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Abstract: We study an overlapping generations economy in which environmental degra-

dation results from economic activity and affects agents’ uncertain lifetimes. Life expectancy

depends positively on economic activity and negatively on the stock of pollution. This can

make the growth-survival relationship convex over some region and lead to two non-trivial

steady states, with one a poverty trap. Uniform abatement taxes can cause the poverty trap

to widen while increasing incomes at the high steady state. We also study the properties and

dynamics of an optimal second-best abatement tax. It is non-homogeneous and increasing

in the capital stock, and leads to a variety of dynamic possibilities, including non-existence

and multiplicity of steady states, and cycles around some of the steady states, where there

were none under exogenous taxes. Thus, optimal taxes can be an independent source of

non-linearities.
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1 Introduction:

The process of economic growth involves externalities. Much of the literature has fo-

cused on positive externalities that are a source of sustained economic growth. In recent

years, however, there has been an increasing concern that the negative externalities of

pollution may have significant impact on economic well-being. The attention has been

on long-run consequence of global warming due to greenhouse gas emissions. While

there is consensus that global warming can have significant impact on economic welfare,

there is debate as to the extent of global warming and about the right policies to tackle

it. Rich and poor countries have taken very different stances on adopting measures to

tackle global warming as per the Kyoto Protocol, and on controlling pollution more

generally.

In this paper, we focus on the relatively short run effects of pollution on increased

mortality. While there is some debate among empirical researchers on how to estimate

the effect of pollution on mortality, there appears to be a consensus that increased

pollution increases mortality. Some studies have suggested that upto 40% of premature

mortality is related to the adverse effects of pollution (Pimentel et. al. [2007]) . This

could be particulate matter pollution which leads to increase of respiratory diseases,

water pollution that leads to water-borne diseases, CO2 and greenhouse gases that lead

to global warming which may lead to environmental disasters, carcinogens both gases

and soil contaminants, etc. This effect has been extensively documented in the medical

and ecology literatures. There is robust evidence that exposure to pollution leads to

increased cardio-vascular disease and controlling for the different factors an increase

in mortality (see Ayres [2006], Miller et. al. [2007], Pope et. al. [2004] ) as well as

increased incidence of chronic obstructive pulmonary disease (COPD) and increased

mortality (see HEI [2010], Viegi et. al. [2006]). These effects are present for both

developed and developing countries.

We study a two-period overlapping generations model in which the young may die

prematurely and the probability of survival into old age is determined endogenously

(Chakraborty [2004]). Production of the single consumption-capital good creates pollu-

tion as a by-product. Increased pollution increases the probability of premature death.

The medical literature also points out that increased income can counteract some of

the adverse effects of pollution via better nutrition and greater access to health care.

We model this by making the survival probability increasing in per-capita income lev-

els. Thus, there are two contrasting effects of economic growth: pollution which is

life-threatening and increased income which is life-enhancing.1 We study the impact

1We depart from Chakraborty [2004] in making the survival probability a function of two argu-
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of this formulation on the dynamic equilibria of the economy and on the role of public

policy. It is well understood that the divergence of social and private costs and benefits

will lead to under-investment in pollution abatement activities. Thus, we first look at

the impact of an exogenous linear income (wage) tax whose proceeds are used for pollu-

tion abatement. As such a tax need not be optimal, we also analyse the second-best tax

policy. There is a well-known commitment problem in imposing taxes on future gen-

erations. Thus, following John and Pecchenino [1994] we assume that the second-best

tax is set by a series of short-lived governments who decide on the tax only one period

at a time, in order to maximize the expected utility of the current young generation.

Since the resulting environmental improvement does not benefit the surviving old at

the time in which it is enacted, we assume the government is constrained to taxing the

young alone, via a tax on wage incomes.2

This framework generates some interesting results. The two contrary forces that affect

mortality can under very intuitive conditions result in a non-convexity that gives rise

to poverty traps and to sharp differences between rich and poor countries in terms of

the appropriate environmental policy. Under a uniform tax, there can be a low capital

steady state which resembles a poverty trap and in which there is lower per capita

consumption and life expectancy and a high capital steady state, which resembles the

unique steady state of a neoclassical growth model and in which per capita consumption

and life expectancy are both higher. The poverty trap is a source in that any path that

starts with a capital stock lower than at the steady state converges over time to the

zero-consumption or trivial steady state. Furthermore, increases in the uniform tax can

increase the steady state capital in the neoclassical steady state while simultaneously

widening the basin of attraction of the trivial steady state.3

Turning to the second-best tax the results are even more striking. We show that the

optimal tax is a function of the current capital stock. If this stock is below a strictly

ments, depending positively on the level of per-capita income and negatively on the level of accu-

mulated pollution, the flow of which is a by-product of final goods production. Chakraborthy [2004]

assumes that survival depends on the stock of health which in turn is an exogenous linear function of

wage incomes, so in this respect our two formulations are similar, the difference arising in the further

inclusion in our model of pollution as an argument.
2John and Pecchenino [1994] argue that the mechanism of a government setting taxes on the young

to ultimately benefit the young themselves avoids the free-rider problem which would arise if the young

were to enact optimal measures in a decentralised fashion and is equivalent to a Lindahl equilibrium

in the amount of the public good (in this case, pollution control) chosen.
3The former possibility is well known: environmental degradation imposes costs that are external

to each decision-maker so any policy that offsets this externality helps reduce these costs and if the

balance is right, actually promotes growth (see Pautrel [2007], [2011], Economides and Philippopoulos

[2008], Palivos and Varvarigos [2011] for an analysis of such effects in a variety of settings.
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positive threshold, then the optimal tax is zero and there is no expenditure on pollution

abatement. If the poverty trap lies within this region, then it is also an ‘environmental

trap’ in which pollution is never abated. In the region of positive taxation, the optimal

tax is weakly increasing in the capital stock. The dynamics in the case of optimal

taxes are also more complex than in the case of exogenous taxes. First, optimal taxes

can lead to both non-existence and multiplicity of steady state equilibria even if the

underlying economy with exogenous taxes admits a unique, neoclassical steady state.

Second, when the underlying economy admits two steady states, optimal taxes can

convert a poverty trap into a sink and a neoclassical steady state into a source.

Third, the possibility arises that in the neighborhood of either steady state there may

be endogenous fluctuations. The mechanism for this is directly related to the fact

that the tax is endogenous and increasing in the capital stock. The intuition for

fluctuations is as follows: starting with a high capital stock, the associated tax rate

is also high. The tax has two effects. First, by reducing post-tax income it tends to

decrease current savings and next period’s capital stock. Second, the ensuing reduction

in pollution decreases premature mortality and increases the incentive for young agents

to save, thus stimulating the capital stock. Depending on the strength of the two

effects resulting from this tax next period’s capital stock may decrease. Because the

capital stock is lower, the new tax rate is also lower. This has the same effects, but

in the opposite direction, and may lead to an increase in the subsequent period’s

capital stock. There are already the two contrasting effects of capital on premature

mortality and these alone can generate endogenous fluctuations even when the tax

remains constant. However, the second-best tax can amplify these effects and lead to

stronger non-linearities. It should be emphasized that the endogeneity of taxes alone

can drive fluctuations since these can arise even if the underlying steady state is unique

and neoclassical in behaviour.

The plan of the paper is as follows. In section 2 we review the relevant literature from

both an empirical and theoretical standpoint. In section 3, the benchmark model is

developed. Section 4 studies the effects of exogenous (constant) taxes, and section 5

studies the second-best optimal tax. In this section we first characterize properties of

the optimal tax function, and then study the dynamics of the equilibrium trajectories.

The final section concludes.
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2 Relevant literature

There has been a surge of recent interest, as exemplified by this paper, on the theoretical

and policy implications of a positive link between pollution and premature mortality.

At the same time, empirical investigation of this link has been going on for over two

decades. The most common approach regresses time series on mortality counts against

short-run variations in particulate matter, PM10.
4 The popularity of this approach

arisee because it enables the researcher to assess how short-term changes in air pollution

lead to acute health effects without the need to consider idiosyncratic risk factors.

Moreover, such research studies the relationship between low levels of pollution and

mortality rather than focusing on extreme episodes.

One of the earliest studies to follow this approach, Ostro [1984], used London data to

estimate a simple linear regression model, finding mortality to be significantly affected

by pollution even at greatly reduced concentrations. Another early study on London,

Schwartz and Marcus [1990], employed autoregressive regression techniques to find

pollution correlated with mortality, again at relatively low levels of PM10.

Time series analysis raises some concerns. Bell et. al [2004] list four major concerns: (i)

serial correlation of the residuals that could lead to underestimating standard errors

of the estimated parameters; (ii) the choice of appropriate lag length of PM; (iii)

accounting for PM measurement error; and (iv) uncertainty associated with model

choice. In addition, time series analysis may be subject to confounding bias if it omits

other relevant factors that vary on similar timescales, such as temperature variations

and influenza epidemics which contribute to respiratory illness. Partly reflecting such

concerns, the Health Effects Institute (HEI) in the United States arranged as early

as in 1995 for the replication of some of the earlier studies, the results of which were

published in a report by Samet et. al. [1995]. These authors concluded the effect of

PM on mortality remained robust although the model estimates did vary depending

on the different approaches used to control for confounding factors.

