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ABSTRACT

This paper will present an experimental study on inertial hydrodynamic behaviors of an open-
frame ROV (Remotely Operated Vehicle) that has a complex open-frame hull but has a large
capacity holding more instruments on board than other ROVs. A 1:4 scaled model has been
tested by a VPMM (vertical planar motion mechanism) in the circulating water channel of
Harbin Engineering University. The inertial coefficients, which can be used for simulating
the motions and so for predicting the maneuverability of the ROV, will be presented.
Particular attention will be paid to discuss the properties of the cross inertial coefficients

(these related to the inertial forces/moments induced by the motion in other directions).

Keywords: ROV (Remotely Operated Vehicle); inertial hydrodynamics coefficients; model

tests; PMM (planar motion mechanism)

1. Introduction

There are increasing demands on underwater vehicles that can be used for inspection,
repair and maintenance of marine/costal structures to ensure the safety of the structures, and
for oceanic survey to explore and exploit ocean resources and to reveal the secrets in oceans.

Generally, underwater vehicles may be divided into two types: Remotely Operated Vehicles



(ROVs) and Autonomous Underwater Vehicles (AUVs). In contrast to AUVs, which have
simple and watertight hulls and are similar in many cases to conventional submarines, ROVs
have relatively complex and open-frame hulls and their geometries can be very different from
each other’s. Therefore, it is more difficult to deal with the hydrodynamics of ROVs [1,2],
and it may not be suitable to estimate their hydrodynamics coefficients of a new ROV from
existing vehicles. In other words, one may have to consider their hydrodynamic properties on
an individual basis.
The hydrodynamics of ROVs are important for controlling their motions and predicting

their performance in the sea. There are three types of methods for quantifying the

hydrodynamics of ROVs [1,2,3,4]: model test in a water tank by using the Planar Motion
Mechanism (PMM), system identification (SI) and computational fluid dynamics (CFD).

Model test method with PMM is the most traditional method and is suitable for vehicles with
complex geometric hulls and may allow to evaluate all hydrodynamics more accurately,
depending on availability of laboratory facilities and instruments. System identification (SI)
method is that data are gathered by free-running trials of a ROV and hydrodynamic forces are
estimated by using the data measured during the trials in a water tank [10] or in a real water
area such as a lake or reservoir. This method requires a vehicle that is equipped with all
components (such as propellers and thrusters) for the free-running trials of a model or even
prototype in addition to on-board sensors. Theoretically, computational fluid dynamics
(CFD) is able to simulate all model tests. However, for the vehicles like ROVs with complex
hull geometries, it may be very time-consuming and not easy to resolve the flow fields around
small scale structural members. In addition, the existing CFD methods are rarely validated
for flow associated with such complex structures and so its effectiveness on modelling the
flow concerned has yet be confirmed. This paper is concerned about using the model test with

the Planar Motion Mechanism (PMM) to study the inertial hydrodynamic property of a ROV.

There have been a limited number of publications that deal with inertial hydrodynamic
of different ROVs. Avila et al [8,9,10] carried out a series of study with system identification
method as well as model test method with PMM to estimate inertial and drag hydrodynamic

components based on the Morison’s equation for a ROV composed mainly of cylinders and
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jacket-type structural members. They only considered the main inertial coefficients (related to
the inertial hydrodynamic forces generated by a motion in the same direction) without
counting for the cross inertial coefficients (related to the inertial hydrodynamic forces
generated by a motion in other directions). Nomoto et al [11] studied the inertial properties
and motions of a ROV composed mainly of the pipes and buoyant blocks. They just assumed
the cross inertial oefficients equal to each other when processing their data, and found they
were negligible. Fan et al [12] presented a series of model tests to identify inertial and drag
coefficients of a ROV composed mainly of a top box and small blocks/cylindrical structural
members. They demonstrated that the cross inertial coefficients might not be the same,
though their values would be relatively small. Eng et al [13] discussed a novel free decay test
to determine the hydrodynamic coefficients for a ROV composed mainly of rocket-type
cylinders. They compared numerical and experimental results but did not consider the cross
inertial forces/moments. In addition, there are also some studies based on numerical
computations. For examples, Lin et al [6] applied the fast multiple boundary element method
(FMBEM) to calculate the inertial coefficients of a submarine. Paper [14] proposed a method
to determine the inertial coefficients by using WAMIT that is based on the velocity potential
theory. Yang et al [15] modeled an underwater vehicle and estimated the inertial coefficients
again by using WAMIT but estimated damping parameters corresponding to constant
velocities by using CFD. Although this paper made some attempts to validate the CFD
results, the CFD method needs further validation to ensure that its results are reliable, as

indicated above.

