

City, University of London Institutional Repository

Citation: Krotsiani, M., Kloukinas, C. & Spanoudakis, G. (2017). Validation of Service

Level Agreements using Probabilistic Model Checking. Paper presented at the 14th IEEE
International Conference on Services Computing, 25-30 Jun 2017, Honolulu, USA.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17392/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Validation of Service Level Agreements using
Probabilistic Model Checking

 Abstract - With the fast growth of Information Technology
(IT), organisations rely mostly on web services, cloud services
and recently on Big Data Analytics services (BDA services), in
order to support their business services. To securely use these
services, service clients sign a Service Level Agreement (SLA)
with service providers, regarding a particular service provision.
Typically, SLAs define the properties that need to be preserved
during the provision of a service (e.g., quality of service
properties) and actions that will be applied if the service
provision violates the defined properties (e.g., penalties or re-
negotiation). Whilst significant research has focused on
monitoring SLAs during the provision of services, the exploration
and validation of the potential consequences of SLAs for the
involved parties prior to putting them in operation is not
addressed by existing research. In this paper, we present an
approach to SLA validation that is based model checking. Our
approach is based on the translation of SLAs expressed in WS-
Agreement into models of the probabilistic model checker
PRISM and the validation of SLA properties using the model
checking capabilities of this tool.

 Index Terms – Service Level Agreement (SLA), Probabilistic
Model Checking, Static Validation

I. INTRODUCTION
 Service Level Agreements (SLAs) are widely used by
service providers (consumers) as means of providing (getting)
assurance regarding the quality and security of the provisioned
services. SLAs constitute a kind of contract between service
providers and service consumers that defines the level of
service that should be guaranteed in service provision and the
actions that will be undertaken if this level is not preserved.

The management of SLAs (i.e., the specification,
monitoring and negotiation of SLAs) has been the subject
extensive research. This work has generated languages for
specifying SLAs (e.g., WSLA [6], WSLA+ [25], SLA* [13]),
techniques for SLA negotiation (e.g., WS-Agreement
Negotiation [23], PROSDIN [12]), and techniques for
monitoring SLAs (e.g., Nagios [22], Ganglia [19], EVEREST
[11][4]).

However, the work done for SLA specification does not
support adequately the analysis of the consequences of the
specifications that can be created for the different parties, so
that they all know what they are committing to. For example,
given an SLA, it would be useful for service consumers and
providers, to be able to analyse and answer questions such as:

(i) (Service providers) How probable is it to pay more than
$X in a time period Y?

(ii) (Service consumers and providers) How long will it take
before the need to renegotiate an SLA?

(iii) (Service consumers and providers) What is the probability
for renegotiation by the expiry date?

(iv) (Service providers) How long will it take before the need
to modify the infrastructure of service provision in order
to continue satisfying the SLA?

 In this paper, we present an approach that enables the
investigation and validation of properties as the above for
SLAs. Our approach is based on formalising the semantics of
the actions taken upon the violation of SLA guarantee terms
and their conditions, so as to enable the formal analysis of the
consequences of specific SLAs under different environment
assumptions, i.e., different probabilities for the violation of
specific guarantee terms. To achieve this, we have extended
the WS Agreement language [10][21]. Our extension allows
SLA parties to provide more details about the actions that
should be taken upon the violation of specific guarantee terms,
including the conditions that need to be satisfied for these
actions to be taken, and extra parameters that complete the
action specifications, e.g., the amount one has to pay in case of
a penalty.

The SLAs that are specified in the extended form of WS
Agreement that we propose are translated into probabilistic
automata expressed in the language of PRISM [14][24], i.e., a
probabilistic model checker. These automata are then used in
order to investigate and validate properties, like (i)-(v) above.
The translation of SLAs into probabilistic automata of the type
supported by PRISM is based on a general scheme in which
violations of SLA guarantee terms are translated into events
that trigger transitions between automata states, and the
actions associated with such violations are modelled by
actions undertaken when the relevant transitions are triggered.
To realise our approach, we have developed a translator from
the extended version of WS Agreement to the language of
PRISM. We have also performed various experiments
demonstrating the feasibility of our approach.

To the best of our knowledge, our approach is the first
one that focuses on the exploration and validation of SLA
properties (consequences) prior to putting them in operation.
 The rest of the paper is organized as follows. Section II
presents the overall SLA management framework assumed by

Maria Krotsiani, Christos Kloukinas and George Spanoudakis

Department of Computer Science
City, University of London

London EC1V 0HB, UK

{Maria.Krotsiani, C.Kloukinas & G.E.Spanoudakis}@ city.ac.uk

our approach and shows how SLA validation fits within and
may be used by it. Section III presents the extensions of WS-
Agreement language, which we have introduced to enable the
validation of SLA properties. Section IV discusses the
translation from the extended version of WS Agreement to
PRISM and gives examples of PRISM models generated from
SLAs. Section V presents the outcomes of experiments that
we have conducted to demonstrate the benefits and feasibility
of our approach. Section VI reviews related work and, finally,
Section VII provides concluding remarks and outlines
directions for further research.

II. GENERAL SLA MANAGEMENT FRAMEWORK

 To better understand the purpose of this paper, it is
important to consider the overall SLA management framework
that is the context of our work. As shown in Fig. 1, this
framework consists of tools (components) that support key
traditional activities of SLA management, namely SLA
specification, negotiation and runtime monitoring, and the new
activity of SLA validation that we introduce in this paper.