More recent studies have attempted to systematically compare the results from indi-

vidual studies using multiple data sources and taking into account model selection and

estimation problems (EPA [2002]; HEI [2003], Peng et. al. [2006]). Apart from issues

such as confounding bias, these studies have paid attention to the limitations arising

from single-city findings and from model uncertainty (see also Clyde and DeSimone-

Sasinowska [1998]).

4PM10 - particulate matter - measures the mass concentration of pollutants with an aerodynamic

diameter less than 10 µm (microns). PM10 is considered to be benchmark as particulate matter larger

then this does not pass through the upper airways to reach the lungs (Ayres [2006]).
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The 1996 Air Quality Criteria Document (EPA [2002]) incorporated results from 35

PM and mortality time-series studies published between 1988 and 1996. Although five

of the studies on which this report was based were later found to have used a faulty

software routine, the report associated a 50 µg /m3 increase in 24-hour PM10 with

a 2.5%-5% increase in premature nonaccidental mortality for the general population.

Working with the National Morbidity, Mortality and Air Pollution database, Peng et.

al. [2006], compared studies hat covered the period 1996- 2004. Differentiating between

those studies that used the faulty software (70%) and those that did not (30%) they

found that even the latter estimated a 1% to 8% increase in mortality risk for a 50

µg /m3 24-hour PM10. From their own analysis of the database, in which they pooled

the data using Bayesian hierarchical models, they reported an average (across 100 US

cities) of 0.15% increase in mortality with an increase of 10 µg/m3 in PM10. Burnett et.

al. [1998] have reported similar results using multi-city data from Canada on pollutants

such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone.

This discussion points to two relatively robust findings. First, there is a significant effect

of PM pollution on mortality even at very low levels. While the estimate is sensitive

to the model specification and estimation procedure, there is a robust effect of PM

pollution on mortality. Second, the effect varies in the short run and across time and

space so that the estimation procedures can give different results. Our model uses the

first insight that pollution even at low levels affects mortality, and generates multiple

steady states and non-linearities that can lead to cycles in pollution levels and the

economic variables. Thus, it can give rise to the second phenomenon and thus, the care

has to be taken in estimating and interpreting time series evidence. Furthermore, as the

equilibria are inherently non-linear, there can be substantive problems in calibrating

these models.

Turning to the theoretical literature, our paper is closely related to Pautrel [2007],

[2011]; Jouvet et. al. [2010]; Mariani et. al. [2010], Varvarigos [2008], [2010] and

Palivos and Varvarigos [2011]. These papers all assume a negative relationship between

survival and environmental degradation.5 Many of them also adapt Chakraborty’s

[2004] model with overlapping generations and uncertain lifetimes. While resembling

this paper in these respects, on the key issues studied here, there are some important

differences. For example, although Pautrel [2007], [2011] and Jouvet et. al. [2010],

5While environmental degradation can take many forms, most of the above papers associate it

with pollution, as we do. As an exception is Mariani et. al. [2010] who use John and Pecchenino’s

[1994] formulation of environmental quality as a broad concept which could include measures such as

water quality and availability of natural resources. Jouvet et. al. [2010] include physical space as an

additional measure of environmental quality along with pollution, although the former directly enters

the utility function of agents while the latter affects only survival probability.
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study first- and second-best environmental policies, they do not consider the possibility

of non-convexities and multiple steady states. Thus their insights differ in a qualitative

way from the ones developed in this paper. Of the papers which do focus on more

complex dynamics, Mariani et. al. [2010], Varvarigos [2010] and Palivos and Varvarigos

[2011] consider multiplicity of steady states while Varvarigos [2008] and Palivos and

Varvarigos [2011] consider the possibility of fluctuations around the long-run growth

path.

Of the papers that hypothesise the existence of poverty traps and multiple steady states,

both Mariani et. al. [2010] and Varvarigos [2010] assume step-wise discontinuities in

the relevant state spaces of their respective models; neither of their mechanisms relies

on a tradeoff between capital and pollution stocks in affecting survival probability, as

in our paper. Mariani et. al. [2010] assume that environmental quality is the only state

variable and that survival probability jumps once a threshold level of environmental

quality has been crossed. Thus the interaction between capital and pollution stocks in

affecting life expectancy is not studied.6

Varvarigos [2010] does consider capital accumulation in a model of environmental degra-

dation via pollution and, like us, assumes that survival probability depends positively

on income and negatively on pollution. However, he uses a specific functional form

for this relationship, which does not generate multiplicity of steady states. To obtain

the latter, he then assumes a step function in technology adoption such that at some

threshold level of capital firms find it profitable to escape pollution taxes by switching

to a ‘clean’ technology. While plausible, this explanation for multiple steady states

is somewhat orthogonal to the growth-pollution-lifetime nexus which forms the core

of this literature. Indeed, as our paper shows and contrary to the claim in Varvari-

gos [2010], the costs of pollution in terms of increased mortality are indeed sufficient

to guarantee multiple equilibria. In addition, environmental policy enters only to the

extent of an exogenous penalty for the use of dirty technology.

Palivos and Varvarigos [2011] comes closest to our paper in terms of the proposed ratio-

nale underlying multiple steady states. Like us, they emphasise the growth-pollution-

lifetime nexus as an underlying mechanism for generating multiple steady states. In

that respect the two papers are very similar. However, beyond that the issues they

6Mariani et. al. [2010] also follow John and Pecchenino [1994] in assuming that abatement activities

affect environmental quality in an additively separable fashion from degradation activities, implying

that ‘abatement’ alone can be used to improve environmental quality even if there is no degradation

taking place to begin with. This possibility might be plausible for certain types of activities and

certain definitions of the ‘environment’ but as a general formulation, it has been criticised by, among

others, Economides and Philippopoulos [2008] and Varvarigos [2008].
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highlight with the help of their mechanism are very different from those highlighted in

this paper.

Palivos and Varvarigos [2011] focus on the possibility of endogenous fluctuations around

the long-run growth path. The underlying intuition is similar in both papers: higher

life expectancy induces greater savings and capital accumulation which in turn in-

creases emissions, leading to lower life expectancy and lower savings. Although there

is considerable evidence, as cited in the Introduction, of a positive short-term link be-

tween emissions and mortality rates, it is not clear whether this in itself is capable of

generating the cyclical pattern of savings and capital accumulation which the above

hypothesis requires to complete the circle. Indeed if the increased mortality rates as-

sociated with higher pollution mainly affect the old and infirm or the very young, the

impact on savings would be negligible. Indeed, our analysis suggests that fluctuations

might arise not just in the context of Palivos and Varvarigos [2011] but also as a result

of second-best abatement policy.

The policy dimension of our paper is also quite different from both Varvarigos [2010]

and Palivos and Varvarigos [2011]. In both cases, one goal of environmental policy

is to eliminate fluctuations, something which is not conventionally considered to be

a goal of protecting the environment. In any case, neither considers a second-best

taxation regime. Varvarigos [2008] does not calculate any kind of optimal tax, while

Palivos and Varvarigos [2011] consider an allocation of given tax revenues between

pollution abatement and health-enhancing expenditures which maximises the survival

probability of young agents, rather than their welfare. Our policy analysis is different

not just in terms of objective functions and instruments but also in comparing the

qualitative properties of the growth path with and without second-best policy.

3 Model:

Time is discrete and denoted by t = 0, 1, . . .. Each period a new generation is born,

indexed by its period of birth. A generation consists of a continuum of agents normal-

ized to measure one. Agents born in period t live at most until the end of period t+ 1.

There is uncertainty whether an individual will survive till old age.The probability that

an agent born in period t lives until the end of period t+1 is denoted by πt, while with

probability 1− πt the agent dies at the end of period t.

Each agent supplies one unit of labour inelastically when young and receives a wage wt
which is used to finance current consumption, cyt and savings for old age, st. Old agents

have no labour endowment and live entirely off the proceeds of their savings. Following
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the literature on uncertain lifetimes, we assume that there is a perfect annuity market

in which young agents buy annuities from perfectly competitive intermediaries who

lend out the proceeds to firms for investment in productive capital. Each unit of time

t investment results in one unit of time t+ 1 capital, kt+1 which becomes immediately

available for production and fully depreciates in that period. Thus,

kt+1 = st (1)

At time t = 0, k0 is exogenously given.

3.1 Production and factor prices:

The production function is Cobb-Douglas and displays constant returns to scale. It

can be expressed in intensive form:

yt = Akαt

where y is output per worker and k is capital per worker.

The gross returns to capital and labour rt and wt respectively, are equal to their

marginal products:

wt = (1− α)Akαt (2)

rt =
αA

k1−αt

(3)

Because a positive fraction of savers do not live into old age, the return on period t

savings for those who survive is rt+1/πt.

3.2 Pollution emission and abatement:

The production process creates a proportionate flow of pollutants:

ζt = γyt, γ > 0.

