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Abstract

Learning the global hand orientation from 2D monocular images is a challeng-

ing task, as the projected hand shape is affected by a number of variations.

These include inter-person hand shape and size variations, intra-person pose

and style variations and self-occlusion due to varying hand orientation. Given

a hand orientation dataset containing these variations, a single regressor proves

to be limited for learning the mapping of hand silhouette images onto the ori-

entation angles. We address this by proposing a staged probabilistic regressor

(SPORE) which consists of multiple expert regressors, each one learning a sub-

set of variations from the dataset. Inspired by Boosting, the novelty of our

method comes from the staged probabilistic learning, where each stage con-

sists of training and adding an expert regressor to the intermediate ensemble

of expert regressors. Unlike Boosting, we marginalize the posterior prediction

probabilities from each expert regressor by learning a marginalization weights

regressor, where the weights are extracted during training using a Kullback-

Leibler divergence-based optimization. We extend and evaluate our proposed

framework for inferring hand orientation and pose simultaneously. In compari-

son to the state-of-the-art of hand orientation inference, multi-layered Random

Forest marginalization and Boosting, our proposed method proves to be more

accurate. Moreover, experimental results reveal that simultaneously learning

hand orientation and pose from 2D monocular images significantly improves

the pose classification performance.
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1. Introduction

Over recent years, real-time depth cameras have facilitated the introduction

of a range of novel natural interaction methods [1, 2]. Depth maps from such

cameras have been widely used in research that solves hand pose estimation

under challenging settings [3, 4, 5, 6]. While depth cameras are proving to5

be of great significance for addressing the hand pose inference problem, these

cameras are not widely available on mobile devices due to the considerations of

power consumption, cost and form-factor [7]. Technologies like Google’s Project

Tango 1 and Pelican Imaging 2 show the recent focus on miniaturizing the depth

sensors for mobile devices. However, the need for a custom sensor with complex10

electronics, high-power illumination and physical constraints, such as baseline

between illumination and sensor, limit the use of such devices, especially when

compared to 2D monocular cameras [7]. In contrast, 2D monocular cameras are

readily available in the majority of the mobile devices. Therefore, methods that

utilize 2D monocular images to infer characteristics of the hand, such as hand15

orientation and pose, in new ways can significantly contribute towards novel

interaction on these devices.

The human hand is an effective interaction tool due to its dexterous function-

ality in communication and manipulation [8]. For this reason, the problem of

estimating hand pose has attracted a lot of research interest [3, 4, 9, 10]. Despite20

the recent progress in this field, limited attention has been given to study the

effects of hand orientation variations on hand pose inference [1]. In this paper,

we propose a method for inferring hand orientation for planar hand poses using

2D monocular images of the hand. Furthermore, we show that simultaneously

learning from hand orientation and pose significantly improves the pose clas-25

sification performance. We note that the proposed hand orientation inference

1https://get.google.com/tango/
2http://www.pelicanimaging.com/
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method can benefit the existing model-based hand pose estimation methods

that optimize against global hand orientation and pose [11, 12]. Furthermore,

when used in Augmented Reality applications, the inferred hand orientation can

provide the user direct control of the orientation of augmented objects [13].30

We observe that the changing orientation of the hand induces changes in the

projected hand shape in 2D monocular images. We therefore utilize contour-

based features in our work as these features encode the geometric hand shape

variations that directly correspond to changes in orientation of the hand [13].

Similar features have been previously used for hand shape-based gesture recog-35

nition [14] and person recognition [15]. As we will show in this paper, these

features also prove sufficient for jointly learning hand orientation and pose.

Moreover, we note that the hand contour is more robust to scene illumination

than intensity and compactly encodes (as a 1D signal) the hand’s global orienta-

tion unlike local feature descriptors like texture, shape context, or SIFT [16]. In40

such cases, a model that learns the relationship between contour-based features

and the orientation angles would contribute towards understanding and using

different hand postures. Furthermore, the projected hand shape is affected by

a number of variations, which include inter-person hand shape and size varia-

tions, intra-person pose and style variations and self-occlusion due to varying45

hand orientation.

In this paper, we present a staged probabilistic regressor (SPORE) which

consists of an ensemble of expert regressors, each one learning a subset of vari-

ations from the dataset. We use SPORE to address the inference of hand

orientation angles, resulting from flexion/extension of the wrist and prona-50

tion/supination of the forearm measured along the azimuth and elevation axes

(as shown in Fig. 1). SPORE learns the mapping of contour-based features,

extracted from 2D monocular images, onto the corresponding hand orienta-

tion angles. The expert regressors in SPORE are trained, using contour-based

features extracted from 2D monocular images of the hand, and added to the55

ensemble in stages forming an intermediate model. Evaluation of the inter-

mediate model, using training samples, reveals a latent variable space. This
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Figure 1: Movements in the wrist and forearm used to define hand orientation shows flexion

and extension of the wrist and supination and pronation of the forearm.

latent variable space defines a subset of training data that the existing regres-

sors have difficulty in learning from. This subset is used to train and add the

next expert regressor. Each expert regressor gives a posterior probability for60

assigning a given latent variable to the training samples. These posterior proba-

bilities are used along with the ground truth (GT) prior probability to estimate

marginalization weights, which are used in the intermediate model to combine

the ensemble of expert regressors. After training all stages, a marginalization

weights regressor is trained that learns the mapping of hand contour-based fea-65

tures onto marginalization weights. Given an input silhouette image, we first

extract a hand contour-based feature vector. This is followed by online predic-

tion which involves using the feature vector to infer the marginalization weights

for marginalizing the predicted posterior probabilities from each expert regres-

sor.70

1.1. Contributions

Our main contribution comes from the staged probabilistic learning, where

we let the intermediate model define the subsets of data used for training the

next stage. This has a two-fold contribution to the existing work in [17] where

pre-defined latent variables were used for defining the subsets of the data. First,75

it uses the relationship of difficult to understand latent variables for defining
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the subset, enabling its application to potentially any machine learning prob-

lem where easily defined subsets of the training data do not exist. Secondly,

in cases where datasets are small and dividing them into subsets can result in

shallow under fitting regressors, our proposed staged learning method is capa-80

ble of defining latent variables with overlapping boundaries ensuring complete

training of expert regressors. We further extend and demonstrate the applica-

bility of the proposed method for simultaneously inferring hand orientation and

pose. Furthermore, we are the first to show that a method which simultane-

ously learns hand orientation and pose from 2D images outperforms a pose only85

classifier as it is able to better reason the variations in pose induced due to the

viewpoint changes.

The outline of this paper is as follows. Section 2 presents the related work,

while Section 3 details the problem definition and Section 4 outlines the assump-

tions undertaken. Our proposed staged probabilistic regressor is presented in90

Section 5 and the experimental results with discussion are presented in Section

6. Finally, Section 7 concludes the paper.

2. Related Work

This section presents a review of the previous methods involving hand ori-

entation and pose estimation. We include the review of hand pose estimation95

methods as these could be related to single-shot hand orientation estimation,

where some of these methods also exploit the quantized orientation of the hand

[4]. However, accurate hand orientation estimation is addressed only by a few

methods [13, 18, 19]. To achieve their goals, researchers have employed differ-

ent modes of input data, including colored gloves, color and depth images [8].100

Our proposed SPORE method falls in the category of RGB images as we uti-

lize colored images of hands along with the corresponding orientation angles for

both training and prediction. The following sections present a brief overview of

generative, discriminative and hybrid hand pose estimation methods. This is

followed by the presentation of existing work on hand orientation inference. We105

5



then present the related methods that utilize marginalization of multi-layered

Random Forest (ML-RF).

