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Validation of Service Level Agreements using 
Probabilistic Model Checking 

 
 

 
 Abstract - With the fast growth of Information Technology 
(IT), organisations rely mostly on web services, cloud services 
and recently on Big Data Analytics services (BDA services), in 
order to support their business services. To securely use these 
services, service clients sign a Service Level Agreement (SLA) 
with service providers, regarding a particular service provision. 
Typically, SLAs define the properties that need to be preserved 
during the provision of a service (e.g., quality of service 
properties) and actions that will be applied if the service 
provision violates the defined properties (e.g., penalties or re-
negotiation). Whilst significant research has focused on 
monitoring SLAs during the provision of services, the exploration 
and validation of the potential consequences of SLAs for the 
involved parties prior to putting them in operation is not 
addressed by existing research. In this paper, we present an 
approach to SLA validation that is based model checking. Our 
approach is based on the translation of SLAs expressed in WS-
Agreement into models of the probabilistic model checker 
PRISM and the validation of SLA properties using the model 
checking capabilities of this tool. 
 
 Index Terms – Service Level Agreement (SLA), Probabilistic 
Model Checking, Static Validation 
 

I.  INTRODUCTION 
 Service Level Agreements (SLAs) are widely used by 
service providers (consumers) as means of providing (getting) 
assurance regarding the quality and security of the provisioned 
services. SLAs constitute a kind of contract between service 
providers and service consumers that defines the level of 
service that should be guaranteed in service provision and the 
actions that will be undertaken if this level is not preserved. 

The management of SLAs (i.e., the specification, 
monitoring and negotiation of SLAs) has been the subject 
extensive research. This work has generated languages for 
specifying SLAs (e.g., WSLA [6], WSLA+ [25], SLA* [13]), 
techniques for SLA negotiation (e.g., WS-Agreement 
Negotiation [23], PROSDIN [12]), and techniques for 
monitoring SLAs (e.g., Nagios [22], Ganglia [19], EVEREST 
[11][4]). 

However, the work done for SLA specification does not 
support adequately the analysis of the consequences of the 
specifications that can be created for the different parties, so 
that they all know what they are committing to. For example, 
given an SLA, it would be useful for service consumers and 
providers, to be able to analyse and answer questions such as: 

(i) (Service providers) How probable is it to pay more than 
$X in a time period Y? 

(ii) (Service consumers and providers) How long will it take 
before the need to renegotiate an SLA? 

(iii) (Service consumers and providers) What is the probability 
for renegotiation by the expiry date? 

(iv) (Service providers) How long will it take before the need 
to modify the infrastructure of service provision in order 
to continue satisfying the SLA?  

 In this paper, we present an approach that enables the 
investigation and validation of properties as the above for 
SLAs. Our approach is based on formalising the semantics of 
the actions taken upon the violation of SLA guarantee terms 
and their conditions, so as to enable the formal analysis of the 
consequences of specific SLAs under different environment 
assumptions, i.e., different probabilities for the violation of 
specific guarantee terms. To achieve this, we have extended 
the WS Agreement language [10][21]. Our extension allows 
SLA parties to provide more details about the actions that 
should be taken upon the violation of specific guarantee terms, 
including the conditions that need to be satisfied for these 
actions to be taken, and extra parameters that complete the 
action specifications, e.g., the amount one has to pay in case of 
a penalty. 

The SLAs that are specified in the extended form of WS 
Agreement that we propose are translated into probabilistic 
automata expressed in the language of PRISM [14][24], i.e., a 
probabilistic model checker. These automata are then used in 
order to investigate and validate properties, like (i)-(v) above. 
The translation of SLAs into probabilistic automata of the type 
supported by PRISM is based on a general scheme in which 
violations of SLA guarantee terms are translated into events 
that trigger transitions between automata states, and the 
actions associated with such violations are modelled by 
actions undertaken when the relevant transitions are triggered. 
To realise our approach, we have developed a translator from 
the extended version of WS Agreement to the language of 
PRISM. We have also performed various experiments 
demonstrating the feasibility of our approach. 

To the best of our knowledge, our approach is the first 
one that focuses on the exploration and validation of SLA 
properties (consequences) prior to putting them in operation. 
 The rest of the paper is organized as follows. Section II 
presents the overall SLA management framework assumed by 
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our approach and shows how SLA validation fits within and 
may be used by it. Section III presents the extensions of WS-
Agreement language, which we have introduced to enable the 
validation of SLA properties. Section IV discusses the 
translation from the extended version of WS Agreement to 
PRISM and gives examples of PRISM models generated from 
SLAs. Section V presents the outcomes of experiments that 
we have conducted to demonstrate the benefits and feasibility 
of our approach.  Section VI reviews related work and, finally, 
Section VII provides concluding remarks and outlines 
directions for further research. 
 

