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ABSTRACT

Degenerative changes to the cervical spine can be accompanied by neck pain, which can result from narrowing
of the intervertebral disc space and growth of osteophytes. In a lateral x-ray image of the cervical spine,
degenerative changes are characterized by vertebral bodies that have indistinct boundaries and limited spacing
between vertebrae. In this paper, we present a machine learning approach to detect and localize degenerative
changes in lateral x-ray images of the cervical spine. Starting from a user-supplied set of points in the center
of each vertebral body, we fit a central spline, from which a region of interest is extracted and image features
are computed. A Random Forest classifier labels regions as degenerative change or normal. Leave-one-out cross-
validation studies performed on a dataset of 103 patients demonstrates performance of above 95% accuracy.
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1. INTRODUCTION

Cervical spondylosis, or arthritis of the neck, is a common condition affecting up to two out of three people in
their lifetime.1,2 It normally results from degenerative changes3 that occur to the cervical spine (consisting of the
topmost seven vertebrae, labeled C1 to C7), as a person ages. Between each vertebral body is an intervertebral
disc that provides cushioning between adjacent vertebrae. Due to arthritis, the disc can deflate and weaken,
resulting in a loss of spacing between vertebrae. With reduced cushioning, the joints experience greater forces
and begin to degenerate, and the cartilage that protects them is worn down. Osteophytes, or bony outgrowths,
commonly develop in response to lost cartilage.

Standard procedure to diagnose cervical spondylosis involves a physical exam, which may be followed by
additional tests, typically imaging. X-ray radiography is traditionally ordered as a first step in imaging the
spine, due to is widespread availability, and low cost. Additional exams including computed tomography (CT),
magnetic resonance (MR), and electromyography are also possible. In a lateral radiograph, degenerative changes
often appear as vertebral bodies with poor edge definition and limited spacing between vertebrae; examples of a
normal spine and those exhibiting degenerative changes are shown in Figure 1.

In this paper we present an algorithm to detect degenerative change based on image analysis techniques
applied to x-ray images of the cervical spine. We focus on the lateral projection, the most diagnostic of the
three images (lateral, odontoid, and anteroposterior) normally taken in clinical practice. Our objective is to
determine which patients have degenerative change, and localize the degenerative change between different
adjacent vertebrae in the image (e.g., going from C5 to C6, denoted as “C5/C6”). Our approach uses splines to
model a path through the vertebral bodies, and extracts image features, which are then classified using machine
learning to output a label (degenerative change, or normal). As a byproduct of our method, we also identify
superior and inferior vertebral body edges.
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(a) (b) (c)
Figure 1. Three lateral view cervical spine radiographs. In (a), a normal cervical spine x-ray image of a 20 year old patient
is shown; notice the separation between vertebral bodies and good contrast at vertebral body edges. In (b), an image of
a 55 year old patient is shown, with an example of degenerative change (poor vertebrae spacing, osteophyte) indicated.
In (c), a an example of a 82 year patient with severe degenerative changes is shown; note the lack of identifiable superior
and inferior vertebral boundaries as well as vertebral spacing, for example at the point indicated by the arrow.

1.1 Related work

Images can be assessed visually for diagnosis of degenerative changes, as well as injuries such as fractures
or misalignment. The Atlas of Standard Radiographs of Arthritis4 defines five numeric grades of severity of
degenerative change, ranging from 0 (normal) to 4 (severe), which can be established by consensus for a set of
human image readers, but can be difficult to establish accurately given the subtle differences between grades.13

Quantitative measurements can also be produced manually to capture disc height, vertebral height, and alignment
angles5 using computer-assisted measurement tools available in most workstation software.

Semi-automated image analysis to study osteoarthritis in the spine have been proposed by several researchers.
Cherukuri et al.6 use convex hull-based features in conjunction with a multi-layer perceptron to detect osteophytic
vertebral bodies in the lumbar spine given vertebral body segmentation. Abu-Qasmieh7 detects intervertebral
disc degeneration in MR images of the lumbar spine using texture features and a decision tree classifier. Similarly,
computer-aided diagnosis of lumbar disc pathology for MR images of the lower spine has been presented.8 More
broadly, there has been work on identification of classification of cervical spine vertebrae,9 content-based image
retrieval based on inter-vertebral disc space and shape profiles,10 as well as segmentation of cervical vertebrae
from radiographic images,11 all based on radiographic images, in particular the NHANES12 data set. Since
many of these techniques require a precise segmentation of the vertebral bodies, they would fail to produce
usable results if presented with a patient with severe degenerative changes.

