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Abstract 

We compare two bootstrap methods for assessing mutual fund performance. Kosowski, 

Timmermann, Wermers, and White produces narrow confidence intervals due to pooling 

over time, while Fama and French produces wider confidence intervals because it 

preserves the cross-correlation of fund returns. We then show that the average U.K. 

equity mutual fund manager is unable to deliver outperformance net of fees under either 

bootstrap. Gross of fees, 95% of fund managers on the basis of the first bootstrap and all 

fund managers on the basis of the second bootstrap fail to outperform the luck 

distribution of gross returns.  
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I.   Introduction 

Evidence collected over an extended period on the performance of (open-ended) 

mutual funds in the United States (Jensen (1968), Malkiel (1995), and Wermers, Barras, 

and Scaillet (2010)) and unit trusts and open-ended investment companies (OEICs)1 in 

the United Kingdom (Blake and Timmermann (1998), Lunde, Timmermann, and Blake 

(1999)) has found that on average a fund manager cannot outperform the market 

benchmark and that any outperformance is more likely to be due to luck rather than skill. 

More recently, Kosowski, Timmermann, Wermers, and White (KTWW) (2006) 

reported that the time-series returns of individual mutual funds typically exhibit non-

normal distributions.2 They argued that this finding has important implications for the 

luck versus skill debate and that there was a need to reexamine the statistical significance 

of mutual fund manager performance using bootstrap techniques. They applied a 

bootstrap methodology (Efron and Tibshirani (1993), Politis and Romano (1994)) that 

creates a sample of monthly pseudo excess returns by randomly resampling residuals 

                                                           
1 These are, respectively, the U.K. and European Union terms for open-ended mutual funds. 

There are differences, however, the principal one being that unit trusts have dual pricing (a 

bid and an offer price), while OEICs have single pricing. 

2 KTWW ((2006), p. 2559) put this down to the possibilities that i) the residuals of fund 

returns are not drawn from a multivariate normal distribution, ii) correlations in these 

residuals are nonzero, iii) funds have different risk levels, and iv) parameter estimation 

error results in the standard critical values of the normal distribution being inappropriate 

in the cross section. 
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from a factor benchmark model and imposing a null of zero abnormal performance.3 

Following the bootstrap exercise, KTWW determine how many funds from a large group 

one would expect to observe having large alphas by luck and how many are actually 

observed. Using data on 1,788 U.S. mutual funds over the period Jan. 1975–Dec. 2002, 

they show that, by luck alone, 9 funds would be expect to achieve an annual alpha of 10% 

over a 5-year period. In fact, 29 funds achieve this hurdle: “this is sufficient, statistically, 

to provide overwhelming evidence that some fund managers have superior talent in 

picking stocks. Overall, our results provide compelling evidence that, net of all expenses 

and costs (except load charges and taxes), the superior alphas of star mutual fund 

managers survive and are not an artifact of luck” (KTWW, p. 2553). 

Applying the same bootstrap method to 935 U.K. equity unit trusts and OEICs 

between Apr. 1975 and Dec. 2002, Cuthbertson, Nitzche, and O’Sullivan (2008) find 

similar evidence of significant stock picking ability amongst a small number of top-

performing fund managers. Blake, Rossi, Timmermann, Tonks, and Wermers (2013) 

show that fund manager performance improves if the degree of decentralization (in the 

form of increasing specialization) is increased. 

However, these results have been challenged by Fama and French (FF) (2010) 

who suggest an alternative bootstrap method which preserves any contemporaneously 

correlated movements in the volatilities of the explanatory factors in the benchmark 

model and the residuals. They calculate the Jensen (1968) alpha for each fund, and then 

                                                           
3 One of the earliest applications of this methodology is Brown and Warner (1985).  

They employed a block resampled bootstrap for the evaluation of event study measures of 

investment performance.  
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compute pseudo returns by deducting the Jensen alpha from the actual returns to obtain 

benchmark-adjusted (zero-alpha) returns, thereby maintaining the cross-sectional 

relationship between the factor and residual volatilities (i.e., between the explained and 

unexplained components of returns). Their sample consists of 5,238 U.S. mutual funds 

over the period Jan. 1984–Sept. 2006, and following their bootstrap calculations, they 

conclude that there is little evidence of mutual fund manager skills.  

There are three differences between the KTWW (2006) and FF (2010) studies. 

First, while both studies use data for U.S. domestic equity mutual funds, KTWW use data 

from 1975 to 2002, whereas the data set in FF covers the more recent 1984–2006 period. 

Second, the studies use different fund inclusion criteria: KTWW restrict their sample to 

funds that have a minimum of 60 monthly observations, whereas FF restrict theirs to 

funds that have a minimum of 8 monthly observations Third and most important, with 

respect to the bootstrap method used, for each bootstrap simulation, the former simulate 

fund returns and factor returns independently of each other, whereas the latter simulate 

these returns jointly.  

It is important therefore to identify whether the different results from the two 

studies are due to the different time period analyzed, different inclusion criteria or the 

different bootstrap methods used. We will use a data set of U.K. domestic equity mutual 

funds returns from Jan. 1998 to Sept. 2008 to assess the performance of mutual fund 

managers. We will also compare the 2 different bootstrap methods using the same sample 

of funds over the same time period and with the same fund inclusion criterion.  

It is well known that the Jensen (1968) alpha measure of performance is biased in 

the presence of fund manager market timing skills (Treynor and Mazuy (1966), Merton 
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and Henriksson (1981)). Grinblatt and Titman (1994) have suggested a total performance 

measure which is the sum of the Jensen alpha and market timing coefficients in an 

extended factor benchmark model. Allowing for market timing exacerbates the non-

normality of standard significance tests and an additional contribution of this paper is to 

assess the significance of the total performance measure in the KTWW (2006) and FF 

(2010) bootstrapped distributions. 

The structure of the paper is as follows: Section II reviews the approach to 

measuring mutual fund performance and shows how this approach has recently been 

augmented through the use of bootstraps. Section III discusses the data set we will be 

using. The results are presented in Section IV, and Section V provides a summary of 

additional robustness checks, while Section VI concludes. 

 

II. Measuring Mutual Fund Performance  

A. Measuring Performance Using Factor Benchmark Models  

Building on Jensen’s (1968) original approach, we use a 4-factor benchmark 

model to assess the performance or excess return over the riskless rate ( it tR rf ) of the 

manager of mutual fund i obtained in period t (out of a total of T possible periods): 

(1)   SMB HML  + MOMit t i i mt t i t i t i t itR rf R rf            , 

where the 4 common factors are the excess return on the market index ( )mt tR rf , the 

returns on a size factor, SMBt , and a book-to-market factor, HMLt  (Fama–French 

(1993)), and the return on a momentum factor, MOMt  (Carhart (1997)). The genuine 
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skill of the fund manager, controlling for these common risk factors, is measured by 

alpha (αi) which is also known as the selectivity skill.4  

 Under the null hypothesis of no abnormal performance (i.e., no selectivity skill), 

the expected value of ˆi  should be equal to 0. For each fund, we could test the 

significance of each ˆi  as a measure of that fund’s abnormal performance relative to its 

standard error. We might also test the significance of the average value of the alpha 

across the N funds in the sample (Malkiel (1995)). Alternatively, we could follow Blake 

and Timmermann (1998) (and also Fama and French (2010), Table II) and regress an 

equal-weighted (or a value-weighted) portfolio p of the excess returns ( )pt tR rf on the N 

funds on the 4 factors in equation (1) and test the significance of the estimated ˆ p  in this 

regression.  

 The original Jensen approach made no allowance for the market timing abilities of 

fund managers when fund managers take an aggressive position in a bull market (by 

holding high-beta stocks) and a defensive position in a bear market (by holding low-beta 

stocks). Treynor and Mazuy (1966) tested for market timing by adding a quadratic term 

in the market excess return in the benchmark model to capture the “curvature” in the fund 

                                                           
4 Ferson and Schadt (1996) suggest a conditional version of this 4-factor benchmark 

model that controls for time-varying factor loadings. However, KTWW (2006) report that 

the results from estimating the conditional and unconditional models are very similar, and 

in the remainder of this paper we follow them and only consider the unconditional 

version of equation (1). 
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manager’s performance as the market rises and falls. To test jointly for selectivity and 

market timing skills, we estimate a 5-factor benchmark model: 

(2)      2
 SMB HML  + MOMit t i i mt t i t i t i t i mt t itR rf R rf R rf               . 