2.1. Generative Methods

Generative methods use a model-based approach to address the problem of

hand pose estimation. By optimizing the parameters of a hand model to the110

input hand image, these methods can simultaneously estimate the articulated

hand orientation and pose. A major limitation of 2D monocular cameras is that

the projected 2D image loses vital depth information, which gives rise to an

ambiguity where it becomes difficult to differentiate multiple postures with sim-

ilar 2D image projections. Generative methods are capable of addressing this115

ambiguity in a 2D image by utilizing a fully articulated 3D hand model [11, 12].

de La Gorce et al. [12] optimized the texture, illumination and articulations of

a 3D hand model to estimate hand orientation and pose from an input 2D hand

image. A similar method was proposed in [11], where generative models for both

the hand and the background pixels were jointly used for image segmentation120

and hand pose estimation. Some of the recent generative methods also utilized

depth images and advanced optimization techniques such as particle swarm op-

timization (PSO) [5, 20, 21]. The multi-camera based generative method in

[20] recovered hand postures in the presence of occlusion from interaction with

physical objects. Although these generative techniques are capable of estimat-125

ing the underlying articulations corresponding to each hand posture, they are

affected by the drifting problem [5, 11, 12, 20]. As the performance depends on

pose estimation from previous frames, predicted poses may drift away from GT

when error accumulates over time [4]. Furthermore, such methods rely on ini-

tialization, where an initial static hand orientation and pose is used. Moreover,130

optimizing the parameters with up to 27 degrees of freedom (DOF) for 3D hand

models is computationally expensive because of the vast search space [8], and

in some cases requires implementation on a GPU to achieve close to real-time

execution [5]. These methods can benefit from a single-shot hand orientation

and pose estimation method that can be used for initialization as well as to cor-135
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rect the drift in error. We note that some recent hybrid approaches described in

Section 2.3 address the drifting error by re-initializing the generative approach

using single-shot hand orientation and pose estimation.

2.2. Discriminative Methods

These methods are based on learning techniques and are able to learn the140

mapping from the feature space to target parameter space. Their ability to infer

a given parameter from a single input image [22] has been a major factor in their

recent popularity. Furthermore, these methods are computationally lightweight

as compared to generative approaches [23].

A number of discriminative methods have been previously proposed to esti-145

mate hand pose [3, 4, 24, 25]. Wang et al. [24] used nearest neighbor search to

infer hand pose from 2D monocular images. The approach relied on a colored

glove and a large synthetic dataset of hand poses. In [25], a Random Forest clas-

sifier was trained on a large dataset of labeled synthetic depth images to estimate

the hand pose. Keskin et al. [3] showed that the performance of the method in150

[25] can be improved by dividing the dataset into clusters and using the ML-RF

classification. Tang et al. [26] exploited the hierarchical relationship of different

hand joints by using a divide-and-conquer strategy. This method built a topo-

logical model of the hand where the global kinematic constraints were implicitly

learned. They also collected a dataset of 10 users performing various random155

hand postures, which they used to train and test their topological model. Sun

et al. [10] also exploited the hierarchical relationship between different parts

of the hand to train a cascaded regressor. They argued that the hand shape

undergoes large variations due to changes in the viewpoint and finger articula-

tions. They addressed this issue by presenting a 3D pixel parameterization that160

achieved better invariance to 3D viewpoint changes. A major challenge faced by

methods relying on synthetic datasets are their lack of generalization for unseen

data. Tang et al. [4] addressed this issue by proposing a semi-supervised trans-

ductive Regression Forest for articulated hand pose estimation. This approach

learned hand pose from a combination of the synthetic and realistic datasets of165
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depth images. In [22], generalization for human body pose was addressed by

incorporating real scenario-based variations into the synthetic data generation

method.

Recent interest in Convolutional Neural Networks (CNN) has also been

expressed in some discriminative hand pose estimation methods [27, 28, 29].170

Tompson et al. [27] localized joints using CNN. They generated single-view

heatmaps for joints localization using depth images as input. Ge et al. [28]

extended [27] to utilize multi-view CNN. A query depth image of the hand was

first projected onto three orthogonal planes to produce multi-view projections.

Three CNNs were then trained to infer the heatmaps of different joint loca-175

tions in each projection. The inferred multi-view heatmaps were fused together

to produce the final 3D hand pose. Oberweger et al. [29] explored different

CNN architectures for articulated hand pose inference. They achieved this by

learning the mapping of depth images onto the 3D joint locations. A regression-

based joint-specific refinement stage was introduced to improve the localization180

accuracy.

Apart from [4], most existing discriminative hand pose estimation methods

do not utilize hand orientation information. As we will show in this paper,

hand orientations provide important information about variations induced in

the projected 2D hand pose image due to viewpoint changes and can contribute185

towards improving the performance of hand pose classification.

2.3. Hybrid Methods

Recent literature has seen interest in utilizing a hybrid approach, that com-

bines generative and discriminative methods [6, 9, 21, 27, 30]. These methods

utilize the one-shot pose estimation capability of discriminative models to make190

generative models robust to tracking failures and drifting error. Moreover, the

generative method imposes kinematic constraints resulting in realistically accu-

rate descriptions of an articulated hand pose.

Xu et al. [31] took a three-step approach where they learned from a synthetic

dataset of depth images. This method first estimated the in-plane orientation195
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and 3D location of the bottom of the hand. The orientation information was

then used to correct for in-plane rotation of the input data, where depth-based

difference features were utilized to infer a number of candidate postures of hand.

These candidate postures were used in a generative model to infer the final

detailed hand pose. The resulting method turned out to be computationally200

expensive and was only able to generalize under in-plane rotations for a single

user. Tompson et al. [27] used a CNN for feature extraction and to infer

heatmaps for localizing joints. The heatmaps were used along with inverse

kinematics to estimate the hand pose. This approach, however, was limited by

prediction of 2D joint locations, and its reliance on depth maps for determining205

the third coordinate, which is unavailable for occluded joints. Oberweger et

al. [9] proposed a data-driven approach to estimate 3D hand poses from depth

images. This method utilized a CNN for estimating the initial joint locations

from a depth image of the hand. They replaced the generative model with a

feedback loop implemented using CNN and trained to synthesize depth images210

from inferred joint locations. Sharp et al. [21] utilized a discriminative re-

initializer for optimizing PSO. A similar approach was proposed in [6] for hand

tracking using non-linear optimization methods.

All of the emerging hybrid methods require a large dataset for learning the

discriminative part, while still relying on computational resources to perform215

generative optimization. Owing to the complexity, such methods have not been

deployed or tested on mobile devices.

2.4. Orientation Estimation

A limited number of methods exist in the literature that estimate hand

orientation [13, 18, 19]. Most of these methods use camera calibration and220

hand features to build a relationship between camera pose and hand orientation.

These methods do not address the generalization problem and hence require a

calibration step for every new user and camera setup.

To the best of our knowledge, image-based hand orientation regression has

only been applied in our previous work in [13, 17], which does not require camera225
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calibration. Our method in [13] utilized two single-variate Random Forest (RF)

regressors based on an assumption that the orientation angles vary indepen-

dently. This method, evaluated on a subset of hand orientation angles, showed

the significance of inferring hand orientation from 2D uncalibrated monocular

images. We extended the hand orientation inference framework further, in [17],230

by utilizing an ML-RF regression method that used multi-variate regressors to

regress the orientation angles together. Additionally, we used a hand orientation

dataset that covered a more detailed orientation space. Similar to our previous

work, the method proposed in this paper also does not require camera calibra-

tion which renders it suitable for a wider array of applications across different235

devices. The dataset used for training the proposed method comes from multiple

people, which enables it to naturally handle person-to-person hand variations.