SLA negotiation and specification are the activities that
give rise to an SLA and are supported by SLA negotiation and
specification tools. Once it is agreed and specified, an SLA
needs to be monitored and enforced for the system that it is
concerned with. This requires the translation of the SLA to an
operational monitoring specification that will be possible to
check given the event sensing and monitoring capabilities of
the computational infrastructure where the service based
system that is the subject of the SLA is deployed. Foster and
Spanoudakis [5] have introduced a general-purpose
monitoring architecture and algorithms supporting this
process. This architecture includes: (a) event sensors having
responsibility for capturing the primitive information needed
for SLA monitoring, (b) monitors performing the actual
checks of SLA guarantee terms against event streams
produced by the sensors, and (c) an SLA2Monitor translator
that can translate the SLA expressed in a high-level SLA
language into the operational monitoring specification that can
be checked by the EVEREST [4]. When the monitor identifies
violations it informs an SLA Manager of the SLA terms that
have been violated, to enable it to perform the actions
specified in the SLA for the respective violations [5]. This
automates guaranteeing an SLA at run-time but since SLAs
and system behaviours can be complex, interacting parties can
easily find themselves in situations they had not anticipated,
e.g., having to pay a high penalty due to violated SLA terms.
For this reason, we have extended the SLA management
framework with tools supporting an SLA validation activity
(see orange dashed rectangle in the left part of Fig. 1).

The validation activity is realised through the translation
of the SLA into the language of Prism [14][24]. More
specifically, it produces a formal model of the actions that the
SLA Manager will be taking each time a term violation of the
specific SLA is reported. In order to be able to explore the
consequences of these actions it also produces a formal model
of the environment of the SLA Manager, which is shown
inside the rectangle with the red dashed boundary in Fig. 1, i.e.,

the combination of the system itself and the monitor checking
the SLA rules at run-time. Since that part is too complex to
describe formally in detail, it is abstracted away and
represented as a source of SLA term violations that occur
stochastically and can be described with different exponential
distributions that have some rate of arrival.

Using Prism, SLA parties can check the probability of and
time to execution of actions that are associated with the
different SLA guarantee terms. The outcomes of validation are
passed back to the negotiation and specification activities in
order to inform the tailoring of SLAs accordingly (e.g., to
adjusting the terms in order to reduce the possibility of paying
penalties; or to redefine more convenient terms for re-
negotiations; or even to estimate possible configurations that
might be required in order to avoid any defined modifications
that can occur. Validation can be carried out before an SLA is
agreed and instantiated, to explore its consequences under
different operational scenarios. In such cases, validation is
based on estimates of the expected violation rates of SLA
guarantee terms. In addition, validation can be performed once
an SLA has become operational to inform the negotiation
processes that may need to be carried out due to violations of
SLAs or changes of the needs of the relevant parties. In such
cases, the validation can be based on real violation rates that
have been detected by the monitor and passed back to the
specification and negotiation activity.

 III. WS-AGREEMENT LANGUAGE & EXTENSIONS

 WS-Agreement [10] was introduced by the Open Grid
Forum to address some key requirements for the specification
of SLAs, such as supporting modularity, accommodating other
external and domain specific standards, and allowing
extensions.
 In WS-Agreement, an SLA is composed of three main
sections, i.e., the name, context and terms of as shown in Fig.
2. The first section provides an optional SLA name. The next
section contains the SLA context, i.e., meta-data for the entire
SLA (e.g., the SLA participants, its lifetime, etc.). The terms
section specifies the terms of the SLA. these can be of two
types: (a) Service Terms that describe the services regulated

Fig. 1 General SLA Management Framework

by the SLA and (b) the Guarantee Terms (GTs) that specify
the service levels that should be satisfied during the provision
of the service. More specifically, GTs define the expected
quality of service, comprising (i) the obligated party, (ii) the
list of services this guarantee applies to, (iii) an optional
condition that must be met for a guarantee to be enforced, (iv)
an assertion expressed over service descriptions
(ServiceLevelObjective), and (v) one or more business values
associated with this objective (BusinessValueList).

WS-Agreement has some limitations, since it does not
support the specification of: (a) security and privacy Service
Level Objectives (SLOs), (b) actions that need to be taken
during the life cycle of an SLA (e.g., service provision
platform modification actions and SLA negotiation actions),
(c) multi-party SLAs, and (d) comprehensive models of
complex services, including internal operations, service assets,
and operation, data and other dependencies. This makes it
harder to check whether an SLA can be monitored and to
produce automatically a monitoring plan for it.

