7) 

 

where  is a coprime right MFD pair of the input state transfer function 

and ( ) ( )h s s∈ℝ  is an arbitrary vector parameter for the rational behaviour.                   

The matrix ( )( ) ( ) r m p p
rQ s s + + ×∈ℝ  is referred to as the behavioural representation, and 

contains as a submatrix the input-output behavioural representation Tr(s) which is 

defined below as 

 

  .                                          (7.2.8a) 

The rational vector  

                                                                                                      (7.2.8b) 

characterises the total behaviour and has as a complete invariant a corresponding 

Plücker matrix, or the Grassman Representative of  [76]. 

 

Remark 7.1: The expression of the total behaviour as in (7.2.8a) suggests that the 

whole theory of transformations and invariants may be expressed in terms of 

properties of the Qr(s) matrix. Furthermore, for minimal  systems all 

aspects of behavioural structures are generated by the input-state factorisation, i.e. 

  

                                         (7.2.9a) 
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which clearly denotes how MFDs are generated from the input-state transfer 

function, which has implications for their computation.                                                 

 

Remark 7.2: Given that the Smith structure of N(s) defines the zeros, the zero 

structure formation may be considered as a model projection problem [77] defined in 

polynomial terms by             

                                                                                        

 .                                                                     (7.2.9b) 

 

The problem of “squaring down” [76] is thus a special case of the above problem of 

selecting (E, C) to assign the structure of N(s). The important issue here is the 

problem of transformation of the controllability indices, that is the Forney indices of 

, to those of N(s). Note that “squaring down” corresponds to the 

boundary case where all Forney indices of N(s) are zero. 

                                                                                                                                                  

The framework already developed on zero assignment [76] may be extended to 

model projection using the above formulation. This, however, is now a more 

complex problem since now controllability indices are transformed to Forney 

dynamical orders and possible zeros and this is a topic for future research.  

It is clear that the MFD pair  emerges as a crucial element for the overall 

analysis and shall be referred to as an input-state generator pair. Such pairs will 

always be assumed to be coprime. 

7.2.1. Duality issues and behaviour 

Consider now the solutions of 

 

                                                                              (7.2.10a) 

which in a sense are dual to those of (7.2.2a). From (7.2.10a) we have that 

N s E C
D s

N s
E D s CN sb g b g

b g b g b g=
L
N
M
O
Q
P = +,

D s N s
t t tb g b g,  

D s N sb g b gd i,  

z s v s
sI A

C
t tb g b g,

−
−
L
NM
O
QP

= 0
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                                                                                                 (7.2.10b) 

 

If we now the coprime factorisation of C(sI – A)-1, i.e. 

 

                                                                                               

(7.2.11a) 

then 

                                                                                    (7.2.10c) 

and by defining , this leads to 

                                                                                                       (7.2.11b) 

or 

 .                                                                           (7.2.11c) 

 

From the above, the left coprime MFDs of the transfer function can be obtained as 

shown below 

 

                               (7.2.12a) 

 

Proposition 7.3: If the system is minimal and  are left coprime MFDs of 

, then D'(s), N'(s) where                                                        

                                                                          (7.2.12b) 

are left coprime MFDs of G(s). 

 

Proof:  

 is the state-output generator pair, and the generation of the left coprime 

MFDs is described by 

z s v s C sI A
t tb g b g b g= − −1

C sI A D s N s− =− −b g b g b g1 1~ ~

z s v s D s N s
t tb g b g b g b g= −~ ~1
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v s f s D s
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t t

b g b g b g
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=

=
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b g b g b gn s b g b g
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1 1

1 1
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                              (7.2.13) 

 

The above is the dual of the relationship of (7.2.9a). It should be noted that 

                                                                                (7.2.14a) 

and thus some interesting relationships between the input-state and state-output 

generator pairs are derived below. In fact (7.2.14a) implies that 

                                                                                           (7.2.14b) 

and from (7.2.6) and (7.2.12) we have that 

 

                                  (7.2.15a) 

or 

                                                                                        (7.2.15b) 

 

 

The above leads to the following result:  

Proposition 7.4: If  is an input-state and  a state-output 

generator pair, then the following relationship holds true 

                                                                                                            

                                                                               (7.2.15c) 

 

Proof: 

It should be noted that  contain information on observability indices and 

 on controllability indices. Condition (7.2.15c) thus expresses constraints 

on their values. The computation of state output generator pairs is based on the fact 

that (7.2.11) implies 
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                                                                                             (7.2.16a) 

 

and if M and C† are right annihilators and inverses of the full rank output matrix C, 

then by multiplying on the right by the full rank matrix , the following 

result is obtained 

 

or 

                                                                          

 

Thus we are led to the following result: 

Proposition 7.5: The left numerator  is constructed as a minimal basis of the left 

kernel of sM – AM i.e.                                            

  .                                                                                                   (7.2.16b) 

 

This leads to a left denominator with the pair  coprime, computed as 

† †( ) ( )( )D s N s sC AC= −ɶ ɶ                                                                                                (7.2.16c) 

 

The above expressions together with (7.2.15c) may be used to work out more 

detailed relationships between the controllability and observability indices of the 

system. Starting from (7.2.15c) and using (7.2.16c) and (7.2.16b), it is readily shown 

that: 

 

Remark 7.3: [7] The numerators  and  of the output-state and input-state 

generator pairs are related as 

                                                      (7.2.17) 

where  is a minimal basis of  and  is a minimal basis of  

~ ~
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C
b g b g −

−
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.                                                                                                                         

 

7.2.2. Computation of Input - State generator pairs 

We consider now the computation of the input-state and state output pairs which 

are crucial for our current study. By definition 

                                                                                                (7.2.18) 

and this implies that 

 

                                             (7.2.19) 

Remark 7.4: The computation of a pair  is equivalent to computing a 

minimal basis for the right kernel of .                                                        

 

Reduced complexity computations may be achieved by using the pair (N, B†) for the 

B matrix where N is a left annihilator and  a left inverse of B, i.e. 

( ) †( ) , 0, , ( ) ,n p nB p NB B N n p B B Iρ ρ− ×= = ∈ = − =ℝ . 

Using †( , )N B , (7.2.19) is equivalent to the following set of conditions                                                    

                                                              (7.2.20) 

 

Remark 7.5: The results developed later in this chapter on minimal bases of matrix 

pencils are used for computing . Then  is defined by (7.2.20) and the 

numerator and denominator of the MFD of G(s) by 

 

                                                                             (7.2.21) 

 

The above results form the basis for a numerical method for computing MFDs [4]. 

The current treatment is algebraic in nature and it provides links with fundamental 

aspects of the underlying system structure. 
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7.2.3. Closed -loop Eigenvectors and frequency transmission  

The algebraic analysis given before is now used to characterise the structure of 

closed loop eigenvectors and to produce a new characterisation of them. The 

solution to the frequency transmission problem [35] is defined by 

 

                                                                                       (7.2.22a) 

 

and thus from Proposition 7.2 and condition (7.2.18), it can be shown that: 

 

Proposition 7.6: The solution of the input, state and output rectilinear motion 

problem is given by 

 

                                 (7.2.22b) 

 

The above generates all solutions of the frequency transmission problem in 

parametric form. In fact,  is a basis for the total composite transmission space 

[35]. This framework will be subsequently used to derive an eigenstructure 

assignment method. 

  

Remark 7.6: [35] The solutions of the frequency transmission problem are given by 

the fact that the generation of any general frequency requires that the state x(t) be 

restricted in an (A, B)-invariant subspace. This condition may be ensured by selecting 

an appropriate release condition x0 that lies in this particular subspace and some 

appropriate rectilinear input trajectory with the same frequency. The resulting 

output trajectory will then be the sum of the rectilinear motions whose frequency 

components are defined by the same exponential.                                                                                                              
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7.2.4. Pole assignment by output feedback and Closed-Loop 

Eigenvectors  

Kimura [70] in his paper about pole assignment by output feedback deals with the 

problem of pole assignment with incomplete state observation. It is shown that if the 

system is controllable and observable and if , an almost arbitrary set of 

distinct closed-loop poles is assignable by gain output feedback, where  and  

are the numbers of state variables, inputs and outputs, respectively. This result 

improves considerably the ones obtained so far about this problem.  

 

Different from the conventional approach using the characteristic equation, an 

approach based on the properties of the eigenspaces of the closed-loop dynamics is 

used, which gives a new light on the various problems in the linear system theory. It 

is also shown, as a direct consequence of this result, that the minimum order of the 

dynamic compensator required for almost arbitrary pole assignment of overall 

closed-loop system is not greater than . 

 

For the sake of simplicity the strictly proper case is first considered, i.e. when E = 0. 

If 0K  is the output feedback matrix, then the closed loop eigenvectors and 

eigenvalues are defined by 

 

                                                                                                (7.2.23a) 

 

where { }iλ ∈ℂ is a complex conjugate set and the set of corresponding eigenvectors 

{ },ix i n∈  is linearly independent. For this case, (7.2.22b) takes the form 

                                                                                                        (7.2.23b) 

 

and 

.                                                                                        (7.2.23c) 
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From (7.2.22b) 

 

and thus (7.2.22c) leads to 

                                                                                             (7.2.24) 

 

Remark 7.7:  is the denominator of the closed loop transfer 

function under output feedback and thus hi are the vectors associated with the loss 

of rank of the  denominator (closed loop poles). The selection of hi has to be 

such that the eigenvectors of (7.2.23b) defined by  

 

                                                                                         

(7.2.23d) 

 

have to be linearly independent. If hi are treated as free parameters then a design 

problem may be posed as that aiming at maximising the orthogonality of the 

 frame.                                                                                          

 

Remark 7.8: Given that , then for an eigenvalue ,  

is rank deficient and , then 

 

where  is the λ-closed loop eigenvector since .                            

 

The selection of parameter hi is dependent on the input vector ui and the 

denominator of the input-state transfer function  defined by equation (7.2.4). It 

is also dependent on the eigenvectors determined by (7.2.23a) and the corresponding 

condition (7.2.23d).  

The resulting selection problem is thus a crucial one because issues such as linear 

independence and orthogonality are involved. This approach is independent of the 

( ) ( ) ( ) ( ),  i i ii i i ii
u u D h y y C N hλ λ λ λ= = = =
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feedback used and can be employed for procedures that lead to eigenstructure 

assignment. 