II. GENERAL SLA MANAGEMENT FRAMEWORK 

 To better understand the purpose of this paper, it is 
important to consider the overall SLA management framework 
that is the context of our work. As shown in Fig. 1, this 
framework consists of tools (components) that support key 
traditional activities of SLA management, namely SLA 
specification, negotiation and runtime monitoring, and the new 
activity of SLA validation that we introduce in this paper. 

SLA negotiation and specification are the activities that 
give rise to an SLA and are supported by SLA negotiation and 
specification tools. Once it is agreed and specified, an SLA 
needs to be monitored and enforced for the system that it is 
concerned with. This requires the translation of the SLA to an 
operational monitoring specification that will be possible to 
check given the event sensing and monitoring capabilities of 
the computational infrastructure where the service based 
system that is the subject of the SLA is deployed.  Foster and 
Spanoudakis [5] have introduced a general-purpose 
monitoring architecture and algorithms supporting this 
process. This architecture includes: (a) event sensors having 
responsibility for capturing the primitive information needed 
for SLA monitoring, (b) monitors performing the actual 
checks of SLA guarantee terms against event streams 
produced by the sensors, and (c) an SLA2Monitor translator 
that can translate the SLA expressed in a high-level SLA 
language into the operational monitoring specification that can 
be checked by the EVEREST [4]. When the monitor identifies 
violations it informs an SLA Manager of the SLA terms that 
have been violated, to enable it to perform the actions 
specified in the SLA for the respective violations [5]. This 
automates guaranteeing an SLA at run-time but since SLAs 
and system behaviours can be complex, interacting parties can 
easily find themselves in situations they had not anticipated, 
e.g., having to pay a high penalty due to violated SLA terms. 
For this reason, we have extended the SLA management 
framework with tools supporting an SLA validation activity 
(see orange dashed rectangle in the left part of Fig. 1). 

The validation activity is realised through the translation 
of the SLA into the language of Prism [14][24]. More 
specifically, it produces a formal model of the actions that the 
SLA Manager will be taking each time a term violation of the 
specific SLA is reported. In order to be able to explore the 
consequences of these actions it also produces a formal model 
of the environment of the SLA Manager, which is shown 
inside the rectangle with the red dashed boundary in Fig. 1, i.e., 

the combination of the system itself and the monitor checking 
the SLA rules at run-time. Since that part is too complex to 
describe formally in detail, it is abstracted away and 
represented as a source of SLA term violations that occur 
stochastically and can be described with different exponential 
distributions that have some rate of arrival. 

Using Prism, SLA parties can check the probability of and 
time to execution of actions that are associated with the 
different SLA guarantee terms. The outcomes of validation are 
passed back to the negotiation and specification activities in 
order to inform the tailoring of SLAs accordingly (e.g., to 
adjusting the terms in order to reduce the possibility of paying 
penalties; or to redefine more convenient terms for re-
negotiations; or even to estimate possible configurations that 
might be required in order to avoid any defined modifications 
that can occur.  Validation can be carried out before an SLA is 
agreed and instantiated, to explore its consequences under 
different operational scenarios. In such cases, validation is 
based on estimates of the expected violation rates of SLA 
guarantee terms. In addition, validation can be performed once 
an SLA has become operational to inform the negotiation 
processes that may need to be carried out due to violations of 
SLAs or changes of the needs of the relevant parties. In such 
cases, the validation can be based on real violation rates that 
have been detected by the monitor and passed back to the 
specification and negotiation activity.  

 
 III. WS-AGREEMENT LANGUAGE & EXTENSIONS 

 WS-Agreement [10] was introduced by the Open Grid 
Forum to address some key requirements for the specification 
of SLAs, such as supporting modularity, accommodating other 
external and domain specific standards, and allowing 
extensions.  
 In WS-Agreement, an SLA is composed of three main 
sections, i.e., the name, context and terms of as shown in Fig. 
2. The first section provides an optional SLA name. The next 
section contains the SLA context, i.e., meta-data for the entire 
SLA (e.g., the SLA participants, its lifetime, etc.). The terms 
section specifies the terms of the SLA. these can be of two 
types: (a) Service Terms that describe the services regulated 
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by the SLA and (b) the Guarantee Terms (GTs) that specify 
the service levels that should be satisfied during the provision 
of the service. More specifically, GTs define the expected 
quality of service, comprising (i) the obligated party, (ii) the 
list of services this guarantee applies to, (iii) an optional 
condition that must be met for a guarantee to be enforced, (iv) 
an assertion expressed over service descriptions 
(ServiceLevelObjective), and (v) one or more business values 
associated with this objective (BusinessValueList). 

