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Abstract

In the quest for a convincing musical agent that performs in real time alongside human performers,
the issues surrounding expressively timed rhythm must be addressed. Current beat tracking methods
are not sufficient to follow rhythms automatically when dealing with varying tempo and expressive
timing. In the generation of rhythm, some existing interactive systems ignore the pulse entirely, or fix
a tempo after some time spent listening to input. Since music unfolds in time, we take the view that
musical timing needs to be at the core of a music generation system.

Our research explores a connectionist machine learning approach to expressive rhythm generation,
based on cognitive and neurological models. Two neural network models are combined within one
integrated system. A Gradient Frequency Neural Network (GFNN) models the perception of
periodicities by resonating nonlinearly with the musical input, creating a hierarchy of strong and weak
oscillations that relate to the metrical structure. A Long Short-term Memory Recurrent Neural Network
(LSTM) models longer-term temporal relations based on the GFNN output.

The output of the system is a prediction of when in time the next rhythmic event is likely to occur.
These predictions can be used to produce new rhythms, forming a generative model.

We have trained the system on a dataset of expressively performed piano solos and evaluated its
ability to accurately predict rhythmic events. Based on the encouraging results, we conclude that the
GFNN-LSTM model has great potential to add the ability to follow and generate expressive rhythmic
structures to real-time interactive systems.

1 Introduction

Electronic technology has liberated musical time and changed musical aesthetics. In the
past, musical time was considered as a linear medium that was subdivided according to
ratios and intervals of a more-or-less steady meter. However, the possibilities of envelope
control and the creation of liquid or cloud-like sound morphologies suggests a view of
rhythm not as a fixed set of intervals on a time grid, but rather as a continuously flowing,
undulating, and malleable temporal substrate upon which events can be scattered,
sprinkled, sprayed, or stirred at will. In this view, composition is not a matter of filling or
dividing time, but rather of generating time. (Roads, 2014)

What Roads is alluding to in the above quotation is that the perception of rhythmic events provides a
subjective experience of time to the listener. Roads considers mainly computer music, where one has
direct control over the timing of these events. However, it is quite possible though to extend this view
on to every genre of music.

When we listen to or perform music, a fundamental necessity is to understand how the music is
organised in time (Honing, 2012). Time in music is often thought of in terms of two related concepts:
the “pulse” and the “metre” of the music. The pulse is what we latch on to when we listen to music; it
is the periodic rhythm within the music that we can tap our feet to. The pulse is only one level in a
hierarchical structure of time periods which is collectively known as the metre. Lower layers divide the
pulse into smaller periods and higher levels extend the pulse into bars, phases and even higher order
forms (Lerdahl & Jackendoff, 1983a).
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This gives the impression that rhythm is all about dividing or combining periods together, perfectly
filling time with rhythmic events. However, in performance this is rarely the case. Humans are not
perfect time-keepers and will often stray from where the event “should” be. These deviations are even
expected when we listen to a performance of a piece. If a performance is too well-timed it is often
viewed as being robotic, lacking in expression and dynamics (Kirke & Miranda, 2009).

According to Gabrielsson and Lindström (2010), the examination of the expressive qualities of music
has been ongoing since the Ancient Greeks. One example of expressive timing is shown when
performers express the higher metrical structures within a piece of music through a brief retardation
at the end of certain phrases (Clarke, 2001).

As the performer expressively varies the temporal dynamics, the perceived metrical structure is
perturbed. Even when the outer metrical structure remains consistent, which is often the case, the
listener’s perception of musical time is affected, along with any expectation of rhythmical events.
Thus, any endogenous sense of pulse and metre is always being generated throughout the listening
process.

In our research, we explore models following this interplay between metric perception, expectational
prediction, and rhythmic production with respect to expressive variations on musical timing.

We take the view that pulse, metre, rhythm and time are fundamental outputs of a music generation
system. It is quite rare for generative music systems to consider musical time in this way. Existing
systems such as Omax (Assayag et al., 2006) have ignored the pulse entirely, others such as
ImproteK (Nika et al., 2014) fix a tempo after some time spent listening to input.

In order to achieve this continuous generative output, we need to improve the modelling and
processing methods in computer science. Automatically processing an audio signal to determine
pulse event onset times (beat tracking) is a mature field, but it is by no means a solved problem.
Analysis of beat tracking failures has shown that a big problem for beat trackers is varying tempo and
expressive timing (Grosche et al., 2010; Holzapfel et al., 2012), which we address in this paper.

Large et al. (2010) have proposed an oscillating neural network model for metre perception based on
the neuro-cognitive model of nonlinear resonance (Large, 2010). Nonlinear resonance models the
way our entire nervous system resonates to rhythms we hear by representing a population of neurons
as a canonical nonlinear oscillator. A Gradient Frequency Neural Network (GFNN) consists of a
number of these oscillators distributed across a frequency spectrum. The resonant response of the
network adds rhythm-harmonic frequency information to the signal, which can be interpreted as a
perception of pulse and metre. GFNNs have been applied successfully to a range of music perception
problems including those with syncopated and polyrhythmic stimuli (see Angelis et al., 2013; Velasco
& Large, 2011). The GFNN’s entrainment properties allow each oscillator to phase shift, resulting in
changes to their observed frequencies. This make them good candidates for solving the expressive
timing problem and so the GFNN forms the basis of our perception layer.

The GFNN is coupled with a Long Short-Term Memory Neural Network (LSTM) (Hochreiter &
Schmidhuber, 1997), which is a type of recurrent neural network able to learn long-term
dependencies in a time-series. The LSTM takes the role of prediction in our system by reading the
GFNN’s resonances and making predictions about the expected rhythmic events.

Once seeded with some initial values, the GFNN-LSTM can be used for production. That is, the
generation of new expressive timing structures based on its own output and/or other musical agents’
output.

This paper is structured as follows. Section 2, Section 3, and Section 4 provide an overview of the
background of our research, following the perception, prediction and production circle of events.
Section 5 details a rhythm prediction experiment we have conducted with the GFNN-LSTM model on
a dataset of expressively timed piano music and shares its results. Finally, Section 6 offers
conclusions and points to future work.