 

Since the fundamental result was presented by Wonham [9] the problem of pole 

assignment has received much attention and has been expected to bridge the gap 

between classical and modern control theory.  

 

The result of Wonham states that, if the system is controllable, it is pole assignable, 

that is, the eigenvalues of the closed-loop system can be assigned arbitrarily by 

selecting an appropriate state feedback. Since the complete state observation which 

was assumed is unlikely to most practical situations, it has been desirable to find the 

condition under which the system is pole-assignable with incomplete state 

observation. 

 

 If some dynamic elements are allowed in the feedback loop, an elegant result of 

Brasch and Pearson [70] gave an answer to this question. Another approach has been 

the one using the Luenberger observer [70]. In case only a gain feedback is allowed, 

however, the problem still remains open in spite of several authors’ efforts.  

 

The first result obtained along this line was that of Davison [70] who showed that if 

the system is both controllable and observable,  poles of closed-loop system are 

assignable almost arbitrarily by gain output feedback, where  is the number of 

independent outputs. This result was extended by Davison and Chatterjee [70] and 

by Sridhar and Lindorff [70] who showed that under the same conditions,  

eigenvalues are assignable almost arbitrarily by gain output feedback, where r is the 

number of independent inputs.  

 

The results are not practical because nothing was said about the remaining 

 poles, where  is the number of state variables. Kimura’s paper 

derived a more workable criterion for the pole assignability by gain output feedback. 

m

m

( )max ,r m

( )max ,n r m− n
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Different from other papers, the eigenvectors play a fundamental role rather the 

characteristic polynomial. The main result is that if  the system is always 

pole-assignable by gain output feedback provided that a slight modification of the 

poles to be assigned is tolerable.                 

 

7.2.5. Poles and Zeros 

 

The simplest case of an autonomous system is one that has no physical inputs, i.e. 

u(t) = 0. This reduces the state space description to merely  and . For a 

forced system (i.e. a system with physical inputs) a frequency s0 is said to be 

transmitted through the system when the application of a signal with this same 

frequency is applied to the inputs. The system then yields an output response of the 

same frequency.  

 

However, when u(t) = 0, a frequency cannot be transmitted in this fashion. This does 

not imply that the system itself, which is free responding under zero input 

conditions, is not capable of exciting a response of an exponential type. The notion of 

the zeros of a system is strongly related to the physical situation whereby the system 

has an identically zero output whilst the states and inputs are not themselves 

identically zero.  

 

It has been shown [34], [105] that given a transfer function matrix G(s) there are 

certain specific values of the complex frequency s associated with certain specific 

non-zero input transform vectors u(s) in the input space that transform the output 

vector y(s) to zero. The matrix G(s) corresponds to an external description of the 

system behaviour in terms of how sets of exponential signals are propagated 

through it. 

In the following part of the analysis, the case of selecting the parameter hi for both 

cases of input and output zeroing will be examined. The behaviour form provides an 

ideal characterisation of the poles and zeros and corresponding directions, because 

from equation (6.3.7). In fact, starting from the behavioural description 

1n r m≤ + −

ɺx Ax= y Cx=
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                                                        (7.2.25) 

 

the following results can be readily deduced: 

 

Corollary 7.1: (Characterisation of Poles) Consider the zero input problem with u(t) = 

0. Then  such that 

                                                                                                   

(7.2.26a) 

then iλ  is a pole of the system with corresponding eigenvectors and output pole 

directions defined by 

                                                                                   (7.2.26b) 

 

 

Corollary 7.2: (Characterisation of Zeros) Consider the output zeroing problem i.e. y(t) 

= 0. Then  such that 

                                                                                         (7.2.27a) 

 

then z is a zero with corresponding state and input zero directions of the system 

defined by 

                                                                                         (7.2.27b) 

 

 

From the behaviour viewpoint, poles and zeros are distinct frequency solutions of 

zero input and zero output problems. Thus 

  

 .                                                       (7.2.28a) 
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The polynomial solution hz(s) then defines the vectors 

                                                                 (7.2.28b) 

which in turn defines the output nulling controllability spaces for the system [9]. 

 

Remark 7.9: The zeros are those frequencies associated with the further expansion of 

the kernel of  and the corresponding xz are independent from those 

of colsp.{xz}.                                                                                                                            

 

7.2.6. Design of state feedback controllers using Eigenvector 

parametrisation 

The general analysis on the solution of the system equations in an algebraic-

behavioural sense leads to a parameterisation of closed loop eigenvectors and an 

explicit design of state feedback that assigns the eigenstructure, and is presented 

here. The problem of state feedback is defined as stated below: 

 

Problem 7.1: Given a complex symmetric set , find an independent set 

of closed loop eigenvectors  with corresponding input directions 

 such that 

                                                                                                          (7.2.29a) 

or equivalently 

                         (7.2.29b) 

 

 

The above problem can be solved if the frame X(Λ) has full rank. Furthermore, it is 

necessary for the frame X(Λ) to be as close to orthogonality as possible, [65], since 

this is related to robustness. Clearly, if for the given Λ a frame X(Λ) which has full 

rank may be found, the solution of (7.2.29b) is not unique and for the selected frame 

X(Λ) it is shown that 

.                                                                                                         (7.2.30) 
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Some important issues that emerge here are: 

(i) Selection of an independent set of eigenvectors for any given Λ. 

(ii) Given a set Λ select the most orthogonal frame, if a procedure for selection of 

independent vectors is found. 

(iii) Selection of an appropriate stable spectrum Λ that may achieve the best 

orthogonality   

 

Considering the first of the interrelated problems, condition (7.2.23b) is used to 

characterise the solution of the rectilinear motion problem, i.e. 

  

                                                                                   (7.2.31) 

 

Critical for the above characterisation is the computation of minimal bases, as well as 

their parametrisation. In fact, let us assume that in the factorisation 

 

                                                                                              (7.2.32a) 

 

 

 is an ordered minimal basis [96] which is expressed as 

                                                                              (7.2.33b) 

where  and , and 

                                             (7.2.33c) 

 

where . From the properties of minimal bases of matrix pencils, 

 and the space  is an  dimensional controllability 

subspace. The use of minimal bases suggests a simple procedure for selection of an 

independent eigenframe.  
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This in turn, splits the selection of spectrum from the selection of the most 

orthogonal frame and reveals the critical role of the parameterization of minimal 

bases in the overall problem. In the next section we consider the selection of the full 

rank eigenframe and its relation to the definition of state feedback and then we 

consider the problem of minimal basis parameterization and its role to the shaping 

of frames.  

 

7.2.7 Selection of an independent Eigenframe and resulting state 

feedback 

 

The selection of an eigenframe that corresponds to a given closed loop spectrum is 

based on the following steps. 

STEP (1): For every  symmetric, it is possible to partition it into the 

following subsets . It is 

assumed that each of the  subsets with  eigenvalues is also symmetric. 

The partitioning corresponds to the dimensions of the controllability subspaces 

defined by the  indices. Clearly 

 

                                                                             (7.2.34) 

 

Definition 7.1: For a given set of Λ and a system with controllability indices 

, the ability to split Λ into symmetric subsets  such that (7.2.34) 

holds true characterises a property referred to as compatibility of the Λ, with respect 

to the  sets.                                                                                                            

 

In the following we will assume compatibility of the Λ, sets. 

 

Remark 7.10: Compatibility of the Λ,  sets implies that the minimal 

decomposition of the state space implied by the minimal basis can lead to a real state 
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feedback matrix. If compatibility is not valid, nonminimal decompositions will have 

to be dealt with, i.e. controllability subspaces of higher dimensions. This may be 

readily overcome but requires additional work going through the results 

characterising the possible dimensions of controllability subspaces [71], [8].              

 

STEP (2): Having assumed compatibility, the free parameters in the selection of 

eigenvectors are defined as 

 

 

 

STEP (3): For every , the  vectors are defined based on the common 

 and the selected spectrum  as 

 

                                                                                  (7.2.35a) 
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rank. For the case of repeated eigenvalues, corresponding Jordan vectors can be 

defined by using derivatives of the  vector evaluated at . 

 

Proposition 7.7: For any given symmetric set , the set of vectors 

 

                                                                                       (7.2.36a) 

 

is linearly independent. Furthermore, if the original set is a compatibly partitioning 

set as in (7.2.33), then the set of vector  

      (7.2.36b)   

    

is symmetric (pairwise complex conjugate) within each of the  subsets and it is 

linearly independent.                                                                                                             

 

STEP (4): For every  set and with  vector, it is possible to define the input 

vectors  in a systematic way. Firstly, we express  as 

 

                                                                             (7.2.37a) 

 

where . Then 

 

                                                                                        (7.2.37b) 

 

and for the set , a new set is then defined by 
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STEP (5): The state feedback matrix that assigns Λ as closed loop eigenvalues with 

X(Λ) as the corresponding closed loop eigenvectors is then defined by 

 

             (7.2.35)       

 

Remark 7.11: The construction of the frame X(Λ) is based on the properties of 

minimal bases of matrix pencils [38] and thus this theory is instrumental in defining 

all such families of eigenframes.                                                                                          

 

The advantage of this construction is that it leads to maximal rank feedback and 

provides constructive means for shaping the properties of the eigenframe X(Λ). 

Furthermore the selection of the  vectors for each of the subspaces of the 

decomposition is arbitrary and this expresses the p degrees of freedom in the 

eigenstructure assignment, which may be further explored to achieve additional 

properties of the eigenframe beyond the linear independence. 

 

7.2.8 Parameterisation of ordered minimal bases and the selection of 

Eigenframes 

In the previous section we have developed an expression for the closed loop 

eigenframe (see condition (7.2.36b)) that clearly indicates that the eigenframe X(Λ) 

may be factorised into the matrices 

                                    

=                                                                                  (7.2.36a)      

 

  = block diag { }                                                             (7.2.36b)       

 

where the first is a basis for the state space, with the matrices  defining basis 

matrices for the  minimal ( )-dimension controllability 
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subspace and the matrix   is a block diagonal Vandermode matrix, which has 

full rank when the spectrum has distinct values. As long as we select a set of 

minimal dimension controllability subspaces and distinct closed-loop spectra, the 

matrix  

1

2

1 2 1 2

0

( ) ( ), ( ), , ( ) , , ,
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⋯ ⋯
⋱

 

                 

                                                             = .                                                            (7.2.37) 

has always full rank. This clearly demonstrates that independence can always be 

guaranteed and that the selection of the “best eigenframe” has as two components 

the selection of the spectrum that leads to the most orthogonal   and the 

selection of the “most orthogonal” controllability subspace decomposition of the 

state space. This may be referred to as the “separation principle” for eigen-structure 

shaping.  