The most related paper to this work is by Chamarthy et al.,13 who studied a similar problem of detecting
degenerative change in the C3 to C6 vertebrae from cervical spine radiographs. This method requires the user
to provide a precise manual segmentation of each vertebral body, from which distance features are computed,
clustered, and then classified using a self-organising map. Classification into four grades produced results ranging
from 82% to 94%. In contrast, our approach only requires a click at the center of each vertebral body, instead
of a precise manual segmentation, and is therefore is easier to use. Furthermore, our method is applicable to
the entire cervical spine as it does not require a precise segmentation, which can be difficult particularly for the
C1 and the superior vertebral body edge of the C2 vertebra, or for patients with severe degenerative changes.
Given the ambiguity of assigning the grading criteria to assess the severity of degenerative change, we instead
approach degenerative change detection as a binary problem by classifying the space between different adjacent
vertebrae as normal or degenerative.



(a) (b) (c) (d)
Figure 2. Algorithmic steps. A set of points (a) defining the vertebral body centers is fit to a spline (b). A set of displaced
splines are found (c), and the image intensity is resampled along these splines and averaged. L = 3 in this figure for
clarity; however, in the experiments we use L = 30. In (d), the resulting average signal is analyzed to find vertebral body
edges (superior: green, inferior: red) and detect degenerative change (arrows).

The proposed method could be easily adapted to other parts of the spine (thoracic, lumbar) or other pro-
jections (odontoid, anteroposterior), however, it is beyond the scope of this paper to present results for these
applications.

2. METHODOLOGY

2.1 Signal modeling

The first step of our approach is to fit a third-order spline14 (called the central spline (CS) in this paper) to a
set of points located in the center of each vertebral body. These points can be provided by a user in the form
of user clicks (our approach in this paper), or detected automatically using pattern recognition techniques. An
example set of points is shown in Figure 2(a), and the CS in (b). Our goal is to detect degenerative changes for
the region between each click point.

Next, the image is filtered using a zero-mean 2D Gaussian low pass filter with standard deviation 1.8 pixels.
The image intensities are then resampled along the CS to form a 1D signal. In the results presented later in
the paper, we call this method CS only. However, we observed improved results by averaging the signal for L
adjacent splines to the right, and L to the left, by translating the points in a direction orthogonal to the CS,
forming a set of 2L + 1 splines, along which the image intensity was resampled. An example showing a subset
of these adjacent splines is provided in Figure 2(c). This produces a collection of 2L + 1 1D signals, which
are averaged to produce a composite 1D signal. In the results below we call this method averaging. The 1D
signal, whether CS only or averaged, is denoted as x(t). To better handle differing contrast in the dataset due to

exposure and patient size, we normalize x(t) as xn(t) = x(t)−µ
σ , where µ is the mean of x(t), and σ is its standard

deviation.

2.2 Part formation

We first decompose xn(t) into a set of parts, pi(t), as shown in Figure 3(b). Part formation is trivial given
the user click points input to the approach. The goal of our work then is to automatically classify each part
as normal or degenerative change. Each part starts in a vertebral body, transitions through the intervertebral
disc region (if present), and then traverses through the adjacent vertebral body. Intuitively, since the vertebral
bones are denser than the intervertebral discs, we expect the signal pi(t) to have a pattern: brighter, darker,
brighter for a normal patient. The darker region, spanning the intervertebral disc region, should have sufficient
width, and for a normal patient we expect be good image contrast transitioning between vertebral bodies and
the intervertebral disc region. An example pi(t) for a normal part is shown in Figure 4(a).



(a) (b)
Figure 3. Parts. The spline fit through the user click points in shown in (a). The region between each click point is called
a part in this paper. In (b), each part is rendered with a different color. Our method classifies each part is normal or
degenerative change.

2.3 Segmentation

For each part, we first apply a 1D segmentation that produces a signal si(t) formed of three piece-wise constant
segments as shown in Figure 4 (b). In this figure, the signal pi(t) is shown as the blue signal, and the segmentation
si(t) is rendered as a set of horizontal red line segments, each capturing the average intensity of the signal over its
domain. Intuitively, as the vertebral body is denser than the intervertebral region, we expect the segmentation
to have a higher value in the vertebral body region, and a lower value in the intervertebral region. We also
expect a pattern of alternating high, low, and high values in the segmentation, as t moves between vertebrae.