2 Perception

2.1 Pulse and Metre

Lerdahl and Jackendoff’s Generative Theory of Tonal Music (GTTM; 1983a) was one of the first
formal theories to put forward the notion of structures in music which are not present in the music
itself, but perceived and constructed by the listener.

GTTM presents a detailed grammar of the inferred hierarchies a listener perceives when they listen to
and understand a piece of music. The theory is termed generative in the sense of generative
linguistics (Chomsky, 1957) whereby a finite set of formal grammar rules generate an infinite set of
grammatical statements. Here a hierarchical structure is defined as a structure formed of discrete
components that can be divided into smaller parts and grouped into larger parts in a tree-like manner.
Four such hierarchies are defined for tonal music in GTTM; we focus predominantly on metrical
structure, considering other aspects only in relation to this.
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Beat induction, the means by which we listen to music and perceive a steady pulse, is a natural and
often subconscious behaviour when we listen to music. The perceived pulse is often only implied by
the rhythm of the music and constructed psychologically in the listener’s mind. Beat induction is still
an elusive psychological phenomenon that is under active research (Madison, 2009; London, 2012),
and has been claimed to be a fundamental musical trait (Honing, 2012).

There are several ways in which a rhythm can be tapped along to. One listener may tap along at
twice the rate of another listener, for instance. These beats exist in a hierarchically layered
relationship with the rhythm. The layers of beats are referred to in GTTM as “metrical levels” and
together they form a hierarchical metrical structure.

Each metrical level is associated with its own period, which divides the previous period into a certain
number of parts. GTTM is restricted to two or three beat divisions, but in general terms, the period
can be divided by any integer. The levels can be referred to by their musical note equivalent, for
example a level containing eight beats per bar would be referred to as the quaver level (or 8th note
level). It is important to note here that in GTTM beats on metrical levels do not have a duration as
musical notes do, but exist only as points in time. Still, it is useful to discuss each level using the
names of their corresponding musical note durations.

The beats at any given level can be perceived as “strong” or “weak”. If a beat on a particular level is
perceived as strong, then it also appears in the next highest level, which creates the aforementioned
hierarchy of beats. The strongest event in a given measure is known as the “downbeat”. Theoretically,
large measures, phrases, periods, and even higher order forms are possible in this hierarchy. Fig. 1
illustrates a metrical analysis of a score.

Tapping along at any metrical level is perfectly valid, but humans often choose a common,
comfortable period to tap to. This selection process is known as a preference rule in GTTM (Lerdahl
& Jackendoff, 1983b). In general, this common period is referred to as the “beat”, but it is a
problematic term since a beat can also refer to a singular rhythmic event or a metrically inferred
event. Here we use a term that has recently grown in popularity in music theory: “pulse” (Grondin,
2008).

Figure 1: Metrical levels marked with GTTM’s “dot notation”. The pulse level in this score would
be at the crotchet (quarter note) level.

2.2 Metric Stability

Metrical structure analysis in GTTM provides a good basis for theoretical grammars and notations of
metre and beat saliency. However, it does not adequately describe hierarchical metrical levels with
respect to metric stability and change.

In western notated music, the time signature and bar lines suggest that metrical inferences are
constant throughout the piece, or at least throughout the bars in which that time signature is in effect.
In actuality, the degree to which any metre is being expressed in the music can change throughout a
piece. Metric hierarchies can vary, shift, conflict and complement as the piece moves forward, which
leads to changes in the perceived metrical structure. This is what H. Krebs refers to as “metrical
dissonance” (H. Krebs, 1999), an example of which can be seen in Cohn’s complex hemiolas, where
3:2 pulse ratios can create complex metrical dynamics throughout a piece (Cohn, 2001). This is not to
claim that GTTM does not acknowledge metrical dissonance, indeed metrical dissonance links back
to the GTTM’s time-span reduction and prolongational reduction elements. Nevertheless GTTM does
lack the formal means to describe these metrical shifts and to distinguish pieces based on their
metrical dissonance.

Inner Metric Analysis (IMA) (Nestke & Noll, 2001; Volk, 2008) is a structural description of a piece of
music in which an importance value, or “metrical weight”, is placed on each note in the piece. This
metrical weight is similar to GTTMs dot notation, where more dots denote stronger beats, but it is
sensitive to changes in the metrical perspective and so provides a means to analyse shifting metrical
hierarchies in a piece of music.

IMA takes note onset events as the primary indicator of metre, and ignores other aspects often said to
be important for metre perception, such as harmony and dynamics. The “inner” part of the name
relates to this; it is the metric structure inferred by the onsets alone, ignoring the other metrical
information available in sheet music, the time signature and bar lines. The time signature and bar
lines are denoted as “outer” structures in that they are placed upon the music and may not arise from
the music itself. This makes IMA a perceptual model in the sense that it concerns only rhythmic
events as observed by a listener. With IMA, metrical dissonance can be expressed as relationships
between many inner and outer metrical structures. At the two extremes, when all the inner and outer
structures concur the metre is coherent, and when they do not the metre is dissonant.
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2.3 Nonlinear Resonance

GTTM and IMA are both musicological theories beginning with (but not limited to) the musical score
as a source for analysing metre. Neuroscientifically, what occurs in our brains as we listen to rhythms
and perform beat induction is wildly different.

When Dutch physicist Christiaan Huygens first built the pendulum clock in 1657, he noted a curious
phenomenon: when two pendulum clocks are placed on a connecting surface, the pendulums’
oscillations synchronise with each other. As one pendulum swings in one direction, it exerts a force
on the board, which in turn affects the phase of the second pendulum, bringing the two oscillations
closer in phase. Over time this mutual interaction leads to a synchronised frequency and phase. He
termed this phenomenon entrainment (Huygens, 1673) and it has since been studied in a variety of
disciplines such as mathematics and chemistry (Kuramoto, 1984; Strogatz, 2001). One can recreate
Huygens’ observations by placing several metronomes on a connected surface; over time the
metronomes will synchronise (Pantaleone, 2002).