The latter problem is linked to the parameterization of controllability subspaces, 

which is equivalent to the problem of parameterization of ordered minimal bases of 

the  rational vector space. The fundamentals of this 

parameterization are summarized below [96]: 

Let us denote by  the state-space rational vector space, . 

The space  has always minimal bases which may be ordered by the ordered set of 

minimal indices denoted by  

        (7.2.38) 

where  are the distinct values of column minimal indices of  and  

denotes their corresponding multiplicity. Note that , where  is the 
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number of inputs and the set  is referred to as the set of restricted controllability 

indices.  

For every , we define as  the corresponding controllability index of the 

system ( , )A BS . Using the ordered representation, the set of controllability indices, 

defined also as the set of column minimal indices of [ ],sI A B− −  is given by 

      (7.2.39) 

Remark 7.12: If , then all controllability indices of ( , )A BS  are positive                                  

              

Remark 7.13: The set of controllability indices satisfy 

                                                                                                                       (7.2.40) 

with equality holding if and only if the system ( , )A BS  is controllable.                       

Consider a minimal basis for , which may be represented by a basis matrix 

. We may always use the set  to order the columns of the basis 

matrix and this representation is denoted by, [96], 

                                                                   (7.2.41) 

where . Such minimal bases 

will be referred to as ordered minimal bases. The relationship between any two 

ordered minimal bases is defined by the following result. 

Lemma 7.1: Let  be two ordered minimal bases of rational vector space 
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                                                                                                       (7.2.42) 

where  has the following structure 
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                                                                    (7.2.43) 

 

where  with , but 

otherwise arbitrary.                                                                                                                

The above result introduces a parameterisation of all ordered-minimal bases and it is 

central to our parameterisation of problem of all closed loop eigenstructures. The 

above result may expressed in a Toeplitz matrix equivalent set up, which is more 

appropriate for discussing properties of associated controllability subspaces with the 

ordered minimal basis. 

Using the ordered representation of the minimal basis 

, the general polynomial vector of the i-th block 

 has degree  and may be expressed as  

                                                                      (7.2.44) 
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where  and . Clearly,  is a minimal 

dimension controllability subspace with . 

Note that condition (7.2.45) allows a clear characterization of the closed loop 

eigenvectors associated with . In fact under the spectrum compatibility 

conditions previously described we have that for the  polynomial vector we 

can define the set of  independent closed loop eigenvectors associated with the 

distinct frequencies . These vectors are expressed 

as  

                                                                                            (7.2.46) 

and the set of all such vectors is represented in a matrix form as 

     (7.2.47) 

where  is defined by the distinct spectrum  and thus 

 is a Vandermonde matrix and has full rank due to the distinct spectrum 

assumption. 

Assuming that for each  we assign a distinct spectrum  (spectrum of distinct 

spaces may have overlapping), the overall closed loop eigenframe associated with 

the spectrum 

                                                                                                                  (7.2.48) 

may be expressed as   

, , 1in
i j i iZ σ σ ε×∈ = +ɶ ℝ { },i j irank Z σ=ɶ { }, ,i j i jsp Z =ɶ ℝ

,dim i j iσ=ℝ

,i jℝ

( ),i jz s

iσ

{ }1
, , ,,..., , 1,..., , 1,...,i

i j i j i j ii n j rσλ λΛ = = =

( ) ( ), , ,,
ii j i j i jz Z eελ λ λ= ∈Λɶ

( ) ( ) ( )
( ) ( )

1
, , , , , ,

1
, , ,

,

;....;

;....;

i

i

i i

i

i j i j i j i j i j i j

i j i j i j

j
i j

Z z z

Z e e

Z V

σ

σ
ε ε

σ

λ λ

λ λ

 Λ = = 

 = = 

=

ɶ

ɶ

( ) ( )1
, ,;....; i

i i i

j
i j i jV e e σ

σ ε ελ λ =   ,i jΛ

i i

i

jV σ σ
σ

×∈ℂ

,i jℝ ,i jΛ

,
1 1

irn

i j
i j= =

Λ = Λ∪∪



 

164  
 

                                           (7.2.49) 

where    

                                                                                            (7.2.50)  

                                                                                    (7.2.51)  

and  are full rank matrices,  corresponds to the given minimal 

basis, and  defined by the given spectrum . The analysis so far leads to the 

following result: 

Proposition 7.8: For any ordered minimal basis  of  as defined by (7.2.41) 

and the set of indices , and for any spectrum  

expressed as by (7.2.48), a closed loop eigenstructure  is expressed in a 

factorised form as       

 

                                                                                                               (7.2.52) 

where  is a Vandermonde matrix and  is the ordered basis matrix of the 

minimal controllability subspaces decomposition of the state space, induced by the 

minimal basis.                                                                                                                         

                

For a given spectrum , the problem of defining all possible closed loop 

eigenstructures is thus equivalent to defining the structure of all possible matrices. 

This problem clearly relates to the parameterisation of all possible minimal bases of 

. To establish this, we have to translate the algebraic parameterisation introduced 

by lemma 7.1. to space set up and this is considered next.  
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                                                 (7.2.53) 

where . Furthermore we can also express  as 

                     (7.2.54) 

which may be expressed as 

 

                                                           (7.2.55) 

where . Clearly,  are related by column permutations 

and thus we may summarise as:               

Remark 7.14: There always exists a permutation matrix  such that  
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We shall refer to  as the normal permutation. Using the above remark we may 

also state: 

Remark 7.15: Let  be the closed loop eigenframe for the spectrum , 

compatible with , and expressed by (7.2.52) as  

                                                                                         (7.2.57) 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

1 1

1

,..., ,....,

0 0

;....; 0 0

0 0

i i i i

i

i

i

i i

i i ir i ir

i ir

i r

Z s z s z s Z e s Z e s

e s

Z Z

e s

Z E s

ε ε

ε

ε

ε

   = = =   

 
 

 = =  
 
 

=

ɶ ɶ

ɶ ɶ ⋱

ɶ

( ) [ ],,i i i i i

i i

n r r r
i rZ E s sσ σ

ε
× ×∈ ∈ɶ ℝ ℝ ( )iZ s

( ) 1 0....i

i i i

i
iZ s s Z sZ Zε

ε ε ε= + + +

( ) ( )1 0
,

ˆ....

i

i

i i i i i

i

i

r

i
i i r

r

r

s I

Z s Z Z Z Z D s
sI

I

ε

ε ε ε ε

 
 
 

 = + + + =  
 
 
 

⋮

( ),,i i

i i

n r r
i rZ D sσ

ε
×∈ ∈ɶ ℝ ℝ ˆ,i iZ Zɶ

i i i ir r
iU σ σ×∈ℝ

ˆ
i i iZ Z U=ɶ

iU iε −

( )Z Λ Λ

zI

( ) ( )
{ }....; ;.... ....; ;....

ii

Z ZV

Z diag Vσ

Λ = Λ

 =  

ɶ ɶ

ɶ ɶ



 

166  
 

If  are the normal permutation matrices, and  

                                                                                                        

(7.2.58)  

then  may be expressed as 

     (7.2.59)

 

Expression (7.2.59) is more appropriate for the study of the parameterisation of 

frames since the submatrices  are closer to the Toeplitz representation of the 

minimal bases which is considered next.  
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                                                                 (7.2.60) 

where , degree of  being  and assume to be expressed as  

      (7.2.61) 

(i) We define as its k-th order Toeplitz representation with  the Toeplitz matrix 

      (7.2.62) 

 

iU iε −

{ }....; ;....iU diag U=

( )Z Λ

( ) { }....; ;.... ....; ;....
ii iZ Z diag U Vσ Λ =  

ɶ ɶ

ˆ
iZ

zI Z

( ) ( ) ( ) ( ) [ ]1 ;....; ;....; n p
i nZ s Z s Z s Z s s× = ∈  ℝ

( ) [ ]in r
iZ s s×∈ℝ ( )iZ s iε

( ) 1 0....i

i

i i i
iZ s s Z sZ Zε

ε= + + +

ik ε≥

( ) ( ) ( )1 11
1

0 1

0

1

0

0 0

0

0

0 0

i

i

i ii i

i

i

i

i i
k n k r

k i
i i

i

i

i

z

z

z z
T Z

z z

z

z

z

ε

ε

εε ε

ε

+ × + −

− +

 
 
 
 
 
 
 
 
 = ∈
 
 
 
 
 
 
 
  

⋯

⋮ ⋱ ⋮

⋮ ⋮ ⋱

⋮
ℝ

⋮

⋮

⋮ ⋱ ⋱

⋯

( )ik blocksε− −

( )ik blocksε− −



 

167  
 

for all . 

(ii) Using the above notation we may define the canonical Toeplitz matrix of the 

minimal basis  as 

                                                        (7.2.63) 

which is a  matrix.                                                         

Using this Toeplitz representation of the minimal basis  we can express the 

parameterization of minimal bases result, i.e. lemma 7.1 as indicated below: 

Proposition 7.9: [96] Let  and  be two ordered minimal 

bases matrices of . There always exists a matrix  Toeplitz 

type matrix,  such that 

 

                                                                                                 (7.2.64) 

 

where 

                                               (7.2.65) 

 

with  the Toeplitz matrices defined on arbitrary polynomial matrices of 

degree . Conversely if for any two minimal bases  and  structured by 

the same  set, their canonical Toeplitz matrices  are minimal bases 

for the same system.                                                                                                               
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To illustrate the above we consider the following example 

 

Example 7.1: Let , with .  A minimal 

basis for  structured by   may be denoted as 

  

                                     

where 

 

 

 

The canonical Toeplitz representation of  is given by  

 

                                                            (7.2.66) 

             

 

Any other order minimal basis  has a Toeplitz representation  and this is 

related to  as  

                    

                                                                                                    (7.2.67) 

 

where  is defined by  
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                                                                                                                                         (7.2.68) 

where  and  are arbitrary matrices of appropriate dimensions. 