WS-Agreement has some limitations, since it does not 
support the specification of: (a) security and privacy Service 
Level Objectives (SLOs), (b) actions that need to be taken 
during the life cycle of an SLA (e.g., service provision 
platform modification actions and SLA negotiation actions), 
(c) multi-party SLAs, and (d) comprehensive models of 
complex services, including internal operations, service assets, 
and operation, data and other dependencies. This makes it 
harder to check whether an SLA can be monitored and to 
produce automatically a monitoring plan for it. 

In our approach [27] we extended the 
CustomServiceLevel sub-element of the ServiceLevelObjective 
element, to support monitorable SLOs. To do so, we 
introduced PreciseSLOType, a new type for CustomService-
Level. This allows specifying an SLO at a declarative level, 
i.e., as a property of a particular category that is to be applied 
to a service asset (e.g., internal or external operation and data 
elements of the service), and/or a procedural level, which 
provides the exact runtime assertion representing the SLO 
satisfaction. SLO assertions are expressed in the language 
developed in the CUMULUS project [2] – itself based on 
Event Calculus, a formal first order temporal logic language, 
also used by the EVEREST Framework [4]. 
 WS-Agreement does not support the specification of 
actions what should be undertaken when guarantee terms are 
violated. To overcome this limitation, we extended the 
CustomBusinessValue sub-element of the BusinessValueList 
element, for expressing different types of actions that should 
be triggered by each GT violation [27]. Two actions have been 
predefined: (a) renegotiate Pred, which causes the SLA to be 
renegotiated when the guard Pred is satisfied, and (b) penalty 
Pred Int, which causes a penalty (or reward if negative) to be 
incurred. This makes more precise the specification of 
penalties in WS-Agreement. SLA modellers also free to use 
any other action name they wish. They can also guard all 
actions with a predicate. A guard predicate declare conditions 

that should be satisfied, in addition to the violation of the SLA 
guarantee term associated with the action, for the action to be 
executed. 
 The BNF grammar of the extended form of WS-
Agreement that we have created is shown in Fig. 3. The 
grammar syntax is based on the syntax used by the K 
Framework [3]. More specifically, we use italics for non-
terminals, bold for terminals, and List{ X, “c” } for a c-
separated list of zero or more Xs. Notes inside square brackets 
([]) on the right have to do with evaluation– strict means that 
all non-terminals must be evaluated first (in a non-
deterministic order), seqstrict means that they must be 
evaluated left-to-right, and strict(1) means that only the first 
non-terminal needs to be evaluated. Both Pred and NumExp 
permit the ternary if-then-else operator pred ? exp1 : exp2, 
which evaluates to exp1 when pred is true, and to exp2 
otherwise. Apart from constants, one can use predefined 
functions. These are: violations(GT), penalty_ amount(GT), 
and counter(Action, GT). These functions provide the number 
of times some GT has been violated so far, the amount accrued 
in penalties due to violations of some GT, and the number of 
times Action has been executed following a GT triggering. 
 

IV. RUNNING EXAMPLE 
 To demonstrate the overall approach of this paper, we 
present an SLA with several GTs from the side of a service 
provider, who has different assets (A1–A4) to be assured, as 
shown in TABLE I, and their security properties (SLOs).  
 The first ones (A1, A2) are service data assets and the last 
two (A3, A4) operation assets. Data assets have GTs for 
Confidentiality (A2) and Integrity (A1). For example, in asset 
A2 the expected rate of a Confidentiality GT violation is 
λ=0.15 and if there is more than one violation (noted with 
[v>1]), there is a penalty of 10 units and a notification action.  
 For the Integrity security GT, we assume the same 
violation rate (λ=0.6) and the same actions, which cause a 
notification action for the first two violations of the term, but 
renegotiate the SLA if there are more violations.  
 Finally, operation asset A3 has an Availability GTs with a 
violation rate λ=0.2 and three actions. While there are fewer 
than k violations the service provider configuration should be 
modified, which will decrease the rate to λ=0.1. The second 
action requests a renegotiation if there are more than 2k 
violations, and the third requests a notification always. The 
rates are shown in italics, as these do not form part of the SLA 
agreement – they are expectations (possibly commercially 
sensitive) of the estimated behaviour of the system. 
Using the grammar of Fig. 3, the SLA for TABLE I would be 
specified as: 
{ Running_Example ... { ... { 
       { ConfA2 ... ... 
         penalty (violations(ConfA2) > 1) 10 
         notify  (violations(ConfA2) > 1)       } 
       { IntA1 ... ... 
         notify (violations(IntA1) < 3) 
         renegotiate  (violations(IntA1) >= 3)  } 
       { AvailA3 ... ... 
         modify (violations(AvailA3) < k) 
         renegotiate  (violations(AvailA3) > 3*k) 