Market timing ability is measured by the sign and significance of î . To capture both 

selectivity and timing skills simultaneously, we use the Treynor–Mazuy total 

performance measure (TMi) averaged over T periods: 

(3)   TM Vari i i mR rf    . 

This was derived in Grinblatt and Titman (1994) and its significance can be assessed 

using a t-statistic based on its standard error.5  

 

B. Assessing Performance Using Bootstrap Methods  

On account of non-normalities in returns, bootstrap methods need to be applied to 

both of the factor benchmark models (1) and (2) to assess performance. To apply the 

KTWW (2006) bootstrap in equation (1), we first obtain ordinary least squares (OLS) 

estimated alphas, factor loadings and residuals using a time series of monthly excess 

returns for fund i in equation (1). We then construct a sample of pseudo excess returns by 

randomly resampling residuals with replacement from 0 1ˆ{ , ,. . ., }it i it T T  , while 

preserving the historical ordering of the common risk factors, and impose the null of zero 

abnormal performance ( 0i  ): 

(4)  ˆ ˆ ˆˆ ˆ( )  SMB HML  + MOMb b
it t i mt t i t i t i t itR rf R rf          , 

                                                           
5 Defined in Grinblatt and Titman ((1994), App. B, p. 441). 
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where b is the bth bootstrap and ˆb
it  is a drawing from 0 1ˆ{ , ,. . ., }it i it T T  . By construction, 

this pseudo excess return series has zero alpha. For bootstrap b = 1, we regress the pseudo 

excess returns on the factors: 

(5)  ( ) SMB HML  + MOMb
it t i i mt t i t i t i t itR rf R rf              

and save the estimated alpha. We repeat for each fund, i = 1,…, N, to arrive at the first 

draw from the cross section of bootstrapped alphas { , 1,..., ; 1}b
i i N b    and the 

corresponding t-statistics { ( ), 1,..., ; 1}b
it i N b   . We then repeat for all bootstrap 

iterations b = 1,…, 10,000. It is important to reiterate that the common risk factors are not 

resampled in the KTWW bootstrap: their historical ordering is not varied across 

simulation runs. It is only the residuals that are reordered with this bootstrap.  

We now have the cross-sectional distribution of alphas from all the bootstrap 

simulations { , 1,. . . , ; 1,...,10,000}b
i i N b    that result from the sampling variation under 

the null that the true alpha is 0. The bootstrapped alphas can be ranked from smallest to 

largest to produce the “luck” (i.e., pure chance or zero-skill) cumulative distribution 

function (CDF) of the alphas. We have a similar cross-sectional distribution of 

bootstrapped t-statistics { ( ), 1,. . . , ; 1,...,10,000}b
it i N b   , which can be compared with 

the distribution of actual ˆ{ ( ), 1,. . . , }it i N   values once both sets of t-statistics have been 

reordered from smallest to largest. We follow KTWW (2006) who prefer to work with 
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the t-statistics rather than the alphas, since the use of the t-statistic “controls for 

differences in risk-taking across funds” (p. 2555).6  

FF (2010) employ an alternative bootstrap method. They calculate alpha for each 

fund using the time-series regression (1) as in KTWW (2006). But FF do not resample 

the residuals of each individual fund as in KTWW, rather they resample with replacement 

over the full cross section of returns, thereby producing a common time ordering across 

all funds in each bootstrap. The historical ordering of the common risk factors is therefore 

not preserved in this bootstrap. In our study, we resample from all 129 monthly 

observations in the data set and we impose the null hypothesis as in FF by subtracting the 

estimate of alpha from each resampled month’s returns.7 For each fund and each 

bootstrap, we regress the pseudo excess returns on the factors: 

                                                           
6 KTWW ((2006), p. 2559) note that the t-statistic also provides a correction for spurious 

outliers by dividing the estimated alpha by a high estimated standard error when the fund 

has a short life or undertakes risky strategies.  

7 To illustrate, for bootstrap b = 1, suppose that the first time-series drawing is month 

37t  , then the first set of pseudo returns incorporating zero abnormal performance for 

this bootstrap is found by deducting i  from 
,37 37( )iR rf  for every fund i that is in the 

sample for month 37.t   Suppose that the second time-series drawing is month 92t  , 

then the second set of pseudo returns is found by deducting i  from 
,92 92( )iR rf  for every 

fund i that is in the sample for month 92t  . After T drawings, the first bootstrap is 

completed.  This contrasts with the KTWW (2006) bootstrap in which for b = 1, the first 

drawing for fund 1 might be that for month 37t   (assuming it is in the sample for this 
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(6)    ˆ( )  SMB HML  + MOM
b

it t i i i mt t i t i t i t itR rf R rf                  

and save the estimated bootstrapped alphas { , 1,. . . , ; 1,...,10,000}b
i i N b    and t-

statistics { ( ), 1,. . . , ; 1,...,10,000}b
it i N b   . We then rank the alphas and t-statistics from 

lowest to highest to form the FF (2010) “luck” distribution under the null hypothesis.   

The most important difference between the two methods is that, within each 

bootstrap run, the FF (2010) bootstrap takes into account the cross-sectional distribution of 

the residuals, conditional on the realization of the systematic risk factors, while the KTWW 

(2006) bootstrap uses the unconditional distribution of the residuals and assumes both that 

there is independence between the residuals across different funds and that the influence 

of the common risk factors is fixed at their historical realizations.8 

There is one other potentially important difference between the 2 bootstrap 

methods as implemented in the 2 studies. KTWW (2006) include funds in their analysis 

with more than 60 monthly observations in the data set, whereas the fund inclusion 

criterion with FF (2010) is 8 months. The different inclusion criteria involve a trade-off 

between the low estimation precision that is associated with estimating a model with a 

small number of degrees of freedom and the potential look-ahead bias associated with 

estimating a model that requires funds to be in the data for some time. Carhart, Carpenter, 

                                                                                                                                                                             
month), while the first drawing for fund 2 might be for month 92t   (assuming it is in the 

sample for this month), etc. 

8 FF (2010) argue that the KTWW (2006) bootstrap’s “failure to account for the joint 

distribution of joint returns, and of fund and explanatory returns, biases the inferences of 

KTWW towards positive performance” (p. 1940). 



 12

Lynch, and Musto (2002) discuss sample biases in mutual fund performance evaluation 

and distinguish between “survivorship biases” (evaluation only on the selected sample of 

funds that are in existence at the end of the time period) and “look-ahead biases” 

(evaluation of funds by only considering funds which survive for a minimum length of 

time).  Survivor bias is regarded as a property of the data set, whereas look-ahead bias 

results from any test methodology imposing a minimal survival period. In order to assess 

the sensitivity of these sample selection criteria on the look-ahead bias, we will construct 

separate subsamples based on including funds with at least 8, 15, 20, 40, and 60 monthly 

observations.  As the minimum number of monthly observations increases, the number of 

funds included in the subsample decreases.  

FF (2010) report that the distribution of actual ˆ( )it  values is to the left of that of 

the “luck” distribution of the bootstrapped ( )b
it  values, particularly for funds with 

negative alphas, but also for most funds with positive alphas. FF conclude that there is 

little evidence of mutual fund manager skills. This contrasts with KTWW (2006) who 

conclude that there are a small number of genuinely skilled “star” fund managers.    

FF (2010) point out a common problem with both methods. By randomly 

sampling across individual fund residuals in the KTWW (2006) method and across 

individual time periods in the FF method, any effects of autocorrelation in returns is lost. 

KTWW (p. 2582) performed a sensitivity analysis of this issue by resampling in time 

series blocks up to 10 months in length. They found that the results changed very little.  
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III. Data  

The data used in this study combine information from data providers Lipper, 

Morningstar, and Defaqto and consists of the monthly returns on a full sample of 561 

U.K. domestic equity (open-ended) mutual funds (unit trusts and OIECS) over the period 

Jan. 1998–Sept. 2008, a total of 129 months. The data set also includes information on 

annual management fees, fund size, fund family, and relevant Investment Management 

Association (IMA) sectors.9 We include in our sample the primary sector classes for U.K. 

domestic equity funds with the IMA definitions: UK All Companies, UK Equity Growth, 

UK Equity Income, UK Equity & Growth, and UK Smaller Companies. The sample is 

free from survivor bias (Elton et al. (1996), Carpenter and Lynch (1999)) and includes 

funds that both were created during the sample period and exited due to liquidation or 

merger. In order to assess the degree of look-ahead bias in the alternative bootstrap 

methodologies, we construct 5 subsamples of the data by imposing the restriction that 

funds in the sample must have at least 8, 15, 20, 40, and 60 consecutive monthly returns. 

