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ABSTRACT 

Background: Computer aids can affect decisions in complex ways, potentially even 

making them worse; common assessment methods may miss these effects.   

We developed a method for estimating the quality of decisions and how computer aids 

affect it, and applied it to computer-aided detection (CAD) of cancer, re-analysing data 

from a published study where 50 professionals (“readers”) interpreted 180 

mammograms, both with and without computer support.  

Method: We used stepwise regression to estimate how CAD affected the probability of 

a reader making a correct screening decision on a patient with cancer (sensitivity), 

thereby taking into account the effects of the difficulty  of the cancer (proportion of 

readers who missed it) and the reader’s discriminating ability (Youden’s Determinant.) 

Using regression estimates we obtained thresholds for classifying a posteriori the cases 

(by difficulty) and the readers (by discriminating ability).  

Results: Use of CAD was associated with a 0.016 increase in sensitivity (95% CI: 

0.003, 0.028) for the 44 least discriminating radiologists for 45 relatively easy, mostly 

CAD-detected, cancers. However, for the 6 most discriminating radiologists, with CAD 

sensitivity decreased by 0.145 (95% CI: 0.034, 0.257)  

for the 15 relatively difficult cancers.  

Conclusions: Our exploratory analysis method reveals unexpected effects. It indicates 

that, despite the original study detecting no significant average effect, CAD helped the 

less discriminating readers but hindered the more discriminating readers. Such 

differential effects, although subtle, may be clinically significant and important for 

improving both computer algorithms and protocols for their use. They should be 

assessed when evaluating CAD and similar warning systems. 

 

 

Keywords: Automation bias, breast cancer screening, computer-aided detection, 

medical decisions, computer advice



 

 

INTRODUCTION 

Computer aids are increasingly important in medical decision making (1). Software 

algorithms may provide highly reliable hints and advice, and this reliability can be 

estimated with methods in common use in software engineering. However, what really 

matters is whether using computer aids make users’ decisions better - or worse. 

Negative effects of decision support have been reported in other fields  (2-4). In 

aviation, for example, research on “automation bias” has documented situations in 

which a human operator makes more errors when being assisted by a computerized 

device than when performing the same task without computer assistance (5). 

Here we introduce an analysis method, applied to a case study in computer aided 

detection (hereafter CAD) in breast cancer screening. This case study provides evidence 

of both positive and negative effects of automation and justifies our proposed method. 

There is a debate about whether current breast cancer screening regimes report too 

many abnormalities that should not be treated as cancers.  However, our topic is not the 

assessment of screening regimes and whether they target the right class of 

abnormalities; but rather, given a target class of abnormalities, the extent to which a 

computerised aid helps or hinders their accurate detection by clinicians.  Therefore, we 

use the terms  "cancer" and "cancer case" as they were used in the clinical study (6) 

which we re-analyse here.   

Cancer Screening and previous studies of CAD 

In breast cancer screening, expert clinicians (readers) examine mammograms and 

decide whether the patient should be recalled for further tests because they suspect 



 

 

cancer. CAD tools have been designed to help readers by identifying and marking 

(“prompting”) regions of interest (ROI) on a digitised mammogram, to prevent 

clinicians from overlooking them.  However, evidence about the benefits of CAD is 

inconclusive (5-14). Extensive literature surveys can be found in (7), (8) and (9).  

Three leading approaches to the evaluation of CAD effectiveness are: 

(a) Estimate the potential of CAD impact by comparing CAD performance with human 

performance.   

E.g. Warren-Burhenne et al (10) estimated the potential benefit of CAD by checking 

whether a cancer was prompted by the CAD tool and how many radiologists had judged 

it actionable without using the CAD tool. 

(b) Compare the performance of readers using CAD with their performance without 

CAD.  E.g. Taylor et al (6, 8, 11) assessed the impact of CAD prompts on the sensitivity 

and specificity of mammogram readers with and without CAD. 

(c) Infer the effectiveness of CAD by establishing statistical equivalence between 

readers’ use of CAD and another well established procedure (e.g. double reading). E.g. 

Gilbert et al (12) compared double reading without CAD and single reading with CAD.  