The segmentation is achieved based on the derivative dpi(t)
dt . At the transition tl into the intervertebral disc

region, we expect the signal intensity to go from brighter to darker, to produce a large negative derivative.
Similarly, at the transition tr into the next vertebral body region, we expect the signal intensity to go from
darker to brighter, to produce a large positive derivative. We detect tr as the location of the maximum of

qi(t) = w(t)dpi(t)dt , where dpi(t)
dt is computed discretely using a central difference approximation. We then detect

tl as the location of the minimum of qi(t), for t ∈ [0, tr]. The term w(t) is a weighting designed to favor selecting
transition points near the center of pi(t), near the intervertebral disc. We model w(t) as a Gaussian function
with mean N/2 and standard deviation N/4, where N is the length of the part. We refer to tl and tr as transition
points for the segment.

As a result of this segmentation, we detect the superior and inferior vertebral body edges. Examples are
shown in Figure 2(d), where the superior edge is rendered as a green “+” and the inferior edge is rendered as a
red “+”.

2.4 Feature extraction

For each part, we extract a total of seven features, denoted f1 · · · f7, designed to capture degenerative change if
present in the part.

The first three features are based on the part’s segmentation, si(t). Feature f1 measures the length of
the intervertebral region, as demonstrated in Figure 5. Intuitively, we expect normal patients to have larger
separation between vertebrae, and consequently a higher f1 feature compared to those with degenerative change.
Features f2 and f3 measure the change in intensity level, based on the segmentation, at the transition points tl
and tr respectively. These features are also depicted in Figure 5.

The remaining four features provide different measures of the derivative. Feature f4 is simply the normalized
sum of the absolute value of the two derivatives of pi(t) at the transition points, that is

f4 =

∣∣∣dpi(t)dt

∣∣∣
t=tl

+
∣∣∣dpi(t)dt

∣∣∣
t=tr

µ
, (1)



(a) (b)
Figure 4. A part signal shown in (a) is segmented into three piece-wise continuous segments, rendered as red lines in (b).

Figure 5. Segmentation features f1 to f3. Feature f1 measures the length of the intervertebral region. Features f2 and f3
measure change in intensity, based on the segmentation, at the transition points.

where µ is the mean of
∣∣∣dpi(t)dt

∣∣∣ computed of the length of the part.

Feature f5 is the unnormalized sum of the absolute value of qi(t) at the transition points, that is

f5 = |qi(tl)|+ |qi(tr)| . (2)

Feature f6 is defined as

f6 =

(∫ ∣∣∣∣dpi(t)dt

∣∣∣∣ dt)− ∣∣∣∣dpi(t)dt

∣∣∣∣
t=tl

+

∣∣∣∣dpi(t)dt

∣∣∣∣
t=tr

. (3)

This feature measures the magnitude of the derivative over the length of the part, but subtracts the magnitude
of the derivative at the transition points. For a part with consistent intensity in the vertebrae and intervertebral
disc region, f6 would be small. However, if the signal fluctuates at points other than the transition points, then
f6 will be larger.

The transition points capture the maximum positive and negative derivative of pi(t). However, at a transition
point, the intensity change may be gradual instead of a step function. Indeed, in Figure 5 one can see a gradual
decrease in brightness at tl and a gradual increase at tr. To better address gradual brightness changes, we look
at the sign of the derivative. For example, at tl, we know the derivative is negative, and starting from this
point, we decrease t until we find a point where the derivative becomes positive. Similarly, starting from tl, we
increase t until we find a point where the derivative becomes positive. These are denoted using the green points



(a) (b)
Figure 6. Left (a) and right (b) amplitudes estimated by determining sign changes in the derivative of pi(t). The sum
of these amplitudes gives feature f7. The points where the derivative sign changes closest to the transition point are
rendered in a green color.

in Figure 6 (a). We measure the left amplitude al as the vertical distance between these two points. The right
amplitude ar shown in Figure 6 (b) is computed in a similar way, by sliding left and right from tr to find where
the derivative becomes negative.

Feature f7 is then
f7 = al + ar. (4)

The set of features is extracted over the part formed between vertebral body centers, i.e., C1/C2, C2/C3, · · ·
C5/C6. We omit the C6/C7 part as our dataset had a number of images where this part was not visible.

2.5 Classification

As the cervical spine has a changing appearance along its length, we train a separate classifier for each region. In
this paper, we experiment with a kNN classifier (k = 3, which gave the best results) and a Random Forest (RF)
classifier. Leave-one-out cross-validation was performed so that the data used to train the classifier was different
from that used to train the classifier. We also perform an experiment comparing averaging the 61 signals vs.
using the signal from the CS only, as mentioned earlier.