These criteria result in subsamples of 552, 535, 516, 454, and 384 funds, respectively. 

We will perform our bootstrap analysis on each of these 5 subsamples separately. 

“Gross” returns are calculated from bid-to-bid prices and include reinvested 

dividends. These are reported net of on-going operating and trading costs, but before the 

fund management fee has been deducted. As reported in Khorana, Servaes, and Tufano 

(2009) operating costs include administration, record-keeping, research, custody, 

accounting, auditing, valuation, legal costs, regulatory costs, distribution, marketing, and 

advertising. Trading costs include commissions, spreads and taxes. We also compute 

                                                           
9 In 2014, the IMA changed its name to the Investment Association. 
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“net” returns for each fund by deducting the monthly equivalent of the annual fund 

management fee. We have complete information on these fees for 451 funds. For each of 

the remaining funds, each month we subtract the median monthly fund management fee 

for the relevant sector class and size quintile from the fund’s gross monthly return. As in 

KTWW (2006) and FF (2010), we exclude initial and exit fees from our definition of net 

returns.  

Table 1 provides some descriptive statistics on the returns to and the size of the 

mutual funds in our data set. We compare the distributional properties of the gross and 

net returns for two of the subsamples based on the selection criterion of 8 and 60 

consecutive monthly observations. The average (equal weighted) monthly gross return 

across the 552 funds with at least 8 consecutive monthly observations in the data set is 

0.45% (45 basis points), compared with an average monthly return over the same period 

of 0.36% for the FTSE-All Share Index.10 The overall monthly standard deviation of 

these returns is 4.82%.  In the case of 384 mutual funds with a minimum of 60 

consecutive observations, the gross mean return is marginally higher and the variance 

marginally lower. The mean monthly net return for the larger subsample of 552 funds is 

0.35%, implying that the monthly fund management fee is 0.11%. The mean return is 

now very close to the mean return of 0.36% for the FT-All Share Index.  This provides 

initial confirmation that the average mutual fund manager cannot “beat the market” (i.e., 

cannot beat a buy-and-hold strategy invested in the market index), once all costs and fees 

have been taken into account.  

                                                           
10 Note that the Financial Times Stock Exchange (FTSE)-All Share Index return is gross of 

any costs and fees. 
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Table 1 also shows that the within-fund standard deviation is much larger than the 

between-fund standard deviation, implying that fund returns tend to move together in any 

particular month, but are more volatile over time. Furthermore, the between-fund 

volatility in the case of a minimum sample size of 8 monthly observations is much higher 

than in the case where the minimum sample size is 60 monthly observations. This is 

because samples involving a minimum of 8 consecutive observations are more likely to 

be drawn from the tails of the distribution of returns than those involving a minimum of 

60 consecutive observations. Funds with only 8 observations in the data set are likely to 

have been closed down due to very poor performance.11   

The final column of Table 1 shows that the distribution of scheme size is skewed. 

While the median fund value for a subsample of 299 funds for which data on fund size 

are available in Sept. 2008 is £63.3 million, the mean value is much larger at £234 

million. It can also be seen that 10% of the funds have values above £503 million. 

 

 

 

                                                           
11 Evidence to support this conjecture is contained in Table 1. The 384 funds (with a 

minimum of 60 observations) have a mean gross monthly return of 0.0049, whereas the 

552 funds (with a minimum of 8 observations) have a lower mean gross return of 0.0045. 

The latter group of funds have a higher standard deviation than the former and the 

quantiles of the CDF also show that these funds have much poorer returns throughout the 

distribution. These results are not affected by the censoring of the data at the beginning 

and end of the sample period. 
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IV. Results 

We now turn to assessing the performance of U.K. equity mutual funds over the 

period 1998–2008. The results are divided into four sections. The first section looks at the 

performance of equal- and value-weighted portfolios of all 561 funds in the full sample 

against the 4- and 5-factor benchmark models over the whole sample period. The second 

section examines the properties of the moments of the actual, KTWW (2006) and FF 

(2010) CDFs for both the ݐሺߙො௜ሻ and ݐሺTM௜ሻ performance measures. The third section 

compares the alpha performance of all the funds based on the actual t-statistics ˆ( )it   

from the factor models with the simulated t-statistics ( )b
it  generated by the bootstrap 

methods of KTWW and FF described above. We report the results for both gross and net 

returns, and for the different fund selection criteria. The fourth section conducts a total 

performance comparison based on the actual and simulated t-statistics, ݐሺTM௜ሻ and 

ሺTM௜ݐ
௕ሻ, for the two bootstraps, again using both gross and net returns. 

 

A. Performance against Factor Benchmark Models 

Following Blake and Timmermann (1998), Table 2 reports the results from 

estimating the 4- and 5-factor models in equations (1) and (2) across all T = 129 time-

series observations for the full sample of 561 funds, where the dependent variable is, first, 

the excess return on an equal-weighted portfolio p of all funds in existence at time t, and, 

second, the excess return on a value-weighted portfolio p of all funds in existence at time 

t, using starting market values as weights.12 For each portfolio, the first two columns 
                                                           
12 We use the monthly FTSE All-Share Index as the market benchmark for all U.K. 

equities. We take the excess return of this index over the U.K. Treasury bill rate. SMBt, 
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report the loadings on each of the factors when the dependent variable is based on gross 

returns, while the second two columns report the corresponding results using net returns. 

The loadings on the market portfolio and on the SMBt  factor are positive and significant, 

while the loadings are negative but insignificant on the HMLt  factor. The factor loadings 

are positive but insignificant on the MOMt  factor.13  

The alphas based on gross returns differ from the corresponding alphas based on 

net returns by the average level of fund management fees. However, the most important 

point is that the alpha (
p ) is not significant in the 4-factor model and the total 

performance measure (  TM Varp p p mR rf    ) is not significant in the 5-factor 

model. In the latter case, while  
p  can be significant (as in the case of the equal-

weighted portfolio using gross returns at the 10% level), this is more than compensated 

for by the significantly negative loading on ሺܴ௠௧െݎ ௧݂ሻଶ. This holds whether the portfolio 

                                                                                                                                                                             
HMLt, and MOMt are U.K. versions of the other factor benchmarks as defined in 

Gregory, Tharyan, and Huang (2013). 

13 Note that the estimated factor loadings for the models where the dependent variable is 

based on gross returns are very similar to those in the corresponding models where the 

dependent variable is based on net returns. This is because the fund management fee is fairly 

constant over time. While this will lead to different estimates of the intercept (
p ) in a 

regression equation, it will not lead to significant changes in the estimates of the slope 

coefficients. 
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is equal-weighted or value-weighted,14 or whether we use gross returns or net returns.  A 

particularly interesting finding in Table 2 is that the estimate for 
p  in the 4-factor model 

is very similar in size to the estimate of TM p
in the corresponding 5-factor model, even 

though both estimates are not statistically significant.15 Again this is true whether we 

compare on the basis of gross or net returns, or an equal- or value-weighted portfolio. 

This can only happen, of course, if the estimate of 
p in the 5-factor model is lower than 

the estimate of 
p in the corresponding 4-factor model by an amount approximately equal 

to the size of  Varp mR rf  .   

The implication of these results is that the average equity mutual fund manager in 

the United Kingdom is unskilled in the sense of being unable to deliver outperformance 

(i.e., unable to add value from the two key active strategies of stock selection and market 

timing), once allowance is made for fund manager fees and for a set of common risk 

factors that are known to influence returns, thereby reinforcing our findings from our 

examination of raw returns in Table 1. But what about the performance of the best and 

worst fund managers? To assess their performance, we turn to the bootstrap analysis.  

                                                           
14 The lower values of 

p and TM p
 in the value-weighted regressions compared with the 

corresponding equal-weighted regressions indicates diseconomies-of-scale in fund 

management performance.  