Jones (1976) proposed an entrainment theory for the way we perceive, attend and memorise
temporal events. Jones’ psychological theory addresses how humans are able to track, attend and
order temporal events, positing that rhythmic patterns such as music and speech potentially entrain a
hierarchy of oscillations, forming an attentional rhythm. These attentional rhythms inform an
expectation of when events are likely to occur, so that we are able to focus our attention at the time of
the next expected event. In doing so, expectation influences how a temporal pattern is perceived and
memorised. Thus, entrainment assumes an organisational role for temporal patterns and offers a
prediction for future events, by extending the entrained period into the future.

Large has extended this theory with the notion of nonlinear resonance (Large, 2010). Musical
structures occur at similar time scales to fundamental modes of brain dynamics, and cause the
nervous system to resonate to the rhythmic patterns. Certain aspects of this resonance process can
be described with the well-developed theories of neurodynamics, such as oscillation patterns in
neural populations. in doing so, Large moves between physiological and psychological levels of
modelling, and directly links neurodynamics and music. Several musical phenomena can all arise as
patterns of nervous system activity, including perceptions of pitch and timbre, feelings of stability and
dissonance, and pulse and metre perception.

Eq. (1) shows the differential equation that defines a Hopf normal form oscillator with its higher order
terms fully expanded. This form is referred to as the canonical model, and was derived from a model
of neural oscillation in excitatory and inhibitory neural populations (Large et al., 2010).  is a complex
valued output,  is its complex conjugate, and  is the driving frequency in radians per second.  is a
linear damping parameter, and ,  are amplitude compressing parameters, which increase stability
in the model. ,  are frequency detuning parameters, and  controls the amount on nonlinearity in
the system.  is a time-varying external stimulus, which is also coupled nonlinearly and consists of
passive part, , and an active part, , controlled by a coupling parameter .

By setting the oscillator parameters to certain values, a wide variety of behaviours not encountered in
linear models can be observed (see (Large, 2010)). In general, the model maintains an oscillation
according to its parameters, and entrains to and resonates with an external stimulus nonlinearly. The
α parameter acts as a bifurcation parameter: when  the model behaves as a damped oscillator,
and when  the model oscillates spontaneously, obeying a limit-cycle. The gradual dampening
of the amplitude allows the oscillator to maintain a long temporal memory of previous stimulation.

Cannonical oscillators will resonate to an external stimulus that contains frequencies at integer ratio
relationships to its natural frequency. This is known as mode-locking, an abstraction on phase-locking
in which  cycles of oscillation are locked to m cycles of the stimulus. Phase-locking occurs when 

, but in mode-locking several harmonic ratios are common such as 2:1, 1:2, 3:1, 1:3, 3:2,
and 2:3 (Large et al., 2015). Even higher order integer ratios are possible which all add harmonic,
relevant frequency information to a signal. This sets nonlinear resonance apart from linear filtering
methods such as comb filters (Klapuri et al., 2006) and Kalman filters (Kalman, 1960).

Furthermore, canonical oscillators can be coupled together with a connectivity matrix as is shown in
Eq. (2).

Where  is the differential equation described in the right hand side of Eq. (1) and  is a
complex number representing phase and magnitude of a connection between the  and 
oscillator.

These connections can be strengthened through unsupervised Hebbian learning, in a similar way to
Hoppensteadt and Izhikevich (Hoppensteadt & Izhikevich, 1996). This can allow resonance
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relationships between oscillators to form stronger bonds and is shown in Eq. (3) and Eq. (4).

Figure 2: Amplitudes of connectivity matrix. Connections have formed at high-order integer ratio
relationships.

Figure 3: Amplitudes of oscillators over time. Structured resonances emerge at around 5
seconds. A tempo change occurs at around 20 seconds, causing resonances to change.

Where  is again the complex valued connection between the  and  oscillators, , , , 
and  are all canonical Hebbian learning parameters,  and  are the complex states of the  and 

 oscillators, and  is the complex conjugate of  (see Eq. (1)).

Fig. 2 shows a connectivity matrix after Hebbian learning has taken place. In this example the
oscillators have learned connections to one another in the absence of any stimulus due to the
oscillators operating in their limit cycle behaviour. The Hebbian parameters were set to the following: 

, , , , . Strong connections have formed at high-order
integer ratios.

2.4 Gradient Frequency Neural Networks

Connecting several canonical oscillators together with a connection matrix forms a Gradient
Frequency Neural Network (GFNN) (Large et al., 2010). When the frequencies in a GFNN are
distributed within a rhythmic range and stimulated with music, resonances can occur at integer ratios
to the pulse.

Fig. 3 shows the amplitude response of a GFNN to a rhythmic stimulus over time. Darker areas
represent stronger resonances, indicating that that frequency is relevant to the music. A hierarchical
structure can be seen to emerge from around 8 seconds, in relation to the pulse which is just below
2Hz in this example. At around 24 seconds, a tempo change occurs, which can be seen by the
changing resonances in the figure. These resonances can be interpreted as a perception of the
hierarchical metrical structure.

Velasco & Large (2011) connected two GFNNs together in a pulse detection experiment for
syncopated rhythms. The two networks were modelling the sensory and motor cortices respectively.
In the first network, the oscillators were set to a bifucation point between damped and spontaneous

= (λ + | + ) + f ( , )dcij
dt cij μ1 cij|2 |ϵcμ2 cij|4

1 − |ϵc cij|2 zi zj (3)
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oscillation ( , , ,  and ). The second network was tuned
to exhibit double limit cycle bifurcation behaviour ( , , ,  and 

), allowing for greater memory and threshold properties. The first network was stimulated by a
rhythmic stimulus, and the second was driven by the first. The two networks were also internally
connected in integer ratio relationships such as 1:3 and 1:2, these connections were fixed and
assumed to have been learned through the Hebbian process shown in Eq. (3) and Eq. (4). The
results showed that the predictions of the model confirm observations in human performance,
implying that the brain may be adding frequency information to a signal to infer pulse and metre
(Large et al., 2015). Other rhythmic studies with GFNNs include rhythm categorisation (Bååth et al.,
2013) and polyrhythmic analysis (Angelis et al., 2013).

Changes to the nonlinear resonance patterns in the GFNN over time and the learned connection
matrix enables a similar analytical method to IMA’s inner structures (see Section 2.2), but is grounded
more in physiology by taking an auditory approach rather than solely basing the analysis on symbolic
data (the musical score).