For the two minimal bases ,  the block-column representations  and  

are given by    

 

 

 

and thus (7.2.67) implies the following conditions 

 

 

 

The above relationships imply that the block column representations  and  are 

related as 

 

                                                                                                                    (7.2.69) 
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where  is defined as 

 

                              

 

The above provides an alternative expression of the parameterisation of minimal 

bases and thus of the structure of eigenframes. 

7.3. Conclusion 

This chapter has introduced a behavioural framework for discussing system 

properties such as poles, zeros, as well introducing a new parameterization of 

possible closed loop eigenstructures. The approach makes use of minimal bases 

theory of matrix pencils and provides new ways for computing a pole assigning 

state feedback matrix KS that explores the algebraic properties of minimal bases and 

associated controllability subspaces.  

 

The methodology starts off by deriving the total behaviour under zero initial 

conditions of a minimal system. The problem of optimal distribution of eigenvalues 

to guarantee stability and maximal orthogonality of the eigenframe may be now 

addressed using Grammian based criteria and exploiting the separation of the 

spectrum selection and the selection of the most appropriate controllability 

subspaces decomposition of the state space.  
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The properties of characteristic bases of controllability subspaces may be explored 

and this has the advantage that expresses the desirable closed loop eigenframe in 

terms of differences of the open and closed loop spectra. The latter may allow the 

linking of robustness criteria (orthogonality of the frame) to pole mobility.  

 

The general behaviour framework introduced here provides the means to also 

examine problems of the creation of Forney dynamical indices from controllability 

indices, or observability indices, in terms of problems of general model projection 

involving selection of the matrix B or C respectively. Such problems are 

generalisations of the squaring down problem and are issues for further research. 
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CHAPTER 8                        

 

MINIMISATION OF THE ANGLE 

BETWEEN CLOSED-LOOP 

EIGENVECTORS VIA NON-

SMOOTH OPTIMISATION 

ALGORITHM 

8.1. Introduction 

The aim of this chapter is to provide the required new concept of the relative 

positioning between subspaces that can be used in: 

• Sensitivity of  closed-loop eigenvectors 

• Relative measures of controllability  

In fact, the main subject of this chapter is to develop an optimization algorithm that 

will allow us to design and build of the solutions of minimizing the condition 

number of the gram matrix to assign and to reduce the Sensitivity of closed-loop 

eigenvetors for any controllable system(s), obtaining a system which is robust to the 

perturbations injected to the eigenvalues or their relative eigenvectors, i.e. the error 

is minimized.  

So far the parameterisation of the closed-loop eigenvectors based on two different 

methods have been studied; the first method using the connection of open-loop 

/closed-loop spectra (Chapter Five) and the second method, based on the algebraic 

interpretation of controllability subspaces via using ordered minimal bases of matrix 

pencil. This also led to the parameterisation of minimal bases itself by constructing 

the relative Toeplitz matrices (Chapter Seven).   
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In this chapter, our main focus is on the optimization problem related to the 

parameterisations of eigenframes obtained from the first method, i.e. by using 

optimisation over condition number of relative Gramian matrix. This optimisation 

problem has been formulated in chapter Five and presented in equation (5.6.4) as 

follows: 

- Suppose each entry of ( )V x  is a continuously differentiable function of mx∈ℝ

, then each entry of ( ) ( ). ( )tA x U x U xµ µ=  is also a continuously differentiable 

function of x. We consider the following minimization problem: 

                                   minimize             ( ( ))A xK  

                                  subject to              x∈X                                                                (8.1.1) 

where X is a convex set in  and ( )U xµ the closed-loop eigenvector matrix 

corresponding to closed-loop eigenvalue(s)  . 

In this case, the aim is to find the non- zero elements of any vector m in equation 

(5.5.3) (Refer to Chapter Five), such that the overall  condition number of the closed-

loop eigenvactor ( )U xµ   will be minimized (the angle between eigenvectors be 

maximized).   

Clearly one may continue with the optimisation regarding to the parameterisation of 

minimal bases by constructing the relative Toeplitz matrices (Chapter Seven) as we 

will not concentrate on this part and so this optimisation will be considered to be an 

open issue. It is worth mentioning that the target for second optimisation problem 

will be to find the best possible sets of minimal bases such that the resulting 

controllability subspaces contain maximal angle as possible.   

Regarding to the optimisation over the first method and in the event of having 

repeated eigenvalues, we may need to use a non-smooth optimisation method, i.e.  a 

non-smooth (or at some cases semi-smooth) optimisation problem will be developed, 

depending on the values of the open-loop or closed-loop eigenvalues and relative 

eigenvectors.  

mℝ

µ
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So for that reason, in this chapter, we will first review the fundamental elements of 

non-smooth optimisation [11] by employing Clarke’s generalized gradient of the 

function  in equation (8.1.1). Most optimization methods are only efficient for 

convex and smooth problems. To develop efficient algorithms to solve (8.1.1) [11], 

we adopt the Clarke generalized gradient and the exponential smoothing function. 

Then the Smoothing Conjugate Gradient optimisation algorithm [79] will be 

presented in order to be used for solving such non-smooth problems. At each 

iteration, we use the function value of the smoothing approximation of the objective 

function in (8.1.1) and update the smoothing parameter. 

8.2. Non-Smooth optimisation problem definitions 

As it has been studied in pervious chapters, the condition number and/or the 

determinant of a Gram matrix, are often used to measure the sensitivity of the 

polynomial approximation. Given a polynomial basis, consider the problem of 

finding a set of points and/or weights which minimizes the condition number of the 

Gram matrix or equivalently maximize the determinant of the Gram matrix.  

Throughout this chapter, we denote by the  space of symmetric n n matrices with 

the standard inner products: 

 

We denote by and , the cone of symmetric positive semi definite  matrices 

and the cone of symmetric positive definite  matrices, respectively. 

For , we denote by , the vector of its eigenvalues ordered in a 

decreasing order: 

  

The Euclidean condition number of a nonzero matrix  is defined by [12] 

( ( ))A xκ

nS ×

, 1

, ,         ( ), ( ) .
n

ij ij ij ij n
i j

A B a b A a B b
=

< >= ∀ = = ∈∑ S

n
+

S n
++

S n n×

n n×

nA∈S ( ) nAλ ∈ℝ

1( ) ... ( ).nA Aλ λ≥ ≥

nA∈S



 

175  
 

 

Optimizing eigenvalue functions have been studied extensively in [80], [81], [ 

82],[83], [84], [85] Recently there some publications including the work done by P. 

Marechal and J. J. Ye, [86], studying the following   optimization problem               

                                  minimize  

                                  subject to A                                                                              (8.2.1) 

where  is a compact convex subset of . From the definition, it is clear that if 

 is not empty, then a minimizer for (8.2.1) must belong to . However, if 

is empty, then (8.2.1) has no optimal solution [11]. 

Here we are interested in the minimal condition number for matrices in the form   

, where  with  n , and rank(V ) =n.  Clearly A . 

Let denote the Euclidean vector norm and matrix norm. The Euclidean condition number 

of V is defined by [87] 

1†
0 0

( )
( ) max max ( )

( )
z

y z

y n

y V A
V V V A

zV A

λ
λ≠ ≠= = = =K K  

where  is the Moore-Penrose generalized inverse of V. 

The quantity has been widely used in the sensitivity analysis of interpolation 

and approximation; however, there is little work on efficient optimization methods 

to find optimal weights and nodes which minimize  with a fixed n. 

As it mentioned before, suppose each entry of V(x) is a continuously differentiable 

function of x  [11], then each entry of ( ) ( ) ( )tA x V x V x=  is also a continuously 

differentiable function of x.  
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 If A is singular
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8.3. Generalized gradient of  ( ( ))A xK  

 In this section, we present an expression of the Clarke generalized gradient of

( ( ))A xK . The presented formation in this section is based on the work done by Chen, 

R. S. Womersley and J. Ye [11] on the area of minimization the condition number of a 

gram matrix.  In order to explain the results clearly, we divide this section into 

different subsections. First we recall for ( ( ))A x∂K  and then we give an expression of 

the generalized gradient for ( ( ))A xK  with ( ) ( ) ( )tA x V x V x= . 

8.3.1.  

For, the notation is used for the diagonal matrix with the 

vector on the main diagonal [11]. It is known that any A   admits an 

eigenvalue decomposition: 

  

with a square orthogonal matrix , , whose columns are 

eigenvectors of A. Let be the ith column of matrix . 

Proposition 8.1:  The Clarke generalized gradient [80], [85], [88] 

 Let A
 
.The Clarke subdifferential of (A) is given by: 

 

where d(A) is the multiplicity of the largest eigenvalue of the matrix A. The Clarke 

generalized gradient of (A) is given by  

 

where is the multiplicity of the smallest eigenvalue of the matrix A.                    

For the Clarke generalized gradient of quotients, we have the following proposition:  

( )Aκ

nA∈S ( ( )) ndiag Aλ ∈S

( ) nAλ ∈ℝ n
+∈S

( ). ( ( )). ( )TA U A diag A U Aλ=

( )U A ( ) ( )T
nU A U A I=

( )iu A ( )U A

n∈S 1λ

( ) ( )
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Proposition 8.2: [86, Proposition 4.2.] Assume that A , then is Clarke regular 

at A and its Clarke generalized gradient at A is given by 

 . 

The following two submatrices of  

, and  

are formed by the orthonormal bases for the eigenspaces corresponding to the 

largest eigenvalue and the smallest eigenvalue of A.                                                        

Applying the two above propositions, we have the following formula for  : 

Proposition 8.3: [11]For , let be the multiplicity of the largest eigenvalue 

of matrix A, and b(A) be the multiplicity of the smallest eigenvalue of matrix A. Then 

 

, 

p =1,...,n  , q =1,...,n  where  

Proof:   

 By proposition 8.1, for any G ∈  ∂λ1(A),  there  is a Pα ∈ ,with tr(Pα ) = 1 such that 

each element  of G can be written as 

 

Similarly, for any , there is with   such that each  

element Hpq  of H  can be written as 

  

The desired formula follows from Proposition 8.2.                                                           

n
++∈S κ

1
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Remark 8.1:  In the case where , we have  and 

    

p =1,...,n  , q =1,...,n  where              

 

Such a matrix A would have the global minimal condition number 1 and it is clear 

that 0 ( )Aκ∈∂ .                                                                                                                         

8.3.2. ( ( ))A xK with ( ) ( ) ( )tA x V x V x=  

Let V(x) be an l n×  matrix [11] with each entry being a continuously 

differentiable function of  mx∈ℝ . The differentiability of V implies that each entry 

of ( ) ( ) ( ) n ntA x V x V x ×= ∈ℝ is a continuously differentiable function of x.  