15 Grinblatt and Titman ((1994), p. 438) report the same result in their data set and argue 

that “the measures are similar because very few funds successfully time the market. In 

fact, the measures are significantly different for those funds that appear to have 

successfully timed the market.” 
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B. Moments of Actual, KTWW and FF Cumulative Distribution Functions 

We estimate the 4- and 5-factor benchmark models (1) and (2) across a range of 

subsamples (N = 552, 535, 516, 454, and 384) of mutual funds corresponding to the 

sample selection criteria of 8, 15, 20, 40, and 60 consecutive monthly time-series 

observations between 1998 and 2008.  For each subsample, we then have a cross section 

of t-statistics on alpha which can be ranked from lowest to highest to form a CDF of the 

ˆ{ ( ), 1,. . . ., }it i N  statistics for the actual fund alphas. We also generate 10,000 KTWW 

(2006) and FF (2010) bootstrap simulations for each fund as described in Section II. For 

each bootstrap, this will generate a cross section of t-statistics on alpha and TM (1966), 

assuming no abnormal performance. For the 5 subsamples there will be 5.52 million, 5.35 

million, 5.16 million, 4.54 million and 3.84 million respective t-statistics that can also be 

ranked from lowest to highest to create a CDF of bootstrapped “luck” 

{ ( ), 1, . . . , ; 1, ...,10, 000}b
it i N b    statistics for each bootstrap. In Figures 1 and 2, we 

plot these CDFs of the t-statistics on alpha for each percentile point of the distribution for 

the subsamples constructed from the 552 funds with a minimum of 8 observations. The 

solid line in the centre of Figure 1 and Figure 2 shows the actual distribution of ݐሺߙොሻ 

estimated for gross and net returns, respectively, using the 4-factor model. The heavy 

dashed and dotted lines in these figures show the CDFs for the average 	ݐሺߙොሻ values 

across the 10,000 simulations for the KTWW and FF bootstraps, respectively.  

The moments of the actual t(α) and t(TM) distributions, together with key 

percentiles of the corresponding KTWW (2006) and FF (2010) bootstrap distributions, 

are shown in Table 3 for 2 subsamples: funds with a minimum of 8 and 60 monthly 
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observations, generating sample sizes of 552 and 384 funds, respectively. The factor 

models generate similar distributions for both gross and net t(α) and t(TM), with standard 

deviations in the range 1.5–1.7, modest positive skewness in the range 0.5, and kurtosis in 

the range 8–9.  The KTWW bootstrap also generates similar distributions for both t(α) 

and t(TM). The distributions have (approximately) unit variance. They are also fairly 

symmetric and have a modest degree of excess kurtosis compared with the normal 

distribution. By contrast, the FF bootstrap distribution has a larger variance and much 

fatter tails (especially in the case of t(TM), where the left-skew is also more prominent).  

It also has a high level of kurtosis in the subsample formed from a minimum of 8 

consecutive monthly observations, implying that the sample selection criteria that gives 

the largest number of funds included in the analysis induces fat tails in the FF bootstrap 

simulations. Again, the most likely explanation is very poor performance prior to closure.    

Table 3 also reports for each distribution the p-value from applying a Jarque–Bera 

(1980) test against the null hypothesis of normality. For the “actual” distribution, the 

hypothesis of normality was rejected in 4 out of 8 cases at the 5% significance level and 

in 6 out of 8 cases at 10%.  In addition, this same test also clearly rejects normality of 

both the KTWW (2006) and FF (2010) average 	ݐሺߙොሻ distributions, which means that we 

cannot simply use the 5% and 95% confidence intervals from the entire KTWW and FF 

distributions to detect significant under- or out-performance. Instead, the accumulated 

statistical evidence suggests that we need to apply the 5%–95% confidence intervals of 

the KTWW and FF distributions at each percentile point of the actual CDF to determine 

abnormal performance.  
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C. Alpha Performance Using KTWW and FF Bootstraps 

For each subsample, we compare the averaged values at selected percentiles of the 

CDF of the t-statistics on the actual alphas ( ˆ( )t  ) with the distribution of the t-statistics 

derived from the KTWW (2006) and FF (2010) bootstrap simulations ( ( )bt  ) in the same 

percentile ranges. We report the results of the analysis first using gross and then net 

returns. 

 

1.  Alpha Performance: Gross Returns 

Panel A of Table 4 reports key percentiles of the CDF of the 	ݐሺߙොሻ statistics of the 

cross section of funds in the subsample of 552 funds formed from a minimum of 8 

observations for gross returns using the distribution of ranked t-statistics for all such 

funds. Figure 1 shows the same results graphically. It can be seen that the left tail of the 

CDF of the actual t-statistics lies to the left of that of both bootstraps. For example, in the 

1st percentile range, the actual t-statistic of the worst performing 1% of funds is −2.9043, 

while the KTWW (2006) and FF (2010) t-statistics for the same point on the distribution 

are −2.4516 and −2.449, respectively. This suggests that those funds in the bottom 1% of 

the distribution are there as a result of poor skill rather than bad luck. This holds for most 

of the distribution of returns. Only for percentiles of the CDF above about 70% is it the 

case that the actual t-statistics begin to exceed those from either simulation method. For 

example, at the 95th percentile, the actual t-statistic is 2.2522, while the corresponding 

KTWW and FF t-statistics are 1.683 and 1.6158. This means that those funds above the 

70th percentile outperform their luck distribution, providing evidence of skill in terms of 

gross returns.  
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We can also assess the significance of the actual t-values at each percentile point 

of its distribution. For every percentile point of the chance distribution generated by each 

of the two bootstrap methods, we calculate the 5%–95% confidence intervals (CIs). This 

allows us to test whether the actual ˆ( )t  lies within the CI of each chance distribution. If 

the actual ˆ( )t  lies to the right (left) of the CI at a given percentile point, this provides 

robust evidence of managerial out (under)-performance at that percentile point. The 

confidence intervals at each percentile point are reported in Table 4 in brackets below the 

mean values of the KTWW (2006) and FF (2010) bootstrap values. It can be seen that the 

actual ݐሺߙොሻ at the 1st percentile point of −2.9043 lies within the CI of both the KTWW 

(−3.0689, −1.8342) and FF (−3.4300, −1.4680) chance distributions, and therefore we 

cannot reject the null of no underperformance for the worst performing 1% of funds. 

However, at the other end of the distribution, the actual 	ݐሺߙොሻ value at the 99th percentile 

of 3.0773 lies to the right of the KTWW CI (1.7724, 3.0630), but within the FF CI 

(1.4288, 3.3645). The implication is that the top 1% of funds significantly outperform the 

KTWW chance distribution, but not the FF chance distribution.  

As can be seen from Figure 1, the 5%–95% CI at each percentile point is much 

wider for the FF (2010) bootstraps than the KTWW (2006) bootstraps. Further, the range 

of the 5%–95% CIs is relatively constant over the entire distribution of the FF bootstraps. 

In contrast, the 5%–95% CIs for the KTWW bootstraps are narrower over the entire 

distribution and they narrow considerably around the median (which is the point of zero 

abnormal performance under the null). The wider CIs for the FF bootstrap is a 

consequence of using the same time-series observations for all funds to “capture the 

cross-correlation of fund returns and its effects on the distribution of t(α) estimates” (FF, 
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p. 1925), while the narrower CIs for the KTWW bootstrap is due to “pooling over time” 

(Fitzenberger and Kurtz ((2003), p. 357). Within each KTWW bootstrap, some funds’ 

excess returns for a given time period (under the null of no abnormal performance and 

conditional on the realization of the common risk factors) will be drawn from a period in 

the data sample when there was a bull market, while other funds’ excess returns will be 

drawn from a period when there was a bear market.  This will result in a narrowing of the 

distribution of abnormal returns when averaged across a large number of bootstraps. The 

CIs for the KTWW bootstrap widen slightly in the tails of the distribution, since in this 

region, the bootstrap will pick up more extreme outliers and hence the pooling effect is 

reduced. By contrast, within every FF bootstrap, all funds’ excess returns for a given time 

period (under the null of no abnormal performance) will be drawn from the same 

randomly selected historical period which could be either a bull market or a bear market. 