Agreement 
Name 

 
Context 

 
Terms  

Service Terms 
 

Guarantee Terms 
 

 

Fig. 2 Structure of the WS-Agreement SLA[10] 



         notify  true                           } 
      { IntA4 ... ... 
                   notify (violations(IntA4) < 3) 
        renegotiate  (violations(IntA4) >= 3)   } 
  } } ... } 

 
V.  FORMAL SLA VALIDATION 

 As aforementioned, each GT violation action is guarded 
by a condition as is shown in the definition of XAction in Fig. 
3 – expressed over a set of basic, implicitly updated variables: 
violations(GT), penalty_amount(GT), and counter(Act, GT).. 
Using the action part of the SLA specification we build a 
formal model of the system, expressed in the language of the 
Prism model-checker, which allows the analysis of temporal 
probabilistic models with its support for Markov chains, and 
Probabilistic-Timed Automata [14][24]. Our model is 
formulated as a Continuous Time Markov Chain (CTMC), 
which allows us to model the rates with which different SLA 
GTs are violated. The derived Prism model is split into two 

main parts. The first one simulates the SLA Manager 
environment – see  Fig. 4. It consists of a Prism module for 
each GT, that fires a violation for that GT at a rate specified 
by the designer. Rates are defined (by the user, separately 
from the SLA) as Prism formulas, i.e., non-parameterized 
macros, which allow us to support non-constant rates, as with 
AvailA3ViolationRate in Fig. 4. Each time a violation fires for 
a GT it synchronises, i.e., executes at the same time, with the 
transition that has the same name in the SLA Manager 
module, which is shown in Fig. 5 and Fig. 6. Each transition in 
CTMC Prism models has the form “[Name] Guard -> Rate: 
Assignments;”. 
 The SLA Manager module also has one transition per GT, 
which is enabled when the SLA is active and becomes 
disabled when renegotiation occurs, since SLAs follow a 
general lifecycle, where a renegotiate action terminates the 
SLA. Thus these transitions block the respective transitions of 
the environment modules in Fig. 4 from producing further 
violations when an SLA becomes inactive. Unlike the 
transitions in the GTi environment modules, the transition rate 
here is 1. Thus, when they synchronise with the respective 
transitions from the GTi modules, the rate of the synchronised 
transition is that of the GTi module. This is important because 
in this way the only event that causes time to advance is the 
firing of some GT violation, whereby the time between 
successive firings is computed stochastically using an 
exponential distribution with rate λ=∑λi, the sum of all the 
rates of violations [16]. This is why there are no other 
transitions in any module (even though they would have made 
it much easier to express variable updates) – because they 
would have caused the time to advance even though there was 
no violation. Finally, unlike the transition in the GTi module 

XWSAgreement ::= { IdOpt ... Terms ... } 
Terms ::= { ... { GuaranteeTerms } } 
GuaranteeTerms ::= List{GuaranteeTerm, “”} 
GuaranteeTerm ::= { Id ... BusinessValueListType } 
BusinessValueListType ::= ... CustomBusinessValue  
CustomBusinessValue ::= List{XAction, “”} 
XAction ::= renegotiate Pred   |  penalty Pred Int   |  Id Pred 
Pred ::= true  |  false  |  ( Pred ) [bracket] 
             | Pred & Pred [strict(1)] 
             | Pred | Pred [strict(1)] 
             | ! Pred [strict] | Pred ? Pred : Pred [strict(1)] 
             | NumExp = NumExp [seqstrict] | NumExp != NumExp [seqstrict] 
             | NumExp > NumExp [seqstrict] | NumExp <= NumExp [seqstrict] 
             | NumExp < NumExp [seqstrict] | NumExp >= NumExp [seqstrict] 
NumExp ::= Int  |  ( NumExp ) [bracket] 
             | NumExp * NumExp [seqstrict, klabel(Mul)] 
             | NumExp / NumExp [seqstrict, klabel(Div)] 
             | NumExp + NumExp [seqstrict, klabel(Plus)] 
             | NumExp - NumExp [seqstrict, klabel(Minus)] 
             | Pred ? NumExp : NumExp [strict(1)] 
             | violations ( Id ) |  penalty_amount ( Id )  |  counter ( Id , Id ) 

Fig. 3 Extended WS-Agreement BNF grammar (abstracted) 

TABLE I 
RUNNING EXAMPLE ASSETS AND SLOS 

Assets Security Properties / GTs 
Confidentiality Integrity Availability 

D
at

a 
A

ss
et

s A1  -  

[v<3] 
NOTIFY 
 [v>=3]  
RENEG  
λ = 0.6 

- 

A2 

[v>1]  
PENALTY(10) 