In our approach [27] we extended the
CustomServiceLevel sub-element of the ServiceLevelObjective
element, to support monitorable SLOs. To do so, we
introduced PreciseSLOType, a new type for CustomService-
Level. This allows specifying an SLO at a declarative level,
i.e., as a property of a particular category that is to be applied
to a service asset (e.g., internal or external operation and data
elements of the service), and/or a procedural level, which
provides the exact runtime assertion representing the SLO
satisfaction. SLO assertions are expressed in the language
developed in the CUMULUS project [2] – itself based on
Event Calculus, a formal first order temporal logic language,
also used by the EVEREST Framework [4].
 WS-Agreement does not support the specification of
actions what should be undertaken when guarantee terms are
violated. To overcome this limitation, we extended the
CustomBusinessValue sub-element of the BusinessValueList
element, for expressing different types of actions that should
be triggered by each GT violation [27]. Two actions have been
predefined: (a) renegotiate Pred, which causes the SLA to be
renegotiated when the guard Pred is satisfied, and (b) penalty
Pred Int, which causes a penalty (or reward if negative) to be
incurred. This makes more precise the specification of
penalties in WS-Agreement. SLA modellers also free to use
any other action name they wish. They can also guard all
actions with a predicate. A guard predicate declare conditions

that should be satisfied, in addition to the violation of the SLA
guarantee term associated with the action, for the action to be
executed.
 The BNF grammar of the extended form of WS-
Agreement that we have created is shown in Fig. 3. The
grammar syntax is based on the syntax used by the K
Framework [3]. More specifically, we use italics for non-
terminals, bold for terminals, and List{ X, “c” } for a c-
separated list of zero or more Xs. Notes inside square brackets
([]) on the right have to do with evaluation– strict means that
all non-terminals must be evaluated first (in a non-
deterministic order), seqstrict means that they must be
evaluated left-to-right, and strict(1) means that only the first
non-terminal needs to be evaluated. Both Pred and NumExp
permit the ternary if-then-else operator pred ? exp1 : exp2,
which evaluates to exp1 when pred is true, and to exp2
otherwise. Apart from constants, one can use predefined
functions. These are: violations(GT), penalty_ amount(GT),
and counter(Action, GT). These functions provide the number
of times some GT has been violated so far, the amount accrued
in penalties due to violations of some GT, and the number of
times Action has been executed following a GT triggering.

IV. RUNNING EXAMPLE
 To demonstrate the overall approach of this paper, we
present an SLA with several GTs from the side of a service
provider, who has different assets (A1–A4) to be assured, as
shown in TABLE I, and their security properties (SLOs).
 The first ones (A1, A2) are service data assets and the last
two (A3, A4) operation assets. Data assets have GTs for
Confidentiality (A2) and Integrity (A1). For example, in asset
A2 the expected rate of a Confidentiality GT violation is
λ=0.15 and if there is more than one violation (noted with
[v>1]), there is a penalty of 10 units and a notification action.
 For the Integrity security GT, we assume the same
violation rate (λ=0.6) and the same actions, which cause a
notification action for the first two violations of the term, but
renegotiate the SLA if there are more violations.
 Finally, operation asset A3 has an Availability GTs with a
violation rate λ=0.2 and three actions. While there are fewer
than k violations the service provider configuration should be
modified, which will decrease the rate to λ=0.1. The second
action requests a renegotiation if there are more than 2k
violations, and the third requests a notification always. The
rates are shown in italics, as these do not form part of the SLA
agreement – they are expectations (possibly commercially
sensitive) of the estimated behaviour of the system.
Using the grammar of Fig. 3, the SLA for TABLE I would be
specified as:
{ Running_Example ... { ... {
 { ConfA2
 penalty (violations(ConfA2) > 1) 10
 notify (violations(ConfA2) > 1) }
 { IntA1
 notify (violations(IntA1) < 3)
 renegotiate (violations(IntA1) >= 3) }
 { AvailA3
 modify (violations(AvailA3) < k)
 renegotiate (violations(AvailA3) > 3*k)

Agreement
Name

Context

Terms

Service Terms

Guarantee Terms

Fig. 2 Structure of the WS-Agreement SLA[10]

 notify true }
 { IntA4
 notify (violations(IntA4) < 3)
 renegotiate (violations(IntA4) >= 3) }
 } } ... }

V. FORMAL SLA VALIDATION

 As aforementioned, each GT violation action is guarded
by a condition as is shown in the definition of XAction in Fig.
3 – expressed over a set of basic, implicitly updated variables:
violations(GT), penalty_amount(GT), and counter(Act, GT)..
Using the action part of the SLA specification we build a
formal model of the system, expressed in the language of the
Prism model-checker, which allows the analysis of temporal
probabilistic models with its support for Markov chains, and
Probabilistic-Timed Automata [14][24]. Our model is
formulated as a Continuous Time Markov Chain (CTMC),
which allows us to model the rates with which different SLA
GTs are violated. The derived Prism model is split into two

main parts. The first one simulates the SLA Manager
environment – see Fig. 4. It consists of a Prism module for
each GT, that fires a violation for that GT at a rate specified
by the designer. Rates are defined (by the user, separately
from the SLA) as Prism formulas, i.e., non-parameterized
macros, which allow us to support non-constant rates, as with
AvailA3ViolationRate in Fig. 4. Each time a violation fires for
a GT it synchronises, i.e., executes at the same time, with the
transition that has the same name in the SLA Manager
module, which is shown in Fig. 5 and Fig. 6. Each transition in
CTMC Prism models has the form “[Name] Guard -> Rate:
Assignments;”.
 The SLA Manager module also has one transition per GT,
which is enabled when the SLA is active and becomes
disabled when renegotiation occurs, since SLAs follow a
general lifecycle, where a renegotiate action terminates the
SLA. Thus these transitions block the respective transitions of
the environment modules in Fig. 4 from producing further
violations when an SLA becomes inactive. Unlike the
transitions in the GTi environment modules, the transition rate
here is 1. Thus, when they synchronise with the respective
transitions from the GTi modules, the rate of the synchronised
transition is that of the GTi module. This is important because
in this way the only event that causes time to advance is the
firing of some GT violation, whereby the time between
successive firings is computed stochastically using an
exponential distribution with rate λ=∑λi, the sum of all the
rates of violations [16]. This is why there are no other
transitions in any module (even though they would have made
it much easier to express variable updates) – because they
would have caused the time to advance even though there was
no violation. Finally, unlike the transition in the GTi module