In order to investigate the relative importance of the cross inertial confidents and to provide
experimental data to be used perhaps for validating numerical methods, this paper will present
an experimental study on a ROV with a complex asymmetrical shape, similar to the Quantum
designed by SMD [16]. This ROV has better capacity for heavy duties, and has a complex
open-framed hull with its front-rear and top-bottom asymmetry, which is quite different from
those ROV discussed in the cited papers above. Xu et al [19] presented the experimental
results for the drag forces and moments of this ROV subjected to constant velocities, which

are measured by holding the models in water flowing with a constant speed or towing the
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model with a constant speed in water at rest. In this paper, the authors will focus on its
inertial hydrodynamic forces and moments on the model. These forces and moments are
measured by oscillating the model with a time-dependent acceleration. As the nature of
inertial hydrodynamics is different from that of the drag forces and moments, the processing
method of experimental data employed here is different from that used in Xu et al [19]. Itis
hoped that the data given in the paper can contribute to the pool of knowledge about

underwater vehicles.

The remainder of this paper is organized as follows. In Section 2, the test model,
experimental facilities as well as procedure will be summarized. Section 3 presents the data
processing method. Then the experimental results are given and discussed in Section 4.

Finally, the conclusions are summarized in Section 5.

2. Test model, experimental facilities and procedures

The test model of the vehicle is illustrated in Fig 1. The frame structure is made of steel,
while the other components within the frame, such as thrusters and equipment blocks are
made of buoyancy material. Its main parameters are summarized in Table 1. The test model is
front-rear and top-bottom asymmetrical. Fig. 2 shows its longitudinal section at the middle of
its width and the transverse section at a positon of 0.498m from the head of test model. The

information has been given in [19].

Fig 1 Test model

Table 1



Parameters of test model

Physical property Value
Scale ratio 1:4
length, m 0.875
width, m 0.5
height, m 0.5
mass in air, kg 78

(a) The longitudinal section of test model at the middle of its width

e
Y=y || | e
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(b) The transverse section of test model at a positon of 0.498m from the head of test model



Fig 2 The sectional view of test model

For the sake of studying the inertia hydrodynamic behaviors of the vehicle, a series of
forced oscillation tests have been carried out, that is purely heaving test, purely swaying test,
purely pitching test and purely yawing test, respectively. All these tests have been undertaken
in a circulating water channel with the help of a vertical planar motion mechanism (VPMM).
The water channel has a cross-section of 1.7m wide and 1.5m deep with the constant velocity
of water flow. The VPMM has the maximum oscillation amplitude of 0.04 m and the
oscillation frequency from 0.05Hz to 1Hz. The forces and moments acting on the test model
are measured by the use of a six-component force transducer, which is fixed inside the ROV
model and connected by two steel bars to the VPMM. One end of each bar is fixed with the
force transducer and the other end extends out of water to be fixed with the two rotating
apparatus of the VPMM (as shown in Fig 3). Before test starts, the model is submerged in
water and its gravity force is adjusted equals to its buoyancy. During tests, the model is
forced through the bars to oscillate together with the VPMM, while the water in the
circulating water channel flows at a constant speed. When the two bars move with the same
phases, frequencies and amplitudes, the purely heaving and swaying tests can be undertaken,
while when the bars move with the same frequencies and amplitudes but different phases, the
purely pitching and yawing tests can be done. Fig 4 shows a status during a purely heaving

test.

|

foa|

- Circulating water

channel

Force

Fig 3 The installation of ROV model
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Fig 4 Model test in circulating water channel

3. Data processing methods

This section will discuss how the experimental data are analyzed and what the data processing methods are.

As a result, the expressions for the inertial forces and moments will be given.