We argue that these methodological approaches can be useful, but are ultimately 

insufficient  and even potentially misleading for assessing the impact of using CAD and 

similar tools.  A concern is that the observed effects may be an artefact of the 

composition of the samples used, and that implicit assumptions about the tool’s effects 

(e.g. that the tool, when used as prescribed, will not undermine human performance) 

may bias the analysis of results. We propose an alternative method to estimate the 



 

 

impact of decision support that reveals otherwise latent systematic differences in effects 

of CAD on different users and different sets of cases. The remainder of this paper 

describes an application of this approach.  

An approach based on analysis of Human-computer diversity in computer-

based systems.  

We studied CAD in mammography as part of the U.K. DIRC project (the 

Interdisciplinary Research Collaboration on Dependability of computer-based systems -

www.dirc.org.uk). The CAD tool we considered in all our analyses is the R2 

ImageChecker M1000, as  evaluated  by Taylor et al (6, 8, 11). 

 In the terminology of engineering, CAD is an example of protective redundancy with 

diversity: the computer is meant to help users to correct some of their omission errors. 

The diversity between the user and the software should make them unlikely to exactly 

duplicate each other’s errors (13) . We know from previous studies of redundancy, 

especially of computer systems (14, 15), that its effectiveness is greatly affected by 

variations  in  "difficulty" between cases. Accordingly we looked for similar effects in 

CAD. We defined “difficulty” of a cancer case for human readers as the probability of a 

randomly selected reader, without CAD, not recalling that case. Difficulty of a cancer 

case for the CAD tool was defined as the probability of the CAD tool prompting that 

case incorrectly (i.e. not prompting cancer areas, whether or not it placed prompts on 

other areas). We developed probabilistic models showing the probability of incorrect 

decisions as a function of how these two "difficulty" measures vary across the 

population of cases (13). To estimate model parameters we analysed the data from (6), 

the best data set, to our knowledge, for this purpose, since each mammogram was 



 

 

examined by each reader both with and without CAD. We also conducted two 

supplementary studies (16, 17) with a set of cases selected to have large proportions of 

cancers incorrectly prompted by CAD. In these studies, radiologists proved significantly 

less sensitive with CAD than without, suggesting that incorrect CAD prompts may 

hinder readers under some circumstances, which is consistent with the findings of 

Zheng et al (18).  Our further analyses of data from (6) suggested that CAD reduced 

radiologists’ sensitivity in decisions about the more difficult cases – most of which were 

incorrectly prompted by the CAD tool – and increased sensitivity for comparatively 

easy cases (16).  Other indications were that the CAD tool’s errors correlated positively 

with those of readers, and that its errors affected the readers' decisions (17). 

These results appear to contradict the statement from the "ImageChecker M1000 - 

Device labelling" (19) that "... the potential for missed lesions is not increased over 

routine screening mammography when the ImageChecker is used as labelled...". 

Possible explanations can be conjectured (2) with the help of direct observations of 

readers (17).  

Some studies have highlighted the importance of reader variability when interpreting 

the results of clinical trials in mammography. For example, Wagner et al  (20) 

conjecture that "... the ambiguity surrounding the effectiveness of mammography is due 

in part to the observed range of reader skills...". 

Here we present a more complete method of statistical analysis than in (17), which takes 

into account not only the effects of case difficulty but also of readers' performance (i.e. 

the difference between their true positive rate and false positive rate, when operating  



 

 

without CAD). Other factors we consider are whether CAD prompts were correct or 

wrong and whether the cancer was screen detected or a false negative at screening 

(interval cancer). We also discuss the potential role of these effects in explaining 

discrepancies between results from different controlled studies. 

 

METHOD 

Data source 

We conducted supplementary statistical analyses of the data from the study published 

by Taylor and colleagues (6) .  This study is, to our knowledge, the only study where 

each reader examined all the cases in both conditions, with and without CAD. 

