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Abstract

There is considerable variety in human inference (e.g., a doctor inferring the presence of a disease,

a juror inferring the guilt of a defendant, or someone inferring future weight loss based on diet and

exercise). As such, people display a wide range of behaviors when making inference judgments.

Sometimes, people’s judgments appear Bayesian (i.e., normative), but in other cases, judgments

deviate from the normative prescription of classical probability theory. How can we combine both

Bayesian and non-Bayesian influences in a principled way? We propose a unified explanation of

human inference using quantum probability theory. In our approach, we postulate a hierarchy of

mental representations, from ‘fully’ quantum to ‘fully’ classical, which could be adopted in

different situations. In our hierarchy of models, moving from the lowest level to the highest

involves changing assumptions about compatibility (i.e., how joint events are represented). Using

results from three experiments, we show that our modeling approach explains five key phenomena

in human inference including order effects, reciprocity (i.e., the inverse fallacy), memorylessness,

violations of the Markov condition, and anti-discounting. As far as we are aware, no existing

theory or model can explain all five phenomena. We also explore transitions in our hierarchy,

examining how representations change from more quantum to more classical. We show that

classical representations provide a better account of data as individuals gain familiarity with a task.

We also show that representations vary between individuals, in a way that relates to a simple

measure of cognitive style, the Cognitive Reflection Test.

Keywords: Human judgment, quantum probability theory, Bayes’ rule, order effects, Markov

condition
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A Quantum Probability Framework for Human Probabilistic Inference

Everyday we face situations where we must make inferences about the world around us. For

example, a doctor must determine the likelihood that a patient has a disease based on a set of

symptoms. A juror must decide the probability that a defendant is guilty after hearing the cases

made by the prosecution and defense. Or, maybe you want to judge the likelihood that you will

weigh less next month if you start exercising more regularly and you improve your diet. In general,

the inference problem involves judging the likelihood of some hypothesis (e.g., presence of a

disease, guilt of a defendant, future weight loss) based on a series of evidence (e.g., medical

symptoms, prosecution and defense cases, changes in your diet and exercise).

Bayesian inference is widely accepted as the normative approach to inference. However,

decades of research in human judgment and decision-making have suggested that people’s

judgments often violate the rules of Bayesian inference and classical probability theory (Tversky &

Kahneman, 1975). Despite this large literature, there is growing interest in which aspects of human

judgment are consistent with normative prescriptions.

One can argue that the strongest empirical evidence for Bayesian principles in human

inference comes from the domain of causal reasoning. Causal graphical models (CGMs) or models

based on causal Bayes nets have been successful at explaining and predicting a wide range of

behavior in causal inference. In a CGM, variables are represented as nodes and directed edges

between nodes capture causal relations. These models represent causal relationships using Bayes’

calculus (Kim & Pearl, 1983; Pearl, 1988) with additional assumptions for how interventions work

and are considered to provide a normative account of causal judgment. CGMs have been shown to

provide distinct predictions for causal inferences driven by observational, intervention-based, and

counterfactual situations (Hagmayer, Sloman, Lagnado, & Waldmann, 2007). There are also

various models built using this and similar frameworks that account for causal learning,

specifically, reasoning based on learning through observation or intervention (intended to simulate
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experience based learning), or learning from statistical or contingency information.

In spite of the success of CGMs, some recent empirical studies report violations of the

predictions of these models. For example, all Bayesian networks must satisfy a condition called the

Markov property (this property is part of the definition of a Bayesian network; Russell & Norvig,

2003). This condition states that any node in a Bayesian network is conditionally independent of

its nondescendents (e.g., noneffects), given its parents (e.g., direct causes). Informally, if we know

about the causes of some event X , then the descendants of X may give us information about X , but

the non-descendants cannot give us any more information about X . Recently, various studies

(Rottman & Hastie, 2016, 2014; Park & Sloman, 2013; Rehder, 2014; Fernbach & Sloman, 2009;

Waldmann, Cheng, Hagmayer, & Blaisdell, 2008; Hagmayer & Waldmann, 2002) have provided

evidence that people often violate the Markov condition when making causal inferences.

In another line of research, there has been an attempt to modify existing Bayesian models to

explain away erroneous judgments (Costello, 2009; Costello & Watts, 2014). These models are

interesting both from a philosophical point of view, because they may shed light on the principles

underlying human reasoning, and also from a practical point of view, as an understanding of why

we make judgment errors may inform strategies to improve decision making. Despite the promises

of these approaches, they are currently limited in scope. The models developed are typically

limited to a single judgment fallacy (such as the conjunction fallacy) and as far as we are aware,

none of these approaches have been applied to inference directly (which ultimately involves

judgments about a hypothesis given a sequence of observations).

We feel that there is a need for a comprehensive modeling framework that can account for a

large range of empirical findings. It is clearly the case that both normative Bayesian and

non-Bayesian principles are engaged in human inference. But how can we combine such disparate

influences in a principled way? We propose a new framework for modeling human inference using

quantum probability theory. In our approach, we postulate a hierarchy of mental representations,

from ‘fully’ quantum to ‘fully’ classical, that could be adopted for different situations. Classical
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probability models represent one class of models in our hierarchy. The models in the hierarchy

vary in the degree to which the representations are classical versus quantum, which is associated

with the dimensionality of the model. High dimensional models (which involve more events

represented according to classical probability theory) correspond to more complex mental

representations whereas lower dimensional models represent simpler mental representations. The

transition from one model to another in the hierarchy is effected through changing certain key

assumptions, which in turn guides requirements for representation (this is the assumption of

compatibility, which we will extensively consider shortly). The specific mental representation

adopted for a problem might depend on a number of factors including task requirements, the

complexity of the problem, experience, familiarity, and an individual’s style of cognitive

processing (we will focus on the latter two factors in this paper).

Quantum probability theory is the noncommutative analog of classical probability theory

derived from quantum mechanics. As formalized by von Neumann (1932), quantum probability

theory is a geometric approach to probability where events are represented as subspaces of a

Hilbert space1 (essentially a vector space). Note that we use the mathematical formalism of

quantum theory without the associated physical meaning. In addition, we assume a fully classical

neural substrate. By modeling events as subspaces rather than subsets, quantum probability theory

entails a different logic than classical probability theory. The logic of quantum probability theory

is the logic of subspaces which relaxes some of the assumptions of Boolean logic. In particular,

quantum probability theory does not always have to obey the closure, commutative, and

distributive properties.

Cognitive models based on quantum probability theory are computational level models

(Marr, 1982), focusing on the principles and representations guiding human behavior (cf. Griffiths,

Chater, Kemp, Perfors, & Tenenbaum, 2010). Quantum models are about what is computed (e.g., a

choice preference or judgment of likelihood) and why the computation has the form it does (i.e.,

information from several variables needs to be combined; in some cases this leads to
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“impoverished” mental representations, which can be accounted for by quantum probabilities).

Quantum cognition is presently best seen as a descriptive, formal theory for how we do reason

under uncertainty, not how we should reason. A more detailed discussion of the explanatory scope

of quantum models is provided in the General Discussion section.

Quantum cognitive models are typically employed for results that have so far been explained

primarily on the basis of individual heuristics. Such models have been able to account for

numerous findings in cognition and decision-making. These include violations of the sure thing

principle (Pothos & Busemeyer, 2009), conjunction and disjunction fallacies (Busemeyer, Pothos,

Franco, & Trueblood, 2011; Busemeyer, Wang, Pothos, & Trueblood, 2015), interference effects in

perception (Conte, Khrennikov, Todarello, Federici, & Zbilut, 2009), violations of dynamic

consistency (Busemeyer, Wang, & Trueblood, 2012), conceptual combinations (Aerts, Gabora, &

Sozzo, 2013), interference effects of choice on confidence judgments (Kvam, Pleskac, Yu, &

Busemeyer, 2015), the Ellsberg paradox (Haven & Sozzo, in press), and order effects in survey

questions (Wang & Busemeyer, 2013). Research has also examined the mechanistic foundations of

quantum probability models of cognition (Fuss & Navarro, 2013), showing how complex

(classical) cognitive architectures can give rise to behavior that is best described in terms of

quantum theory. Even though quantum cognitive models are descriptive, they typically allow novel

predictions (arguably more so than heuristic accounts) and novel insights about the relevant

psychological principles.

The difference between classical and quantum models is often phrased in terms of the way

different events are represented by an individual, either as compatible or incompatible (we will

explain these terms shortly). It is generally believed that experience with a particular situation,

either from previous familiarity or acquired through learning, may allow events to be represented

in a compatible way, whereas relatively novel situations are more likely to be represented in a

incompatible way. In addition, quantum models are often used to explain similar phenomena as

heuristics (Busemeyer et al., 2011), and so it seems plausible that incompatible representations of
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events, associated with quantum models, should be preferentially used for decisions executed

spontaneously with little conscious deliberation.

Compatible events are ones that may be assigned a simultaneous truth value. Thus, if event

X and event Y are compatible, their conjunction X ∧Y is well defined. The probabilities for

compatible events obey the Kolmogorov axioms. Two immediate consequences are that for

compatible events X and Y we have,

p(X ∧Y ) = p(Y ∧X),

p(X |Y ) = p(Y |X)
p(X)

p(Y )

(1)

Almost all events that we encounter in everyday life can in principle be represented in a

compatible way. However doing so requires that decision makers have access to the joint

probabilities of all of these events. This may be unfeasible, for example, from the point of view of

memory capacity, since the number of probabilities grows exponentially with the number of events

being considered. Equally, these probabilities might be difficult to compute, since joint

probabilities correspond to subsets of the sample space. If it takes a finite number of previous

experiences to learn the approximate measure of each subset, then the amount of experience

required to compute a joint probability again grows exponentially with the number of events

considered. For example, consider a situation where there are three binary events, X , Y , and Z,

with values 1 or 2. The elementary events arise from the intersection of these three events and

include events such as X1∧Y1∧Z2. This sample space has 23 = 8 elementary events. As the

number of events increases, the dimensionality of the space required to represent all elementary

events rapidly increases. For only six binary events, the dimension of the sample space is 64. This

holds for both objective and subjective probabilities. For example, if X , Y and Z are the events

‘rains tomorrow’, ‘pay raise’, and ‘job promotion’, a compatible representation requires the

existence of all joint events (such as ‘it rains tomorrow and you get a promotion at your job, but do
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not get a pay raise’) and the ability to assign coherent subjective probabilities to these events.

In contrast with compatible events, incompatible ones are those for which X ∧Y is

undefined. Thus although the probabilities p(X) and p(Y ) exist, the joint p(X ∧Y ) may not.

Typically one can define a modified version of conjunction with an explicit ordering, e.g. X ∧Y is

taken to mean X and then Y for incompatible variables. This implies that p(X ∧Y ) 6= p(Y ∧X).

Because joint events do not exist when events are incompatible, a lower dimensional space can be

used to represent them. For example, if three binary events X , Y , and Z are all incompatible, then

they can (minimally) be represented in a two dimensional space.

In quantum models, one can choose to model two events as either compatible or

incompatible. If all events are chosen to be compatible one recovers a classical model, while if no

two events are compatible (except for the trivial case of an event and its negation) then one has a

maximally quantum model. If there are more than two possible events then there can be

intermediate representations where some subset of events are compatible. Thus we should more

accurately speak of a hierarchy of different representations, from fully quantum to fully classical.

Note that we use the term ‘hierarchy’ in the colloquial sense because our models can be roughly

ordered by dimensionality. However, the models in our ‘hierarchy’ are not nested.

We begin by describing how quantum probability theory gives rise to a hierarchy of mental

representations for human inference. In the subsequent sections, we will discuss how our modeling

approach explains a number of phenomena in human inference including order effects, reciprocity

(i.e., the inverse fallacy), memorylessness, violations of the Markov condition, and

anti-discounting. As far as we are aware, no existing theory or model can account for all five

phenomena. Further, we provide some of the first empirical evidence for the co-occurrence of

these effects. We also show that classical representations provide a better account of data as

individuals gain familiarity with a task, and that mental representations (as captured by different

models in our framework) can vary between individuals, in a way that relates to a simple measure

of cognitive style, the Cognitive Reflection Test (Frederick, 2005).
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A hierarchy of mental representations

Previously, many researchers have dealt with violations of the rules of classical probability

theory, by elaborating rational models through the inclusion of extra assumptions (Costello, 2009;

Costello & Watts, 2014) or by rejecting the applicability of classical probability theory wholesale

and instead pursuing explanations based on heuristics (Tentori, Crupi, & Russo, 2013). For

example, in the domain of causal inference, when behavior violates the rules of CGMs, such as the

Markov condition, researchers have elaborated basic networks through the inclusion of hidden

variables, which are causally related to all the observed variables and possibly arise from

participants’ general assumptions regarding the relevant stimuli. While these models often provide

good accounts of data, the addition of hidden variables is often post hoc, included when a basic

CGM fails to capture data. Also, it is sometimes difficult to reconcile hidden variable approaches

with empirical data. For example, Rehder (2014) reported results that normative violations were

equally likely in domains of economics, meteorology, and sociology as in an abstract (blank)

domain. The assumption of hidden variables in a blank domain is unlikely, as such hidden

variables are typically motivated from background knowledge considerations. Further, complex

CGMs with multiple hidden variables are often difficult to conclusively test.

Rather than elaborating an existing classical model, we expand the range of probabilistic

representations relevant in inference judgments. In all rational models, probabilistic inference

follows the rules of classical probability theory. We relax this assumption and use quantum

probability theory to build a hierarchy of models. Then, depending on the representation (and we

will outline specific prescriptions for determining the appropriate representations), probabilistic

calculations can be fully classical or demonstrate some of the peculiarities of quantum probability

theory. That is, the approach can accommodate both Bayesian predictions and corresponding

non-Bayesian deviations (in the specific way, allowed by quantum theory).

Our hierarchy of mental representations corresponds to different ways people might think

about a particular problem. Levels in the hierarchy correspond to probabilistic models of different
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dimensionality with the highest dimensional model being fully classical and the lowest

dimensional model being fully quantum. Mathematically, models with lower dimensionality

involve more incompatible events than models with higher dimensionality. It is in this way that one

could consider lower levels in the hierarchy as “more” quantum and higher levels in the hierarchy

as “more” classical.

In this paper, we focus on an inference situation involving three binary variables, X , Y , and

E, where X and Y are causes that independently influence an effect E. For example, E might be

‘future weight loss’ and X and Y represent diet and exercise. We decided to focus on this situation

(also known as a common effect situation) because it is particularly common in everyday causal

inference and has been extensively studied in the lab. It has also figured prominently in the

development of models of causal reasoning (Griffiths & Tenenbaum, 2005; Cheng, 1997). Further,

many of the effects we are interested in can be explored in this situation, without loss of generality.

It also allows us a greater degree of comparability across different experiments, which is useful for

detailed model analyses. Note that even though we concentrate our efforts on this particular

situation, the modeling approach scales to a wider range of inference problems (including

problems with more variables that have more than two outcomes).

In our hierarchy of mental representations, we can model the problem using two, four, or

eight dimensional spaces. These different models correspond to different levels in the hierarchy

with the 2-dimensional model describing a very simple representation of the problem (all events

are incompatible so there are no joint events) and the 8-dimensional model describing the most

complex representation of the problem (all events are compatible so all joint events exist). An

advantage of this approach is that the relation between simpler and more complex representations

can be defined very precisely. We describe the details of these different models in the following

sections. An introduction to quantum probability theory is provided in the online supplementary

material. Additional details about the model parameterizations can be found in Appendix A.
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2-dimensional model

Consider the situation where someone is trying to judge his or her future weight loss. Let E

represent the question “Will I weigh less next month?” with two possible answers {E1,E2}. That

is, the answer can either be ‘true’ (E1) or ‘false’ (E2). In classical probability theory, we have a

sample space S containing the elements E1 and E2. Since there are only two elements in our

classical sample space S, the size of S is two.

Alternatively, with quantum probability theory, we can represent the very same event

‘weight loss’, with its possible outcomes E1 and E2, in a multidimensional Hilbert space. To do so,

we replace the sample space S with a Hilbert space H where the elements E1 and E2 are associated

with basis vectors of that space. In linear algebra, basis vectors are linearly independent vectors

that span the space H. Since, in our example, there are only two basis vectors (associated with the

elements E1 and E2), H is a 2-dimensional Hilbert space. (See online supplementary material for a

more extensive introduction to quantum probability theory.)

There is a direct correspondence between the elements of a classical sample space and the

basis vectors of a quantum model. Let us assume the classical sample space is the set {E1,E2} and

the corresponding Hilbert space has basis {|E1〉, |E2〉}. Here we are employing Dirac notation (also

known as bra-ket notation) to represent the vectors. In Dirac notation, |E1〉 is a column vector and

〈E1| is a row version of this vector. This notation is a convention borrowed from physics that is

useful in simplifying algebraic expressions. We can choose a specific basis to represent vectors in

H. For example, we can let the 2x1 column vector that has all zeros except for a one in the first row

be a coordinate representation of the basis vector |E1〉. Likewise, we can let the 2x1 column vector

that has all zeros expect for a one in the second row be a coordinate representation of the basis

vector |E2〉:

|E1〉=

1

0

 , |E2〉=

0

1

 . (2)

Thus, we can represent any elements of classical probability theory (in our example, E1 and E2) as



A Quantum Framework for Probabilistic Inference 12

basis vectors of a vector space.

Now, suppose the individual also considers diet and exercise. Let X represent the question

“Did I follow my diet this month?” with possible answers {X1,X2}. Likewise let Y represent the

question “Did I meet my exercise goals for the month?” with possible answers {Y1,Y2}. That is,

the answers can either be ‘true’ (X1 and Y1) or ‘false’ (X2 and Y2). From the classical probability

standpoint, adding events simply involves redefining the sample space S as the set containing the

elements E1∧X1∧Y1 , E1∧X1∧Y2, etc. However, in quantum probability theory, we must make a

decision about the relationship between E, X , and Y . Two or more events can either be compatible

or incompatible.

We might hypothesize that thinking about diet and exercise would influence thoughts about

weight loss. That is, processing one event can interfere with processing the other events. This

intuition is captured in the quantum model by using incompatible events. In the 2-dimensional

model, we assume all three variables are incompatible. When two or more events are incompatible,

we use a different basis for H to describe each event. As described earlier, we can represent the

variable E in a 2-dimensional Hilbert space. If we assume all three variables are incompatible, we

can represent X and Y as different bases for the same 2D space. Using Dirac notation, the pairs

{|X1〉 , |X2〉}, {|Y1〉 , |Y2〉}, and {|E1〉 , |E2〉} provide three different bases of the space,

corresponding to the variables X , Y , and E. In this model, all of the events correspond to simple

rays. This is the reason the space is 2 dimensional.

In quantum probability theory, each event is associated with a projector. We define the

projector for each basis vector as the outer product, such as the projector for the basis vector |E1〉:

PE1 = |E1〉〈E1|=

1 0

0 0

 (3)

This projector is simply a 2x2 matrix with zeros everywhere except for a one on the first diagonal.