XWSAgreement ::= { IdOpt ... Terms ... }
Terms ::= { ... { GuaranteeTerms } }
GuaranteeTerms ::= List{GuaranteeTerm, “”}
GuaranteeTerm ::= { Id ... BusinessValueListType }
BusinessValueListType ::= ... CustomBusinessValue
CustomBusinessValue ::= List{XAction, “”}
XAction ::= renegotiate Pred | penalty Pred Int | Id Pred
Pred ::= true | false | (Pred) [bracket]
 | Pred & Pred [strict(1)]
 | Pred | Pred [strict(1)]
 | ! Pred [strict] | Pred ? Pred : Pred [strict(1)]
 | NumExp = NumExp [seqstrict] | NumExp != NumExp [seqstrict]
 | NumExp > NumExp [seqstrict] | NumExp <= NumExp [seqstrict]
 | NumExp < NumExp [seqstrict] | NumExp >= NumExp [seqstrict]
NumExp ::= Int | (NumExp) [bracket]
 | NumExp * NumExp [seqstrict, klabel(Mul)]
 | NumExp / NumExp [seqstrict, klabel(Div)]
 | NumExp + NumExp [seqstrict, klabel(Plus)]
 | NumExp - NumExp [seqstrict, klabel(Minus)]
 | Pred ? NumExp : NumExp [strict(1)]
 | violations (Id) | penalty_amount (Id) | counter (Id , Id)

Fig. 3 Extended WS-Agreement BNF grammar (abstracted)

TABLE I
RUNNING EXAMPLE ASSETS AND SLOS

Assets Security Properties / GTs
Confidentiality Integrity Availability

D
at

a
A

ss
et

s A1 -

[v<3]
NOTIFY
 [v>=3]
RENEG
λ = 0.6

-

A2

[v>1]
PENALTY(10)

& NOTIFY
λ = 0.15

- -

O
pe

ra
tio

n
A

ss
et

s

A3 - -

λ = 0.2
[v<k]

MODèλ=0.1
[v>3k] RENEG
[true] NOTIFY

A4 -

[v<3]
NOTIFY
 [v>=3]
RENEG
λ = 0.6

-

ctmc // A Continuous-Time Markov Chain model
const double sec = 1;
const double minute = 60;
const double hour = 60*minute;
const double day = 1;//24*hour;//set day as time unit
const double week = 7*day;
const double year = 365*day;
const double month = year/12;//an approximation

const int T; // represents time in properties
const int Xm; // represents amount in properties
const int MxInt = max(Xm+1,3,3*k+1);
const int k; // SLA variable

formula ConfA2ViolationRate=0.15/day;
formula IntA1ViolationRate=0.6/day;
formula IntA4ViolationRate=0.6/day;
formula AvailA3ViolationRate= (cntr_modify_AvailA3=0)

? (0.2/day): (0.1/day);
// Environment - Monitoring module – auto-derived
module IntA1
 [IntA1Violated] true -> IntA1ViolationRate: true;
endmodule
module ConfA2
 [ConfA2Violated] true -> ConfA2ViolationRate: true;
endmodule
module IntA4
 [IntA4Violated] true -> IntA4ViolationRate: true;
endmodule
module AvailA3
 [AvailA3Violated] true -> AvailA3ViolationRate:
true;
endmodule

Fig. 4 Prism model representing the run-time monitor part

that has no actions associated with it, the transitions of the
SLA Manager module have a long set of actions.
 If we compare the actions of the different transitions
inside the SLA Manager module we can see that they follow
the same pattern – actually they are the same modulo certain
renamings. All such transitions are responsible for
incrementing the value of the different counters. The
differences among the actions of these transitions lie on
renamings to capture the fact that a particular GTi has been
violated. This allows us to produce GT-specific versions of the
different guards and variable updates in the model. For
example, in transition ConfA2Violated variable SLAactive is
set to true, since there is no renegotiate action for that GT,
while in transition IntA2Violated it is set to the negation of
guard_renegotiateIntA2. The latter guard is the GT-specific
guard of action renegotiate and is defined elsewhere in the
model as a slightly modified version of the guard appearing in
TABLE I (v>=3):
formula guard_renegotiateIntA2 = (INCvltns_IntA2) >= 3;

 So we see that instead of directly using the variable
vltns_IntA2, we use instead the expression INCvltns_IntA2.
This is done because when this transition fires, the variables
have not yet been updated to reflect the new violation – it is
exactly this transition that is responsible for updating them. So
all references to variables vltns_X have to be replaced with the
expressions INC_vltns_X, which are defined as:
formula INCvltns_X = ((vltns_X+1>MxInt)
? MxInt :(vltns_X+1));