Let m⊂ ℝX  be a nonempty, compact and convex set.  It is convenient to define a 

function  :f → ℝX  by 

f (x) = ( ( ))A xK                     (8.3.1) 

We assume that for any , ( ( ))x rank V x n∈ =X . We consider (8.2.1) in the following 

version.                                                         

                                                         Minimize   ( )f x                                                                                                                   

                                                       subject to   x∈X .                                               (8.3.2)          

Since λ1(A) is a convex function of A and λn(A)  is a concave function  of A then  

 and λn(A)  are Lipschitz continuous functions of A.   

Definition 8.1: [89] For a general function  f : I → Q where I is a set of rational 

numbers (typically I may be an interval of rational numbers: { }:x Q a x b∈ ≤ ≤  for 

some rational numbers a and b, if 1x  and 2x  are two numbers in I, then 2 1x x− is the 

1( ) ( )nA Aλ λ= U U Uα β= =

( )k A∂ = 1 1
{ : ( ) ( ), ( ) ( ), ,

( ) ( )
n n T T

Pq p q p q
n n
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change in the input and 2 1( ) ( )f x f x−  is the corresponding change in the output. We 

say that f is Lipschitz continuous with Lipschitz constant Lf  on I, if there is a 

(necessarily nonnegative) constant  Lf  such that 

1 2 1 2( ) ( ) ff x f x L x x− ≤ −   for all 1 2,x x I∈                                                 (8.3.3) 

By the continuous differentiability of ( )A x , 1( ( ))A xλ and ( ( ))n A xλ are Lipschitz 

continuous functions on X . Moreover, there are positive constants  and , 

such that 

 ( ( ))n n A xλ λ≤  and 1 1( ( ))    A x xλ λ≤ ∀ ∈X . 

Hence f  is Lipschitz continuous and satisfies 

1 
1 ( )   

n

f x x
λ
λ

≤ ≤ ∀ ∈X                                                                                                      (8.3.4) 

This,  together  with  the  continuity  of   on X  , ensures  the  existence  of a 

solution  of    (8.3.2). Denote [11] 
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Let   be the multiplicity of the largest eigenvalues of ( )A x , and  ( )b x be the 

multiplicity of the smallest  eigenvalue of ( )A x . Let ( )A x  admit an eigenvalue 
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Proposition 8.4: [11] Suppose that ( ( ))rank V x n= , then  f is Clarke regular at x  

and the Clarke generalized gradient  of f   is 

}( ) ( )

1 ( ( ))
( ) : ( ) , ( ) , ,

( ( )) ( ( ))

                    1, , ,  1, ,  where , ( ) 1, , ( ) 1

n t t
k k k

n n

d A b A

A x
f x g g U A x U p U A x U p

A x A x

p n q n P D tr P P D tr P

α α α β β β

α α β β

λ λ
+ +


∂ = ∈ = < > − < >



= = ∈ = ∈ =
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Proof : The proof is similar to the one related to  Propos. 8.3.                                         

8.4. Smoothing approximation  

In this part, we will show the smoothed approximation of the function of condition 

number ( ( ))A xK such that ( ) ( ) ( )tA x V x V x= . 

The exponential  smoothing  function [11]  has been used for continuous  min-max  

problem [90] and  for minimizing  the  largest  eigenvalue of a symmetric  matrix  

[86],[91,26]. Applying  the exponential  smoothing  function  for the largest  and the 

smallest  eigenvalue functions, we introduce  the smoothing  function  of the 

condition  number  as follows [11]: 

                                                                                             (8.4.1) 

In numerical computations, we use an equivalent formula                                               

                                                                (8.4.2) 

which is more stable numerically compared to equation in (8.4.1). 

In this  section  we will show that this  smoothing  function  has various  nice 

properties including  the  gradient  consistency  property.   These properties 

ensure that any accumulation point of the sequence generated by some 

smoothing methods is a Clarke stationary point.  For example, the smoothing 

( ( ))/

( ( ))/

1

1

ln( )
( , ) .

ln( )

i A x

i A x

n

i
n

i

e
f x

e

µ

µ

λ

λ
µ =

−

=

= −
∑

∑
ɶ

( ( )) 1( )))/ )

1
1

( ( ( )) ( ( )))/ )

1

( ( )) ln( )
( , )

( ( )) ln( )

i A x A

n i

n

i
n

A x A x
n

i

A x e
f x

A x e

µλ λ

λ λ µ

λ µ
µ

λ µ

−

=

−

=

+
=

−

∑

∑
ɶ



 

181  
 

projected gradient (SPG) method [92] or smoothing conjugate gradient method 

[79] can be used to solve (8.4.2).   

Theorem 8.1: [11] Let f  and be defined by (8.3.1) and (8.4.1) respectively.  

Then 

(i)  is continuously  differentiable  for any fixed µ > 0 with gradient 

 

(ii) There exists a constant c > 0, such that for any x∈X and 
2ln

n

n

λµ ≤  

 0 ( , ) ( )f x f x cµ µ≤ − ≤ɶ .                                                                                               (8.4.3) 

(iii) For any x ∈X  (where is a local Lipschitz continuous function),  

{ }, 0
lim ( , )x

x x
f x

µ
µ

→ ↓
∆ ɶ  is nonempty and bounded.  

Moreover,  satisfies the gradient consistent property, that is, 

{ }, 0
lim ( , ) ( )x

x x
f x f x

µ
µ

→ ↓
∆ ⊂ ∂ɶ  

(iv)  For any fixed µ > 0, the gradient of ( , )f x µɶ is Lipschitz continuous, that is, for 

any ,x y∈X , there exists a constant    such that 

{ }( , ) ( , )f x f y L x yµµ µ∇ − ∇ ≤ −ɶ ɶ                                                                                (8.4.4) 

Proof:  See [11] for the proof.                                                                                                                          

According to Theorem (8.1), we can construct globally convergent smoothing 

methods for solving (8.3.2).  In the  smoothing  methods,  we can update  the  

iterates
kx  and smoothing  parameter µk in an appropriate way which depends  on 

the  method  used for the smoothing  problems.  Alternatively one can apply 
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smoothing steepest descent method via the same method used in [93] for the 

smoothing problem.  We have the following global convergence theorem. 

Theorem 8.2 [11]:  From any starting point 0x ∈X , the sequence { }kx generated by 

the smoothing optimisation method [92] is contained  in   and any  accumulation  

point  x  of { }kx is a Clarke stationary  point,  that is, there is ( )g f x∈ ∂ such that 

, 0,g x x x< − >≥ ∀ ∈X .                                    

Proof.  From Theorem 8.1., we know that Assumption 2.1 in [92] holds, and 

{ }, 0
lim ( , ) ( )

k

k
x

x x
f x f x

µ
µ

→ ↓
∆ ⊂ ∂ɶ .  

By Theorem 2.1 in [92], we have the conclusion of this theorem.                                                       

By virtue of [86, Proposition 5.1], Theorem 8.2, has the following immediate 

consequences. 

Corollary 8.1 [11]:  Under the assumptions of Theorem 8.2.  if  the  function  f  is 

pseudo-convex  in  a neighbourhood  ( )B x ⊂ X ,  then  the  accumulation  point  is  a 

local optimal  solution  and if the function  f is pseudo-convex  on , then  the 

accumulation point is a global optimal  solution.                                                              

Although we have generated a MATLAB programme for a smooth case based on 

steepest Descent method (Appendix_1), however, in the next section, we will 

introduce also a non-smooth optimization algorithm for solving the optimization 

problem defined in equation (8.3.2) in the case of having a non-smooth problem. 

8.5. Non-smooth Optimisation Algorithm  

In this section, we will describe a non-smooth optimisation algorithm using 

Smoothing Conjugate Gradient Method introduced in [79]. During this part, we 

consider the general iterative scheme for solving (8.3.2) as 

1 , 0,1,k k k kx x d kα+ = + = ⋯ ,                                                                                                 (8.5.1) 

X

X
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where  is a positive scalar and is a search direction given by some formula.  

Before stating the non-smooth algorithm, it is necessary to recall the following 

definition: 

Definition 8.2: [79] Let : nf +× →ɶ ℝ ℝ ℝ be a locally Lipschitz continuous function. We 

call nf += × →ɶ ℝ ℝ ℝ  a smoothing function of f, is continuously differentiable 

in for any fixed , and 
0

lim ( , ) ( )f x f x
µ

µ
↓

=ɶ  for any fixed nx∈ℝ . 

By denoting ( , ) ( , ), ( , )x k kf x f x g f xµ µ µ∇ = ∇ = ∇ɶ ɶ ɶɶ , the following smoothing conjugate 

gradient method for non-smooth and non-convex optimization is presented [79]: 

Algorithm 8.1:  Smoothing Conjugate Gradient Method 

Step 1: Choose constants  Choose  and 

initial point 0
nx ∈ℝ .  Let  Set  

Step 2: Compute the stepsize by the Armijo line search, that is for   

 { }0 1max , ,kα ρ ρ= ⋯ , satisfying ( , ) ( , )m m t
k k k k k kf x d f x g dρ µ µ ρ+ ≤ + ∂ɶ ɶ ɶ  

Set 1k k k kx x dα+ = + . 

Note: Armijo line search can be described simply be the following: 

- Given , let  and  

 

- Until ( ) ( )( ) ( ) .
tk kl k l k kf x f x g pα ρ α β  + ≤ +    

(i) Set , where is fixed (e.g. ), 

(ii) Increment l by 1. 

-  

Step 3: If  1( , )k k kf x µ γµ+∇ ≥ɶ , then set ; otherwise, choose . 

kα kd

(., )f µɶ

nR Rµ ++∈

0 0, 0.rε > ≥ 1 0(0,1), , (0,1), 0, 0δ ρ γ µ γ∈ ∈ > >

0 0.d = − ɶg : 0.k =

kα

0 (e.g. 1)init initα α> = (0)
initα α= 0.l =

( 1) ( )l lα τα+ = (0,1)τ ∈ 1

2
τ =

( ).k lα α=

1k kµ µ+ = 1 1k kµ γ µ+ =
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Step 4:  Compute  by the following formula 

 

where  ,  and  . 