3.1 Expressions of inertial forces and moments

In order to describe forces, moments and motions of the test model more conwveniently, the coordinate
systems are set up as shown in Fig 5. G-xyz represents the body-fixed coordinate system of the ROV model
with the center of gravity G at its origin. Vector X € R (X =[xy z]T) and ® € R? (@ = [p 8 y]")
represent the motions in surge, sway, heave or roll, pitch, yaw directions respectively. While, vector v € R®
w=[uvwpqr]") as well as FER® F=[XY ZKM N]"denote corresponding linear or angular
velocities as well as forces or moments acted on the ROV model in the body-fixed system. A dot above the
parameters, such as w, denotes their time derivatives. E-{n{ is the earth-fixed coordinate system. The
position of G with respect to the earth-fixed frame (E-£n¢) can be expressed by a position vector p € R3
(p = [ n {]T), while the orientation of the body-fixed frame (E-&n¢) with respect to the earth-fixed system

(E-&nQ) is represented by using @ € R3.



u (surge)
"

p (roll)

w (heave)

Fig 5 Coordinate system and illustration of motions

According to [17], the motion equations of a vehicle with respect to the body-fixed system can be written as:

Fy = Mv+ C(v)v — Fg(@) — F;(v) — Fp(v) (D

where, F, represents total forces and moments acting on ROV model during tests through the force
transducer; M € R®%® represents its inertial matrix, including mass and moments of inertia; C(v) € R is
Coriolis matrix; Fp, F; and Fj, € R® denote its restore, inertia and damping forces and moments vectors.

Considering that the model is left-right symmetric, the matrixes of M and C can be expressed as [17,18]

[m 0 0 0 0 0 ]
0O m 0 0 0 0
loom 0o 0 o
M=1o 0o o 1, o -1, @
lo o o o 1, o]
lo o o -1, o 1,1



[ 0 0 0 0 mw —-mv ]
0 0 0 —mw 0 mu
0 0 0 mv —mu 0
Cw) = 0 mw  —mv 0 -1l ,p+1,r —I,q 3)
—-mw 0 mu I,p—1I,r 0 —L,r+1,p
mv  —mu 0 ILg IL,r—Lp 0

Suppose that W and B are the model’s gravity and buoyancy, and as discussed in the last section, the
model’s gravity is equal to its buoyancy, i.e. W = B = mg. In addition, the position of G (x¢, Y¢, Z;) is at
the origin of the body-fixed system, and so x; = y; = z; = 0. As its left-right symmetry, the positon of
the buoyancy center with respect to the body-fixed system is in the longitudinal plane and so xg = yp = 0.

Therefore, Fp is reduced [17] to

i (W —-B)sin@ ] [ 0 1
—(W — B) cos8sing 0
—(W — B)cos 6 cos ¢ 0
Fg = —(,W — y,B) cos 0 cos ¢ + (z;W — zzB) cos O sin | = “IZB| ¢ g sin @ )
(zgW — zpB) sin 0 +(x;W — xzB) cos 6 cos ¢ sin 6
—(xgW —xgB) cosOsinp —(y.W — y,B)sinf | 0

As well known, the magnitudes of inertial forces and moments are proportional to acceleration vector ¥,
i.e., F;(¥) = My, where M, € R%*® represents inertia coefficients matrix. Considering the left-right

symmetry of ROV, the inertia forces and moments of the model [17] can be reduced to

o oN o
=9 S g < S
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where X, denotes the coefficient of the inertial force in x-direction due to the motion in the x-direction, and
others have similar meaning. The diagonal coefficients are referred to the main coefficients whereas the off-

diagonal coefficients are to the cross inertial coefficients in this paper.



The damping force and moment matrixes Fp are known to be a function of velocities. Generally, the
components of damping forces and moments can be expressed by the multivariate Taylor series in terms of
the velocities [17]. However, the magnitudes of the oscillation velocities are small during oscillation tests
and so it is reasonable to take the series to the first order and ignore the asymmetry of damping
hydrodynamic forces and moments caused by the asymmetrical model shape, according to what is discussed
in [19]. In other words, it is here assumed that all damping hydrodynamic forces and moments acting on the

ROV model during oscillation tests are linear and can be written as

Fp(w,V) =F,u+F,V 6)
where u is the constant velocity in the direction concerned and V represents the oscillation velocity of w, v, g,
r corresponding to oscillation tests in heave, sway, pitch and yaw directions, respectively. Specifically, the

expressions for the damping forces and moments for different model tests are given by

Fp = F,u + E,w (for Fp = Xp,Zp, Mp); Fp = 0 (for Fp = Yp, Kp, Np) for purely heaving test  (7)