More generally, a projection operator is a mapping from the Hilbert space into a (typically smaller)
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subspace, which is idempotent (i.e., P2 = P). The projector for the entire space, H, is the identity

operator (e.g., a 2x2 matrix with zeros everywhere except ones on the diagonal).

Quantum probability theory also postulates the existence of an initial knowledge state ρ that

represents the current state of the system. In particular, ρ is a matrix called a ‘density operator’ and

can be thought of as describing the distribution of knowledge states of a group of heterogeneous

participants. The probability of an event, such as E1, given the initial knowledge state ρ is

p(E1) = Tr(PE1ρ) = 〈E1|ρ |E1〉 (4)

where Tr denotes the trace of a matrix (i.e., the sum of the elements on the main diagonal).

A critical part of quantum theory is defining the relationships between incompatible events.

Consider the variables E and X . We can relate these two variables through a ‘rotation’.

Mathematically, we can obtain the X basis by applying a unitary transformation (i.e., rotation) to

the E basis vectors. A unitary transformation is a matrix R that satisfies R†R = I where I is the

identity matrix and R† is the conjugate transpose of R. The matrix R must be unitary to preserve

lengths and inner products thus maintaining the properties of the Hilbert space which allow

probability calculations. We chose to parameterize these 2D unitary transformations in the

following way

R j =

 cos(θ j) −sin(θ j)eiφ j

sin(θ j)e−iφ j cos(θ j)

 . (5)

Because there are three events, we need three unitary transformations to relate them, denoted RE ,

RX , and RY . We will take the initial state to be a diagonal matrix, ρ = diag(ρ,1−ρ). The

parameter ρ gives a measure of the heterogeneity of participants, if ρ = 0 or 1 participants are

perfectly homogenous with respect to their representation of these events, values of ρ closer to 0.5

indicate greater participant heterogeneity. One of the φi parameters may be set to 0 without loss of

generality (we will choose φE = 0.) Thus we have six parameters in total for the 2D model,
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{ρ,θE ,θX ,φX ,θY ,φY}. Please see Appendix A for more details about the model parameterization.

In quantum probability theory, to calculate the conjunction of two incompatible events, we

apply a sequence of projections. For example, if we wanted to calculate the probability of weight

loss and dieting (the event E1∧X1), we first have to decide the order of the projections. We can

project our knowledge state ρ onto either the |E1〉 basis vector or the |X1〉 basis vector first. When

two events are incompatible, the order of events matters. Specifically,

p(E1∧X1) = Tr(PX1PE1ρPE1) 6= Tr(PE1PX1ρPX1) = p(X1∧E1) (6)

In the left hand side of the equation, we project first onto |E1〉 and then onto |X1〉. In the right hand

side of the equation, we project first onto |X1〉 and then onto |E1〉. Thus, using incompatible events

naturally gives rise to order effects. This is difficult to achieve in a classical probability model

without building extra assumptions into the model.

One interesting feature of the 2D model is that because all the events are represented by

projection operators onto one dimensional subspaces, various expressions for the probabilities

simplify. One example is known as reciprocity,

p(X1|Y1) =
Tr(PX1PY1ρPY1)

Tr(PY1ρ)
=
〈X1|Y1〉〈Y1|ρ |Y1〉〈Y1|X1〉

〈Y1|ρ |Y1〉

=| 〈X1|Y1〉 |2 =
〈Y1|X1〉〈X1|ρ |X1〉〈X1|Y1〉

〈X1|ρ |X1〉
= p(Y1|X1)

(7)

where the conditional probabilities are the same for two events, regardless of which event is the

conditionalizing one. Another example is the memorylessness property,

p(E1|Y1,X1) =
Tr(PE1PX1PY1ρPY1PX1)

Tr(PX1PY1ρPY1)
= | 〈E1|X1〉 |2 =

Tr(PE1PX1ρPX1)

Tr(PX1ρ)
= p(E1|X1) (8)

where the probability of an event only depends on the most recent information given (in this

example X1). The above equations hold for all variables (e.g., p(X2|Y1) = p(Y1|X2),
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p(X1|Y2) = p(Y2|X1), etc.). Also, note that we use the notation p(E|Y,X) for the conditional

probability of E given combined information about Y and X where information about event Y is

presented before information about event X .

In sum, the 2D model is the maximally quantum model because all events are incompatible.

Psychologically, it assumes that individuals consider one variable at a time and do not have mental

representations of joint events. Judgments about multiple variables are performed by considering

each variable sequentially.

2-dimensional POVM model

The 2D model discussed above makes the important assumption that the events in question

are totally isolated from all other events. We do not know a priori whether this strong assumption

will hold even in some cases. It seems reasonable that a participant’s knowledge state at any

moment in time will contain information about more than just {E,X ,Y}. Thus, it makes sense to

generalize the fully incompatible quantum model in a way that allows for ‘weak’ influences from

other knowledge (Fodor, 1983). In this section, we describe the 2D POVM model, which is fully

incompatible like the 2D model, but allows for weak interactions with other events. As we will see

shortly, one important consequence of this model is that the “special” properties of reciprocity and

memorylessness no longer hold. It is possible that an individual has an incompatible representation

of all events, but does not display one (or both) of reciprocity and memorylessness. For example,

Rehder and Burnett (2005) found that participants’ judgments about the presence of an effect

increased with the number of presented causes, thus violating memorylessness.

We start by assuming that a participant’s complete knowledge space is large. The natural

way to formulate such a model is by representing variables using higher dimensional subspaces

while maintaining the incompatibility assumption. The price we pay for this increase in generality

is that judgments are no longer represented by projection operators, but by the more general class

of Positive Operator Valued Measures (POVMs; Nielsen & Chuang, 2000; Yearsley, in press;
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Busch, Grabowski, & Lahti, 1995). POVMs are a generic way to consider measurements on states

which are embedded in a larger space. As formulated in the Neumark Dilation Theorem (Busch et

al., 1995), any POVM acting on a low dimensional space can be thought of as arising from a set of

projective measurements on a higher dimensional space. In particular, the 2D POVM model

represents a situation where the knowledge space is higher dimensional, because there are many

other possible states in this space, which interact weakly with the three variables of interest

{E,X ,Y}.

Whenever variables interact, noise (or error) is introduced into the system. The degree of

error is likely to depend on the particulars of the situation and so we leave it as a free parameter.

Thus, we proceed by proposing a form for the POVM involving a single extra parameter ε, and

then fit this parameter to the data. One way of interpreting ε is to note that it controls the extent to

which an event and its negation are not orthogonal. As such it can be thought of as a measure of

the number of other events that can either cause, or be caused by, both the event and its negation.

We will adopt a particularly simple type of POVM where the projection operators used to

represent a measurement, for example

PE1 =

1 0

0 0

 , PE2 =

0 0

0 1

 (9)

are replaced with the following ‘measurement operators’,

ME1 =

√1− ε 0

0
√

ε

 , ME2 =

√ε 0

0
√

1− ε

 (10)

These measurement operators are ‘complete’ in the sense that, ME1M†
E1
+ME2M†

E2
= I, but they are

not orthogonal or idempotent. Note that we use a single ε for all variables. Thus we have seven

parameters in total for the 2D POVM model, {ρ,θE ,θX ,φX ,θY ,φY ,ε}.
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This happens to be a very straightforward example of a POVM in that the measurement

operators may be written as,

ME1 =
√

1− εPE1 +
√

εPE2 (11)

and similarly for ME2 . This form makes it obvious that the 2D POVM model reduces to the 2D

model when ε→ 0, which will be important later.

Now we can work with these measurement operators to compute the various probabilities of

interest, but there turns out to be a useful approximation that simplifies the algebra. In a typical

psychology experiment we expect the value of ε to be of the order of 1−5% (e.g., Yearsley &

Pothos, 2016). This is because one effect of the POVM is to introduce apparently erroneous

responses, i.e. the model will, with probability ∼ ε, output ‘false’ when the answer is obviously

‘true’. Such errors do happen in experiments, but for a relatively simple experimental set up such

as the one we report in this paper the rate of such errors is expected to be low.

Under the assumption of small ε we can expand out all of our expressions for the predicted

probabilities in powers of ε and keep only the lowest order terms. The lowest (non-zero) power of

ε that appears in the probabilities is
√

ε, so we will keep only terms up to this order in what

follows. We can therefore write,

ME1 = PE1 +
√

εPE2 +O(ε) (12)

The first thing to note is that ME1M†
E1

= PE1 +O(ε), therefore the simplest probabilities, p(E1),

p(Y1), and p(X1) etc. are the same in the 2D and 2D POVM models. Probabilities involving

conjunctions and conditionals differ between the 2D and 2D POVM models. In particular, in

contrast to the standard 2D model, conditionals in the 2D POVM are not symmetric under the

interchange of events (e.g., p(X1|Y1) 6= p(Y1|X1)). This is how the 2D POVM model avoids

reciprocity and memorylessness.
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4-dimensional models

When some of the variables are compatible and others are not, we have a mixed classical /

quantum model. In the case of three binary variables, these mixed models are all 4-dimensional.

Similar to the 2D POVM model, reciprocity and memorylessness do not hold in 4D models (but

for these higher dimensionality models, we do not consider POVM versions, so as not to increase

their complexity too much). We consider two possibilities: (1) a model where the causes X and Y

are compatible, but neither are compatible with the effect E, and (2) a model where X and E are

compatible and Y and E are compatible, but the two causes X and Y are incompatible. There are

other possible configurations of compatible and incompatible events. We focus on a common effect

situation, which can be considered symmetric in the causes since both X and Y independently

cause E. Thus other variants are unsatisfactory as they treat X and Y asymmetrically.

4D model with incompatible causes (4DIC). In this model, it is assumed that individuals

form mental representations for single cause and effect relationships, but do not think about

multiple causal relationships simultaneously. This model posits that the two causes X and Y are

each compatible with the effect (e.g., diet and exercise are both compatible with weight loss), but

not with each other. We can think of this as saying people learn the causal relations X → E (e.g.,

diet causes weight loss) and Y → E (e.g., exercise causes weight loss) first, before learning the

relationship between X and Y . An important consequence of this is that the variables E1 and E2

always look classical in this model. Although the space contains states which are indefinite with

respect to the value of E (technically superposition states), the effects of this cannot be seen in the

model predictions. We will use this below to reduce the number of parameters needed to describe

the model.

Since X and E are compatible and are both binary variables, that means they form a set of

4D vectors that span the space. Likewise we can form another basis from Y and E. We therefore
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have the two bases, 

X1E1

X2E1

X1E2

X2E2


,



Y1E1

Y2E1

Y1E2

Y2E2


(13)

which are linked by a unitary transformation R. Now suppose we have an initial state ρ. The

transformation ρ→ RρR† should leave E unchanged ( i.e. Tr(PEρ) = Tr(PERρR†)) so we conclude,

R =



cos(θ1) −sin(θ1)eiφ1 0 0

sin(θ1)e−iφ1 cos(θ1) 0 0

0 0 cos(θ2) −sin(θ2)eiφ2

0 0 sin(θ2)e−iφ1 cos(θ2)


(14)

where θ1,θ2,φ1,φ2 are real angles. Finally we need to specify the initial state. In general we have a

4×4 initial density matrix. However we noted above that because X and Y commute with E, we

may take the initial state to be diagonal in the E1 and E2 basis. We can therefore write,

ρ =



ρ11 ρ12 0 0

ρ21 ρ22 0 0

0 0 ρ33 ρ34

0 0 ρ43 ρ44


(15)

This would suffice to specify all the parameters in the 4DIC model. However it is useful to rewrite

ρ, because it is difficult to ensure that a given choice of {ρi j} leads to an allowable density matrix.
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For this reason it is useful to write, ρ = Sρ′S† where,

ρ
′ =



ρ′11 0 0 0

0 ρ′22 0 0

0 0 ρ′33 0

0 0 0 ρ′44


, S =



cos(θa) −sin(θa) 0 0

sin(θa) cos(θa) 0 0

0 0 cos(θb) −sin(θb)

0 0 sin(θb) cos(θb)


(16)

Here θa and θb are real angles. Comparing S with R we see S is not the most general unitary

transformation of this form. We may restrict our attention to real S via an argument similar to that

given in the 2D case (see Appendix A). The 4DIC model thus contains 10 parameters,

{ρ11,ρ22,ρ33,ρ44,θ1,θ2,φ1,φ1,θa,θb}. Note that the normalization constraint (i.e.,

ρ11 +ρ22 +ρ33 +ρ44 = 1) means that the degrees of freedom in the model is one less than the

number of parameters (that is, the degrees of freedom is 9).

4D model with compatible causes (4DCC). This model posits that the two causes X and Y are

compatible with each other (e.g., diet and exercise are compatible), but neither is compatible with

the effect E. Psychologically, this is reasonable since X and Y do not causally influence each other

in the common effect situation. For example, it is easy to imagine a person that both diets and

exercises. In our experiments (discussed below), participants made judgements about the casual

relationships of features of novel animals such as African Lake Shrimp. In this case, one might

imagine an exemplar (e.g., a particular shrimp) possessing both features X and Y simultaneously.

We can form two bases, 

X1Y1

X1Y2

X2Y1

X2Y2


,



E1E1

E1E2

E2E1

E2E2


(17)

Here E is a label to distinguish the different states having the same value of E. The



A Quantum Framework for Probabilistic Inference 21

subspaces corresponding to E1 and E2 are two dimensional, so they require two vectors to span

them, which we label |E1,E1〉 and |E1,E2〉 etc. Since we only measure E and not the value of E , it

is therefore an unobservable parameter. This will be important below, as it will allow us to reduce

the number of parameters needed to describe the model.

The two bases are linked by a unitary transformation, R. Since we noted that the value of E

is unobservable when computing the probabilities for E1 and E2 we can choose the simple form,

R =



cos(θ1) 0 0 −sin(θ1)eiφ1

0 cos(θ2) −sin(θ2)eiφ2 0

0 sin(θ2)e−iφ2 cos(θ2) 0

sin(θ1)e−iφ1 0 0 cos(θ1)


(18)

where θ1,θ2,φ1,φ2 are real angles. We can also choose the initial state ρ to be of the form,

ρ =



ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44


(19)

In a similar way to the 4DIC case it is useful to express this as, ρ = Sρ′S† where

ρ
′ =



ρ′11 0 0 0

0 ρ′22 0 0

0 0 ρ′33 0

0 0 0 ρ′44


, S =



cos(θa) 0 0 −sin(θa)

0 cos(θb) −sin(θb) 0

0 sin(θb) cos(θb) 0

sin(θa) 0 0 cos(θa)


(20)

where θa,θb are real angles, and the restriction to real S is allowed for a similar reason as for 4DIC.

The 4DCC model thus contains 10 parameters, {ρ11,ρ22,ρ33,ρ44,θ1,θ2,φ1,φ1,θa,θb}. Note that
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the normalization constraint means that the degrees of freedom in the model is one less than the

number of parameters.

8-dimensional model

The 8D model is the classical probability model where all three variables X , Y , and E are

compatible, implying individuals have mental representations of all joint events (e.g., diet, exercise,

and weight loss are represented simultaneously). Since all events are compatible, it is possible to

assign truth values to propositions such as X1∧Y1∧E1, and so the space needs to contain vectors

representing these events. Therefore our space is 8D and can be described by the following basis,

|X1Y1E1〉=
(

1 0 0 0 0 0 0 0

)T

,

|X1Y1E2〉=
(

0 1 0 0 0 0 0 0

)T

,

...

|X2Y2E2〉=
(

0 0 0 0 0 0 0 1

)T

(21)

and projection operators,

PX1 = |X1Y1E1〉〈X1Y1E1|+ |X1Y1E2〉〈X1Y1E2|

+ |X1Y2E1〉〈X1Y2E1|+ |X1Y2E2〉〈X1Y2E2|

=diag(1,1,1,1,0,0,0,0) etc.

(22)

The initial state may be a general density matrix, however it turns out that the probabilities we

compute are sensitive only to the diagonal elements of ρ. Therefore we may take,

ρ = diag(ρ11,ρ22, . . . ,ρ88) (23)
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It is easy to compute the various probabilities of interest in terms of the ρii. There are therefore 8

parameters in the classical model, {ρ11,ρ22, . . . ,ρ88}. Note that the normalization constraint means

that the degrees of freedom in the model is one less than the number of parameters. Also note that

because all events are compatible, unitary transformations are not needed here.

The 8D model is entirely equivalent to a general classical probability model. More specific

classical models can be represented within our framework by placing restrictions on the parameters

of the model. A well motivated approach is parameterizing the model in accordance with power

PC theory (or causal power theory for short, Cheng, 1997; Novick & Cheng, 2004). This is a

classical probability model that links observable covariation to causal powers, by assessing the

power of candidate causes to generate specific effects taking into account underlying base rates and

independent alternate causes. Specifically, causal power theory provides a formal way to capture

the intuitive idea that one variable can influence another by exerting power over it. Each cause i is

associated with a power parameter wi capturing the power of the cause to produce the effect. In

particular, there are two power parameters, wX and wY , for the two causes of E. Cheng (1997) also

assumed there could be alternative causes for the effect which might be known or unknown. These

alternative causes are also associated with a power parameter labeled wa. By the axioms of

classical probability theory and the independence of X and Y we can write the joint probabilities

for the three features as p(Ei,X j,Yk) = p(Ei|X j,Yk)p(X j)p(Yk) where i, j, and k ∈ {0,1}. Causal

power theory assumes the conditional probability of the effect given the causes is computed using

a “noisy-or” equation:

p(E1|X j,Yk) = 1− (1−wX)
j(1−wY )

k(1−wa). (24)

Thus, five parameters are needed to define all eight possible joint probabilities: the three power

parameters, wX , wY , and wa, and the prior probabilities of the causes, p(X1) and p(Y1). The eight

joint probabilities can then be mapped directly to the diagonal elements of ρ.
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In this paper, we consider both the general form of the 8D model and the parameterization

due to causal power. In particular, we include the most general form because we are interested in

whether people’s judgments obey the axioms of classical probability theory (since if the more

general model is shown inferior, this would apply to all specific instantiations too).

Model predictions

The models in our hierarchy of representations can explain a number of phenomena in

human inference. In this paper, we focus on five key findings: order effects, reciprocity (i.e., the

inverse fallacy), memorylessness, violations of the Markov condition, and anti-discounting. While

there is extensive empirical evidence for most of these phenomena, very few studies have

examined the co-occurrence of these effects. For example, there has been extensive research on the

Markov condition and anti-discounting in causal inference (e.g., Rehder, 2014). However, order

effects and reciprocity are rarely studied in this domain. Order effects and reciprocity have been

mainly examined in non-causal inference problems. As far as we are aware, there is no existing

research examining all five phenomena in the same paradigm. Further, there has been little

research examining individual differences in these phenomena. In this paper, we examine two

factors (familiarity and cognitive thinking style) that are related to the size of the effects. Below we

describe each of the phenomena in detail, including the previous empirical evidence.