& NOTIFY 
λ = 0.15 

-  - 

O
pe

ra
tio

n 
A

ss
et

s 

A3 - -  

λ = 0.2 
[v<k] 

MODèλ=0.1 
[v>3k] RENEG 
[true] NOTIFY 

A4 - 

[v<3] 
NOTIFY 
 [v>=3]  
RENEG  
λ = 0.6 

- 

  

ctmc // A Continuous-Time Markov Chain model 
const double sec = 1; 
const double minute = 60; 
const double hour = 60*minute; 
const double day = 1;//24*hour;//set day as time unit 
const double week = 7*day; 
const double year = 365*day; 
const double month = year/12;//an approximation 
 
const int T; // represents time in properties 
const int Xm; // represents amount in properties 
const int MxInt = max(Xm+1,3,3*k+1); 
const int k; // SLA variable 
 
formula ConfA2ViolationRate=0.15/day; 
formula IntA1ViolationRate=0.6/day; 
formula IntA4ViolationRate=0.6/day; 
formula AvailA3ViolationRate= (cntr_modify_AvailA3=0) 

? (0.2/day): (0.1/day); 
// Environment - Monitoring module – auto-derived 
module IntA1 
 [IntA1Violated] true -> IntA1ViolationRate: true; 
endmodule 
module ConfA2 
 [ConfA2Violated] true -> ConfA2ViolationRate: true; 
endmodule 
module IntA4 
 [IntA4Violated] true -> IntA4ViolationRate: true; 
endmodule 
module AvailA3 
 [AvailA3Violated] true -> AvailA3ViolationRate: 
true; 
endmodule 

Fig. 4 Prism model representing the run-time monitor part 



that has no actions associated with it, the transitions of the 
SLA Manager module have a long set of actions. 
 If we compare the actions of the different transitions 
inside the SLA Manager module we can see that they follow 
the same pattern – actually they are the same modulo certain 
renamings. All such transitions are responsible for 
incrementing the value of the different counters. The 
differences among the actions of these transitions lie on 
renamings to capture the fact that a particular GTi has been 
violated. This allows us to produce GT-specific versions of the 
different guards and variable updates in the model. For 
example, in transition ConfA2Violated variable SLAactive is 
set to true, since there is no renegotiate action for that GT, 
while in transition IntA2Violated it is set to the negation of 
guard_renegotiateIntA2. The latter guard is the GT-specific 
guard of action renegotiate and is defined elsewhere in the 
model as a slightly modified version of the guard appearing in 
TABLE I (v>=3): 
formula guard_renegotiateIntA2 = (INCvltns_IntA2) >= 3; 

  So we see that instead of directly using the variable 
vltns_IntA2, we use instead the expression INCvltns_IntA2. 
This is done because when this transition fires, the variables 
have not yet been updated to reflect the new violation – it is 
exactly this transition that is responsible for updating them. So 
all references to variables vltns_X have to be replaced with the 
expressions INC_vltns_X, which are defined as: 
formula INCvltns_X = ((vltns_X+1>MxInt) 
? MxInt :(vltns_X+1)); 

This formula simply expands to the value of the variable plus 
one when that is not greater than the maximum value that the 
variable can take or to the maximum value itself otherwise, in 
order to avoid a variable overflow that would corrupt the 
model. Since Prism does not support parameterised formulas, 
we produce a different such formula for each variable we need 

to increment, as we cannot define a bounded increment 
function. However, the rest of the variables remain as they 
were in the guards, as these need to refer to the variable values 
before the transition fired. Updating the values of the variables 
follows a similar technique, whereby we set the new value of a 
variable X’ to be the result of the formula INCX. This formula 
is defined to take into account the respective guards of the 
relevant actions, e.g.: 
formula INCpenalty_amount_ConfA2 = 
((penalty_amount_ConfA2 + (guard_penaltyConfA2 ? 10 : 0 
) >MxInt) ? MxInt : (penalty_amount_ConfA2 + 
(guard_penaltyConfA2 ? 10 : 0))); 