The stock of pollutants, zt, depends both on current flows and on past stocks, according

to:

zt = ζt + φzt−1.
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where φ represents history-dependence in the stock of pollution. (1 − φ) ∈ [0, 1] is

the environment’s natural capacity to regenerate itself, which we have assumed to be

constant over time.7

Environmental policy is implemented by a succession of governments which last one

period each and impose an environmental tax, τt on the wage incomes of the contem-

poraneous young.8 The proceeds are spent on operating a carbon capture or clean-up

technology that reduces the flow of pollutants. The efficiency of this technology, i.e.

the reduction in pollution flows, is assumed to be a linear function of tax-financed ex-

penditures. The proportionality factor is defined as χ ≥ 0. Thus, given the technology,

the stock of pollution accumulates according to

zt = γyt − χτtwt + φzt−1,

which, after substituting for wt and redefining terms, simplifies to

zt = γ(1− ψτt)Akαt + φzt−1. (4)

where ψ = χ(1− α)/γ is assumed to lie in [0, 1].9

At time t = 0, the existing stock of pollution, denoted by z−1 is exogenous. In principle

z is a state variable whose initial value can be any arbitrary positive number, but as

we show below, the long run dynamics of the system are driven entirely by the path of

capital accumulation, so to ease exposition without losing generality we assume that

z(−1) = ζy(0), where ζ ≥ 0 is constant.10

3.3 Probability of survival and the rationale for environmental

policy:

We assume that the probability of survival into old age is identical for all agents and

is represented by a twice differentiable function of yt and zt. The level of per-capita

7The literature on greenhouse gases however suggests that there is a critical level of greenhouse gas

build-up beyond which the natural regenerative capacity of the environment will cease to exist. This

suggests that φ depends on the stock of greenhouse gases. See Brunekreef and Holgate [2002] for a

discussion of evidence, and D’Souza and Goenka [2011] for a modeling effects of the threshold effect.

Due to the threshold effect, there is the additional non-convexity from which we abstract from.
8The reason for restricting the incidence of environmental taxes to the young generation is explained

in the section where the optimal tax policy is derived.
9This formulation avoids the additively separable implication that as a result of abatement, the

flow of emissions can be made negative.
10If ζ = γ/(1− φ) this would be equivalent to assuming that the inherited stock of pollution equals

the value it would have taken if the capital stock had remained at k0 since times immemorial.
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income is assumed to be positively related to longevity while the stock of pollution is

negatively related. In addition, we assume that, if per-capita income is zero, survival

probability is at some minimal level regardless of the stock of pollution and that as the

stock of pollution approaches infinity, survival probability tends to zero regardless of

the level of income.

Assumption 1

πt = π(kt) = π(y(kt), z(kt)); (5)

π ∈ [0, 1], ∀y ≥ 0 & ∀z ≥ 0; (6)

∂π

∂y
≡ πy(y, z) ≥ 0, ∀y ≥ 0; (7)

∂π

∂z
≡ πz(y, z) ≤ 0, ∀z ≥ 0; (8)

π(0, z) = π ∈ [0, 1] ∀z ≥ 0; (9)

π(y,∞) = 0 ∀y ≥ 0. (10)

The only consequence of pollution in this model is that it creates a negative external

effect on expected lifetimes. Given the overlapping generations framework this exter-

nality affects the young generation alone by affecting their expected lifetime utility. As

only the young work, the output is not affected by pollution directly. Thus, there is

a potential for welfare improvement by means of a tax on the young, the proceeds of

which are spent on abating pollution. Of course, in choosing an optimal tax rate, the

government has to trade off the distortionary effects of such taxes on young agent’s

savings decisions along with the beneficial externality arising from growing incomes.

3.4 Preferences

Each agent has a time-separable expected utility function of the form:

U t = lncyt + πtlnc
o
t+1

which the agent maximises subject to the life-cycle budget constraints:

cyt ≤ wt − st (11)

cot+1 ≤
rt+1

πt
st (12)

where superscipt {y, o} denotes the agent’s age and subscript t the calendar time. c

denotes consumption and s denotes savings. cot+1 is ex post consumption for an agent

who survives into old-age.
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The logarithmic specification has the convenience of generating an explicit solution for

the dynamic path of the capital stock. Taking the first-order condition with respect to

savings,

− 1

cyt
+

πt
cot+1

rt+1

πt
= 0;

and combining with equations (11), (12) and (3), results in the following equation:

st =
πt

1 + πt
A · (1− τt)(1− α)kαt

3.5 Equilibrium

Using the market clearing condition, i.e. substituting into equation (1) we have:

kt+1 =
πt

1 + πt
A · (1− τt)(1− α)kαt (13)

Given k0, z−1, the dynamic path of the economy is fully described at each point of

time by recursive application of equations (4) and (13). Thus, given an abatement

policy, equation (13) fully describes the dynamic equilibrium. For given k0, the entire

trajectory of the capital stock is traced out by recursive application of equation (13)

while the accompanying evolution of the stock of pollution follows from recursively

applying equation (4). The other variables are updated similarly.

In the following section we consider the dynamics of the economy for an exogenously

given, uniform tax rate. The problem of optimal taxes is taken up in the section after

that.

4 Exogenous Taxes

We first consider the case of exogenous taxes, τ , to understand the benchmark case.

We examine the dynamics in the model and what are the effect of varying the tax rate.

12



4.1 Dynamics

A steady state is described by the following equations:

π = π(k) = π(y(k), z(k)); (14)

k =
π(k)

1 + π(k)
A · (1− τ)(1− α)kα; (15)

z =
γ(1− ψτ)Akα

1− φ
; (16)

y = Akαt ; (17)

where π, k, z and y denote steady state values of the respective variables.

Equation (15) can be written as

k = G(k);

where

G(k) =
π(k)

1 + π(k)
Γkα;

and Γ = A · (1− τ)(1− α) is a constant.

Under (9), at k = 0,

G(0) =
π

1 + π
Γ(0)α = 0;

implying that a trivial steady state exists at k = 0.

If π, the survival probability was constant, then G(k) would represent a standard con-

cave neoclassical growth mapping, as in Diamond [1965], with G′(0) = ∞, G′′(k) <

0, ∀k, so that a unique interior steady state would exist. Moreover, the dynamics

would be globally stable.

However, with endogenous survival probability, other possibilities exist. Note that π is

continuous and differentiable in its arguments which in turn are continuous and differ-

entiable in k. Therefore, π is continuous and differentiable in k and G(k) is continuous

and differentiable in k. Taking derivatives of both terms in G(k) and rearranging:

G′(k) =

[
Γkα

1 + π(k)

] [
α
π(k)

k
+

π′(k)

1 + π(k)

]
, (18)

it can be seen that the shape of G(k) can be quite different from the standard neo-

classical mapping, depending on how π′(k) varies with k. Taking the limits of the two

terms inside square brackets as k → 0, the first term clearly goes to zero and the limit

of the second term can be expressed as:
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α ·
{

lim
k→0

π(k)

k

}
+

{
lim
k→0

π′(k)

1 + π(k)

}
where the limit of the first term is given by L’Hopital’s Rule as:

lim
k→0

π(k)

k
= lim

k→0
π′(k)

and limk→0 π
′(k) < ∞ is a sufficient condition for the limit of G′(k) to approach zero

as k → 0.

Thus limk→∞ π
′(k) < ∞ is a sufficient condition for the transformation map G(k) to

lie below the 45o line close to the origin (see Figure 1 below). This makes it possible

for multiple steady states to arise. While this condition applies to the reduced-form

version of the survival probability, it is more instructive to take into account the chain of

dependence of π on y and z and through these variables on k. Given the Cobb-Douglas

production function assumed throughout the paper, we can express π′(k) as:

π′(k) = πy
y

k
+ πz

z

k

In order for the sufficient condition to hold, πy and πz should have exponents in k which

are large enough to offset the denominator. The following specialisation of Assumption

1 is sufficient to ensure this outcome, and we impose it from hereon:

Assumption 2

πt = π((yt)
β, (zt)

δ)

min{β, δ} ≥ 1

α
;

Assumption 2 implies that non-convexities exist in the relationship between survival

probability and its determinants over at least some range of values of y and z. What

is the justification for imposing these effects? Let us consider in turn the two deter-

minants. While the empirical literature suggests that even low levels of pollution can

result in increased mortality, it does not tell us much about the overall shape of the

relationship. It is likely that at low levels of pollution, the marginal effect of pollution

on mortality is low. Higher levels of capital are likely to produce an acceleration in the

detrimental effects of pollution until eventually the natural bounded-ness of the the

survival probability flattens out this relationship.11

11Even if the shape of the pollution-mortality relationship does not live up to the above intuition,

a non-convexity could arise from the side of the income-mortality relationship. If neither effect is

strong enough to satisfy Assumption 2, the steady state with exogenous taxation will be unique and

neoclassical; our results on second-best taxation will then apply only to this case.

14



The effects of income, on the other hand, are likely to be more complex. If agents have

Stone-Geary utility functions, then at very low levels of development the marginal im-

pact of growth would be close to zero but once the survival threshold is met, further

increases in income would yield positive effects. This alone would generate increasing

returns in the relationship between π and y close to the trivial steady state. In addi-

tion, if investments in the technology to meet the populations’ basic survival needs are

subject to increasing returns then again the early relationship between income and life

expectancy can display increasing returns. As for empirical evidence on this relation-

ship, conventional understanding was based on the Preston Curve, which postulated

a positive and concave relationship between per-capita incomes and life expectancy

(Preston [1975]).