Fp = Eyu (for Fp = X, Zp, Mp); Fp = E,v (for Fp, = Y, Kp, Np) for purely swaying test  (8)

Fp = Fyu + Fyq (for Fp = Xp, Zp, Mp); Fp = 0 (for F, = Yp, Kp, Np) for purely pitching test (9)

FD = Fuu (fOI‘ FD = XD'ZD'MD); FD = FTT‘ (for FD = YD,KD,ND) forpurely yawing test (10)

where F,, is the coefficient of the damping forces in x-direction related to u, and others have the similar
meaning. Substituting Egs. (2-5) and Egs. (7-10) into Eq. (1), the total forces and moments measured by the

force transducer during oscillation tests can be written as the following forms.
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Purely heaving test:
X = —X,w — X u—X,w;
Zi=(m—Zy)w—Zyu—Z,w;

M, = —M,w — M, u — M,,w;

Purely swaying test:
Yo =(m-Y)v-Y,v;
K, = —K,v — K, v;

N, = —=N,v — N,v

Purely pitching test:
X = —X4q — Xyu — X4q;
Zy=—muq — Zzq — Zyu — Z,4q,;

M, = (Iy—Mq)q +mgzg sin6 — Mu — Myq

Purely yawing test:
Ye =mur — Y75 —Y,r;
K, = =Ky — K, 1;

N = (I; = N7 — Npr

3.2 Parameter Identification Methods

11

(11a)

(11b)

(11c)

(12a)

(12b)

(12¢)

(13a)

(13b)

(13¢)

(14a)

(14b)

(14c)



Inertial coefficients can be obtained by two approaches, although both of them are based on the ordinary
Least Squared Method. Specifically, one approach directly uses the Least Squared Method to fit the
measured total forces and moments into Egs. (11-14). This method enables us to use the measured data
directly. In the other approach, the inertial parts are separated from the total measured results firstly, and
then uses the Least Squared Method to only fit inertial coefficients. The direct use of the Least Squared
Method (i.e., the 1¥ approach) is similar in principle to what has been discussed in our previous paper (Xu et
al [19]) for analyzing the drag forces and moments corresponding to motions with constant velocities. The
main difference is that the equations for fitting used here are these including the accelerations as given in
Eqgs. (11)-(14), rather than those equations in terms of only constant velocities in [19]. The basic theory of
the least square method is the same and so more details will not be given here. The discussion about the

second approach will be given below.

Specifically, for purely heaving and swaying tests, the ROV model is forced to oscillate with a
amplitude (4) and frequency (f) in the channel while water with a constant speed flows toward the model.

Therefore, the motions are expressed by:

u="U
S = Asinwt
V=8 =wAcoswt = Vycoswt (15)
V =8 = —w?Asinwt = —V,sinwt

where w represents the angular frequency, w = 27if; S is the oscillating displacement in heave or sway
direction; V and V are the corresponding velocity and acceleration, V = w or v, V = w or v; V, and V

represents the amplitudes of corresponding velocity and acceleration, Vy = wy or v, Vo = Wy or 7.

According to Eq. 3 and Eq. (4), C(v)v = 0 and Fg = 0 for these tests. Consequently, forces and

moments in Eq. (1) specifically for purely heaving and swaying tests can be rewritten as:

F.(uw,V) = (M — M,V — F,V — F,U
= —(M — My)Vysinwt — F,Vycoswt — F,U
= F;sinwt — F .coswt — Fy(U) (16)
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As can be seen in the equation above, total forces and moments F; can be divided into 3 parts: the part
only associated with sinwt, i.e. F sinwt; the part only with coswt, i.e. F .coswt and the part without
oscillation, i.e. Fy. Based on this, one can identify the inertia force amplitudes F; by applying the following

integrations

1
2nm

I, = JZM P dwt = F, (17)

1
I, = —
2 2nm

[M(F, = Fo)sinwt dwt = F (18)

where #n is the number of periods of motions recorded, excluding the initial transient periods.

