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Abstract

Data-driven sequence models have long played a role in the analysis and genera-

tion of musical information. Such models are of interest in computational musi-

cology, computer-aided music composition, and tools for music education among

other applications. This dissertation begins with an experiment to model sequences

of musical pitch in melodies with a class of purely data-driven predictive mod-

els collectively known as Connectionist models. It was demonstrated that a set of

six such models could perform on par with, or better than state-of-the-art n-gram

models previously evaluated in an identical setting. A new model known as the Re-

current Temporal Discriminative Restricted Boltzmann Machine (RTDRBM), was

introduced in the process and found to outperform the rest of the models. A gen-

eralisation of this modelling task was also explored, and involved extending the

set of musical features used as input by the models while still predicting pitch as

before. The improvement in predictive performance which resulted from adding

these new input features is encouraging for future work in this direction.

Based on the above success of the RTDRBM, its application was extended to a

non-musical sequence labelling task, namely Optical Character Recognition. This

extension involved a modification to the model’s original prediction algorithm as

a result of relaxing an assumption specific to the melody modelling task. The gen-

eralised model was evaluated on a benchmark dataset and compared against a set

of 8 baseline models where it faired better than all of them. Furthermore, a theo-

retical extension to an existing model which was also employed in the above pitch

prediction task - the Discriminative Restricted Boltzmann Machine (DRBM) - was

proposed. This led to three new variants of the DRBM (which originally contained

Logistic Sigmoid hidden layer activations), with Hyperbolic Tangent, Binomial and

Rectified Linear hidden layer activations respectively. The first two of these have

been evaluated here on the benchmark MNIST dataset and shown to perform on

par with the original DRBM.





Chapter 1

Introduction

This chapter begins with an overview of the main task that is to be addressed in

this dissertation — that of modelling sequential patterns in monophonic music.

This task is of interest in several applications, many of which will be mentioned

here to explain the relevance of this work, its goals, approach and results. The main

objectives and research questions will be stated, and the extent to which these have

been accomplished will be discussed. This will be followed by a list of original

contributions proposed in this dissertation, published work, software developed

in the process, and an outline of the rest of the document.

1.1 Problem Overview

Predictions can be made about anything that changes with time. Various natural

phenomena exhibit perceivable patterns in time that allow one to make predic-

tions about their evolution. For example, we are able to make in some cases, quite

reliable predictions about the weather, the stock market, etc. either intuitively or

by measurement. Music is one such phenomenon that is inherently temporal in

nature and thus a candidate for the same predictive mechanisms that we apply to

other time-varying phenomena. The interest in modelling the temporal properties

of music using computers, both for analysis and synthesis, dates back to the 1950s

with its roots in disciplines like language modelling and signal processing (Hiller

and Isaacson, 1957). Computer Music, as it is commonly known, and the tech-

niques employed in it have also evolved ever since. This section introduces the

goals, methodology and motivation for music modelling by considering three key

questions (1) What to predict? (2) How to predict? (3) Why predict?. The answers

to these questions are presented with notable examples from previous work.

1
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1.1.1 What to Predict?

Music, as considered in this dissertation, is a time-varying auditory phenomenon

which exhibits structure and organisation. For example, a regular rhythmic pat-

tern of “tick” sounds is musical although it does not have any variation in pitch.

Likewise, a series of notes of equal-length (in time) and varying pitch is musical

even though it does not have any rhythmic variation. In richer examples of music,

structured variations across several such properties come together at any point in

time to result in a range of musical forms that together make up a piece of mu-

sic. These variations occur across different frequencies and at different temporal

resolutions. They are perceived as variations in melody (pitch, scale-degree, etc.),

harmony (chord type, chord voicing, etc.), rhythm (time-signature, metrical posi-

tion, etc.) and timbre (zero-crossing rate, harmonicity, etc.). In this dissertation,

we limit our attention to music in the form of melodies.

A system for modelling music is one that is able to take advantage of the said

structural regularities and make reasonable predictions regarding the evolution in

time of any musical property such as those mentioned earlier. The simplest case,

involving the prediction of a single property is considered in (Pearce and Wiggins,

2004). There, the task is to predict a probability distribution over the possible val-

ues of pitch of the next note, given a sequence of pitches of notes that precede

it. This was accomplished using n-gram models of varying context lengths (Man-

ning and Schütze, 1999). A system which deals with a slightly more complex case

is presented in (Cherla et al., 2013) (this author’s MSc dissertation), where both

note pitches and the corresponding note durations are taken together as a (pitch,

duration) tuple to train a variable order Markov model (Begleiter et al., 2004) on

sequences of such tuples. Given a recent history of tuples, the model makes pre-

dictions about the pitch and duration of the next note. A very similar approach was

adopted for generating variations of drum loops in (Marchini and Purwins, 2010).

There, the musical properties to be predicted are related to timbre and rhythm.

In a different prediction scenario which goes beyond just melodies, Toiviainen

(1995) uses an auto-associator neural network for generating jazz solos of the style

of Charlie Parker using the target-note technique. While the predicted musical

properties here are purely melodic in nature (pitch, note duration, phrasing and

dynamics), both melodic as well as harmonic information is used to make predic-

tions. A different goal is considered in (Allan and Williams, 2004), where a Hidden

Markov Model (Rabiner, 1989) is employed for harmonizing Bach chorales. Given

the sequence of notes corresponding to the melody to be harmonised, the model

2
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suggests possible harmonisations with up to three voices at each time-step.

Thus, one can see how music is rich in internal structure and contains a multi-

tude of properties that can be predicted and themselves be used for making accu-

rate predictions about other properties. In the work presented in this dissertation,

the task of interest is that of predicting musical pitch. This dissertation focuses on

models that predict the pitch of the next note in a melody given either just the

pitch, or other melodic features of notes that precede it.

1.1.2 How to Predict?

Once the musical properties of interest have been determined, the next choice is

that of the prediction model. The idea is to view music as a programmable pro-

cess and to have computers predict according to the process. One has to specify

the class of the model, its parameters (which can often be learned from data), a

way in which to input the musical properties of interest to the model and what it

is expected to predict. These choices are influenced by the nature of the music

modelling task of interest, and in turn influence the quality of predictions made.

Probably the most popular example where this is done is David Cope’s sys-

tem called Experiments in Musical Intelligence (EMI). EMI generates new music by

analysing the score structure of a MIDI sequence in terms of recurring patterns (a

signature), creating a database of the meaningful segments, and learning the style

of a composer, given a certain number of pieces (Cope, 1996). Another example

is evolutionary music - the audio counterpart of evolutionary art, which is based

on the fundamental idea of a genetic algorithm. Here one starts with some initial

music data (a piece, melody, or loop in audio or symbolic representation) which is

initialised either randomly or based on human input. Then through the repeated

application of computational steps analogous to biological selection, recombina-

tion and mutation, the aim is to produce more musical data. GenJam (Biles, 1994)

is one such system developed for composing Jazz solos.

A dictionary-based prediction for automatic composition is discussed in (As-

sayag et al., 1999). Two dictionaries, namely, the Motif Dictionary and the Contin-

uation Dictionary are used to represent and continue a given melody. A genera-

tion algorithm is used for continuation of a (so far) predicted sequence. A context

variable is maintained which determines the maximum previous sequence to con-

sider while making the prediction. The prediction is based on whether the con-

text matches any of the motifs in the motif dictionary. The continuation dictionary

gives the probabilities of various continuations and is used to choose the next sym-
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bol. Probabilistic context-free grammars are proposed for generating jazz solos in

(Keller and Morrison, 2007). The process is divided into two stages — rhythm gen-

eration and melody generation on top of the generated rhythm. A grammar is first

used to generate a coherent skeletal rhythmic sequence, which is then filled with

notes. In order to connect pitch classes to underlying chord progressions, terminal

symbols of the context-free grammar are interpreted as chord tones, colour tones,

approach tones, and so on which are common in jazz parlance. Thus, a pitch is

generated according to the chord with which it co-occurs.

Markov models have been very popular in research owing to the highly intu-

itive (and indeed simple) manner in which they model sequences as the ratio of

the number of instances of a symbol following a given context and the number

of instances of the context itself, given the sequence data. They are based on the

simplifying assumption, known as the Markov assumption, that in a sequence of

symbols where the probability of occurrence of the symbol at a certain time-step

depends on those that have occurred before it, the influence of only those belong-

ing to its immediate past (a “context”) needs to be considered and not that of the

entire sequence until the beginning. This assumption is introduced in greater de-

tail in Section 3.5. It greatly simplifies the number of model parameters to be de-

termined. Markov models happen to be one of the first class of models to be em-

ployed in modelling musical sequences in the early 1950s by Olson (1967) and were

subsequently popularized as a model for music composition by Hiller & Isaacson

(1979) in the fourth movement (also known as “Experiment Four”) of their Illiac

Suite. Ever since these early applications, there have been several others using this

method in a variety of ways (Ames, 1989). However, the number of parameters to

be determined for Markov models increases exponentially with the length of the

context in the model. A solution to this problem is proposed in The Continua-

tor (Pachet, 2003), which operates mainly on short melodic phrases. Sequences

of symbols interpreted from MIDI input are parsed using an incremental parsing

algorithm to train a variable-order Markov model (Ron et al., 1996) that maintains

various possible sequences of symbols and their probabilities of occurrence. The

system progressively learns new phrases from a musician to eventually develop

a more accurate representation of her/his style. A variant of the basic Markov

model is the Hidden Markov Model (HMM). In the work of Paiement (2008), a to-

tal of three interdependent HMMs are used to break down the process of music

generation into sub-tasks. The first one models the underlying rhythm of a MIDI

melody, the second the intervallic variations given the rhythm, and the third pre-

dicts pitches that satisfy constraints imposed by an input chord progression and
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the intervals predicted by the second HMM.

This dissertation explores Connectionist models (Rumelhart et al., 1986) for

music prediction. These have been successfully applied in the past to learning

harmonic style (Bellgard and Tsang, 1994; Hörnel and Menzel, 1998), Jazz solo gen-

eration (Toiviainen, 1995), rhythm analysis (Weyde and Dalinghaus, 2003; Batten-

berg and Wessel, 2012), music composition (Todd, 1989; Mozer, 1991), and poly-

phonic music generation (Boulanger-Lewandowski et al., 2012). Among these the

relevant approaches will be reviewed in greater detail in Chapter 2.

1.1.3 Why Predict?

Meyer (1956) hypothesised in his influential theory on musical expectation that

prediction is at the very heart of music cognition, and involves the listener gener-

ating expectations about the evolution of a given piece of music which are either

satisfied, delayed or thwarted as determined by the composer and the performer.

This results in the range of emotions and notions of musical style that is avail-

able to us. Other theoretical expositions building upon and refining this idea have

also been proposed over the years (Narmour, 1992; Huron, 2006). Musical expec-

tation has been studied using any of three different means (1) behavioural find-

ings (2) computational modelling, and (3) neuroscientific evidence (Rohrmeier

and Koelsch, 2012). Predictive models of music cognition, which belong to the

second category, allow the verification of theoretical accounts of expectation and

their consequences in novel contexts through a concrete realisation of the under-

lying theory (Wiggins et al., 2011). Studies in music cognition research require the

generation of specific types of stimuli in order to verify a certain hypothesis re-

garding music cognition (Omigie et al., 2013; Egermann et al., 2013). The more

comprehensive these stimuli, the greater the confidence one can achieve in the

results of an experiment. In such situations, generative models which can learn

structure in music to produce such stimuli accurately on demand serve as valu-

able tools. They have the potential to provide a link between theoretical, neural

and behavioural accounts of music prediction (Rohrmeier and Koelsch, 2012). An-

other potential application of predictive models of music is inspired by the role of

language models in Speech Recognition (Rabiner, 1989). Automatic Music Tran-

scription (AMT) (Klapuri and Davy, 2007) involves transcribing music given as an

music audio signal into an equivalent digital representation of its musical score,

much as Speech Recognition involves transcribing a given audio signal of a spoken

sentence into a sequence of words. Here a predictive model of music, also known
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as a music language model, that captures sequential structure in collections of mu-

sical scores is used to augment the predictions of an acoustic model (that relies

purely on the instantaneous musical signal) with those of its own to determine the

musical notes occurring at each time-instant. This has been successfully demon-

strated in the context of music with the help of Hidden Markov Models (Ryynänen

and Klapuri, 2008) and more recently, recurrent Connectionist models (Boulanger-

Lewandowski et al., 2012; Sigtia et al., 2014).

Models for predicting music can be employed in generating ambient music

in shopping malls, restaurants, museums and other private/public venues (Moo;

Amb; Hol). The aim is to create a pleasant and welcoming environment for visitors

to such places in the hope of improving their overall aesthetic experience there. A

very similar idea is also applicable to context-sensitive music generation in com-

puter games (Land and McConnell, 1994; Casella and Paiva, 2001; Brown, 2012).

Given parameters that define various instantaneous situational variables during

gameplay, predictive models of music can be triggered to generate appropriate

background music that can make the game more engaging and immersive for a

player.

Algorithmic composition tools that employ predictive models of music can also

facilitate a shift of focus of the composer from fine details to the bigger picture. It

is sufficient if there exists an idea in the mind of a composer about what she/he

wishes the composition to convey and how it should sound, in a broad sense with-

out attention to the finer details, as long as there is a suitable means (an interface)

for her/him to communicate this to a machine. A system that is able to generate

musical ideas in the form of a score can be of use in compositional assistance for

amateur musicians and students of music. Rapid compositional prototyping tools

such as RapidComposer (Mus) already allow for such possibilities with computer

programs for tasks like automatic phrase, rhythm and chord generation. Other sys-

tems allow the creation of royalty-free music on demand for video content creators

with the aid of predictive models of music (Juk).

Another possible, and little explored application area for predictive models of

music is in medicine. Music therapy uses music for achieving certain therapeutic

objectives in order to meet an individual’s physical, emotional, mental, social and

cognitive needs. It aims to develop potentials and/or restore functions of the indi-

vidual which will improve her/his quality of life through prevention, rehabilitation

or treatment (Darnley-Smith and Patey, 2003). The use of intelligent systems in

music therapy has received very limited attention in the past (Erkkilä et al., 2004).

This author is of the opinion that computational methods for music analysis and
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generation have great potential to assist music therapy practitioners and empower

individuals undergoing rehabilitation.

1.2 Objectives

While the various tasks in music modelling are indeed diverse just as the range of

techniques available to address these tasks as described above, the work presented

in this dissertation commenced with the goal to extend that which originated in

the framework for music analysis and generation known as Multiple Viewpoints

for Music Prediction (Conklin and Witten, 1995). The key characteristics of this

approach are (1) an event-based representation of music, (2) the use of statistical

modelling techniques proven to be successful in natural language processing and

text compression to model musical structure, and (3) combining multiple models

to incorporate information from several musical features to predict a chosen fea-

ture. This work was originally introduced in (Conklin, 1990) and further extended

in (Pearce, 2005; Whorley et al., 2013). As much as there exist provisions within

the multiple viewpoints approach to deal with polyphonic music, the focus in the

present work is limited only to monophonic music modelling.

In the original work on multiple viewpoints and that which followed, Markov

models were exclusively employed for music modelling using this framework. While

this is a reasonable choice, Markov models are often faced with a problem related

to data sparsity known as the curse of dimensionality (Bengio et al., 2003). This

refers to the exponential rise in the number of model parameters to be estimated

with the length of the modelled sequences as a result of treating each probability

distribution that can be predicted by the model as one of its parameters. Models

belonging to the Connectionist class (such as neural networks) bypass this prob-

lem, as they do not require enumerating all state transition probabilities and rely

on a set of abstract parameters from which these probabilities can be derived.

The aforementioned lure of connectionist models motivated their adoption

into language modelling during the past decade (Bengio et al., 2003; Mnih and Hin-

ton, 2008; Collobert et al., 2011; Socher et al., 2011; Mikolov and Zweig, 2012), and

the result of this was a demonstration of their superiority over the prevailing state-

of-the-art n-gram models in word prediction tasks. It was thus decided at the out-

set of the present work to study the efficacy of connectionist models in mirroring

this success in the domain of monophonic music modelling as defined within the

framework of Multiple Viewpoints. It was also suggested in (Conklin and Cleary,
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1988; Whorley et al., 2013) that neural networks might be suitable alternatives to n-

gram models for music modelling with multiple viewpoints but very little research

in this direction has ensued (Cox, 2010). This led to the three research questions

listed below.

1.2.1 Research Questions

1. Given a previous study that evaluated several n-gram and variable order Markov

models at a pitch prediction task (Pearce and Wiggins, 2004) (cf. Section 3.5)

on a corpus of monophonic music, how do common connectionist architec-

tures compare with them? This question is explored in Chapters 4 and 5.

2. How does combining multiple connectionist models each of which relies on

different sets of melodic features as input compare with a single model that

incorporates all these features, on the same pitch prediction task. This ques-

tion is explored in Chapter 6.