Recent studies, however, call into question this finding, based as it is on a simple

cross-section comparison across countries. Georgiadis et.al [2010] have shown that

if countries are disaggregated between high HDI (Human Development Index) and

low HDI, the Preston Curve fits well the high HDI (mainly rich) countries but has no

explanatory power for low HDI (mainly poor) ones. Moreover, Azomahou et. al. [2010]

have shown, using historical data for a panel of 18 rich countries, that the relationship

has alternating convex and concave segments.12

In the absence of Assumption 2, it is possible that G′(0) > 1 and a unique steady

state with globally stable dynamics would result, as in a standard neoclassical growth

model. In the section of optimal taxes, we shall use the case of neoclassical dynamics

as a benchmark against which to compare the dynamics which arise under Assumption

2 and multiple steady states.

While Assumption 2 implies that for low values of k: k > G(k), it is easy to show that

the reverse is true for sufficiently large values of k. If we let k̃ = (0.5Γ)
1

1−α for given

Γ, α; then ∀k ≥ k̃, G(k) ≤ k. To see this, suppose k ≥ k̃ and that, contrary to the

claim, G(k) > k. Since π ≤ 1 by definition, then π/(1 + π) ≤ 0.5 and G(k) ≤ 0.5Γkα.

By transitivity it must be the case that 0.5Γkα > k. But then 0.5Γ > k1−α and

(0.5Γ)
1

1−α ≡ k̃ > k, leading to a contradiction.

So far we have established that either (i) there is no interior steady state or (ii) there

are multiple interior steady states. To ensure (ii), note that the steady state equation

12Note, however, that their focus is on the causal implications of longer life expectancy on growth

rather than the other way around and both their econometric specification and their theoretical model

are based on this. Nonetheless their finding is indicative of the absence of smooth concavity and while

our own assumed relationships place the convex segments at different levels of growth than that

estimated by those authors, it should be noted that our general results do not rely on exactly where

the convex portions lie.
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can be rearranged as follows:

Γ =
1 + π(k)

π(k)
k1−α

Given the function π(k) and any finite and positive value of k, the right-hand side will

be positive and finite. Since Γ is exogenous and positively related to A for τ < 1 and

α < 1, there always exists A large enough that

Γ >
1 + π(k)

π(k)
k1−α

This leads to the following result, stated without proof:

Lemma 1 For any α ∈ (0, 1) and τ ∈ (0, 1) there exists an Â <∞ and a k̂ <∞ and

asssociated Γ̂: Γ̂ = ((1 + π(k̂))/(π(k̂))k̂1−α, such that Γ > Γ̂, G(Γ, k̂) > k̂.

Lemma 1 implies that so long as disembodied productivity is high enough to begin

with (given a function π(k)), G(k) will exceed k for a non-empty interval of values of

k. Along with the results on the slope and level of G(k) derived earlier, this leads to

the following proposition

Proposition 1 If the disembodied productivity, A is large enough, and Assumption 2

holds, then there are two interior steady states, k∗` and k∗h, such that k∗1 < k̂ < k∗2.

Given that two steady states exist, how do they compare with each other and what are

their dynamic properties? The higher steady state, k∗2 has more capital and therefore

more consumption as well as a higher stock of pollution. Despite the latter, it has

greater survival probability due to the fact that higher output more than compensates

for the higher stock of pollutants. To see this note that in the steady state, the survival

probability must satisfy

π(k) =
k1−α

Γ− k1−α
which is increasing in k.

Figure 1 below represents the transformation map, depicting kt+1 function of kt. Note

that in drawing Figure 1, we hold constant the uniform tax rate, τ .

The 45o line represents potential steady states. G(k) is S-shaped upwards, sharing its

origin with the 45o line and intersecting it at two other points k∗` , k
∗
h. Since, for points

which lie between the origin and k∗1, G(k) lies below the 45o line, any path starting off

with k0 ∈ (0, k∗` ) will converge to the trivial steady state, while for points between k∗`

16



Figure 1: Multiple steady states

and k∗h, G(k) lies above the 45o line, any path starting off at k0 > k∗` will converge to

k∗h.

k∗` represents a poverty trap not just in the sense that it is the steady state with lower

levels of economic activity and pollution flows, but also in the sense that it represents

a threshold starting point below which the equilibrium path of the economy converges

asymptotically towards zero. We shall therefore refer to this type of steady state as a

‘poverty trap’. k∗h represents a stable steady state, which resembles locally the unique

steady state of a neoclassical growth model. We shall refer to this type of steady state

as a ‘neoclassical steady state’ even when it is paired with a poverty trap.

It should finally be noted that strict concavity of G(k) can lead it to slope downward at

some point. A necessary condition for this to happen is π′(k) < 0, which can happen

at high enough values of k. To be precise, G(k) can slope downwards as it crosses

the 45o line from above, leading to oscillations and limit cycles in the stock of capital

and the flow of emissions around the upper steady state.13 While this possibility is

of theoretical interest, to pursue it further would benefit from using a more general

framework, rather than the simpler one we have chosen to characterise the effects

13Note that G(k) cannot slope downwards at the low steady state, even if π′(k) < 0.
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Figure 2: A uniform increase in the tax rate.

4.2 Comparative statics:

To understand the interaction between pollution, mortality and income we carry out a

comparative static exercise for an increase in the tax rate on emissions. This has the

following effect on G(k):

∂G(k)

∂τ

∣∣∣∣
k

=

[
− π

1 + π
−

[πz
γψ
1−φ ](1− τ)Akα

(1 + π)2

]
(1− α)Akα (19)

where πz is the partial of π with respect to z alone (the effect of k on z is accounted for

by the rest of the numerator in the second term). The above derivative is ambiguous

in sign because πz < 0. An increase in τ lowers net wage incomes, which at constant π

tends to lower G(k). However, it raises π through its negative effect on z. This tends

to work against the downward shift in G(k). However, the effects on π are weighted

by kα. Whatever the net effect on π, this term is likely to be dominated by the direct

effect of τ on wage income for low values of k. Thus G(k) is likely to shift down at low

levels of k even if it shifts up at higher levels. These combinations of effects are shown

in Figure 2.

As can be seen, an increase in τ causes a downward shift in G(k) at low levels of capital

stock but upwards at the high capital stock. There are two new steady states, k∗′1 and

k∗′2 , with the former being unstable and the latter being stable. Compared with their

respective predecessors, both steady states are at higher levels of capital stock. The
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dynamic implications of this shift are that while the range of starting points which

lead to a poverty trap has now increased from the interval [0, k∗1] to the interval [0, k∗′1 ]

for economies that start of to the right of k∗′1 will be on a path of convergence a

higher steady state than before, with higher capital as well as higher expectations of

longevity. In other words, with an arbitrary stationary tax, it is possible that initially

poor economies become more likely to end up in a poverty trap while initially wealthy

economies actually become wealthier as the curbs on pollution raise expected lifetimes

and stimulate further capital accumulation.

4.3 An example of π(k)

Assuming the specific functional form:

π = πAπB

where

πA =
π + yβ

1 + yβ

then it can be shown that πAy > 0 if π < 1 and that πAyy ≤ 0 if and only if y ≤
[(β − 1)/(1 + β)]1/β so that for any β > 1, πA(y) is S-shaped upwards.

If similarly,

πB =
1

1 + zδ

then it can be shown that πB < 0 and that πBzz ≤ 0 if and only if z ≤ [(δ−1)/(1+δ)]1/δ

so that for any δ > 1, πB(z) is reverse S-shaped downwards.

Thus, the above function satisfies the sufficient conditions for multiple steady states.

Indeed it can be shown that, after imposing the steady state relationship between y,

z and k and totally differentiating, that a sufficient condition for π′(k) to satisfy the

conditions of Lemma 1 as k approaches zero is that

min{β, δ} > 1

α
> 1

The above ensures that limk→0 π
′(k) = 0, which is stronger than what is needed for

Lemma 1.

If we consider a special case where π = 0, then π′(0) = 0 so long as β > 1/α. Actually,

for that case, it can be shown that a weaker condition can suffice to generate G′(0) = 0,

i.e.

β >
1− α
α
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This is because the combination of the terms

G′(k) =

[
Γkα

1 + π(k)

] [
α
π(k)

k
− π′(k)

1 + π(k)

]
.

can converge to zero even if each term inside the square brackets does not.

Another special case is to assume πA = π̄ so that growth affects survival probability

only through pollution. This case could also lead to multiple steady states if δ > 1/α

and could also be used as a vehicle for studying optimal tax policy but because it

implies a counter-factually monotonic and negative impact of growth on survival, we

ignore it.