3 Prediction

3.1 Beat Tracking

Computationally processing an audio signal to determine pulse event onset times is termed beat
tracking. It falls into a branch of Music Information Retrieval (MIR) known as automatic rhythm
description (Gouyon & Dixon, 2005). Beat tracking is useful for many MIR applications, such as
tempo induction, which describes the rate of the pulse (Gouyon et al., 2006); rhythm categorisation,
which attempts to identify and group rhythmic patterns (Bååth et al., 2013; Dixon et al., 2004);
downbeat tracking and structural segmentation, which aims to meaningfully split the audio into its
musical sections such as measures and phrases (Levy et al., 2006; F. Krebs et al., 2013); and
automatic transcription, which aims to convert audio data into a symbolic format (Klapuri, 2004).

Automated beat tracking has a long history of research dating back to 1990 (Allen & Dannenberg,
1990). Large used an early version of the nonlinear resonance model to track beats in performed
piano music (Large, 1995). Scheirer’s (1998) system uses linear comb filters, which operate on
similar principles to Large and Kolen’s early work on nonlinear resonance (Large & Kolen, 1994). The
comb filter’s state is able to represent the rhythmic content directly, and can track tempo changes by
only considering one metrical level. Klapuri et al.’s more recent system builds on Scheirer’s design by
also using comb filters, but extends the model to three metrical levels (Klapuri et al., 2006). More
recently, Böck et al. (2015) used a particular type of Recurrent Neural Network called a Long Short-
Term Memory Network (LSTM). The MIR Evaluation eXchange (MIREX) project (http://www.music-
ir.org/mirex/) runs a beat tracking task each year, which evaluates several submitted systems against
various datasets.

3.2 Where Beat Trackers Fail

State-of-the-art beat trackers do a relativity good job of finding the pulse in music with a strong beat
and a steady tempo, yet we are still far from matching the human level of beat induction. Despite a
recent surge in new beat-tracking systems, there has been little improvement over Klapuri et al.’s
(2006) system.

Grosche et al. (2010) have performed an in-depth analysis of beat tracking failures on the Chopin
Mazurka dataset (MAZ) (http://www.mazurka.org.uk/). MAZ is a collection of audio recordings
comprising on average 50 performances of each of Chopin’s Mazurkas. Grosche et al. tested three
beat tracking algorithms on a MAZ subset and looked for consistent failures in the algorithms’ output
with the assumption that these consistent failures would indicate some musical properties that the
algorithms were struggling with. They found that properties such as expressive timing and ornamental
flourishes were contributing to the beat trackers’ failures.

Holzapfel et al. (2012) have selected “difficult” excerpts for a new beat tracking dataset by a selective
sampling approach. Rather than compare one beat tracker’s output to some ground truth annotation,
several beat trackers’ outputs were compared against each other. If there was a large amount of
mutual disagreement between predicted beat locations, the track was assumed to be difficult for
current algorithms, and was selected for beat annotation and inclusion in the new dataset. This
resulted in a new annotated dataset, now publicly available as the SMC dataset
(http://smc.inescporto.pt/research/data-2/).

The SMC excerpts are annotated with a selection of signal property descriptors. This allows for a
description of what may contribute to an excerpt’s difficulty. There are several timbrel descriptors such
as a lack of transient sounds, quiet accompaniment and wide dynamic range, but most of the
descriptors refer to temporal aspects of the music, such as slow or varying tempo, ornamentation,
and syncopation. Over half of the dataset is tagged as being expressively timed.

From this it is clear that being able to track expressive timing variations in performed music is one
area in which there is much room for improvement. This is especially true if one is attempting to
achieve a more human-like performance from the beat tracking algorithms. This has been attempted
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in many cases, most notably in the work of Dixon (2001) and Dixon & Goebl (2002). However, these
systems do not perform well on today’s standard datasets, scoring poorly on the SMC dataset in
2014’s MIREX results.

4 Production

4.1 Expressive Rhythm

As mentioned earlier, interest in musical expression goes back to the ancient Greeks and around one
hundred years ago empirical research in this area started. The research field looks at what emotional
meanings can be expressed in music, and what musical structures can contribute to the perception of
such emotions in the listener. These structures can be made up of multi faceted musical concepts
such as dynamics, tempo, articulation, and timbre. Here we focus on the temporal aspects of
expression.

Performers have been shown to express the metrical structure of a piece of music by tending to slow
down at the end of metrical groupings. The amount a performer slows down correlates to the
importance of the metrical level boundary (Clarke, 2001). It is well known that humans can
successfully identify metre and follow the tempo based off such an expressive rhythm (Epstein,
1995). Rankin et al. (2009) conducted a recent study on human beat induction and found that
subjects were able to adapt to relatively large fluctuations in tempo resulting from performances of
piano music in various genres. The participants could successfully find a pulse at the crotchet
(quarter note) or quaver (8  note) metrical level. Skilled performers are able to accurately reproduce
a variation from one performance to the next (N. Todd, 1989), and listeners are also able to perceive
meaning in the deviations from the implied metrical structure (Epstein, 1995; Clarke, 1999).

According to Kirke & Miranda (2009), the introduction of built-in sequencers into synthesizers in the
early 1980s contributed to a new, perfectly periodic timing, which sounded robotic to the ear. Rather
than look for ways to make this timing model more human-like, artists embraced the robotic style to
produce new genres of music such as synth pop and electronic dance music, which soon dominated
the popular music scene.

Computer systems for expressive music performance (CSEMPs) received little attention from both
academia and the industry at large. However, some research was done, such as N. Todd’s
computational model of rubato (N. Todd, 1989).

One of the most common expressive devices when performing music is the use of rubato to subtly
vary the tempo over a phase or an entire piece. N. Todd produced a model of rubato implemented in
Lisp which is able to predict durations of events for use in synthesis.

The original model was based on Lerdahl and Jackendoff’s ideas on time span reduction in GTTM.
However, this was deemed psychologically implausible as it places too high a demand on a
performer’s short-term memory. In a similar way to IMA’s spectral weight, the model considers all
events regardless of time differences.

N. Todd’s improved model incorporates a hierarchic model for timing units from a piece-wise global
scale to beat-wise local scale. It works by looking at a score and forming an internal representation
via GTTM’s grouping structures.