The proposed staged probabilistic regression method learns different variations

in stages, where it relies on intermediate model evaluations to reveal harder to

learn samples.240

Independent work proposed in [21] utilized global hand orientations from

depth images to improve hand pose optimization. This method first generated

a dataset of synthetic depth images and the corresponding global hand orien-

tations. An ML-RF model was then utilized, where the first layer inferred a

quantized hand orientation and the second layer estimated refined orientation245

along with additional pose information. The prediction probabilities, however,

were utilized to sample candidate solutions for use with PSO-based optimiza-

tion. The synthetic depth images provided detailed visible shape information,

which introduced fewer ambiguities in the data as compared to 2D images, thus

resulting in a simpler orientation estimation problem in [21].250

2.5. Marginalization of multi-layered Random Forest

Previous work on hand pose estimation have utilized ML-RF, where complex

problems have been divided and solved by a number of expert regressors trained

on simpler subsets of the data [3, 7, 17]. Keskin et al. [3] proposed an ML-RF

classification for hand pose estimation, which was divided into two classification255
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layers, namely, shape classification and pose estimation layer. Three most sig-

nificant posterior probabilities from the first layer were used to marginalize the

posterior probabilities in the second layer. A similar ML-RF regression method

was proposed in [7], where the first layer performed coarse classification and

the second layer achieved fine regression. Marginalization in this method was260

done using posterior probabilities from coarse classification layers as weights for

predictions at the fine regression layer. Dantone et al. [32] proposed Condi-

tional Random Forest for detecting facial features. This method also used all

posterior probabilities from both layers for marginalization. Sun et al. [33] uti-

lized Conditional Random Forest for inferring joint locations for human body265

pose estimation. They argued that a multi-layered model that is conditioned on

a global latent variable, such as torso orientation or human height, can signifi-

cantly contribute to improved joint location prediction. All these methods relied

on posterior probabilities from the first layer which tends to underestimate the

true posteriors, making these methods prone to errors [34]. Furthermore, as the270

first layer is trained independently to the second layer, these methods cannot

recover from inaccuracies arising from the posterior probabilities of the second

layer. Our previous work in [17] proposed a method for learning marginaliza-

tion through regression by extracting marginalization weights using posterior

probabilities of the expert regressors. In this paper, we extend this work by275

introducing a staged probabilistic regression method for learning hand orienta-

tion.

Boosting algorithms, such as Adaboost [35] and Gradient Boosting [36],

sequentially learn and combine weak learners, such as Decision Stumps, to build

an expressive model. The key idea in these methods is to highlight the training280

samples with large errors and let the next weak learner minimize such errors.

Adaboost achieves this by having an additional weight for each training sample

whereas Gradient Boosting utilizes the gradient representing the global loss.

Similar to Gradient Boosting, Alternating Regression Forest [37] incorporates a

global loss function for improving the Regression Forest optimization algorithm.285

Our proposed staged learning method is inspired by Boosting, however, it differs

11



from Boosting as it follows a probabilistic approach. Moreover, our method

utilizes only harder samples to train the subsequent stages, in contrast to all data

used in non-cascaded Adaboost or Gradient Boosting. This enables our method

to learn an ensemble of expert regressors, where each regressor learns well from290

only a subset of variations in the dataset. Furthermore, we mathematically

formulate a probabilistic method for combining such ensembles, facilitating them

to work collectively for better accuracy. Another appealing property of our

method is that, unlike Adaboost, it does not require the underlying regressors

to incorporate training weights representing the evaluation of the previously295

learned stages. In this paper we utilize the Random Forest as the probabilistic

regressor, however, we note that our method can be easily generalized to work

with any probabilistic regressor or classifier.

3. Problem Formulation

Let U = {(dk,ok)}Kk=1 be a dataset with K Contour Distance Feature (CDF)300

vectors dk and the corresponding target orientation vectors ok containing the

continuous variables for azimuth (φk) and the elevation (ψk) angles. The CDF

vectors are extracted from hand silhouette images captured from an uncalibrated

2D monocular camera such that it contains variations in hand orientation, shape

and size [13]. We further describe the method for extracting the CDF in Section305

5.1. In this work, we address the problem of learning the mapping of the CDF

in dk onto the target orientation ok, i.e. the orientation angle pair (φk, ψk).

This is an ill-posed problem, as there may be multiple hand orientations that

produce the same contour. We propose a staged learning algorithm for an ML-

RF regressor. This method utilizes an ensemble of expert regressors that learns310

the complex mapping of CDF dk onto the target hand orientation ok, despite

the presence of a number of variations in orientation, shape and size of the hand.
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Figure 2: Variations in style, shape and size of hand from 15 participants in our datasets.

The hand images are shown for the same orientation.

4. Assumptions

Most mobile devices are equipped with 2D monocular cameras. 3D depth

cameras are not widely available on such devices due to their high power con-315

sumption, cost and relatively larger form-factor [7]. Our proposed SPORE

method is targeted for mobile devices, and for this reason, we only use 2D

monocular images. Most existing state-of-the-art methods utilize depth data,

where the focus is to infer detailed articulated hand pose [3, 4, 5]. These meth-

ods are not suitable for a mobile scenario where, in addition to the absence320

of depth sensors, limited computational resources are available. The proposed

method for hand orientation and pose estimation assumes the use of 2D monoc-

ular cameras, where limited computational resources are available and real-time

performance is required. Moreover, to enable a method that works across differ-

ent devices without the need for camera calibration, we assume that the utilized325

cameras are uncalibrated.

We assume that the hand orientation can be represented with a single 3D

normal vector for a planar hand pose. This enables us to reliably extract hand
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orientation angles encoded by the 3D normal vector, which is satisfied by a

limited set of articulated hand postures. Nevertheless, such assumption facili-330

tates our research to focus on the effects of hand orientation variations with a

predefined set of planar hand shapes. This paper refers to planar hand shapes

as hand poses, where our aim is to study the effects of orientation variations

on such hand poses. While the problem seems similar to pose estimation for

rigid objects, it is quite different from it as our data contains multiple sources335

of variations. These include inter-person hand shape and size variations and

intra-person pose and style variations. In Fig. 2, we show the inter-person hand

variations in style, shape and size of 15 different hands from our dataset with

the same hand orientation. We note that these variations further make the hand

orientation and pose estimation a challenging task.340

Given the 3D normal vector, we extract the orientation encoded by azimuth

(φ) and elevation (ψ) angles [13]. Our aim is to model variations in orientations

for fronto-parallel hand, therefore we limit the orientation angles to
√
φ2 + ψ2 ≤

45◦. On the contrary, hand orientations with
√
φ2 + ψ2 � 45◦ are affected by

self-occlusion where the visible shape of the hand is significantly occluded. Fig. 3345

shows some example hand images for these orientations.

Skin and hand segmentation have a long history in computer vision, where

many segmentation techniques have been devised [38, 39, 40]. We therefore ex-

tract hand silhouette images by utilizing the skin detection method proposed in

[39]. We assume that the background is uncluttered and the illumination con-350

ditions are fixed for reliable silhouette extraction. This is a potential limitation

of the proposed method, however, it enables us to focus on the hand orientation

estimation problem given a segmented silhouette image of planar hand shape.

To robustly extract hand shape features, we assume that the in-plane ori-

entation θ of the hand will always be within a predefined range of an upright355

hand pose, where θ = 90◦. Our assumption is satisfied by setting the operating

range on the in-plane orientation to be 0◦ < θ < 180◦.
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Figure 3: Hand images with orientation angles in the range
√
φ2 + ψ2 � 45◦. The large

orientations result in self-occlusion where the visible shape of the hand is significantly occluded.

Such orientations are not addressed in this paper.