This formula simply expands to the value of the variable plus
one when that is not greater than the maximum value that the
variable can take or to the maximum value itself otherwise, in
order to avoid a variable overflow that would corrupt the
model. Since Prism does not support parameterised formulas,
we produce a different such formula for each variable we need

to increment, as we cannot define a bounded increment
function. However, the rest of the variables remain as they
were in the guards, as these need to refer to the variable values
before the transition fired. Updating the values of the variables
follows a similar technique, whereby we set the new value of a
variable X’ to be the result of the formula INCX. This formula
is defined to take into account the respective guards of the
relevant actions, e.g.:
formula INCpenalty_amount_ConfA2 =
((penalty_amount_ConfA2 + (guard_penaltyConfA2 ? 10 : 0
) >MxInt) ? MxInt : (penalty_amount_ConfA2 +
(guard_penaltyConfA2 ? 10 : 0)));

This long expression is simply trying to increment the penalty
amount paid due to violations of ConfA2 by the amount 10
that was requested in the respective penalty action but only do
so if the guard of that action (shown in bold here) is satisfied,
leaving it as it was otherwise (the “: 0” part). At the same time
it makes sure that the new value will not become greater than
the maximum possible value. This demonstrates the general
rule for translating guards and variable updates in the model –
for each action type X of a GT Y we produce a formula
guard_XY and a formula to update variable cntr_X_Y. The
guard needs to be the disjunction of all type X action instances
of a GT (there might be more than one), and variable
cntr_X_Y needs to be incremented by an amount that is in
accordance with the guards of each action instance of type X.
So for two X action instances (X1, X2) we would have:
formula INCcntr_X_Y =
 (cntr_X_Y + (guard_X1Y ? 1 : 0)
 + (guard_X2Y ? 1 : 0) > MxInt)
 ? MxInt
 : (cntr_X_Y + (guard_X1Y ? 1 : 0)
 + (guard_X2Y ? 1 : 0));

formula guard_penaltyConfA2 = (INCvltns_ConfA2) > 1;
formula guard_notifyConfA2 = (INCvltns_ConfA2) > 1;
formula guard_notifyIntA1 = (INCvltns_IntA1) <3;
formula guard_renegotiateIntA1 = (INCvltns_IntA1)>=3;
formula guard_notifyIntA4 = (INCvltns_IntA4)<3;
formula guard_renegotiateIntA4 = (INCvltns_IntA4)>=3;
formula guard_modifyAvailA3 = (INCvltns_AvailA3)<k;
formula guard_renegotiateAvailA3 =
(INCvltns_AvailA3)>(3*k);
formula guard_notifyAvailA3 = true;

formula INCvltns_ConfA2 =
((vltns_ConfA2+1>MxInt)?MxInt:(vltns_ConfA2+1));
// ...
formula INCcntr_notify_ConfA2 =
((cntr_notify_ConfA2+(guard_notifyConfA2?1:0)>MxInt)?
MxInt:(cntr_notify_ConfA2+(guard_notifyConfA2?1:0)));
// ...
formula INCcntr_penalty_ConfA2 =
((cntr_penalty_ConfA2+(guard_penaltyConfA2?1:0)>MxInt
)?MxInt:(cntr_penalty_ConfA2+(guard_penaltyConfA2?1:0
)));
formula INCpenalty_amount_ConfA2 =
((penalty_amount_ConfA2+(guard_penaltyConfA2?10:0)>Mx
Int)?MxInt:(penalty_amount_ConfA2+(guard_penaltyConfA
2?10:0)));
formula INCcntr_modify_AvailA3 =
((cntr_modify_AvailA3+(guard_modifyAvailA3?1:0)>MxInt
)?MxInt:(cntr_modify_AvailA3+(guard_modifyAvailA3?1:0
)));

Fig. 5 Prism SLA manager module – I

module SLA_Manager
SLAactive : bool init true;
vltns_ConfA2:[0.. MxInt] init 0;
vltns_IntA1 : [0 .. MxInt] init 0;
vltns_IntA4 : [0 .. MxInt] init 0;
vltns_AvailA3 :[0 .. MxInt] init 0;
cntr_notify_ConfA2:[0..MxInt]init 0;
cntr_notify_IntA1 : [0 .. MxInt]init 0;
cntr_notify_IntA4:[0..MxInt]init 0;
cntr_notify_AvailA3:[0..MxInt]init 0;
cntr_penalty_ConfA2:[0..MxInt]init 0;
penalty_amount_ConfA2:[0..MxInt]init 0;
cntr_modify_AvailA3:[0..MxInt]init 0;

 [ConfA2Violated] SLAactive -> 1:
 (SLAactive'= ! (false))
 & (vltns_ConfA2'=INCvltns_ConfA2)
 & (cntr_penalty_ConfA2'=INCcntr_penalty_ConfA2)
 & (penalty_amount_ConfA2'=INCpenalty_amount_ConfA2)
 & (cntr_notify_ConfA2'=INCcntr_notify_ConfA2);
[IntA1Violated] SLAactive -> 1:
 (SLAactive'= ! (guard_renegotiateIntA1))
 & (vltns_IntA1'=INCvltns_IntA1)
 & (cntr_notify_IntA1'=INCcntr_notify_IntA1);
 [IntA4Violated] SLAactive -> 1:
 (SLAactive'= ! (guard_renegotiateIntA4))
 & (vltns_IntA4'=INCvltns_IntA4)
 & (cntr_notify_IntA4'=INCcntr_notify_IntA4);
 [AvailA3Violated] SLAactive -> 1:
 (SLAactive'= ! (guard_renegotiateAvailA3))
 & (vltns_AvailA3'=INCvltns_AvailA3)
 & (cntr_modify_AvailA3'=INCcntr_modify_AvailA3)
 & (cntr_notify_AvailA3'=INCcntr_notify_AvailA3);
endmodule