3. RESULTS

We tested our approach on a cohort of 103 patients, with ages ranging from 19 to 96, who had experienced trauma
or had symptoms requiring cervical spine radiographs. Patients with post-surgery implants were excluded from
this study due to metal plates in their cervical spine. The presence of degenerative change was provided by an
expert radiographer, reinforced by radiological reports. Images were acquired subject to ethics approval protocols
at the donating institution.

The classification results are presented in Table 1. As the results were produced using a leave-one-out cross-
validation, the values in the table show an average over 103 runs, each time holding one sample out, training the
classifier, and testing the classifier using the held-out sample. Random Forest was observed to have improved
performance compared to kNN. The best results for each part, in terms of accuracy, sensitivity, and specificity
appear as bold in the table. Generally, the averaging technique outperformed the CS only, however, there
were examples where CS only had better performance that averaging; for example, the sensitivity of detecting
degenerative change for the “C4/C5” part. Nonetheless, the results demonstrate the promise of the averaging
method to accurately detect degenerate change, with over 95% accuracy.

In addition to detecting degenerative change, our method also detects the superior and inferior edges of
the vertebral bodies, as shown in Figure 7. While edge detection15 is not the primary goal of this paper, the



C1/C2 C2/C3 C3/C4 C4/C5 C5/C6
Random Forest (averaging) 96.8% 96% 96.1% 95.3% 98% Accuracy

100% 100% 100% 98.7% 100% Sensitivity
95 % 94.6% 95% 92.4% 97.3% Specificity

kNN (averaging) 83.9% 84% 82.6% 71.3% 88 % Accuracy
Random Forest (CS only) 98.6% 94.4% 93.9% 94.2% 96.3% Accuracy

100% 96.8 % 94.6% 100% 100% Sensitivity
98% 93.5 % 93.6% 88.9% 95.8% Specificity

kNN (CS only) 86.3% 79.2% 83.4% 80.2% 82.4% Accuracy
Table 1. Classification performance for detecting degenerative change.

(a) (b) (c) (d)
Figure 7. Example results. Detected parts with degenerative change (arrows) along with superior (green) and inferior
(red) vertebral body edges.

edges detected by our method could potentially be used in a vertebral body segmentation algorithm. Figure 7
demonstrates example results for four patients. In (a), a patient with no degenerative change is shown, and the
approach correctly classifies each part as normal. In (b) and (c), the approach correctly identifies degenerative
changes. In (d), the method correctly identifies the degenerative change on the lower portion of the cervical
spine, but generates a false positive for C2/C3 near the top of the image.

4. DISCUSSION AND CONCLUSION

Image analysis techniques to analyze the cervical spine often ignore the issue of degenerative change, as radio-
graphs of patients with degenerative change can pose challenges due to the lack of contrast and well defined
boundaries at vertebral edges. However, degenerative changes are all too common in patients, particularly in
more elderly patients, imaged in routine clinical practice. It is expected that conventional vertebral body segmen-
tation methods11 that require well defined edges may fail to produce valid results on such patients. Therefore, it
is of interest to detect if the patient has degenerative change, and localize the degenerative change in the image.
We argue that a robust image analysis technique should be aware of degenerative change in order to produce
a robust output. In future work, we are interested to combine the degenerate change detector from this paper
with an approach for vertebral body segmentation in the cervical spine.

In this paper we take advantage of the poor edge definition and lack of spacing between vertebrae to capture
features correlated with degenerative change, and classify parts of the cervical spine with over 95% accuracy
using a Random Forest classifier. These results are encouraging, particularly given the simple input (a small
collection of user click points) given to the method. Consequently, the proposed technique is simpler to use than
competing methods, and is easily applied to the entire cervical spine. Since much of the processing is done on
1D signals, results are generated quickly.



While the results show much promise, there is room for further work on the problem. First, it would be
useful if the method were fully automated. To achieve this, an accurate method to localize the vertebral body
centers is required. For patients without degenerative change, this may be possible, although the problem is
challenging given the inconsistent number of vertebrae that are imaged in clinical practice. On a diagnostic
lateral cervical spine radiograph, all seven cervical vertebral bodies should be visualized, as well as the top of the
first thoracic vertebra. However, for some patients, it is difficult to achieve this. Therefore an automated image
analysis technique would require robustness to the number of imaged vertebrae, which may be variable. In the
case of patients with moderate to severe degenerative change, detecting vertebral body centers is a difficult, open
problem.

Another practical challenge is the presence of metal plates, ear rings, and other clutter in the image that
may cause the degenerative change detection to fail. Such images were excluded from this study, but a robust
solution would ideally be able to handle such cases.

Finally, some degenerative changes cannot be detected solely from the vertebral body region; for example
degenerative changes in the spinous processes would be missed by our method; this is also an area of future work.
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