3. Can the above questions lead to novel contributions that go beyond the said

application domain into the area of machine learning, which the modelling

approach in this dissertation is based on? The answer to this question is in

Chapters 5 and 7.

1.3 Original Contributions

The following are the key contributions of the work presented in this dissertation:

1. Demonstration of the efficacy of a set of non-recurrent and recurrent con-

nectionist models in outperforming n-gram models on the task of mono-

phonic music modelling and prediction, following an approach inspired by

language modelling.

2. Proposal of a new machine learning model known as the Recurrent Tempo-

ral Discriminative Restricted Boltzmann Machine and its application to both

musical and non-musical sequence learning tasks.

3. Extension of the theory underlying an existing model, known as the Dis-

criminative Restricted Boltzmann Machine, and experiments to evaluate the

practical benefits of these extensions.
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At the outset, the goal of this dissertation was to demonstrate the efficacy of

connectionist models at modelling sequences of pitch in monophonic music in

the context of an information theoretic approach that was previously exempli-

fied through the use of n-gram models in (Conklin and Witten, 1995; Pearce, 2005;

Whorley et al., 2013). During the first phase of the work summarised in this thesis

(Chapters 4 and 5), a comparative evaluation of six different connectionist models

was carried out, namely the Feed-forward Neural Network (FNN), the Restricted

Boltzmann Machine (RBM), the discriminative RBM (DRBM), the Recurrent Neu-

ral Network (RNN), the Recurrent Temporal Restricted Boltzmann machine (RTRBM)

and the Recurrent Temporal Discriminative Restricted Boltzmann Machine (RT-

DRBM). It was demonstrated through this evaluation that these connectionist ar-

chitectures can perform on par with, or better than the best of n-gram models pre-

viously evaluated on a corpus of folk and chorale melodies (Pearce and Wiggins,

2004).

The last of the models listed above — the RTDRBM, is a novel contribution of

the present work. While the RTDRBM and RTRBM have the same structure, the two

differ in how the values of their respective parameters are determined. As it shall

be explained in Chapter 5, the RTRBM is what is known as a generative model, and

the RTDRBM is its discriminative counterpart. In practice, the choice of either is

determined by the application and the amount of data available to estimate their

parameters (Ng and Jordan, 2001; Bishop and Lasserre, 2007). While the former

was originally introduced to generate sequences, the intended purpose of the lat-

ter is to label sequences. The difference between the RTRBM and the RTDRBM is

also akin to that between the RBM and DRBM which are also structurally identi-

cal, but have different modelling goals. The RTDRBM was shown to outperform all

other models evaluated in the above mentioned pitch prediction task (cf. Chapter

5), and also a set of baseline models evaluated in (Nguyen and Guo, 2007) on the

benchmark OCR dataset (Kassel, 1995; Taskar et al., 2004).

Another novel contribution of the present work is in relation to a previously

proposed classification model, namely the Discriminative Restricted Boltzmann

Machine (DRBM). This was based on the observation that while the performance

of a variety of hidden layer activations (Logistic Sigmoid, Hyperbolic Tangent, etc.)

has been explored with other connectionist models and their validity theoretically

or empirically verified, the same had not been done with the DRBM which relied

only on Logistic Sigmoid activations. On further investigation into the possibil-

ity of making the same extensions to the DRBM, it could be proved in theory that

Logistic Sigmoid, Hyperbolic Tangent, Binomial and Rectified Linear hidden layer
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activations in the DRBM are all special cases of the same general form and can be

derived in a very similar manner using this underlying form. The first two out of

these three theoretical extensions were also experimentally evaluated, and it was

found that DRBMs containing either Hyperbolic Tangent or Binomial hidden lay-

ers performed on par with that containing a Logistic Sigmoid hidden layer.

1.4 Publications

Below is a list of research papers published during the past three years in confer-

ences. Parts of this dissertation are based on some of these:

1. Cherla S., Tran S.N., Weyde T. and d’Avila Garcez A., “Hybrid Long- and Short-

Term Models of Folk Melodies”. In: Proc. International Society for Music In-

formation Retrieval Conference, 2015.

2. Cherla S., Tran S.N., d’Avila Garcez A. and Weyde T., “Discriminative Learn-

ing and Inference in the Recurrent Temporal RBM for Melody Modelling”. In:

Proc. International Joint Conference on Neural Networks, 2015.

3. Tidhar D., Benetos E., Wolff D., Dumon E., Cherla S. and Weyde T., “Incre-

mental Dataset Definitions for Large Scale Musicological Research”. In: Proc.

Digital Libraries for Musicology Workshop, 2014.

4. Cherla S., Weyde T. and d’Avila Garcez A., “Multiple Viewpoint Melodic Pre-

diction with Fixed-Context Neural Networks”. In: Proc. International Society

for Music Information Retrieval Conference, 2014.

5. Sigtia S., Cherla S., Benetos E., Dixon S., Weyde T., and d’Avila Garcez A.,

“RNN-based Music Language Models for Improving Automatic Music Tran-

scription”. In: Proc. International Society for Music Information Retrieval,

2014.

6. Cherla S., Weyde T. and d’Avila Garcez A., “MIR in Music Education Wiki". In:

DMRN+8: Digital Music Research Network One-day Workshop, 2013.

7. Cherla S., Weyde T., d’Avila Garcez A. and Pearce M., “A Distributed Model

for Multiple Viewpoint Melodic Prediction". In: Proc. International Society

for Music Information Retrieval Conference, pp. 15-21, 2013. (Best Student

Paper Prize)
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8. Cherla S., d’Avila Garcez A. and Weyde T., “A Neural Probabilistic Model for

Predicting Melodic Sequences". In: Proc. 6th International Workshop on Ma-

chine Learning and Music, 2013.

9. Benetos E., Cherla S. and Weyde T., “An Efficient Shift-Invariant Model for

Polyphonic Music Transcription". In: Proc. 6th International Workshop on

Machine Learning and Music, 2013.

1.5 Software

The following code, related to the work presented in this dissertation is available

on Bitbucket (https://bitbucket.org):

1. Connectionist Melody Models: A library for training and evaluating connec-

tionist models for modelling sequences in musical melodies through predic-

tion implemented in Python (Chapters 4 and 5).

Link: https://bitbucket.org/freakanth/connectionist-melody-models.git

2. Recurrent Temporal Discriminative RBM: An implementation in Python of

the Recurrent Temporal Discriminative Restricted Boltzmann Machine in-

troduced in this dissertation (Chapters 5 and 7).

Link: https://bitbucket.org/freakanth/drbm-generalisation.git

3. Discriminative RBM: An implementation in Python of the extensions pro-

posed in this dissertation to the Discriminative Restricted Boltzmann Ma-

chine (Chapter 7).

Link: https://bitbucket.org/freakanth/drbm-generalisation.git

1.6 Dissertation Outline

The next chapter presents a review of literature on music modelling relevant to the

present work. It contains an introduction to music in the symbolic form, previ-

ous work in information theoretic music modelling and connectionist models for

learning structure in music. This is followed by an overview of various concepts

and definitions in Chapter 3, which will help the reader better understand the de-

scription of the connectionist melody models described in Chapters 4 and 5. Chap-

ter 6 presents the techniques and results of combining the models presented in the

preceding chapters in an attempt to improve prediction performance. Chapter 7

11
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extends a novel connectionist architecture (the RTDRBM) first introduced in Chap-

ter 5 for melody prediction, and carries out an evaluation of this model on a more

general sequence labelling tasks. This chapter also presents theoretical extensions

proposed in the present work to one of the models employed for melody predic-

tion in Chapter 4, and experiments to evaluate the significance of these proposals.

This leads to the conclusions of the dissertation in Chapter 8 with comments on

directions for future work.
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Chapter 2

Related Work

The inspiration for the work reported in this dissertation, at the outset, came from

an existing body of literature on information theoretic methods for modelling mu-

sical structure where the interest is in establishing a connection between math-

ematical quantities that measure the amount of information and redundancy in

musical structure with elements of musical style, mood and the cognition of mu-

sic (Meyer, 1957; Youngblood, 1958; Conklin and Witten, 1995; Huron, 2006). The

final goal of such work is generally two-fold — the analysis of existing pieces of

music and also the synthesis of new music by example. Based on the observation

that the use of connectionist models for information theoretic music modelling

has received little attention in recent years, with the majority turning to n-gram

and variable order Markov models for addressing this task, the present work com-

menced with a comparative study between the predictive performance of n-gram

models and their connectionist counterparts for sequences of musical pitch. This

prediction task is analogous to the better known word prediction task in language

modelling (Brown et al., 1992), and the evaluated melody models are inspired by

literature on connectionist language models (Schwenk and Gauvain, 2002). An

added motivation for exploring connectionist models in the present work stems

from the increased interest in connectionist research during the past decade, as-

sociated with the Deep Learning movement (Lecun et al., 2015), which has led to

new and interesting insights and architectures implementing these insights for ad-

dressing various tasks, not excluding music and language modelling. The review of

literature presented in this chapter begins with an overview of music in the sym-

bolic form, which the data used in the present work is comprised of. This is fol-

lowed by a review of the information theoretic roots of the music modelling task

considered here, and of the previous musical applications of connectionist theory
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and architectures which have also been employed here.

2.1 Music in the Symbolic Form

The symbolic form is one of the many ways in which music may be represented. In

the field of Music Information Retrieval, it serves to complement the musical infor-

mation contained in the audio form. The preference of one over the other is deter-

mined mainly by the end goal as each is more suitable than the other for extracting

certain kinds of information. The audio form is mainly intended for acoustic anal-

ysis of the musical signal, while the symbolic form is oriented towards musicologi-

cal analysis of the musical score. The symbolic form is closer to the composer and

serves as a means for her/him to express musical ideas. And the audio form is what

is heard by the listener. In between the two is the performer who interprets what

the composer has written down in the score and creates music which is recorded

as a signal and perceived by the listener. An audio recording of a performance

thus contains all the information about a musical work that is carried by a sym-

bolic score, and additionally, new information corresponding to the performer’s

personal interpretation according to the degrees of freedom left by the symbolic

score which, more often than not, involves remaining faithful to dimensions like

rhythm, melody, and harmony. Analysis of audio data begins with the musical sig-

nal, which is transformed into a more informative numerical representation such

as the spectrogram before any analysis is carried out on it. On the other hand, the

analysis of symbolic data begins with an explicit knowledge of basic musicological

information (contained in the corresponding musical score) which can be used as

is or other information derived from it. There exist special file-types and corre-

sponding algorithms to parse these file-types for both audio and symbolic music

data. While the gap between applications relying on one or the other type of data

representation is indeed diminishing, some typical applications where predomi-

nantly audio data is used, are music classification (Scaringella et al., 2006; Fu et al.,

2011) and audio cover song identification (Serra et al., 2010), whereas in the case

of symbolic data typical applications are algorithmic composition (Nierhaus, 2009)

and predictive modelling of music (Rohrmeier and Koelsch, 2012). There also ex-

ist applications in between, such as automatic music transcription (Klapuri and

Davy, 2007) which deal with both symbolic and audio data. This dissertation deals

purely with music data in the symbolic form.
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2.1 Music in the Symbolic Form

2.1.1 The Musical Score

Music in the symbolic form essentially refers to the content of a musical score. The

musical score is a representation by means of which the composer communicates

to the musicians, which musical gestures have to be performed. It is a structured

organization of symbols which describe acoustic events and the gestures needed

for their production, and is the form for representing a musical work as a composi-

tion. The score is thus a symbolic description of a musical work that allows musi-

cians to produce a correct performance, and serves as the ideal version of a musical

work. The central role played by this symbolic representation, which is the main

tool used by musicologists in their research, is to provide ready access to musical

parameters that are easily and directly represented in symbolic notation. These

parameters can range from global ones such as key- and time-signature, tempo,

repetitions, etc. to local ones such as musical pitches and durations of notes, their

intensities, etc (Orio, 2006a). From local parameters it is possible to extract infor-

mation about the melody, harmony, and the rhythm. Information about sound

intensity, or loudness, is usually vague and expressed in a subjective scale from

very soft (ppp) to very loud (fff ) sound. The symbolic score carries almost no in-

formation about certain other relevant musical dimensions, in particular timbre,

orchestration and arrangement, articulation, room acoustics, and spatialization of

sound sources, which all play a fundamental role in the experience of music listen-

ing and are related to music as a performing art. Figure 2.1 illustrates an example

musical score of the four-part harmonisation of a hymn.

Fig. 2.1 The musical score of the first four measures from the four-part harmonised
hymn “Auf, auf, mein Herz, und du mein ganzer Sinn” written by Sigmund von
Birken, and harmonised by Johann Sebastian Bach.
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2.1.2 Digital Representations of the Musical Score

The motivations for digitising musical scores, which were originally available as

hand-written or printed text, is to facilitate wider access through (online) digital

libraries, compatibility with computer programs for music analysis and synthesis,

and large scale dissemination of musical information (Orio, 2006b). Digital repre-

sentations of musical notation are of value to students learning music using com-

puter software (Dittmar et al., 2012), musicologists interested in the computational

analysis of music (Huron, 2002), and music composers of the Western tradition

(Mak). They are also of use to composers dealing with the automatic generation of

music with the aid of computers, as seen in the prolific area of Algorithmic Compo-

sition (Nierhaus, 2009). The fact that various musicological features are explicitly

represented in these formats (unlike audio where they must be obtained through

analysis of the signal), makes them suitable for this purpose.

Examples of well-known formats for digitally representing musical scores are

ABC (Walshaw), which is mainly used to code simple monophonic scores of tra-

ditional music, GUIDO and MuseData (Hewlett, 1997), Lilypond (Nienhuys and

Nieuwenhuizen, 2003) which is an open source project, and Kern (Huron, 2002).

An interesting effort in music representation, which partially builds upon Muse-

Data, is MusicXML (Good, 2001) that exploits the powerful features of XML as a

portable format for information exchange. MusicXML is supported both by com-

mercial software and by open source projects. The Music Encoding Initiative (MEI)

(Roland, 2002) is a parallel open source project that also adopts XML as the schema

of choice in order to represent musical documents. It aims to mirror the success

of the Text Encoding Initiative (TEI) whose goal was to create a comprehensive

yet extensible standard for the encoding and transmission of textual documents in

electronic form. Other popular symbolic data formats which are more oriented to-

wards synthesis, rather than analysis, are MIDI and Guitar Pro (Bellini et al., 2005).

Using the appropriate parser for a file-type one can retrieve this information for

playback or computational analysis from file encoded in the above formats.

2.1.3 The **kern format and music21 Python Library

The data used in the present work is represented in **kern files. The **kern rep-

resentation format is designed to encode purely syntactic information contained

in a musical score for analysis purposes. It allows encoding of pitch (e.g., concert

pitch, accidentals, clefs, key signatures, harmonics, glissandi, etc.), duration (e.g.,,

canonic musical duration, rests, augmentation dots, grace notes, time signature
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and tempo), articulation (e.g., fermata, trills, accents), timbre (e.g., instrument and

instrument class), and many other structural components of a score (e.g., phrase

markings, bar lines, repetitions, etc.) (Huron, 1997; Pearce, 2005). Figure 2.2 shows

the **kern file corresponding to the score in Figure 2.1.

!!!COM: Bach, Johann Sebastian
!!!CDT: 1685/02/21/-1750/07/28/
!!!OTL@@DE: Auf, auf, mein Herz, und du mein ganzer Sinn
!!!AGN: chorale
**kern **kern **kern **kern
*ICvox *ICvox *ICvox *ICvox
*Ibass *Itenor *Ialto *Isoprn
*I"Bass *I"Tenor *I"Alto *I"Soprano
*clefF4 *clefGv2 *clefG2 *clefG2
*k[f#] *k[f#] *k[f#] *k[f#]
*G: *G: *G: *G:
*M4/4 *M4/4 *M4/4 *M4/4
*met(c) *met(c) *met(c) *met(c)
*MM100 *MM100 *MM100 *MM100
8GL 4d 4g 4b
8F#J . . .
=1 =1 =1 =1
4G 8dL 8gL 4b
. 8eJ 8eJ .
4D# 4f# 8bL 4b
. . 8aJ .
4E; 4e; 4g; 4b;
4C 4e 8aL 4ee
. . 8gJ .
=2 =2 =2 =2
4.C 8AL 8f#L 4ddnX
. 8G 8e .
. 8A 8f# 4dd
8BB 8BJ 8g#J .
8AAL 8cL 4a 4cc
8GGJ 8BJ . .
4AA 4A 8eL 4cc
. . 8f#J .
=3 =3 =3 =3
4GG; 4d; 4gnX; 4b;
4G 4B 4d 4g
8F#L 4A 8dL 4a
8EJ . 8eJ .
4D 8dL 8f#L 4a
. 8cJ 8eJ .
== == == ==
!!!YOR1: 371 vierstimmige Choralges&auml;nge von Johann Sebastian Bach,
!!!EED: Craig Stuart Sapp
!!!EEV: 2009/05/22

Fig. 2.2 The Kern file corresponding to the score in Figure 2.1 (“Auf, auf, mein Herz,
und du mein ganzer Sinn” by Johann Sebastian Bach).