Step 5:  . Go to Step 2. 

End. 

Theorem 8.3: [11] Suppose  is a smoothing function of f. If for every fixed 

, satisfies the following assumptions: 

(i) For any ˆ nx∈ℝ , the level set { }ˆ ˆ( ) ( ) ( )nx x f x f x= ∈ ≤ℝS  is bounded. 

(ii) f is continuously differentiable and there exists a constant L > 0 such that 

for any ˆ nx∈ℝ , the gradient of f satisfies 

 

( ) ( )g x g y L x y− ≤ − ,    ˆ, ( )x y x∈S  

then a sequence { }kx generated by Algorithm 5.1, satisfies  

  and   

Proof: [11, Theorem 2.6] Denote . If K is infinite then there exists an 

integer  such that for all k >  

1 1( , )k k kf x µ γµ− −∇ ≥ɶ                                                                                                         (8.5.2) 

and  in step 3 of the Algorithm 8.1. Since  is a smooth function, the 

non-smooth algorithm 5.1, can be reduced to a smooth algorithm for solving

min ( , )
nx

f x µ
∈ℝ
ɶ . 
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Hence, by the given two assumptions on , we have (from [11,Theorem 2.4]) 

that lim ( , ) 0k
k

f x µ
→∞

∇ =ɶ , which contradicts with (8.2.12). This shows that K must be 

infinite and . 

Since K is infinite, we can assume that with . Then we have: 

.                                                                                                      

8.6. Numerical examples 

Example 8.1: Consider the system ( ) ( ) ( )x t Ax t Bu t= +ɺ , where 

 

The eigenvalues of A can be calculated as:  where 

. It is required to move these by using state feedback L to locations 

, where  and to use the remaining 

degrees of freedom which are available to minimize the condition number of the 

closed-loop matrix . Let: 

1 2 , ( , )tb xb yb Bm m x y= + = =  

where 1 2,b b  denote the first and second column of B, respectively. Consider the 

controllability properties of the system ( , )A b  as a function of parameters x and y. 

The controllability matrix is: 

( )2

0 3 3 9 0 1 3 0 3 9

( , ) 3 3 9 7 21 1 3 7 3 9 21

6 11 42 0 1 11 1 6 42
c

x y x y

A b b Ab A b x y x y x y x y

y x y x y

+ +     
     Γ = = + + + = +     
     + +     

 

The determinant of ( , )c A bΓ  can factored as: 

2det ( , ) 2(4 13 )( 3 )c A b x y x yΓ = − + + . 

(., )f µɶ

lim 0k kµ→∞ =

{ }0 1, ,...K k k= 0 1 ...k k< <

1lim ( , ) lim 0
i i ik k k

i i
f x µ γ µ+→∞ →∞

∇ ≤ =ɶ

0 1 0 0 0

2 3 0 , 1 3

5 1 3 0 1

A B

   
   = − =   
   
   

1 2 3( ) { , , }Aσ λ λ λ=

1 2 31, 2, 3λ λ λ= = =

1 2 3( ) { , , }A BLσ µ µ µ− = 1 2 31, 2, 3µ µ µ= − = − = −

A BL−
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Thus, the system is controllable unless  

      or       

hence it is possible to assign the closed-loop eigenvalues at the required locations via 

state feedback, unless the design parameters are constrained by either one of 

the two equations above. The eigenvector matrix of the corresponding closed-loop 

matrix  with   is parametrised as: 

 

Note that, as expected, all elements of this matrix are linear functions of the two 

parameters. The determinant of can be calculated as: 

 

As expected, loss of controllability is associated with singularity of  or, 

equivalently,  when det ( , ) 0c A bΓ = . The corresponding 

parametrisation of the closed-loop matrix with the required spectrum is: 

 

It can be verified that the eigenvalues of  are at . The 

problem now reduces to the minimization of (or its Gram matrix) over 

the variables . Since this problem is clearly scale-invariant, we introduce polar 

4

13
y x= − 1

3
y x= −
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A BL− ( ) { 1, 2, 3}A BLσ − = − − −

3
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3 9
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3 7 13
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µ

 + + + 
 
 = − − − − − − 
 
 − − − − − − 
 

( , )U x yµ

2(4 13 )( 3 )
det ( , )

43200

x y x y
U x yµ

+ +=

( , )U x yµ

( ( , ))U x yµκ = ∞

A BL−

2 2

0 1 0

15 60 15
23 9 15

4 13 4 13 4 13

288 84 96 48 60
5 1 3

(4 13 )( 3 ) (4 13 )( 3 ) 4 13

y y y
A BL

x y x y x y

y xy y xy y

x y x y x y x y x y

 
 
 
 

− = − − − − 
+ + + 

 + +
 − − − + + + + + 

A BL− ( ) { 1, 2, 3}A BLσ − = − − −

( ( , ))U x yµκ
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coordinates for the two variables, i.e. and , and set without loss 

of generality . If we define,  

 

the equivalent optimization of  can be carried out over a single 

parameter . We now make two additional observations:  

(a) Let  

  and    

Then in the interval the graph of  has vertical asymptotes at , 

,  and . These correspond to the two loss-

of-controllability conditions derived earlier. The minimum of the function is located 

in the interval .  

(b) In the interval  the function is not only continuous (as 

expected) but also differentiable since the eigenvalues of are distinct for every

. The graph of the function in this interval is shown in Figure 8.1 and 

appears to be quasi-convex.  

The minimization of the condition number is straightforward in this case (since the 

problem is one-dimensional and the function is differential) and MATLAB’s function 

fminbnd.m (Appendix 1.) was used to perform the optimization between bounds 

and error tolerance . The optimum was identified as 

corresponding to a minimum condition number . The intermediate 

results of the algorithm are summarised in the table 8.1: 

 

cosx r θ= siny r θ=

1r =

1
ˆ ( ) : ( cos , sin )) |rU U r rµ µθ θ θ ==

ˆ( ( )) :[ , )U Rµκ θ π π +− →

θ

1
1

4
tan 0.2985

13
θ −  = − ≅ − 

 
1

2

1
tan 0.3248

3
θ −  = − ≅ − 

 

[ , )π π− ˆ( ( ))Uµκ θ 2θ θ=

1θ θ= 2 2.8198θ π θ= + ≅ 1 2.8431θ π θ= + ≅

1 2( , ) ( 0.2985,2.8198)θ π θ+ ≅ −

1 2( , )θ π θ+ ˆ( ( ))Uµκ θ

ˆ ( )Uµ θ

1 2( , )θ θ π θ∈ +

0.2 2.5θ− ≤ ≤ 810− * -0.142223θ =
* 144.267κ =
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Figure 8.1: Graph of condition number  ˆ( ( ))Uµκ θ

Iteration   Procedure 

1 0.831308 168.809 Initial 

2 1.46869 174.982 Golden 

3 0.437384 163.67 Golden 

4 0.19392 158.338 Golden 

5 0.0434588 152.943 Golden 

6 -0.049534 148.26 Golden 

7 -0.107007 145.223 Golden 

θ ˆ( ( ))Uµκ θ
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                                      Table 8.1: Condition number minimisation 

The optimising values of the original variables can now be obtained as 

 and . Although not particularly useful 

here, a family of smooth functions  were also generated for the three 

smoothing parameter values , , . These are shown in 

Figure 8.2 along with the graph of the function  for (for 

larger values of  the graphs are almost identical). 

* *cos( ) 0.9899x θ= = * *sin( ) 0.1417y θ= = −

( , )g θ ν

5
1 7 10ν −= ⋅ 5

2 6 10ν −= ⋅ 5
3 5 10ν −= ⋅

ˆ( ( ))Uµκ θ 0.25 0.23θ− ≤ ≤ −

θ

8 -0.142527 144.267 Golden 

9 -0.173044 145.905 Parabolic 

10 -0.135794 144.311 Parabolic 

11 -0.143699 144.27 Parabolic 

12 -0.142155 144.267 Parabolic 

13 -0.142225 144.267 Parabolic 

14 -0.142223 144.267 Parabolic 

15 -0.142223 144.267 Parabolic 

16 -0.142223 144.267 Parabolic 

17 -0.142224 144.267 Golden 

18 -0.142223 144.267 Golden 

19 -0.142223 144.267 Golden 

20 -0.142223 144.267 Parabolic 

21 -0.142223 144.267 Parabolic 

22 -0.142223 144.267 Parabolic 
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Figure 8.2: Condition number and smooth-parameter approximations 

 

Example 8.2: 

In this example, we try our Algorithm on a 3 by 3 Vandermonde-like matrix. In 

general, Vandermonde –like matrices are assumed to be ill-conditioned. However, 

by choosing a decent starting point and using our presented MATLAB programme 

(Appendix_1), this time, we aim to minimize the condition number of the Gram 

matrix of this given matrix: 

 

choosing smoothing factor to be and initial point of x=1, the following results 

are achieved: 

21

1 0.2 0.04

1 2 4

x x

A

 
 = − 
  

0.2ν =
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Iteration 

     

x_data 

   Cond. 

Number 

1 1 109.1902 

2 -1.0275 48.7713 

3 -2.1691 42.8793 

4 -1.6791 31.71 

5 -1.594 31.3693 

6 -1.5809 31.3611 

7 -1.5793 31.3609 

8 -1.58 31.3609 

Table 8.2: Condition number minimisation =0.2 

By changing  from 0.2 to 0.4 we will get: 

Iteration 

     

x_data 

   Cond. 

Number 

01 1 120.75 

2 -2.187 54.8796 

3 -0.9732 54.4117 

4 -1.6988 31.8574 

5 -1.6478 31.5274 

6 -1.6189 31.4179 

7 -1.6023 31.3807 

ν

ν
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8 -1.5928 31.3681 

9 -1.5876 31.3638 

10 -1.5848 31.3623 

11 -1.5836 31.3619 

12 -1.58359 31.3619 

Table 8.3: Condition number minimisation =0.4 

Observing the results in Table 8.2 and 8.3, it can be seem that the value of smoothing 

factor has an slight effect on the slops of the graph. In fact by having smaller 

smoothing factor, the graph will be smoother and the estimation will be more 

accurate. We should note that just the real numbers have been used in example 8. 2, 

so clearly, if one can apply the complex values, it might smaller values for the 

condition number of Gram matrix related to the given Vandermonde matrix. 