This internal representation is then used in a mapping function, outputting a duration structure as a
list of numbers. Even though the model makes predictions about timing and rubato, it forms an
analytical theory of performance rather than a prescriptive theory.

Today, research into CSEMPs is a small but important field within Computer Music. Widmer & Goebl
(2004) have published an overview of existing computational models, and Kirke & Miranda (2009)
have produced a survey of available CSEMPs.

4.2 Neural Network Music Models

P.M. Todd (1989) and Mozer (1994) were among the first to utilise a connectionist machine learning
approach to music generation. This approach is advantageous over rule-based systems, which can
be strict, lack novelty, and not deal with unexpected inputs very well. Instead, the structure of existing
musical examples are learned by the network and generalisations are made from these learned
structures to compose new pieces.

Both P.M. Todd and Mozer’s systems are recurrent networks that are trained to predict melody. They
take as input the current musical context as a pitch class and note onset marker and predict the same
parameters at the next time step. In this way the problem of melody modelling is simplified by
removing timbre and velocity elements, and discretising the time dimension into windowed samples.

Whilst P.M. Todd and Mozer were concerned predicting melodies as pitch sequences over time,
Gasser et al. (1999) have taken a connectionist approach to perceive and produce rhythms that
conform to particular metres. SONOR is a self-organising neural network of adaptive oscillators that
uses Hebbian learning to prefer patterns similar to those it has been exposed to in a learning phase.
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A single input/output (IO) node operates in two modes: perception and production. In the perception
mode, the IO node is excited by patterns of strong and weak beats, conforming to a specific metre.
Hebbian learning is used to create connections and between the oscillators in the network. Once
these connections have been learned, the network can be switched to production mode, reproducing
patterns that match the metre of the stimuli.

Recurrent neural networks (RNNs) such as the those used in the above systems can be good at
learning temporal patterns, but, as noted by P.M. Todd (1989) and Mozer (1994), often lack global
coherence due to the lack of long-term memory. This results in sequences with good local structures,
but long-term dependencies are often lost. One way of tackling this problem is to introduce a series of
time lags into the network input, so that past values of the input are presented to the network along
with the present.

Eq. (5) shows a simple time-series predictor where y represents a variable to be modelled,  is time
and  is the number of lag steps in time. Kalos (2006) used a model of a similar type known as a
Nonlinear Auto-Regression model with eXtra inputs (NARX) to generate music data in symbolic MIDI
format. One advantage of this method is that it performs well on polyphonic music, but the time lag
method still does not capture long-term structure very successfully.

4.3 Long Short-Term Memory

Long Short-Term Memory Neural Networks (LSTMs) were specifically designed to overcome the
problem of modelling long term structures. Hochreiter & Schmidhuber (1997) noted that whilst RNNs
could theoretically learn infinitely long patterns, in practice this was difficult due to the “vanishing
gradient problem” (Hochreiter & Schmidhuber, 1997). The gradient of the total output error with
respect to previous inputs can quickly vanishes as the time lags between relevant inputs and errors
increase. It can take as little as five time steps for this problem to occur in an RNN (Gers &
Schmidhuber, 2001). In an LSTM, a self-connected node known as the Constant Error Carousel
(CEC) ensures constant error flow back through time, meaning that LSTMs can bridge time lags in
excess of 1,000 time steps (Hochreiter & Schmidhuber, 1997).

A simplified diagram of an LSTM memory block can be seen in Fig. 4. The input and output gates
control how information flows into and out of the CEC, and the forget gate controls when the CEC is
reset. The input, output and forget gates are connected via “peepholes”. For a full specification of the
LSTM model we refer to (Hochreiter & Schmidhuber, 1997) and (Gers et al., 2000).

Figure 4: A single LSTM memory block showing (A) input, (B) output, (C) CEC, (D) input gate,
(E) output gate, (F) forget gate and (G) peephole connections.

As time-series predictors, LSTMs perform very well, as is shown by Böck et al.’s beat tracker (2015).
LSTMs have also had some success in generative systems: Eck & Schmidhuber (2002) trained
LSTMs which were able to improvise chord progressions in the blues and more recently Coca et al.
(2013) used LSTMs to generate melodies that fit within user specified parameters.

4.4 GFNN-LSTMs

In our previous work, we have combined a GFNN with an LSTM (GFNN-LSTM) as two layers in an
RNN chain and used it to predict melodies (Lambert et al., 2014a, 2014b). Several GFNN-LSTMs
were trained on a corpus of monophonic symbolic folk music from the Essen Folksong Collection
(Schaffrath, 1995).

In the first set of experiments, the networks were trained to predict the next pitch in metrically-
quantised time-series data. A single output was used to predict the scale degree of the next sample in
the data, which was sampled such that one sample was equivalent to a semiquaver (16  note). The
second set of experiments modelled both pitch and rhythm with two outputs from the GFNN-LSTM:
the first one being identical to the earlier experiment, and the second was trained to predict the
rhythmic onset pattern used to stimulate the GFNN. The resolution of the time series was also
increased by a factor of two, such that each sample corresponded to a demisemiquaver (32  note).

y(t) = f (y(t − 1). . . y(t − l)) (5)
t
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Our overall results of these two experiments showed that providing nonlinear resonance data from
the GFNN helped to improve melody prediction with an LSTM. We hypothesise that this is due to the
LSTM being able to make use of the relatively long temporal resonance in the GFNN output, and
therefore model more coherent long-term structures. In all cases GFNNs improved the performance
of pitch and onset prediction.

5 Experiments

Our previous results from initial experimentation (Lambert et al., 2014a, 2014b) gave some indication
that better melody models can be created by modelling metrical structures with a GFNN.

The system we present here is a significant step beyond our previous work. For the first time we are
dealing with audio data, which opens the system up for a much wider set of live and off-line
applications, but comes with its own set of new problems to solve. We are now using data at varying
tempos and sampled at an arbitrary sample rate, not one that is metrically quantised as per our
pervious work. Furthermore, we are for the first time experimenting with enabling Hebbian learning
within the GFNN in the hope this will enable stronger metric hierarchies and faster entrainment
responses to emerge from the nonlinear resonance.