Taylor et al (6, 8, 11) evaluated  the R2 ImageChecker M1000 in a retrospective study 

which assessed the impact of CAD prompts on the sensitivity and specificity of film 

readers (30 radiologists, 5 breast clinicians and 15 radiographers), who read 180 films, 

all of which had a proven outcome. The set included 60 cancers (20 false negative 

interval cancers – i.e., cancers that had not been detected during screening using these 

mammograms but which were classified as false negatives when the mammograms 

were later reviewed by a panel of experts – and 40 screen detected cancers,   i.e., 

detected during screening ). The case set was selected in such a way that it contained a 

mixture of different types of cancerous signs (masses, micro-calcifications, spiculated 

lesions and asymmetries) and a combination of easy and difficult cases. The selection 

criteria (6, 8, 11) ensure that the case set covers a variety of categories of cases, 

although the set is not necessarily a representative sample of the population addressed 



 

 

by screening. Each reader read each case twice, once with CAD ("prompted condition") 

and once without CAD ("unprompted condition"). The order of the reading sessions was 

randomised separately for each reader (8, 11).  The conclusions of the original study 

were that "No significant difference was found for readers' sensitivity or specificity 

between the prompted and unprompted conditions" and “There was no evidence that the 

use of R2 affects able and less able readers’ sensitivities or specificities differently” 

 We applied each of the statistical procedures described below to various subsets of the 

cancer cases in the set (Table 1). 

Classification of cases by  “difficulty” and Readers by “Discriminating Ability”  

We examined how the apparent effect of CAD on readers' sensitivity varied with two 

parameters: 1) the "difficulty" of the cancer: we define the difficulty di of cancer i as the 

fraction of readers who, without CAD ("unprompted condition"), missed the cancer; 2) 

the discriminating ability (DA)  sj of the reader j in the unprompted condition, used as a 

measure of a reader’s skill.  

We measure a reader's DA with Youden’s Determinant (21), i.e. as the difference 

between the proportion of cancers each reader (correctly) recalled (sensitivity, true 

positive rate) and the proportion of normal cases the reader (wrongly) recalled (false 

positive rate): 

DA = sensitivity - ( 1 - specificity ) = sensitivity + specificity –- 1, 

(each reader’s specificity here is calculated for the 120 non-cancer films, which do not 

otherwise enter into the present analysis)   



 

 

If RR is the reader recall rate and BR is the base rate of cancers, then 

RR =  ( 1 - specificity ) + BR × DA. 

If the reader does not discriminate between cancers and normal cases, she recalls any 

case with the same probability and her DA = 0. If the reader recalls all the cancers and 

no normal cases (perfect discrimination), her    DA = 1. In the extreme (and unrealistic) 

case, in which the reader recalls no cancers but all the normal cases, her DA = -1. For 

real readers, we expect 0 ≤ DA ≤ 1. 

“Impact” of CAD: Logistic Regression Estimates 

Our method is based on the assumption that reading is affected both by systematic 

differences between readers (more or less effective at the task) and between cases (more 

or less difficult to decide), and by random variations in the performance of a specific 

reader, even when examining a specific case. Thus, we assume that for each reader and 

each case, there is a probability (between 0 and 1) of that reader recalling that specific 

cancer.  The study data provide a binary indicator describing whether the reader recalled 

that case on two specific occasions (one unprompted and one prompted, in randomised 

order). From these data, we sought to estimate the probability of a specific reader 

recalling a specific cancer in the unprompted (un) and prompted (pr) condition, 

choosing as estimates two functions pun(di, sj) and  ppr(di, sj) of the readers' DA 

(averaged over all the 180 cancer and non-cancer films ), sj , and the cancer's difficulty 

(averaged over all readers), di. We obtained these functions as logistic regression 

models: 
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are the well known logit and modified logit transformations (22).   

To determine the form of the polynomials [1] and [2] and estimate the unknown 

coefficients ll ba ,  for 9..0=l  , we applied stepwise regression with the Akaike 

information criterion (AIC) (23), which makes the coefficients ll ba , for the non-

significant terms of logistic models [1] and [2] equal to 0  while estimating the others  

with the standard procedure for generalised linear models (24, 25) .  

Our analyses were exploratory. Therefore, we were not fitting a pre-selected statistical 

model to the data, but extracting a model from the data by stepwise regression using 

AIC (see e.g. (24)). 