Fig. 6 Prism SLA manager module – II

So given an SLA with n guarantee terms (GTs) and m
actions (As), we produce a model with the elements shown in
Fig. 7. Once we have the model, we can use Prism to check a
number of properties so as to get a better understanding of the
SLA – for example:
(i) What is the expected time for eventually (F) having a
renegotiation?

• R{"time"}=? [F !SLAactive]

Prism reports that it would take 3.4195 days until an SLA
renegotiation – and does so in 2.59 seconds.
 (ii) What is the probability that a renegotiation will occur
within the first 4 days?

• P=? [F<=(4*day) !SLAactive]

Prism reports that the probability is 0.6784 and does so in
2.345 seconds.
(iii) What is the probability to pay more than Xm currency
units in the first month?

• P=? [F<=month (penalty_amount_ConfA2>Xm)]

Prism reports that P= 0.0046 in 0.083 sec, for k=1 and
Xm=20.
(iv) What is the probability to have a violation on
confidentiality or integrity of any data asset within a month?

• P=? [F<=month (vltns_IntA1+vltns_ConfA2>=1)]

Prism reports that it is 0.9114 (in 0.037 sec).
(v) What is the probability to reach double the infrastructure
resources (i.e., to have 2k number of modifications for the
operation assets) within the first month?

• P=? [F<=month (cntr_notify_AvailA3 >(2*k))]

Prism reports that it is 0.0459 (in 1.874 sec).

VI. EXPERIMENTAL RESULTS
 One can use Prism to evaluate a number of different
properties as we have already done – the more properties one
evaluates, the better they understand the ramifications of the
SLA at hand. Prism allows one to see also how properties
change along with certain model parameters. For example,
what would the previous properties be if we considered time
as a variable instead of some specific constant? The results for
k=1, with T ranging within [1,15] are shown in Fig. 7 for
properties (ii) – (v) and for values of Xm that are in the
[20,50] interval. As the time now ranges in days instead of a
month, the time to produce each of these graphs with Prism is
relatively short – even for Xm=50 (which causes the upper
range of all integer variables to be equal to 51) the time to

complete the analysis is less than 17 sec. As the results show
the SLA will not remain active for long – in around 10 days
the probability of initiating a renegotiation (property ii) is
almost 1 and that is independent of the value of Xm, our
budget for penalties. Indeed, Xm is irrelevant for properties
(ii), (iv) and (v) as we can see from the graphs, since all curves
for different values of Xm coincide. The graphs of properties
(iii)–(v) show that renegotiation will occur due to a high
number of violations but that we will not have to pay more
than our penalty budget within that time interval (property iii),
which is a positive result.

Had we obtained an unexpected result during the analysis,
it would be an indication that there is something wrong. The
problem could be with either (or both):

1) The property itself – maybe we are not actually
specifying what we should be specifying.

2) The SLA itself and/or our understanding of it –
maybe it is not doing what we think it is doing.

Developing reasonable SLAs that satisfy a number of
different properties is quite difficult – it is easy to slip up and
introduce errors when programming (which is what we are
doing essentially). Since with SLAs our mistakes can be
translated into monetary penalties directly (or even indirectly
by being forced to allocate too many resources to a client), it is
imperative that we have as good an understanding of what
exactly we are committing to. What may sound good initially
is not necessarily so. The same is true when specifying
properties – these can be quite tricky to express correctly and
sometimes it helps immensely to refer to existing patterns of
properties [15]. Another issue with properties expressed in
Prism’s language is that they are evaluated at the initial state
by default. If one wishes to evaluate them at a different state
then they need to use what Prism calls a filter that take the
form filter(op, prop, states), e.g., what is the maximum
probability of paying a penalty from all states where there has
been one violation of Confidentiality for asset A2?

• filter(max, P=? [F (cntr_penalty_ConfA2>1)],
(vltns_ConfA2=1))

Prism reports that P= 0.1031 for k=1 and Xm=15 and that
there is only one state that satisfies the state filter.
 In Fig. 9 we can see the SLA analysis time for different
values of the Xm and T parameters when checking properties
(ii)–(v). We can see that the time increases along with Xm,
which is reasonable because Xm causes an increase in the size
of all the model integer variables thus increasing the required
memory space for analysis. We can also see that properties (ii)
and (v) require substantially more time than the other two –
indeed they are ranked as (iv), (iii), (v), (ii). This is because
property (iv) covers only the relatively few states where the
sum of violations of A1 & A2 are less than 2, while property
(ii) on the other extreme, needs to cover all possible states.