5. Staged Probabilistic Regression

In our proposed method, we utilize a multi-layered Random Forest composed

of two layers, where the first layer consists of a single marginalization weights360

regressor and the second layer is composed of an ensemble of expert regres-

sors trained on subsets of the hand orientation dataset. We introduce a staged

learning method that trains and adds the expert regressors to the model incre-

mentally. The flowchart of the training and prediction framework for SPORE

is presented in Fig. 4. Algorithm 1 and 2 detail the training and prediction365

algorithm for SPORE. In the proposed framework each expert regressor that

is added to the model is trained on samples that the existing expert regressors

have difficulty in learning. We achieve this by combining the existing models

using marginalization weights and evaluating the accuracy of the model after

each training stage. Based on a threshold error, we identify the harder regres-370

sion problems after each stage and use these samples to train the next expert

regressor. This approach enables us to use our regression-based marginalization

framework without defining subsets using latent variable boundaries as in [17].

When all expert regressors have been trained, the posterior probabilities corre-
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Figure 4: Flowchart shows the staged probabilistic regression (SPORE) training and predic-

tion framework.

sponding to each sample in the training set are acquired from each of the trained375

expert regressors. We derive and apply a Kullback-Leibler divergence-based op-

timization technique that estimates the marginalization weights for estimating

marginal probability distribution from the given ensemble of expert regressors.

We use these marginalization weights to train a marginalization weights regres-

sor which enables us to combine the ensemble of expert regressor. As demon-380

strated in Section 6, this staged learning approach allows us to achieve higher

accuracy as compared to previously proposed marginalization methods as well

as a single regressor-based approach. We now describe the SPORE approach in

detail.
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Algorithm 1: Training algorithm for SPORE.
Input: Uall = {(d1, o1), · · · , (dk, ok), · · · , (dK , oK)}, N , α

% N is the number of stages

% α is the error threshold

Output: (ERn, MR)

% ERn are N Expert Regressors

% MR is the Marginalization Weights Regressor

1 n ← 1 % Starting stage

2 {rn(k)}Kk=1 ← 1 % Latent variable selecting all samples

3 Usel ← selectSubset(Uall, rn) % Select initial subset of Uall

4 % Training ERn

5 for n ← 1 to N do

6 ERn ← Train(Usel) % Train stage n using selected subset

7 if n = 1 then

8 p (ok|rn,dk) ← Predict(dk, ERn) % Get posterior probabilities

9 op(k) ← arg maxok
p (ok|rn,dk)

10 else

11 for m ← 1 to n do

12 p (ok|rm,dk) ← Predict(dk, ERm)

13 end

14 ωnk ← getMarginalizationWeights(p (ok|rn,dk)) % Described in Section 5.5

15 p (ok|dk) ←
∑n

m=1 p (ok|rm,dk)ωmk % Marginalize probabilities described in

Section 5.3

16 op(k) ← arg maxok
p (ok|dk)

17 end

18 % Define latent variable for next stage described in Section 5.4

19 if |op(k)− ok| > α then

20 rn(k) ← 1

21 else

22 rn(k) ← 0

23 end

24 Usel ← selectSubset( Uall, rn)

25 end

26 % Training MR

27 for n ← 1 to N do

28 p (ok|rn,dk) ← Predict(dk, ERn) % Get posterior probabilities

29 ωnk ← getMarginalizationWeights(p (ok|rn,dk))

30 Wall ← {(d1, ωn1), · · · (dK , ωnK)} % Define training set for MR

31 MR ← Train(Wall)

32 end

33 return ERn,MR
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Algorithm 2: Prediction algorithm for SPORE.
Input: d, ERn, MR, N

% d is the input Contour Distance Feature vector

% ERn are N Expert Regressors

% MR is the Marginalization Weights Regressor

Output: o

% o = (φ, ψ) is a vector of predicted orientation angles

1 o ← Ø

2 ωn ← Predict(d, MR) % Predict Marginalization Weights

3 for n ← 1 to N do

4 p (o|rn,d) ← Predict(d, ERn) % Get posterior probabilities

5 end

6 p (o|d) ←
∑N

n=1 p (o|rn,d)ωn % Marginalize posterior probabilities

7 o ← arg maxo p (o|d)

8 return o

5.1. Contour Distance Features385

Our proposed framework utilizes the Contour Distance Features (CDFs)

which are extracted from hand silhouette images. CDFs have been previously

used for hand shape-based gesture recognition [15]. The changes in the CDF

relate to variations in both hand orientation and pose. Moreover, we also employ

a method for aligning and normalizing the extracted features. We now describe390

the method for extracting CDF vectors.

Given a dataset {sk}Kk=1 of input silhouette images, we compute a corre-

sponding CDF set {dk}Kk=1 [13]. The contour extracted from each silhouette

image in {sk}Kk=1 consists of points pk = {pk1, · · · , pki, · · ·pkIk}, where k spec-

ifies the sample index, i is the index for each point in the contour and Ik is

the total number of contour points in kth sample. Let a contour distance for

a single silhouette image be denoted by d̃k =
{
d̃k1, · · · , d̃ki, · · · d̃kIk

}
. d̃ki is

computed by calculating the Euclidean distance of each of the contour points

pki = {pxki, p
y
ki} to a prevalent point on the wrist qk = {qxk , q

y
k} and is given by:

d̃ki =

√
(qxk − pxki)

2
+ (qyk − p

y
ki)

2
, (1)

where qk is extracted, for each sample in {sk}Kk=1, by emanating a ray from
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Figure 5: Contour Distance Feature (CDF) vector extraction from a hand contour showing

(a) the method for extraction of a prevalent point qk on the wrist using a fitted ellipse with

in-plane orientation θ, centroid ck and a ray vk and (b) the corresponding CDF vector.

centroid in the direction of the wrist [13]. We further discuss the approach

for extracting qk in the next section. The extracted features have a different

number of samples Ik and magnitude depending on the scale changes and inter-

person hand shape variations. We normalize the magnitude using Equation 2.

dk =
d̃k

max
1≤i≤Ik

(d̃ki)
. (2)

dk is then resampled to a specified number of samples Υ to produce dk ∈

{dk}Kk=1. In our experimental evaluation, we found that the value of Ik is

related to the scale of the hand, which we found to be in the range 800− 1400

samples. We empirically choose Υ = 1000 to preserve the variations in the395

feature vector.

5.1.1. Extraction of a Prevalent Point on the Wrist

We now describe the method for extracting a prevalent point qk on the wrist

in a silhouette image sk. This point is used as a reference point in Equation 1 to

extract the CDF vector. Furthermore, the point qk also aligns the corresponding

CDF vector. Fig. 5 shows the method for extracting such prevalent point, for

a given hand contour, along with its corresponding CDF vector. We use the

in-plane orientation θ of the hand, which can be defined by the angle between
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the x-axis and the major axis of an ellipse that fits the hand contour. Given

θ and the contour centroid ck, an equation of a ray emanating from ck can be

defined by:

vk = ξκv̂k + ck, (3)

where v̂k is the unit vector encoding the direction,

v̂k =

 1

tan θ


√

12 + tan2 θ
, (4)

ξ is a scalar for correcting the direction of v̂k,

ξ =

+1 if θ < 90◦

−1 if θ ≥ 90◦,

(5)

and κ is a parameter that changes the length of the ray.

The direction scalar ξ is calculated using Equation 5 based on the assumption

that the in-plane orientation θ of the hand will always be in the range 0◦ < θ <400

180◦. ξ is used in Equation 3 to correct the direction of the ray vk so that

it is always propagating towards the wrist. Our proposed method increases

κ until the ray intersects with the contour at a point qk ∈ pki on the wrist.

This point is also used as a starting point for the distance feature calculation.

The construction of CDF in this way makes the proposed method invariant to405

in-plane rotations in the range 0◦ < θ < 180◦.