Order effects

Order effects are a hallmark of incompatible events because these effects show that events

do not commute and must be evaluated sequentially. Mathematically, this is because when two

events X and Y are incompatible, their projectors do not commute (PX PY 6= PY PX ). On the other

hand, compatible events obey the commutative property and do not naturally produce order effects.

Thus, order effects provide a critical test between models using compatible events and those using

incompatible events.
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A wealth of past research has shown that order of information often plays a crucial role in

determining final judgments (see Hogarth & Einhorn, 1992, for a review). Order effects arise in a

number of different situations ranging from judging the likelihood of selecting balls from urns

(Shanteau, 1970) to judging the guilt of a defendant in a mock trial (Furnham, 1986; Walker,

Thibaut, & Andreoli, 1972). In general, for a sequence of information X followed by Y , individuals

are asked to judge p(H|X ,Y ) for some hypothesis H. An order effect occurs when final judgments

depend on the sequence of information so that p(H|X ,Y ) 6= p(H|Y,X).

While there has been extensive research on order effects in non-causal inference problems,

there has been little work examining these effects in causal inference. Most past research on order

effects in causality has examined these effects in the context of causal learning (Dennis & Ahn,

2001; Collins & Shanks, 2002; Abbott, Griffiths, et al., 2011). For example, many experiments

focus on a pair of events (e.g., Collins & Shanks, 2002, examined the relationship between

radiation and mutation) where participants learn the causal relationship between the two events

over a sequence of trials. After the learning stage, participants are asked to make judgments of

causal strength between the events. Order effects are observed when early trials in the learning

sequence favor one relationship (e.g., a positive relationship between radiation and mutation) and

later trials in the sequence favor the opposite relationship (e.g., a negative relationship between

radiation and mutation). Specifically, Dennis and Ahn (2001) found a primacy effect where early

information in the learning stage was weighted more heavily in causal strength judgments. On the

other hand, Collins and Shanks (2002) found that when intermediate judgments were introduced

(causal strength judgments after every 10 learning trials), participants showed recency effects,

weighting later information more heavily in their judgments.

The focus of the present paper is on order effects in causal inference rather than causal

learning. In particular, participants in our experiments are directly provided information about

causal relationships and do not learn this information over trials as in Dennis and Ahn (2001);

Collins and Shanks (2002); Abbott et al. (2011). We are interested in whether the order in which
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different causes are presented influences judgments about the likelihood of an effect (e.g., do

judgments of future weight loss depend upon the presentation order of information about diet and

exercise?). This is in contrast with studies of causal learning that examine whether presentation

order during learning influences judgments of causal strength.

Preliminary empirical evidence for order effects in causal inference was obtained in

Trueblood and Busemeyer (2012). Here we aim to test this prediction more comprehensively. In

Trueblood and Busemeyer (2012), participants read different scenarios each involving a single

effect and two causes where one of the causes was present and the other was absent. For example,

in one scenario, participants were asked about the likelihood that sales of a popular caffeine free

soda will increase next year (the effect) given the advertising budget for the soda remains the same

(the absent cause) and the soda company lowers the price of the drink (the present cause).

Participants reported the likelihood of the effect before reading either cause, after reading one of

the causes, and again after reading the remaining cause. For a random half of the scenarios,

subjects judged the present cause before the absent cause. For the remaining half of the scenarios,

the subjects judged the absent cause before the present cause. The results showed a significant

recency effect where individuals placed more importance on the final cause. Experiments 1 and 3

in this work provide more extensive tests of order effects in causal inference.

Reciprocity

Reciprocity refers to the situation where individuals judge the probability of one variable

given another to be the same as the probability when the variables are reversed, e.g.

p(E|X) = p(X |E). This phenomenon is also related to the inverse fallacy (Koehler, 1996;

Villejoubert & Mandel, 2002) where individuals equate posterior and likelihood probabilities. That

is, for a hypothesis H and data D, individuals judge p(H|D) = p(D|H) where p(H|D) is the

posterior probability and p(D|H) is the likelihood. The inverse fallacy has mainly been studied in

non-causal inference problems. For example, Kahneman and Tversky (1972) demonstrated the
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fallacy in their taxicab problem, where participants were asked to judge the probability that a cab

had been in an accident given that it was blue instead of green. In this problem, most participants

judged p(H|D) as p(D|H). In causal inference, there is some preliminary evidence for this

phenomenon. For example, in medical reasoning, clinicians often exhibit the fallacy when judging

the probability of a disease (the cause) based on a set of symptoms (the effects) (Meehl & Rosen,

1955; Hammerton, 1973; Liu, 1975; Eddy, 1982). Despite the evidence for the inverse fallacy in

these studies, Krynski and Tenenbaum (2007) suggested that the phenomenon is limited, only

occurring when both probabilities have roughly the same value. Note that in our experiments, we

examine reciprocity under a broad range of conditions.

In quantum probability theory, the law of reciprocity (Peres, 1998) states that if two events X

and E are represented by a single dimensional subspace (i.e., a ray), then p(X |E) is exactly the

same as p(E|X). In our hierarchy of representations, reciprocity is predicted by the 2D model

because events are represented by rays. Reciprocity is not predicted by the 2D POVM, 4D, or 8D

models because events are represented by multi-dimensional subspaces in these models (e.g.,

events are planes in the 4D models and three dimensional subspaces in the 8D model.) Although,

the 2D POVM model can display weak forms of reciprocity when ε is very small.

In a common effect situation, there are two distinct ways to test reciprocity. One way is to

examine reciprocity between the effect and causes (e.g., p(E|X) versus p(X |E)). The other way is

to examine reciprocity between the two causes (e.g., p(X |Y ) versus p(Y |X)). We will call these

different comparisons “cause-effect” reciprocity and “cause-cause” reciprocity. Experiment 1 tests

for “cause-effect” reciprocity, Experiment 2 tests both types of reciprocity, and Experiment 3 tests

for “cause-cause” reciprocity.

Memorylessness

In quantum probability theory, if three (or more) incompatible events are each represented

by a single dimension, then conditional probabilities involving two (or more) given events (e.g.,
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p(E|Y,X)) exhibit a memoryless property. That is, the probability of an event (E) only depends of

the most recent information given (X). Earlier information (Y ) does not factor into the probability.

Therefore, memorylessness predicts equality among conditionals such as p(E|Y,X) and p(E|X).

Similar to reciprocity, memorylessness is predicted by the 2D model and not the 2D POVM, 4D, or

8D models, because the 2D model is the only one where events are represented by rays. Note that

for small ε, the 2D POVM model can display weak forms of memorylessness.

As far as we are aware, there have been no direct empirical studies of memorylessness.

Rehder and Burnett (2005) found that participants’ judgments about the presence of an effect

increased with the number of presented causes, contrary to memorylessness. We examine the

evidence for this phenomenon in all three experiments. We note that the prediction of

memorylessness is a bold one and it is clearly not a general property of human inference (this point

is trivially true, since memorylessess is not consistent with a fully classical model). However, it is

intriguing to consider whether there might be at least some situations where memorylessness is

observed.

Similar to reciprocity, there are different ways to examine memorylessness in the common

effect situation. One way is to examine the probability of the effect conditioned on the causes (e.g.,

p(E|X) versus p(E|Y,X)). Another way is to examine the probability of a cause conditioned on the

effect and other cause (e.g., p(X |E) versus p(X |E,Y )). We will call the first method “cause-cause”

memorylessness (since the conditioning events are both causes) and the second method

“cause-effect” memorylessness (since the conditioning events are the effect and one of the causes).

Experiments 1 and 3 test “cause-cause” memorylessness. Experiment 2 tests “cause-effect”

memorylessness.

Violations of the Markov condition

Violations of the Markov condition are specific to causal inference because they deal with

violations of the assumptions of CGMs. The Markov condition stipulates that any node (i.e., event)
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in a CGM is conditionally independent of its nondescendents when its parents are known. For

example, in the common effect situation, the Markov condition implies that the two causes X and Y

are conditionally independent (note that these variables do not have parents). Thus, the presence or

absence of one cause should not affect judgments of the other cause. For example, this implies that

p(X1|Y1) = p(X1|Y2) and similarly when X and Y are reversed. Rehder (2014) documented a

number of situations where individuals violate the Markov condition including the common effect

situation.

Independence of the events X and Y is equivalent to the conditions p(X1,Y1) = p(X1)p(Y1),

p(X1,Y2) = p(X1)p(Y2), etc. In general, for any of the models to display independence for a pair of

events, two conditions must hold. First X and Y must be compatible and second the initial state

must factorize as ρ = ρX ⊗ρY . This then guarantees that,

p(X1,Y1) = Tr(PX1∧Y1ρ) = Tr(PX1ρX)Tr(PY1ρY ) = p(X1)p(Y1) (25)

Since X and Y are incompatible in the 2D, 2D POVM and 4DIC models, these models cannot

display independence for these variables, except in some trivial cases. The 8D and 4DCC models

can allow for independence, but whether they display it or not depends on the choice of initial

state. While the standard CGM for a common effect situation assumes X and Y are independent by

definition, the 8D model is more general and does not have this same restriction. We test for

violations of the Markov condition in Experiments 2 and 3.

Anti-discounting behavior

Similar to the violations of the Markov condition, anti-discounting is specific to causal

inference. Discounting occurs in the common effect scenario when one cause, say X1, casts doubt

on the other cause, Y1. Mathematically, discounting implies p(Y1|E1,X1)< p(Y1|E1). In many

causal situations, discounting is the normatively correct way to judge events (Morris & Larrick,

1995). For example, it is normatively correct to judge p(Y1|E1)> p(Y1|E1,X1) because the
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presence of X1 in the second conditional sufficiently explains the presence of the effect and so

renders the other cause redundant (i.e., the presence of X1 discounts the other cause). In the

conditional p(Y1|E1), the value of X is unknown thus increasing the chance that the effect was

brought about by cause Y . However, Rehder (2014) found that many individuals judge the

unknown cause Y as highly probable based on the presence of the alternative cause X . That is,

p(Y1|E1,X1)> p(Y1|E1). Anti-discounting behavior can be attributed to a causal dependency

between X and Y , which naturally arises in the 2D, 2D POVM and 4DIC models. We test for

anti-discounting in Experiment 2.

Other Non-normative Effects

The effects discussed above are the most relevant ones when studying inferences about

causally related events, however they are not the only possible non-normative effects we might

observe. In particular, for any model with two incompatible events A and B we expect to observe

violations of the law of total probability, e.g. p(A1) 6= p(A1|B1)p(B1)+ p(A1|B2)p(B2) (Pothos &

Busemeyer, 2009). Therefore, for example, while the 4DCC model may not display some of the

non-normative behavioral properties we examine (i.e., Reciprocity, Memorylessness, Violations of

the Markov condition, and Anti-Discounting), it is able to account for situations where p(Y1) is

judged less likely than p(Y1|E1)p(E1), for example.

Differences in mental representations

Because the models in the present approach are all embedded in the same hierarchy, we can

utilize knowledge about the formal relations between models to make predictions for when we

expect particular models to best describe behavior. In particular, we expect that familiarity with a

task will encourage individuals to adopt a more classical representation (e.g., 8D model). Classical

representations are more complex (in the sense that they involve information about all joint

probabilities), so it is reasonable to expect that they form after longer experience with a task (or

effort, see shortly). Thus, we expect to see transitions in our hierarchy from more quantum to more



A Quantum Framework for Probabilistic Inference 31

classical with experience. We also hypothesize that cognitive thinking style might also influence

the type of representation an individual adopts. For example, an individual that tends to make

intuitive or spontaneous decisions might adopt a more quantum representation. Some quantum

models can be interpreted as heuristics or simplistic reasoning (Busemeyer et al., 2011). Quantum

representations are simpler, as all probabilities can be represented in a lower dimensionality space

and knowledge about joint events need not be represented, but the price one pays for this simplicity

is the requirement that joints are evaluated sequentially. On the other hand, we expect individuals

that tend to make deliberative decisions will be better modeled using more classical

representations. We test both of these predictions in Experiment 3. In this experiment, participants

gain familiarity with the task through repetition. We also include a simple measure of cognitive

style, the Cognitive Reflection Test (Frederick, 2005), to distinguish intuitive and deliberative

thinking styles.

Summary of Model Predictions

Not all models in our framework can cover all of the effects mentioned above. While the 2D

model can cover all phenomena, the 2D POVM and 4D models can only predict order effects,

violations of the Markov condition, and anti-discounting. The 2D POVM and 4D models cannot

predict reciprocity and memoryless effects (except when ε is very small in the 2D POVM model).

The 8D model cannot cover any of these phenomena, except violations of the Markov

condition and anti-discounting under specific configurations of the initial state. We note that it is

possible for Bayesian models to produce order effects. In our modeling framework, the 8D model

can be considered an ‘exchangeable’ Bayesian model. That is, the joint probability of any set of

variables is independent of the ordering of those variables. However, more complex Bayesian

models can violate the exchangeability property and produce order effects. For example, consider

a Bayesian model with two additional variables O1 that X is presented before Y and O2 that Y is

presented before X . In this case, we obtain p(E|X ,Y,O1) 6= p(E|X ,Y,O2). However, without
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specifying p(E)× p(Oi|E)× p(X |E,Oi)× p(Y |E,Oi,X), this approach simply redescribes the

empirical results. Also note that the causal power model is a special case of the more general 8D

model and can at best cover the same phenomena as this model.

Table 1 summarizes the five models in our framework and the phenomena that each model

covers. Our claim that different models correspond to particular styles of thinking in inference is

an idea that has a precedence in literature. For example, Rehder’s (2014) theory of causal inference

includes both normative and associative components. Our approach is similar, but our aim is to

express all relevant influences (both normative and non-normative) within the same integrated,

probabilistic framework.

Table 2 provides a summary of the three experiments. Because there are a large number of

different probability questions that can be asked when working with three binary variables

(especially when you consider all of the different possible ways to condition on the variables), we

took the approach of testing different questions in different experiments. The first row of Table 2

lists the effects tested in each experiment. In Experiment 1, we examine six different models (2D,

2D POVM, 4DIC, 4DCC, 8D, and 8D causal power). The modeling results of Experiment 1 show

that the 2D POVM and 4DCC models outperform the other two quantum models. Thus, we drop

the 2D and 4DIC models from the analyses of Experiments 2 and 3. We also find that both the

general 8D model and 8D causal power models perform about the same. Thus, we drop the more

restricted 8D causal power model from the analyses of Experiments 2 and 3. The table also

provides an overview of the types of analyses that we perform for each experiment.

Experiment 1

The first experiment examines predictions of our modeling framework that have previously

received less attention in the causal inference literature: order effects, reciprocity, and

memorylessness. This experiment (along with Experiments 2 and 3) uses a paradigm developed by

Rehder and Hastie (2001) and Rehder (2003b, 2003a) to study causal inference with novel
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categories. We selected this paradigm because we wanted participants to reason using linguistic

descriptions of events rather than using statistical information or learning contingencies through

observation. There seems little doubt that at least in some cases causal knowledge is acquired in

such a direct, linguistic way, as opposed to using statistical information or learning contingencies

through observation. Additionally, there is evidence that people’s judgments about causal systems

often deviate from classical probability theory when tasks are presented using linguistic

descriptions (Sloman & Fernbach, 2011; Trueblood & Busemeyer, 2012; Rehder, 2014). Thus, we

focus our efforts in this domain. In our task, participants are given a linguistic description of a

novel category (e.g., African Lake Shrimp) and asked to judge the likelihood that certain features

cause others. Specifically, participants are given information about how two independent features

can influence a third feature. The language used to describe the features and their relationships is

purposely vague as many real life situations do not involve precise information. Note that while

our experiments use a paradigm similar to Rehder and Hastie (2001) and Rehder (2003b, 2003a),

those previous studies did not examine the three effects of interest (order effects, reciprocity, and

memorylessness). Thus, the aim of this experiment is part replication, and part examining these

new effects. The data and models for all three experiments are available on the Open Science

Framework at https://osf.io/4chu6/.

Methods

58 undergraduate students from a US university participated in the experiment online at a

time of their choosing for course credit. Here and elsewhere, the sample size was determined a

priori, broadly following Rehder (2014). Participants were randomly assigned to one of two novel

animal categories (either African Lake Shrimp or Kehoe Ants). At the start of the experiment, they

were told that biologists recently discovered a new type of animal (i.e., shrimp or ant) and that

identical animals could be found in several different locations (e.g., identical shrimp can be found

in all nine African Great Lakes). Participants then learned that each animal had three binary
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features (X , Y , and E) where two of the features (X and Y ) causally influenced the third (E),

forming a common effect network. For example, in the African Lake Shrimp category, X1 = high

amount of ACh neurotransmitter (X2 = low amount of ACh), Y1 = accelerated sleep cycle (Y2 =

normal sleep cycle), and E1 = high body weight (E2 = low body weight ). Participants were given

information about the typicality of feature values. For example, they were told that “Most shrimp

have a high amount of ACh whereas a few have a low amount of ACh”. In both categories, most

animals had feature X1, a few had feature X2, a few had feature Y1, and most had feature Y2. Also,

half of the animals had feature E1 and half had feature E2. Participants were also given the causal

relationships between features. These relationships were described as one feature causing another.

In both categories, X1 and Y1 were described as causing E1. Likewise, both X2 and Y2 were

described as causing E2. Participants were also told that there were no known relationships

between X and Y . Details of the stimuli are given in Appendix B.

Participants first studied the three features and the typicality of their values. After studying

this information, they took a multiple-choice test with six questions that tested them on this

knowledge. Participants were required to answer each question correctly before moving on to the

next one. Next, they studied the two causal relationships and took another multiple-choice test with

eight questions testing them on this new knowledge. As before, participants were required to

answer each question correctly before moving on to the next one. Finally, participants were asked

to take a few minutes to review the features and relationships one more time. After they finished

reviewing this information, they completed a third multiple-choice test with 10 questions. In this

final test, participants were only given one opportunity to answer each question. Their score on this

test was used to gauge how well they learned the features and causal relationships.

After completing the learning stage, participants completed two blocks of trials (i.e., two

within-subject order conditions denoted by BX and BY) where they were asked to make decisions

about the value of different features. Each block contained 13 questions where participants were

asked to select the value of a particular feature (see Table 3). At the start of each question,
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participants were told that a biologist caught a new animal (either shrimp or ant) in a particular

location (e.g., Lake Victoria) and were queried about one of the features of that animal. For

example, in the African Lake Shrimp category, they might be asked ”What type of body weight do

you think this shrimp has?” (question E in the table). Participants were given three response

options: feature value 1, feature value 2, or equally likely to be feature value 1 or 2. For example,

in the question about body weight, the response options were 1) a low body weight, 2) a high body

weight, and 3) equally likely to be low or high.

Some of the questions required participants to make a sequence of decisions about a feature

value (e.g., E) as they learned new information about the other features (e.g., X and Y ). For

example, they might be asked about the body weight of a shrimp given lab tests that showed the

shrimp had a high amount of ACh neurotransmitter (i.e., E|X1). Participants might then be asked to

reevaluate body weight based on additional lab tests that showed the shrimp also had a normal

sleep cycle (e.g., E|X1,Y2). Note that information about the value of the first feature (e.g., X1)

remained on the computer screen when new information about the second feature (e.g., Y2) was

presented. Thus, participants had access to all feature information during their final choice, which

makes it less likely (if not impossible) that any observed effects result from memory failures.