The musical information contained in these **kern files is extracted using the

music21Python library (Cuthbert and Ariza, 2010). As stated by its creators, music21

is an “object-oriented toolkit for analysing, searching, and transforming music in

symbolic (score-based) forms”. This library provides users with a common inter-

face for parsing a variety of symbolic music file-types. There exist functions in the

library to directly extract several of the above mentioned musicological features,
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while others (cf. Section 3.1) can be extracted with additional scripts written using

this library.

2.2 Music and Information Theory

The foundations of modern information theory were laid in the seminal work of

Shannon (1948). The key idea that led to it influencing a range of disciplines, not

excluding music, was concerned with the measurement of information content

and uncertainty through a quantity known as entropy. This quantity can be de-

fined in the context of a communication system consisting of a source that encodes

and transmits information as a time-varying signal across a channel to a receiver

which then decodes the signal. In the literature pertaining to music and infor-

mation theory reviewed below, of interest is what is known as a discrete noiseless

system which assumes that (1) the signal is a sequence of discrete symbols, each

chosen from a finite set (such as characters in the English language, words in a dic-

tionary, or tones in the chromatic scale), (2) that the channel does not contribute

noise that in any way modifies the signals, and (3) the signal is generated by a prob-

abilistic Markov process at the source such that the probability of a certain symbol

occurring at each location in the sequence depends on those that have occurred

prior to it. Given these assumptions, the entropy at a certain location in the se-

quence quantifies the uncertainty regarding the value of the symbol that could oc-

cur at that location. Entropy is highest when one has no information regarding the

next symbol, i.e. all symbols are equally likely to occur with the same probability.

On the contrary, it is lowest when it can be determined exactly which symbol will

occur i.e., that symbol will occur with a probability of 1. The value of entropy typi-

cally lies between 0 and an upper limit which is determined by, and increases with,

the number of possible symbols.

Shannon demonstrated these ideas in the context of sequences of characters

of the English language where, by increasing the number of immediately preced-

ing symbols which are considered while speculating about the next symbol, one

can reduce the entropy or equivalently make more informed predictions about the

next symbol (Shannon, 1951). One can analogously replace the said characters of

the English alphabet with musical symbols corresponding to pitches in the chro-

matic scale, durations of notes, or combinations of these and other musical di-

mensions thus opening up various analytical possibilities of music with the help

of mathematics and computers. This is perhaps what inspired several researchers
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to undertake the information theoretic analysis of music. Early interdisciplinary

work in music and information theory (Meyer, 1957; Youngblood, 1958; Cohen,

1962) attempted to quantify various musical phenomena such as style, genre and

emotion with the help of information theoretic quantities such as entropy and mu-

tual information. These techniques evolved through the years both in terms of the

questions they intended to answer, as well as the techniques employed in order

to answer these questions more precisely. In this section, we review some notable

early information theoretic approaches for music analysis followed by a review of

the Multiple Viewpoints approach and two of its derivatives that are relevant to the

present work.

2.2.1 Early Work

One of the first scholars to discuss the potential importance of information theory

in the study of music was Meyer (1957), best known for his exposition on the the-

ory which relates musical expectation with emotion and meaning in music (Meyer,

1956). In a philosophical discourse on the Meaning in Music and Information The-

ory, he developed an analogy wherein the process of performance, propagation

and perception of music can be viewed as a communication system. According to

Meyer, a piece of music contains information that is propagated between a source

(the performer) and a receiver (the listener) through a channel (the acoustic space

through which music propagates). The composer can be seen as the probabilis-

tic process that generates the sequence of musical symbols. Musical style, in this

context, is regarded as a sequence of probabilities belonging not just to the music,

but to the habit responses of the composer, performer and the practiced listener

as well. Expectations are elicited in the listener by music of a certain style only

when it deviates from the “norms” that contain the former’s habit responses, Oth-

erwise the music tends to go unnoticed, and the expectations are said to be latent.

Meaning is conveyed through these expectations when they are satisfied, delayed

or thwarted at the will of the composer. It is this that creates an uncertainty in the

listener that entropy can be associated with. Meyer claimed that music communi-

cates what is known as embodied meaning through this uncertainty. Two different

sources of musical noise are discussed in the exposition - the first is physical noise

which relates to sounds that might mask the music itself from being heard by the

listener, while the second is cultural noise which refers to the disparities between

the habit responses required by the musical style and those which a given listener

actually possesses.

19



Related Work

Another early theoretical account on the subject was provided by Cohen (1962),

whose view of both the composer and the listener as probability systems is very

similar to that of Meyer (1957) but is expressed with greater emphasis on the in-

fluence of culture on the creation and assimilation of music. In this respect, it

also highlights a distinction akin to Meyer’s embodied and designative meanings of

music. This account, having been published a few years following (Meyer, 1957),

presents a review of analysis-synthesis work in music and information theory car-

ried out in this period in order to illustrate the theoretical ideas. It also highlights

the limiting assumptions of the information theoretic approach for music analysis

and synthesis.

An abstract, more mathematical and intuitive interpretation of information

theory in the context of music was presented in (Coons and Kraehenbuehl, 1958).

Their conclusion regarding the purpose of structural organisation in music echoes

that of Meyer, that music is to contain patterns that will first attract a listener’s

attention by presenting patterns which are informative (or contain some degree

of surprise) and thus eliciting expectations regarding what is to ensue, and then

reward this attention by satisfying these expectations with patterns of lower infor-

mation content (or lesser degree of surprise). This variety is to be achieved while

still maintaining a unity across a composition, to measure which they propose two

information theoretic quantities — index of articulateness and index of hierarchy.

The former is the average change in information over the course of a musical pat-

tern. It measures how neatly the conditions of unity and variety have been ar-

ranged so that the force of neither is dulled (Coons and Kraehenbuehl, 1958). The

latter is given by the average reduction of information by a pattern from beginning

to end. It also assigns a higher score to patterns where the reduction is sudden as

opposed to gradual. As stated by the authors, the index of hierarchy is a measure

of how successfully a variety of events has been arranged to leave an impression

of unity. Their claims are accompanied by numerical interpretations and simple

examples wherever applicable.

In a continuation of the above work (Kraehenbuehl and Coons, 1959), informa-

tion theoretic justifications for various commonly adopted compositional prac-

tices are provided. Different sequences of three or less symbols (A A AB , A AB A,

AB AC , etc.) are rank-ordered according to their two indices of hierarchy and ar-

ticulatedness. Assuming that these symbol sequences reflect song structures and

set out to explain how their positions in the rank-ordering might reflect their his-

toric use in composition, and also suggest in which contexts other less occurring

sequences might be suitable. For instance, the ordering justifies the very frequent
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use of the A AB A song structure in popular music, and allows them to speculate

that structures such as AB AC and ABB A are open-ended and better suited at the

beginning of long movements. The two indices also allow the authors to justify

the preference of structural patterns of four rather than three by composers. It

was also observed that a reduction in information is commonly associated with a

sense of beginning in music, while a gain in information contributes to a sense of

continuing. And finally, this work also offers an information theoretic explanation

regarding the “brightness” of the major triad and the “darkness” of the minor triad.

In an early attempt to quantify musical style, Youngblood (1958) focused on

the quantity known as Relative Entropy in order to analyse melodies from Grego-

rian chants and selected musical works of three composers of the Romantic era,

namely Robert Schumann, Felix Mendelssohn and Franz Schubert. The analysis

is limited to zeroth- and first-order probability distributions of the twelve tones of

the chromatic scale. The average values of relative entropy, which is simply the

ratio of the measured entropy and the maximum possible entropy given a certain

number of symbols, across a composer’s music is interpreted as a measure of the

degree of restraint practiced by a composer in using all possible tones and tone

pairs in a given composition. This has been referred to as redundancy here and in

other work. It was noted here through a comparative analysis of average relative

entropies, how in the music of the three composers one can observe the differ-

ences in their respective use of chromaticism. In comparison to the music of the

three Romantic composers, it was found that tones other than the tonic and the

dominant were more evenly distributed in the Gregorian chants. The author also

suggested that the analysis of harmony and inclusion of other informative musi-

cal dimensions such as rhythm, position in phrase and modulation might lead to

better insights into the similarities and differences between the styles of the three

composers.

Hiller and his collaborators carried out further information theoretic experi-

ments in this direction. The earliest of these (Hiller and Bean, 1966), examined

four sonatas each composed by one of four stylistically distinct composers, namely

Wolfgang Amadeus Mozart, Ludwig van Beethoven, Alban Berg and Paul Hindemith.

The goal of this early research was to determine the ability of information theoretic

measures to reflect the stylistic differences that exist in the musics of these com-

posers. The analysis was carried out on first order pitch distributions of both the

set of 12 notes of the chromatic scale as well as the of 21 notes which distinguish

between multiple interpretations of the same note (maintaining a distinction be-

tween notes such as Eb and D# which differ only in their function). Their results
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showed theat there was a progressive increase in information content, and de-

crease in redundancy from the Mozart example, to those of Beethoven, Hindemith

and Berg which was observed in both the 12- and 21-note sets. The study also

highlighted other aspects of stylistic choice made by each composer within their

corresponding sonata, such as variation in the values of entropy between succes-

sive sections, choice of notes, amounts of chromaticism, etc.

A similar analysis of Anton Webern’s symphony (Op. 21) was carried out by

Hiller and Fuller (1967) with the aim to demonstrate that a music theoretic anal-

ysis of the symphony complements an information theoretic one. It extended the

work in (Hiller and Bean, 1966) by computing second order probability distribu-

tions as well in addition to zeroth and first order distributions, over musical pitch,

intervallic relationships between pitches, rhythm and a combination of pitch and

rhythm. Entropies and redundancies computed over different sections of the piece

were able to highlight differences in structural complexity of the chosen musical

features. This study also examined the effects of sample size and the size of the al-

phabet (number of symbols) on the reliability of the estimated distribution, which

essentially concluded that a small sample size and a large alphabet size lead to po-

tentially unreliable estimates of entropies and redundancies that might potentially

lead to errors in the analsysis.

A limitation of analysing music only in the symbolic form is that it ignores sev-

eral aspects of musical expression whose gradations are often continuous in nature

and cannot be expressed purely in terms of a finite alphabet as in the case of, say,

musical pitch in the Western sense. This was first noted in (Knopoff and Hutchin-

son, 1981) where, in order to illustrate this point, an information theoretic analysis

of dissonance in chorales harmonised by J.S.Bach was carried out. This study was

extended in (Knopoff and Hutchinson, 1983) to the analysis of musical style along

the lines of the example set in (Youngblood, 1958), while also highlighting the role

of sample size (duration of the piece whose style is under question) in judging the

reliability of the observations.

Finally, in an interesting experiment of information theory in measuring the

influence of musical training in improving musical originality (Coffman, 1992), 34

seventh grade students were asked to create a composition on a MIDI keyboard,

first prior to attending a nine-week long music course and then after it. An in-

formation theoretic analysis of these pre- and post-instruction compositions re-

vealed that the latter exhibited significantly higher pitch entropy, indicating less

predictability in pitch choices and greater freedom of choice, despite a reduction

in the average length of the compositions. A more extensive review of other work

22



2.2 Music and Information Theory

in music and information theory is available in (Pearce, 2007).

2.2.2 Multiple Viewpoint Systems and Related Work

The work carried out in this dissertation is most closely related to the work initi-

ated by (Conklin and Witten, 1995), entitled Multiple Viewpoints for Music Predic-

tion. It is a framework proposed for the analysis (and synthesis) of musical data

that addresses two main shortcomings of many of its precursors by (1) comput-

ing prediction probabilities that are dynamically adapted during prediction, and

(2) incorporating information from multiple musical features that can be extracted

from a given piece of music. It employs an event-based representation of music ex-

tracted from symbolic music data where each event corresponds to the occurrence

of a musical note. A given piece of music is decomposed into parallel streams of

features, known as types. Each type is either a directly observable musical dimen-

sion such as pitch and note duration, or an abstract one derived from them such

as inter-onset interval or pitch contour. A viewopint is essentially a function that

maps sequences of one type onto those of another. Types that can be mapped onto

each other via viewpoints are considered to be potentially useful sources of in-

formation about those related to them. Thus the predictions about a certain type

of interest can be obtained by combining the predictions made by models for se-

quences of other types related to it using ensemble methods (Tax et al., 2000) after

mapping their respective predictions to those of the type of interest using the ap-

propriate viewpoints.

There are two kinds of models that carry out the above combination whose

predictions are, in turn, combined — a long-term model (LTM), and a short-term

model (STM). The LTM is a model whose parameters are estimated offline from a

dataset of melodies. It represents more global stylistic characteristics analogous to

those acquired by a listener over a longer time-span. The parameters of the STM

are estimated on-the-fly while making predictions on data, without anything done

beforehand. The STM highlights the importance of context-specific information

available in music while it is being processed by a listener, in the generation of

expectations. Predictions (in the form of probability distributions) made by each

model about a certain musical event in a sequence are combined using ensem-

ble methods, and this has been shown to improve the quality of predictions over

individual models in the past (Conklin and Witten, 1995; Pearce, 2005). The sig-

nificance of this framework is in its extension of previous work in language mod-

elling to music with an information theoretic backing which facilitates an objective
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evaluation of models for music prediction. The idea of combining corpus-based

long-term and context-sensitive short-term predictions from different models was

originally a feature of cache-based language models (Kuhn and De Mori, 1990).

The multiple viewpoints framework was adopted in (Pearce, 2005) where it was

used to implement a cognitively plausible system for music prediction that was

able to generate human-like melodic expectations. This work also introduced a set

of new musicological features (types) in addition to those originally introduced in

(Conklin and Witten, 1995) that were found to be effective in making more accurate

predictions. In order to choose the optimal subset of these features for prediction,

this work employed an iterative feature selection algorithm. In addition to this, a

comprehensive evaluation which tested a wide range of n-gram and variable order

Markov models was also carried out on a corpus of 8 datasets in order to estab-

lish a benchmark against which future prediction models, such as those presented

here, may be compared. And more recently, the framework was extended further

in (Whorley et al., 2013). The chief contribution of this work was in addressing

the little explored area of musical harmony with the Multiple Viewpoints frame-

work. These are in the form of an empirical analysis of the time-complexity of

an existing approach for this purpose (Conklin, 2002), the adoption of approaches

from previous systems for automatic harmonisation (Hild et al., 1992; Allan and

Williams, 2004) into the Multiple Viewpoints framework, and the introduction of a

novel method which allowed the use of different viewpoints in different voice-parts

which was previously not possible. This work also modified the type selection al-

gorithm used in (Pearce, 2005) to work more efficiently given a larger set of types

to choose from. This work also proposed a musicological solution to the problem

of dealing with the curse of dimensionality that results from taking the Cartesian

product of pitches from multiple voice-parts in order to represent harmony.

2.3 Music and Connectionism

The many contributions made during the past three decades to computer-assisted

analysis and generation of music with the aid of Connectionist architectures can

be seen to have occured in two waves, in parallel with developments in Connec-

tionist research itself. During the first wave, the founding principles of Connec-

tionism were introduced (Rumelhart et al., 1986) through the idea of Parallel Dis-

tributed Processing according to which mental phenomena occur as a result of si-

multaneous interactions between simple elementary processing units, as opposed
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to the then prevailing notion of Sequential Symbolic Processing which explained

the same phenomena in terms of sequential interactions between complex goal-

specific units. Its significance is largely theoretical, with a few experimental and

empirical results to support the feasibility of the theory. Following several years

of reduced interest, the second wave further strengthened the claims made by its

precursor through a series of successful high-impact real-world applications. This

was owing to both the proposal of newer theories, and the availability of greater

computational power and vast amounts of data that enabled the demonstration

of the efficacy of these theories nearly two decades on (Bengio, 2009; LeCun et al.,

2012). The innovations that came about as a result of these two phases trickled

down to several application domains (Krizhevsky et al., 2012; Hinton et al., 2012;

Collobert et al., 2011) of which music is one (Todd and Loy, 1991; Griffith and Todd,

1999; Humphrey et al., 2012). This section reviews notable contributions among

the many that demonstrated the application of connectionism to symbolic mu-

sic modelling during these two waves in order to present a historical perspective

together with an overview of the techniques employed.