For purely pitching and yawing tests, the motions are given as follows:

u="0U
¢ = ¢Pysinwt
b odecosr = (19)
O =¢ =wpycoswt = Qycoswt
O =¢ = —w?pysinwt = —Qysinwt

where Q and () are the corresponding angular velocity and acceleration, Q = q or 7, Q = ¢ or 7; Q and
represents the amplitudes of corresponding angular velocity and acceleration, Qg = g or 7, Qg = do or 7p.
During purely pitching and yawing tests, the oscillation angles all have small values, Fy in Eq. (4) can be
reduced toFg = [0,0,0,0, —mg zgsin ¢, 0]” = [0,0,0,0,—mgzg¢,0]T =[0,0,0,0, —mgzgp,sinwt, 0]"
for purely pitching motion, while Fp is zero for purely yawing motion. According to Eq.(3), C(v)v =
C(u)Q and the value of C(u) does not change. Consequently, total forces and moments can also be rewritten
as the same form as Eq. (16), and so the inertial part can be identified in the same way described above.
After identifying and evaluating F, the inertia force and moment coefficients can be obtained by fitting the

measured data as given below for each test.

X5 = XyWo, Zs = (Zy;, — m)w,, Mg = M;,W,, others are zero for purely heaving test
(20)

13



Ys = (Y, —m)vy, Kg = K;¥g, Ny = N, others are zero for purely swaying test

2D
Xs = X490, Zs = Zgqo, Mg = (Mq - Iy)qo + mgzg,, others are zero for purely pitching test  (22)

Y, = Y7o, Ks = K79, Ng = (N; — I,)7,, others are zero for purely yawing test

(23)

4. Results and discussions

In this section, the experimental results as well as corresponding coefficients are presented and
discussed firstly. Then the comparison between inertial cross inertial coefficients are given together with
relevant discussions. As pointed above, a series of forced oscillation tests have been undertaken in heave,
sway, pitch and yaw directions, respectively, with varying frequencies and flow velocities in the circulating
water channel. During these tests, the water flow velocities in the channel are set to be 0.5m/s and 0.7m/s
while their real values are measured to be 0.532m/s and 0.751m/s, respectively. The test model is forced to
oscillate with different frequencies from 0.1Hz to 0.5Hz. The oscillation amplitude for heaving and swaying

tests is 0.02m, while those for pitching and yawing are at a range of 0.023 rad to 0.073 rad.

4.1 Experimental results for different tests

The results for heaving tests are considered at first. During the heaving tests, it is found that the
amplitudes of the vertical inertial force Z¢ and pitch inertial moment M are much larger than the inertial
forces and moments in other directions. For an example, the maximum magnitude of the inertial surge force
X, 1s less than 0.5N while that of Z is more than 25N. Based on this fact, only Z; and M obtained given by
Egs. (17-18) are presented in Fig. 6, where Z'; = ZS/%pZZWO, My = MS/%pPWO, with p, [ and wy

representing the water density, the model length and the amplitude of oscillation velocity, respectively.

These on the left in the figure show the dimensionless amplitudes of inertial forces or moments against the
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oscillation frequency, while these on the right give the corresponding dimensional amplitudes against the

acceleration amplitudes. First of all, as depicted on the left column in Fig 6, the dimensionless amplitudes of

the inertial forces Z'; and moments M’ increase largely in a linear way with the increase of frequency.

Secondly, the dimensional amplitudes of the inertial forces or moments on the right column decrease largely

in a linear way with the increase of acceleration amplitudes. They are consistent with each other as the

dimensionless amplitudes are obtained by dividing a term of wA (i.e., the velocity amplitude).
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Fig 6 Inertial force and moment for purely heaving test (acceleration = Aw?)

Table 2 inertial coefficients for heaving tests
set flow velocity | real flow velocity Zy M, z', M'y, x 10
(m’s) (m/s) ke) | (kgm) | (2 =2Zy/3pl) | (M'y=My/5pl%)
0.5 0.532 -86.7 -7.98 -0.259 -2.72
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(-87.5) | (-8.41) (-0.261) (-2.87)
926 | -842 0277 287
0.7 0.751
(-93.1) | (-8.95) (-0.278) (-3.05)
-89.7 820 0.268 2.80
average
(-90.3) | (-8.68) (-0.269) (-2.96)

The measured data on the right column of Fig. 6 can be fitted by using the second approach based on
Eq. (20) or the first approach based on Eq. (11) to give the inertial coefficients (Z,;,, M;;). The resulting
values for two velocities obtained by using the two approaches are all shown in Table 2, where the
dimensionless forms of the coefficients are also presented. The corresponding values in brackets are obtained
by the first approach. One can see that the difference between the corresponding values of two velocities of
water in the circulating channel are less than 10%. On this basis, the mean values over the two velocities
may be utilized. Based on the mean values, the fitting curves from Eq. (20) are also plotted in Fig. 6. As

one can see, the fitting curves agree well with the measured data.