8.7. Conclusion 

In this chapter, a new non-smooth algorithm was introduced in order for the 

condition number of a closed-loop eigenvector matrix (or its Grammian) to be 

minimised. This ensures that the angle between closed-loop eigenframes obtained by  

equation (5.5.3) within  Chapter Five has been maximised.  

As noted earlier, the main objective of this chapter has been to provide the required 

new concept of the relative positioning between subspaces that can be used in 

sensitivity of  closed-loop eigenvectors and relative measures of controllability. 

So the development of the desired optimization algorithm has been done such that 

by obtaining a closed-loop eigenvetors with a least possible sensitivity for any 

controllable system(s), the system will be robust to the perturbations injected to the 

eigenvalues or their relative eigenvectors, i.e. the error is minimized. The 

performance and numerical aspects of the algorithm is a topic for further research. 

ν
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CHAPTER 9 

 

CONCLUSION AND FUTURE 

RESEARCH 

9.1. Achievements, Results 

This thesis has studied the problem of eigenstructure assignment as part of the 

family of Control system design problems. Parameter variations or perturbations can 

usually be found in many practical problems in the area of control system design. 

The presence of uncertainty in the system usually have a major negative impact on 

the performance and stability of a closed-loop system, assumed to be designed based 

on the nominal model of the system. So clearly, by reducing (or in fact minimizing) 

the sensitivity of eigenvalues to perturbations and parameter variations, the 

possibility of instability of the closed-loop system will be reduced in the case of 

applying the designed controller to the real system.  

In general, for a multivariable system, where a set of desired closed-loop eigenvalues 

is given, introducing a feedback gain matrix, is not unique. So variety of different 

methods has been introduced on the best choice of feedback matrix, such that a 

robust closed-loop system is produced. These methods include Kautsky, et al., 1985, 

Owens and O’Reilly, 1989, Duan, 1992, etc. In order to achieve such robustness, 

several measures have been introduced where the first was introduced by Kautsky, 

et al., 1985; this measure was based on the condition number of the eigenvector 

matrix of the closed-loop system and many of the robust eigenstructure assignment 

methods try to obtain a minimised sensitivity via these measures.  The approach was 

motivated by the work of Wilkinson [1], which linked insensitivity of eigenvalues to 

parameter uncertainty to orthogonality of eigenframes. This work has been also here 

the main motivation of the techniques developed. 
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In this thesis, the main objective has been the development of a new approach for 

robust closed-loop eigenframe by combining the measure of orthogonality with 

results from Geometric Control Theory and in particular the parametrisation of 

controllability subspaces (cs) ([8], [36], [71], [96]) which leads to a family of direct 

sum decompositions of the state space. Our work mainly was based on the 

parameterization of closed-loop eigenframes based on the open and closed loop 

spectra and also the algebraic characterization and parameterization of 

controllability subspaces developed in Karcanias [8], [96] on his algebraic 

characterisation of Geometric Theory concepts based on matrix pencil theory. 

The basis of the introduced approach is based on a new parameterisation of the set 

of closed-loop eigenvectors as vectors corresponding to certain desirable closed loop 

frequencies within the controllability subspaces of a given system. Given the 

spectrum the problem that then arises is selecting the most orthogonal 

decomposition of the state space in terms of cs and then reducing the selection of the 

set of closed-loop eigenvectors by developing a non-smooth optimisation algorithm. 

The development of this new approach required the development of a measure for 

the degree of orthogonality, or measure of “skewness” between subspaces of the 

state space, in a direct sum decomposition and thus developed a concept of angle 

between these sets of subspaces. These measures were developed and were based on 

the Condition Number, Determinant of Gram Matrix and Spread of Singular Values 

(a deviation measure of the singular values). Using these measurement tools, we 

then developed some important results on the conditions on which the skewness of 

these subspaces is minimized.   

We have applied these results on the task of defining the least skewness closed loop 

eigenframe by using the parameterisation of eigenframes based on the “mobility of 

open loop to closed-loop spectra” method introduced by N. Karcanias (Presented in 

Chapter Five) and the alternative parameterisation based on the cs. This has led to an 

optimally-conditioned closed-loop eigenvector matrix via optimization techniques 

using condition number of closed-loop eigenvector matrix and guarantees 

minimization of sensitivity for a defined closed-loop system where the state 
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feedback matrix is computed using the “mobility of open loop to closed-loop 

spectra” parameterisation. 

The assumption during our work for the choice of both open and closed-loop 

eigenvalues was to assume distinct eigenvalues (real, or complex). However the 

algorithms could be easily extended to the case of repeated eigenvalues. The 

achievements and results of the thesis are reported in a number of Chapters dealing 

with the different aspects of the overall study are presented. 

Chapter Two has reviewed some important mathematical and control topics, 

required in the reminder of this thesis. Within mathematical section of this chapter, 

attention has been given to those definitions, theorems and proofs (whenever 

required) which have been widely used across the report. Elements including the 

three measurement tools: Condition Number, Gram Matrix and Singular Value 

Decomposition which have been applied in order to measure the skewness of 

subspaces of a state space in direct sum decomposition (Refer to Chapter Five). The 

same revision has gone through some major control-related fundamentals which 

have been strongly linked to objectives of our research. Among these, are Matrix 

Fraction Description (MFD) and Minimal Bases of Matrix Pencil which are of the 

required elements when it comes to the study of Controllability Subspaces (cs) 

decomposition of the state space.  

Chapter Three has reviewed the basic concepts of Eigenstructre assignment along 

with some famous background results. Central to these, has been the notion of 

Robust eigenstructure assignment which is the notion underpinning the task of 

developing the most orthogonal closed-loop eigenframes for a control system. In this 

chapter, we have reviewed the Rectilinear Motion and its relative implications for 

the characterisation of closed loop eigenvectors. We then have been looking at the 

connection between forced rectilinear motions and closed-loop eigenstructure 

followed by the difference between the frequency and vector correspondence for the 

two cases of A and (A, B)-invariance. We have examined the basis of eigenstructure 

assignment via state and output feedbacks and provided the characterisation of the 

state and output feedbacks required for closed loop assignment of eigenstructures. 
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We have then focused on the Purturbation of eigenvalues, introduced by Wilkinson 

(1965), and its links to the corresponding eigenvectors. We then explained and its 

relative robust eihenstructure assignment. This followed by the revision of the work 

done by Kautsky and et al. (1985) on robust eigenstructure assignment. We have 

then examined some other approaches to eigenstructure assignments and have 

identified some open areas linked to the objectives of thesis. 

Chapter Four has provided a geometric review of eigenstructure assignment via 

one-dimensional A-Invariant and (A,B)-Invariant subspaces. The main focus of the 

this chapter has been given to the properties of (A,B) – invariant subspaces, since 

special subfamilies of them have the controllability property which is represented by 

the family of controllability subspaces.  This provides the required background for 

defining the controllability subspaces decomposition of the state space required for 

the subsequent chapters. 

Chapter Five has dealt with the problem of parametrisation of closed-loop 

eigenframes and introduced two new parametrerisations: first the parametrisation of 

eigenframes based on the open and closed loop spectra mobility and second the 

characterisation based on the properties and parametrisation of controllability 

subspaces (cs) [4]. We have presented the algebraic characterization of controllability 

subspaces and minimal dimension controllability subspaces as the main elements 

underpinning the results on eigenstructure assignment of this chapter. Using this 

information, the assignability of the relative spectrum to a controllability subspace 

has been derived and so the eigenvalue placement algorithm introduced in [4] based 

on open-loop/ closed-loop spectra mobility has been presented. This has led to the 

introduction of parametrization of the closed-loop eigenvectors resulting from this 

method which was also further discussed together with the optimization problem 

considered in chapter Eight. 

Chapter Six has dealt with the development of some measures of skewness for a set 

of subspaces defining a direct sum decomposition of a state space. This chapter 

provides an important bases not only for the study of selection of the closed-loop 

eigenframes, but also helps finding the optimal angle between ordered minimal 
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bases of controllability subspaces where the overall controllability space is created 

from all the subspaces in a direct sum decomposition. Three diagnostic 

measurement tools have been defined: The Condition number, the Gram Matrix and 

the Singular Values Decomposition. Then using each tool, we have investigated the 

conditions under which the angle between subspaces in a direct sum decomposition 

is maximized. This was then followed by numerical tests. In order to achive the 

targeted outcome, we have derived the necessary conditions for the Gramian 

determinant to be maximized, the Condition number to be minimized and the 

Spread of singular values or a deviation measure of the singular values to be 

minimized. This has provided alternative tools for the angle between the subspaces 

in a direct sum decomposition to be maximized or in another word, tools for 

minimization of sensitivity in robust design to be minimized. 

Chapter Seven has presented an algebraic description of the total system behaviour 

which allows the study of closed loop eigenvectors in a systematic way by providing 

a new parameterisations. This will then leads to an algebraic characterisation of the 

input, state and output behaviour in an implicit formulation and it is given based on 

properties of MFD descriptions which will remain open for future studies. Within 

this chapter, a behavioural framework for discussing system properties such as 

poles, zeros, as well as introducing a new parameterization of possible closed loop 

eigenstructures has been introduced. The approach makes use of minimal bases 

theory of matrix pencils and provides new ways for computing a pole assigning 

state feedback matrix KS that explores the algebraic properties of minimal bases and 

associated controllability subspaces. The methodology starts off by deriving the total 

behaviour under zero initial conditions of a minimal system. In fact, each full rank 

closed-loop eigenframe can be written as the product of a matrix of ordered minimal 

bases (of matrix pencil) and a matrix containing all the existing poles of the system in 

the form of Vandermonde matrix. In this chapter, the parametrisation of these 

minimal bases via Toeplitz form matrices is presented. This is followed by 

computing a general formula for any other minimal bases with the same degree 

using a Toeplitz matrix construction such that the controllability subspaces 

separated by the largest possible angles can be identified.  
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Finally Chapter Eight has provided a new method based on non-smooth 

optimisation algorithm in order to maximise the angle between closed-loop 

eigenvectors introduced in the previous chapters. This algorithm has provided a 

guaranteed convergence to an optimal solution if a descent starting point is chosen.  