5.2. Random Forest Construction

Building on the reported superior performance in the existing work for hand

pose estimation [3, 4, 7], our proposed staged probabilistic regression method

utilizes a Random Forest training algorithm for both regression layers. In this410

section, we present details of the training algorithm specific to our proposed

method, a further in-depth literature on Random Forest can be found in [41].

The forest is a collection of T trees which are trained using a training dataset

U = {(dk,ok)}Kk=1. Each tree consists of split nodes, responsible for performing
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a binary split on the input dataset, and terminal leaf nodes that store the

probability distribution of the data propagated down the branches of the tree.

The learned parameters Θ = (w, τ) are stored at each split node, where w is the

index of the test feature and τ is its corresponding learned threshold defining

the split. The data arriving at the jth node is split using a splitting function

f (Uj ,Θ) defined as:

f (Uj ,Θ) =

Left if Uj (w) < τ,

Right otherwise.

(6)

Driven by maximizing the information gain Q (Uj ,Θ), this splitting function

splits the data into two sets
{
ULeftj ,URightj

}
∈ Uj for the child nodes. The

information gain Q (Uj ,Θ) is defined as:

Q (Uj ,Θ) = H (Uj)−
∑

b∈{Left,Right}

∣∣Ubj ∣∣
|Uj |

H
(
Ubj
)
, (7)

where H (Uj) is the Shannon entropy of Uj .

The branches in the tree terminate with leaf nodes that contain the proba-

bility distributions of the data arriving as a result of the above splitting process.

During the online prediction, a given input feature vector d propagates down the

branches of each tree, where a leaf node gives a posterior probability pt (φ, ψ|d).

The predictions from all trees are aggregated as:

p (φ, ψ|d) =
1

T

T∑
t=1

pt (φ, ψ|d) , (8)

where (φ, ψ) is the orientation vector o whose final value is determined by

maximum-a-posteriori (MAP) estimation as:

(φ, ψ)
∗

= arg max
φ,ψ

p (φ, ψ|d) . (9)

5.3. Marginalization of Multiple Expert Regressors

In our proposed method, the ensemble of expert regressors consists of a set415

of multi-variate Random Forest regressors that are trained on the subset of our
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hand orientation dataset U . This ensemble of expert regressors enables better

generalization in the presence of a number of variations in the dataset. The

subsets of our dataset are defined based on latent variable representations that

are generated using the intermediate model evaluations. Given an input CDF420

vector d each expert regressor infers the posterior probability p (φ, ψ|rn,d) for

a given latent variable rn.

Our proposed expert regression layer contains an ensemble of trained ex-

pert regressors, where the task of marginalization is to estimate their combined

marginal probability that is used to infer orientation angles o = (φ, ψ) for a

given input feature vector d. This marginal probability is defined as:

p (φ, ψ|d) =

N∑
n=1

p (φ, ψ|rn,d)ωn, (10)

where ωn are marginalization weights corresponding to each latent variable such

that
∑N
n=1 ωn = 1 and N is the total number of expert regressors. In the subse-

quent sections, we present a method to estimate the marginalization weights ωn425

from trained expert models and propose to use a marginalization weights regres-

sor that learns the mapping of CDF d onto the corresponding marginalization

weights ωn.

5.4. Latent Variable Generation using Intermediate Models

In our proposed work we do not explicitly define the latent variable space,

as in [17]. We, however, rely on intermediate model evaluations for defining

a latent variable rn and, as a result, define the subsets used for training the

expert regressor in the nth stage. We start training the first expert regressor

using all samples in the dataset U . Following this, we train and add additional

expert regressors to the ensemble using subsets of the dataset defined by the

corresponding latent variable rn. For each training sample in U , we determine

if it belongs to the latent variable rn by:

rn(k) =

1 if |op(k)− ok| > α,

0 otherwise,

(11)
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where op(k) are the orientation angles predicted by marginalizing intermediate430

model probabilities using Equation 10 and ok are the GT orientation angles,

respectively. α is an adjustable threshold and rn(k) ∈ {0, 1} determines if the

given sample belongs to the latent variable rn for the nth stage.

This method has two advantages over the previously proposed latent variable

based training [17]. Firstly, the proposed method relies on the model to define435

and use subsets, which might be useful in cases where optimal latent variable-

based subset definitions are difficult or not well defined. Secondly, in cases

where datasets are small and dividing them into subsets can result in shallow

under fitting models, our proposed incremental learning method is capable of

defining latent variables with overlapping boundaries ensuring complete training440

of expert regressors.

5.5. Marginalization through Regression

We marginalize the posterior probabilities from multiple expert regressors

using a single Random Forest regressor. This regressor is trained using marginal-

ization weights that are extracted using training data. Marginalization through

regression is able to generalize better by learning a complex mapping of the CDF

vectors onto weights that marginalize the posterior probabilities from expert re-

gressors [17]. For estimating the marginalization weights, we first formulate

the prior probability for the training samples using the GT orientation angles

(φgt, ψgt) in a multi-variate normal distribution as:

p (φgt, ψgt) = N ((φgt, ψgt) ,Σ) , (12)

where Σ is the covariance that can be adjusted to control the spread of p (φgt, ψgt).

Given the prior probability p (φgt, ψgt) and the corresponding posterior prob-

abilities p (φ, ψ|rn,d), we propose a novel optimization method, where the marginal-

ization error is based on the Kullback-Leibler divergence [42]. Fig. 6 shows the

marginalization weights estimation framework. The error is optimized to esti-

mate the GT marginalization weights ωn for all latent variables rn ∈ {r1, r2, r3 · · · rN}.
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Figure 6: Marginalization weights estimation using training data. A training sample is used

to get posterior probabilities from each expert regressor. These probabilities are then used

along with the prior probability in Equation 13 to estimate marginalization weights and the

corresponding marginalized probability. Probabilities shown are only for demonstrating the

concept and are not actual probabilities from multiple stages of SPORE.

We define this error as:

E =

∫∫
p (φgt, ψgt) log

p (φgt, ψgt)

p (φ, ψ|d)
dφdψ. (13)

Derivation We optimize the weights using gradient descent, which relies on

derivatives of E with respect to the weights ωn. Here we present the derivation

of partial derivatives from Equation 13 that can be used to obtain optimal

weights ωn.

E =

∫∫
p (φgt, ψgt) log

p (φgt, ψgt)

p (φ, ψ|d)
dφdψ, (14)

=

∫∫
p (φgt, ψgt) [log p (φgt, ψgt)

− log(

N∑
n=1

p (φ, ψ|rn,d)ωn)]dφdψ. (15)
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The partial derivative w.r.t ωn can then be defined as:

∂E

∂ωn
= −

∫∫
p (φgt, ψgt) p (φ, ψ|rn,d)∑N

n=1 p (φ, ψ|rn,d)ωn
dφdψ. (16)

Optimization We use gradient descent with:

∇E =

[
∂E

∂w1
,
∂E

∂w2
,
∂E

∂w3
· · · ∂E

∂wN

]
, (17)

for which the optimization is iteratively evolved for a solution given by:

ωγ+1
n = ωγn − λ∇Eγ , (18)

where λ is the step size along the negative gradient direction and γ is the iter-445

ation number. At this stage, we have the optimal weights fit to the GT. These

are required to train the marginalization weights regressor that produces the

weights ωn during online prediction. This regressor is described next.

Marginalization weights regressor We use a multi-variate Random For-450

est regressor to learn the mapping of CDF vectors to marginalization weights

ωn. This regressor is used during prediction to infer marginalization weights

ωn for marginalizing the posterior probabilities p (φ, ψ|rn,d) from each expert

regressors using Equation 10.