With the FF bootstrap, there is no pooling over time. This results in a wider distribution 

of abnormal returns under the FF methodology when averaged across the same number of 

bootstraps, compared with the KTWW methodology.16 

 We also investigate the effect of the sample selection criteria on the detection of 

significant abnormal performance. In Panel A of Table 5, we report the actual and 

bootstrapped ݐሺߙොሻ statistics of the cross section of funds in the subsample formed from a 

minimum of 60 observations for gross returns.  The effect of increasing the minimum 

number of observations for inclusion in the subsample is to shift the actual 	ݐሺߙොሻ CDF to 

                                                           
16 Note KTWW ((2006), p. 2583) also consider a “block bootstrap” that samples across 

funds during the same time period to preserve any cross-sectional correlation in the 

residuals. 
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the right compared with Table 4. For example, at the 50th percentile point, the actual t-

statistic is 0.0071 compared with −0.0587 in Table 4. This shift to the right in the ݐሺߙොሻ 

distribution is consistent with a positive look-ahead bias in the gross returns in the more 

restrictive sample of 384 funds with at least 60 consecutive observations.17 The effect of 

the look-ahead bias on the distribution of the KTWW (2006) and FF (2010) bootstraps is 

also apparent: for both bootstraps, the range of the 5%–95% CIs widens. For example, at 

the 10th percentile, the KTWW range widens slightly from 0.631 to 0.677, but the FF 

range widens noticeably more from 1.714 to 2.029. In both cases, the widening of the CIs 

is explained by having a smaller number of funds in this bootstrap compared with the one 

in Panel A of Table 5 (i.e., 384 against 552), reducing the precision of our estimates of 

the parameters of the underlying distribution. 

 

2. Alpha Performance: Net Returns 

Assessing alpha performance using net returns rather than gross returns raises the 

performance hurdle, since we are now assessing whether fund managers are able to add 

value for their investors after covering their operating and trading costs and their own fee. 

Subtracting fees from gross returns to derive net returns will reduce the values of both the 

actual alphas and their t-statistics. Figure 2 shows the consequences of this graphically: 

the CDF of the actual t-statistics of the alphas shifts significantly to the left.18 This is 

                                                           
17 This implies that tests requiring a minimum of 8 observations are more stringent than 

those requiring a minimum of 60 observations. 

18 The CDFs for the averaged values of both the KTWW (2006) and FF (2010) bootstrap 

simulations do not move significantly at all when there is a switch from gross to net returns. 



 25

confirmed by Panel B of Table 4, in the case where the selection criterion requires a 

minimum of 8 monthly observations. For example, at the 5th percentile, the actual t-

statistic is −2.6194, down from −2.0434 in Panel A. By contrast, there is little or no 

change in either the KTWW (2006) t-statistic at −1.7043 (unchanged) or the FF (2010) t-

statistic at −1.6172 (up from −1.6336). Figure 2 and Panel B of Table 4 clearly show that, 

once fund manager fees are taken into account, the actual 	ݐሺߙොሻ either lies to the left of 

the CIs of the 2 chance bootstrap distributions or within the CIs themselves, but never to 

the right, implying that at no fund in our sample generated significant outperformance.  

 Turning to the effect of the sample selection criteria, Panel B of Table 5, where 

the selection criterion requires a minimum of 60 monthly observations, shows that the 

distribution of the actual t-statistics on net returns is not greatly affected by the increase 

from 8 to 60 observations, in contrast to the results for gross returns, with slight 

movements to the right or left at different points along the distribution. With respect to 

the distributions of the 2 bootstraps, as with the gross returns, the range of both 5%–95% 

CIs widen, slightly for KTWW (2006) and more so for the FF (2010) bootstrap. For 

                                                                                                                                                                             

In the case of the KTWW bootstrap, this can be seen if we set 0i   in equation (5) for 

both gross and net returns, since no other variable on the right-hand side of equation (5) 

changes when we make an allowance for fund manager fees. In the case of the FF bootstrap, 

the influence of fees is broadly cancelled out in the dependent variable ˆ( )
b

it t iR rf      in 

equation (6), since itR  will be lower by the ith manager’s fee and ˆ
i  will be lower by the 

average fee across the sample which will be of similar size. Figures 1 and 2 show the same 

result graphically.  
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example, at the 10th percentile point, the range of the KTWW bootstrap widens from 

0.639 to 0.670, and the range of the FF bootstrap widens from 1.696 to 2.032. 

 

D. TM Performance Using KTWW and FF Bootstraps 

We now repeat the analysis of the previous subsection, but use the 5-factor 

benchmark model in equation (2) and focus on the TM (1966) total performance measure 

instead of alpha. Using the case of the subsample constructed on the basis of a minimum 

of 8 consecutive monthly observations, we report the results of the analysis first using 

gross and then net returns.19 

 

1. TM Performance: Gross Returns  

Panel A of Table 6 looks at TM (1966) performance based on gross returns. A 

comparison of the Act column in this table with that in Panel A in Table 4 shows some 

similarity in the values of the t-statistics for the TM and alpha gross return performance 

measures at the same percentiles.20 Both tables demonstrate that it is only for percentiles 

of the CDF above about 70% that it is the case that the actual t-statistics exceed those 

from either simulation method. For example, at the 95th percentile point, the actual t-

statistic is 2.3152 (compared with 2.2522 when the performance measure is alpha), while 

the KTWW (2006) average t-statistic is 1.6794 (compared with 1.6830) and the FF 

(2010) average t-statistic is 1.6212 (compared with 1.6158). Above the 95th percentile, 
                                                           
19 In the case of the FF (2010) bootstrap, the dependent variable in equation (6) becomes 

 2ˆ ˆ( )
b

it t i i mt tR rf R rf       . 

20 For the same reason given by Grinblatt and Titman ((1994), p. 438) in footnote 15. 



 27

the actual t-statistic significantly outperforms the KTWW chance distribution,21 but not 

the FF chance distribution. The regression analysis in Section IV.A produced a similar 

finding. We therefore have the same interpretation of this finding, namely that only a 

minority of funds are able to generate returns from stock selection and market timing that 

are more than sufficient to cover their operating and trading costs, let alone the fund 

manager fee. 

 

2. TM Performance: Net Returns  

Panel B of Table 6 examines TM (1966) performance based on net returns. A 

comparison of the Act column in this table with that in Panel B of Table 4 shows the 

same pattern in the values of the TM and alpha net return performance measures that the 

previous subsection found when looking at gross returns.  There is significant under-

performance at the lower end of the distribution for both bootstraps, and funds never 

significantly outperform either bootstrap at the upper end of the distribution. This is 

shown in Figure 3. 

 

V. Robustness Tests 

An Internet Appendix (available at www.jfqa.org) provides a series of robustness 

tests of our findings. In particular, we report the results from varying the selection 

criterion from a minimum of 8 observations, through 15, 20, and 40 observations, to 60 

observations. These differing sample selection criteria results in 5 subsamples of funds 

with the size of the subsamples ranging from 552, 535, 516, 454, and 384 funds. The 

                                                           
21 Except at the 99th percentile. 
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bootstrap distributions are generated for both definitions of returns (gross and net) and for 

the 4- and 5-factor models (t(α) and t(TM)).  

In general, we find that as we increase the minimum number of observations (and 

reduce the number of funds) for inclusion in the analysis, the actual distribution of gross 

returns shifts to the right slightly. This is consistent with look-ahead bias: funds with 

greater average gross abnormal performance stay longer in the data set (and vice versa). 

As we increase the required minimum number of observations (and reduce the number of 

funds) for inclusion in the analysis, both the FF (2010) and KTWW (2006) 5%–95% CIs 

widen, most particularly in the case of the FF bootstrap. The number of funds included in 

the analysis falls, reducing the precision of our estimates of the parameters of the 

underlying distribution and hence widening the CIs. 

Under the generation of the chance distribution using the KTWW (2006) 

methodology, we find evidence of abnormal performance for the top-performing funds in 

terms of gross returns for all selection criteria for both t(α)s and t(TM)s. In contrast, for 

the FF (2010) methodology for gross returns, there are no instances, irrespective of either 

the selection criteria or the factor model employed, of rejection of the null hypothesis of 

no abnormal performance. Under both methodologies, when it comes to examining net 

returns, there is no evidence of (positive) abnormal performance using any assessment 

criterion. 

 

VI. Conclusions 

Our paper contributes to the literature in two ways. First, we use a new data set of 

U.K. equity mutual funds to assess both the Jensen (1968) alpha and Treynor–Mazuy 
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(TM) (1966) total performance measures of mutual fund manager skills using factor 

benchmark models. TM is superior to an assessment based on alpha alone, since it 

includes market timing skills as well as selectivity skills; most existing studies, including 

KTWW (2006) and FF (2010), only examine selectivity. Second, we compare directly the 

KTWW and FF bootstrap methods for assessing mutual fund manager performance (both 

alpha and TM) using the same funds selected using the same inclusion criteria over the 

same sample period.22  We conduct the analysis for both gross and net (of fund manager 

fee) returns. On the basis of a data set of equity mutual funds in the United Kingdom over 

the period 1998–2008, we draw the following conclusions.  