VII. RELATED WORK
 SLAs have been widely used to specify terms and
conditions for a service provision between service consumers
and service providers [1]. In order to automate the SLA
specification process, several specification languages have
been defined over the years, with the aim to simplify the SLA

1) A number of n modules representing the environment of
the SLA Manager, each of which emulates a violation
of a GTk <= n with the respective rate
GTkViolationRate (which is provided by the user):
module GTk
 [GTkViolated] true -> GTkViolationRate : true;
endmodule

2) At most n×m guards for the actions of each GTk:
formula guard_actnTpGTk = Oract guard(a)
Where actnTp is in actionTypes(GTk) and act is in
actionInstances(GTk).

3) At most n×m incrementation formulas for GT-specific
variables cntr_X_Y_INCvarGTk.

Fig. 7 Prism elements produced for an SLA

specification process for the involved parties and to minimise
the time and cost required for this. Despite though the
extended research on SLA languages and SLA management,
not much work has been done on validation of the SLA
process.
 Zseby in [26] presented three different types of sampling
techniques of SLA validation, with non-intrusive two-point
measurements. However, these validation techniques rely on
the actual network traffic in order to capture packets with the
main focus of validating the delay guarantees of an SLA.
 Haq et al. in [8] introduced the need for proactive and
reactive SLA validation and in [9] the need of three different
SLA validation models (from resource, infrastructure and
business points of view), and presented an SLA holistic
validation framework for service value chains and Cloud
based service value chains. Nevertheless, both approaches
refer to the validation of an SLA after the establishment of the
agreement, and not prior to it.
 Extensive work has also been conducted with regards to
verification of SLAs. Ishakian et al. in [29] present a formal
verification for SLA transformations. Their framework
enables users to propose specific transformation rules, which
are fed to an SLA transformation engine, in order to explore
any possible safe co-location configurations in a cloud setting.
The work done in [7] presents a framework for SLA
verification by involving a third-party auditor. In this work the
authors provide two testing algorithms to detect an SLA
violation on a VM memory size and to defend various attacks
from an untrusted cloud.
 The authors in [20] introduce a formal model to optimise
and reason about service availability and budget compliance
through monitoring. The monitoring model used in this work
is designed to observe in real-time these two service
characteristics and react to them based on the defined SLA of
the services.
 In [17] the authors propose a proactive approach for
evaluating and testing the logical composition of guarantee
terms of SLAs, by defining a four-valued logic that allows
evaluating both the individual guarantee terms and their
logical relationships. They have created a test criterion based
on the modified condition decision coverage (MCDC), in
order to obtain a cost-effective set of test requirements from
the structure of the SLA. Furthermore, by analysing the syntax
and semantics of the agreement, they define specific rules to
avoid non-feasible test requirements.
 However, all work done regarding the SLA verification is
not conducted prior to sign the agreement but it is rather
occurring during the SLA period, in order to detect possible
breaches of the terms or reconfigure at run-time services to
continue being compliant with the agreed terms.

VIII. CONCLUSION AND FUTURE WORK
 Specifying SLAs that can be used to govern automatically
a service-based system is a difficult activity. We have
extended WS-Agreement to allow more precise definition of
the SLA Guarantee Terms (GT) that need to be monitored
during run-time and the actions that need to be taken

whenever a GT is violated. As the actions can lead to
monetary penalties and/or to an increase in the resources
allocated to clients it is imperative that SLA specifiers have a
way to validate the SLAs they offer and understand their
consequences – a task that is not at all easy to perform. For
this reason, we have developed a method to translate an SLA
into a formal language for temporal stochastic models, that
allows us to analyse it and validate it by examining different
types of properties that one may be interested in – both to
validate that the SLA behaves as expected and to identify
issues that could potentially lead to exposure to high penalties.
The derived models can be used to explore different
environmental assumptions, such as different rates of GT
violations (which depend on the actual rates of client requests
and the ability of our services to respond to these while
respecting the SLA GTs), different penalty amounts, different
time-intervals, etc.
 This approach opens the way for more precise SLAs on
which we have a higher degree of trust. It also enables the
possibility of re-validating an SLA at run-time, once real

Fig. 8 Properties (ii) – (v) across time (Xm=[20,50], ,k=1, T=[1,15])

violation rates have been observed, instead of depending on
initial estimations of these at SLA pre-deployment time, as
well as to evaluate proposed SLAs during re-negotiation.

ACKNOWLEDGMENT
This work was partly supported by the EU-funded project
TOREADOR [28] (grant no H2020-688797).

REFERENCES
[1] A. Maarouf, A. Marzouk, and A. Haqiq, “A Review of SLA

Specification Languages in the Cloud Computing”. In Proc. of the 10th
International Conference on Intelligent Systems: Theories and
Applications (SITA), pp. 1–6, 2015.

[2] CUMULUS Project, Deliverable D3.2 Core Certification Mechanisms
vol. 2, 2013. Available from: http://www.cumulus-project.eu

[3] G. Roșu, and T. Șerbănută, An overview of the K semantic framework,
The Journal of Logic and Algebraic Programming, Volume 79, Issue 6,
2010, pp. 397-434, ISSN 1567-8326, DOI: 10.1016/j.jlap.2010.03.012

[4] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The SERENITY
Runtime Monitoring Framework,” in Security and Dependability for
Ambient Intelligence, vol. 45, Eds. S. Kokolakis, A. M. Gómez, and G.
Spanoudakis, Springer US, pp. 213–237, 2009.