5.6. Extension to Estimate Orientation and Pose455

The proposed staged probabilistic regression method can be extended to si-

multaneously infer the hand orientation and pose. To achieve this, we utilize

a hand orientation and pose dataset which contains the CDF (dk), the corre-

sponding hand pose label (χk) and the orientation angles (ok). We introduce

the pose classification into each expert regressor by including the discrete poste-

rior probability distributions p (χ|d) in the leaf nodes. Training of this extended

model is driven by both orientation regression as well as pose classification data.

We achieve this by using a selected information gain Qs, which is determined

by:

Qs = (1− β)Qr + βQc, (19)
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where Qr is the orientation regression information gain, Qc is the pose clas-

sification information gain and β ∈ {0, 1} is a random variable selected with

probability p(β). We use standard classification and regression information gain

as defined in [41].

Given the additional pose classification task, we define the latent variable

space rn by modifying Equation 11 with an additional term as:

rn(k) =

1 if |op(k)− ok| > α or χp(k) 6= χk,

0 otherwise,

(20)

where χp(k) and χk are the predicted and GT hand poses, respectively. The460

additional criteria related to hand poses in Equation 20 identifies samples for

which the existing intermediate model has difficulty in inferring the hand pose.

For an input CDF vector d, each expert model now additionally infers the

posterior probability p (χ|rn,d). We marginalize these posterior probabilities

using:

p (χ|d) =
∑
a

p (χ|rn,d) ρn, (21)

where ρn are weights corresponding to each latent variable for the classification

posterior probabilities and
∑N
n ρn = 1. We estimate these marginalization

weights using discrete version of energy E defined as:

Ec =
∑
χ

p (χgt) log
p (χgt)

p (χ|d)
. (22)

The partial derivatives w.r.t ρn can be defined using Ec as:

∂Ec
∂ρn

= −
∑
χ

p (χgt) p (χ|rn,d)∑N
n=1 p (χ|rn,d) ρn

. (23)

We use gradient descent to estimate the optimal weights ρn for the clas-

sification posterior probabilities. We augment the marginalization weights for

classification ρn and regression ωn to train a marginalization weights regressor465

that infers both weights simultaneously.
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(a) χ1 (b) χ2 (c) χ3 (d) χ4

Figure 7: Four hand postures, along with their corresponding labels, used for multiple pose

experimental validation. (a) shows an open hand pose used for single pose experimental

validation of SPORE.

6. Experimental Validation

We evaluate our proposed staged probabilistic regression (SPORE) method

using two datasets collected from 22 participants. The first dataset referred to

as single pose dataset herein, contains 9414 samples captured for an open hand470

pose from 22 different participants. The second dataset, referred to as multiple

pose dataset herein, contains 8675 samples captured using four different hand

poses (shown in Fig. 7) from 10 different participants. The different hand poses

used for experimental validation are limited, however, they demonstrate the ap-

plicability of the proposed method in scenarios where multiple hand poses are475

required. All of the hand poses used in this paper are planar, which enables

us to extract reliable GT hand orientation using the method described in [13].

The range of the orientation angles captured by these datasets are restricted to

a circular space defined by
√
φ2 + ψ2 ≤ 45◦. This gives us an appropriate ratio

for the number of samples against the variations within the defined orientation480

space. We show experimental results that demonstrate the ability of our pro-

posed staged probabilistic regression method to infer hand orientation and pose

on these datasets.

6.1. Comparison Methods

The proposed method is compared with a previous method for hand orienta-

tion regression that uses a single-layered single-variate Random Forest (SL-SV
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RF) with independence assumption on each hand orientation angle [13]. We also

compare with four different methods for the marginalization of ML-RF regres-

sors [7, 17, 32]. Furthermore, as SPORE is inspired by Boosting, we compare it

with Random Forest with Adaboost (RF Adaboost) [35], Alternating Regression

Forest (ARF) [37] and Gradient Boosted Trees (GBT) [36]. Our previous work

proposed in [17], referred to as ML-RF MtR herein, is closely related to SPORE.

This method also utilized a multi-layered Random Forest, where the first layer

consisted of a single marginalization weights regressor and the second layer con-

tained five expert regressors. The expert regressors in ML-RF MtR were trained

on subsets of the orientation dataset defined using a simple observation that the

hand can be oriented (i) fronto-parallel or facing (ii) right, (iii) left, (iv) upwards

or (v) downwards with respect to the camera. Marginalization weights for the

expert regressors were extracted using posterior probabilities and a Kullback-

Leibler divergence-based optimization similar to the one described in Section 5.

ML-RF MtR differs from our proposed SPORE method in terms of the explicit

definition of the five latent variables for defining subsets of the training data. In

contrast, SPORE relies on the learned models to define the next most suitable

latent variable space, which has a number of advantages that are discussed in

Section 6.4. We refer to the other ML-RF marginalization methods as ML-RF1,

ML-RF2 and ML-RF3 herein, adapted from [7] and [32]. These methods also

rely on the same explicit definition of latent variables as in ML-RF MtR. While

the methods proposed in [7] and [32] do not originally address hand orientation

regression problem, they provide a method for marginalizing the ML-RF in dif-

ferent domains. In our experimental validation, these three ML-RF comparison

methods use a two-layered Random Forest with a coarse latent variable classi-

fication in the first layer and expert orientation regression in the second layer.

These methods only differ in marginalization where ML-RF1 uses the predicted

latent variable in the coarse layer to select the corresponding expert regressor

28



for prediction, as defined by Equations 24 and 25.

r∗n = arg max
rn

p (rn|dk) , (24)

(φ∗, ψ∗) = arg max
(φ,ψ)

p (φ, ψ|r∗n,dk) . (25)

ML-RF2 uses posterior probabilities of each latent variable in the coarse

layer as marginalization weights for predicted angles from each expert regres-

sor, whereas ML-RF3 uses posterior probabilities from both the coarse and the

expert layers to present the marginalized posterior probability. The mathemat-

ical formulation for predictions using ML-RF2 is shown in Equation 26.

(φ∗, ψ∗) =

N∑
n=1

p (rn|dk) arg max
(φ,ψ)

p(φ, ψ|rn,dk), (26)

where N = 5 is the total number of expert regressors in the ML-RF model.

Equations 27 and 28 show the formulation for making predictions using ML-

RF3.

p(φ, ψ|dk) =

N∑
n=1

p (rn|dk) p(φ, ψ|rn,dk), (27)

(φ∗, ψ∗) = arg max
(φ,ψ)

p(φ, ψ|dk). (28)

We evaluate the extension of our proposed method to simultaneously esti-485

mate orientation and pose using the multiple pose dataset. To show the role of

hand orientation in improving the pose classification performance we compare

this extension of our work with a Random Forest classifier (RF Clf) that infers

hand pose only. We also make the comparison of orientation inference of this

extension with all of the comparison methods that utilize Random Forest. These490

include ML-RF MtR, SL-RF SV, ML-RF1, ML-RF2, ML-RF3, RF Adaboost

and ARF. We exclude evaluation of GBT on this data as this method does not

provide a way to combine regression and classification into the same model. The

results of these comparisons are discussed in Section 6.5.

6.2. Error Measures495

We evaluate the proposed method using a number of qualitative as well

as quantitative error measures. These include Mean Absolute Error (MAE)
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for each orientation angle, Combined Mean Absolute Error (CMAE) for both

azimuth and elevation angles, GT versus predicted angle plots and percentage

data versus error plots. We present a brief overview of the quantitative measures500

below.

6.2.1. Mean Absolute Error

Given a set of GT orientation angles (φk, ψk) and the corresponding pre-

dicted angles (φpk, ψpk) from a trained regressor, the MAE (φm, ψm) is defined

by Equations 29 and 30.