 

 

The procedure starts with the ‘empty’ model, in which the right-hand sides of the 

equations for logit(pun(di, sj)) or logit(ppr(di, sj)) contain a single, constant term a0 or 

b0. Then, given a certain collection of possible model terms as in equations [1] and [2], 

at each step it adds the most informative term to the model and removes a term when it 

becomes noninformative, until no term can be added or removed without increasing 

AIC: 

AIC = Deviance + 2 · number of parameters + const 

(Deviance is a measure of discrepancy between the observed responses and those 

estimated by the model (24))  

Thus, AIC resolves the trade-off between model accuracy and model complexity (which 

may lead to over-fitting) by penalizing the addition of every new term to the model. A 

new term may be added to the model only when the resulting reduction of deviance is 

greater than the penalty for adding the term. In the final model all the terms are 

statistically significant.  

Because the data were sparse (26) the distributions of model deviances are  not Chi-

squared and the standard analysis of deviance is not applicable. Therefore, we applied 

the le Cessie-van Houwelingen global test (27) to the null hypothesis of no difference 

between the observed responses and those estimated by the regression models [1] and 

[2].  For all sub-populations of cancers from rows and columns of Table 1, the le 

Cessie-van Houwelingen global test did not reject the null hypothesis for either of these 

two regression models, corroborating the validity of estimates obtained by these 

analyses. For instance, for the sub-population including all cancers the test showed: p-



 

 

value = 0.52 (Z=-0.64) for the unprompted condition and p-value = 0.25 (Z= -1.14) for 

the prompted condition.                              

Then, we estimated the systematic impact of computer prompts on readers' sensitivity as  

),(),(),( jiunjiprji sdpsdpsdimp −= . 

A positive value of this “impact” estimate for a certain pair of values s and d indicates 

that computer support is helpful: the probability of a reader with discriminating ability s 

recalling a case of difficulty d would be greater with CAD than without it. Similarly, a 

negative value indicates a detrimental effect. 

We classified the impact of CAD as significant if the 95% pointwise confidence 

intervals (28) for ppr(di,sj) and for pun(di,sj) did not overlap.  

The above method produces best-fit estimates for probabilities of correct (case i, reader 

j) decisions in the two conditions, prompted and unprompted, as a function of the two 

independent variables chosen, to account for the differences between the reader-case 

pairs. With the same independent variables, alternative regression methods could also 

be used; for instance focusing only on the differences observed for each case-reader pair  

between decisions in the two conditions, one can apply the same method to the 

(mutually exclusive) paired outcomes: 

1. Decision is aided by CAD: Reader i recalls case j in the prompted condition and 

does not recall the same case in the unprompted condition with probability 

paid(di, sj) . 



 

 

2. Decision is hindered by CAD: Reader i  recalls case j in the unprompted 

condition and does not recall the case in the prompted condition with probability       

phin(di, sj) . 

One can see that,  

P(correct prompted decision) – P(correct unprompted decision) = 

P(decision aided) + P(both decisions correct) –  

( P(decision hindered)  +  P(both decisions correct) ) =  

P(decision aided) – P(decision hindered). 

Therefore, if the errors of the models are negligible, then 

imp( di, sj ) = ppr(di, sj) – pun(di, sj) ≈  paid(di, sj) – phin(di, sj)   

RESULTS 

Case Difficulty, Reader DA without CAD and CAD tool sensitivity 

Many cancer cases in the study (Figure 1) were "easy": in the unprompted condition, 

30% (18/60) of all cases had d = 0, that is, they were recalled by all 50 readers. The 

average case difficulty was 0.24  (CI: 0.17, 0.32).   

The readers’ DA without CAD (Figure 2) varied between 0.37 and 0.76 with average 

value 0.57.   



 

 

The correlation between readers' DA and their sensitivity in the unprompted condition 

was not statistically significant (Figure 3; the linear regression coefficient is 0.25 with   

t-value = -1.79 and p-value =  0.08).  Therefore, we do not believe that  our results were 

significantly influenced by regression towards the mean (29) .  

The CAD tool’s sensitivity for different sub-populations of cases (Table 1) is 

summarised in Table 2.   