This long expression is simply trying to increment the penalty 
amount paid due to violations of ConfA2 by the amount 10 
that was requested in the respective penalty action but only do 
so if the guard of that action (shown in bold here) is satisfied, 
leaving it as it was otherwise (the “: 0” part). At the same time 
it makes sure that the new value will not become greater than 
the maximum possible value. This demonstrates the general 
rule for translating guards and variable updates in the model – 
for each action type X of a GT Y we produce a formula 
guard_XY and a formula to update variable cntr_X_Y. The 
guard needs to be the disjunction of all type X action instances 
of a GT (there might be more than one), and variable 
cntr_X_Y needs to be incremented by an amount that is in 
accordance with the guards of each action instance of type X. 
So for two X action instances (X1, X2) we would have: 
formula INCcntr_X_Y = 
  (cntr_X_Y + (guard_X1Y ? 1 : 0 ) 
               + (guard_X2Y ? 1 : 0 ) > MxInt) 
  ? MxInt 
  : (cntr_X_Y + (guard_X1Y ? 1 : 0 ) 
                 + (guard_X2Y ? 1 : 0 )); 

formula guard_penaltyConfA2 = (INCvltns_ConfA2) > 1; 
formula guard_notifyConfA2  = (INCvltns_ConfA2) > 1; 
formula guard_notifyIntA1      = (INCvltns_IntA1) <3; 
formula guard_renegotiateIntA1 = (INCvltns_IntA1)>=3; 
formula guard_notifyIntA4      = (INCvltns_IntA4)<3; 
formula guard_renegotiateIntA4 = (INCvltns_IntA4)>=3; 
formula guard_modifyAvailA3 = (INCvltns_AvailA3)<k; 
formula guard_renegotiateAvailA3 = 
(INCvltns_AvailA3)>(3*k); 
formula guard_notifyAvailA3 = true; 
 
formula INCvltns_ConfA2 = 
((vltns_ConfA2+1>MxInt)?MxInt:(vltns_ConfA2+1)); 
// ... 
formula INCcntr_notify_ConfA2 = 
((cntr_notify_ConfA2+(guard_notifyConfA2?1:0)>MxInt)?
MxInt:(cntr_notify_ConfA2+(guard_notifyConfA2?1:0))); 
// ... 
formula INCcntr_penalty_ConfA2 = 
((cntr_penalty_ConfA2+(guard_penaltyConfA2?1:0)>MxInt
)?MxInt:(cntr_penalty_ConfA2+(guard_penaltyConfA2?1:0
))); 
formula INCpenalty_amount_ConfA2 = 
((penalty_amount_ConfA2+(guard_penaltyConfA2?10:0)>Mx
Int)?MxInt:(penalty_amount_ConfA2+(guard_penaltyConfA
2?10:0))); 
formula INCcntr_modify_AvailA3 = 
((cntr_modify_AvailA3+(guard_modifyAvailA3?1:0)>MxInt
)?MxInt:(cntr_modify_AvailA3+(guard_modifyAvailA3?1:0
))); 

Fig. 5 Prism SLA manager module – I 

module SLA_Manager 
SLAactive : bool init true; 
vltns_ConfA2:[0.. MxInt] init 0; 
vltns_IntA1 : [0 .. MxInt] init 0; 
vltns_IntA4 : [0 .. MxInt] init 0; 
vltns_AvailA3 :[0 .. MxInt] init 0; 
cntr_notify_ConfA2:[0..MxInt]init 0; 
cntr_notify_IntA1 : [0 .. MxInt]init 0; 
cntr_notify_IntA4:[0..MxInt]init 0; 
cntr_notify_AvailA3:[0..MxInt]init 0; 
cntr_penalty_ConfA2:[0..MxInt]init 0; 
penalty_amount_ConfA2:[0..MxInt]init 0; 
cntr_modify_AvailA3:[0..MxInt]init 0; 
 
 [ConfA2Violated]  SLAactive -> 1: 
  (SLAactive'= ! (false)) 
  & (vltns_ConfA2'=INCvltns_ConfA2) 
  & (cntr_penalty_ConfA2'=INCcntr_penalty_ConfA2) 
  & (penalty_amount_ConfA2'=INCpenalty_amount_ConfA2) 
  & (cntr_notify_ConfA2'=INCcntr_notify_ConfA2); 
[IntA1Violated]  SLAactive -> 1: 
  (SLAactive'= ! (guard_renegotiateIntA1)) 
  & (vltns_IntA1'=INCvltns_IntA1) 
  & (cntr_notify_IntA1'=INCcntr_notify_IntA1); 
 [IntA4Violated]  SLAactive -> 1: 
  (SLAactive'= ! (guard_renegotiateIntA4)) 
  & (vltns_IntA4'=INCvltns_IntA4) 
  & (cntr_notify_IntA4'=INCcntr_notify_IntA4); 
 [AvailA3Violated]  SLAactive -> 1: 
  (SLAactive'= ! (guard_renegotiateAvailA3)) 
  & (vltns_AvailA3'=INCvltns_AvailA3) 
  & (cntr_modify_AvailA3'=INCcntr_modify_AvailA3) 
  & (cntr_notify_AvailA3'=INCcntr_notify_AvailA3); 
endmodule 

Fig. 6 Prism SLA manager module – II 



So given an SLA with n guarantee terms (GTs) and m 
actions (As), we produce a model with the elements shown in 
Fig. 7. Once we have the model, we can use Prism to check a 
number of properties so as to get a better understanding of the 
SLA – for example: 
(i) What is the expected time for eventually (F) having a 
renegotiation? 