φm =

∑K
k=1 |φk − φpk|

K
, (29)

ψm =

∑K
k=1 |ψk − ψpk|

K
. (30)

We use MAE instead of Euclidean distance between the GT and predicted

orientation as in our work we found that sometimes the regressor is able to infer

only one of the two angles correctly. In such a scenario, a Euclidean distance

does not present accurate measure of performance. On the other hand, MAE

provides a quantitative measure of the regressor’s performance independently

for each orientation angle. We use the MAE to define the CMAE as:

CMAE =
φm + ψm

2
, (31)

CMAE is particularly used for tuning different training parameters of SPORE.

6.3. Parameter Optimization

The proposed SPORE method has different training parameters. These505

include the number of trees (T ), depth of each tree (δt), minimum number of

samples in each leaf node (ηj), the number of features selected at each split

node (ε), the number of stages (N), the latent variable generation parameter

α and the probability p(β) for selecting information gain for the extension of

the proposed method for simultaneous hand orientation and pose inference. As510

all comparison methods utilize Random Forest, therefore we empirically set the
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Figure 8: Percentage data versus error in prediction shows the percentage of data that lies

below a given error in prediction for the single-fold validation using (a) single pose dataset

and (b) using multiple pose dataset.

values of the related parameters as, T = 100, δt = 10, ηj = 20, ε = 1. As the

proposed SPORE method is independent of the number of predefined subsets,

therefore any number of stages N can be used. We perform single-fold validation

using the single pose dataset, randomly selecting 70% of the data for training515

and 30% for testing, to evaluate the optimal values for N , α and p(β).

The CMAE with varying number of stages N is shown in Fig. 8 (a). It

can be seen that SPORE with N = 5 stages presents the minimum MAE for

both azimuth (φ) and elevation (ψ) angles combined. The error increases for

N � 5 as the subsequent regression stages with N > 5 do not get enough data520

for training. Hence, N = 5 optimally captures the variations in our dataset by

providing a good balance for the number of stages and sufficient samples in the

subsets defined by the corresponding latent variables. We choose N = 5 for the

rest of the experimental validation. Fig. 8 (b) shows the CMAE with varying

α threshold in Equation 11 using N = 5. We note that selecting α = 6◦ yields525

the best performance of the proposed SPORE method. α acts as a threshold

for defining the subset of training data for the next stage. We observe that if

α is too low, i.e. α ≈ 0, then the subsequent stages will all be trained using all

training samples, thus not targeting to learn from specific variations. On the

contrary, if α is set too high, i.e. α > 10◦, then the latent variable space will not530
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Figure 9: Parameter optimization for p(β = 0) shows evaluation of the proposed SPORE

method with hand orientation and pose estimation extension. (a) presents Combined Mean

Absolute Error (CMAE) for orientation inference and (b) shows the accuracy of pose classifi-

cation against varying probability p(β = 0) of selecting classification or regression information

gain.

be fully defined for subsequent stages, hence resulting in under fitting models.

We note that α = 6◦ maintains a good balance for selecting harder samples for

training subsequent stages. Therefore we select this value for the rest of the

experimental validation.

The extension of our proposed SPORE method for simultaneously inferring535

hand orientation and pose additionally depends on probability p(β) for selecting

classification or regression information gain for training. We present the effect

of varying this probability on hand orientation and pose inference in Fig. 9. We

note that selecting regression information gain more often than classification

information gain (i.e. p(β = 0) > 0.5) yields better performance for both hand540

orientation and pose inference. It can also be seen that the pose classification

is solved even when no classification information gain is used (p(β = 0) = 1).

This is because the information for each pose is well encoded within the CDF

and hand orientation. In our experimental validation we use p(β = 0) = 0.9.

This means that at each split node, regression information gain is selected more545

frequently than classification information gain. As we will further demonstrate
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Table 1: Mean Absolute Error (MAE) in degrees for single pose experimental validation in

Section 6.4.

Method used Azimuth (φ) Elevation (ψ)

p-value p-value

SPORE (proposed) 8.42◦ - 7.38◦ -

ML-RF MtR [17] 9.65◦ 0.00 7.81◦ 0.13x10−10

SL-RF SV [13] 11.58◦ 0.25x10−8 8.75◦ 0.00

RF Adaboost [35] 11.54◦ 0.72x10−10 9.06◦ 0.00

ML-RF1 10.24◦ 0.22x10−5 8.02◦ 0.00

ML-RF2 12.82◦ 0.20x10−3 9.12◦ 0.11x10−2

ML-RF3 10.45◦ 0.10x10−20 8.13◦ 0.15x10−18

ARF [37] 11.67◦ 0.29x10−2 9.00◦ 0.00

GBT [36] 10.39◦ 0.96x10−3 7.62◦ 0.90x10−4

in Section 6.5, the hand orientation information can significantly improve pose

classification results as with orientation the SPORE model is able to build a

better understanding of the hand pose dataset.

6.4. Experimental Validation using Single Pose Dataset550

The evaluation of our proposed hand orientation inference method is done

using the single pose dataset. We perform single-fold validation by randomly

dividing 70% of the data into the training set and using the remaining 30% for

testing. Table 1 shows the MAE in degrees for the single-fold evaluation using

the proposed SPORE method and the comparison methods. Furthermore, we555

also show in Fig. 10 (a) the percentage of data that lies under a given error in

prediction.

We note that the proposed staged probabilistic regression outperforms the

existing state-of-the-art in ML-RF marginalization as well as hand orientation

inference. The proposed method also outperforms the method related to Boost-560

ing, namely, RF Adaboost, ARF and GBT. These methods lack a probabilistic

33



0 10 20 30 40 50
Error in Predicted Angles (e)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

da
ta

SPORE
ML-RF MtR
ML-RF1
ML-RF2
ML-RF3
SL-RF SV
RF Adaboost
ARF
GBT

(a)

0 10 20 30 40 50
Error in Predicted Angles (e)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

da
ta

SPORE
ML-RF MtR
ML-RF1
ML-RF2
ML-RF3
SL-RF SV
RF Adaboost
ARF

(b)

Figure 10: Percentage data vs error in prediction shows the percentage of data that lies below

a given error in prediction for the single-fold validation using (a) single pose dataset and (b)

using multiple pose dataset.

approach resulting in higher MAE. On the contrary, the proposed method is

formulated using probabilities, where the complex mapping between each stage

and the input features is learned. We further notice from Fig. 10 (a) that the

proposed staged probabilistic regression performs better with 78% of data lying565

in under 10◦ of error. We also note that at around 20◦ of error, the ML-RF2,

SL-RF SV, RF Adaboost, ARF and GBT contain more percentage data than

any other method. This is due to the fact that all other comparison methods,

including the proposed SPORE, contains symmetry problem for around 10%

of the data. The symmetry problem arises as a result of depth ambiguity in570

2D monocular images, where multiple hand orientations can produce the same

contour. This affects the regressors where for a given hand contour, the regres-

sors infer symmetrically opposite hand orientations. This problem shows up

in all methods that use a probabilistic approach for marginalization. ML-RF2,

SL-RF SV, RF Adaboost, ARF and GBT infer only a few symmetrically oppo-575

site hand orientations. As these methods rely on the weighted sum of regressor

predictions or a prediction from a single regressor, therefore the variations due

to the symmetry problem result in introducing a model bias. This results in

greater MAE for these methods in Table 1. These models have a bias as they

are unable to fully learn from all the variations within the orientation dataset.580
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Figure 11: Ground Truth (GT) versus predicted orientation angle plots showing results for

(a)-(b) the proposed SPORE method and (c)-(d) the ML-RF MtR method proposed in [17].