 Logistic models 

Our method resulted in the following two logistic models for isolated outcomes 

(correct/incorrect decisions in the prompted and unprompted conditions)  
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We note that both models contain mixed terms (term coefficients a7, b7, b9), indicating 

that the reader-case effects are significant. 

CAD’s impact 

Figure 4 shows contour plots of the estimated impact of CAD, imp(d, s) for all cancer 

cases.  Areas with statistically significant values are outlined by dashed curves. Table 2 

shows that the estimated impact imp(d, s) varies markedly among different categories of 

cases and readers. 

Figure 5 shows the  impact, for the same data as Figure 4, but  estimated with the 

models fitted for paired outcomes: “decision is aided by CAD” and “decision is 



 

 

hindered by CAD”. The pattern is the same as in Figure 4, i.e. 

imp(di, sj) ≈ paid(di, sj) – phin(di, sj)  

As an extra check on these results,  we fitted the 2-dimentional complete 3
rd

 order  

multinomial logistic model (30)  to paired outcomes. The patterns of estimated CAD 

impact showed no substantial differences from the results obtained by our method. 

To validate the regression estimates against the raw data, we used the plot in Figure 4  

to suggest an a posteriori classification for both cases and readers, based on the 

magnitude of estimated CAD impact. For instance, In Figure 4 the horizontal line at s = 

0.65 seems a good “ad hoc” separator of readers hindered by CAD from readers who 

benefited from CAD. Thus, we classified the readers into 6 "highly discriminating" 

readers (s ≥ 0.65) and the remaining 44 "less discriminating" readers and the cancers 

into 45 “easy” (d < 0.5) and 15 “difficult” (d ≥ 0.5). 

Combining groups of readers and cases defined by these two classifications, we 

compared observed reader sensitivities with and without CAD. 

The sensitivity of the 44 less discriminating readers for the 45 easy cases improved with 

CAD by 0.016 (95%CI: 0.003, 0.028).  However, the sensitivity of the highly 

discriminating readers for the difficult cases decreased with CAD by 0.145 (95%CI:  

0.034, 0.257). 

Repeating the check for different subsets of the cancer cases, we observed significant 

negative impact on the sensitivity of the highly discriminating readers for interval 



 

 

cancers (average imp= -0.12; 95%CI: -0.22, -0.01) and no statistically significant 

impact for sub-populations of correctly or incorrectly prompted cancers.   

Difficult cases for readers are difficult cases for CAD 

 

Table 3 shows that, when processing easy cases (d≤ 0.5), there were no statistically 

significant differences between the average sensitivities of: (i) the more discriminating 

readers (s > 0.65) without CAD; (ii) the less discriminating readers ( s ≤ 0.65) without 

CAD; (iii) the CAD tool alone. The same is true for difficult cases (d > 0.5). All this is 

consistent with our earlier observation that the correlation between readers’ 

discriminating ability and sensitivity is not statistically significant.  

However, the three differences between the columns “Easy cases” and “Difficult cases” 

are all significant. That is, the cases that are difficult for an average reader are also 

difficult for more discriminating readers and for the CAD tool alone, which can be 

considered a weakness in a decision support tool. (13)  

  

DISCUSSION  AND CONCLUSIONS 

Our method of analysis showed systematic, divergent effects of CAD prompts on 

readers' sensitivity: beneficial for some categories of readers and cases but detrimental 

for others. Apparently the same CAD set-up could produce a positive or a negative 

overall effect if used with different populations of cases and/or readers; accordingly we 

conclude that the finding of no significant overall effect in the original study (6) is due 



 

 

to systematic positive and negative effects canceling out in the sample used, rather than 

the absence of any CAD influence.  

We found a positive association between computer prompts and improved 

sensitivity of the less discriminating readers for comparatively easy cases, mostly 

screen-detected cancers. This is the intended effect of correct computer prompts. An 

unexpected finding is the association between use of CAD and degraded sensitivity of 

readers for comparatively difficult cases; particularly striking because this affected the 

highly discriminating readers. This finding is, however, consistent with our 

aforementioned empirical study (16, 17) and the study by Zheng et al (18), which 

strongly suggested that readers using CAD were biased by incorrect computer outputs.  