First, the average equity mutual fund manager in the United Kingdom is unable 

to deliver outperformance from either stock selection or market timing, once allowance 

is made for fund manager fees and for the set of common risk factors known to influence 

returns.  There is some evidence that, set against the KTWW (2006) criterion, the top 

performing fund managers do outperform in terms of gross returns. However, there is no 

evidence that any fund manager significantly outperforms in respect of either gross or 

net returns on the basis of the FF (2010) bootstrap.  The TM (1966) results yield similar 

conclusions and indicate that the vast majority of fund managers are very poor at market 

timing. There is some evidence that the top performing fund managers outperform in 

respect of gross returns when using the KTWW bootstrap. Any selectivity skills that 

                                                           
22 FF (2010) did not reproduce the KTWW (2006) bootstrap method on their data set, 

although they used their own bootstrap method with the KTWW inclusion criterion and 

sample period to assess the KTWW method. 
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fund managers might possess (and at best only a very small number of them do) are 

wiped out both by their attempts to time the market and by their fees.   

Our results suggest that the evaluation of fund manager performance depends 

crucially on the bootstrap methodology employed. In the case of gross returns, the 

KTWW (2006) bootstrap identifies a number of fund managers whose performance 

produces significant abnormal returns (as indicated by the alpha t-statistics) at certain 

percentiles. However, when the confidence intervals are calculated for the FF (2010) 

bootstrap at the same percentiles, there is no evidence of outperformance, as the CDF of 

the actual alpha t-statistics lies well within the FF confidence interval. For net returns, 

neither methodology produces any evidence of significant abnormal performance.  

The explanation for this difference in findings is that, within each bootstrap 

simulation, the KTWW (2006) bootstrap simulates fund returns and factor returns 

independently of each other which means that, for a given time period, some returns will 

be drawn for a period in the data sample when the market was bullish and some from a 

period when the market was bearish, whereas the latter simulates these returns jointly and 

hence draws all returns from the same historical time period. As a result, over a large 

number of simulation trials, the KTWW bootstrap will be affected by “pooling over time” 

which leads to much narrower confidence intervals than the FF (2010) bootstrap. 

Taken together, the above results provide powerful evidence that the vast majority 

of fund managers in our data set were not simply unlucky, they were genuinely unskilled. 

Although a small group of “star” fund managers appear to have sufficient skills to 

generate superior gross performance (in excess of operating and trading costs), they 
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extract the whole of this superior performance for themselves via their fees, leaving 

nothing for investors. 
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TABLE 1 

 Descriptive Statistics on U.K. Equity Mutual Funds (1998–2008) 

Table 1 reports average monthly gross and net returns from Feb. 1998 to Sept. 2008 (129 months) for the case 

of 552 funds with a minimum of 8 consecutive observations and for the case of 384 funds with a minimum of 

60 consecutive observations. It also reports the monthly total standard deviation for these cases as well as the 

between-fund and within-fund standard deviation. The former is the average over time of the cross-sectional 

standard deviation of fund returns, while the latter is the average across funds of the time-series standard 

deviation of returns. The table also reports key percentiles of the distribution of returns. Finally, it reports 

average monthly fund management fees over the same period, as well as the size of funds at the end of the 

sample period. 

 

Summary Statistics 

Gross  
Returns 

(≥8 mos.) 

Gross  
Returns 

(≥60 mos.) 

Net  
Returns 

(≥8 mos.) 

Net  
Returns 

(≥60 mos.) 

Fund  
Management  

Fee 
(≥8 mos.) 

Size at  
Sept. 30,  

2008 
(≥8 mos., 

£ millions) 
             

Mean 0.0045 0.0049 0.0033 0.0038 0.0011 234.64 
Std. dev. 0.0482 0.0478 0.0482 0.0478 0.0002 644.24 
Between-fund std. dev. 0.0081 0.0030 0.0082 0.0030 0.0002  
Within-fund std. dev. 0.0479 0.0477 0.0479 0.0477 0.0001  
10% -0.0587 -0.0580 -0.0598 -0.0592 0.0008 7.86 
25% -0.0186 -0.0183 -0.0198 -0.0194 0.0010 25.87 
50% 0.0128 0.0132 0.0117 0.0121 0.0012 63.30 
75% 0.0330 0.0333 0.0318 0.0322 0.0012 196.18 
90% 0.0525 0.0532 0.0514 0.0520 0.0012 503.77 
             

No. of obs.  48,030 42,255 48,030 42,255 48,030 299 
No. of funds 552 384 552 384 552 299 
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TABLE 2  

Estimates of Factor Models for U.K. Equity Mutual Fund Portfolios 

Results in Table 2 are based on the 4-factor model without market timing (equation (1)) and the 5-factor model 

with market timing (equation (2)), based on data for 561 funds. The dependent variable is either the excess 

return on an equal-weighted portfolio or on a value-weighted portfolio (p) of all funds in existence at time t. The 

dependent variable is measured both gross and net of fund management fees. The total performance measure 

(equation (3)) is also reported.  Relevant t-statistics estimated from White’s (1980) robust standard errors are 

reported in parentheses below each parameter estimate: ** and * indicate significance at the 1% and 5% levels, 

respectively. 

 Equal-Weighted Value-Weighted 
         

Independent 
Variables 

Gross 
Returns 

Gross 
Returns  

with 
Market 
Timing 

Net 
Returns 

Net 
Returns  

with 
Market 
Timing 

Gross 
Returns 

Gross 
Returns  

with 
Market 
Timing 

Net 
Returns 

Net Returns 
with Market 

Timing 

p  0.0002 0.0016* -0.0010 0.0005 -0.0002 0.0014 -0.0013 0.0003 
 (0.20) (1.71) (-1.27) (0.49) (-0.21) (1.414) (-1.62) (0.27) 
         

 mt tR rf  0.9490** 0.9167** 0.9485** 0.9168** 0.9380** 0.9037** 0.9379** 0.9038** 

 (41.53) (40.36) (41.46) (40.3) (41.39) (43.29) (41.39) (43.29) 
         

SMBt  0.2526** 0.2522** 0.2528** 0.2524** 0.1832** 0.1828** 0.1834** 0.1829** 

 (9.96) (10.88) (9.96) (10.88) (7.35) (8.33) (7.36) (8.34) 
         

HMLt  -0.0298 -0.0318 -0.0298 -0.0318 -0.0068 -0.0090 -0.0068 -0.0089 

 (-1.27) (-1.40) (-1.26) (-1.40) (-0.30) (-0.42) (-0.30) (-0.42)  
         
MOMt  0.0178 0.0136 0.0178 0.0135 0.0031 -0.0015 0.0031 -0.0015 

 (0.99) (0.78) (0.98) (0.78) (0.17) (-0.09) (0.17) (-0.09)  
         
 2

mt tR rf   -0.8117*  -0.8102  -0.8725*  -0.8694  

  (-2.16)  (-2.16)  (-2.15)  (-2.15)  
         
TM p

  0.0002  -0.0010  -0.0001  -0.0012 
  (0.24)  (-1.28)  (-0.18)  (-1.63) 
         
R2 0.964 0.966 0.964 0.966 0.958 0.961 0.958 0.961 
No. of obs.  129 129 129 129 129 129 129 129 

 



 34

TABLE 3  

Moments of CDFs of t(α) and t(TM): Actual, KTWW and FF Bootstraps 

Table 3 shows key moments of cumulative distribution functions (CDFs) for t(α) and t(TM) statistics from 4-

factor and 5-factor models, and KTWW (2006) and FF (2010) bootstraps for both gross and net excess returns. 

The table also reports, for each distribution, p-values from applying a Jarque–Bera (JB) (1980) test against the 

null hypothesis of normality (a p-value below a specified significance level indicates rejection of normality at 

that significance level). 

  t(α) t(TM) 
                   
    Gross Returns  Net Returns  Gross Returns  Net Returns 
                   

Moments Min. 8 Obs. Min. 60 Obs. Min. 8 Obs. Min. 60 Obs. Min. 8 Obs. Min. 60 Obs. Min. 8 Obs. Min. 60 Obs. 
                   