As observed from Table 2, the inertial coefficients obtained by the two approaches are very close to
each other. More specially, the largest difference occurs in estimating the inertial coefficients of My, for the
velocity of 0.751 m/s, i.e., M;, ® —8.95 kg.m estimated by the first approach while M,;, * —8.42 kg.m by
the second approach, with the relative error being less than 6.3%. The average inertial coefficients of Z,;,
from the two approaches are almost the same. The average inertial coefficients of M,;, is-8.20 and -8.68
kg.m estimated by the second and first approach, respectively, yielding the relative error of less than 6%.
The level of the error is believed to be similar to that of the experimental facilities and process, as indicated
in Xu et al [19]. Therefore, the results from the first approach will not, hereafter, be discussed as they do not

provide more useful information.
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Fig 7 Inertial force and moment for purely swaying test (acceleration = Aw?)

Experimental results obtained by using Egs. (17-18) for purely swaying tests are depicted in Fig 7,
where Y’ = YS/%plzvo; K's = KS/%pl3v0; N'g = Ns/%pl3v0. Similar to those in Fig.6, these on the left

column are the dimensionless amplitudes of the inertial forces or moments against oscillation frequency,
while these on the right are the corresponding dimensional results plotted against the acceleration
amplitudes. The behaviors of the inertial forces and moments are similar to these shown in Fig. 6, i.e., they
linearly vary with changes of acceleration amplitudes. Compared with the vertical inertial forces in the
heaving tests, the horizontal inertial forces in the y-direction are in the same order, though they are slight

smaller here. The inertial moments induced by swaying are also in the same order as those in the heaving
17



tests. These measured data denoted by the symbols in Fig. 7 are fitted by Eq. (21). The corresponding
coefficients are given in Table 3. Using the mean coefficients in the last row of Table 3 and Eq. (21), the
fitting curves (dotted lines) for each of inertial forces and moments are also shown in Fig. 7. The agreement
between the measure data and fitting curves are acceptable, though there are some visible difference (about
5%) in the roll and yaw moments (K and Ng). Such difference may be considered as insignificant for

practical purpose.

Table 3 Inertial coefficients for swaying test

set flow | real flow v K. N, Y K';, x 102 N'; x 102
velocity | velocity v v v
(m/s) (m/s) (kg) | (kgm) | (kg'm) (Y,f; = Yf;/%Pﬁ) (K’iz = 1':/%/314) <N,f; = v/%Pl4)
0.5 0.532 -41.9 -6.08 -6.69 -0.125 -2.08 -2.28
0.7 0.751 -45.9 -6.82 -7.95 -0.137 -2.33 -2.71
average -43.9 -6.45 -7.32 -0.131 -2.20 -2.50

Fig 8 and Fig 9 plot inertial force and moment amplitudes resulting from purely pitching and yawing
tests respectively, where, Z's = ZS/%pl‘*qo; M = MS/%plsqo; Y's = YS/%pl“rO; N'g = S/%plsro with
other parameters same as defined before. As in previous figures, the dimensionless amplitudes are shown in
the left column whereas the dimensional ones on the right. Because other components are relatively very
small, only the vertical inertial force Z and the pitch inertial moment A in purely pitching tests and the
lateral inertial force ¥ and yaw inertial moment N in purely yawing tests are presented in the figures. As can
be seen, the linearity between the inertial forces (moments) and the acceleration amplitudes still hold. In
addition, the magnitudes of the corresponding inertial forces and moments from pitching and yawing tests
are also in the same order as has been seen for the heaving and swaying tests. The corresponding inertial
coefficients (Z4,M;) and (Y;,N;) fitted by Eq. (22) and (23), respectively, are given in Table 4. The fitting
curves based on the average values of the coefficients are plotted in Fig. 8 and Fig. 9. Again the agreement

between the fitting results and the measure data are very good.
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Table 4 Inertial hydrodynamic coefficients for pitching and yawing tests

set flow real flow
Z M, ) .
velocity velocity a a b Ny
. -m?2 ko- ke-m?
(m/s) (m/s) (kg'm) (kgm?) (kgrm) (kgm?)
0.5 0.532 -17.9 -4.49 -9.63 -5.88
0.7 0.751 -16.7 -5.96 -8.76 -5.31
average -17.3 -5.22 -9.20 -5.60
set flow real flow Z'y x 102 M’y x 102 Y’ % 102 N'; x 102
velocity velocity
! 1 4 1 1 5 1 1 4 o 1 5
(m/s) e | (Fa=2a0500) | (W =masgorr) | (ve=reiger) | (e =mzor)
0.5 0.532 -6.01 -1.75 -3.29 -2.29
0.7 0.751 -5.71 -2.32 -2.99 -2.07
average -5.90 -2.04 -3.14 -2.18