For the development of the algorithm , we have initially discussed the concept of 

non-sooth optimisation and its relative theorems and results. We have reviewed 

some useful formulas applied to optimize the condition number of a Gram matrix 

and then we have applied these results to a general Gram matrix. Finally, by using 

these results, we have developed a MATLAB programme to implement the 

developed algorithm. We have also included some numerical examples in order to 

examine the accuracy of our developed programme. This programme may need to 

be adjusted/modified to be used if one wishes to try with repeated and/or complex 

conjugate poles.  

9.2. Future Research 

The thesis has considered a number of issues related to the representation, 

parameterisation and selection of closed-loop eigenframes, related to the problem of 

robust eigenstructure assignment. There are still many issues that remain open 

related to the main problem of eigenstructure assignment.  Some of the problems 

that require further research are listed below:  

(i) The basis of our robustness result is the Wilkinson [1] result that has been stated 

for distinct eigenvalues. Extension of the result to matrices of a non-simple 

strucrure (repeated eigenvalues), as well as use of other robustness of 

eigenvalues results are still open issues. 

(ii) Investigation of the links between degree of skewness of eigenstructure and the 

degree of presence of system properties such as controllability, observability, 

and stability. Such investigations may provide links with the bounded gain and 

bounded state and output feedback design, as well as similar problems for 

observer design. 
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(iii) The selection of the most orthogonal controllability subspaces decomposion of 

the state space has been defined, but the general solution has to be worked out 

using an appropriate optimisation process. The applications of this 

decomposition related to problems such as decoupling and disturbance rejection 

need to be investigated. 

(iv) Assuming that the spectrum is not specified, but it is only required to be stable. 

Use the controllability subspace methodology for eigenstructrure assignment to 

select stable spectra that lead to the most orthogonal eigenframes. This is a 

prelude to studying robust stabilisation based on eigenstructure properties. 

(v) There are strong indications that the skewness of the eigenframes are linked to 

properties such as finite settling time stabilisation (FSTS) such as results 

presented in [94]. A general solution to this problem is still open and in 

particular linking the measure of skewness to the FSTS property. 

Such properties are very important and have not been paid the appropriate attention 

in the study of eigenstructure assignment problems. It is essential that the solutions 

obtained are such that the sensitivity of the assigned eigenvalues to system 

modelling discrepancies and external disturbances is minimised. Apart from 

positoning the closed-loop eigenframes, there are some areas which have not been 

considered during this present research and will remain open for future study such 

as: 

(vi) The selection of eigenframes is linked to the degree of resulting controllability and 

observability and thus it can also be used for the selection of input and output 

matrices of a system, that is the problem of System Instrumentation [95].  The 

development of such methodology still remains an open issue. 

(vii)  The methodology developed here is based on non-smooth optimisation. This 

is a general challenging problem and methodologies suited to the special nature 

of the problem have to be developed. 

(viii) The new approach based on the parameterisation of controllability subspaces, 

the selection of the most orthogonal decomposition and then selection of 

eigenvectors within each of the controllability saubspaces allows the study of 
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stabilisation instead of assignment. The principle is the selection of arbitrary but 

stable spectra that leads to the most orthogonal set of eigenvectors in each 

subspace. 
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APPENDIX_1 
 
% smooth_fun (cond_fun)  
% 
a=[ 0 1 0;  
    -2 3 0 ;  
    5 1 3];  
% 
b = [ 0 0;  
     1 3;  
     0 1];  
 % 
%  syms x y real  
%  % 
%  bb=x*b(:,1)+y*b(:,2);  
%  Gamma = [bb a*bb a*a*bb];  
%  d=det(Gamma);  
%  d1=factor(d);  
 % 
 u1=[-1 -1 3]';  
 u2=[1 2 -7]';  
 u3=[0 0 1]';  
 % 
 lam=[1 2 3]; % eigvalues of A  
 mu=[-1 -2 -3]; % required CL eigenvalues  
 % 
 u=[u1 u2 u3]; % right e-vactor matrix  
 v=inv(u);  
 v1=(v(1,:))'; %left e-vectors  
 v2=(v(2,:))';  
 v3=(v(3,:))';  
 % 
%  alpha1s=v1'*b*[x;y];  
%  alpha2s=v2'*b*[x;y];  
%  alpha3s=v3'*b*[x;y];  
%  alphas=[alpha1s alpha2s alpha3s];  
%  % 
%  u_mu1s=(alphas(1)/(mu(1)-lam(1)))*u1+(alphas(2)/ (mu(1)-
lam(2)))*u2+(alphas(3)/(mu(1)-lam(3)))*u3;  
%  u_mu2s=(alphas(1)/(mu(2)-lam(1)))*u1+(alphas(2)/ (mu(2)-
lam(2)))*u2+(alphas(3)/(mu(2)-lam(3)))*u3;  
%  u_mu3s=(alphas(1)/(mu(3)-lam(1)))*u1+(alphas(2)/ (mu(3)-
lam(2)))*u2+(alphas(3)/(mu(3)-lam(3)))*u3;  
%  % 
%  u_mus=[u_mu1s u_mu2s u_mu3s]; % CL right e-vecto r matrix symbolic form  
%  ls=-[x x x;y y y]*inv(u_mus);  
%  acls=a-b*ls;  
%  simplify(acls);  
%   
%  d2=det(u_mus);  
%  d3=factor(d2);  
  
%  syms psi real  
%  u_mus_psi=subs(u_mus,{x,y},[cos(psi),sin(psi)]);  
%  u_mus_psi=simplify(u_mus_psi);  
%  lam1=eig(u_mus_psi'*u_mus_psi);  
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 %return  
  
 np=1000;  
 %theta=linspace(theta1,pi+theta2,np);  
 %theta=linspace(theta2+0.001,theta1-0.001,np);  
 theta=linspace(-0.25,1,np);  
 %theta=linspace(theta1,theta2,np);  
 sm_fun=zeros(3,np);  
 cond_array1=zeros(1,np);  
 sp=[7e-5 6e-5 5e-5]; % smoothing parameter  
 % 
  
 for  i=1:np  
  
    i  
    m=[cos(theta(i)) sin(theta(i))]';  
    alpha1=v1'*b*m;  
    alpha2=v2'*b*m;  
    alpha3=v3'*b*m;  
    alpha=[alpha1 alpha2 alpha3];  
    u_mu1=(alpha(1)/(mu(1)-lam(1)))*u1+(alpha(2)/(m u(1)-
lam(2)))*u2+(alpha(3)/(mu(1)-lam(3)))*u3;  
    u_mu2=(alpha(1)/(mu(2)-lam(1)))*u1+(alpha(2)/(m u(2)-
lam(2)))*u2+(alpha(3)/(mu(2)-lam(3)))*u3;  
    u_mu3=(alpha(1)/(mu(3)-lam(1)))*u1+(alpha(2)/(m u(3)-
lam(2)))*u2+(alpha(3)/(mu(3)-lam(3)))*u3;  
    u_mu=[u_mu1 u_mu2 u_mu3];  
    l=-[m m m]*inv(u_mu);  
    acl=a-b*l;  
    cond_array1(i)=cond(u_mu);  
    aa=u_mu'*u_mu; % A(x)  
    % 
    eig1=eig(aa); % eigenvalues  
    eig1=sort(eig1); % sort  
    eig1=eig1([3:-1:1]'); % largest first  
    % 
    for  isp=1:3  
        tmp1=eig1(1)+sp(isp)*log(sum(exp((eig1-eig1 (1))./sp(isp))));  
        tmp2=eig1(3)-sp(isp)*log(sum(exp((-eig1+eig 1(3))./sp(isp))));  
        sm_fun(isp,i)=sqrt(tmp1/tmp2);  
        %keyboard  
    end  
 end  
 % 
 figure(1)  
 plot(theta,cond_array1);  
 % 
 figure(2)  
 
plot(theta,sm_fun(1,:),theta,sm_fun(2,:),theta,sm_f un(3,:),theta,cond_array
1);  
  
 %-------------------------------------------------- -----------------------  
  
 return  
  
 for  i=1:np  
     for  j=1:np  
         i  
     %m=[0 1]';  
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     %m=[cos(theta(i)) sin(theta(j))]';  
    m=[mval1(i) mval2(j)]';  
    alpha1=v1'*b*m;  
    alpha2=v2'*b*m;  
    alpha3=v3'*b*m;  
  
    alpha=[alpha1 alpha2 alpha3];  
    %alpha=[1 1 4];  
  
    %b*m-alpha(1)*u1-alpha(2)*u2-alpha(3)*u3  
    % 
     
    u_mu1=(alpha(1)/(mu(1)-lam(1)))*u1+(alpha(2)/(m u(1)-
lam(2)))*u2+(alpha(3)/(mu(1)-lam(3)))*u3;  
    u_mu2=(alpha(1)/(mu(2)-lam(1)))*u1+(alpha(2)/(m u(2)-
lam(2)))*u2+(alpha(3)/(mu(2)-lam(3)))*u3;  
    u_mu3=(alpha(1)/(mu(3)-lam(1)))*u1+(alpha(2)/(m u(3)-
lam(2)))*u2+(alpha(3)/(mu(3)-lam(3)))*u3;  
    % 
    u_mu1-(1/6)*[1 -1 -1]';  
    u_mu2-(1/60)*[5 -10 -3]';  
    u_mu3-(1/60)*[3 -9 -1]';  
    % 
    u_mu=[u_mu1 u_mu2 u_mu3];  
    l=-[m m m]*inv(u_mu);  
    acl=a-b*l;  
%[v,d]=eig(acl);  
%     %  
%acl*u_mu1-mu(1)*u_mu1;  
%acl*u_mu2-mu(2)*u_mu2;  
%acl*u_mu3-mu(3)*u_mu3;  
    % 
    if  ~any(isnan(acl))  
        cond_array(i,j)=cond(acl);  
    end  
     
    if  mval1(i)<0  
       if  mval2(j) <= (-1/3)*mval1(i)  
          cond_array(i,j)=0;  
       end  
    elseif  mval1(i) > 0  
        if  mval2(j) <= (-4/13)*mval1(i)  
          cond_array(i,j)=0;  
       end  
    end  
         
  end  
 end  
  
 %plot(theta,cond_array);  
 contour(cond_array, [183 183.5 184 184.5 185 185.5  186]);  
%---------------------- end of function cond_fun -- ------------------------
-------------------  
 