[5] H. Foster and G. Spanoudakis, “Advanced service monitoring
configurations with SLA decomposition and selection”, In Proceedings
of the 2011 ACM Symposium on Applied Computing, pp. 1582-1589,
2011.

[6] H. Ludwig, A. Keller, A. Dan, R.P. King and R. Franck, “Web Service
Level Agreement (WSLA) Language Specification”, 2002.

[7] H. Zhang, L. Ye, J. Shi, X. Du, and M. Guizani, “Verifying cloud
service-level agreement by a third-party auditor”, Security and
Communication Networks, vol. 7, no. 3, pp. 492-502, March 2014.

[8] I. U. Haq, E. Schikuta, I. Brandic, A. Paschke, H. Boley, “SLA
Validation of Service Value Chains”, In Proc. of the 2010 Ninth
International Conference on Grid and Cloud Computing, pp. 308-313,
November 2010.

[9] I. U. Haq, I. Brandic, and E. Schikuta, “SLA validation in layered cloud
infrastructures”, In Proc. of the 7th international conference on
Economics of grids, clouds, systems, and services (GECON'10), Eds. J.
Altmann and Omer F. Rana. Springer-Verlag, Berlin, Heidelberg, pp.
153-164. 2010.

[10] K. Andrieux, K. Czajkowski, K. Keahey, A. Dan, K. Keahey, H.
Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web Services
Agreement Specification (WS-Agreement)”, Global Grid Forum
GRAAP-WG, vol. 192, pp. 1–80, 2004.

[11] K. Mahbub and G. Spanoudakis, “Monitoring WS-Agreements: An
Event Calculus–Based Approach”, In Test and Analysis of Web
Services pp. 265-306, Springer Berlin Heidelberg, 2007.

[12] K. Mahbub and G. Spanoudakis, “Proactive SLA negotiation for service
based systems: Initial implementation and evaluation experience”, In
Proceedings - 2011 IEEE International Conference on Services
Computing (SCC 2011), pp. 16–23, 2011.

[13] K.T. Kearney, F. Torelli and C. Kotsokalis, “SLA*: An Abstract Syntax
for Service Level Agreements”, In 2010 11th IEEE/ACM International
Conference on Grid Computing, pp. 217–224, 2010.

[14] Kwiatkowska M., Norman G. and Parker D. “PRISM 4.0: Verification
of Probabilistic Real-time Systems”. In Proc. of the 23rd International
Conference on Computer Aided Verification (CAV’11), vol. 6806,
LNCS, pp. 585-591, 2011.

[15] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, "Patterns in property
specifications for finite-state verification," In Proc. of the 1999 Intl
Conf. on Soft. Eng., pp. 411-420, doi:10.1145/302405.302672
(patterns.projects.cs.ksu.edu/), 1999.

[16] M. Kwiatkowska, G. Norman and D. Parker, “Stochastic Model
Checking”, In Proc. SFM’07, vol. 4486, LNCS, pp. 220-270, 2007.

[17] M. Palacios, J. García-Fanjul, J. Tuya and G. Spanoudakis, “Coverage-
based testing for service level agreements”, In IEEE Transactions on
Services Computing, vol. 8, no. 2, pp. 299-313, 2015.

[18] M. Shanahan, “The Event Calculus Explained”, pp. 1–22, 1999.
[19] M.L. Massie, B.N. Chun and D.E. Culler, “The ganglia distributed

monitoring system: design, implementation, and experience”, Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[20] N. Behrooz, S. de Gouw, and F. S. de Boer. "Formal Verification of
Service Level Agreements Through Distributed Monitoring." In
ESOCC, pp. 125-140. 2015.

[21] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Semantic WS-
agreement partner selection”. In Proc. 15th Int. Conf. World Wide Web,
pp. 697–706, 2006.

[22] Nagios. “Nagios - The Industry Standard in IT Infrastructure
Monitoring”, 2016. Available from: http://www.nagios.org/

[23] O. Waeldrich, D. Battré, F. Brazier, K. Clark, M. Oey, A. Papaspyrou, P.
Wieder and W. Ziegler, “WS-Agreement Negotiation Version 1.0”,
GRAAP-WG, Open Grid Forum, 2011, Available from:
http://www.ogf.org/documents/GFD.193.

[24] Prism Model Checker, http://www.prismmodelchecker.org/
[25] S. Nepal, J. Zic and S. Chen, “WSLA+: Web service level agreement

language for collaborations”, In Proceedings - 2008 IEEE International
Conference on Services Computing (SCC 2008), pp. 485–488, 2008.

[26] T. Zseby, “Deployment of Sampling Methods for SLA Validation with
Non-Intrusive Measurements”, In Proc. of Passive and Active
Measurement Workshop Fort Collins, Colorado, April 2002.

[27] TOREADOR Project, Deliverable D4.1 MBDA-as-a-service SLA and
Assurance, Available from: http://toreador-project.eu/

[28] TOREADOR project, http://www.toreador-project.eu/
[29] V. Ishakian, A. Lapets, A. Bestavros, and A. Kfoury, “Formal

Verification of SLA Transformations”. In Proceedings of the 2011 IEEE
World Congress on Services (SERVICES '11). IEEE Computer Society,
pp. 540-547, 2011.

Fig. 9 Execution Times