Returning to the main functional form assumed above, for the following set of param-

eter values,

α = 1/3, A = 2, γ = 1, π = 0.0, β = δ = 5, ψ = 0.8, φ = 0.1;

MATLAB was used to solve for steady states at different values of τ . The results were

τ k∗` k∗h
0.00 0.0339 0.0965

0.15 0.0404 0.1136

0.35 0.0686 0.1026

In increasing the tax from a no-tax benchmark, the levels of capital per worker rises in

both steady states, illustrating the possibility that an arbitrary imposition of environ-

mental taxes can hinder growth in low-income economies, by expanding the size of the

poverty trap, while simultaneously promoting it in high-income ones by increasing the

size of the steady level of capital and output per worker. Increasing the tax rate even

further, however, results in the conventional effect at the higher steady state, while

continuing to expand the poverty trap at the lower end.

5 Optimal taxes

We now assume that in each period t, a government chooses an optimal pollution tax

to maximise the lifetime welfare of the generation born in that period. In choosing

the tax, it takes the inherited stocks of capital and pollution as given but takes into

account the effect of its abatement policy on the savings and expected lifetimes of the

contemporaneous young. Its problem is stated as:

max
τt

U t = lncyt + πtlnc
o
t+1
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subject to the agents’ budget constraints (11), (12), the equation of motion for capital,

(13), and the equation of motion for the stock of pollution (4) and size restrictions on

the tax rate: 1 ≥ τ ≥ 0.

After substituting for cyt , c
o
t+1 and kt+1 from equations (11), (12) and (13) respectively

into the objective function, the problem can be seen to be a static one:

max
τt

V (kt, τt) = ln

(
(1− τt)(1− α)Akαt

1 + π(kt)

)
+ π(kt)ln

(
α(1− α)αA1+α(1− τ)αk2α

π(kt)1−α(1 + π(kt))α

)
.

(20)

In other words, the optimal wage tax at time t depends only on the capital stock at

time t, since capital accumulation has been endogenised and accounted for.

The first-order condition can, after rearrangement, be expressed as:

dVt
dτt

=

[
lncot+1 −

2− α + πt
1 + πt

]
· ∂πt
∂τt
− 1 + απt

1− τt
≤ 0; (21)

where < 0 implies τt = 0.

With some further restrictions, the above condition underlies a policy function, τt =

h(kt). Substituting the solution into equation (13) for capital accumulation yields

kt+1 = G(h(kt), kt). The dynamic path of the economy is traced out by repeated

iteration of the above. A steady state of the economy with optimal taxes is given by a

pair k and τ = h(k) such that k = G(h(k), k).

The terms in the above expression represent the following effects: the direct effects

of a tax on wage incomes, and the indirect effects working through induced changes

in survival probability. The direct effects reduce both consumption and savings by

the young, and are negative. These are captured by the last term in the optimality

condition. The indirect effects are captured in the term inside square brackets. An

environmental tax raises survival probability, leading to higher expected utility in old

age. At the same time the higher survival probability reduces actual consumption at

both young and old age, the first because savings are increasing in survival probability;

the second because although individuals save more the return to their annuities yields

less because of the higher survival ratio of the population. The last effect can be

confirmed from equation (20) which is decreasing in π. The intuition is that while

per-capita old-age capital increases by a factor of [π/(1 + π)]α, the market return on a

unit annuity decreases by a factor 1/π. Indeed for an environment tax to be optimal,

the gains from higher life expectancy have to outweigh the other effects and that in

turn requires a minimum level of old-age consumption to begin with.

Proposition 2 If k0 is below some threshold level k, then the optimal environmental

tax, τ ∗ = 0.
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Proof : From (21) we see that a necessary condition for τ ∗ > 0 is

Ωt =

[
lncot+1 −

2− α + πt
1 + πt

]
> 0.

At low levels of initial capital, k0, this is not going to hold. This is because the negative

term in Ωt is always non-zero while the positive term approaches zero (or minus infinity

given the logarithmic specification) as the capital stock approaches zero. Thus there

exists some threshold level k; such that for any k0 < k, Ω < 0.

To see the potential for a positive tax at higher levels of capital, consider how Ω behaves

as capital rises, abstracting for now from the equilibrium path. In principle, there will

always be an arbitrarily high level of kt such that Ωt > 0. This is because the first term

in Ωt has the potential to increase monotonically with kt, at least after some threshold,

while the second term is always bounded in the interval [(3−α)/2, (2 + π−α)/(1 + π]

and within this interval, it falls with increases in πt. cot+1 rises monotonically with

kt even when πt rises as well. If along the dynamic path, the detrimental effects of

pollution make πt start declining in kt, then cot+1 rises even faster with kt. At some

level of development, Ωt will be positive and increasing in capital. The other negative

term in the first-order condition is similarly bounded above at (1 +α), when evaluated

at a zero tax rate. Thus, at a second critical level of development, an interior solution

will arise for a positive optimal tax. The question is what level of development has to

be reached before it arises and to what extent this level coincides with potential steady

states of the economy.

To pursue these conjectures more rigorously, we first establish some general conditions

for the applicability of a positive environmental tax at some threshold level of income.

Let the right-hand side of equation (21) be denoted by:

H(kt, τt) = Ωt ·
∂πt
∂τt
− 1 + απt

1− τt

The first condition needed for a well-behaved tax function is

∂H

∂τt

∣∣∣∣
H=0

< 0.

In other words, that the second-order condition is satisfied whenever the first-order

condition holds as an equality.

The second condition ensuring a well behaved tax function is:

∂H

∂kt

∣∣∣∣
τ=0,H=0

> 0.
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In other words, evaluated at the point where the first-order condition first holds as an

equality at a zero tax, it is upward sloping in kt. Note that at very low levels of the

capital stock, this may not be true but what the above condition requires is that it be

true in the neighbourhood of the threshold where an optimal tax first arises.

To explore the above conditions further, differentiate H with respect to its arguments

(time scripts will be suppressed as all variables are contemporaneous. After some

manipulation, these derivatives can be written as

∂H

∂τ
= Ω

∂2π

∂τ 2
− 2α

1− τ
∂π

∂τ
− 1 + απ

(1− τ)2
− π(1 + π) + (1− α)

π(1 + π)2

(
∂π

∂τ

)2

; (22)

∂H

∂k
=
∂Ω

∂k

∂π

∂τ
+ Ω

∂2π

∂τ∂k
− α

1− τ
∂π

∂k
; (23)

where
∂Ω

∂k
=

2α

k
− (1 + π)2 − π − α

(1 + π)2
νπk

where νπk is the elasticity of survival probability with respect to capital. This is

eventually decreasing in k due to the positive and eventually diminishing effects of

greater income and the negative and eventually increasing effects of higher pollution.

It can turn negative at some point; however, we shall restrict our analysis to cases

where it remains strictly positive.

None of the above terms can be signed unambiguously but two comments are in order.

First, as noted before, a positive effect of k on Ω is necessary for the first-order condition

to eventually hold. What this in turn requires is that along the infra-marginal path of

capital, i.e. before the first-order condition kicks in, there is some range of values of

k where the elasticity of survival probability with respect to the capital stock (taking

into account both the beneficial and detrimental effects) is sufficiently small. As noted

above, this elasticity will eventually diminish with growth in the capital stock, implying

the existence of a threshold value of capital after which ∂Ω/∂k > 0. From hereon

we neglect consideration of values of k below this threshold, as for the purposes of

deriving an environmental tax, such values of k cannot admit positive solutions for

τ . Second, a sufficient condition for the second-order condition for τ to be negative is

that π is concave in τ . However, this is likely to be too restrictive, given the following

relationship between the second-order derivatives of π with respect to τ and z:

∂2π

∂τ 2
= (ψγAkα)2

∂2π

∂z2

Thus, π will be concave in τ if and only if it is downwards concave in z. But given

the likely impact of pollution levels on survival probability, this portion of the π − z
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relationship applies at lower levels of pollution, when it is less likely that the first-order

condition for an optimal tax will hold as an equality. At higher levels, it is unlikely

that π is concave in τ . This rules out imposing concavity on the π − τ relationship as

a sufficient condition for ensuring the validity of the second-order condition.

To proceed further, we turn to the specific example of the survival probability assumed

earlier.

π = πAπB =

[
π + yβ

1 + yβ

] [
1

1 + zδ

]
In the following subsections we first analyse the sign of ∂2π/∂τ 2 and then the sign of

∂2π/(∂τ∂k)

5.1 The second-order condition, ∂H/∂τ

The following expressions are derived for the specific form (time scripts are again

suppressed).
∂π

∂τ
= πA

ψδγAkαzδ−1

(1 + zδ)2
> 0; (24)

∂2π

∂τ 2
= πA

(ψγAkα)2δzδ−2

(1 + zδ)3
[
(δ + 1)zδ − (δ − 1)

]
.

By comparing the two expressions, the latter can be written as

∂2π

∂τ 2
= πA

(
ψγAkαδ

z(1 + zδ)
· ∂π
∂τ

)[
(δ + 1)zδ − (δ − 1)

]
>

=

<

 0 as zδ


>

=

<

 δ − 1

δ + 1
,

confirming the dependence of the sign of ∂2π/∂τ 2 on that of ∂2π/∂z2. To proceed fur-

ther with an analysis of the second-order condition, equation (22), note from equation

(4) that:

γAkαt =
zt − φzt−1

1− ψτt
.