The aim of this experiment was to train a GFNN-LSTM to predict expressive rhythmic events. The
system takes audio data as input and outputs an event activation function. The system operates in a
number of stages which are detailed below. A schematic of the system is provided in Fig. 5.

Figure 5: An overview of our GFNN-LSTM system showing (A) audio input, (B) mid-level
representation, (C) GFNN, (D) LSTM, and (E) rhythm prediction output. The variable ν can be a

mean field function or full connectivity.

We used a subset of MAZ, since pieces themselves are expressively performed by the various
performers and vary in tempo and dynamics throughout the performance. However, the pieces are all
within the same genre and are all performed on the piano, making drawing conclusions about the
rhythmic aspects more valid. We have made a subset of 50 excerpts, each 40 seconds long, by
randomly choosing annotated excerpts of full pieces and slicing 40 seconds worth of data.

5.1 Mid-level representation

When processing audio data for rhythmic events, it is common to first transform the audio signal into
a more rhythmically meaningful representation from which these events can be inferred. This
representation could be extracted note onsets in binary form, or a continuous function that exhibits
peaks at likely onset locations (Scheirer, 1998). These functions are called onset detection functions
and their outputs are known as mid-level representations.

Since we are dealing with expressively rich audio, we have chosen an onset detection function which
is sensitive both to sharp and soft attack events such as those found in the MAZ piano performances.
From Bello et al.’s (2005) tutorial on onset detection in music signals, we have selected the complex
spectral difference (CSD) onset detection function. This detection function emphasises note onsets
by analysing the extent to which the spectral properties of the signal at the onset of musical events
are changing. The function operates in complex domain of a frequency spectrum where note onsets
are predicted to occur a result of significant changes in the magnitude and/or phase spectra. By
considering both magnitude and phase spectra, CSD can capture soft changes in pitch and hard
rhythmic events.

Fig. 6 displays an example output of CSD. Here the output range has been scaled to a 0 to 0.25 scale
for input into the GFNN. This continuous function output can be converted into binary onset data by
using suitable threshold levels for peak picking. A sample rate of 86.025Hz was used, which was
recently found to yield accurate detection results (Davies & Plumbley, 2007).

5.2 GFNN layer

The GFNN was implemented in MATLAB using the GrFNN Toolbox (Large et al., 2014). It consisted
of 192 oscillators, logarithmically distributed with natural frequencies in a rhythmic range of 0.5Hz to
8Hz. The GFNN was stimulated by rhythmic time-series data in the form of the mid-level
representation of the audio data.

We have selected two parameter sets for the oscillators themselves, obtained from the examples in
the GrFNN Toolbox. These different parameters affect the way the oscillators behave. The first
parameter set puts the oscillator at the bifurcation point between damped and spontaneous
oscillation. We term this “critical mode”, as the oscillator resonates with input, but the amplitude
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slowly decays over time in the absence of input: , , , . By
setting , we define the second parameter set: “detune mode”.  affects the imaginary plane
only, which is the oscillators inhibitor. This allows the oscillator to change its natural frequency more
freely, especially in response to strong stimuli. As a result, this could allow for improved tracking of
tempo changes.

We have also selected three approaches to performing the Hebbian learning in the GFNN layer. The
first approach simply has no connectivity between oscillators and therefore no learning activated at
all. This is so that we can measure the effect (if any) that learning in the GFNN layer has on the
overall predictions of the system.

The second approach is to activate online Hebbian learning with the following parameters: , 
, ,  and . Under these parameters, the network should learn

connections between related frequencies as they resonate to the stimulus. Fig. 7 shows an example
connection matrix that is learned from one particular excerpt. Taken together, the behaviour of the
GFNN over time and the learned connection matrix enables a similar analytical method to IMA (see
Section 2.2), but is a continuous-time model, whereas IMA uses discrete, metrically quantised time
steps.

From Fig. 7 we can see that high order hierarchical relationships have been learned by the
oscillators. However, these relationships are only valid for the particular excerpt that they have been
learned with: they are localised to specific fixed frequencies rather than being a generalisation. This
has both positive and negative aspects. On the positive side, we can use the connection matrix as a
way of analysing the frequency responses of the network. However, applying this this connection
matrix in a prediction task would not be that useful, as any rhythm outside this particular tempo with
different local metres would not exhibit predictable behaviour.

By activating the learning rule when the oscillators are set to operate in limit cycle mode (a
spontaneous oscillation in the absence of input), the internal connections can be learned in the
absence of any stimulus. The resulting connectivity matrix is shown in Fig. 8. This provides a much
more general state for the connection matrix to be in and potentially overcomes the limitations of the
fixed frequency connections learned in Fig. 7.

Figure 6: An example complex spectral difference output.

Figure 7: Connections that have been learned in the GFNN during an excerpt.
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Figure 8: Amplitudes of a GFNN connectivity matrix, learned by setting the oscillator parameters
to a limit cycle behaviour.

Figure 9: Amplitudes of oscillators over time when connections are fixed at those learned in limit
cycle mode.

Figure 10: Amplitudes of a GFNN connectivity matrix, learned by setting the initial state to those
learned in limit cycle mode (8), then activating online “critical” learning.



Figure 11: Amplitudes of oscillators over time when connections are initially set to those learned
in limit cycle mode (8), and then activating online “critical” learning.

However, we can see in the network response (Fig. 9) that fixing the connections at this state results
in a much noisier output of the GFNN. Resonances do build up very quickly, but the resulting
oscillator output does not resemble the structured hierarchy found in Fig. 3. Essentially there are too
many connections in the GFNN, leading to a “cascade” effect where a strong resonant response to
the stimulus is transferred down the frequency gradient in a wave. This amounts to a GFNN output
which is to noisy to be used for any subsequent machine learning tasks.

This can be counteracted by keeping online learning activated and also setting the initial connectivity
state with that learned in limit cycle mode. The resulting connectivity matrix can be seen in Fig. 10.
The matrix exhibits strong local connections at frequencies specific to the excerpt, but more general
high order connections are still present in the matrix. The amplitude response of the network (Fig. 11)
shows a clear hierarchy of frequencies whilst also displaying a fast resonance response and less
noise. This is the third approach to Hebbian learning we have taken in this paper and we term it
“InitOnline”.