• R{"time"}=? [ F !SLAactive ] 

Prism reports that it would take 3.4195 days until an SLA 
renegotiation – and does so in 2.59 seconds. 
 (ii) What is the probability that a renegotiation will occur 
within the first 4 days? 

• P=? [ F<=(4*day) !SLAactive ] 

Prism reports that the probability is 0.6784 and does so in 
2.345 seconds. 
(iii) What is the probability to pay more than Xm currency 
units in the first month? 

• P=? [F<=month (penalty_amount_ConfA2>Xm)] 

Prism reports that P= 0.0046 in 0.083 sec, for k=1 and 
Xm=20. 
(iv) What is the probability to have a violation on 
confidentiality or integrity of any data asset within a month? 

• P=? [F<=month (vltns_IntA1+vltns_ConfA2>=1)] 

Prism reports that it is 0.9114 (in 0.037 sec). 
(v) What is the probability to reach double the infrastructure 
resources (i.e., to have 2k number of modifications for the 
operation assets) within the first month?   

• P=? [F<=month  (cntr_notify_AvailA3 >(2*k))] 

Prism reports that it is 0.0459 (in 1.874 sec). 
 

VI.  EXPERIMENTAL RESULTS 
 One can use Prism to evaluate a number of different 
properties as we have already done – the more properties one 
evaluates, the better they understand the ramifications of the 
SLA at hand. Prism allows one to see also how properties 
change along with certain model parameters. For example, 
what would the previous properties be if we considered time 
as a variable instead of some specific constant? The results for 
k=1, with T ranging within [1,15] are shown in Fig. 7 for 
properties (ii) – (v) and for values of Xm that are in the 
[20,50] interval. As the time now ranges in days instead of a 
month, the time to produce each of these graphs with Prism is 
relatively short – even for Xm=50 (which causes the upper 
range of all integer variables to be equal to 51) the time to 

complete the analysis is less than 17 sec. As the results show 
the SLA will not remain active for long – in around 10 days 
the probability of initiating a renegotiation (property ii) is 
almost 1 and that is independent of the value of Xm, our 
budget for penalties. Indeed, Xm is irrelevant for properties 
(ii), (iv) and (v) as we can see from the graphs, since all curves 
for different values of Xm coincide. The graphs of properties 
(iii)–(v) show that renegotiation will occur due to a high 
number of violations but that we will not have to pay more 
than our penalty budget within that time interval (property iii), 
which is a positive result. 

Had we obtained an unexpected result during the analysis, 
it would be an indication that there is something wrong. The 
problem could be with either (or both): 

1) The property itself – maybe we are not actually 
specifying what we should be specifying. 

2) The SLA itself and/or our understanding of it – 
maybe it is not doing what we think it is doing. 

Developing reasonable SLAs that satisfy a number of 
different properties is quite difficult – it is easy to slip up and 
introduce errors when programming (which is what we are 
doing essentially). Since with SLAs our mistakes can be 
translated into monetary penalties directly (or even indirectly 
by being forced to allocate too many resources to a client), it is 
imperative that we have as good an understanding of what 
exactly we are committing to. What may sound good initially 
is not necessarily so. The same is true when specifying 
properties – these can be quite tricky to express correctly and 
sometimes it helps immensely to refer to existing patterns of 
properties [15]. Another issue with properties expressed in 
Prism’s language is that they are evaluated at the initial state 
by default. If one wishes to evaluate them at a different state 
then they need to use what Prism calls a filter that take the 
form filter(op, prop, states), e.g., what is the maximum 
probability of paying a penalty from all states where there has 
been one violation of Confidentiality for asset A2? 

• filter(max, P=? [F (cntr_penalty_ConfA2>1)], 
(vltns_ConfA2=1)) 

Prism reports that P= 0.1031 for k=1 and Xm=15 and that 
there is only one state that satisfies the state filter. 
 In Fig. 9 we can see the SLA analysis time for different 
values of the Xm and T parameters when checking properties 
(ii)–(v). We can see that the time increases along with Xm, 
which is reasonable because Xm causes an increase in the size 
of all the model integer variables thus increasing the required 
memory space for analysis. We can also see that properties (ii) 
and (v) require substantially more time than the other two – 
indeed they are ranked as (iv), (iii), (v), (ii). This is because 
property (iv) covers only the relatively few states where the 
sum of violations of A1 & A2 are less than 2, while property 
(ii) on the other extreme, needs to cover all possible states. 
 