Suppressing time subscripts, let us write this as

γAkα =
z − φz′

1− ψτ
,

where z′ = zt−1. The above can be further modified:

∂2π

∂τ 2
= πA

(
ψδ(z − φz′)

z(1− ψτ)(1 + zδ)
· ∂π
∂τ

)[
(δ + 1)zδ − (δ − 1)

]
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Now, from equation (21),

Ω ≤ 1 + απ

1− τ
1

∂π/∂τ
∀ τ

Thus, taking the term involving ∂2π/∂τ 2 in equation (22),

Ω
∂2π

∂τ 2
≤
(

1 + απ

1− τ
ψδ(z − φz′)

z(1− ψτ)(1 + zδ)

)[
(δ + 1)zδ − (δ − 1)

]
Combining with one of the other terms in equation (22)

Ω
∂2π

∂τ 2
− 1 + απ

(1− τ)2
≤
[

1 + απ

1− τ

][
ψδ(z − φz′)

[
(δ + 1)zδ − (δ − 1)

]
z(1− ψτ)(1 + zδ)

− 1

1− τ

]
(25)

The sign of the above term will depend on the sign of the term inside square brackets.

After some manipulation, the sign of the latter can be shown to be negative if the

following holds:

− [1− ψ{1 + δ(1− τ)}]zδ

(1− ψτ)(1 + zδ)(1− τ)
< 0

A sufficient condition for the above term to be negative for all values of endogenous

variables is ψ < 1/(1 + δ).14

If we restrict attention to steady states, then a weaker condition suffices. Note that at

a steady state, (z − φz′) = (1− φ)z and ∂2π/∂τ 2 can be written as

∂2π

∂τ 2
= πA

(
ψδ(1− φ)

(1− ψτ)(1 + zδ)
· ∂π
∂τ

)[
(δ + 1)zδ − (δ − 1)

]
.

Repeating the steps from equation (25), we arrive at an expression whose sign, if

negative, will ensure that the second-order condition is met:

− [1− ψφτ − ψ(1− φ){1 + δ(1− τ)}]zδ

(1− ψτ)(1 + zδ)(1− τ)
. (26)

A sufficient condition for the sign to be negative is that

ψ[φτ + (1− φ)(1 + δ(1− τ)] < 1. (27)

In turn, the above is achieved if ψ/[(1+δ)(1−φ)] < 1, which is weaker than the general

condition, since for (1 + δ)(1 − φ) < 1, any ψ < 1 will satisfy the condition, while for

14By extending the comparison with the sign of Ω · ∂2π/∂τ2 to other terms in the expression for

∂2H/∂τ2 even weaker conditions can be derived. But as with the above, to ensure negativity of the

second-order condition for all admissible values of endogenous variables, the above condition still

applies.
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(1 + δ)(1− φ) > 1, the above is less restrictive than ψ < 1/(1 + δ) for any φ > 0.15

We have therefore established:

Lemma 2 A sufficient condition for ∂H/∂τ to be negative at all values of endogenous

variables and along the entire dynamic path is ψ/(1 + δ) < 1. In the steady state, a

weaker condition suffices to ensure the validity of the second-order condition, ψ/[(1 +

δ)(1− φ)] < 1.

Recall that ψ =
χ(1− α)

γ
, where χ is the effectiveness of the abatement technology

γ is how polluting is the productive activity. As we would expect, if the first is low

enough and/or the second high enough, then the second order condition holds, or in

other words there is an interior solution.

5.2 The sign of ∂H/∂k

Note the following derivatives for the assumed function form (time indices continue to

be suppressed):

∂πA

∂k
=

α

k

β(1− π)yβ

(1 + yβ)2
(28)

∂πB

∂k
= −αγ(1− ψτ)Akα

k

δzδ−1

(1 + zδ)2
(29)

∂π

∂k
= πB

α

k

β(1− π)yβ

(1 + yβ)2
− πAαγ(1− ψτ)Akα

k

δzδ−1

(1 + zδ)2
(30)

Further, using the definitions of πA, πB, and π, and noting that γ(1−ψτ)Akα = z−φz′,
we can express equation (30) as

∂π

∂k
=
απ

k

[
β(1− π)yβ

(1 + yβ)(π + yβ)
− δ(z − φz′)zδ−1

(1 + zδ)

]
which implies that

νπk = α

[
β(1− π)yβ

(1 + yβ)(π + yβ)
− δ(z − φz′)zδ−1

(1 + zδ)

]
15It can be shown that if (1 + δ)(1− φ) > 1, then the term inside square brackets in the numerator

of equation (27) increases in τ so that it reaches a maximum at τ = 1, where its value is unity;

if (1 + δ)(1 − φ) = 1 then the term inside square brackets equals unity at all values of τ and if

(1 + δ)(1 − φ) < 1 than the term inside the square brackets reaches a maximum at τ = 0, where its

value is (1 + δ)(1− φ) and is by assumption, less than unity. This is why the restriction in equation

(27) applies at all values of τ .
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where νπk has been defined as the elasticity of π with respect to k.16

Now, to derive the sign of ∂2H/(∂τ∂k), we proceed in two steps. We first derive an

expression for ∂2π/(∂τ∂k) and then use it to evaluate the sign of ∂2H/(∂τ∂k).

The first step is accomplished by taking the total derivative of ∂π/∂τ , equation (24),

with respect to k. After imposing some definitions and equalities, and rearranging

terms, it can be shown that:

k

∂π/∂τ

∂2π

∂τ∂k
= νπk + αδ

(z − φz′)
z(1 + zδ)

+ αφ
z′

z
> 0.

The full derivation is outlined in the Appendix. From here it is easy to establish the

following:

Lemma 3 H(k, τ) = 0 =⇒ ∂H/∂k ≥ 0.

Proof : First, the expression for ∂2π/∂τ∂k implies that

∂2π

∂τ∂k
≥ ∂π

∂τ

1

k
νπk.

Second F = 0 implies that

Ω =
1 + απ

1− τ
1

∂π/∂τ
.

Therefore, referring to equation (23),

Ω
∂2π

∂τ∂k
=

1 + απ

1− τ
1

∂π/∂τ

∂2π

∂τ∂k
≥ 1 + απ

1− τ
1

k
νπk.

Now, referring to the negative term in equation (23),

α

(1− τ)

∂π

∂k
=

απ

(1− τ)k
ντk

Combine the two terms in equation (23),

Ω
∂2π

∂τ∂k
− απ

(1− τ)k
νπk ≥

1 + απ

1− τ
1

k
νπk −

απ

(1− τ)k
νπk ≥

1

(1− τ)k
νπk ≥ 0

Note that we have derived the above result for all values of τ . Thus, as an economy’s

capital stock grows hypothetically larger, the slack in H diminishes until finally an

interior solution is reached.
16Throughout the analysis, we assume that νπk remains positive, although as we have noted before,

a negative value is entirely possible under some conditions, and if it happens there can be oscillations

around the high steady state.
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5.3 Positive taxes:

From this we can now establish:

Proposition 3 Provided that the second-order condition for optimal taxes is satisfied,

and that the initial level of capital is above a threshold k̃ such that for all k > k̃,

∂Ω/∂k > 0, there (i) exists a function h : [k̃,∞) −→ [0, 1] such that optimal τ = h(k);

(ii) h(k) is (weakly) increasing in k.

Proof : The first part follows from the strict monotonicity of H in both τ and k. Since

H is strictly decreasing in τ for all k under the assumed conditions, then for any k in

the relevant interval, either (i) H(0, k) ≤ 0, or (ii) H(1, k) > 0 or (iii) H(τ, k) = 0 for

some τ ∈ [0, 1]. Moreover, τ uniquely solves the relevant case for H at given k, because

for any τ ′ > τ , in case (i) τ = 0 and τ ′ > 0 worsens the slack in H; in case (ii) if τ = 1

then τ ′ lies outside the unit interval and in case (iii) since H(τ, k) = 0 for τ ∈ [0, 1],

then H(τ ′, k) < 0. Similar argument rules out the possibility that τ ′ < τ also solves H

for a given k.

The second part follows from

∂h(k)

∂k

∣∣∣∣
H=0

= −Hk
Hτ
≥ 0.

while ∀k ∈ [k̃,∞), H(0, k) < 0⇒ τ = 0 and H(1, k) > 0⇒ τ = 1.

Since Hk is positive, at low values of k, τ = 0 so that h(k) is flat at the no-tax

equilibrium over this region. Note that F (1, k) > 0 is likely to be ruled by the fact

that the negative term in H approaches −∞ at all values of k, so the likely shape of

h(k) is flat at low values of k followed by an upward sloping portion which remains

asymptotically bounded away from zero.

5.4 Dynamics of the optimal tax:

A steady state with optimal taxation is characterised by two simultaneous equations.

k =
π(k, τ)

1 + π(k, τ)
A · (1− τ)(1− α)kα (31)

τ = h(k) (32)
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A solution to the above equations is represented by a pair (k∗, τ ∗). Define k∗ = g(τ),

as the value of of k∗ which solves equation (31) for any admissible τ . Then τ ∗ = h(k∗)

solves the optimal tax at this steady state. As we shall see, the interaction of optimal

environmental policy with the non-convexities associated with effects of pollution create

an even richer set of possible steady state equilibria than in the exogenous tax case.