2.3.1 The First Wave

The first set of notable approaches which apply Connectionism to the analysis

and generation of symbolic music were proposed in the years following the pub-

lication of the influential text on Parallel Distributed Processing (Rumelhart et al.,

1986). While the breadth of contributions to the field during this period is indeed

vast, we present a brief historical perspective on only those architectures and algo-

rithms that are of relevance to the present work, and refer the reader to (Rumelhart

et al., 1986; Medler, 1998) for more in-depth and comprehensive reviews. Many of

the inventions and algorithms proposed during this period persisted through the

decades that followed and significantly impacted research in Artificial Intelligence,

and the now-thriving field of Machine Learning. These were the years that saw

the maturation of the previously proposed Perceptron (Rosenblatt, 1958) into the

Multi-Layer Perceptron (also known as the Feed-forward Neural Network) and the

invention of the Backpropagation algorithm (Rumelhart et al., 1988) which offered

a simple and efficient means to train this model on data, thus leading to a surge

in its popularity. The architecture of the Feed-forward Neural Network (FNN) was

further adapted to deal with sequential data into the Recurrent Neural Network

(RNN) (Elman, 1990; Jordan, 1986), and likewise, the Backpropagation algorithm

extended into the Backpropagation Through Time (BPTT) (Werbos, 1990) to train
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this new architecture. Other algorithms were also proposed around the same time

to carry out real-time learning in the RNN architecture (Williams and Zipser, 1989).

Another significant innovation from this period, which is relevant here is the Boltz-

mann Machine family of models (Smolensky, 1986; Hinton et al., 1984), which con-

sists of undirected graphical models that learn joint probability distributions of

sets of visible and latent variables through a process of minimisation of an energy

function associated with configurations of these variables. Probabilistic inference

can be carried out in these models to determine conditional distributions, typically

of interest in various prediction tasks.

Contributions to Connectionist theory and Artificial Intelligence, such as the

above, generated interest in their adoption into several application domains that

foresaw their potential benefits. This included the computer-assisted analysis and

synthesis of music. One of the first systems for this purpose, known as HARMONET

(Hild et al., 1992), was designed for harmonising chorales in the style of J.S.Bach.

It consists of a symbolic (rule-based) component together with a recurrent neural

network, and generates four part harmonisations of a given chorale melody. The

role of the neural network is to generate human-like harmonisations within the

rules dictated by music theory, which when taken literally tend to result in “aesthet-

ically offensive musical output”. HARMONET divides the harmonisation task into

three subtasks. In the first, a harmonic skeleton of the chorale melody is generated

for every quarter note of the given melody (which essentially involves determining

the bass voice of the chorale) using a recurrent neural network. The network takes

as inputs harmonies generated at previous time-steps, and also the local context

and global position (with respect to the beginning of the melody) of the note at the

current time-step to generate a harmony for it. A novel representation for the pitch

of each musical note was introduced at this stage which encodes the harmonic

functions that contain the note, thus introducing hand-crafted musicological in-

formation as input to the network. This is followed by the generation of the alto

and tenor voices taking into account the given soprano voice in the melody, and

the bass voice generated in the previous step. Finally, ornamenting eighth notes

are added to the result at each chord by another network which takes into account

the local harmonic context. The system was evaluated by an audience of music

professionals who judged the quality of the harmonisations. By treating each of

the possible harmonizations of the first network above as classes and changing its

output units to softmax (Specht, 1990), the system can be used for predicting har-

monic expectation over time.

The work initiated in the context of HARMONET was later extended to cre-
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ate MELONET (Feulner and Hörnel, 1994) - a system comprised of a hierarchy

of neural networks operating at different time-scales which models melodies as

sequences of harmony-based motifs and varies one of the chorale voices gener-

ated by HARMONET. It uses, what are known as delayed-update neurons in a re-

current network which, by integrating their inputs over a certain time-span reflect

long-term information about the melody input. It works hand-in-hand with HAR-

MONET to generate the said variations. In a subsequent publication, a committee

of such neural networks, each of which has learned a specific harmonisation style,

was used to recognise different styles of harmonisation according to how expected

it is to each network (Hörnel and Menzel, 1998).

Chorale harmonization has also been the focus in (Bellgard and Tsang, 1994)

where, in contrast to HARMONET, the approach relies solely on a connectionist

model — the Boltzmann Machine (BM) (Hinton et al., 1984; Smolensky, 1986).

Four-part writing in practice is regarded here as being the result of a unique set of

choices made by the composer between various competing harmonization tech-

niques, which is not clearly defined in practice and is thus essentially an imprecise

and noisy process. This is where the stochastic nature of the model employed is

highlighted as an advantage over the deterministic nature of models from previ-

ous work i.e., HARMONET, CHORAL (Ebcioğlu, 1988). The task is viewed as one

of pattern completion (or gap-filling) where a given chorale melody is only the

partial specification of a complete piece of information which is the harmonized

chorale. A BM learns local harmonic constraints through a series of overlapping

time-windows extracted at each time-step in the chorale. Harmonization is achieved

in an identical fashion, but with the learned model slid (in time) along a given

chorale melody. Its visible units are comprised of a mixture of multinomial and

binomial units which represent three octaves of musical pitch, musical rest and

phrase-control variables. The energy-function associated with a Boltzmann ma-

chine to assess the quality of learning in the model is also used to assess the quality

of the harmonies generated by the model. Sliding the BM in time along a temporal

input gives, what is referred to by the authors as the Effective Boltzmann Machine

(EBM).

As music is inherently temporal in nature, recurrent neural networks (RNNs)

are a natural choice for modelling musical structure. In one of the first applica-

tions of neural networks to music (Todd, 1989), a special case of the RNN known

as the Jordan network (Jordan, 1986) was made to memorize and interpolate be-

tween melodies of different styles. The network consists of an input, hidden and

an output layer. A part of the input layer consist of a set of plan units that indicate
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the style of the melody being learned or produced. The rest is a set of context units

which maintain the memory of the sequence produced so far by combining the

effects of the most recently predicted output in the sequence (which is fed back

as input) and an exponentially decreasing sum of all of the network’s previous in-

puts. The input layer is fully connected to the hidden layer which is in turn fully

connected to the output layer. The network models sequences of pitches and du-

rations, and uses a fixed size time-window of notes in its input context units and

predicts the same number of notes as those in the input time-window for the next

time-step which are fed back to its input layer. All melodies are transposed into

the key of C, and a binary one-hot representation (a vector containing all 0s and

a single 1 corresponding to a particular value) is used for pitch. A time-slice rep-

resentation is used for duration where the length of a note is given by the number

of consecutive evenly spaced time-slices (of eighth-note duration), with additional

information about its onset. The purpose of the network is to memorize melodies

that it has come across, associating each melody with a plan so that it can also

interpolate between melodies when plans are interpolated, and change melodies

dynamically as well when plans are changed.

An often cited work in connectionist music composition is that of Mozer (1991),

where an RNN named CONCERT is empoyed for learning structure in melodies to

generate novel variations on them. In contrast to the above described approach in

(Todd, 1989), this network uses an Elman RNN (Elman, 1990) and also contains

a learning stage (absent in the other) where the backpropagation through time

(BPTT) algorithm (Werbos, 1990) is applied to tune the weights of the network to

the prediction task. The task is to predict the next note, given the previous one

and the state of its hidden layer in the most recent time-step which accounts for

the notes further back in time that are not dealt with explicitly. The shortcom-

ings of the network’s architecture in dealing with long-term memory and global

structure of a musical piece are addressed by taking into account the notes in the

melody at multiple time-resolutions, and also employing an additional parame-

ter that enabled controlling its sensitivity to recent versus not so recent notes in a

melody. With the generation of aesthetically pleasing melodies being the focus of

the network, the task-unaware one-hot representation of notes in it is abandoned

(or retained only for the sake of interpreting results) in favour of a perceptually mo-

tivated one, based on earlier empirical observations by Shepard (1982). The model

was evaluated by having it extend a C major diatonic scale, learn the structure of

diatonic scales, learn random walk sequences of pitches, learn specific kinds of

phrase patterns and generating new melodies in the style of J. S. Bach.
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A different approach inspired by the Target-note Technique in Bebop jazz is

explored by Toiviainen (1995), wherein given a typical jazz chord progression an

auto-associator network emulates the creativity of an improviser. The melodies

generated by the model rely on the starting notes at any given point in time, to-

gether with the current chord to determine the possible melodic patterns, and the

next chord in the progression to determine the possible target notes to follow. Sev-

eral constraints that reflect the typical practices in jazz improvisation, such as the

relationship between the musical pitch of a note in the melody and the root of the

current chord, typical chord-types occurring in jazz progressions, typical synco-

pation in improvised melodies, etc. influenced the design choices for the archi-

tecture of the network. The network relies on the Hebbian learning rule for up-

dating its connections while learning from data. A moving time-window approach

was adopted for representing time, where each window corresponded to one half-

measure. Thus in each step of its operation during the generative process, the net-

work generated a melody of length equal to a half-measure, which was fed back

into it in order to generate the next one, and so on. The fact that such a network

learns to generate music from examples in a dataset, much like a typical jazz musi-

cian who improvises based on the repertoire that she/he has paid attention to over

time is what motivates this approach. The author concludes that “the melodies

produced by the network resemble those of a beginning improviser”, based on a

qualitative assessment of its generations learned from excerpts of solos played by

the trumpet player Clifford Brown, over chord changes in George Gershwin’s “I’ve

Got Rhythm”.

The above list of connectionist systems for the analysis and synthesis of sym-

bolic music consists of notable contributions among those that laid the founda-

tions for future work on the subject. It is, by no means exhaustive, and there exist

several others that explore other musical phenomena with connectionist architec-

tures considered beyond the scope of this review. We point the inquisitive reader

to (Todd and Loy, 1991; Griffith and Todd, 1999) for a comprehensive summary

of work carried out in the field during, what we here refer to as, the first wave of

connectionism.

2.3.2 The Second Wave

The second wave of interest in neural networks and connectionism, which has pre-

vailed for nearly a decade (with hardly any signs of subsiding) at the time of writ-

ing of this dissertation, can be said to have come about towards the end of what is
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generally known as the AI Winter (Hendler, 2008). Its success has been attributed

to the culmination of three key factors — theoretical and empirical advances in

connectionist research, the presence of very powerful hardware in modern com-

puters, and the availability of vast amounts of data. This wave brought with it

several new innovations in connectionist architectures and algorithms which also

fueled a revival in the study and application of older ones brought about by its

precursor. The theoretically known, but often practically infeasible concept of a

deep neural network (a feed-forward neural network with more than one hidden

layer) was made into reality during this period with the introduction of new meth-

ods for pre-training these networks layer-by-layer in an unsupervised fashion be-

fore training on a certain task in a supervised manner (Bengio et al., 2007; Hinton

et al., 2012). The Restricted Boltzmann Machine (RBM), a generative unsupervised

model which was, in part responsible for this turnaround, was extended in many

different ways to serve as a supervised learning model and a classifier (Salakhutdi-

nov et al., 2007; Larochelle and Bengio, 2008), a sequence learning model (Sutskever

and Hinton, 2007; Sutskever et al., 2009; Taylor et al., 2007) and generalised to han-

dle different types of data (Welling et al., 2004). The RBM, in turn, soared in pop-

ularity thanks to the Contrastive Divergence algorithm (Hinton, 2002; Tieleman,

2008) which made it possible to train this model more efficiently than was pre-

viously possible. Likewise, the limitation of recurrent neural networks in mod-

elling very long-term memory was also addressed to increase their effectiveness

as sequence models (Martens and Sutskever, 2011). A previously proposed archi-

tecture to address the same issue of long-term memory — the Long Short Term

Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) was also re-visited

and is now even more widely used as a sequence model, with proposals of other

models inspired by it (Chung et al., 2014). Another architecture that underwent a

breakthrough is the Convolutional Neural Network which is now the de facto stan-

dard for object recognition and related image recognition and classification tasks

(Krizhevsky et al., 2012). All these advances had a significant impact on three ap-

plication areas — Natural Language Processing, Speech Processing and Computer

Vision (Lecun et al., 2015), the very tasks in which the failure of Artificial Intelli-

gence to perform well in the past was an important reason for the loss in faith in

the field, i.e. the AI Winter.

This revival of interest in connectionist research inspired a body of work that

deals with a diverse set of musical tasks using symbolic music. One such applica-

tion was in modelling melodies by capturing short melodic motifs in them using a

Time Convolutional RBM (TC-RBM) (Spiliopoulou and Storkey, 2011). In contrast
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to other RBM-based sequence models (Sutskever et al., 2009; Taylor and Hinton,

2009), the TC-RBM does not make use of any recurrent connections and relies on

the idea of convolution through time over fixed-length subsequences within a win-

dow centered at each time-step (Lee et al., 2009). Furthermore, a weight-sharing

mechanism which features in this model helps it achieve translation invariance

along time, which is desirable as motifs can occur anywhere in a musical piece.

The approach models both the pitch and duration of notes, and uses an implicit

representation of time by discretising it in eighth-note intervals. A two-fold evalu-

ation of this model was carried out with the model on the Nottingham Folk Music

Database1. A qualitative evaluation involved the analysis of the latent distributed

representations learned by the TC-RBM when presented with musical data in its

visible layer, which were found to convey information about the scale, octave and

chords. In a quantitative evaluation, the model was made to predict the next k

time-steps given a fixed-length context. The prediction log-likelihood was com-

puted approximately by sampling from the model,and the Kullback-Leibler diver-

gence was used to determine the closeness of the model’s predictions to the em-

pirical distribution.

As a continuation of a previously proposed probabilistic grammar based ap-

proach for generating Jazz solos known as the Impro-visor (Keller and Morrison,

2007), a Deep Belief Network (Hinton et al., 2006) (DBN, a probabilistic generative

model made up of a stack of the aforementioned Restricted Boltzmann Machines)

was experimented with for the same purpose (Bickerman et al., 2010). As mod-

elling entire melodies, or solos requires dealing with long-term dependencies that

are not feasible with a non-recurrent model such as the DBN, only 4-bar jazz licks

(short, coherent melodies) are modelled at each time-step. As in some of the ap-

proaches outlined above, a sliding-window is used to model temporal information,

with a window-size of one measure (4 beats) of the piece of music, and a step-size

of 1 beat. The visible (input) layer of the DBN simultaneously modelled the joint

distribution of the chromatic pitch-class, duration and onset, and octave of the

melody note, and the chord underlying the melody, thus allowing the model to as-

sociate chords with various melodic features which is a key factor to consider in

jazz music. The model was trained generatively using the Contrastive Divergence

algorithm (Hinton, 2002; Tieleman, 2008) on a large corpus of 4-bar jazz licks. With

the DBN being a stochastic generative model, novel jazz licks could be sampled

one beat at a time from it in generative mode. While it could be demonstrated that

1www.chezfred.org.uk/freds/music/tunes/Indexreels.htm
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the model does indeed generate the desired licks, the authors conclude in favour

of their previous grammatical approach to lick generation over the DBN stating the

subjective quality of the generated licks and the large training time of the DBNs to

support this choice.

The approaches described above use non-recurrent models which have largely

been superceded, when it comes to the modelling of sequential data, by recurrent

models that are a more natural fit for temporal data. In an attempt towards style-

independent polyphonic music generation in (Boulanger-Lewandowski et al., 2012),

an RNN-RBM is made to model sequential information directly from the piano-

roll notation (Orio, 2006b). The reason for dealing with this notation is to avoid

making any kind of prior assumptions regarding the nature of the modelling task

that would simplify it, thus leaving much for the model to determine by itself. The

RNN-RBM is a stochastic model and can be understood as a sequence of RBMs,

which at each time-step of the sequence are conditioned by the hidden layer of

an RNN. Thus in addition to the RNN modelling sequential information, the RBM

models correlations between variables (MIDI note values) that occur simultane-

ously at each time-step. The latter is often ignored in standard RNNs, and can be

viewed as an advantage of this model given sufficient data since it also entails the

need for a greater number of model parameters. The model is targeted at the task

of automatic music transcription and is thus required to model time in seconds in

contrast to other symbolic music modelling approaches that represent time rela-

tive to the musical score, thus requiring an additional step of alignment between

the audio and symbolic formats. Time, in this model, is represented in terms of

consecutive slices of the quantised musical signal. It is trained using the mini-

batch gradient descent and the Backpropagation Through Time algorithms. It was

found that this model outperforms others addressing the same task. This work has

also inspired other very close extensions with the same goal, that claim improved

performance (Goel et al., 2014; Lyu et al., 2015).

A previous approach by Eck and Schmidhuber (2002) for modelling Blues mu-

sic with a Long Short-Term Memory (LSTM) RNN can be said to have influenced

the above described one (Boulanger-Lewandowski et al., 2012) in its choice to not

incorporate any prior musicological information in order to simplify the modelling

task. As mentioned earlier, the LSTM is an enhanced version of the basic RNN

and has been shown to be able to successfully model longer temporal dependen-

cies than the latter. Here, once again, successive slices of the musical signal are

treated as time-steps. A quantisation step-size of 8 notes per measure was used,

and thus the 12-bar blues musical segments used for training the model were each
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96 time-steps in length. The first experiment carried out with this model involved

having it learn and generate a musical chord structure, from which the authors

conclude that this is a fairly straightforward task for the model, and also expected

given its previous success in tasks involving counting. In the second experiment

both melody and chords are learned, leading to a conclusion that the LSTM is in-

deed able to generate a blues melody constrained by the learned chord structure

that sounds better than a random walk across the pentatonic scale and are faithful

to the examples in the training set. The evaluation in this case is left to the listener

who is encouraged to visit a webpage2 containing the pieces of music generated by

the network.