We found in some initial experimentation that with Hebbian learning activated, the differential
equations that drive the connectivity matrix can become unstable and result in an infinite magnitude.
To ensure greater stability in the system, we have limited the connections in the connectivity matrix to
have a magnitude less than  (0.5 in our experiments). We also and rescaled all stimuli to be in
the range .

5.3 LSTM layer

The LSTM was implemented in Python using the PyBrain library (Schaul et al., 2010). For each
variation of the GFNN, we trained two LSTM topologies. The first had 192 linear inputs, one for each
oscillator in the GFNN, which took the real part of each oscillator’s output. We term this the “Full”
LSTM. The real part of the canonical oscillation is a representation of excitatory neural population; by
discarding the imaginary part, we still retain a meaningful representation of the oscillation, but
increase the simplicity of the input to the LSTM (Large et al., 2015). The second topology took only
one linear input, which consisted of the mean field of the real-valued GFNN. The mean field reduces
the dimensionality of the input whilst retaining frequency information within the signal. We term this
the “Mean” LSTM.

All networks used the standard LSTM model with peephole connections enabled. The number of
hidden LSTM blocks in the hidden layer was fixed at 10, with full recurrent connections. The number
of blocks was chosen based on previous results which found it to provide reasonable prediction
accuracy, whilst minimising the computational complexity of the LSTM (Lambert et al., 2014b).

All networks had one single linear output, which serves as a rhythmic event predictor. The target data
used was the output of the onset detection algorithm, where the samples were shifted so that the
network was predicting what should happen next. The input and target data was normalised before
training.

Training was done by backpropagation through time (Werbos, 1990) using RProp- (Igel & Hüsken,
2000). During training we used k-fold crossvalidation (Kohavi, 1995). In -fold cross validation, the
dataset is divided into  equal parts, or “folds”. A single fold is retained as the “validation data” and is
used for parameter optimisation, and the remaining  folds are used as training data. The cross-
validation process is then repeated  times, with each of the  folds used exactly once as the test
data. This results in  trained networks which are all evaluated on data unseen to the network during
the training phase. For our experiments  was fixed at 5, and a maximum of 350 training epochs was
set per fold. Training stopped when the total error had not improved for 20 epochs, or when this limit
was reached, whichever came sooner.

5.4 Evaluation

This experiment was designed to discover if the GFNN-LSTM is able to make good predictions in
terms of the rhythmic structure. Therefore we are evaluating the system on its ability to predict
expressively timed rhythmic events, whilst varying the parameters of the GFNN and connectivity. We
are not explicitly evaluating the system’s production of expressive timing itself, but we are implicitly
evaluating the tracking and representation of expressive timing, as it is reasonable to assume that a
meaningful internal representation of metrical structure is needed for accurate predictions.

The results have been evaluated using several metrics. The first three results refer to the binary
prediction of rhythmic events of pitch changes using the standard information retrieval metrics of
precision, recall and F-measure, where higher values are better. Events are predicted using a
gradient threshold of the output data. The threshold looks for peaks in the signal by tracking gradient
changes from positive to negative. When this gradient change occurs, an onset has taken place and
is recorded as such.

These events were subject to a tolerance window of ±58.1ms. This means that an onset can occur
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within this time window and still be deemed a true positive. At the sample rate used in this
experiment, this equates to 5 samples either side of an event. We also insured that neither the target
nor the output can have onsets faster than a rate of 16Hz, which is largely considered to be the limit
of where rhythm starts to be perceived as pitch (Large, 2010). These are limitations to our evaluation
method, but since we are mainly interested in predicted rhythmic structures and are not explicitly
evaluating the production of expressive micro-timing, we believe they are acceptable concessions.

We have also provided the mean squared error (MSE) and the Pearson product-moment correlation
coefficient (PCC) of the output signals, which provide overall similarity measures.

For all metrics the first 5 seconds of output by the network are ignored, making the evaluation only on
the final 35 seconds of predictions.

Tab. 1 and Tab. 2 display the results of the experiment, and Fig. 12 to Fig. 17 show examples of each
network’s output. These numerical metrics and visual figures provide some indication of how well the
system is capturing the rhythmic structures. However, this information may be better understood by
listening to the predicted rhythms. To this end, the reader is invited to visit this paper’s accompanying
website (http://andyroid.co.uk/research/gfnn_lstm_rhythm_prediction), where we have assembled a
collection of audio examples for each network’s target and output data.

Table 1: Critical oscillation mode results. These results show the mean results calculated on the
validation data. The number in brackets denotes the standard deviation.

Table 2: Detune oscillation mode results. These results show the mean results calculated on the
validation data. The number in brackets denotes the standard deviation.

5.5 Discussion

Our best overall GFNN-LSTM for expressive rhythm prediction incorporates detune oscillators, online
learning with initial generic connections in the GFNN layer, and mean field connections.

We can see from the results that the mean field networks always outperformed the GFNN-LSTM with
a full connection. This could be due to the mean field being able to capture the most resonant
frequencies, whilst filtering out the noise of some less resonant frequencies. The resulting signal to
the LSTM would therefore be more relevant for predicting rhythmic events. However, this may also be
due to the limited number of LSTM blocks in each network forming a bottleneck in the fully connected
networks. Increasing number of hidden LSTM blocks may mitigate this limitation.

One downside of the mean field networks is that drastically reducing the dimensionality in this way
could cause some over-fitting. We can see in the results that whist performance improved in all cases
using the mean field, the standard deviation also increased. This means there was a greater range of
performances between the folds and could possibly indicate some networks being trained to local
optima. During training we observed that the mean field networks took many more epochs for errors
to converge. This could possibly be addressed by using sub-band mean fields, or some other method
to reduce the dimensionality between layers.

In all cases, the detune oscillators outperformed the critical oscillators. In most cases the standard
deviation was also decreased by using detune oscillators. This can be attributed to the greater
amount of change in the imaginary part of the oscillator (inhibitory neural population). Tempo changes
can be tracked as an entrainment process between a local population of oscillators in the network.
Where there is a local area of strong resonance the oscillators will take on very near frequencies to
one another. As the stimulus frequency changes, this local area will be able to follow it, moving the
local resonance area along the frequency gradient.