VII. RELATED WORK 
 SLAs have been widely used to specify terms and 
conditions for a service provision between service consumers 
and service providers [1]. In order to automate the SLA 
specification process, several specification languages have 
been defined over the years, with the aim to simplify the SLA 

1) A number of n modules representing the environment of 
the SLA Manager, each of which emulates a violation 
of a GTk <= n with the respective rate 
GTkViolationRate (which is provided by the user): 
module GTk 
 [GTkViolated] true -> GTkViolationRate : true; 
endmodule 

2) At most n×m guards for the actions of each GTk: 
formula guard_actnTpGTk = Oract guard(a) 
Where actnTp is in actionTypes(GTk) and act is in 
actionInstances(GTk).  

3) At most n×m incrementation formulas for GT-specific 
variables cntr_X_Y_INCvarGTk. 

Fig. 7 Prism elements produced for an SLA 



specification process for the involved parties and to minimise 
the time and cost required for this. Despite though the 
extended research on SLA languages and SLA management, 
not much work has been done on validation of the SLA 
process.  
 Zseby in [26] presented three different types of sampling 
techniques of SLA validation, with non-intrusive two-point 
measurements. However, these validation techniques rely on 
the actual network traffic in order to capture packets with the 
main focus of validating the delay guarantees of an SLA.  
 Haq et al. in [8] introduced the need for proactive and 
reactive SLA validation and in [9] the need of three different 
SLA validation models (from resource, infrastructure and 
business points of view), and presented an SLA holistic 
validation framework for service value chains and Cloud 
based service value chains. Nevertheless, both approaches 
refer to the validation of an SLA after the establishment of the 
agreement, and not prior to it. 
 Extensive work has also been conducted with regards to 
verification of SLAs. Ishakian et al. in [29] present a formal 
verification for SLA transformations. Their framework 
enables users to propose specific transformation rules, which 
are fed to an SLA transformation engine, in order to explore 
any possible safe co-location configurations in a cloud setting. 
The work done in [7] presents a framework for SLA 
verification by involving a third-party auditor. In this work the 
authors provide two testing algorithms to detect an SLA 
violation on a VM memory size and to defend various attacks 
from an untrusted cloud. 
 The authors in [20] introduce a formal model to optimise 
and reason about service availability and budget compliance 
through monitoring. The monitoring model used in this work 
is designed to observe in real-time these two service 
characteristics and react to them based on the defined SLA of 
the services. 
 In [17] the authors propose a proactive approach for 
evaluating and testing the logical composition of guarantee 
terms of SLAs, by defining a four-valued logic that allows 
evaluating both the individual guarantee terms and their 
logical relationships. They have created a test criterion based 
on the modified condition decision coverage (MCDC), in 
order to obtain a cost-effective set of test requirements from 
the structure of the SLA. Furthermore, by analysing the syntax 
and semantics of the agreement, they define specific rules to 
avoid non-feasible test requirements. 
 However, all work done regarding the SLA verification is 
not conducted prior to sign the agreement but it is rather 
occurring during the SLA period, in order to detect possible 
breaches of the terms or reconfigure at run-time services to 
continue being compliant with the agreed terms. 
 

VIII. CONCLUSION AND FUTURE WORK 
 Specifying SLAs that can be used to govern automatically 
a service-based system is a difficult activity. We have 
extended WS-Agreement to allow more precise definition of 
the SLA Guarantee Terms (GT) that need to be monitored 
during run-time and the actions that need to be taken 

whenever a GT is violated. As the actions can lead to 
monetary penalties and/or to an increase in the resources 
allocated to clients it is imperative that SLA specifiers have a 
way to validate the SLAs they offer and understand their 
consequences – a task that is not at all easy to perform. For 
this reason, we have developed a method to translate an SLA 
into a formal language for temporal stochastic models, that 
allows us to analyse it and validate it by examining different 
types of properties that one may be interested in – both to 
validate that the SLA behaves as expected and to identify 
issues that could potentially lead to exposure to high penalties. 
The derived models can be used to explore different 
environmental assumptions, such as different rates of GT 
violations (which depend on the actual rates of client requests 
and the ability of our services to respond to these while 
respecting the SLA GTs), different penalty amounts, different 
time-intervals, etc. 
 This approach opens the way for more precise SLAs on 
which we have a higher degree of trust. It also enables the 
possibility of re-validating an SLA at run-time, once real 

 

 
Fig. 8 Properties (ii) – (v) across time (Xm=[20,50], ,k=1, T=[1,15]) 



violation rates have been observed, instead of depending on 
initial estimations of these at SLA pre-deployment time, as 
well as to evaluate proposed SLAs during re-negotiation. 
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