A more recent study with the LSTM (Franklin, 2006) carried out further exper-

iments with this model on jazz-related tasks. Here, various note representations

were studied in order to incorporate musical knowledge into the network. This

can be contrasted with the approach adopted in (Eck and Schmidhuber, 2002;

Boulanger-Lewandowski et al., 2012) that avoids making any music theoretic as-

sumptions. A pitch representation based on major and minor thirds known as

the circle-of-thirds representation, and a duration representation known as the

modular-duration representation which extends that proposed in (Mozer, 1991)

were used to train the dual pitch/duration LSTMs. Two experiments were carried

out. The first focused on short musical tasks, and only sequences of musical pitch

were considered. These included outputting in sequence the four chord tones

given a dominant seventh chord as input, determining whether or not a given

sequence of notes are ordered chromatically, and reproducing a specific 32 note

melody of the form AABA given only the first note as input. A single network was

used for all these tasks. In the second experiment, which focused on long musi-

cal tasks, the objective was to learn the melody of the song Afro Blue composed by

the jazz percussionist Mongo Santamaria. Two separate networks are used to learn

musical pitch sequences and note duration sequences respectively. The study con-

cludes in favour of the LSTM and a detailed qualitative analysis of the results with

respect to the authors’ expectations.

Lambert et al. (2015) trained a two-layered RNN on the Mazurka dataset (MAZ)3,

an audio dataset of expressively performed piano music. The first layer for the sys-

tem is a Gradient Frequency Neural Network (GFNN) (Large et al., 2010), which

uses nonlinear oscillators to model metre perception of a periodic signal. The

second layer contains LSTM units which model the output of the GFNN and pre-

2http://people.idsia.ch/~juergen/blues/ (last accessed: 20th October, 2015)
3http://www.mazurka.org.uk/
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dict rhythmic onset as a time-series activation function. This work builds on pre-

vious experiments involving a symbolic data in which the authors find that the

LSTM performs time-series modeling significantly better when GFNNs are used

exclusively (Lambert et al., 2014a,b). Their GFNN-LSTM model was able to predict

rhythmic onsets with an f -measure of 71.4%.

As stated before, there seems to be very little work focusing on connectionist

models for information theoretic music modelling. One such attempt is presented

in (Cox, 2010), where the relationship between entropy and meaning in music in-

spired by (Meyer, 1956, 1957) is explored with the help of Recurrent Neural Net-

works that estimate instantaneous entropy for music with multiple parts in the

analysis of a string quartet piece composed by Joseph Haydn. The model con-

sidered here contains two components - a long-term model (LTM), and a short-

term model (STM) (Conklin and Witten, 1995). The parameters of each model are

learned through exposure to appropriate data. The LTM models global stylistic

characteristics acquired by a listener over a longer time-span. The STM models

context-specific information, available in a melody while it is being processed by

the listener, in the generation of expectations. Predictions made by each model

are combined using ensemble methods, and this has been shown previously to

improve the quality of predictions over individual models in the past (Conklin and

Witten, 1995; Pearce, 2005). The work demonstrates that the entropies as predicted

by the model are sensitive to the effects of cadences, resolutions, textural change,

and interruptions in music.

2.4 Motivating this Dissertation

The work presented here began with an interest in the above described Multiple

Viewpoints approach to music modelling (Conklin and Witten, 1995; Pearce, 2005;

Whorley et al., 2013), with the aim of improving the performance in a melody pre-

diction task addressed in them, by leveraging the potential benefits of connection-

ist architectures. With n-gram models dominating much of the previous work on

music modelling in this context (cf. Section 2.2.2), this has presented the opportu-

nity for their comparison with other modelling techniques, of which those inspired

by Connectionism are viable alternatives. To the author’s knowledge, a connec-

tionist approach to information theoretic music modelling as considered here has

received very limited attention (Cox, 2010) so far, and no quantitative evaluation

directly comparable with previous work that uses n-gram models exists.

34



2.4 Motivating this Dissertation

The first observation from the above review is that much of the work employ-

ing connectionist models for modelling musical structure largely focuses on qual-

itative assessment of the musical output (Todd, 1989; Mozer, 1991; Bellgard and

Tsang, 1994; Franklin, 2006).The rest is focused solely on subjective quality of the

music generated by a model (Eck and Schmidhuber, 2002; Bickerman et al., 2010;

Toiviainen, 1995; Hild et al., 1992). Moreover, it is only during a little over the past

decade that efforts towards estabilishing a quantitative standard for models of mu-

sic prediction (in addition to qualitative assessments) have come about (Pearce

and Wiggins, 2001, 2004; Potter et al., 2007). These are akin to already existing eval-

uation standards in language modelling that help compare different approaches in

the domain through standard corpora (Paul and Baker, 1992; Marcus et al., 1993;

Miller, 1995) and evaluation measures (Chen et al., 1998). In (Pearce and Wiggins,

2004), a comprehensive evaluation of n-gram models for musical pitch was car-

ried out on a corpus containing 8 datasets of different sizes and melodic complex-

ities. Such standards are indeed important, and the present work compares the

models proposed in it to the said n-grams wherever appropriate in an attempt to

contribute to the benchmark. Application-independent evaluation in the case of

polyphonic music generation has also been adopted in more recent work with con-

nectionist models (Boulanger-Lewandowski et al., 2012; Goel et al., 2014; Lyu et al.,

2015).

As highlighted by the above review, music and language modelling are but two

of the many areas of research that have been impacted by the information the-

oretic approach. Given the parallels between music and language here both in

terms of the modelling techniques as well as the means of evaluation, there is

further reason to believe that a connectionist approach for modelling musical se-

quences would lead to some degree of success much like in the case of recent work

in language modelling. Neural Language Models (NLMs), which have risen in pop-

ularity over the past decade primarily address one key issue n-gram models are

faced with. This is known as the curse of dimensionality, and interferes with effec-

tive maximum-likelihood estimation of the parameters in n-gram models as the

length of the modelled sequences increases. Specifically, if one models sequences

of length l that are composed of different temporal arrangements of |χ| discrete

symbols, the number of n-gram model parameters to estimate is |χ|l . It is not

desirable that the number of parameters increases exponentially with l . Models

which employ distributed architectures such as neural networks tend to bypass

this problem, as they do not require enumerating all state transition probabilities,

but rather the weights of the network encode only those dependencies necessary
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to minimize prediction error. Moreover, one often does not encounter every pos-

sible n-gram of words in the corpus and must often back-off to a lower-order (less

than n) model. The proposed solution to these drawbacks is demonstrated in two

of the earliest NLMs proposed (Schwenk and Gauvain, 2002; Bengio et al., 2003),

which employ feed-forward neural networks for predicting probability distribu-

tions over the possible vocabulary. Such models learn a reusable real-valued vec-

tor representation corresponding to each word, which reflects information regard-

ing the co-occurrence of words in the corpus, is learned implicitly in the model.

This idea is directly inspired by previous work in data-driven distributed represen-

tation learning (Hinton, 1986), and is a common feature in subsequent NLMs as

well (Morin and Bengio, 2005; Mnih and Hinton, 2008; Mikolov et al., 2010; Col-

lobert et al., 2011). Reviewing work in neural language modelling made clear the

various choices available and ideas that could and have been adopted here, and in-

fluenced the choice of representation (localist vs distributed) for musical features,

network architecture (recurrent vs non-recurrent) in order to represent sequences,

and helped develop an understanding of how these architectures can be trained

on data (various optimisation algorithms available for learning the model param-

eters, and the hyperparameters involved in the learning process). For example, in

the present work, the one-hot encoding (cf. Section 3.1.2) is employed for repre-

senting the values of various musical features given their discrete nature. These

vectors are concatenated into longer vectors when multiple features are to be in-

troduced as input to a model. Both recurrent and non-recurrent architectures for

modelling musical sequences have been explored. And among the various optimi-

sation algorithms available for training models, mini-batch gradient descent has

been used.
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Preliminaries

This chapter presents an overview of concepts needed to understand the chap-

ters that follow. The first, and major part of this dissertation (Chapters 4, 5 and 6)

focuses on monophonic music prediction using connectionist models. The first

question to address in this regard is how to translate the contents of a digitised

musical score into a representation that can then be made use of by the models.

For this, we turn to the Multiple Viewpoints representation which offers a means

to take into account the rich structural information available in music. Once the

sequences of Multiple Viewpoint features have been extracted for a given piece

of music, they are converted into sequences of what are known as one-hot en-

coded vectors. These vectors are presented as inputs to a connectionist prediction

model. The parameters of this type of prediction model are learned purely through

exposure to data, with the help of an iterative gradient-based learning algorithm

whose each iteration involves computing the gradient of the model’s prediction

error on the given data with respect to its parameters and updating them accord-

ing to this gradient, with the goal to minimise the error. We use the information

theoretic measure known as cross entropy to evaluate the predictive performance

of the model both during this learning stage and also while making predictions

on unseen musical sequences. Evaluation is carried out on a corpus containing a

collection of folk and chorale melodies which serves as a means to compare the

models here to those proposed in previous work. The above mentioned procedure

for learning parameters of connectionist models from data is also relavant to the

second part of the dissertation (Chapter 7) which extends and evaluates a novel

connectionist architecture for sequence labelling introduced in Chapter 5 and an

also an existing energy-based connectionist model for classification (Larochelle

and Bengio, 2008).
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3.1 Representation

In order to input the information available in the musical score to the prediction

models, we adopt the Multiple Viewpoints representation of music introduced by

Conklin et al. (1990; 1995). The underlying motivation for this framework was to

extend the application of statistical modelling techniques originally applied to text

and language data (Bell et al., 1989; Manning and Schütze, 1999) to the music do-

main, based on the observation that musical events have a rich internal structure

and can be expressed in terms of directly observable or derived musical features.

The framework of Multiple Viewpoint Systems (MVS) for music prediction was

proposed in order to efficiently handle this rich internal structure of music by ex-

ploiting information contained in these different musical feature sequences, while

at the same time limiting the dimensionality of the models using these features.

The description that follows is limited only to the application of this framework

to monophonic music, and the reader is referred to (Conklin, 2002; Whorley et al.,

2013) for its extensions to harmony and polyphony. Much of the introduction pro-

vided in this section is based on (Conklin, 1990; Conklin and Witten, 1995; Pearce,

2005).

The Multiple Viewpoints framework views a melody as a sequence of musical

events, where an event corresponds to the occurrence of a note in a musical score.

A melody is thus represented as a sequence of events
(
s(1), . . . , s(T )

)
, where each

event s(t ) is associated with a note at location (or time-step) t in the sequence.

The shorthand representation that will be used for such a sequence between, and

including, time-steps t1 and t2 is s(t1:t2). Each event s is composed of a finite set

of basic attributes, each associated with a type τ. Each type may assume a value

drawn from a finite alphabet with a domain [τ], denoting the set of all syntactically

valid elements of that type. A semantic domain [[τ]] corresponding to each type

denotes the set of possible meanings for the elements of its syntactic domain [τ],

and a function �·�τ : [τ] → [[τ]] serves as a mapping between the two domains. The

Cartesian product of the domains of n basic types τ1,τ2, . . . ,τn is referred to as the

event space, ξ:

ξ= [τ1]× [τ2]× . . .× [τn]

Thus, an event s is an instantiation of the attributes τ1,τ2, . . .τn , or an n-tuple in the

event space. And the event space ξ denotes the set of all representable events, and

its cardinality is denoted by |ξ|. The set of all sequences that can be constructed

from the elements of ξ is denoted by ξ∗. Since the domain of each individual type
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is finite, so is the cardinality of the event space. Henceforth, a reference to the

name of a type is written in typewriter font in order to distinguish it from other

text.

A viewpoint modelling a type τ is a partial function, Ψτ : ξ∗* [τ], which maps

sequences of events onto elements of type τ1. Each viewpoint is also associated

with a type set 〈τ〉 ⊆ {τ1, . . . ,τn}, stating which basic types the viewpoint is derived

from and is, therefore, capable of predicting (Conklin, 1990).

A multiple-viewpoint system (MVS) is a set of models, each of which is trained

on subsequences of one type, whose individual predictions are combined in some

way to influence the prediction of the next event in a given sequence. It allows

one to incorporate useful information from sequences of any arbitrary type in the

context (an input type τi n) derived from a corresponding sequence of events to

influence the predicted probability distribution over a certain type corresponding

to the next event in the sequence (a target type τt g t ). This is realised through the

introduction of multiple models, each of which relies on a different source of in-

formation (its respective input type) to make a prediction about the target type.

The accuracy of the prediction depends on how informative the input type is of

the target type. It has been assumed in previous work on MVS that the input type

belongs to the type set of the target type. It is possible to combine the information

provided by different input types for possibly better predictive performance on the

target type.

In previous work implementing this idea through n-gram models (Conklin and

Witten, 1995; Pearce, 2005) it is first required to make a prediction about the input

type itself and then map this prediction to the domain of the target type. Put dif-

ferently, these approaches first model the distribution P
(
τ(t )
in|τ(1:t−1)

in

)
, and then rely

on a deterministic mapping between the input and target types to derive P
(
τ(t )
tgt|τ(t )

in

)
.

3.1.1 Relevant Viewpoints and Viewpoint Categories

Previous work (Conklin and Witten, 1995) has defined different categories of view-

points, some of which are relevant to the present work and will be described here.

The first is the basic viewpoint, and models basic types which are directly observ-

able, or given in a musical score. Among others, this category includes chromatic

pitch pitch, note duration dur, key-signature keysig and onset time of a note

1There exists a distinction in the understanding of viewpoints in the usage by (Conklin and Wit-
ten, 1995) and (Pearce, 2005). Here, we adhere to the latter where viewpoints are considered to be
a purely representational formalism.
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Symbol Interpretation Example
τ A typed attribute pitch

[τ] Syntactic domain of τ {60, . . . ,72}
〈τ〉 Type set of τ {pitch}
�τ� Semantic domain of τ {C4,C#4, . . . ,B4,C5}

�·�τ : [τ] →�τ� Semantic Interpretation of [τ] [[60]]pitch = C4

Ψτ : ξ∗* [τ] see text see text

Table 3.1 Sets and functions associated with types (Pearce, 2005).

onset. A derived viewpoint models a derived type which does not feature in the

event space, but can be derived from any of the basic types or other derived types.

A derived type at a certain time-step may be undefined, in which case the derived

viewpoint is also undefined. For example, the derived type for musical interval

(int) is not defined for the first event, as it is computed as the difference in the

MIDI values of two consecutive values of pitch. In such a case, it is denoted by ⊥,

as given below:

Ψint

(
s(1:t ))=

⊥ if t = 1,

Ψpitch

(
s(1:t )

)−Ψpitch

(
s(1:t−1)

)
otherwise .

The motivation for constructing a derived viewpoint is to capture the rich variety

of relational and descriptive terms in a musical language (Conklin, 1990). The final

viewpoint which is relevant here is a linked viewpoint, which models a product

type. A product type combines the information contained in multiple types into

a single type. It is constructed by taking the Cartesian product over two or more

types, in other words “linking” them. A product type τ, denoted as τ= τ1 ⊗ . . .⊗τn

and its associated linked viewpoint Ψτ

(
s(1:t )

)
have the following properties:

[τ] = [τ1]× . . .× [τn]

〈τ〉 =
n⋃

k=1
〈τk〉

�τ� = �τ1� and . . . and �τn�

Ψτ

(
s(1:t ))=

⊥ if Ψτi

(
s(1:t )

)
is undefined for any i ∈ {1, . . . ,n},

Ψτ1

(
s(1:t )

)
, . . .Ψτn

(
s(1:t )

)
otherwise .

The various basic and derived types relevant to the present work are listed in Ta-

ble 3.2. Of these, we directly deal with pitch in Chapters 4 and 5 when introduc-
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τ �·�τ [τ] 〈τ〉
keysig key-signature {−7,−6, . . . ,6,7} {keysig}
mode mode {0,9} {mode}
pitch chromatic pitch Z∗ {pitch}
onset event onset time Z∗ {onset}
int pitch interval Z {pitch}
referent referent or tonic {0, . . . ,11} {keysig}
intfref int from tonic Z {pitch}
ioi inter-onset interval Z+ {onset}

Table 3.2 The various basic and derived types relevant to the present work, with
their categorisation, syntactic and semantic domains, and type sets.

ing the connectionist models for melody, and additionally intfref and ioi while

demonstrating the combination of multiple input types in these melody models in

Chapter 6.

The first of these types — chromatic pitch — is represented by the type pitch,

and the values assumed by this type conform to the MIDI standard, i.e. �60�pitch =
C4 or middle C. In the datasets as a whole, [pitch] = {47, 48, . . . , 90, 91} which

means that �pitch� ranges from B2 to G6. Key-signatures are represented by the

type keysig which can assume any value from the set {−7,−6, . . . ,6,7} and repre-

sents the key-signature in terms of the number of sharps or flats, as follows:

keysig=


shar ps if shar ps > 0

− f l at s if f l at s > 0

0 otherwise .