It is interesting to note that applying online learning to the network did improve the overall MSE of the
signal, but the F-measure actually performed worse in all cases. Perhaps an adaptive threshold may
be the solution to this problem, as the GFNN signal changes in response to previous inputs and the
connections begin to form.

In our previous work on rhythm prediction with the GFNN-LSTM model (Lambert et al., 2014b), the
best network achieved a rhythm prediction mean F-measure of 82.2%. Comparing this with the 71.8%
mean achieved here may at first seem a little underwhelming. However, these new results represent
a significant change in the signal input, and reflects the added difficulty of the task. Our previous work
was on symbolic music at a fixed tempo and without expressive variation, whereas this study is
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undertaken on audio data performed in an expressive way. The overall best single fold (Detune
oscillators, InitOnline connections, and Mean input) was achieving an F-measure of 77.2%, which we
believe is extremely promising.

Figure 12: An example output from the Critical, NoLearn, Full network.

Figure 13: An example output from the Detune, NoLearn, Mean network.

Figure 14: An example output from the Critical, Online, Full network.



Figure 15: An example output from the Detune, Online, Mean network.

Figure 16: An example output from the Critical, InitOnline, Mean network.

Figure 17: An example output from the Detune, InitOnline, Mean network.

Figs 12–17: Example outputs from various trained networks over time. The top part of each figure
shows the continuous output set against the training data, whereas the bottom part shows extracted
events after a threshold has been applied.

Our approach to rhythm prediction is a novel one, which makes a comparative statement difficult to
make. However, we can draw similarities between our system and an MIR beat tracker; both are
processing audio systems to extract rhythmic predictions. The best MIREX beat tracker in 2015
scored an F-measure of 74.2% (see (Böck et al., 2015)) on the same dataset used above. This
system has a similar design to the GFNN-LSTM: spectrogram change information is input into an
LSTM which, is trained to predict beat events. These predictions are processed with a bank of
resonating comb filters to help smooth the output. Whilst we cannot make a direct comparison as we
are predicting expressive rhythm events not pulse events, we believe a comparison with this system
is helpful for two reasons. Firstly it shows a similar method is producing state-of-the-art results in a
field where comparisons are easier to make, and secondly it hints that our system is performing well
on this dataset.
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5.6 Generative Applications

Our system takes audio data as input and outputs a new rhythm prediction signal. The rhythm output
can be easily used to produce a new audio signal and exciting the network with untrained data will
produce novel outputs. We therefore label this application of a GFNN-LSTM as an expressive rhythm
generative system.

It would be trivial to close the loop in our system, creating a feedback between input and output. This
would allow indefinite, self-driven generation of new rhythmic structures which can be evaluated for
their novelty.

When considering generative software, validating the work both in terms of the computational system
and the output it creates is still a challenge for the community at large. The way these systems and
their outputs can be compared and evaluated is an ongoing problem facing the computational
creativity community (Jordanous, 2011).

Adopting Jordanous’ (2012) Standardised Procedure for Evaluating Creative Systems (SPECS)
methodology, we make the following statements about our system as it stands, as a generative
system:

1. The system is aiming to satisfy a definition of creativity as producing expressively timed event
onsets to be in line with human performers’ renditions of that same piece of music.

2. The standards used to define said creativity are the annotated onset times of several recorded
performances of Chopin’s Mazurkas.

3. The system has been tested again these standards through the F-measure evaluation metric
which considers the generated rhythms precision and recall.

Eigenfeldt et al. (2013) have also contributed towards a solution to the evaluation problem by
proposing a music metacreation (MUME) taxonomy to facilitate discussions around measuring
metacreative systems and works. The taxonomy is based around the agency or autonomy of the
system in question, since in MUME the computational system is an active creative agent. By focusing
on the system’s autonomy, one is able to distinguish between the composer’s (system designer’s)
influence on the system and the performance elements, which may change from execution to
execution. The MUME taxonomy places the metacreation of the system on a gradient through the
following seven levels of creative autonomy:

1. Independence: there is some process on a gesture that is beyond the control of the composer.
2. Compositionality: the system determines relationships between two of more gestures.
3. Generativity: the system creates new musical gestures.
4. Proactivity: the system decides when to initiate a new gesture.
5. Adaptability: the system’s behaviour changes over time via interaction with itself of other agents.
6. Versatility: the system determines its own content or gestural style.
7. Volition: the system decides for itself what, when and how to compose/perform.

We believe our system exhibits all of the features up to level 5 in this taxonomy. The gestural style is
determined my the training data, which in our case is MAZ, and is unable to produce rhythms in any
other style.

6 Conclusions

In this paper we have detailed a multi-layered recurrent neural network model for expressively timed
rhythmic perception, prediction and production. The model consists of a perception layer, provided by
a GFNN, and a prediction layer provided by an LSTM. Production is be achieved by creating a
feedback loop between input and output. We have evaluated the GFNN-LSTM on a dataset selected
for its expressive timing qualities and found it to perform at a comparable standard to a previous
experiment undertaken on symbolic data.

Our system’s performance is comparable to state-of-the-art beat tracking systems. For the purposes
of rhythm generation, we feel that the F-measure results reported here are already in a good range.
Greater values may lead to too predictable and repetitive rhythms, lacking in the novelty expected in
human expressive music. On the other hand, lower values may make the generated rhythms too
random and irregular, so that they may even not be perceived as rhythmic at all. To make any firm
conclusions on this, we would need to conduct formal listening tests based on the rhythms we have
generated with our system. This is left for future work.

Another interesting avenue for future analysis is to explicitly evaluate the system’s production of
expressive timing. To achieve this we will possibly need to remove the tolerance window and analyse
time differences between the target and output events with a steady idealised pulse.

By using an oscillator network to track the metrical structure of expressively timed audio data, we are
able to process the metrical structures of audio signals in real-time. We intend to extend this initial
system for complete use as a generative music system. Firstly, we will incorporate polyphonic
rhythms into the system, instead of outputting a single rhythm output. Secondly, incorporating some
melody model as in our previous work would be of use for complete autonomy of the system as a
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musical agent. This would allow indefinite generation of new rhythmic and melodic structures which
can be evaluated for their novelty. In doing so we will have created an expressive, generative, and
autonomous real-time agent.
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