Participants were randomly assigned to start with either the BX or BY block. In the BX

(BY) block, information about feature X (Y ) was always presented before information about

feature Y (X) in sequences involving both features. This helped reduce the influence of memory on

future decisions about reverse orderings. At the start of each block, participants were given a new

location for the animals in that block (e.g., a different lake for the African Lake Shrimp). Changing

the location of the animals between blocks helped delineate the blocks and obscure the repetitive

nature of the questions. Participants did not receive any feedback about their choices.
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Behavioral Results

We use Bayesian statistics for all analyses in this paper. All tests were implemented using

the open source software package JASP (JASP Team, 2016). For each test, we report the Bayes

factor (BF), which is a ratio quantifying the evidence in the data favoring one hypothesis relative to

another. In particular, we report BF10, which is the evidence for the alternative hypothesis relative

to the null hypotheses. When BF10 < 1, there is evidence for the null hypothesis. When BF10 > 1,

there is evidence for the alternative hypothesis. The larger BF10, the more evidence there is in

favor of the alternative hypothesis. While Bayes factors are directly interpretable, labels for the

strength of the Bayes factor have been proposed. In particular, BF greater (less) than 1, 3 (1/3), 10

(1/10), 30 (1/30) and 100 (1/100) are considered ‘Anecdotal’, ‘Moderate’, ‘Strong’, ‘Very Strong’

and ‘Extreme’ evidence respectively (Kass & Raftery, 1995). We also note the coarseness of the

response scale (only three response options). For the analyses and modeling below, we only

consider group level results. Experiment 2 uses a different response scale and allows for individual

level analyses.

All participants were included in the analyses. The average score on the 10 question

multiple choice test was 9.41 indicating most participants correctly learned the feature values and

causal relationships during the first part of the experiment. For analyses of the choice data, we

calculated a choice score for each participant in a similar way to Rehder (2014) by assigning the

following values to the three response options: feature value 1 = 1, feature value 2 = 0, and equally

likely = 0.52. Note that there were no differences between choices in the two different animal

categories (BF10 = 0.105) and so responses were collapsed for the following analyses. The mean

choice scores along with standard deviations for each question are given in Table 3.

Order effects were assessed by comparing pairs of questions such as E|X1,Y2 and E|Y2,X1.

There are four possible comparisons that can be made by pairing the questions in block BX with

the corresponding questions in block BY (see Table 3). Bayesian paired samples t-tests were

conducted on the four pairs and the results are reported at the top of Table 4. Choices where both
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feature values matched (i.e., both X and Y equal to 1 or both equal to 2), showed no evidence for

order effects. The lack of order effects for these questions could simply be due to floor and ceiling

effects. As seen in Table 3, the mean choice scores for conditionals with two matching causes are

either very close to 1 (when both X and Y equal 1) or very close to 0 (when both X and Y equal 2).

On the other hand, there was ‘very strong’ to ‘extreme evidence’ for order effects when the feature

values are mismatched. These order effects are easily seen in the mean choice scores reported in

Table 3. The mean choice score for E|X1,Y2 was 0.42 as compared to 0.68 for E|Y2,X1. Likewise,

the mean choice score for E|X2,Y1 was 0.63 as compared to 0.37 for E|Y1,X2. These results show

that participants place more weight on recent information, demonstrating a recency effect.

Reciprocity or the inverse fallacy (Koehler, 1996; Villejoubert & Mandel, 2002) was

examined by comparing pairs of questions such as X |E1 and E|X1. As a reminder, there are two

distinct ways to test for reciprocity. One way is to examine reciprocity between the effect and

causes, called “cause-effect” reciprocity (e.g., X |E1 versus E|X1). The other way is to examine

reciprocity between the two causes, called “cause-cause” reciprocity (e.g., X |Y1 versus Y |X1). In

this experiment, we only examined “cause-effect” reciprocity. In Experiments 2 and 3, we examine

“cause-cause” reciprocity.

There are four possible comparisons that can be made by pairing the questions from both

blocks. Bayesian paired samples t-tests were conducted on the four pairs and the results are

reported in the middle of Table 4. Reciprocity occurs when the probability of one feature given

another is the same as the probability when the features are reversed, e.g. p(E1|X1) = p(X1|E1). In

other words, reciprocity is an invariance and evidence for the effect is seen as evidence for the null

hypothesis. Thus, when BF10 < 1, there is evidence for reciprocity. It is perhaps easier to evaluate

the strength of evidence for reciprocity if we rewrite the Bayes Factor so that evidence for the null

hypothesis is in the numerator (i.e., BF01). This shows the effect ranges from BF01 = 0.91

(‘anecdotal’ evidence for the alternative hypothesis) in the comparison of Y |E1 and E|Y1 to BF01 =

6.71 (‘moderate’ evidence for the null hypothesis) in the comparison of Y |E2 and E|Y2.
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Memorylessness occurs when the probability of a feature only depends on the most recent

information given, e.g. p(E1|X1) = p(E1|Y1,X1) since X1 is the most recent given information.

Similar to reciprocity, there are different ways to examine memorylessness. One way is to examine

the probability of the effect conditioned on the causes, called “cause-cause” memorylessness (e.g.,

E1|X1 versus E1|Y1,X1). Another way is to examine the probability of a cause conditioned on the

effect and other cause, called “cause-effect” memorylessness (e.g., X1|E1 versus X1|E1,Y1). This

experiment examines “cause-cause” memorylessness. Experiment 2 examines “cause-effect”

memorylessness.

There are eight possible comparisons that can test for this property. Bayesian paired samples

t-tests were conducted on all eight pairs and the results are reported at the bottom of Table 4.

Similar to reciprocity, memorylessness is an invariance and evidence for the effect is seen as

evidence for the null hypothesis (i.e., when BF10 < 1). The evidence for memorylessness is mixed.

When the feature values of the causes match (i.e., both X and Y equal to 1 or both equal to 2),

there is evidence for memorylessness. However, when the feature values of the causes are

mismatched, there is strong evidence against memorylessness. In the case where feature values

match, the result could simply be due to floor and ceiling effects because the mean choice scores in

these questions are either very close to 1 or 0 (see Table 3).

Modeling Results

The behavioral results of Experiment 1 show evidence for order effects, reciprocity, and

memorylessness (although evidence for the latter two effects is mixed). This recommends our

modeling approach, which encompasses representations that can account for these effects. In this

section, we explore this further by comparing six different models, ranging from fully quantum (all

events are incompatible) to fully classical (no incompatible events).

General Modeling Procedures. Model fitting for all experiments was done using a Bayesian

analysis carried out via the program Just Another Gibbs Sampler (JAGS; Plummer et al., 2003).
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Three Markov chain Monte Carlo (MCMC) chains were used with 50,000 samples and a burn-in of

5000 samples. Chain convergence was assessed using the R̂ statistic, and all chains had good

convergence behavior.

Unless otherwise noted, the priors for all angle variables were taken to be π

2× Beta(2,2). For

the general 8D model and two 4D models the priors for the ρii variables were taken to be uniform

in the interval [0,1] and then normalized to ensure ∑i ρii = 1. For the causal power

parameterization of the 8D model, the priors for wX , wY , wa, p(X1) and p(Y1) were uniform in the

interval [0,1]. For the 2D and 2D POVM models it is more useful to set the priors to be

asymmetric, as this helps convergence. The reason for this is that the quantum models are invariant

under certain transformations of the variables; restricting the range of the ρ variable helps to avoid

different chains converging on apparently different parameter sets which are in fact equivalent. The

2D model is particularly prone to this, and so we set the prior for ρ to be uniform in the range

[.5,1]. The 2D POVM is less sensitive in this regard, and a prior for ρ taken to be uniform in the

interval [.2,1] produced good convergence behavior. For the 2D POVM model the prior for ε was

taken to be uniform in the interval [0, .05], which is based on empirical fits in previous work

(Yearsley & Pothos, 2016).

For model comparisons, we used JAGS to compute the deviance information criterion (DIC;

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). The DIC is a generalization of the BIC, with

smaller values indicating a better fit. The DIC includes a component related to the goodness of fit

as well as a component related to model complexity (technically, the effective number of

parameters). Thus the DIC balances accuracy with parsimony. Note that the DIC is not directly

interpretable, however differences between DIC values for models fit to the same data set can be

interpreted. A difference in the DIC of 10 or more is usually taken to indicate a strong advantage in

fit.

Results. We fit the models to the mean choice scores across participants. There were a total

of 26 questions in the experiment. Because some questions were repeated, there were 19 unique
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questions. We fit the models to these 19 questions. Because our models output probabilities rather

than choices, we transformed each predicted probability by a softmax function (similar to Rehder,

2014) to simulate the fact that each participant is forced to choose between the three alternatives

rather than outputting a probability judgment. Specifically, we assumed that individuals represent

probabilities as log odds and that selecting option x follows the softmax rule:

choice(x) =
exp( logit(px)

τ
)

exp( logit(px)
τ

)+ exp( logit(1−px)
τ

)
. (26)

where px is the predicted probability from the model and τ is a “temperature” parameter that

controls the extremity of the responses. We then assumed that mean choice scores followed a beta

distribution using the outputs of the softmax:

choice score∼ Beta(λ× choice(x),λ(1− choice(x))) (27)

where the parameter λ controls the variance. The prior for τ was taken to be N(0.1,0.01) and the

prior for λ was uniform in the range [2,100]. Note that the addition of λ and τ adds two parameters

to the parameter counts given in Table 1.

The DIC values for all six models are the following: 2D = -25.20, 2D POVM = -38.95, 4DIC

= -4.03, 4DCC= -42.55, general 8D= -25.32, causal power 8D = -25.88. The 4DCC and 2D POVM

models are clearly superior to the other quantum models and crucially they are superior to both

versions of the 8D model. This confirms the behavioral results showing that this data contains

marked non-classical effects. While the DIC is useful for model comparisons, it does not provide

much information on how well a model describes the data. The model with the lowest DIC could

still provide a terrible fit to observed data. To examine the fits of the models, we plotted the

predictions from the six models against the data in Figure 1. The figure shows the average choice

scores (red circles) for all questions plotted against the posterior distributions from the models.

The size of the squares is proportional to the posterior mass. For the 4DCC and 2D POVM models,
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the majority of choice scores fall within the area of the posterior distributions with the greatest

mass, indicating that these models provide good fits to the data. The mean and 95% highest density

intervals of the parameter estimates for each model are given in Appendix C3.

Two features of these fits are worth particular note. First, the simplest 2D quantum model

does not perform significantly better than either 8D model. This is interesting because it shows that

while there may be quantum behavior here, it is more complex than one might have expected.

Looking at the fit, it is clear that the 2D model fails to fit the data well because the memoryless

property is not always obeyed in the data. This makes the value of the 2D POVM model clearer as

it breaks the link between order effects and memorylessness, allowing it to better fit the data. Note

that the mean value of ε is about 3.2%, meaning that the POVM elements fail to be orthogonal by a

relatively small amount, nevertheless this is enough to improve the fit by a significant degree.

Second, the worst performing model is the 4DIC model. This model predicts that individual

cause-effect relationships should look classical, which is a strong requirement.

We also performed a Bayesian hierarchical fitting of the models. Hierarchical Bayesian

methods use both group-level and individual data for model fitting. Thus, models are fit to all of

the data rather than simply group averages. The results of the hierarchical fitting were the same as

the group-level results reported above. The 4DCC and 2D POVM models had the best DIC values.

The details and results of the hierarchical fitting are provided in the online supplementary material.

Validation of Model Fits. We also wanted to examine the issue of model flexibility and

overfitting. For Experiment 1, we used 19 data points for the modeling. The number of parameters

in the models ranged from 7 parameters in the causal power 8D model to 12 parameters in the

4DIC and 4DCC models (although the degrees of freedom for the 4D models is one less than the

number of parameters due to the normalization constraint; see also Appendix C for a list of the

parameters for each model). Because the number of data points to model parameters is small, this

raises concerns about model flexibility and overfitting. It is worth noting that for the 2D and 4DIC

models there is large misfitting, as seen in the Figure 1. These two models have roughly the same
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number of parameters as the other models (in fact, the 4DIC model has the largest number of

parameters), yet they cannot account for the data. Thus, the good fits by the 2D POVM and 4DCC

models are probably not simply due to overfitting. Rather, the improved fits are most likely due to

structural differences between the models. All of the models we examine have unique structural

properties (e.g., commutativity in the general and causal power 8D models). Thus, there exist data

patterns that each model cannot account for (e.g., the 8D models cannot account for order effects).

This naturally places restrictions on model flexibility (see Table 1 for more details about the effects

each model predicts).

To further examine the issue of overfitting, we used cross validation. We did this by

randomly dividing the participants into two groups. We fit the models to the data for one group and

then made predictions for the other group. We evaluated model performance for the second group

using the mean squared error (MSE) between the model predictions (based on the mean of the

posterior predictive) and the data. The results of the cross validation are reported in Table 5. We

report the DIC value for the fits to the first group and the MSE for the second group. The results

show that the best fitting models, the 2D POVM and 4DCC models, also had the lowest MSE. This

provides strong evidence that the good performance of these models is not due to overfitting.

Conclusions

Experiment 1 considers three phenomena (order effects, “cause-effect” reciprocity , and

“cause-cause” memorylessness) that have traditionally received less attention in the causal

inference literature. Overall, the behavioral and modeling results of this experiment paint a mixed

picture. It is clear that there is at least some non-classical behavior, since models utilizing

incompatible representations provide good fits. In particular, both 8D models are clearly

outperformed by the 4DCC and 2D POVM models. However the best fitting model (albeit by an

small margin) predicts no order effects, when these are clearly present in the behavioral analysis in

some conditions. Equally the success of the 2D POVM model over the simple 2D one suggests that
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not all quantum effects are present to the same degree.

It is not possible to separate the 4DCC and 2D POVM models, or the 8D and 2D models, on

the basis of this data set. It is clear, however, that the 4DIC model performs significantly worse than

the other models. In the interests of brevity and clarity we will therefore exclude this model from

further analyses. Also, the 2D POVM model performs significantly better than the 2D model, and

this is an interesting case because the 2D POVM reduces to the 2D model when ε→ 0 (the other

models in the hierarchy do not have this simple property.) We can therefore drop the 2D model

from further analyses; if the best fit parameter for ε in the 2D POVM model is extremely close to 0,

we effectively have the simple 2D model. We also drop the casual power version of the 8D model

since this model is a special case of the general one and model comparisons showed almost no

difference between the two.

Given the evidence for a mixture of representations in Experiment 1, one reasonable

hypothesis is that there are individual differences in the representations participants form. It could

also help to explain why some quantum effects appear stronger than others - if not all models give

rise to all quantum effects, and the representations used vary between participants, we would

expect to see stronger evidence for those effects which are generic (e.g. order effects) and weaker

evidence for those effects which are model specific (e.g. memorylessness).

Experiment 2

This experiment examines individual differences in reciprocity, memorylessness, violations

of the Markov condition, and anti-discounting. We did not include questions about order effects in

this experiment. Since the order effects in Experiment 1 were quite strong (for the mismatching

causes), we wanted to focus on the other effects in this experiment. In particular, the results of

Experiment 1 were inconclusive with regard to reciprocity and memorylessness. There was

positive evidence for reciprocity, but this evidence was not strong. The evidence for

memorylessness was mixed, some comparisons showed evidence for the effect, but others showed
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strong evidence against the effect. In the cases where there was evidence for memorylessness, the

effect was confounded by floor and ceiling effects. The modeling results from Experiment 1 were

also inconclusive. While the 2D POVM and 4DCC models outperformed the 2D, 4DIC, and 8D

models in terms of DIC, the two models were difficult to distinguish from each other. Taken

together, these results suggest that there could be individual differences in the representations that

people used in our task. Because we used a three choice response mode in Experiment 1, it is

difficult to explore this possibility with that data set. Thus, we conducted a new experiment where

participants provided probability judgments rather than choices, allowing us to model individuals

rather than average data. This, together with a different choice for causal questions (corresponding

to the shift in the emphasis for the effects examined), are the only differences between

Experiments 1 and 2.

Methods

58 undergraduate students from a US university participated in the experiment online for

course credit. The instructions, stimuli, and procedures were similar to Experiment 1. As before,

this experiment used a within subjects design. However, participants provided probability

judgments rather than choices in this experiment. Further, there was only a single novel category

(i.e., the African Lake Shrimp) rather than the two categories used in the first experiment. At the

start of the experiment, participants were told that shrimp could be found in three different lakes in

Africa, coded as LakeA, LakeB, and LakeC. The features of the shrimp (i.e., ACh

neurotransmitter, sleep cycle, and body weight) and the relationships between features were

described exactly as in Experiment 1. The learning stage was identical to Experiment 1.

After completing the learning stage, participants answered 14 conditional judgment

questions (see Table 6). Participants were asked to enter their likelihood judgments about specific

features (e.g., sleep cycle or body weight) as numbers between 0 and 100 in a text box after

reading each question. They were told that a judgment of 0 implied that they were certain the
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shrimp did not have the feature, a response of 50 implied that the shrimp was equally likely to have

the feature or not, and a response of 100 implied that they were certain the shrimp did have the

feature. On each trial, there was a scale from 0-100 reminding participants of this information.

Participants judged all questions twice in two different randomized blocks. Participants did not

receive feedback about their judgments.

Similar to Experiment 1, some questions involved participants making a sequence of two

judgments. For example, participants might first read “A shrimp is caught in LakeA. After lab

testing, you learn that the shrimp has a high body weight. Given this information, how likely is it

that this shrimp has a high quantity of ACh neurotransmitter?” After providing a judgment,

participants would then read “After further observation in the lab, you also learn that the shrimp

has an accelerated sleep cycle. Given this new information, how likely is it that this shrimp has a

high quantity of ACh neurotransmitter?” Similar to Experiment 1, the first question remained on

the screen during the presentation of the second question, which was positioned directly below the

first. Thus, participants had all relevant feature information available on the screen during the

second judgment.

Behavioral Results

All participants were included in the analyses. The average score on the 10 question

multiple choice test was 7.8 indicating most participants correctly learned the feature values and

causal relationships during the learning stage of the experiment. For each participant, we first

averaged the two judgments for each question. Mean judgments along with standard deviations for

each question are given in Table 6.