In the datasets used in the present work, [keysig] = {−5,−4, . . . ,3,4} where, for ex-

ample, �−3�keysig = 3 flats, �5�keysig = 5 sharps and �0�keysig = no sharps or flats.

The referent type represents the referent or tonic at a given moment in a melody.

It is derived from the basic type keysig and uses the type mode (whose value is 0 if

major and 9 if minor) to disambiguate relative major and minor keys. It is given by

Ψreferent

(
s(1:t ))=Ψmode

(
s(1:t ))+


(
Ψkeysig

(
s(1:t )

)×7
)

mod 12 if Ψkeysig

(
s(1:t )

)> 0(
Ψkeysig

(
s(1:t )

)×−5
)

mod 12 if Ψkeysig

(
s(1:t )

)< 0

0 other wi se .

The referent type allows us to take into consideration the effects of tonality, through
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the type intfref which is derived from it. The domain of the latter is [intfref] =
{0,1, . . . ,11}, where, for example �0�intfref = tonic, �4�intfref = mediant and so on.

This viewpoint is motivated by the hypothesis that melodic structure is influenced

by regularities in pitch defined in relation to the tonic.

The onset time of a musical event (a note) is represented by the type onset.

The domain of this type [onset] is Z∗, the set of non-negative integers. One may

define the granularity of the time representation by setting the time-base during

pre-processing to any appropriate positive integer. The time-base corresponds to

the number of time-units in a semibreve thereby limiting the granularity of the

time representation to a minimum unit inter-onset interval that may be repre-

sented. The present work assumes a time-base of 96 for pre-processing, as in

(Pearce, 2005). With this time-base, for example, a note duration of 24 time-units

corresponds to a crotchet. Following (Conklin and Witten, 1995), the first time

point of any composition is zero corresponding to the beginning of the first bar

whether complete or incomplete. The first event in a composition may have a non-

zero onset due to an opening anacrusis. The derived type ioi is informative of the

rhythmic evolution of a piece, and represents the inter-onset interval between an

event and its predecessor. The viewpoint for the ioi type is defined as follows:

Ψioi

(
s(1:t ))=

⊥ if t = 1

Ψonset

(
s(1:t )

)−Ψonset

(
s(1:t−1)

)
otherwise

3.1.2 One-Hot Encoding of Viewpoint Features

As described above, each type assumes a value drawn from a finite alphabet with

domain [τ]. In order to represent this information as features to a connectionist

model, one relies on the binary one-hot encoding which converts categorical vari-

ables into feature vectors. The binary one-hot encoding of an instance of the type

with a domain [τ] is a binary vector of dimensionality |[τ]|, each of whose elements

corresponds to a value in [τ] with the element corresponding to the value of that

particular instance set to 1 (and the rest being 0). Its use is common in machine

learning, including the connectionist models of the present work. Prediction in

such models involves computing one or more linear projections of input features

through weight-matrices in order to map these to the desired outputs (in this case,

classes). The weights are such that more important features dimensions are given

a higher weight, and thus greater emphasis than those that aren’t as important.

The one-hot encoding assigns each category to a dimension of the feature vec-
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tor thus allowing the model to associate such a preference for certain categories

through the dimensions corresponding to them. This would not be possible when

using a scalar feature with integer values corresponding to the categories, which

might indeed seem like a simpler and more intuitive way of representing the cate-

gorical information. As a simple example, consider a hypothetical type τhyp, with

[τhyp] = {3,4,5} such that |[τhyp]| = 3. One possible set of one-hot encodings of the

values 3, 4 and 5 is [1,0,0], [0,1,0] and [0,0,1] respectively. The ordering of the

vectors with respect to the elements of [τhyp] is not of any particular significance.

3.2 Corpus

Evaluation in Chapters 4, 5 and 6 which deal with melody modelling was carried

out on a corpus containing 8 datasets of different sizes and complexities, which

serves as a means for comparing the melody models introduced here with n-gram

melody models from previous work (Pearce and Wiggins, 2004). The corpus con-

tains datasets of folk melodies of 7 different traditions, and chorale melodies. The

data in this corpus can be obtained in the **kern format (Huron, 1997) from the

Centre for Computer Assisted Research in Humanities at Stanford University, Cali-

fornia2 and the Music Cognition Laboratory at Ohio State University3.

The datasets comprising the corpus are as follows (a summary is available in

Table 3.3). Six of these are from the Essen Folk Song Collection (EFSC) (Schaffrath

and Huron, 1995) and consist of folk melodies, mostly from Europe and China,

with a few fron other parts of the world. The present work uses a subset of the EFSC

containing 119 Yugoslavian folk melodies, 91 Alsatian folk melodies, 93 Swiss folk

melodies, 104 Austrian folk melodies, 213 German folk melodies (dataset kinder),

and 237 Chinese folk melodies. The number of predictable musical events in these

ranges between 2,691 for the smallest one (Yugoslavian folk songs) and 11,056 for

the largest (Chinese folk melodies). Another subset of the corpus consists of 152

folk songs and ballads from Nova Scotia, Canada (Creighton, 1966). And the rest

are 185 chorale melodies harmonized by J. S. Bach (BWV 253 to BWV 438) (Riemen-

schneider, 1941).

2Website: http://www.ccarh.org (last accessed on July 2, 2015).
3Website: http://kern.humdrum.net (last accessed on July 2, 2015)
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ID Dataset Melodies No. events Pitches

0 Yugoslavian folk songs 119 2691 25
1 Alsatian folk songs 91 4496 32
2 Swiss folk songs 93 4586 34
3 Austrian folk songs 104 5306 35
4 German folk songs 213 8393 27
5 Canadian folk songs 152 8553 25
6 Chorale melodies 185 9227 21
7 Chinese folk songs 237 11056 41

Table 3.3 The folk and chorale melody datasets used in the present work with their
respective total number of musical events and number of prediction categories.

3.3 Gradient-based Machine Learning for Prediction

The prediction models that will be introduced in the Chapters 4 and 5 belong to the

class of Machine Learning models. Machine learning is a sub-field of Computer

Science which deals with developing predictive models that are not programmed

to explicitly address a particular task, but can instead learn how to do this by ex-

ploiting the underlying statistical or mathematical regularities in the task through

exposure to large amounts of data representative of it. These are abstract math-

ematical models characterised by a set of parameters which can be tuned as the

models are presented with more and more data, and thus often fully rely on the

available data in order to make predictions. For example, in the present case this

involves learning to predict a probability distribution over the possible values of

the pitch of the next note in a melody given a dataset of melodies from which se-

quential regularities can be extracted. There exist three distinct types of machine

learning, namely supervised learning, unsupervised learning and reinforcement

learning. Here we deal with models belonging only to the former two. Out of the

six different models that will be encountered here, two - the restricted Boltzmann

machine and the recurrent temporal restricted Boltzmann machine belong to the

class of unsupervised learning models while the rest learn in a supervised manner.

Of the different classes of machine learning models, the connectionist mod-

els considered here belong to one in which the process of tuning (or learning)

model parameters is iterative and involves updating the values of these parame-

ters in each iteration according to the gradient of the error between the model’s

predictions and the desired predictions as observed in the data. This gradient-
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Cost Function

M(Z ,W )

Supervised
Learning
Machine

Parameters
W

Z 0, Z 1, . . . , Z p

E 0,E 1, . . . ,E p

D0,D1, . . . ,Dp

Desired
Output

Input

Error

Output

Cost Function

M(Z ,W )

Unsupervised
Learning
Machine

Parameters
W

Z 0, Z 1, . . . , Z p

E 0,E 1, . . . ,E p

Input

Error

Output

Fig. 3.1 Block-diagrams of supervised (left) and unsupervised (right) machine
learning models (LeCun et al., 2012), with the key distinction between the two be-
ing the knowledge of the Desired Output in the former but not in the latter.

based learning involves three steps (1) estimating the error of the model’s output

(or prediction) with respect to the desired output using a cost function (the error

measure) (2) computing the gradients of the model’s parameters with respect to

the cost function, and (3) optimising the model parameters guided by the magni-

tude and direction of this gradient (Bottou, 2004; LeCun et al., 2012).

3.3.1 Error Estimation

A machine learning model (Figure 3.1) computes a function M(Z p ,W ) where Z p

is the p th pattern representative of a real-world prediction task, and W repre-

sents the set of adjustable parameters of the model which are to be tuned to op-

timal values for the task. In the case of supervised learning, a cost function E p =
C (Dp , M(Z p ,W )), measures the discrepancy between Dp , the desired output for

pattern Z p , and the model’s output. In the present work, since each of the models

predicts a discrete probability distribution over a set of possible output values, we

use the negative log-likelihood cost function.

E p =− logP (M(Z p ,W ) = Dp )

E = 1

P

P∑
p=1

E p (3.1)

where P (M(Z p ,W ) = Dp ) gives the probability assigned by the model to the de-

sired output category for the p th pattern as dictated by the task. Intuitively, this
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cost function maximizes the agreement of the model with the observed data, or in

other words makes the data the most probable given the model. On the other hand,

in unsupervised learning the cost function is independent of any desired outputs

and can be written as E p =C (M(Z p ,W )). In each unsupervised model considered

here, generally speaking, its output M(Z p ,W ) can be re-interpreted as the proba-

bility assigned by it to the p th pattern Z p , and thus once again the same negative

log-likelihood cost function can be used to learn its parameters.

E p =− logP (M(Z p ,W ))

E = 1

P

P∑
p=1

E p (3.2)

As Chapters 4 and 5 shall illustrate, it is possible to treat a supervised learning task

as an unsupervised one by interpreting the inputs and their corresponding outputs

in the supervised learning task, together as inputs in an equivalent unsupervised

learning task. It opens up the possibility of using unsupervised learning algorithms

to learn the parameters of models which can then be used to address a supervised

learning task. In the present work, this is demonstrated with two models, namely

the Restricted Boltzmann Machine (RBM) and the Recurrent Temporal Restricted

Boltzmann Machine (RTRBM).

An important assumption in both the above learning scenarios is that all the

patterns are independent and identically distributed, according to which each pat-

tern (which is a random variable by itself) has the same probability distribution

as the others and all are mutually independent. This essentially means that the

sequential order of occurrence of the patterns, i.e. the order in which they are pre-

sented to the model, is irrelevant for the model to make predictions about them.

In probabilistic terms, the two properties

P (Z q |Z p ) = P (Z q )

P (Z p , Z q ) = P (Z p )P (Z q |Z p )

= P (Z p )P (Z q )

hold for any two arbitrary patterns Z 1 and Z 2 from the data, and thus facilitate the

optimisation in (3.1) and (3.2) (Bishop, 2006).

The quantity E in (3.1, 3.2) is the expected risk, which is the (theoretical) av-

erage of errors E p over data observed in the real-world. The goal for a machine

learning model is to minimise what is known as empirical risk, denoted by Etr ai n ,

46



3.3 Gradient-based Machine Learning for Prediction

which is the average of errors E p over a finite amount of data called the training

set. This data, in the case of supervised learning, is a set of input/output pairs

{(Z 1,D1), . . . , (Z p ,Dp )}, or simply a set of input patterns {Z 1, . . . , Z p } in the case of

unsupervised learning. The training set is assumed to be a large enough represen-

tative sample of the real-world data, thus making Etr ai n a reasonable approxima-

tion of E (Vapnik and Kotz, 1982). The learning problem is thus reduced to finding

the values of the model parameters W that minimise Etr ai n(W ). In practice, one

is more interested in the predictive performance of the model in the field which is

measured by data different from the training set, known as the test set. This gives an

estimate of the model’s ability to generalise, that is, to predict the correct outputs

for inputs it has not previously seen. Given this setup, the minimisation variable

W is to be iteratively adapted as a response to observing events Z p occurring in

the training set.

During the iterative learning process, the empirical risk Etr ai n progressively de-

creases over iterations. However, this decrease might not always have a desirable

effect on the model’s error on the test set Etest , which typically reduces up to a

certain iteration and worsens beyond it. This behaviour is known as overfitting

and is a consequence of the optmisation process when it results in a model which

gives greater importance to correctly predicting the specific examples presented to

it during training (memorising the training set) over examples from the test set be-

longing to the same data distribution and which it has not encountered previously

(generalisation over the test set). As the test set is generally unavailable until the

model is deployed in a real-world scenario at which stage its training is expected to

have been completed, one relies on a proxy of the test set to check for overfitting.

This is known as the validation set. The primary reason for using the validation set

is to test for overfitting and terminate the learning process when it occurs. It is in

no way used to tune the model parameters.

3.3.2 Gradient Computation

The value of the error Etr ai n computed over the training set is useful in taking

the model, initially unaware of the task, one step closer to addressing it with ev-

ery iteration of the learning process. The gradient ∂Etr ai n
∂W of the cost function of a

model with respect to the model parameters determines the mangitude and sign

of the update to be applied to each parameter in order to achieve this. The ex-

pression for this gradient depends on the choice of cost function. In some cases

it is possible to compute the exact gradient of the function analytically, while in
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others an approximation is required when the computation is intractable. In the

present work, we consider six different connectionist architectures for prediction.

The first three of these are non-recurrent models - the Feed-forward Neural Net-

work (FNN), the Restricted Boltzmann Machine (RBM), and the Discriminative

Restricted Boltzmann Machine (DRBM). The gradient of the cost function can be

exactly computed in the case of the FNN (Rumelhart et al., 1988) and the DRBM

(Larochelle and Bengio, 2008). In the case of the RBM, since computing the exact

gradient is intractable, it is approximated efficiently using the Contrastive Diver-

gence (CD) algorithm (Hinton, 2002; Tieleman, 2008). The remaining three mod-

els can be viewed as the recurrent counterparts of the first three. These are the Re-

current Neural Network (RNN), the Recurrent Temporal Restricted Boltzmann Ma-

chine (RTRBM), and the Recurrent Temporal Discriminative Restricted Boltzmann

Machine (RTDRBM). In these recurrent models, the same gradient computation

algorithm as in their non-recurrent counterparts is extended using the Backprop-

agation Through Time (BPTT) algorithm. The algorithms mentioned here will be

described in greater detail in Chapters 4 and 5.

3.3.3 Parameter Optimisation

At each iteration, given the model’s outputs and their corresponding desired val-

ues, the value of each model parameter is updated with the magnitude and sign

of the gradient of the cost function Etr ai n with respect to it. While there exist sev-

eral ways of updating the model parameters, the simplest update-rule (employed

in the present work), known as gradient descent, is given by

Wt =Wt−1 −ηt
∂E

∂W
(3.3)

where ηt is known as the learning rate, and its purpose is to scale the magnitude of

the update to facilitate arriving at the global minimum of the cost function. In the

simplest case, ηt is a scalar constant which remains constant across different val-

ues of t . Alternatively, its value can be adapted accordingly as learning progresses.

In the present work, we employ an adaptive scalar ηt . There exist two variants

of gradient descent, which differ in how often one executes (3.3) during training.

These are Batch Gradient Descent and Stochastic Gradient Descent.

Batch Gradient Descent: In the batch variant of the gradient descent update,

successive estimates Wt of the set of optimal parameters are computed using the
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formula

Wt =Wt−1 −ηt
1

P

P∑
p=1

∂E p

∂W
.

That is, each iteration involves computing the average of the gradients of the cost

function ∂E
∂W over the entire training set. When the learning rate ηt is small enough,

the algorithm converges towards a local minimum of the empirical risk Etr ai n .

Stochastic Gradient Descent: In stochastic (or online) gradient descent, the

update given by (3.4) is carried out after computing the prediction error on each

example Z p . Each iteration of stochastic gradient descent involves choosing an

example Z t at random at time t , and updating the parameters Wt according to the

formula

Wt =Wt−1 −ηt
∂E t

∂W
. (3.4)

The stocastic gradient descent update relies on the hope that random noise in-

troduced by this procedure will not perturbate the average behaviour of the algo-

rithm.