(e)-(f) shows the errors in ML-MtR that were corrected by SPORE (green arrows) and the

correct predictions by ML-MtR that were incorrectly inferred by SPORE (red arrows). The

larger number green lines compared to red show that SPORE improves estimation for the

majority of samples.
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(a) (b) (c) (d) (e) (f)

Figure 12: Success and Failure cases for the proposed SPORE method. The GT orientation

(green) and predicted orientation using SPORE (blue) and ML-RF MtR (red) are shown with

arrows. The first row shows the color images, whereas the corresponding silhouette images

are shown in the second row. (a)-(d) shows success cases where the proposed SPORE method

successfully able to infers the orientation. (e)-(f) shows the failure cases where the proposed

method fails.

SPORE produces the results with the least error and a paired t-test with p-value

less than 0.05 demonstrates that SPORE’s improvement over all other methods

is statistically significant.

We also present the comparison of the proposed SPORE method with the

most closely related ML-RF MtR method proposed in [17]. In Fig. 11, we585

present the single-fold validation results showing the GT versus predicted plots

for the proposed SPORE method and the ML-RF MtR method. Fig 11 (e)-(f)

shows the comparison of both methods, where green arrows show predictions

that were corrected using the proposed SPORE method and red arrows show

the predictions that were incorrectly inferred by the proposed method. We note590

that in this comparison a number of incorrectly inferred predictions by ML-

RF MtR are corrected by the proposed SPORE method. This is due to the

ability of our proposed SPORE method to define the latent variable space using

predictions from previous stages. This approach, however, is absent from the

ML-RF MtR method where the latent variable space is explicitly defined based595

on the observation that the hand can be (i) fronto-parallel or facing (ii) right,

(iii) left, (iv) upwards or (v) downwards with respect to the camera. Fig. 12
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(a)

(b)

Figure 13: Easy versus hard training samples. (a) shows easy training samples that are

successfully learned from in the first regressor with error |op(k)− ok| < α. (b) shows harder

training samples, with error |op(k) − ok| > α, that are not completely learned from in the

first expert regressor and hence are selected for the next stage training. Green arrows show

the GT orientation. The difference between easy and hard samples can be seen in terms of

inter-person pose, shape and style variation.

shows success and failure cases for the proposed SPORE method. We observe

that the proposed method fails on difficult samples where the fingers are not

completely outstretched (Fig. 12 (e)-(f)). Moreover, in Fig. 13 we present the600

easy versus harder to learn hand orientation samples. In Fig. 13 (a) easy samples

are presented that the SPORE learns from in the first stage. Fig. 13 (b) shows

harder to train samples that are used for learning the next stages of SPORE.

It can be seen that easy samples contain limited inter-person variation in hand

shape, size and style, whereas harder samples have additional variations induced605

due to the movement of fingers, affecting the inter-finger spacing.

6.5. Experimental Validation using Multiple Pose Dataset

We use the multiple pose dataset to evaluate the extension of our proposed

staged probabilistic regressor for inferring both hand orientation and pose simul-
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Table 2: Mean Absolute Error (MAE) in degrees for multiple pose experimental validation in

Section 6.5.

Method used Azimuth (φ) Elevation (ψ)

p-value p-value

SPORE (proposed) 8.53◦ - 8.14◦ -

ML-RF MtR [17] 9.63◦ 0.41x10−11 9.77◦ 0.00

SL-RF SV [13] 15.04◦ 0.33x10−8 14.95◦ 0.92x10−10

RF Adaboost [35] 11.52◦ 0.29x10−16 10.77◦ 0.32x10−13

ML-RF1 11.20◦ 0.22x10−5 11.43◦ 0.00

ML-RF2 12.83◦ 0.31x10−5 11.63◦ 0.11x10−6

ML-RF3 11.00◦ 0.33x10−16 10.81◦ 0.00

ARF [37] 11.51◦ 0.4x10−10 10.83◦ 0.47x10−13

taneously. The MAE in degrees for the single-fold evaluation using this exten-610

sion and the comparison methods is presented in Table 2. Fig. 10 (b) shows the

percentage of data that lies under a given error in prediction for SPORE and the

comparison methods. We notice that again, the proposed SPORE outperforms

the comparison methods that infer hand orientation and pose simultaneously.

A paired t-test with p-value less than 0.05 shows that improvement in orienta-615

tion predictions using SPORE are statistically significant as compared to the

comparison methods.

Table 3: Hand pose classification results

using SPORE.

Predicted Pose

χ1 χ2 χ3 χ4

G
T

P
os

e χ1 97.94% 0.00% 1.74% 0.32%

χ2 0.00% 99.66% 0.17% 0.17%

χ3 0.44% 0.00% 98.52% 1.03%

χ4 0.14% 0.56% 1.69% 97.61%

Table 4: Hand pose classification results

using RF Clf.

Predicted Pose

χ1 χ2 χ3 χ4

G
T

P
os

e χ1 95.40% 0.00% 4.60% 0.00%

χ2 0.00% 94.16% 5.84% 0.00%

χ3 0.15% 0.00% 98.97% 0.89%

χ4 0.00% 1.54% 17.84% 80.62%

Furthermore, we compare the pose classification accuracy of the proposed
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(a) (b) (c) (d)

Figure 14: Hand poses that are correctly inferred by the proposed SPORE method but mis-

classified by RF Clf. (a) shows χ1 poses incorrectly classified as χ3, (b) shows χ2 pose

incorrectly classified as χ3, (c) shows χ3 poses incorrectly classified as χ4 and (d) shows χ4

incorrectly classified as χ3 by the RF Clf comparison method. Green arrows show the GT ori-

entation information that is used by SPORE to correctly infer the hand pose. This orientation

information is not used for RF Clf training.

SPORE method with RF Clf that learns only the pose classification. We present

confusion matrices for these results in Table 3 and Table 4, respectively. It can620

be seen that the proposed SPORE method outperforms an RF Clf for the pose

classification task. This is due to the presence of the additional orientation

information that the SPORE method uses to learn both hand orientation and

pose simultaneously. The comparison RF Clf method lacks the orientation in-

formation, which is why it is unable to differentiate the poses with variations in625

orientation. In Fig. 14 we present the samples that are misclassified by RF Clf

due to the absence of orientation information. These results let us understand

the importance of hand orientation in hand pose classification in 2D images. We

note that when such orientation information is not present, then the classifiers

have difficulty in hand pose classification under varying viewpoint.630

This paper focuses on using SPORE for hand orientation and pose inference.

We observe that the proposed method is generalizable to other domains. SPORE

can be used with any probabilistic regressor or classifier, where the dataset

contains large variations that are not fully captured with a single model.
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7. Conclusion635

We proposed a staged probabilistic regression method that is capable of

learning well from a number of variations within a dataset. The proposed

method is based on multi-layered Random Forest, where the first layer con-

sisted of a single marginalization weights regressor and second layer contained

an ensemble of expert learners. The expert learners are trained in stages, where640

each stage involved training and adding an expert learner to the intermediate

model. After every stage, the intermediate model was evaluated to reveal a

latent variable space defining a subset that the model had difficulty in learning

from. The subset was used to train the next expert regressor. The posterior

probabilities for each training sample were extracted from each expert regres-645

sors. These posterior probabilities were then used along with a Kullback-Leibler

divergence-based optimization method to estimate the marginalization weights

for each regressor. A marginalization weights regressor was trained using Con-

tour Distance Features and the estimated marginalization weights. We showed

the extension of our work for simultaneous hand orientation and pose inference.650

The proposed method outperformed the state-of-the-art for the marginaliza-

tion of multi-layered Random Forest, hand orientation inference and Boosting.

Furthermore, we show that a method which simultaneously learns from hand

orientation and pose outperforms pose only classification as it is able to better

understand the variations in pose induced due to viewpoint changes. Our future655

work focuses on introducing a bigger vocabulary of hand poses, application of

SPORE in other domains and the introduction of a temporal coherence method

that addresses the symmetry problem. Exploring effective CNN architectures

for simultaneous hand orientation and pose estimation is another interesting

future direction for our work.660
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