  Panel A. Actual Method 
                   
 No. of obs.  552 384 552 384 552 384 552 384 
 Mean -0.039 0.033 -0.671 -0.702 -0.039 0.054 -0.680 -0.687 
 Std. dev. 1.242 1.222 1.304 1.303 1.264 1.232 1.325 1.313 
 Skewness 0.524 0.569 0.500 0.533 0.439 0.587 0.426 0.554 
 Kurtosis 8.131 7.752 9.189 9.284 8.615 7.925 9.669 9.496 
 JB p-value 0.004 0.007 0.055 0.103 0.023 0.009 0.172 0.100 
                   
  Panel B. FF Method 
                   
 No. of obs.  5.52m 3.84m 5.52m 3.84m 5.52m 3.84m 5.52m 3.84m 
 Mean -0.005 -0.001 0.012 0.003 -0.025 -0.021 -0.024 -0.025 
 Std. dev. 1.102 1.064 1.102 1.069 1.184 1.075 1.192 1.073 
 Skewness -0.298 -0.041 0.725 -0.046 5.169 -0.093 23.657 -0.097 
 Kurtosis 18.130 4.345 140.882 4.419 1,679.743 4.619 12,309.389 4.591 
 JB p-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
                   
  Panel C. KTWW Method 
   
 No. of obs.  5.52m 3.84m 5.52m 3.84m 5.52m 3.84m 5.52m 3.84m 
 Mean -0.006 -0.006 -0.005 -0.007 -0.009 -0.011 -0.008 -0.011 
 Std. dev. 1.037 1.021 1.038 1.021 1.042 1.021 1.042 1.021 
 Skewness -0.024 -0.047 -0.024 -0.045 -0.096 -0.061 -0.106 -0.061 
 Kurtosis 4.215 3.495 4.222 3.493 9.569 3.504 7.737 3.531 
 JB p-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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TABLE 4  

Percentiles of CDFs of t(α): Actual, KTWW and FF Bootstraps  

(8 monthly observations selection criteria) 

Table 4 shows percentiles of CDFs of t(α) estimated from the 4-factor model in equation (1) with 

(i = 1, …, 552), where the dependent variable in these regressions is the excess gross return in 

Panel A and the excess net return in Panel B. The 552 funds in this sample have at least 8 

monthly observations of returns. The table shows the averaged values for selected percentiles 

(PCT) of the cumulative distribution function of the actual t(α) statistics for the estimated alphas 

(ACT) in this regression. The table also shows for the same percentiles the averaged values of 

t(α) from 5.52 million simulations of the KTWW (2006) and FF (2010) bootstraps (sim(KTWW) 

and sim(FF)), together with the 5% and 95% confidence intervals. 
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TABLE 4 (continued) 

 Panel A. Gross Returns Panel B. Net Returns 
   

PCT ACT 
sim(KTWW) 

(5%, 95%) 
sim(FF) 

(5%, 95%) ACT 
sim(KTWW) 
(5%, 95%) 

sim(FF) 
(5%, 95%) 

       
1 -2.9043 -2.4516 -2.4490 -3.5897 -2.4493 -2.4369 
  (-3.0689, -1.8342) (-3.4300, -1.4680)  (-3.0738, -1.8247) (-3.3976, -1.4762) 
       
5 -2.0434 -1.7043 -1.6336 -2.6194 -1.7043 -1.6172 
  (-2.0850, -1.3236) (-2.5118, -0.7553)  (-2.0892, -1.3195) (-2.4815, -0.7529) 
       

10 -1.5990 -1.3149 -1.2577 -2.3073 -1.3154 -1.2413 
  (-1.6302, -0.9997) (-2.1149, -0.4005)  (-1.6347, -0.9960) (-2.0892, -0.3934) 
       

20 -1.0258 -0.8604 -0.8172 -1.7972 -0.8603 -0.8013 
  (-1.1096, -0.6112) (-1.6571, 0.0227)  (-1.1120, -0.6085) (-1.6340, 0.0313) 
       

30 -0.7248 -0.5353 -0.5076 -1.3425 -0.5363 -0.4907 
  (-0.7277, -0.3429) (-1.3364, 0.3212)  (-0.7328, -0.3399) (-1.3144, 0.3331) 
       

40 -0.3404 -0.2589 -0.2446 -0.9795 -0.2596 -0.227 
  (-0.3781, -0.1398) (-1.0685, 0.5794)  (-0.3812, -0.1380) (-1.0453, 0.5905) 
       

50 -0.0587 0.0003 0.0003 -0.6939 0.0006 0.0178 
  (-0.1139, 0.1145) (-0.8210, 0.8215)  (-0.1143, 0.1155) (-0.7986, 0.8342) 
       

60 0.2022 0.2551 0.2440 -0.3818 0.2549 0.2611 
  (0.1358, 0.3743) (-0.5772, 1.0651)  (0.1351, 0.3746) (-0.5566, 1.0788) 
       

70 0.5485 0.5281 0.5053 -0.0599 0.5291 0.5221 
  (0.3854, 0.6708) (-0.3182, 1.3289)  (0.3844, 0.6737) (-0.3009, 1.3450) 
       

80 0.9258 0.8495 0.8139 0.3639 0.8497 0.8297 
  (0.6642, 1.0347) (-0.0149, 1.6427)  (0.6653, 1.0342) (-0.0006, 1.6599) 
       

90 1.4930 1.2982 1.2485 0.9103 1.2987 1.2633 
  (1.0486, 1.5479) (0.4064, 2.0905)  (1.0479, 1.5496) (0.4177, 2.1089) 
       

95 2.2522 1.6830 1.6158 1.6392 1.6837 1.6316 
  (1.3515, 2.0144) (0.7532, 2.4784)  (1.3479, 2.0196) (0.7659, 2.4974) 
       

99 3.0773 2.4177 2.3966 2.5013 2.4184 2.4147 
  (1.7724, 3.0630) (1.4288, 3.3645)  (1.7830, 3.0537) (1.4414, 3.3880) 
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TABLE 5  

Percentiles of CDFs of t(α): Actual, KTWW and FF Bootstraps 

(60 monthly observations selection criteria) 

Table 5 shows percentiles of CDFs of t(α) estimated from the 4-factor model in equation (1) with 

(i = 1, …, 384), where the dependent variable in these regressions is the excess gross return in 

Panel A and the excess net return in Panel B. The 384 funds in this sample have at least 60 

monthly observations of returns. The table shows the averaged values for selected percentiles 

(PCT) of the cumulative distribution function of the actual t(α) statistics for the estimated alphas 

(ACT) in this regression. The table also shows for the same percentiles the averaged values of 

t(α) from 3.84 million simulations of the KTWW (2006) and FF (2010) bootstraps (sim(KTWW) 

and sim(FF)), together with the 5% and 95% confidence intervals. 
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TABLE 5 (continued) 

 Panel A. Gross Returns Panel B. Net Returns 
   

PCT ACT 
sim(KTWW) 
(5%, 95%) 

sim(FF) 
(5%, 95%) ACT 

sim(KTWW) 
(5%, 95%) 

sim(FF) 
(5%, 95%) 

       
1 -2.7686 -2.4262 -2.2587 -3.5897 -2.4294 -2.2598 
 (-2.9963, -1.8560) (-3.3744, -1.1430)  (-3.0005, -1.8582) (-3.3830, -1.1366) 
       
5 -1.9076 -1.6735 -1.5292 -2.7294 -1.6742 -1.5295 
 (-2.0627, -1.2843) (-2.5601, -0.4983)  (-2.0596, -1.2888) (-2.5628, -0.4962) 
       

10 -1.4281 -1.3055 -1.1892 -2.3424 -1.3066 -1.1888 
 (-1.6442, -0.9669) (-2.2035, -0.1750)  (-1.6417, -0.9715) (-2.2045, -0.1730) 
       

20 -0.9844 -0.8607 -0.7820 -1.8070 -0.8614 -0.7795 
 (-1.1439, -0.5774) (-1.7800, 0.2161)  (-1.1376, -0.5851) (-1.7805, 0.2214) 
       

30 -0.6723 -0.5328 -0.4817 -1.4191 -0.5321 -0.4789 
 (-0.7645, -0.3011) (-1.4744, 0.5110)  (-0.7514, -0.3128) (-1.4740, 0.5161) 
       

40 -0.2997 -0.2584 -0.2323 -1.0309 -0.2591 -0.2290 
 (-0.4036, -0.1133) (-1.2212, 0.7565)  (-0.4002, -0.1179) (-1.2215, 0.7634) 
       

50 0.0071 0.0013 0.0065 -0.6945 0.0007 0.0104 
 (-0.1324, 0.1350) (-0.9814, 0.9944)  (-0.1313, 0.1327) (-0.9795, 1.0002) 
       