These two variants of gradient descent have contrasting properties. Stochas-

tic gradient descent is usually faster (in the number of iterations) than batch gra-

dient descent particularly on large, redundant datasets as it avoids, to an extent,

re-computing gradients on samples that repeat in the training data. This compu-

tation is more likely to happen in batch gradient descent as the gradient for each

update is computed over the entire dataset. Stochastic gradient descent often re-

sults in better solutions because of the noise in the updates. Nonlinear networks

such as those employed here have multiple local minima of differing depths, one

of which is to be detected during training. Batch gradient descent will discover the

minimum of whatever basin the weights are initially placed in. In stochastic learn-

ing, the noise present in the updates (as a result of the gradient being computed

over a single example) can result in the weights jumping into the basin of another,

possibly deeper, local minimum. However, the same noise also prevents full con-

vergence to the minimum, which stalls out due to weight fluctuations. In order to

deal with such fluctuations, one can either decrease the learning rate or have adap-

tive batch size. Another method to remove noise is to use “mini-batches”, whose

size is somewhere between a single example and the entire dataset. This approach

often allows one to leverage the advantages of both batch and stochastic learning.
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3.4 Model Selection

In addition to the parameters of a given model whose optimal values are arrived

at through the learning procedure, there exist others determining whose optimal

values goes beyond this procedure. These are known as hyperparameters. Hyper-

parameters can be understood as parameters that set the context in which to carry

out learning, and are often manually specified by a user working with the learn-

ing models. Each model class (neural network, support vector machine, hidden

Markov model, etc.), and likewise, optimisation algorithm (gradient descent, con-

jugate gradients, etc.) has its own distinct set of hyperparameters which are rooted

in the theory that underlies it. There is usually a preference for classes of models

and optimisation algorithms with fewer hyperparameters unless the contrary of-

fers some valuable advantage, as this reduces the extent of manual involvement on

the part of the user. Each instantiation of a given class of models with a particular

combination of its hyperparameter is considered to be a different model. For ex-

ample, given the model class M(h1,h2,h3) with the set of scalar hyperparameters

{h1,h2,h3}, its instantiations M(h1 = a,h2 = b,h3 = c) and M(h1 = a,h2 = c,h3 = b)

(for some arbitrary scalar values a, b and c) are considered to be two different mod-

els. And it is in relation to these individual models that the above learning proce-

dure was described. Given a model class and optimisation algorithm, the process

of determining the best instantiation of this class is known as model selection. In

the present work, we employ the simplest available approach for model selection,

known as grid search. This is essentially an iterative, brute-force approach where,

in each iteration, one specifies the range of values of each hyperparameters to be

examined essentially specifying an H -dimensional grid over which to search for

the best model. In each iteration, one hopes to find a global optimum (in terms of

model performance) with respect to the hyperparameters within the chosen range

of values and repeats the process until this is the case or further iterations are found

not to be feasible. While this approach is fairly straightforward to understand and

implement, it is also very inefficient as it suffers from the curse of dimensionality,

wherein an increase in the number of hyperparameters, or the range of values of

each hyperparameter considered results in an exponential increase in the num-

ber grid points to evaluate the models over. This becomes an issue particularly

when training and evaluating each model takes a significant amount of time, and

the search range is large. There indeed do exist other recent proposals for more

efficient model selection including Bayesian Optimisation (Bergstra et al., 2011;

Hutter et al., 2011; Snoek et al., 2012), Random Search (Bergstra and Bengio, 2012)
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and Gradient-based Optimisation (Chapelle et al., 2002) but these have not been

considered here.

Below are listed various model selection hyperparameters that one will en-

counter in Chapters 4, 5, 6 and 7. Further details can be found in most standard

machine learning texts (Bishop, 2006; Bengio, 2012; Hinton, 2012; Murphy, 2012).

1. Number of Hidden Units: This is the model hyperparameter which deter-

mines the size of the hidden layer, and thus its capacity and the number of

model parameters it is characterised by. A smaller number of hidden units

offers a computational advantage over the opposite case. A model with a

larger hidden layer, as much as it is capable of generalising over more com-

plex patterns present in the data, is also more prone to overfitting than a

smaller one.

2. Hidden Layer Activations: This is the model hyperparameter correspond-

ing to the (typically non-linear) function applied to the input to each hidden

unit of the connectionist models. Its main purpose is to serve as a quashing

function to bring the input to the hidden unit into a specified range, and to

induce non-linearity into an otherwise linear transformation. Some of the

non-linearities are faster to compute than others, but typically, whether or

not one type of activation or another is good for a certain task is determined

through experimentation.

3. Learning Rate: Learning rate is an optimisation hyperparameter which scales

the magnitude of the model parameter update in each training iteration. A

small value results in smaller updates, and thus longer training time. Con-

versely, a large value results in faster learning, however, there is a greater ten-

dency for the optimiser to overlook the optimal solution in the error surface

by skipping over it. It is common practice to use an adaptive learning rate,

which is progressively decreased depending on heuristics extracted from the

learning process (Senior et al., 2013).

4. Weight Decay: Updates during the learning process might often result in

large parameter values in comparison with the input features which min-

imises the influence of the features, thus leading to overfitting. Weight de-

cay is a form of regularisation that penalises large values of parameters, thus

keeping them in check.

5. Momentum: The momentum method is used to speed up the learning pro-

cess when the error surface is such that the gradients computed at succes-
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sive iterations tend to result in an oscillating path towards the minimum. A

higher learning rate will only further amplify these oscillations and is thus

not helpful. The momentum method speeds up learning by dampening the

oscillations (Bengio, 2012; Sutskever et al., 2013) through an additional term

included in the parameter update in each iteration. The scaling coefficient

for this term is the momentum hyperparameter, which is an optimisation hy-

perparameter. Where applicable in the present work, the momentum method

proposed by Polyak (1964) has been used.

6. Early-Stopping: Early-stopping (Prechelt, 1998) is a regularisation method

which prevents overfitting as well as reduces training time. This is based on

the observation that, while the prediction error of a model on the training

set progressively decreases with every training iteration, the error on unseen

data tends to first decrease and then progressively increase when overfitting

occurs. The validation set together with an appropriate heuristic can be used

to detect when this happens, and terminate the training process such that

the best model until that iteration is used for prediction on the test data.

The hyperparameters related to early-stopping depend on the choice of the

heuristic, which will be explained in detail in later chapters where it is used.

3.4.1 Cross-Validation

In order to carry out model selection as described above, the data is split into train-

ing, validation and test sets. It is often the case, in practice, that one is only given

the training and test sets. In such a situation, it is common practice to set aside a

small portion of the training data as validation data. The validation set is used to

determine at what stage the learning process is to be terminated, and the perfor-

mance of the model thus obtained on the test set is then reported. However, this

procedure carried out only once could result in an over-estimation or conversely

and under-estimation of the true performance of the model on the dataset espe-

cially when the dataset is small. This is also known as a biased estimate. One way

of addressing this issue is through the use of k-fold cross-validation (Kohavi et al.,

1995; Dietterich, 1998; Bishop, 2006) in which the data is divided into k disjoint

subsets of approximately equal size. At each point in the grid, the model is trained

(and validated) k times, each time leaving out a different subset to be used for

testing and an average of k performance estimates thus obtained is then reported.

In the present work k = 10, and it is also ensured that where applicable the folds
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are identical to those used in previous work in order to facilitate fair comparison.

The value of k = 10 serves as a compromise between the bias associated with low

values of k and the high variance associated with high values of k (Kohavi et al.,

1995). This was also regarded as necessary by (Pearce and Wiggins, 2004) who also

uses the aforementioned melody corpus in Section 3.2, given the small sizes of the

datasets contained in it. Moreover, the use of cross-validation would facilitate the

analysis of results for statistical significance wherever it is considered necessary

using statistical tests such as the paired t test (Dietterich, 1998). The choice of the

t test is justified here by its previous use in (Pearce and Wiggins, 2004) whose data

splits, evaluation metric and methodology have been adopted here as well for the

sake of comparison.

3.5 Prediction Task

The present work focuses on the task of predicting a probability distribution over

the possible values of the pitch of a musical event s(t ) at time-step t , given the

context of musical events s(1:t−1) leading up to it. In the simplest case, the context

is made up of the type sequence τ(1:t−1)
pitch . Here we present a formalism for this task,

which is the focus of Chapters 4 and 5. Chapters 6 and 7 use progressively more

general versions of this task, which will be explained in detail there.

The simplest case of the prediction task has strong parallels with previous work

in language modelling (Manning and Schütze, 1999). Thus, the analogy to natural

language is used here to explain it. In statistical language modelling, the goal is to

build a model that can estimate the joint probability distribution of subsequences

of words occurring in a language L. A statistical language model (SLM) can be rep-

resented by the conditional probability of the next word w (T ) given all the previous

ones [w (1), . . . , w (T−1)] (written w (1:T−1)), as

P
(
w (1:T ))= P

(
w (1)) T∏

t=2
P

(
w (t )|w (1:t−1)) .

The present work treats notes in a monophonic melody analogous to words in the

above language example. This is inspired by the work in (Conklin and Witten, 1995)

where a similar analogy was made between sequences of characters in the English

language and notes in music. Here we use an event-based representation of mu-

sic, wherein the occurrence of each note is treated as a musical event. Much in

the same way as an SLM, the prediction models here model the conditional distri-
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bution P
(
τ(t )
pitch|τ(1:t−1)

pitch

)
given a sequence s(1:T ) of musical events from a musical

language Lpitch, such that τ(t )
pitch ∈ [τpitch]. To simplify the notation, τ(t )

pitch is writ-

ten as p(t ), and likewise τ(1:t )
pitch as p(1:t ). Thus, we have

P
(
p(1:T ))= P

(
p(1)) T∏

t=2
P

(
p(t )|p(1:t−1)) . (3.5)

A simplifying assumption commonly made in this regard, is that only a fixed-

number of most recent time-steps influence the prediction about the next event.

This is known as the Markov assumption, given by P (p(t )|p(1:t−1)) ∼ P (p(t )|p(t−n+1:t−1)).

For each prediction, context information is obtained from the (n−1) events s(t−n+1:t−1)

immediately preceding s(t ), thus, reducing (3.5) to

P
(
p(1:T ))= P

(
p(1)) T∏

t=2
P

(
p(t )|p(t−n+1:t−1)) . (3.6)

In language modelling, models that rely on the Markov assumption to model n-

length sequences of words are known as n-gram models, where n is the order of

the model. There are two reasons for this assumption. Firstly, it makes each event

together with its corresponding context i.i.d in relation to other events and their re-

spective contexts, thus making it possible to carry out learning on a dataset where

the features corresponding to the context can be viewed as inputs to the learning

model, and the events to be predicted as the target outputs of the model. Secondly,

the amount of data required to directly determine the posterior probabilities of an

event at time-step t given its entire history rises exponentially with t . This is, to a

great extent, alleviated by the Markov assumption. Specifically, if one models a se-

quence of length n of type τ that is composed of different temporal arrangements

of |[τ]| discrete symbols, the number of n-gram model parameters to estimate is

|[τ]|n . However, it is to be noted that for the same reason as that mentioned above,

higher values of n might also not be desirable. In Chapter 4, we will see how the

use of non-recurrent connectionist models with hidden states offers a computa-

tional advantage under this assumption, and in the case of the recurrent models

of Chapter 5 offers the possibility to altogether do without it. Finally, one would

also observe in (3.6) that certain events at the beginning of a sequence would lack

a valid context, i.e. {s(t ) | 1 ≤ t ≤ (n−1)}. This issue may be dealt with in a variety of

ways depending on the model being used for the purpose. For the connectionist

models used in the present work, these are described in Sections 4.4.
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3.6 Evaluation

A measure of the success of a predictive model of melody should take into ac-

count the possibility that there can be more than one “correct” continuation of the

melody at each time-step owing to the subjectivity involved in the creation of mu-

sic, where the choice made by a composer carries some degree of flexibility with

it. When the predictive model is purely data-driven, this subjectivity is reflected

in the training set in the form of example melodies. This set can be said to have

been drawn from a discrete probability distribution over the various symbols that

are contained in it. The true nature of this distribution is unknown and the predic-

tive model attempts to learn it using the data available in the training set. Given

such a model which predicts a probability distribution over a discrete alphabet at

every time-step, its learning objective may be viewed as one of minimizing the dis-

tance between its predicted distribution and that of the training set. How well this

is achieved is evaluated on a test set, as described above in Section 3.3.

Previous work in language modelling has turned to information theory in or-

der to answer this question of objectively evaluating the success of models that

address a very similar word-prediction task (Brown et al., 1992). A measure known

as Perplexity, has been widely used in evaluating predictive models of language

(Chen et al., 1998). Perplexity measures how well a probabilistic model predicts

a sample (such as the test set). It may be used to compare models, where a low

perplexity indicates the model is good at predicting the sample. It is derived from

the information theoretic quantity known as relative entropy which is a measure

of the difference between two probability distributions (Joyce, 2011). Here we use

a close variant of Perplexity known as Cross Entropy (Hc ), which represents the

mean divergence between the entropy calculated from the predicted distribution

and that of the correct prediction label (and can be interpreted as the distance be-

tween these two distributions) for every sample in some given data. It is obtained

by simply taking the logarithm of perplexity. It can be computed over all the events

belonging to different sequences in the test set Dtest , as

Hc (Pmod ,Dtest ) = −∑
s∈Dtest

∑Ts
t=1 log2 Pmod (s(t )|s(1:t−1))∑

s∈Dtest Ts
(3.7)

where Pmod is the probability assigned by the model to the pitch of the musical

event s(t ) in the melody s ∈ Dtest given its preceding context, and Ts is the length

of s. Since cross entropy measures the degree of average uncertainty of a model

when predicting a sequence of events in a corpus, it can be used to compare the
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performance of different models on the corpus (Brown et al., 1992; Pearce, 2005).

This choice of evaluation measure allows comparison with previous work.

3.7 Summary

This chapter described in detail, the background and terminology necessary to un-

derstand much of what follows in Chapters 4, 5, 6 and 7 of this dissertation. We first

described the representation schema for the monophonic melodies. We adopt the

Multiple Viewpoints representation of music, in which a melody is viewed as a se-

quence of musical events such that the occurrence of each note is an event in time

(to be referred to henceforth also as a time-step). At each time-step a variety of fea-

tures of musicological significance can be extracted and used for making predic-

tions about the same, or other related features in the future time-steps. Here, we

first provided the mathematical formulation of the prediction task, which involves

a model predicting a probability distribution over the different possible values of

musical pitch occurring in a dataset. The models are fully data-driven machine

learning models and learn regularities in sequential structure directly from data.

Their parameters are determined using gradient-based learning methods. In the

present work, we employ a monophonic music corpora consisting of 8 datasets of

varying sizes and complexities for comparison with previous work. The models are

evaluated using the information theoretic measure known as cross entropy.
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Non-recurrent Melody Models

The first task undertaken in this dissertation is a study of various connectionist

architectures for monophonic music modelling, and a comparison of their pre-

dictive performance to previously proposed n-gram based melody models under

the same modelling assumptions (Pearce and Wiggins, 2004). This serves to eval-

uate the efficacy of the said connectionist models with respect to previous work,

and also to determine whether the results here mirror those observed in recent

work demonstrating the predictive superiority of connectionist language models

over their n-gram counterparts (Bengio et al., 2003; Mnih and Hinton, 2008; Col-

lobert et al., 2011; Mikolov et al., 2010). In this first of two chapters on connection-

ist melody models, we describe a set of non-recurrent connectionist architectures

that address the prediction task introduced in Section 3.5. In these models, time

is represented by considering the sequence of events occurring within the bounds

of a fixed-size time-window (a context) immediately preceding a particular event

in a sequence, as a single feature vector that serves as the input. They are “non-

recurrent” as there exists no means by which the state of the model from the past

can be re-introduced as input to it at any given point in time. We consider two

classes of models in this chapter, namely Feed-forward Neural Networks (Rumel-

hart et al., 1988) and restricted Boltzmann machines (Smolensky, 1986), the lat-

ter of which have been trained both in an unsupervised (Hinton, 2002; Tieleman,

2008) and a supervised (Larochelle and Bengio, 2008) manner. The predictive per-

formance of these models is compared to that of state-of-the-art n-gram models

on the chorale and folk melody corpus described in Section 3.2. The key results of

these experiments are that (1) in its best case, each class of connectionist models

outperforms n-gram models, and (2) the predictive performance of the connec-

tionist models progressively improves upto context lengths longer than in the case
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of n-gram models.

4.1 Representing Sequences

The Markov assumption (cf. Section 3.5) holds when modelling sequences with

non-recurrent connectionist models, which means that only a fixed number of

events immediately preceding the one to be predicted are given as inputs to the

models. The feature vectors corresponding to individual events are concatenated

(while preserving their serial order) into a single feature vector, which serves as

input to the prediction model (Figure 4.1). There may, or may not be an overlap

between events in consecutive time-windows. Some recent work in connection-

ist music modelling has relied on this representation of time (Bickerman et al.,

2010; Spiliopoulou and Storkey, 2011). These are presented to the model in its in-

put layer, and the prediction is made in the output layer. In the remainder of this

chapter and the one that follows, a “time-step” refers to the occurrence of a musi-

cal event. Also, we adhere to the same simplified notation for musical pitch used

in Section 3.5, i.e., that τ(t )
pitch is written as p(t ), and likewise τ(1:t )

pitch as p(1:t ). To pre-

dict the pitch of the musical event p(t ) at time-step t , non-recurrent connectionist

models consider the pitches of the sequence of n (n ∈Z+) immediately preceding

musical events p(t−n+1:t−1). This is achieved by concatenating the feature vectors

corresponding to each of these events along their lengths, as illustrated in Figure

4.1. In this figure, the value of musical pitch p(t ) of an event s(t ) at time t is rep-

resented as a one-hot encoded vector p(t ) ∈ {0,1}|[τpi tch ]| (cf. Section 3.1.2), where

|[τpi tch]| is the size of the syntactic domain of the type pitch. The result of this

concatenation is the final input feature vector x(t ) ∈ {0,1}n|[τpi tch ]|.