Before identifying these possibilities, we shall characterise the dynamic properties of

different types of steady states, should each one exist. We shall then use a graphical

approach to jointly charcterise the existence and dynamic properties of various steady

states.

It is easy to show that

g′(τ) =
∂G(k∗)
∂τ

1− G′(k∗)
. (33)

where ∂G(k)/∂τ is given by equation (19).

The dynamics of the economy with optimal taxes are traced out by recursive application

of h and G. For any capital kt > k̃, τt = h(kt). Then, next period’s capital stock follows:

kt+1 =
π(h(kt), kt)

1 + π(h(kt), kt)
A(1− h(kt))(1− α)kαt = G(h(kt), kt)

and so on.

This represents a first-order difference equation in kt for any arbitrary k0. Linearising

around a steady state, the local dynamics are determined by the sign and magnitude

of the expression
dkt+1

dkt

∣∣∣∣
k∗

= G′(k∗) +
∂G(k∗)

∂τ
h′(k∗)

Using equation (33), the above can be expressed as:

dkt+1

dkt

∣∣∣∣
k∗

= G′(k∗) + g′(τ ∗)(1− G′(k∗))h′(k∗). (34)

where the sign of g′(τ ∗) is the same as (the opposite of) the sign of ∂G(k∗)/∂τ as and

when 1− G′(k∗) > 0 (< 0).

Recall that ∂G(k)/∂τ may be positive or negative (see Figure 2) and that G′(k∗) may

be greater than or less than one (see Figure 1). Several cases can arise depending on

the respective signs and magnitudes of the above terms.

We highlight the cases of interest. In each case in the sub-section below, we restrict

attention to dynamic paths which are monotonic, or equivalently, in which the right-

hand side of equation (34) is non-negative.
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5.4.1 Non-oscillatory paths:

1. A stable neoclassical steady state:

This case requires two conditions: (i) the transformation map cuts the 45o line from

above (G′(k∗) < 1) and (ii) an increase in the environmental tax rate has the con-

ventional effect of lowering the steady state capital stock (∂G(k∗)/∂τ < 0) . The

combination of these suggests that g′(τ ∗) < 0. From equation (34),

dkt+1

dkt

∣∣∣∣∗
k

< 1,

so that the steady state is locally stable. Note that this is a ‘well-behaved’ case since

it could be consistent with the possibility that G(k) lacks a convex portion, leading to

a unique steady state. It also embodies conventional effects from higher taxes to the

steady state capital stock. The resulting steady state would be stable under exogenous

taxes and it remains stable with optimal taxes.17

Figure 4 depicts the local dynamics around this type of steady state.

The top panel of Figure 4 shows a family of transformation maps for kt+1 as a function

of kt. Each map is underpinned by a specific value of the environmental tax, τt.

The lower panel depicts the functions g(τ) and h(k) in (τ − k) space. h(k) is always

upward sloping in this space but in keeping with case 1, g(τ) is downward sloping.

Their intersection gives the combination of steady state capital and steady state taxes,

(τ ∗ − k∗). This is the unique long-run steady state in the case depicted.

Starting at k0 < k̃, the latter defined earlier as the minimum level of capital associated

with active environmental policy, the optimal tax at t = 0 is τ0 = 0. The steady state

associated with this tax is the highest dashed transformation map on the top panel,

which is labeled g(0). If the tax rate was held constant at this level, the capital stock

would evolve monotonically towards g(0) through iterative application of this map.

Thus at t = 0, next period’s capital, k1, will be given by the vertical projection to

this map from k0. But when the economy reaches k1, the optimal tax for that period

need no longer equal zero. Indeed, as drawn, the threshold level of capital is crossed

and optimal τ1 > 0, as given by the projection down from k1 to h(k). At τ1, the

horizontal projection to g(τ) gives the new steady state level of capital that would

arise if the tax rate were held constant at τ1. This means that the transformation map

in the upper panel shifts downwards so it intersects the 45o line at g(τ1). The vertical

17G(k) would lack a convex portion if the conditions of Assumption 2 fail to be satisfied, implying

relatively weak effects of pollution and income on life expectancy.
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Figure 3: A stable neoclassical steady state

projection from k1 to the new transformation map gives k2 and so on. The dynamics

are monotonically convergent with both kt and τt rising in ever shorter steps towards

the steady state.

2. Dynamics of optimal taxation around a poverty trap:

In this case, the steady state map cuts the 45o line from below (G′(k∗) > 1).

An exogenous increase in the tax rate would widen the poverty trap by increasing the

steady state capital stock (g′(τ) > 0). In this case it can be shown by using equation

(34) that

G′(k∗) + g′(τ)(1− G′(k∗))h′(k∗)

{
<

>

}
1 as g′(τ)h′(k)

{
>

<

}
1

so that a poverty trap with optimal taxes could be either locally unstable (if g′(τ)h′(k) >

1) or locally stable (g′(τ)h′(k) < 1). Note that in the case of uniform exogenous taxes,

the steady state would be unambiguously unstable. Figures 5 and 6 respectively show

the local dynamics for these cases.

Figure 5 shows the unstable case. The long-run steady state is at (τ ∗, k∗) where g(τ)

and h(k) intersect. Note that the condition under which this case arises requires that
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Figure 4: A locally unstable poverty trap

h′(k) > 1/g′(tau) at the steady stae. This in turn requires that h(k) lies below g(τ) to

the left of the steady state in the bottom half of Figure 5.

The economy starts at k0 < k∗ and the initial tax rate is τ0 as shown on the lower panel.

The steady state associated with this tax rate, g(τ0) lies above k0 (since g(τ) lies to

the right of h(k) at this point). Because the steady state is locally unstable, according

to the transformation map associated with it, k1 < k0. The tax rate associated with

k1 is τ1 < τ0 and the steady state associated with that tax rate is even lower, so that

k2 < k1. Indeed at k2, the optimal tax rate drops to zero and stays there, while the

capital stock itself converges over time to the trivial steady state.

In Figure 6, we again have a poverty trap at the interior steady state (τ ∗, k∗). In this

case, h′(k) < 1/g′(τ), so that h(k) lies above g(τ) to the left of the steady state in the

bottom half of Figure 6.

When we start at a low level of capital, k0 < k∗ and tax rate τ0 < τ ∗, the transformation

map associated with τ0 results in a steady state g(τ0) < k0. Because g(τ0) is unstable

this means that k1 > k0. This sets the economy on a convergent path towards (τ ∗, k∗),

as can be seen by further iterations of the dynamics at t = 1 and t = 2.

Intuitively, Figure 5 represents a case in which it is optimal to impose an environmental

tax at fairly low levels of steady state capital, but subsequent increases in this capital

do not result in large increases in the tax rate. This is reflected in the fact that the
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Figure 5: A locally stable poverty trap

h(k) locus cuts the g(τ) locus from below. When the initial capital stock lies below

the long-run steady state, the optimal tax rate associated with that capital stocks

maps into a (transitory) steady state that lies above the initial capital stock. Since

each transitory steady state, i.e. steady state associated with a tax rate that is held

hypothetically constant, are unstable, this pushes the capital stock further below the

long-run steady state, and so on.

By contrast, Figure 6 reflects a case in which a positive optimal tax arises only at

a relatively high level of steady state capital but is subsequently fairly sensitive to

increases in capital. This results in h(k) cutting g(τ) from above. When the initial

capital stock is below the steady state, the optimal tax rate associated with that

capital stock maps into an associated (transitory) steady state which lies below the

initial capital stock. This results in next period’s capital stock being higher than the

initial one and closer to the long-run steady state.

3: An unstable neoclassical steady state under optimal taxation:

We now consider the case g′(τ) < 0 and G′(k∗) < 1.18 This case arises when higher

taxes lead to higher levels of capital in the steady state. As discussed in Section 4.2,

18A fourth possibility is that g′(τ) > 0 and G′(k∗) > 1, i.e. the steady state with exogenous taxes

is unstable and an increase in the tax rate decreases the steady state capital stock. In this case, the

steady state with optimal taxes is unambiguously a source.
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Figure 6: A locally unstable non-poverty trap steady state.

this effect is more likely to occur at the neoclassical steady state on the exogenous-tax

economy. In this case, the stability condition of case 2 is reversed, i.e.

G′(k∗) + g′(τ)(1− G′(k∗))h′(k∗)

{
<

>

}
1 as g′(τ)h′(k)

{
<

>

}
1

Figure 7 shows the local dynamics associated with the unstable case, i.e. when

g′(τ)h′(k) > 1. 19 The steady state (τ ∗, k∗) would be monotonically stable if the

tax rate were held constant at that value. When the tax rate is chosen optimally,

however, we can see that the steady state becomes unstable for the case drawn. Since

(i) both g(τ) and h(k) slope upwards in (τ − k) space and (ii) g(τ) cuts h(k) from

below, then for any initial k0 > k∗ (as shown in the diagram), g(τ0) > k0 . And since

each potential steady state associated with a given tax rate is locally stable, k1 > k0
so that the economy moves away from k∗.