Reciprocity was tested using three different pairs of judgments. Two pairs tested

“cause-effect” reciprocity and one pair tested “cause-cause” reciprocity. Bayesian paired samples

t-tests were conducted on the three pairs and the results are reported at the top of Table 7. As

before, when BF10 < 1, there is evidence for reciprocity. If we rewrite the Bayes Factor so that
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evidence for the null hypothesis is in the numerator (i.e., BF01), this shows the effect ranges from

BF01 = 3.54 in the comparison of Y1|E1 and E1|Y1 to BF01 = 6.38 in the comparison of X1|E1 and

E1|X1. This range of Bayes Factors is similar to that found in Experiment 1. In particular, the two

“cause-effect” reciprocity pairs used in both experiments (i.e., X |E1 versus E|X1 and Y |E1 versus

E|Y1) have similar Bayes Factors. For the comparison of X |E1 and E|X1, BF01 = 4.98 in

Experiment 1 and BF01 = 6.38 in Experiment 2. This is ‘moderate’ evidence for reciprocity. For

the comparison of Y |E1 and E|Y1, BF01 = 0.91 in Experiment 1 and BF01 = 3.54 in Experiment 2.

This is ‘anecdotal’ to ‘moderate’ evidence.

The continuous response scale in this experiment further allows us to examine the extent to

which reciprocity is an artifact of averaging or not. The top left panel in Figure 2 shows a scatter

plot with the three different pairs of judgments for reciprocity. Each point represents an

individual-level judgment. As can be seen in the figure, most of the data falls around the 45 degree

line of identity, suggesting reciprocity occurs at the individual-level as well as the group-level.

However, there are clearly large individual differences in the figure. We will address the sources of

these individual differences using our modeling approach.

Memorylessness was tested using four different pairs of judgments. This experiment

examines “cause-effect” memorylessness where the conditioning events are the effect and one of

the causes (e.g., X1|Y2 versus X1|E1,Y2). Bayesian paired samples t-tests were conducted on all four

pairs and the results are reported in the middle of Table 7. Similar to reciprocity, when BF10 < 1,

there is evidence for memorylessness. Rewriting the Bayes Factor shows the effect ranges from

BF01 = 1.67 in the comparison of X1|Y2 and X1|E1,Y2 to BF01 = 5.68 in the comparison of Y1|X2

and Y1|E1,X2. Thus evidence for memorylessness is ‘anecdotal’ to ‘moderate’. Note that

Experiment 1 examined “cause-cause” memorylessness, thus it is difficult to directly compare the

results of this experiment to the results of Experiment 1. However, the Bayes Factors are in the

same range as comparisons where the feature values of the causes were matched in Experiment 1.

The top right panel in Figure 2 shows a scatter plot with the four different pairs of judgments for
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memorylessness. As can be seen in the figure, most of the data falls around the 45 degree line of

identity, suggesting memorylessness occurs at the individual-level as well as the group-level.

A violation of the Markov condition occurs when p(X1|Y1) 6= p(X1|Y2) and

p(Y1|X1) 6= p(Y1|X2). We tested both pairs of judgments using Bayesian paired samples t-tests (see

bottom of Table 7). We found ‘extreme’ evidence for a violation of the Markov condition in both

comparisons. In particular, participants judged conditionals with matching causes (e.g., X1|Y1) to

be greater than those with mismatching causes (e.g., X1|Y2). This result is the opposite of what is

predicted by an “illusory correlation” where individuals “see” a correlation between two

less-frequent features (Kutzner, Vogel, Freytag, & Fiedler, 2011; Eder, Fiedler, & Hamm-Eder,

2011; Fiedler, 2000). In our experiments features X2 and Y1 are the features with low base-rate

probabilities (i.e., these features are described as occurring in “few” animals). If we had an illusory

correlation in our data, then we would have p(Y1|X1)< p(Y1|X2). However, this is not the case,

rather we observe that p(Y1|X1)> p(Y1|X2).

The bottom left panel in Figure 2 shows a scatter plot with the two different pairs of

judgments testing Markov violations. As can be seen in the figure, most of the data falls below the

45 degree line of identity, suggesting Markov violations occur at the individual-level as well as the

group-level. In particular, the data for the comparison of Y1|X1 and Y1|X2 (blue squares in the

figure) fall below the identity line showing that the first judgment (Y1|X1) is judged to be greater

than the second (Y1|X2). This is the opposite of what would be expected if people were

demonstrating an “illusory correlation”.

Anti-discounting behavior occurs when individuals fail to discount additional causes when

one or more causes are known. For example, judging p(Y1|E1,X1) to be greater than or equal to

p(Y1|E1) implies a failure to incorporate known information about X1 and discount Y1. We tested

anti-discounting using the two pairs of judgments listed in the bottom two rows of Table 7. We

found ‘anecdotal’ to ‘moderate’ evidence in support of the null hypothesis, suggesting the events in

each pair are judged to be the same. This is indicative of a failure to discount. The bottom right
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panel in Figure 2 shows a scatter plot with the two different pairs of judgments for

anti-discounting. As can be seen in the figure, most of the data falls around the 45 degree line of

identity, suggesting anti-discounting occurs at the individual-level as well as the group-level.

Next, we were interested in whether the effects discussed above are correlated. If different

people adopt different mental representations in our task (corresponding to different models in our

framework), then we might expect some of the effects to be correlated. In particular, our modeling

framework makes the strong prediction that reciprocity and memorylessness should co-occur.

These two effects arise from the same underlying property of the 2D model, namely the

assumption that events are represented by one dimensional subspaces. In order to examine such

relationships, we defined four different measures: ReciprocityScore, MemorylessnessScore,

MarkovScore, and AntidiscountingScore. All of the measures are calculated on an individual-level.

The first three scores are calculated by taking the average of the absolute differences of the pairs in

Table 7 for a particular effect. For example, the ReciprocityScore is given by,

|(X1|E1−E1|X1)|+ |(Y1|E1−E1|Y1)|+ |(X1|Y1−Y1|X1)|
3

(28)

where a larger score indicates a larger “violation” of reciprocity (i.e., evidence against the 2D

model). For the MemorylessnessScore, we used all four pairs shown in the middle of Table 7.

Similar to the ReciprocityScore, a larger score indicates a larger deviation from memorylessness

(again evidence against the 2D model). For the MarkovScore, we used the pairs {X1|Y1, X1|Y2} and

{Y1|X1, Y1|X2}. A larger value on this measure indicates a larger violation of the causal Markov

condition. The AntidiscountingScore uses the pairs in the bottom two rows of Table 7 and is

defined as

(X1|E1−X1|E1,Y1)+(Y1|E1−Y1|E1,X1)

2
(29)

Note that for this measure, we did not take the absolute value of the differences because positive
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and negative differences indicate different results. A positive difference corresponds to

discounting, which is normatively correct in this situation. A zero or negative difference is

suggestive of anti-discounting. Because participants often use rating scales in different ways (e.g.,

some participants will use the full rating scale while others are more cautious), we also divided

each participant’s scores by the standard deviation of that individual participant’s responses to take

into account differences in how different participants employ the response scale range.

The correlations between the four effects are given in Table 8. As anticipated, there is a

strong positive correlation between reciprocity and memorylessness, suggesting that individuals

that display reciprocity also display memorylessness. This novel finding is in agreement with our

modeling framework in which memorylessness and reciprocity co-occur in individuals using a 2D

representation. There are moderately negative correlations between reciprocity and Markov

violations as well as memorylessness and Markov violations. This implies that individuals

showing more evidence for reciprocity and memorylessness (i.e., participants with smaller

ReciprocityScores and MemorylessnessScores) also show more evidence for violations of the

Markov condition. We also see a moderately negative correlation between memorylessness and

anti-discounting. At first, this might seem surprising since memorylessness and anti-discounting

are both non-normative and we might anticipate that they should be positively correlated.

However, if an individual demonstrates memorylessness as in the 2D model, then they will judge

X1|E1,Y1 as X1|Y1 and Y1|E1,X1 as Y1|X1 (that is, they will have no memory of E1). Thus, the

anti-discounting comparison becomes X1|E1−X1|Y1 and Y1|E1−Y1|X1. These differences will be

positive whenever participants judge the relationship between the causes and effect to be stronger

than the relationship between the two causes. Thus, it is quite reasonable to see a negative

correlation between memorylessness and anti-discounting because greater memorylessness leads

to the “forgetting” of the effect E1 in the anti-discounting comparisons.



A Quantum Framework for Probabilistic Inference 50

Modeling Results

The behavioral results of Experiment 2 provide at best ‘moderate’ evidence for reciprocity,

memorylessness, and anti-discounting. However, there is ‘extreme’ evidence for violations of the

Markov condition. Interestingly, we find a strong positive correlation between reciprocity and

memorylessness, in line with predictions from our modeling framework. Overall, the results of

Experiment 2 suggest that there are at least some participants that deviate from classical

probability theory and can perhaps be modeled using representations containing incompatible

events. In this section, we explore these individual differences further by comparing model fits to

individual participant data. This is made possible because each participant provided a response

based on a continuously varying rating rather than a choice between just three alternatives, so that

the data and model can be compared directly. In particular we do not need to use the softmax

function used for Experiment 1 to transform between probability and choice. Thus, the τ parameter

is not used and each model has one less parameter for the fitting as compared to Experiment 1.

The judgments solicited in Experiment 2 were mainly concerned with testing the four

effects of reciprocity, memorylessness, Markov violations, and anti-discounting. Because of this

they do not explore the full space of predictions, so that the model predictions are independent of

some of the parameters. This is mainly a problem for the 2D POVM model. One of the angles (we

chose θE) can therefore be fixed in this model when applied to this data set. The remaining priors,

and other details of the modeling, were as for Experiment 1. Note that there were a total of 14

questions per block, but only 12 of them were unique. We fit the 12 unique questions.

There are several ways to understand the results of the modeling. One is to simply ask for

what proportion of participants was each model favored over the other two, according to the DIC?

The results are that the 8D model was preferred for 40% (23/58) of participants, the 4DCC model

was preferred for 34% (20/58) of participants, and the 2D POVM model was preferred for the

remaining 26% (15/58) of participants. The 8D model is therefore clearly the strongest single

model, but equally more participants are better fit by a non-classical representation of some form
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than a classical one.

Assuming that these subgroups identified as being fit better by the different models are

meaningful, this should be reflected in the behavioral analysis. Figure 3 shows the behavioral

analysis of each of the four effects for each subgroup. The results are largely as expected,

suggesting that the modeling has appropriately identified subgroups of participants displaying

distinct behaviors. The 2D POVM group displays a lower ReciprocityScore (BF10 = 26.16; F(2,55)

= 7.48, p = 0.001) as well as a lower MemorylessnessScore (BF10 = 13.09; F(2,55) = 6.57, p =

0.003). The 2D POVM group also appears to display a higher MarkovScore and higher

AntidiscountingScore, but these results are not significant.

Another way to understand the modeling is to look at the fit between observed and predicted

probabilities across all participants. This is shown in Figure 4. We can see that 8D and 4DCC

models perhaps provide tighter fits, but they also seem to systematically overestimate low

probabilities and underestimate high ones. The probabilities have been split up into three types for

each plot; probabilities of the form p(X |Y ) are shown by (blue) circles, probabilities of the form

p(E|X) or p(X |E) are shown as (red) squares, and probabilities of the form p(E|X ,Y ) or

p(X |E,Y ) are shown by (green) triangles. A visual inspection of the plots seems to suggest that the

different models over and under estimate different types of probabilities, and this does indeed

appear to be the case. Bayesian paired samples t-tests reveal that the 8D model systematically

underestimates probabilities of the form p(E|X) or p(X |E) by about 6.8% (BF10 ∼ 1010). The

4DCC model also underestimates these probabilities, by about 5.1% (BF10 ∼ 106) and

overestimates probabilities of the form p(E|X ,Y ) or p(X |E,Y ) by about 4.3% (BF10 ∼ 8,000).

The 2D POVM model also underestimates probabilities of the form p(E|X) or p(X |E), but by a

rather smaller margin of 3.6% (BF10 = 75).

Overall the 8D and 4DCC models do fit well for some participants, but they tend to

systematically under/over estimate certain types of probabilities. In contrast the 2D POVM model

is favored by the DIC for fewer participants, but it does have the advantage of being less
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systematically biased when evaluated over all participants.

Conclusions

In summary, it is reasonably clear that there are large individual differences in the best fit

models to Experiment 2. Although some participants are reasoning in agreement with a classical

representation, most (60%) are not. The fact that those using a quantum representation are split

between two types (4DCC and 2D POVM) helps account for the fact that we saw no obvious

preferred model emerge from the results of Experiment 1. However by fitting individual data we

are able to identify three distinct groups that appeared to be better fit by the 2D POVM, 4DCC and

8D models, with the behavioral data for these subgroups matching the qualitative predictions of

each of these models.

It is less clear why there should be these individual differences in the best fit models. What

are the factors that drive individuals to construct differing representations, and are these fixed, or

can an individual adapt their representation over time?

Experiment 3

The results of Experiment 2 indicate that there are individual differences in the way that

people judge causal events. This experiment aims to address the sources of those differences. In

particular, our goal is to show that differences in performance in inference tasks can be related both

to familiarity with the task and to individual differences in cognitive ability (i.e., how reflective

participants are in the task). We hypothesize that simpler representations (such as those with

incompatible events) may be adopted when reasoning in an intuitive, heuristic way, while more

complex representations are only formed when reasoning in a more deliberative way. Thus, the

type of representation used by an individual may be linked to a simple measure of cognitive style,

the Cognitive Reflection Test (CRT), which measures an individual’s ability to suppress an initial

“gut” response that is incorrect, in favor of a deliberative correct response (Frederick, 2005). We

also hypothesize that familiarity with a scenario may allow individuals to construct more complex
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representations, with more compatible events. Thus, we expect that repeated exposure to a scenario

could lead to a fully classical representation of events. The inclusion of the CRT and a multi-block

testing procedure are the major differences between Experiment 3 and the previous ones.

Methods

60 undergraduate students from a US university participated in the experiment online at a

time of their choosing for course credit. The instructions, stimuli, and procedures were similar to

Experiment 1. Participants were randomly assigned to one of two novel animal categories (either

African Lake Shrimp or Kehoe Ants). The features of the animals and the relationships between

features were described very similarly to Experiment 1. One difference between the experiments

was the inclusion of probabilistic information about the feature base-rates in the current

experiment. For example, in the African Lake Shrimp category participants were told that “Most

shrimp (90%) have a high amount of ACh whereas a few (10%) a low amount of ACh”. In both

categories, 90% of animals had feature X1, 10% had feature Y1, and 50% had feature E1. The

learning stage was identical to Experiment 1.

After completing the learning stage, participants completed six blocks of trials where they

were asked to make decisions about the value of different features. There were two block types

(BX and BY ) that were repeated three times in an alternating fashion (e.g., BX1, BY1, BX2, BY2,

BX3, BY3). Participants were randomly assigned to start with either the BX1 or BY1 block. Each

block contained nine questions (see Table 9) where participants were asked to select the value of a

particular feature. Similar to Experiment 1, participants were given three response options: feature

value 1, feature value 2, or equally likely to be feature value 1 or 2. For example in the African

Lake Shrimp category, the question ”What type of body weight do you think this shrimp has?”, had

the following response options: 1) a low body weight, 2) a high body weight, and 3) equally likely

to be low or high.

Some questions asked participants to make a sequence of choices about a feature value (e.g.,
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E) as they learned new information about the other features (e.g., X and Y ). As in the previous

experiments, the information about the value of the first feature remained on the computer screen

when new information about the second feature was presented. Thus, participants had all feature

information available on the screen during the final choice. In the BXi (BYi) block, information

about feature X (Y ) was always presented before information about feature Y (X) in sequences

involving both features. This helped reduce the influence of memory on future decisions about

reverse orderings. An important consequence of the blocking is that order effects can only be

evaluated by comparing responses across blocks (e.g., comparing E|X1,Y2 with E|Y2,X1 requires

comparing responses across BXi and BYi). We repeated each block pair three times in order to

examine the influence of task familiarity on responses. Thus, in the analyses below, we bin the

blocks into pairs (BX1 and BY1, BX2 and BY2, BX3 and BY3).

After finishing the six blocks, participants completed the CRT (Frederick, 2005). This test

assesses an individual’s ability to suppress a spontaneous and intuitive (“System 1”) wrong answer

in favor of a deliberative and reflective (“System 2”) correct answer. The test consists of three

items using a free-response format and is scored by counting the number of correct responses

across the items. Performance on the CRT has been correlated with many behavioral measures

including temporal discounting, mental heuristics, and risk preferences (Frederick, 2005; Toplak,

West, & Stanovich, 2011).

Behavioral Results

All participants were included in the analyses. The average score on the 10 question

multiple choice test was 9.6 indicating most participants correctly learned the feature values and

causal relationships during the first part of the experiment. Similar to Experiment 1, we calculated

choice scores following Rehder (2014) by assigning the following values to the three response

options: feature value 1 = 1, feature value 2 = 0, and equally likely = 0.5. Note that there were no

differences between choices in the two different animal categories (BF10 = 0.089) and so responses
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were collapsed for the following analyses. Table 9 shows the mean choice scores collapsed across

repeated blocks along with standard deviations for each question.

For the following analyses, we grouped the blocks into pairs (i.e., first: BX1 and BY1,

middle: BX2 and BY2, and last: BX3 and BY3). We first assessed order effects, reciprocity,

memorylessness, and violations of the Markov condition by applying Bayesian paired samples

t-tests, similar to Experiments 1 and 2. The results of these tests for each block pair are shown in

Table 10. Overall, we see ‘extreme’ evidence for order effects similar to Experiment 1. We also

have ‘extreme’ evidence against reciprocity and memorylessness. Note that this experiment

examines “cause-cause” reciprocity and “cause-cause” memorylessness. In Experiment 2,

“cause-cause” reciprocity was examined by comparing X1|Y1 and Y1|X1 and there was ‘moderately

strong’ evidence for the effect. Thus, the ‘extreme’ evidence against reciprocity in this experiment

is surprising. However, there is a very important difference between Experiments 2 and 3.

Experiment 3 provides precise probabilities for the base-rate of features (e.g., 90% of animals had

feature X1). Previous work using scenarios similar to the ones in the present experiments has

shown that causal judgments can be influenced by the presence of precise base-rate information

(Rehder, 2003b). This is one possible explanation for the differences between these experiments.

The ‘extreme’ evidence against memorylessness is similar to the results found in Experiment 1 for

comparisons involving causes with mismatching features. In the first block pair, we see evidence

for violations of the Markov condition (ranging from ‘anecdotal’ to ‘strong’ evidence). This is

similar to the results found in Experiment 2, however the evidence was stronger in that experiment.

The difference in the strength of evidence between the two experiments might be the result of the

precise base-rate probabilities in Experiment 3 or the different response scales used in the

experiments.

Next, we calculated the following four measures for each block pair: OrderScore,

ReciprocityScore, MemorylessnessScore, and MarkovScore. Similar to Experiment 2 these scores

are calculated by taking the average of the absolute differences of the pairs in Table 10 for a
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particular effect. For example, the OrderScore is given by,

|(E|X1,Y2)− (E|Y2,X1)|+ |(E|X2,Y1)− (E|Y1,X2)|
2

(30)

where larger scores indicate larger order effects. We also grouped individuals into three groups

based on CRT scores: high = CRT score of 3, medium = CRT score of 1 or 2, and low = CRT score

of 0. We combined individuals with CRT scores of 1 and 2 into a single group so we had roughly

an equal number of individuals per group. There were 21 participants in the CRT high group, 19 in

the CRT medium group, and 20 in the CRT low group. Using the four measures for each of the

three CRT groups, we can examine differences in the effects due to differences in reasoning ability

as well as how the effects change with experience gained through exposure.