60 0.2737 0.2535 0.2386 -0.4239 0.2523 0.2423 
 (0.1164, 0.3907) (-0.7490, 1.2261)  (0.1168, 0.3878) (-0.7468, 1.2315) 
       

70 0.5920 0.5241 0.4869 -0.0432 0.5233 0.4909 
 (0.3579, 0.6903) (-0.5021, 1.4760)  (0.3590, 0.6876) (-0.4989, 1.4807) 
       

80 0.9790 0.8489 0.7835 0.3295 0.8483 0.7884 
 (0.6407, 1.0570) (-0.2118, 1.7789)  (0.6402, 1.0565) (-0.2045, 1.7814) 
       

90 1.5600 1.2876 1.1848 0.8548 1.2869 1.1906 
 (1.0283, 1.5469) (0.1792, 2.1905)  (1.0239, 1.5500) (0.1854, 2.1957) 
       

95 2.2804 1.6474 1.5144 1.6854 1.6470 1.5223 
 (1.3349, 1.9600) (0.4943, 2.5346)  (1.3319, 1.9622) (0.5020, 2.5425) 
       

99 2.9835 2.3783 2.2157 2.5013 2.3775 2.2251 
 (1.8809, 2.8757) (1.1201, 3.3113)  (1.8783, 2.8768) (1.1325, 3.3178) 
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TABLE 6  

Percentiles of CDFs of t(TM): Actual, KTWW and FF Bootstraps 

Table 6 shows percentiles of CDFs of t(TM) estimated from the 5-factor model in equation (2) 

with (i = 1, …, 552), where the dependent variable in these regressions is the excess gross return 

in Panel A and the excess net return in Panel B. The 552 funds in this sample have at least 8 

monthly observations of returns. The table shows the averaged values for selected percentiles 

(PCT) of the cumulative distribution function of the actual t(TM) statistics for the estimated 

alphas (ACT) in this regression. The table also shows for the same percentiles the averaged 

values of t(TM) from 5.52 million simulations of the KTWW (2006) and FF (2010) bootstraps 

(sim(KTWW) and sim(FF)), together with the 5% and 95% confidence intervals. 
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TABLE 6 (contined) 

 Panel A. Gross Returns Panel B. Net Returns 
   

PCT ACT 
sim(KTWW) 

(5%, 95%) 
sim(FF) 

(5%, 95%) ACT 
sim(KTWW) 
(5%, 95%) 

sim(FF) 
(5%, 95%) 

       
1 -3.0142 -2.4717 -2.5900 -3.5963 -2.4756 -2.5874 
  (-3.1903, -1.7531) (-3.6829,-1.4971)  (-3.2328, -1.7184) (-3.6558, -1.5191) 
       

5 -2.0419 -1.7128 -1.6994 -2.7332 -1.7135 -1.6938 
  (-2.1084, -1.172) (-2.5981 , -0.8007)  (-2.1143, -1.3128) (-2.5786, -0.8091) 
       

10 -1.6153 -1.3205 -1.3064 -2.3454 -1.3198 -1.3023 
  (-1.6410, -1.0001) (-2.1778, -0.4351)  (-1.6393 , -1.0003) (-2.1614 , -0.4432) 
       

20 -1.0288 -0.8642 -0.8504 -1.7912 -0.8634 -0.8476 
  (-1.1168, -0.6117) (-1.6982, -0.0026)  (-1.1149, -0.6119) (-1.6858 , -0.0095) 
       

30 -0.7274 -0.5395 -0.5327 -1.3916 -0.5374 -0.5305 
  (-0.7386, -0.3403) (-1.3659 , 0.3004)  (-0.7336, -0.3413) (-1.3567, 0.2957) 
       

40 -0.3523 -0.2619 -0.2646 -0.9965 -0.2603 -0.2631 
  (-0.3885, -0.1353) (-1.0884 , 0.5593)  (-0.3830, -0.1376) (-1.0822 , 0.5560) 
       

50 -0.0477 -0.0016 -0.0153 -0.6899 -0.0006 -0.0142 
  (-0.1183, 0.1150) (-0.8345, 0.8040)  (-0.1167 , 0.1156) (-0.8297, 0.8013) 
       

60 0.2012 0.2529 0.2319 -0.3813 0.2538 0.2323 
  (0.1321, 0.3736) (-0.5855,1.0494)  (0.1328,  0.3747) (-0.5825 , 1.0470) 
       

70 0.5541 0.5268 0.4962 -0.0267 0.5272 0.4953 
  (0.3751,  0.6785) (-0.3212 , 1.3135)  (0.3791,  0.6753) (-0.3202 , 1.3107) 
       

80 0.9515 0.8481 0.8073 0.3761 0.8485 0.8063 
  (0.6553,  1.0408) (-0.0131, 1.6278)  (0.6576,  1.0394) (-0.0138, 1.6265) 
       

90 1.5173 1.2961 1.2463 0.9453 1.2958 1.2449 
  (1.0379,  1.5543) (0.4186,  2.0739)  (1.0408,  1.5508) (0.4151,  2.0746) 
       

95 2.3152 1.6794 1.6212 1.6624 1.6798 1.6196 
  (1.3309, 2.0278) (0.7755,  2.4668)  (1.3340,  2.0257) (0.7740,  2.4652) 
       

99 3.0057 2.4118 2.4541 2.4855 2.4135 2.4474 
  (1.7161,  3.1075) (1.4642,  3.4439)  (1.7151,  3.1119) (1.4628,  3.4321) 
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FIGURE 1  

CDFs: Gross Returns t(α) 

Results based on the 4-factor model in equation (1) (i = 1, . . . , 552), where the dependent 

variable is the excess gross return. The 552 funds in this sample have at least 8 monthly 

observations of returns. Figure 1 shows the cumulative distribution function of the averaged 

values of the actual t(α) statistics for the estimated alphas in this regression. The figure also 

shows the cumulative distribution function of the averaged values of t(α) from 5.52 million 

simulations of the KTWW (2006) and FF (2010) bootstraps, together with the 5% and 95% 

confidence intervals. The darker grey shaded area denotes the 5%–95% confidence interval at 

each percentile point from the KTWW chance distribution. The lighter grey shaded area denotes 

the 5%–95% confidence interval at each percentile point from the FF chance distribution. The 

solid heavy line denotes the CDF of the actual/estimated t(α), the dashed and dotted line are the 

CDFs generated by the KTWW and FF chance distributions, respectively. 
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FIGURE 2  

CDFs: Net Returns t(α) 

Results based on the 4-factor model in equation (1) (i = 1, . . . , 552), where the dependent 

variable is the excess net return. The 552 funds in this sample have at least 8 monthly 

observations of returns. Figure 2 shows the cumulative distribution function of the averaged 

values of the actual t(α) statistics for the estimated alphas in this regression. The figure also 

shows the cumulative distribution function of the averaged values of t(α) from 5.52 million 

simulations of the KTWW (2006) and FF (2010) bootstraps, together with the 5% and 95% 

confidence intervals. The darker grey shaded area denotes the 5%–95% confidence interval at 

each percentile point from the KTWW chance distribution. The lighter grey shaded area denotes 

the 5%–95% confidence interval at each percentile point from the FF chance distribution. The 

solid heavy line denotes the CDF of the actual/estimated t(α), the dashed and dotted line are the 

CDFs generated by the KTWW and FF chance distributions, respectively. 
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FIGURE 3 

CDFs: Net Returns t(TM) 

Results based on the 5-factor model in equation (2) (i = 1, . .  , 552), where the dependent 

variable is the excess net return. The 552 funds in this sample have at least 8 monthly 

observations of returns. Figure 3 shows the cumulative distribution function of the averaged 

values of the actual t(TM) statistics for the estimated TM values from this regression. The figure 

also shows the cumulative distribution function of the averaged values of t(TM) from 5.52 

million simulations of the KTWW (2006) and FF (2010) bootstraps, together with the 5% and 

95% confidence intervals. The darker grey shaded area denotes the 5%–95% confidence interval 

at each percentile point from the KTWW chance distribution. The lighter grey shaded area 

denotes the 5%–95% confidence interval at each percentile point from the FF chance 

distribution. The solid heavy line denotes the CDF of the actual/estimated t(TM), the dashed and 

dotted line are the CDFs generated by the KTWW and FF chance distributions, respectively. 
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