19The stable is analytically similar to case 1 so we do not address it separately.
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5.4.2 Optimal fluctuations:

We shall now investigate the possibility that equation (34) has a negative root. Recall

that in Section 3, we acknowledged the possibility that the transformation map G(k∗)

might itself slope downwards for an exogenous and constant value of τ . This would lead

to local oscillations, as in Palivos and Varvarigos [2011]. We exclude this possibility by

imposing G′(k∗) > 0. Even so, it is possible that when the effects of optimal taxes are

taken into account, oscillation arise if the following condition is met:

G′(k∗) + g′(τ ∗)(1− G′(k∗))h′(k∗) < 0

or, equivalently
G′(k∗)

1− G′(k∗)
< −g′(τ ∗)h′(k∗). (35)

There are two situations in which this inequality can arise. Both involve steady states

that would be locally stable if we were to impose monotonicity on the local dynamics.

These are the cases depicted in Figures 4 and 6. Note that both these cases result in

the root of equation (34) being less than unity. In fact, in both cases, the root need

not even remain non-negative.

Consider Figure 8, in which all the conditions of Case 1 are met. However, as we

can see, the dynamic path starting at k0 cycles between the pair (τ0, k0) and (τ1, k1)

forever. Intuitively this happens because, (i) h(k) is quite ‘flat’, i.e. a large change in

k induces a small increase in τ and (ii) G(k∗) is quite flat as it crosses the k∗ line. As a

consequence of these features, given that the economy starts at k0 < k∗, (i) g(τ0) > k∗

and (ii) k1 > k∗. But given τ1 = h(k1), (i) g(τ1) < k∗ and (ii) k2 < k∗. Indeed, as

drawn k2 = k0 so the cycle is locally stable although this is not necessarily going to

be the case. The point is that oscillations can arise if these two features are present.

Mathematically we can see that both these features are implied by the inequality in

equation (35).

Turning to the case associated with Figure 6, it is instructive to express the inequality

in equation (35) as

− G′(k∗)

1− G′(k∗)
> g′(τ ∗)h′(k∗).

In other words, for cycles to arise, it requires some combination of two factors: (i)

the transformation map cuts the steady state line at a steep angle from below; (ii) a

relatively high sensitivity of the optimal tax to the capital stock. Figure 9 illustrates

this possibility. As drawn, the cycle that emerges when the economy starts at k0, is

explosive; however this need not be the case; the cycle could be stable or convergent.
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Figure 7: Oscillations around a neoclassical steady state.

The point is that with optimal taxation, not only can a poverty trap become locally

stable there can also be oscillations.

It is worth noting the difference with Palivos and Varvarigos [2011]: while they ar-

gue that environmental taxation can be used to eliminate cycles associated with the

impact of pollution on uncertain lifetimes, our results suggest that second-best welfare-

maximising environmental taxes can, in the same setting, be a source of oscillations.

5.4.3 Existence, uniqueness and stability of steady states:

We shall now consider the overall questions of existence, uniqueness and stability of

steady state equilibrium. The approach shall make use of the local analysis carried out

above. In Figure 10, we depict an economy in which multiple steady states arise at any

given tax rate. Thus, the locus g(τ) is D-shaped (note that the axes have been rotated

by 90o degrees anti-clockwise in relation to Figures 4-9). The locus h(k) is upward

sloping throughout. Because of the shape of g(τ), the existence of a steady state with

optimal taxes is not guaranteed. We have drawn three different versions of the h(k)

locus. With h1(k) and h2(k), there would be no interior steady state associated with

optimal tax policy. It is only with h(k) that interior steady states arise and in fact
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Figure 8: Cycles around a poverty trap.

there are two of them: the lower steady state, S1 has lower capital and lower taxation

and because it satisfies case 2a, is locally unstable. The higher steady state, S2 satisfies

case 1 and is stable. Note, however, that as shown in the previous sub-section, local

cycles are possible around this steady state. Both possibilities are illustrated in Figure

10.

In Figure 11, we show a case where h(k) cuts the k-axis at a point that lies inside the

D. It then cuts g(τ) at three interior points, S1, S2 and S3. Both S1 and S2 are poverty

traps and S3 is a ‘well-behaved’ steady state. S1 and S3 are both stable, although both

can give rise to cycles (the latter are shown only around S1). Thus while poverty traps

are always unstable under exogenous taxation, optimal policy can render them locally

stable.

Finally, Figure 12 presents another intriguing consequence of optimal policy. The

locus g(τ) is upward sloping reflecting the possibility noted in Section 4.2 that, around

a stable steady state with zero taxation, initial increases in the tax rate can lead to

increases in the steady state capital stock (for reasons explained in Section 4.2). If

at the same time, the optimal tax does not kick in at the zero-tax steady state, then
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Figure 9: Non-existence and multiplicity of steady states with optimal policy.

Figure 10: Multiple poverty traps.
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Figure 11: A locally unstable non-poverty trap

multiple steady states can arise with optimal taxation even in an economy in which

exogenous taxes would result in a unique steady state. This is the case shown in Figure

12.

In this diagram, the steady state S1 is unstable while the steady state S2 is stable. What

this suggests is that an economy that starts at a level of capital below S1 is caught

in an ‘environmental trap’ which results in successively lower levels of environmental

controls, resulting in successively lower levels of capital. A big push in environmental

protection might induce a move towards the higher steady state.

6 Conclusions:

This paper has studied an economy in which environmental degradation is a by-product

of economic activity and negatively affects life expectancy. At the same time, economic

growth contributes a positive effect on life expectancy. We showed that an initially

bounded and subsequently convex relationship between life expectancy and its two
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determinants can lead to multiple interior steady states, with an unstable poverty trap

and a stable, high income steady state. We examined the comparative static effects of

exogenous tax abatement policy and showed that this can hurt an initially poor country

while benefiting (in terms of higher levels of capital, income and life expectancy per

worker) an initially rich one.

We have also demonstrated the existence of an optimal environmental tax policy and

shown that it is non-homogeneous and monotonically increasing in the capital stock.

From a policy point of view, this suggests that economies that are close to or just

emerging from a poverty trap might impose zero or low levels of environmental protec-

tion but eventually this will rise along the growth path. This bears some resemblance

to the conditions of the Kyoto Protocol which requires over the longer term to increase

the set of countries that are required to take strong action.

At the same time we have shown that optimal policy might itself contribute to complex

dynamics in several ways: first, a steady state with optimal taxes might not exist

whereas in the underlying economy with exogenous policy, one or more interior steady

states existed; second, by inducing multiple steady states iunder conditions where a

unique steady state would exist with exogenous policy; third, by stabilising poverty

traps which would be unstable under exogenous policy; fourth, by inducing oscillations

and cycles around steady states which would otherwise be locally stable.

With respect to the last finding, we offer a word of caution. Although life expectancy

is related to pollution in the data, and indeed there is evidence that short term fluctu-

ations in air quality can lead to fluctuations in mortality rates (see Evans and Smith

[2005]), it is not clear that these phenomena are in turn part of a general business

cycle, i.e. there is a causal link between an economic boom, higher pollution, lower life

expectancy and then an economic downturn. But the point of our analysis has been to

identify the possibilities for complex dynamics that arise in the relationship between

health, pollution and economic growth and to sound a cautionary note on the use of

steady state models to study these relationships.
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APPENDIX

Derivation of ∂2/∂τ∂k:

Recall that
∂π

∂τ
=
πAψγAkαδzδ−1

(1 + zδ)2

Note that we can also write this as

∂π

∂τ
=
πψγAkαδzδ−1

1 + zδ

Taking the derivative of the above with respect to k (after some straightforward rear-

rangement):

∂2π

∂τ∂k
=
α

k

∂π

∂τ
+

1

πA
∂π

∂τ

∂πA

∂k
+

1

z(1 + zδ)

∂π

∂τ
[(δ − 1)− (δ + 1)zδ]

∂z

∂k

where
∂πA

∂k
=
α

k

β(1− π)yβ

(1 + yβ)2
=
α

k

β(1− π)yβ

(1 + yβ)

π(1 + zδ)

(π + yβ))

and
∂z

∂k
=
αγ(1− ψτ)Akα

k
=
α(z − φz′)

k
The right hand side of the main derivative can be written as

∂π

∂τ

[
α

k
+

(1 + zδ)

πA
απ

k

β(1− π)yβ

(1 + yβ)(π + yβ)
+
α

k

z − φz′

z(1 + zδ)
[(δ − 1)− (δ + 1)zδ]

]
Finally, expanding the term in square brackets involving zδ and noting the definition

of π, we get

∂π

∂τ

[
α

k
+

1

π

{
απ

k

(
β(1− π)yβ

(1 + yβ)(π + yβ)
− (z − φz′)δzδ−1

(1 + zδ)

)
+
απδ

k

(z − φz′)
(1 + zδ)z

− απ

k

(z − φz′)
z

}]
;

from which, noting the definition of ∂π/∂k, it follows that

∂2π

∂τ∂k
=
∂π

∂τ

1

k

[
α +

k

π

∂π

∂k
+
αδ(z − φz′)
(1 + zδ)z

− α +
αφz′

z

]
;

leading to the desired result.
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