 Plainly CAD can affect readers with different skills in very different ways. Other 

studies have suggested limited effectiveness of CAD in mammography (31, 32), 

however the finding that CAD can systematically improve or worsen readers’ 

performance depending on their skill and the difficulty of cases is a novel finding. 

These findings can parsimoniously be attributed to general mechanisms that affect how 

people respond to advice - specifically automated advice (2, 4) - which support the 

expectation that CAD effects may vary markedly between different contexts of use. 

Effects may even be different for new releases of the specific tool used in the study (6) 

and the commonly used summary measures of the quality of a CAD tool – its sensitivity 

and specificity – may not be good predictors of its impact on the actual decisions of  

clinicians.   

Accordingly we propose that the degree of diversity between readers’ and CAD’s 

false negative errors, as well as false positive errors, and possibly other subtler 



 

 

parameters, are worth including in evaluations of the impact of CAD. In particular, in 

assessing CAD effectiveness in a specific context, it is useful to check for patterns of 

systematic improvement and/or degradation of decisions for classes of readers and of 

cases, as observed in this case study.  

Although we demonstrated our method by analysing effects on readers’ 

sensitivity, it can also be applied to explore effects on readers’ specificity.  

Our study offers some methodological contributions that would be of general 

value in assessing computer-supported decision making:  

� analyses should consider that a computer aid may sometimes do harm 

(cause wrong decisions); ignoring this possibility may produce substantial 

misinterpretation of experimental results (e.g., in this case, "there was no 

overall effect from CAD, therefore one can conclude that  readers ignored 

CAD prompts"); 

� computer aids may have different effects for different users as well as for 

different decision problems (e.g. different mammograms), complicating 

extrapolation from small artificial samples to real populations of patients 

and clinicians; 

� assessment methods should be chosen to detect such systematic 

differences, to avoid decisions based on spurious extrapolation and to 

inform the design of decision aids and of the protocols for their use; 



 

 

� our method of exploratory analysis identifies effects that are hidden when 

data are analysed in the aggregate only. Our regression method is akin to 

clustering, or a posteriori stratification of the data, so as to reveal groups of 

{user, case} pairs for which CAD had markedly different effects, and thus 

avoids inappropriate extrapolations from average results over a diverse 

population, and suggests ways of improving both assessment and design of 

computer-assisted activities; 

� using an indicator of the intrinsic difficulty of a decision and an indicator 

of the general ability of a decision-maker as the two independent variables 

for the analysis was an effective basis for detecting previously overlooked 

effects.  
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FIGURE LEGENDS 

Figure 1 Distribution of difficulty (d) of 60 cancers. 

 

Figure 2. Distribution of 50 readers' DA (s, Youden’s determinant ) without CAD. 

 

Figure 3 

Scatter-plot of readers’ DA (Youden’s  determinant)  without CAD vs. readers’ 

sensitivity without CAD. 

 

Figure 4. 

Contour plot of estimated impact of CAD   imp(d, s)  for all cancers. Here and in 

the following figures, we consider the impact significant if the 95% pointwise 

confidence intervals for pun(di,sj) and ppr(di,sj) do not overlap; statistically 

significant values of impact are outlined with the dashed curve. Values for the 

points with extreme impact are given in Table 2. 

 

Figure 5.  

Contour plot of impact of  CAD:   imp(d, s)  for all cancers, estimated with 

logistic models for paired outcomes: “decision is aided by CAD” and “decision is 

hindered by CAD”. See Figure 4 for an explanation of significance values.
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Figure 2. Distribution of 50 readers' DA (s, Youden’s determinant ) without CAD. 



 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Scatter-plot of readers’ DA (Youden’s  determinant)  without CAD vs. readers’ 

sensitivity without CAD. 
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Figure 4. 

Contour plot of estimated impact of CAD   imp(d, s)  for all cancers. Here and in 

the following figures, we consider the impact significant if the 95% pointwise 

confidence intervals for pun(di,sj) and ppr(di,sj) do not overlap; statistically 

significant values of impact are outlined with the dashed curve. Values for the 

points with extreme impact are given in Table 2. 
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Figure 5.  