The top left panel of Figure 5 shows OrderScore for the three CRT groups across the block

pairs. A Bayesian repeated measures ANOVA showed that a model including both block pair and

CRT group (but no interaction term) was preferred to all other models (BFM = 7.52)4 as well as the

null model (BF10 = 464.67). These results were corroborated by a traditional repeated measures

ANOVA that showed a main effect of block pair (F(2,118) = 9.86, p < .001) and CRT group (F(2,

57) = 3.45, p = 0.039). The interaction was not significant. From Figure 5, we see that the low and

medium CRT groups have a larger OrderScore than the high CRT group and that OrderScore

decreases across block pairs. This implies that order effects are larger for low and medium CRT

groups, but decrease with experience.

The top right panel of Figure 5 shows ReciprocityScore for the three CRT groups across the

block pairs. A Bayesian repeated measures ANOVA showed that a model including the interaction

of block pair and CRT group was preferred to the null model (BF10 = 3.04). These results were

corroborated by a traditional repeated measures ANOVA that showed a significant interaction

between block pair and CRT group (F(4, 118) = 3.22, p = 0.015). The main effects were not

significant. From Figure 5, we see that in the first two block pairs, the low CRT group has a lower
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ReciprocityScore than the medium and high CRT groups. Further, ReciprocityScore for the low

CRT group increases across block pairs showing increasing deviations from reciprocity with

experience.

The bottom left panel of Figure 5 shows MemorylessnessScore for the three CRT groups

across the block pairs. A Bayesian repeated measures ANOVA showed that a model including

CRT group was preferred to all other models (BFM = 5.70) and was favored over the null model

(BF10 = 2.13) These results were corroborated by a traditional repeated measures ANOVA that

showed a marginally significant main effect for CRT group (F(2, 57) = 3.13, p = 0.052). There was

no main effect of block pair and the interaction was not significant. From Figure 5, we see that the

low and medium CRT groups have a smaller MemorylessnessScore than the high CRT group.

The bottom right panel of Figure 5 shows MarkovScore for the three CRT groups across the

block pairs. A Bayesian repeated measures ANOVA showed that a model including CRT group

was preferred to all other models (BFM = 5.49) and was favored over the null model (BF10 = 2.00)

These results were corroborated by a traditional repeated measures ANOVA that showed a

significant main effect for CRT group (F(2, 57) = 3.47, p = 0.038) and a slight interaction between

block pair and CRT group (F(4, 118) = 2.10, p = 0.086). There was no main effect of block pair.

From Figure 5, we see that in the first two block pairs, the low CRT group has a higher

MarkovScore than the medium and high CRT groups. Further, MarkovScore for the low CRT

group decreases across block pairs showing a reduction in violations of the Markov condition with

experience.

Modeling Results

For the modeling we used the CRT score and block pairs to split the data into 3 (CRT

groups) × 3 (block pairs) sets, from Low CRT in the first blocks to High CRT in the last blocks.

This allows us to examine model performance as a function of CRT group and also see how the

various models perform for each group as participants proceed through the task. Each block pair
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had a total of 18 questions (9 per block). Because some questions were repeated, there were a total

of 15 unique questions. We fit these 15 questions for each CRT group and block pair. All priors,

and other details of the modeling, were as for Experiment 1.

The results are shown in Figure 6. A number of features stand out; firstly the 2D POVM

(solid line) initially performs much better than the other models for the low and medium CRT

groups. In contrast the 4DCC (dashed line) and 8D (dotted line) models initially perform better in

the high CRT group. This is strong evidence that the mental representation participants construct

when first presented with the scenarios depends on their CRT measure, and therefore on whether

they are primarily engaging in spontaneous and intuitive (“System 1”) thinking or deliberative and

reflective (“System 2”) thinking during the task. The more ‘classical’ 4DCC and 8D models seem

to be associated with more deliberative and reflective thinking, which fits well with the fact that

quantum models are often used to explain decision making which is inconsistent with (classically)

normative prescription and appears to be driven by heuristics (Busemeyer et al., 2011).

The other obvious feature of this data is that the ability of the various models to capture the

data from the low CRT group varies dramatically as the experiment progresses. In the initial blocks

the 2D POVM model vastly outperforms the other two models, whereas by the final two blocks all

three models are performing at about the same level. This implies a significant shift in

representation through the course of the experiment for this low CRT group, such that the

representation these participants are using to reason about the scenarios becomes much more

classical with repeated exposure. In the General Discussion section, we outline some possible

explanations for this.

In contrast, the performance of the three models does not seem to vary that much across

blocks in the medium and high CRT groups. In the high CRT group this is less surprising, since

one would expect additional experience to continue to favor the 8D or the 4DCC models, but is

unclear why the 2D POVM model remains the preferred one even towards the end of the

experiment for the medium CRT group. However, note that in the low and medium CRT groups,
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the 4DCC and 8D models in the last block pair have similar DIC values. Specifically, the DIC for

the 4DCC model is -12.35 for the medium CRT group as compared to -14.23 for the low CRT

group in the last blocks. Likewise, the DIC for the 8D model is -9.65 for the medium CRT group

as compared to -13.07 for the low CRT group in the last blocks. Thus, there is not much difference

in the 4DCC and 8D model fits for the medium and low CRT groups in the last blocks. The main

difference between these two groups is in the fit of the 2D POVM. In addition it is somewhat

surprising that no clear winner emerges between the 8D and 4DCC models, even towards the end of

the task. Some potential reasons for this are outlined in the General Discussion.

It is worth noting that for the 2D POVM model in the low CRT condition the value of the

parameter in the POVM, ε, starts at a relatively low level of 1.0% for the first blocks, before

increasing to 2.6% by the last blocks (in contrast the value for the medium CRT group is stable at

around 3.0% across all blocks.) Recalling that the 2D POVM model reduces to the simpler 2D

model for small enough ε, we can see that initially the Low CRT group are best fit by a model very

close to the simplest possible, 2D, quantum model, suggesting they possess a particularly simple

mental representation. However, with an increase in exposure to the task, or a higher CRT level,

the best fitting 2D POVM model moves away from this.

In Figure 7 we give examples of three of the fits, one from the low CRT group in the initial

stages of the experiment, where the 2D POVM model fits best, and two from the High CRT group

in the later stages of the experiment, where the 4DCC and 8D models perform about as well as each

other. Overall each model gives a good fit to the relevant data, although it is notable that there are

still small order effects visible in the data for the high CRT group in the later blocks of the

experiment, as noted in the behavioral results above.

Conclusions

The behavioral results of Experiment 3 show that participants’ choices appear to change as

they gain familiarity with the task. We also found evidence that individuals displaying
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non-classical effects tend to score lower on the CRT. In particular, the low CRT group tends to

show larger order effects, larger violations of the Markov condition, stronger reciprocity, and

memorylessness. According to the CRT, these participants are likely using an intuitive (“System

1”) style of thinking when completing the task. Interestingly, these individuals seem to improve the

most with repeated exposure to the scenarios.

The modeling demonstrates that performance on the CRT task is a good predictor of which

model in the hierarchy will provide the best fit to the experimental data at the beginning of the task.

It also shows that for the low CRT group model fits change as a function of familiarity, with the 2D

POVM model providing a worse fit over time. However there are still some intriguing results which

are harder to explain, particularly why neither experience with the task nor CRT grouping seem to

distinguish between the 4DCC and 8D models. We return to this question in the next section.

General Discussion

This paper presents an alternative approach to constructing models of human inference.

Rather than elaborating an existing rational model (for example, adding nodes and edges to a

CGM), we expand the possible representations used to perform inference. We propose using

quantum probability theory to construct a hierarchy of mental representations. These models are

constructed using different configurations of compatible and incompatible events. Compatible

events are identical to the ones in classical probability theory. Incompatible events are unique to

quantum theory. If two events are incompatible, their joint event does not exist and they must be

processed sequentially. Crucially, within a quantum approach, there is a principled framework for

integrating representations of varying degrees of compatibility/ incompatibility. Different levels in

the hierarchy correspond to models of different dimensionality. Low dimensional models represent

lower levels in the hierarchy and correspond to simple mental representations (that is,

representations with few joint events). Higher dimensional models represent higher levels in the

hierarchy and use more joint events, providing a more complex representation of causal events.
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Models at the highest level in the hierarchy are equivalent to classical probability models (such

models allow all possible joint events).

Throughout our lives, we are faced with a large variety of inference problems. In some

situations, we have extensive knowledge of events. In other cases, there is only vague information

about events. Also, different individuals might adopt different approaches to solving problems,

sometimes relying on intuitive or spontaneous reasoning over more deliberative approaches.

Different models in our hierarchy might be used for different types of inference problems and by

different individuals. In situations where individuals do not have a lot of past experience with a

problem, it seems reasonable to expect that a simple mental representation with few joint events

might be adopted. However, when individuals have extensive knowledge of events or information

about a problem is very clear, individuals might form a more complex representation of events.

Mental representations might also be tied to cognitive ability where more deliberative reasoning

leads to the formation of more complex compatible representations.

Psychological implications

A critic might wonder what new psychological insights are gained by adopting the approach

we propose in this paper. We feel that there are many new psychological questions that can be

answered using the proposed quantum framework. First, as far as we are aware, our framework is

the first to suggest that a previously disparate set of phenomena (order effects, reciprocity,

memorylessness, violations of the Markov condition, and anti-discounting) potentially arise from

the same underlying set of principles. Specifically, when an individual has a partial mental

representation of a problem (as modeled using incompatible events), one can expect most or all of

these effects. This opens up new avenues of inquiry within psychology because previous research

has tended to explore non-normative phenomena in isolation. For example, order effects and

reciprocity are rarely studied in causal inference (although order effects have been studied in the

related domain of causal learning, see for example Dennis & Ahn, 2001; Collins & Shanks, 2002;
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Abbott et al., 2011). However, if our hypothesis is correct that order effects and reciprocity are

likely to co-occur with Markov violations and anti-discounting, then this suggests experiments in

causal inference should also examine these phenomena. Without this prediction from the present

modeling framework, it is unlikely researchers would ever think to look for these effects in causal

inference.

More generally, this framework integrates normative and non-normative influences into a

single unified theory. Previously, such influences have been considered as corresponding to

entirely different mechanisms. In the present work, we show that such influences reflect the same

kind of probabilistic inference, but on different (compatible versus incompatible) representations.

We explain how non-normative influences can be understood using the single idea of incompatible

representations. In our approach, different non-normative influences can emerge from differences

in the compatibility of events.

The present approach also made new predictions regarding the influence of practice and

individual differences, which go beyond existing frameworks. Even though the issue of individual

differences has been considered before, we provide an interesting hypothesis (supported by the

data) which uniquely emerges from the present formalism. This is achieved because the framework

formalizes the idea of ‘simple mental representations’ as compared to ‘complex mental

representations’. Without a formal definition of these terms it is impossible to answer questions

such as “How does cognitive thinking style relate to mental representations?” or “Does familiarity

with a problem change a person’s mental representation of the problem?” In order to answer these

questions, one first needs to define what a mental representation is and how it might vary among

individuals. That is exactly what the present modeling framework accomplishes. Further our

framework provides a precise way in which different mental representations are related - through

the inclusion or exclusion of joint events. This opens the door to the question of how people

transition between representations. In the section below, we sketch out one possibility for how this

might occur. With a better understanding of how transitions occur, we can develop new ways to
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train people in order to improve their judgments and decision-making.

Transitioning between representations

The results of Experiment 3 suggest the intriguing possibility that participants change their

representation of the events as they gain familiarity with the task, gradually becoming less

‘quantum’ and more ‘classical’, in the specific sense of moving from a totally incompatible

representation (2D POVM) either to a totally compatible one (8D), or at least to one where the

events X and Y (the two causes) are compatible (4DCC).

However this raises a number of questions. How are we to understand the process of

transitioning from, e.g. a 2D to a 4D representation? What might participants ‘learn’ to cause them

to make this transition? Why is it that for the high CRT group there does not appear to be any

transition from the 4DCC to the 8D representation, if the latter is supposed to be more classical? In

this subsection we provide some preliminary analyses showing how we might express compatible

and incompatible representations in the same language, and what has to change to affect a

transition between the two, and we argue that the results of Experiment 3 are in line with these

general expectations.

Different models in our hierarchy are embedded in different Hilbert spaces, which makes it

difficult to think about transitioning between them. An alternative approach is to work in the

language of quasi-probabilities (see e.g., Halliwell & Yearsley, 2013, and references therein).

Quasi-probabilities function like standard probabilities, except that some elements may lie outside

of the range [0,1]. In this sense quasi-probabilities formalize the idea that probability distributions

‘do not exist’ in some cases. For example, we might have a quasi-probability distribution q(X ,Y )

where the marginals are genuine probability distributions, e.g. ∑Y q(X ,Y ) = p(X) etc, but some of

the elements of q(X ,Y ) are negative.

In our experiments participants provided probabilities such as p(X) and p(E,Y ). An

explanation for these judgments based on classical probability theory exists if and only if these
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probabilities can be expressed as the marginals of some joint probability distribution p(X ,Y,E). If

such a joint probability distribution does not exist, it is still possible to define a quasi-distribution

q(X ,Y,E) such that p(X), p(E,Y ), etc. are given by the appropriate marginals. In other words, a

classical representation of the events X , Y , and E exists if and only if the quasi-probability

distribution q(X ,Y,E) is in fact positive. Therefore we can think about transitioning from an

incompatible to compatible representation as equivalent to transitioning from a quasi-distribution

to a genuine probability distribution.

For brevity we focus on the case of two variables X and Y . Suppose they can take values

X =±1, Y =±1. Then the joint probability may be written (Halliwell & Yearsley, 2013;

Halliwell, 2014),

p(X = xi,Y = y j) =
1
4
(1+ xi(2p(X = 1)−1)+ y j(2p(Y = 1)−1)+ xiy jCxy) (31)

where

Cxy = p(X = 1,Y = 1)+ p(X =−1,Y =−1)− p(X = 1,Y =−1)− p(X =−1,Y = 1)

= p(‘same’)− p(‘different’)
(32)

is the correlation function.

It is easy to see that p(X = xi,Y = y j) has the expected marginals, and that they do not

depend on Cxy. Given p(X) and p(Y ) therefore, different values for Cxy will lead to different joint

distributions, some of which will be probability distributions, and some of which will only be

quasi-distributions.

For any marginals p(X) and p(Y ) it is always possible to choose a Cxy such that

p(X = xi,Y = y j) is a probability distribution, however this is not in itself very interesting. A more

interesting approach is to imagine that we guess a value for Cxy given some information we have

about the problem, and we ask, given p(X), p(Y ) and our guess for Cxy, does this lead to a
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compatible representation for X and Y ?

It is helpful to work with the variable,

Sxy =
1
2
(1+Cxy) (33)

which ranges from 0 if the events are perfectly anti-correlated, to 1 if the events are perfectly

correlated. We argue that it is reasonable therefore to equate, Sxy with the similarity Sim(X ,Y )

between the two events. In psychological terms, this means when given p(X) and p(Y ) and asked

to make judgments about the joint events, participants ‘fill in the blanks’ using the similarity. It

turns out that in the 2D case the expression for Sxy is exactly equal to the quantum expression for

the similarity (Pothos, Busemeyer, & Trueblood, 2013; Pothos et al., 2015).

Now consider a simple example of two variables where p(X = 1) = 0.9 is high, but

p(Y = 1) = 0.1 is low. Further suppose that Sim(X ,Y ) = 0.7 is judged to be high, perhaps because

they are both causes of some other event. From Eq.31 we can see,

p(X =−1,Y =+1) =
1
2
(1− p(X = 1)+ p(Y = 1)−Sim(X ,Y ))

=
1
2
(1−0.9+0.1−0.7) =−0.25 < 0

(34)

so that p(X = xi,Y = y j) is not a valid probability distribution. It is easy to see what is going

wrong here, X and Y cannot be highly correlated given the marginals, and so assuming this makes

it impossible to form a sensible joint distribution. Indeed given p(X = 1) = .9, p(Y = 1) = .1 the

joint probability exists only if Sim(X ,Y )≤ 0.2. Even a moderate guess for the similarity will make

it impossible to construct a joint distribution.

To recap, given only the marginals p(X) and p(Y ), construction of a joint probability

distribution is equivalent to fixing the correlation function Cxy. Participants with no prior

knowledge might plausibly do this with the aid of the perceived similarity between X and Y ,

setting Cxy ≈ 2×Sim(X ,Y )−1.
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This suggests how we might view the process of changing representation. Suppose

participants initially use a heuristic to set Cxy by relating it to similarity. Some of the elements of

the quasi-probability distribution might therefore be negative, or equivalently a classical

representation of X and Y is impossible. However experience with the task may serve to teach

participants about the correct relationship between X and Y . Participants should therefore revise

their estimate of Cxy away from the initial value, and eventually, Cxy will lie in a range where all the

elements of the quasi-distribution q(X ,Y ) become positive, and thus a classical representation of

these beliefs about X and Y is possible.

We hypothesize that this is what happens in Experiment 3. Initially participants may assume

X and Y are highly correlated, since the only information they have about these events is their

similarity in producing the effect E. However every time we ask participants to judge p(E|X ,Y )

we do so by telling them we have collected a sample organism which has either features X1,Y2 or

X2,Y1. Therefore we are, unintentionally, teaching participants that X and Y are anti-correlated.

Participants should be able to use this information to revise their estimate of the correlation

between X and Y , and if they do this sufficiently a compatible representation may be possible.

If this explanation is correct we should see large changes in judgments of the conditional

probabilities between X and Y over the course of Experiment 3 for the Low CRT group, and indeed

this is what we find. The largest changes in the judged probabilities between the first and last block

pairs are for p(X1|Y2) and p(Y1|X1). In addition, the largest difference between the initial

probability judgments of the Low CRT group and the other CRT groups is for these same

probabilities. This suggests that much of what makes the Low CRT group unique is their initial

belief about the correlation between X and Y . This also explains why transitions between the 4DCC

and 8D models do not seem to occur - both have X and Y compatible, and so learning about the

relationship between X and Y will not cause a transition between these two representations. These

models differ in whether E,X or E,Y are compatible, but no information that might help

participants refine their view of the relationships between the causes and the effect is presented.
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We have outlined a framework that can account for transitions between incompatible and

compatible representations in terms of learning specific types of information about the correlation

between events. This framework is consistent with our hierarchy of representations, future work

should explore this further, with a view to designing experiments where transitions between

representations might be induced by presenting specific types of information.

Strategy sprawl

The modeling framework presented here is an example of a ‘cognitive toolbox’ model.