4.2 Comparison and discussion of cross inertial coefficients

As well known, its inertial hydrodynamic matrix (Eq. (5)) for a rigid body is symmetric according to the
potential theory. In other words, Z; and My, as well as ;- and N;, should be the same, respectively. The
fitted dimensionless coefficients based on the measured data compared in Table 5. It may be interesting to
see that the magnitude of Z'; is more than double that of M';;, while Y’ and N'; is not very much different
from each other. The difference means that they are not as assumed by the potential theory. This is
attributed to the existence of viscosity in real water and the complex nature of the structure of the ROV. As
has been seen in Fig. 1, the ROV model is composed of many slender structural members orientating to
different directions: horizontal, vertical or declined. The local added mass due to them can be significantly
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affected by the viscosity as well known in offshore engineering, which may contribute to the non-
symmetricity of the cross initial coefficients. The top-bottom and rea-front asymmetric shape of the ROV
may also cause the different behaviors of boundary separation when the ROV oscillates in different

directions and contribute to the non-symmetricity as well.

It is also interesting to see from Table 2 and Table 4 that the inertial coefficient for pitch due to heave
has a value (cross inertial coefficients -M,; ) larger than the inertial coefficient for pitch due to pitch (main
inertial coefficients My). The inertial coefficient for heave due to pitch (Z;) has a considerable value but it is
much smaller (~20%) than the inertial coefficient for heave due to heave (Z,;,). Comparing Table 3 and
Table 4, one also finds that the term N, is slightly larger than N, while Y- is much smaller than Y;,. The
descriptions and discussions in this and previous paragraphs reveal that the corresponding cross inertial
coefficients can be very different (unlike what is derived by the potential theory) and that some cross inertial

coefficients may not be negligible.

Table 5 Comparison of inertial coefficients

z' My, |Z’q/M’w| Y N’ [Y': /N,

-5.90x 1072 | -2.80x 1072 2.11 -3.14x 1072 | -2.50% 1072 1.26

5. Conclusions

This paper presents an experimental study on the inertial hydrodynamic behaviors of a ROV. For this
purpose, a series of model tests on a ROV model have been carried out in the circulating water channel in
Harbin Engineering University. Its oscillations in heave, sway, pitch and yaw directions are generated by
using a vertical planar motion mechanism (VPMM). The measured data are analyzed by using two data
identification approaches: directly fitting the total forces (moments) measured or separating the inertial

forces (moments) before fitting them. They can give similar results.

The resulting data shows that the magnitudes of the inertial forces and moments behaves linearly with
the change of acceleration amplitudes. The fitting curves based on the obtained inertial coefficients agree

well with the measured data and the corresponding formulae can be used for simulating the motions of the
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ROV. In addition, the cross inertial coefficients are not equal to each other, e.g., Z'; (inertial vertical forces
coefficient induced by the pitching) is more than twice of M’;, (inertial pitch moment coefficients induced by
heaving), though they should be the same according to the potential theory. It is also found that some cross
inertial coefficients can be as large as or even larger than the corresponding main coefficients, indicating that
one should not ignore the cross inertial coefficients for the ROV discussed in this paper. These findings may
offer a sound reference not only for this ROV but also for others with asymmetrical shapes. In addition, it is
hoped that the data provided in this paper may be used for validating numerical methods based on
computational fluid dynamics in the cases involving the interaction between fluids and structures with
complex geometry.
It is noted that the tests on the oscillation in surge direction is not carried out due to the restriction of

experimental facility available.
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Novelty of this paper

Providing experimental hydrodynamic inertial coefficients of an open-frame ROV;

Magnitudes of the inertial forces and moments behaves linearly with the change of acceleration amplitudes.
Cross inertial coefficients are not equal to each other or the added mass matrix is not symmetric.

Some cross inertial coefficients should not be ignored.
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