Contour plot of impact of  CAD:   imp(d, s)  for all cancers, estimated with 

logistic models for paired outcomes: “decision is aided by CAD” and “decision is 

hindered by CAD”. See Figure 4 for an explanation of significance values. 
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Table 1 Different categories of cancer cases. 

 Cancers correctly 
prompted by CAD 

cancers not correctly 
prompted by CAD 

Total 

 

Screen detected 
cancers, i.e. cancers 
detected through 
routine screening 

36 4 40 

Interval cancers, i.e. 
cancers missed during 
routine screening   

9 11 20 

Total 45 15 60 
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Table 2. Extremes of estimated impact  Imp(d,s)  of CAD by different categories of cancers. 

Category of cases Sensitivity of CAD 
Type of 
extreme of 
impact 

Imp(d,s)   s d pun(d, s)  ppr(d, s) 

All cases (n=60) 
0.750 (0.621,0.853) [45 
correctly prompted 
cases] 

Min -0.225 0.758 0.500 0.735(0.603, 0.835) 0.510 (0.480, 0.540) 

Max 0.087 0.510 0.280 0.663(0.622, 0.701) 0.750 (0.722,0.775) 

Correctly prompted by 
CAD (n=45) 

1.000 

Min -0.428 0.758 0.460 0.705 (0.499, 0.852) 0.277 (0.145, 0.464) 

Max 0.107 0.533 0.300 0.654 (0.607, 0.698) 0.761 (0.725, 0.794) 

Incorrectly prompted by 
CAD (n=15) 

0.000 

Min -0.160 0.672 0.620 0.467 (0.388, 0.547) 0.306 (0.238, 0.384) 

Max not signif 0.633 0.920 0.068 (0.041, 0.109) 0.029 (0.015, 0.053) 

Interval cancers (n=20) 
0.450 (0.231, 0.685) [9 
correctly prompted 
cases] 

Min -0.316 0.367 0.920 0.372 (0.146, 0.674) 0.057 (0.040, 0.080) 

Max 0.268 0.367 0.100 0.657 (0.378, 0.858) 0.925 (0.893, 0.958) 

Screen detected 
cancers (n=40) 

0.900 (0.763, 0.972) 
[36 correctly prompted 
cases]  

Min -0.303 0.367 0.122 0.910 (0.871, 0.938) 0.607 (0.408, 0.776) 

Max 0.293 0.367 0.700 0.329 (0.244, 0.427) 0.621 (0.450, 0.767) 

 

Comments: pun(d, s), ppr(d, s) are the estimated probabilities of a reader with DA s recalling a case of difficulty d in the unprompted condition and prompted condition 

respectively; Imp(d, s) = ppr(d, s) - pun(d, s) is the estimated impact of CAD; 95% Confidence intervals for the probabilities are given in brackets;  
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Table 3 : Sensitivity of readers (without CAD) and CAD (alone) for a 

posteriori classification of readers and  cases 

 Easy cases                              

( d < 0.5, 45 cases ) 

Difficult cases       

( d ≥ 0.5, 15 cases ) 

Sensitivity of less 
discriminating readers 
without CAD 

 ( s < 0.65, 44 readers) 

0.898 

(binomial 95%CI: 0.884, 0.911) 

1776 correct decisions out of 
1977 known  

0.293  

(binomial 95%CI: 0.258, 0.328) 

193 correct decisions out of  
659 known 

Sensitivity of highly 
discriminating readers 
without CAD  

( s ≥ 0.65, 6 readers) 

0.922 

(binomial 95%CI: 0.883, 0.951) 

248 correct decisions out of 269 
known 

0.404 

(binomial 95%CI: 0.301, 0.513) 

36 correct decisions out of 89 
known 

Sensitivity of CAD tool 0.822  

 (binomial 95%CI: 0.679, 0.920) 

 37 of 45 cases were correctly 
prompted 

0.267 

(binomial 95%CI: 0.078, 0.551) 

 4 of 15 cases were correctly 
prompted. 
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