Toolbox models are popular is many areas of psychology including linguistics (Eisenberg &

Becker, 1982), decision-making (Gigerenzer & Todd, 1999), development (Coyle, Read, Gaultney,

& Bjorklund, 1998), categorization (Busemeyer & Myung, 1992), and causal reasoning (Rehder,

2014), to name a few. The basic idea behind all of these approaches is that individuals are

equipped with a set of strategies to solve a given task. For example, Rehder (2014) proposed a set

of five models to explain how people reason about causal events (which we discuss in more detail

below). While these modeling frameworks provide a powerful approach to understanding human

cognition, they all face a similar problem: strategy sprawl. As the number of models or strategies

in the toolbox grows, the framework becomes increasingly flexible.

While the hierarchy of models presented here is not immune to the issue of strategy sprawl,

there are important constraints on how the framework can grow. First, the models in our

framework must all obey the axioms of quantum (or classical) probability theory. This provides a

strict set of rules underlying all of the models. It is not the case that we can pose any arbitrary

model and add it to the framework. Given a specific problem domain, such as the common effect

network discussed in the present paper, the number of possible models is limited. There are only a

handful of ways to construct different probabilistic models for this particular problem.

In addition, recent advances in comparing toolbox models using hierarchal Bayesian

methods show great promise (Scheibehenne, Rieskamp, & Wagenmakers, 2013). In this approach,
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different models (for example, toolbox models with different numbers of strategies) are compared

using Bayes factors, which naturally account for the trade-off between model complexity and

explanatory power. We believe this approach could be applied to our hierarchy of models and we

see this as an excellent direction for future research.

Alternative models

Alternative modeling approaches can also explain some of our experimental results. In

particular, Rehder (2014) conducted a large investigation of causal inference, examining both

CGMs and non-normative reasoning strategies. He focused on three non-normative models: a

Conjunctive Model (CONJ), a Shared Disabler Model (DISAB), and an Associative Model

(ASSC). The CONJ model assumes that conditional probabilities are evaluated conjunctively. That

is, conditional probabilities such as the probability of an effect (e.g., high body weight) given a

cause (e.g., an accelerated sleep cycle) are instead evaluated as joint probabilities (e.g., high body

weight AND accelerated sleep cycle). The second strategy, DISAB, assumes a hidden disabling

mechanism by introducing an additional variable imagined by participants. This additional

variable probabilistically influences one or more of the existing causal relationships. For example,

a participant might imagine an additional variable, serotonin levels, that might probabilistically

moderate the causal relationship between sleep cycle and body weight. The third strategy, ASSC,

assumes an associative Markov random field. Essentially, this assumes a correlational relationship

between variables, without allowing for any specific direction of causality.

Rehder (2014) found that no single model could adequately account for his data, a

conclusion which closely resonates with ours. As with Rehder (2014), the question then becomes

what is the appropriate mixture of strategies or models to understand the relevant human behavior.

Rehder (2014) reported that a linear combination of all four strategies (CGM plus the three

non-normative models) provided a good account of his data. Thus, he concluded that causal

reasoning must involve both normative and non-normative influences. Rehder explored this further
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by identifying two groups of participants, called ‘associative’ and ‘causal’ reasoners, the former

group displaying insensitivity to causal direction and the latter group displaying more normative

behavior. Overall, Rehder’s approach is promising as it can account for individual differences in

some effects (such as violations of the Markov condition). However, it is less clear how his

modeling approach could cover other phenomena such as order effects, reciprocity, and

memorylessness.

As noted, the normative component in Rehder’s (2014) approach, based on the CGM, is a

special case of the 8D fully Bayesian model in the proposed hierarchy. However, further

equivalences are hard to establish. The CONJ and ASSOC models use ad hoc probabilistic rules

(neither classical or quantum) and the DISAB model adds extra variables in the CGM. Despite the

fact that using Rehder’s (2014) four models together can lead to good descriptive results at least for

his data, we think there are two important merits of the present approach. First, our approach

covers more phenomena than discussed in Rehder (2014). In particular, our approach can explain

order effects, reciprocity, and memorylessness, which are rarely studied in casual inference, and

why these effects co-occur with Markov violations and anti-discounting. Second, our framework

provides a detailed description of how the different components in the hierarchy are linked, because

they are all based on essentially the same overarching probabilistic framework (of quantum theory,

which is reduced to Bayesian theory when employing a fully compatible representation). In our

hierarchy of models, moving from the lowest level to the highest involves changing assumptions

about the compatibility of events. As one moves up the hierarchy, more joint events are included.

Rehder’s approach lacks a theory about how the different strategies are connected. Thus, it seems

doubtful that Rehder’s approach could account for the practice effects we find in Experiment 3.

Our framework provides a specific prediction about how representations are related to familiarity,

which could eventually lead to methods for improving people’s judgments through training.

Notwithstanding the above points, it is clearly a computational issue whether Rehder’s

models can predict behavior which cannot be accommodated by the present approach. The study
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of this important issue cannot be resolved easily, because it requires examining participant

behavior at the level of individual differences. The extensive corresponding analyses (employing a

hierarchical Bayesian individual differences approach) are reported in Mistry, Trueblood,

Vandekerckhove, and Pothos (submitted). Using the combined data from four experiments

presented in Rehder (2014) (a total of 315 participants), Mistry et al. (submitted) compared a fully

incompatible quantum model to the five models discussed in original paper: a CGM, the three

non-normative models CONJ, DISAB, and ASSC, and the weighted average of the individual

models. Hierarchical Bayesian model comparisons showed that the quantum model was preferred

to all five Rehder models for three different causal network structures (chain, common cause, and

common effect). Further, the quantum model predictions had the highest correlation with the

observed data (between 0.87 and 0.93 for the three network structures). We view these results as

strong evidence that the quantum approach can generalize to a wide range of human behavior.

Relationship to ‘structurally local’ causal inference

Our hierarchy of models can be viewed as a generalization of the idea that inference is

achieved through local computations (Fernbach & Sloman, 2009). This theory argues that causal

inference is structurally local. That is, when people are faced with a complex problem, they break

the problem up by focusing on pairs of events rather than all events simultaneously. Inferences

about the complete problem are constructed by combining local inferences piece by piece. The

original version of the structurally local hypothesis most closely relates to the 4DIC model where

individual cause-effect relations are compatible, but separate relations are incompatible. Inference

about compatible events are equivalent to those from classical probability theory. However,

inferences about incompatible events must be considered piece by piece. Incompatible events form

separate sample spaces that are “pasted together” by unitary transformations and inferences are

obtained by the serial evaluation of events.

Our approach generalizes the structurally local hypothesis by suggesting different ways
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people might break up a complex inference problem. In the 2D model, individuals break up the

problem into the smallest possible pieces. That is, they can only focus on one variable at a time

and inferences about the full structure are performed by piecing together these individual

inferences. Conceptually, this model shares ideas with hypothetical thinking theory (Evans,

Handley, Neilens, & Over, 2007; Elqayam & Evans, 2013), which is a soft Bayesian approach to

complex reasoning tasks. A central principle of the theory is that people focus on only one

hypothesis at a time in their hypothetical thinking. The 2D POVM model is similar to the 2D

model except it relaxes some of the assumptions in the 2D model and so breaks the strict properties

of reciprocity and memorylessness. The 4D models capture the idea that individuals break up

problems into several smaller (classical) “chunks” each involving two variables. In the 8D model,

there are no local computations because individuals form a complete representation of the

problem. This highest level of the hierarchy is classical.

Explanatory scope of the quantum framework

Understanding the explanatory level intended for a psychological model is important as it

partly informs which comparisons with alternative models are meaningful. The predominant

framework regarding levels of explanation is still that of Marr (1982), though the ideas from

Griffiths et al. (2010) have been increasingly influential too. To understand the placement of the

quantum framework for probabilistic inference, we briefly review the corresponding literature.

Marr (1982) proposed three levels of explanation. Those presently relevant are the computational

level and the algorithmic level, which is intended as intermediate between the computational level

and the implementation level (the latter is about neurological/ biological processes and is not

relevant here). The computational level concerns the what and the why questions for the system

that is studied, that is “what is the goal of the computation, why is it appropriate, and what is the

logic of the strategy by which it can be carried out” (Marr, 1982, p. 25). Following Marr’s example

of studying a cash register, the what question is that the machine does arithmetic and the why is
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‘why arithmetic’ instead of, for example, multiplication. A computational level specification of the

cash register machine can then be elaborated easily, for example, given the objectives of the

machine (which is to provide accurate measurement of the sum cost of a set of goods).

By contrast the algorithmic level concerns a process explanation of the studied system,

specifically the representations that are employed by the system and the algorithms that operate on

the representations to produce an output from an input. In other words, the algorithmic level is

about the how question regarding the studied system. In the cash register example, an algorithmic

level model could involve Arabic numerals for representation and the usual arithmetic calculus to

carry out the necessary mapping from input to output information. Of course, the choices for

algorithm and representation constrain each other (Anderson, 1978; Marr, 1982), and even then

there may be alternative algorithmic level explanations which work.

A somewhat subtle point is that normative cognitive theories have to be computational level

theories (Medin & Bazerman, 1999), but there are computational level theories that are not

normative. Indeed, Marr (1982) does not reference normative prescription in his analysis. The first

part of the assertion is straightforward: a normative decision theory would purport to provide a

framework for why decision makers should be reasoning in a certain way - and so its explanatory

objective is naturally at the computational level. However, there are computational level theories

that are not normative. For example, consider the representativeness heuristic (Tversky &

Kahneman, 1983), the idea that observers evaluate probability judgments through a similarity

measure. The representativeness heuristic is a computational level explanation, since the emphasis

is on the goal of the computation (compute probabilistic likelihood in terms of similarity) and on

the appropriateness of the similarity heuristic (taking an extreme view for illustration, one could

say that probability calculus is irrelevant and similarity supports probabilistic judgments as a

readily available alternative cognitive mechanism). So, even though in decision-making, it seems

natural to tie up the ‘why’ of a computational level model with a normative argument, this does not

have to be the case.
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Marr’s (1982) analysis has been hugely influential in psychology, but there are indications

that it may be less suitable for modern cognitive models. The problem is that with an increasing

sophistication of cognitive models, specification at multiple (Marr) levels is becoming more and

more of a requirement. For example, consider the Leaky Competing Accumulator (LCA) model

(Usher & McClelland, 2001), which concerns the time course of a perceptual choice task. It seems

clear that the main objective of the model is at the algorithmic level (the specific way in which

evidence accumulation at different time steps eventually leads to a decision). However, there are

several overarching principles of the LCA model (e.g., the idea that evidence accumulation is leaky

and a principle of lateral inhibition) that belong to the computational level.

These interpretational problems relate to probabilistic cognitive models and indeed Griffiths

et al. (2010, p. 357) provided a well-thought generalization to Marr’s (1982) analysis by noting

that “probabilistic models of cognition pursue a top-down or ‘function-first’ strategy, beginning

with abstract principles that allow agents to solve problems posed by the world - the functions that

minds perform - and then attempting to reduce these principles to psychological and neural

processes.” Griffiths et al. (2010) further explain the intention of a probabilistic cognitive model

with a range of questions, such as in relation to the information needed, the necessary

representations, and the constraints on the computation. While most of these questions are

computational level explanations, it is also clear that some of them are algorithmic level ones. Part

of the problem is this: a probabilistic cognitive model (classical or quantum) embodies a default

algorithmic assumption, namely the native probabilistic calculus. However, there is rarely a strong

corresponding commitment. Indeed, when Sanborn, Griffiths, and Navarro (2010) considered the

practicalities of computing Bayesian probabilities (e.g., priors), they suggested that the appropriate

algorithmic level description of a Bayesian categorization model should involve various

approximations regarding probabilistic computation.

Note also that the consideration of classical probabilistic levels often goes hand in hand with

claims of optimality in cognitive process (Griffiths, Chater, Norris, & Pouget, 2012), thus
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apparently conflating a characterization of a model as normative and at the computational level of

explanation. But, this is just because classical probabilistic models have been advocated in this

particular way, given that normative justifications emerge particularly naturally for such models

(e.g., see Oaksford & Chater, 2009); as argued above, even in decision making one can identify

non-normative computational level models.

The quantum approach to probabilistic inference is a probability framework for human

inference judgments, analogous to classical/ Bayesian models of inference. So, its explanatory

objective is best stated using Griffiths et al.’s (2010) approach, as a model focusing on the

mathematical principles that characterize human inference, when participants do not adhere to

classical probability constraints. However, the quantum model can neither be assumed to be

optimal nor normative. In all the scenarios we are employing, the representations that are at stake

are (objectively) compatible (e.g., they concern biological properties of organisms). Therefore, if

participants are representing these (objectively) compatible events in an incompatible way, then at

best their reasoning process can be thought of as an instance of bounded rationality (Simon, 1955),

on the further assumption that quantum representations represent a heuristic or suboptimal

approximation to the classical ones. This latter assumption could be justified, because classical

representations arguably impose high demands on attention and memory, since a high dimensional

representation space needs to be constructed for all available variables (the requirement that a

complete joint probability always exists means that it has to be possible to evaluate all variables

concurrently). For participants not sufficiently familiar with the variables or not able or willing to

sufficiently concentrate on the task (as might be evidenced by low CRT scores), an impoverished

representation is created, which approximates the normative one to different degrees, but will also

misrepresent some questions/ variables as incompatible. Clearly, this is not a complete picture,

since it presupposes a specific idea for how (sufficient) attention and memory resources can lead to

fully compatible representations, nevertheless it seems a reasonable speculation for how process

limitations can make quantum representations relevant in human inference.
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Overall, from the perspective of Griffiths et al.’s (2010) classification, the explanatory status

of the quantum model is not unlike that of the heuristics proposed by Rehder (2014), though note

that the explanatory emphasis of these heuristics does vary a bit between computational principles

(computational level) and process (algorithmic level). The advantage of the quantum model is that

there is a single set of coherent principles that capture the range of heuristic behaviors. Note,

recent work indicates that quantum principles can be justified in a normative way too (Pothos,

Busemeyer, Shiffrin, & Yearsley, in press). However, the conditions for when this is the case are

not straightforward and, in any case, do not apply in the present causal inference experiments.

Finally, if one adopts the perspective of Marr’s (1982) explanation levels, the quantum

framework is about what is computed (briefly, a choice preference/ perception of likelihood) and

why the computation has the form it does (briefly, information from several variables needs to be

combined; in some cases this leads to incompatible representations, which imply quantum

probabilities). The quantum approach does involve some algorithmic level assumptions, which are

the probabilistic calculus native to quantum probability theory. However, such assumptions are not

essential to the model, e.g., it is possible that quantum probabilities are computed via a

diffusion-style process (broadly constrained by the relevant probability rules). A more pertinent

question is how the quantum framework can be extended with algorithmic level assumptions,

concerning for example memory or attention processes for how the relevant information is

processed, in a way that enables a clearer picture of when to expect quantum and classical

representations. Specifically, as noted, it is likely that memory or attention limitations may lead to

quantum representations, when the classical ones are normative. In future work we will address

this issue. The present objective is to firmly establish the relevance of quantum principles as a

(computational) level description of human inference and how quantum principles can be related to

the Bayesian (normative) principles for inference within the same broad probabilistic framework

(Griffiths et al., 2010).
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Concluding comments

Overall, our work sheds light on why classical models have been successful in many

situations (e.g., CGMs), but can sometimes fail to agree with behavior in other situations. Equally,

it helps us understand why quantum probability models can sometimes be successful, but are

superfluous in other cases. Inference is neither inherently classical or quantum, but rather is tied to

the representation of events constructed by the reasoner. For novel scenarios or when thinking

intuitively, representations of events may be incompatible and quantum models are appropriate,

however experience or more deliberative reasoning can lead to the formation of more complex

compatible representations, which support classical models.
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Appendix A

Details on Model Parameterization

In this appendix we provide some additional details for how the 2D and 4D models were

parameterized.

2D model

We begin by noting that we take the initial state to be a diagonal matrix. We can always do

this by a suitable choice of basis, and it turns out to be useful because the conditions under which a

general matrix is an allowable density matrix are difficult to express algebraically (the key one is

all eigenvalues are non-negative).

Different bases in our space are related by 2D unitary transformations, which we chose to

parameterize in the following way

R j =

 cos(θ j) −sin(θ j)eiφ j

sin(θ j)e−iφ j cos(θ j)

 . (35)

We have two things to argue, firstly that this form is general enough for our purposes, and secondly

that we may in fact take the additional step of setting one of the φ j = 0.

In general, any two bases in this 2D Hilbert space can be connected by a unitary

transformation. Matrices for the form Eq.(35) are not the most general possible unitary

transformations, which would also have phase factors on the diagonal elements. However when

computing the relevant projection operators, such as PX1 = RX PE1R†
X the resulting expressions

depend only on the sum of the phases. Without loss of generality, therefore, we may choose the

phase of the diagonal elements to be 0. This proves that the form Eq.(35) is general enough for our

needs.

Next we need to argue that we can set φE = 0 without loss of generality. To see why this is
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the case, consider the following argument. We are interested in expressions like Tr(PBPAρPA).

Consider the unitary matrix

Φ =

eiφ 0

0 e−iφ

 (36)

it is easy to see that the operation M̃ = ΦMΦ† sends

m11 m12

m21 m22

→
 m11 m12e2iφ

m21e−2iφ m22

 , (37)

thus changing only the phase of the off diagonal terms. In particular ρ̃ = ΦρΦ† = ρ. Since Φ is

unitary Φ†Φ = 1 and so Tr(PBPAρPA) = Tr(ΦPBΦ†ΦAΦ†ΦρΦ†ΦPAΦ†ΦPBΦ†) = Tr(P̃BP̃AρP̃A) so

that all expressions for probabilities are left unchanged if we add a constant to all the φi parameters.

We may therefore set one of them to zero without changing any of the computed probabilities.

This proves that we may set φE = 0 without loss of generality.

4D model

We chose to parameterize the 4DIC unitary transformations in the following way

R =



cos(θ1) −sin(θ1)eiφ1 0 0

sin(θ1)e−iφ1 cos(θ1) 0 0

0 0 cos(θ2) −sin(θ2)eiφ2

0 0 sin(θ2)e−iφ1 cos(θ2)


(38)

where θ1,θ2,φ1,φ2 are real angles. In a similar way to the 2D model, R is not the most general

possible transformation. Essentially we are arguing that R may be written in the form

R =

U1 0

0 U2

 (39)



A Quantum Framework for Probabilistic Inference 87

where U1,U2 are 2x2 unitary matrices. Therefore exactly as in the 2D model, U1 and U2 could have

phases attached to the diagonal elements, but any expressions for probabilities would be equivalent

to instead changing φ1/2.

We also need to argue that we can take the elements of the matrix S to be real. Start with a

more general S where the diagonal elements are not real. The argument proceeds in exactly the

same way as for the 2D case, one shows that a transformation exists which serves to change the

phase factors of the off-diagonal elements of R and S while leaving ρ and any probabilities

invariant. We can therefore choose the elements of the matrix S to be real without loss of generality.

For the 4DCC model, the arguments for reducing the number of parameters is identical to the

4DIC case.
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Appendix B

Stimuli from Experiment 1

African Lake Shrimp

Cover Story

Biologists have recently discovered a new kind of shrimp, which are found in the African

Great Lakes. The biologists have found identical shrimp in all nine African Great Lakes. They

were able to establish three distinctive features of these shrimp.

Features

(F1) ACh neurotransmitter: The shrimp use acetylcholine (ACh) as a brain neurotransmitter.

They either have a high or low amount of ACh. Most shrimp have a high amount of ACh whereas a

few have a low amount of ACh.

(F2) Sleep cycle: The shrimp have either an accelerated or normal sleep cycle. Most shrimp

have a normal sleep cycle (12 hours sleep, 12 hours awake) whereas a few have an accelerated

sleep cycle (4 hours sleep, 4 hours awake).

(F3) Body weight: The shrimp either have a high or low body weight. Half of the shrimp

have a high body weight whereas half have a low body weight.

Causal Relationships

(F1→ F3). A high quantity of ACh neurotransmitter causes a high body weight. The

neurotransmitter stimulates greater feeding behavior, which results in more food ingestion and

more body weight. A low quantity of ACh neurotransmitter causes a low body weight. Low

quantities of the neurotransmitter stimulate less feeding behavior, which result in less food

ingestion and body weight.
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(F2→ F3). An accelerated sleep cycle causes a high body weight. Shrimp habitually feed

after waking, and shrimp on an accelerated sleep cycle wake three times a day instead of once. A

normal sleep cycle causes a low body weight. Shrimp on a normal sleep cycle wake once a day and

thus feed once a day.

Kehoe Ants

Cover Story

Biologists have recently discovered a new kind of ant, which are found in the forests of the

volcanic island of Kehoe. The biologists have found identical ants in all nine Kehoe National

Forests. They were able to establish three distinctive features of these ants.

Features

(F1) Iron sulfate: The ants have blood that contains iron sulfate. They either have a high or

low amount of iron sulfate in their blood. Most ants have a high amount of iron sulfate whereas a

few have a low amount of iron sulfate.

(F2) Immune system: The ants have either a hyperactive or normal immune system. Most

ants have a normal immune system whereas a few have a hyperactive immune system.

(F3) Blood: The ants either have thick or thin blood. Half of the ants have thick blood

whereas half have thin blood.

Causal Relationships

(F1→ F3). A high quantity of iron sulfate causes thick blood. Iron sulfate provides the

extra iron that the ants use to produce extra red blood cells. The extra red blood cells thicken the

blood. A low quantity of iron sulfate causes thin blood. Low quantities of iron sulfate result in

lower levels of red blood cells, which result in thin blood.
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(F2→ F3). A hyperactive immune system causes thick blood. A hyperactive immune

system accelerates the production of blood cells, which thickens the blood. A normal immune

system causes thin blood. Ants with a normal immune system produce fewer blood cells and thus

have thin blood.



A Quantum Framework for Probabilistic Inference 91

Appendix C

Parameter estimates from Experiment 1

The mean and 95% highest density intervals (HDIs) for the parameter estimates of each of

the five models in Experiment 1 are given in Tables C1 and C2.
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Footnotes

1A Hilbert space is a generalization of the notion of a Euclidean space (indeed a Euclidean

space is a Hilbert space). A Hilbert space is a vector space, equipped with an inner product which

has some convergence properties. The spaces we will use in this paper are simply 2, 4 and 8D

complex vector spaces where the inner product is taken to be the usual dot product between

vectors.

2It is possible that participants who wanted to respond “don’t know” were attracted to the

“equally likely” option more than the other two options. However, we think that this is unlikely in

our task. Participants were never instructed to use the “equally likely” response option as a “don’t

know” response. We included an “equally likely” option because participants were instructed that

the probability of the effect (e.g., high or low body weight of a shrimp) was 0.5. Thus, it is very

reasonable to assume this response maps to the probability 0.5 for data analyses.

3An interesting question is whether we can give a direct interpretation to the various

parameters in a given quantum model. It is clear that in some cases, such as for ρ or ε in the 2D

POVM model, a reasonably simple interpretation can be given. However interpreting the values of

the various angles that appear in the models is more problematic. First the observed probabilities

typically depend on various combinations of angles, so that changing the value of one angle can be

offset by varying another. Second, while the size of the angle between events determines the size

of any order effects (via the commutator,) it is less clear that we can use this to define something

like a ‘degree’ of incompatibility. An important future topic for research is to understand how to

interpret best fit values from quantum models.

4BFM is the Bayes factor comparing the specified model against all other possible models.
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Table 1: Summary of the models and their properties

Model Number of Properties
Parameters Incompatible Order Effects Reciprocity Memorylessness Markov Anti-

Events violations discounting

2D 6 E,X ,Y X ,Y ; E,X ; E,Y Yes Yes Yes Yes
2D POVM 7 E,X ,Y X ,Y ; E,X ; E,Y No** No** Yes Yes

4DIC 10* X ,Y X ,Y No No Yes Yes
4DCC 10* E,X ; E,Y E,X ; E,Y No No Maybe† Maybe†

8D 8* None None No No Maybe† Maybe†

*The normalization constraint means that the degrees of freedom in the model is one less than the number of parameters.
**The 2D POVM model predicts these properties when ε→ 0
†This is dependent on the state vector
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Table 2: Summary of Experiments

Experiment 1 Experiment 2 Experiment 3

Effects order effects both types of reciprocity order effects
“cause-effect” reciprocity “cause-effect” memorylessness “cause-cause” reciprocity

“cause-cause” memorylessness Markov violations “cause-cause” memorylessness
anti-discounting Markov violations

Response Format ternary choice rating from 0 to 100 ternary choice

Other Features verbal base-rates verbal base-rates numeric base-rates, CRT
extended testing (6 blocks)

Models 2D, 2D POVM, 4DIC, 2D POVM, 4DCC, 8D 2D POVM, 4DCC, 8D
4DCC, 8D, 8D causal power

Analyses group-level and individual-level modeling group-level modeling**
hierarchical modeling*

cross validation

*Results for the hierarchical modeling are provided in the online supplementary material
**Modeling is performed on sub-groups determined by the Cognitive Reflection Test
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Table 3: Questions in Experiment 1 along with mean choice scores.

Block Elementary events Conditionals with one event Conditionals with two events
Event Mean Event Mean Event Mean

BX E 0.50 (0.09) X |E1 0.96 (0.17) E|X1,Y1 0.95 (0.20)
X 0.92 (0.21) Y |E1 0.80 (0.37) E|X1,Y2 0.42 (0.32)
Y 0.17 (0.32) E|X1∗ 0.94 (0.16) E|X2,Y1 0.63 (0.30)

E|X2∗ 0.05 (0.14) E|X2,Y2 0.07 (0.17)

BY E 0.52 (0.13) X |E2 0.10 (0.29) E|Y1,X1 0.93 (0.22)
X 0.85 (0.32) Y |E2 0.09 (0.24) E|Y1,X2 0.37 (0.30)
Y 0.15 (0.31) E|Y1∗ 0.91 (0.23) E|Y2,X1 0.68 (0.28)

E|Y2∗ 0.10 (0.22) E|Y2,X2 0.08 (0.23)

*Events that participants saw twice within the same block.
Responses were scored by assigning the following values to the three response options: feature value

1 = 1, feature value 2 = 0, and equally likely = 0.5. Standard deviations are given in parentheses.
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Table 4: Bayesian paired samples t-tests for order
effects, reciprocity, and memorylessness in Experiment
1.

Effect Comparison BF10

Order effects E|X1Y1 and E|Y1X1 0.374
E|X1Y2 and E|Y2X1 172.525
E|X2Y1 and E|Y1X2 90.012
E|X2Y2 and E|Y2X2 0.150

Reciprocity X |E1 and E|X1 0.201
X |E2 and E|X2 0.303
Y |E1 and E|Y1 1.103
Y |E2 and E|Y2 0.149

Memorylessness E|X1 and E|Y1,X1 0.145
E|X1 and E|Y2,X1 1.418e+7
E|X2 and E|Y1,X2 2.231e+8
E|X2 and E|Y2,X2 0.220
E|Y1 and E|X1,Y1 0.594
E|Y1 and E|X2,Y1 364018.502
E|Y2 and E|X1,Y2 4.192e+7
E|Y2 and E|X2,Y2 0.252
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Table 5: Cross validation results for Experiment 1.

Model DIC for first group MSE for second group

2D -19.70 0.022
2D POVM -37.59 0.010
4DIC -1.94 0.070
4DCC -40.32 0.010
8D -24.79 0.018
8D causal power -26.75 0.021
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Table 6: Conditional judgment questions in Experiment 2 along with mean judgments.

Conditionals with causes Conditionals with effects and causes Conditionals with effects and two causes
Event Mean Event Mean Event Mean

X1|Y1 59.01 (22.28) E1|X1 64.92 (18.16) X1|E1,Y1 62.42 (22.32)
X1|Y2 39.71 (23.17) E1|Y1 66.20 (20.57) X1|E1,Y2 44.39 (22.79)
Y1|X1 60.39 (24.01) X1|E1* 65.82 (16.56) Y1|E1,X1 64.92 (21.57)
Y1|X2 41.16 (21.40) Y1|E1* 68.54 (17.02) Y1|E1,X2 42.97 (21.67)

*Events that participants judged twice within the same block.
Standard deviations are given in parentheses.
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Table 7: Bayesian paired samples t-tests for
reciprocity, memorylessness, Markov violations,
and anti-discounting in Experiment 2.

Effect Comparison BF10

Reciprocity X1|E1 and E1|X1 0.157
Y1|E1 and E1|Y1 0.283
X1|Y1 and Y1|X1 0.158

Memorylessness X1|Y1 and X1|E1,Y1 0.232
X1|Y2 and X1|E1,Y2 0.599
Y1|X1 and Y1|E1,X1 0.559
Y1|X2 and Y1|E1,X2 0.176

Markov violations X1|Y1 and X1|Y2 942.4
Y1|X1 and Y1|X2 261.3

Anti-discounting X1|E1 and X1|E1,Y1 0.255
Y1|E1 and Y1|E1,X1 0.335
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Table 8: Bayesian Pearson correlations between effects in Experiment 2.

MemorylessnessScore MarkovScore AntidiscountingScore

ReciprocityScore Person’s r 0.397 -0.328 0.054
BF10 16.900 3.551 0.177

MemorylessnessScore Person’s r - -0.331 -0.351
BF10 - 3.768 5.717

MarkovScore Person’s r - - -0.195
BF10 - - 0.469
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Table 9: Questions in Experiment 3 along with mean choice scores.

Block Elementary events Conditionals with one event Conditionals with two events
Event Mean Event Mean Event Mean

BXi E 0.52 (0.07) E|X1 0.90 (0.19) E|X1,Y2 0.40 (0.23)
X 0.93 (0.14) E|X2 0.08 (0.16) E|X2,Y1 0.67 (0.22)
Y 0.11 (0.22) X |Y2 0.62 (0.35)

Y |X1 0.38 (0.35)

BYi E 0.53 (0.11) E|Y1 0.91 (0.19) E|Y1,X2 0.36 (0.20)
X 0.93 (0.14) E|Y2 0.13 (0.22) E|Y2,X1 0.66 (0.21)
Y 0.16 (0.26) X |Y1 0.77 (0.25)

Y |X2 0.25 (0.28)

Responses were scored by assigning the following values to the three response options: feature value
1 = 1, feature value 2 = 0, and equally likely = 0.5. Standard deviations are given in parentheses.
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Table 10: Bayesian paired samples t-tests for order effects, reciprocity, memorylessness, and Markov
violations in Experiment 3 for first, middle, and last blocks.

Effect Comparison BF10 First Blocks BF10 Middle Blocks BF10 Last Blocks

Order effects E|X1Y2 and E|Y2X1 213351.78 126.86 92.09
E|X2Y1 and E|Y1X2 673868.48 3551.65 425.53

Reciprocity X |Y1 and Y |X1 40940.84 349.37 212562.76
X |Y2 and Y |X2 84599.69 63858.31 3364.80

Memorylessness E|X1 and E|Y2,X1 534.23 90371.02 849770.96
E|X2 and E|Y1,X2 5.229e+6 3.147e+7 3.684e+9
E|Y1 and E|X2,Y1 319.60 1.264e+7 10446.62
E|Y2 and E|X1,Y2 73307.93 20655.73 849770.96

Markov violations X |Y1 and X |Y2 14.3 0.34 1.47
Y |X1 and Y |X2 1.14 1.73 0.30
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Table C1: Best fit model parameters and HDIs for each
of the models fit in Experiment 1.

Model Parameter Mean 95% HDI

2D ρ 0.586 [0.500,0.693]
θE 0.768 [0.471,1.063]
θX 0.344 [0.006,0.783]
φX 1.178 [0.468,1.563]
θY 1.194 [0.810,1.558]
φY 1.199 [0.477,1.561]
λ 10.744 [3.939,17.880]
τ 0.282 [0.135,0.429]

2D POVM ρ 0.578 [0.534,0.626]
θE 0.782 [0.705,0.857]
θX 0.310 [0.105,0.528]
φX 1.270 [0.835,1.560]
θY 1.171 [0.956,1.393]
φY 1.367 [1.096,1.562]
ε 0.032 [0.011,0.050]
λ 28.596 [10.910,48.986]
τ 0.290 [0.152,0.426]

4DCC ρ11 0.354 [0.244,0.456]
ρ22 0.179 [0.022,0.296]
ρ33 0.071 [0.000,0.184]
ρ44∗ 0.396 [0.289,0.492]
θ1 0.707 [0.657,0.756]
θ2 0.781 [0.770,0.791]
φ1 0.791 [0.147,1.417]
φ2 0.996 [0.309,1.541]
θa 0.802 [0.242,1.286]
θb 0.429 [0.025,1.122]
λ 34.792 [11.503,60.631]
τ 0.224 [0.095,0.357]

*The normalization constraint means that the degrees of
freedom in the model is one less than the number of
parameters.
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Table C2: Best fit model parameters and HDIs for each of
the models fit in Experiment 1 continued.

Model Parameter Mean 95% HDI

4DIC ρ11 0.256 [0.160,0.347]
ρ22 0.245 [0.156,0.343]
ρ33 0.211 [0.142,0.277]
ρ44∗ 0.287 [0.222,0.357]
θ1 0.672 [0.229,1.136]
θ2 0.670 [0.228,1.139]
φ1 0.902 [0.241,1.512]
φ2 0.782 [0.154,1.397]
θa 0.746 [0.112,1.465]
θb 0.638 [0.126,1.073]
λ 3.503 [2.000,5.445]
τ 0.246 [0.105,0.394]

8D ρ11 0.196 [0.137,0.252]
ρ22 0.131 [0.084,0.180]
ρ33 0.104 [0.054,0.153]
ρ44 0.100 [0.052,0.147]
ρ55 0.071 [0.021,0.123]
ρ66 0.072 [0.020,0.124]
ρ77 0.130 [0.081,0.180]
ρ88∗ 0.196 [0.137,0.252]
λ 18.165 [5.859,32.721]
τ 0.266 [0.133,0.404]

8D causal power p(X1) 0.528 [0.503,0.557]
p(Y1) 0.473 [0.444,0.498]
wX 0.213 [0.104,0.321]
wY 0.191 [0.090,0.294]
wa 0.378 [0.299,0.449]
λ 14.276 [5.080,24.874]
τ 0.265 [0.127,0.407]

*The normalization constraint means that the degrees of freedom
in the model is one less than the number of parameters.
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Figure Captions

Figure 1. The posterior distributions for the predictions of the six models plotted against the data

from Experiment 1. The (red) circles are the average choice scores for the different questions in the

experiment. The black squares show the posterior mass for the model predictions. In each plot,

questions are ordered with respect to their mean choice scores from smallest to largest.

Figure 2. Scatter plots for the four effects examined in Experiment 2. Each point represents an

individual-level judgment. The dotted black line is the 45 degree line of identity. The solid black

line is the best fit line for a model predicting the second judgment from the first assuming an

intercept of 0. The beta weight is included for each effect. The top left panel shows the three

different pairs of judgments for reciprocity: red diamond represents the judgments X1|E1

(horizontal axis) and E1|X1 (vertical axis), blue square represents the judgments Y1|E1 and E1|Y1,

and green circle represents the judgments X1|Y1 and Y1|X1. The top right panel shows the four

different paris of judgments for memorylessness: red diamond represents the judgments X1|Y1 and

X1|E1,Y1, blue square represents the judgments X1|Y2 and X1|E1,Y2, green circle represents the

judgments Y1|X1 and Y1|E1,X1, and purple asterisk represents the judgments Y1|X2 and Y1|E1,X2.

The bottom left panel shows the two different pairs of judgments for Markov violations: red

diamond represents the judgments X1|Y1 and X1|Y2, and blue square represents the judgments Y1|X1

and Y1|X2. The bottom right panel shows the two different pairs of judgments for anti-discounting:

red diamond represents the judgments X1|E1 and X1|E1,Y1, and blue square represents the

judgments Y1|E1 and Y1|E1,X1.

Figure 3. Behavioral results for each of the subgroups of participants identified as being best fit by

the 2D POVM, 4DCC and 8D models in Experiment 2. Low ReciprocityScores,

MemorylessnessScores, and AntidiscountingScores indicate stronger evidence for reciprocity,

memorylessness, and anti-discounting respectively. High MarkovScores indicate larger Markov

violations. Error bars show the standard error.
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Figure 4. Observed probability judgments compared to model predictions from three models (top:

2D POVM, middle: 4DCC, bottom: 8D) for Experiment 2. The probabilities have been split up into

three types: probabilities of the form p(X |Y ) are shown by (blue) circles, probabilities of the form

p(E|X) or p(X |E) are shown as (red) squares, and probabilities of the form p(E|X ,Y ) or

p(X |E,Y ) are shown by (green) triangles.

Figure 5. Behavioral results from Experiment 3. Top left: OrderScore for three CRT groups (low,

medium, and high) across block pairs. Top right: ReciprocityScore for three CRT groups across

block pairs. Bottom left: MemorylessnessScore for three CRT groups across block pairs. Bottom

right: MarkovScore for three CRT groups across block pairs. Error bars show the standard error.

Figure 6. The DIC scores for each of the 2D POVM (solid lines), 4DCC (dashed lines) and 8D

(dotted lines) models as a function of block number for each of the three CRT groups in

Experiment 3. Left: Low CRT Group. The 2D POVM is clearly superior in the first blocks, but this

vanishes by the end of the experiment. Middle: Medium CRT Group. The 2D POVM model

generally performs better here, with no obvious change over blocks. Right: High CRT Group. The

4DCC and 8D models perform best here, and there is little change over the blocks.

Figure 7. The posterior distributions for the predictions of three models (left: 2D POVM, middle:

4DCC, right: 8D) plotted against the data from selected conditions from Experiment 3. The (red)

circles are the average choice scores for the different questions in the experiment. The black

squares show the posterior mass for the model predictions. In each plot, questions are ordered with

respect to their mean choice scores from smallest to largest.
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