Fig. 4.1 Illustration of the feature representation used as input with non-recurrent
connectionist architectures for sequences. Here, feature vectors corresponding to
three time-steps p(t−3), p(t−2) and p(t ) are concatenated into a single vector which
serves as the input to the model which predicts the event at time-step t .
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4.2 Feed-forward Neural Network

Feed-forward neural networks (FNNs) (Hornik et al., 1989)learn a functional map-

ping between an input vector x and a scalar output y (or alternatively, a vector

output y). One may understand an FNN as a layered architecture in which a given

input x in the bottom layer propagates up through the layers, undergoing an affine

projection and (often) a non-linear transformation at each layer to produce an out-

put y. Its parameters are optimized according to a criterion which minimizes some

form of error between the model’s output y and the expected output y∗.

In its simplest form, an FNN (Figure 4.2) consists of an input layer x ∈ Rni , a

hidden layer h ∈ Rnh , and an output layer y ∈ Rno . Each individual element of a

layer is referred to as a “unit” i.e. input unit, hidden unit and output unit. A given

input vector x is mapped onto the hidden layer by first multiplying it with an ni×nh

weight-matrix Wi h ∈ Rni×nh and applying an element-wise non-linear function fh

to the result uh of this product:

uh = bh +W ⊤
i hx

h = fh (uh) .

where bh ∈Rnh is the hidden layer bias vector. Likewise, the hidden layer activation

vector h undergoes a similar transformation to produce the outputs.

uo = bo +W ⊤
hoh

y = fo (uo)

where fo is a non-linear function applied at the output layer, which depends on

the nature of the machine learning task of interest. The term bo ∈Rno is the output

layer bias, and the projection happens via the weight-matrix Who ∈ Rnh×no . Thus,

for a given input x, the output y is calculated as

y = fo
(
bo +W ⊤

ho · fh
(
bh +W ⊤

i hx
))

.

The input-to-hidden weights Wi h , hidden-to-output weights Who , together with

the hidden and output layer biases bh and bo respectively make up the parameters

of the model.

In the present work, the feature representation described above in Section 4.1

allows the encoding of temporal information in the input (first) layer of the FNN

which was originally a non-temporal model. This encoding is inspired by Time-
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y

x

p(t )

h

p(t−3) p(t−2) p(t−1)

Wi h

Who

Fig. 4.2 The architecture of a feed-forward neural network melody model with a
single hidden layer. It models sequences of 4 musical events so as to predict the
fourth event in the output layer on top, given the first three in the input layer at the
bottom.

Delay Neural Networks (Waibel et al., 1989) which were first applied to speech

recognition before seeing application elsewhere in other domains. We employ net-

works with only a single non-linear hidden layer between the input and output

layers, as described above (cf. Figure 4.2). It is possible for more than one hidden

layer to exist, in which case the model is said to be a deep feed-forward neural net-

work. This is beyond the scope of the present work, and the reader is referred to

(Bengio, 2009) for further details. Several options exist with regards to choosing the

hidden layer non-linearities. While exploring these, one is faced with a trade-off in

terms of learning speed, modelling capability, and the availability of sufficient data

before arriving at a suitable solution through a combination of intuition and exper-

imentation. Here we explore three alternatives, namely Logistic Sigmoid, Hyper-

bolic Tangent and Rectifier units. The functions corresponding to these unit types

are listed in Table 4.1. The choice of the function fo applied at the output layer of

the network depends on the nature of the task at hand. In our case, the task of pre-

dicting the next musical pitch may be viewed as a C -class classification task where

each class corresponds to a value of musical pitch. For this classification task, the

network will have C output units where the value of each unit yc is obtained by ap-

plying the softmax function σmax , to the activation of that unit uoc (Bridle, 1990)

as given by

yc =σmax(uoc ) = exp(uoc )∑
c ′∈C exp(uoc ′)

. (4.1)
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Name Function fh(z)

Logistic Sigmoid
1

1+e−z

Hyperbolic Tangent
ez−e−z

ez+e−z

Rectifier max(0, z)

Table 4.1 Different types of activation fh(z) for the hidden layer of the feed-forward
neural network (also applicable to the recurrent neural networks of Section 5.1),
together with their defining functions.

Each output of the network can thus be interpreted as a conditional probability

P (yc |x).

4.2.1 Learning

The feed-forward neural network (FNN) can be learned using the Backpropaga-

tion algorithm (Rumelhart et al., 1988). This algorithm applies the chain rule of

differentiation to propagate the error between the target output and the output of

the model backwards into the network, and use these derivatives to appropriately

update the model parameters. Given the cost function Ep for each training exam-

ple pair (xp ,yp ) at the output layer, the derivatives of the cost with respect to the

parameters of the output layer of the network are given by

∂E p

∂Who
= ∂E p

∂uo

∂uo

∂Who

∂E p

∂bo
= ∂E p

∂uo

∂uo

∂bo

where,

∂E p

∂uo
= ∂E p

∂y

∂y

∂uo
.

And likewise, those of the input layer parameters are given by

∂E p

∂Wi h
= ∂E p

∂uh

∂uh

∂Wi h

∂E p

∂bh
= ∂E p

∂uh

∂uh

∂Wh
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where,

∂E p

∂uh
= ∂E p

∂h

∂h

∂uh

∂E p

∂h
= ∂E p

∂uo

∂uo

∂h
.

These gradients are used to update the values of the corresponding network pa-

rameters. For the FNN used here, the cost function is negative log-likelihood, given

by

E(y,y∗) =− ∑
(x,y∗)∈Dtr ai n

y log(y∗) (4.2)

where y is the output distribution predicted by the network, y∗ the true distribu-

tion (a one-hot encoding of the class-label) and x their corresponding input vector

from the training data Dtr ai n . Using this cost function and the above expressions

of the gradients, the optimal parameters of the model corresponding to a given

dataset can be obtained using the iterative gradient-based optimisation technique

described in Section 3.3.

4.3 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) (Smolensky, 1986) is an undirected bi-

partite graphical model. It contains a set of visible units v ∈Rnv and a set of hidden

units h ∈ Rnh which make up its visible and hidden layers respectively. The two

layers are fully inter-connected but there exist no connections between any two

hidden units, or any two visible units. Additionally, the units of each layer are con-

nected to a bias unit whose value is always 1. The edge between the i th visible

node and the j th hidden node is associated with a weight wi j . All these weights

are together represented as a weight matrix W ∈ Rnv×nh . The weights of connec-

tions between visible units and the bias unit are contained in a visible bias vector

b ∈ Rnv . Likewise, for the hidden units there is a hidden bias vector c ∈ Rnh . The

RBM is fully characterized by the parameters W , b and c. Its bipartite structure is

illustrated in Figure 4.3.

The RBM is a special case of the Boltzmann Machine – an energy-based model

(LeCun et al., 2006) which gives the joint probability of every possible pair of visible

and hidden vectors via an energy function E , according to the equation

P (v,h) = 1

Z
e−E(v,h)
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v

h

p(t−3) . . .p(t−1) p(t )

W

Fig. 4.3 The architecture of a Restricted Boltzmann Machine. It models a sequence
of 4 musical events so as to predict the fourth event given the first three. The visible
layer of the model contains both the inputs to the model and its predictions.

where the “partition function”, Z , is given by summing over all possible pairs of

visible and hidden vectors

Z =∑
v,h

e−E(v,h) .

and ensures that P (v,h) is a probability. The joint probability assigned by the

model to a visible vector v, is given by summing (marginalising) over all possible

hidden vectors:

P (v) = 1

Z

∑
h

e−E(v,h)

In the case of the RBM, the energy function E is given by

E(v,h) =−b⊤v−c⊤h−v⊤Wh .

In its original form, the RBM models Bernoulli distributions in its visible and hid-

den units. When this is the case, the activation probabilities of the units in the

hidden layer given the visible layer (and vice versa) are P (h = 1|v) = σ(c+W ⊤v)

and P (v = 1|h) = σ(b+W h) respectively, where σ(x) is the logistic sigmoid func-

tion σ(x) = (1+ e−x)−1 applied element-wise to the vector x. This, however, is not

binding and its visible layer can be generalized to model other distributions such

as Multinomial and Gaussian (Welling et al., 2004; Dahl et al., 2012).

4.3.1 Learning

In order to use the RBM as a prediction model for sequences, a feature vector cor-

responding to a fixed-length sequence of events is presented as input to the model

in its visible layer. The process of obtaining this feature vector is as described in

Section 4.1. There are two ways in which the the model can be made to predict

the probability distribution of interest P (p(t )|p(t−n+1:t−1)). The first involves learn-
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ing the parameters of the model by optimising a cost function which maximises

the negative log-likelihood of the joint probability distribution of the sequences

P (p(t−n+1:t )), illustrated in Figure 4.3 for n = 4. This is the unsupervised approach

and is also known as generative learning. With this approach, one can infer the

conditional probability distribution of interest P (p(t )|p(t−n+1:t−1)) from the above

joint distribution. The second approach involves directly optimising the condi-

tional distribution of interest, without having to first compute the joint probability

distribution. This is the supervised approach also known as discriminative learn-

ing, and the model that results is known as the Discriminative RBM (DRBM). We

describe these two approaches to learning the RBM’s parameters below.

Generative Learning

Learning in energy-based models can be carried out in a generative fashion, by up-

dating the weights and biases in order to minimize the overall energy of the system

with respect to the training data. This amounts to maximizing the log-likelihood

function L over the training data V (containing N examples), which is given by

L = 1

N

N∑
n=1

logP (vn)

where P (v) is the joint probability distribution given by

P (v) = e−E f r ee (v)

Z
,

with Z =∑
v e−E f r ee (v), and

E f r ee (v) =− log
∑

h
e−E(v,h) .

The probability that the RBM assigns to a vector vn belonging to the training data

can be raised by adjusting the weights and biases to lower the energy associated

with that vector and to raise the energy associated with others not in the training

data. Learning can be carried out using gradient-based optimisation, for which

the gradient of the log-likelihood function with respect to the RBM’s parameters θ

needs to be calculated first. This is given by

∂L

∂θ
=−

〈
∂E f r ee

∂θ

〉
0
+

〈
∂E f r ee

∂θ

〉
∞
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where 〈·〉0 denotes the average with respect to the data distribution, and 〈·〉∞ that

with respect to the model distribution. The former is readily computed using the

training data V , but the latter involves the normalisation constant Z , which very

often cannot be computed efficiently as it involves a sum over an exponential num-

ber of terms.To avoid the difficulty in computing the above gradient, an efficiently

computable and also effective approximation of the gradient was proposed in the

Contrastive Divergence method (Hinton, 2002; Tieleman, 2008). This method ex-

ploits the bipartite structure of the RBM, and has been widely used to train the

RBM. The present work employs this algorithm for learning the parameters of the

RBM generatively.

Discriminative Learning

The generatively trained RBM described above models the joint probability P (v)

of the set of visible units v. However, one is often interested in a conditional dis-

tribution of the form P (y |x). It has been demonstrated in (Salakhutdinov et al.,

2007; Larochelle and Bengio, 2008) how discriminative learning and inference can

be carried out in the RBM, thus making it feasible to use it as a classifier on its

own. This is done by assuming one subset of its visible units to be inputs x, and the

remaining a set of multinomial units y representing the class-conditional probabil-

ities P (y |x). This is illustrated in Figure 4.4 for a sequence of length 4 (n = 4). The

weight matrix W can be interpreted as two matrices R ∈ Rni×nh and U ∈ Rnc×nh ,

where ni is the input dimensionality and nc is the number of classes and nv =
ni +nc . Likewise, the visible bias vector b ∈ Rnv is also split into a set of two bias

vectors — a vector a ∈Rni and a second vector d ∈Rnc , as shown in Figure 4.4.

x y

h

p(t−3) . . .p(t−1) p(t )

R U

Fig. 4.4 The architecture of a discriminative RBM melody model. It models a se-
quence of 4 musical events so as to predict the fourth event given the first three.
While its structure is identical to that of the RBM, the difference in its learning al-
gorithm leads to the split of the weight matrix W of the RBM into matrices R and
U.
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The posterior probability din this Discriminative RBM can then be inferred as

P (y|x) = exp(−E f r ee (x,y))∑
y∗ exp(−E f r ee (x,y∗))

(4.3)

where x is the input vector, and y is the one-hot encoding of the class-label. The

denominator sums over all class-labels y∗ to make P (y|x) a probability distribution.

In the original RBM, x and y together make up the visible layer v. The model is

learned discriminatively by maximizing the log-likelihood function derived from

the distribution

P (y |x) =
exp(dy )

∏
j (1+exp(r⊤j x+uy j + c j ))∑

y∗ exp(dy∗)
∏

j (1+exp(r⊤j x+uy∗ j + c j ))
. (4.4)

The gradient of this function, for a single input-label pair (xi , yi ) with respect to its

parameters θ can be computed analytically. It is given by

∂ logP
(
yi |xi

)
∂θ

=∑
j
σ

(
oy j (xi )

) ∂oy j (xi )

∂θ

− ∑
j ,y∗

σ
(
oy∗ j (xi )

)
P

(
y∗|xi

) ∂oy∗ j (xi )

∂θ

where oy j (x) = c j + r⊤j x+uy j . This gradient can be computed efficiently, and the

cost optimised as described in Section 3.3. Note that in order to compute the con-

ditional distribution in (4.4) the model does not have to be learned discrimina-

tively, and one can also use the above generatively learned RBM as it learns the

joint distribution P (y,x) from which P (y|x) can be inferred (Salakhutdinov et al.,

2007; Larochelle and Bengio, 2008).

4.4 Experiments

Evaluation of the above described non-recurrent connectionist models was car-

ried out on the chorale and folk melody corpus described in Section 3.2. This fa-

cilitated comparison with melody models based on n-grams from previous work

(Pearce and Wiggins, 2004). The evaluation was carried out on 10 resampling sets

of each of the 8 datasets in the corpus, thus making it possible to also test the sig-

nificance (Dietterich, 1998) of the differences in performance between the models

where required. Training and test folds identical to those in (Pearce and Wiggins,

2004) were used here as well. We extracted a small part of the training set (5% of
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the total number of samples) in each case as the validation set. A grid search was

carried out to determine the best set of hyperparameters for the corpus, the details

of which differ slightly between models and are described below in their respec-

tive sections. While carrying out the iterative gradient-based learning on a model

at each grid-point, its performance on the validation set was checked after every

10 iterations. The model corresponding to the iteration with the best validation

set performance was chosen to be evaluated on the test set, and this performance

reported.

Comparison with Previous Work

The connectionist models evaluated here have been compared with n-gram mod-

els from (Pearce and Wiggins, 2004). There, two different types of models were

evaluated both individually and in combination. The first of these was a Long-

Term Model (LTM), that was governed by structure and statistics induced from a

large corpus of sequences from the same musical style. And the other was a Short-

Term Model (STM) which relied on structure and statistics particular to the melody

being predicted. From a machine learning perspective, the LTM is a model whose

parameters are learned offline from a dataset of melodies. The parameters of the

STM are learned online while making predictions on the testing data, without any

sequence learning occurring in it beforehand. The connectionist prediction mod-

els considered here deal only with effects that are induced from a corpus, and are

thus compared with the two best performing LTMs in (Pearce and Wiggins, 2004)

of unbounded order and order bound 2 respectively. Moreover, as n-grams rely

explicitly on the occurrence frequencies of sequences, it is often the case that the

model comes across a never-before-encountered context on which to predict the

future event, and this is more common in higher order models. This issue has been

dealt with by using smoothed n-grams (Chen and Goodman, 1999) that use lower-

order transition probabilities for generating approximations (through interpola-

tion with, or scaling) of higher-order probabilities. This also applies to events that

lack a valid context, i.e. {s(t ) | 1 ≤ t ≤ n}. The n-gram model of bounded order that

is used for comparison in the present work has been coined C 2I . In this name,

the 2 indicates the order of the model (the number of past musical events taken

into consideration at the time of prediction). The I refers to the use of interpo-

lated smoothing in it which means that the generated probability distribution over

the possible values of the next event are obtained through a weighted sum of the

highest order (in this case 2) and the next highest order (in this case 1). The par-
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ticular interpolated strategy used is labelled C and was proposed in (Moffat et al.,

1998). An enhanced variant of this model is the unbounded C∗I model in which,

the C and the I hold the same significance as in the case of the bounded order C 2I

model. The ∗ means that, when available, the shortest deterministic context is al-

ways chosen to generate the prediction probabilities for the next event. Otherwise

these values are determined using the longest available matching context (with the

type C interpolated smoothing applied). As the name suggests, the deterministic

context is one that results in a single possible continuation of the context in the en-

tire corpus used to train the model. We refer the interested reader to (Pearce and

Wiggins, 2004) for further details on these two models. To facilitate a direct com-

parison between the two approaches, the melodies have not been transposed to a

default key.

Boundary Conditions

One assumption to be noted here is regarding the handling of events at the be-

ginning of a melody. When the model relies on a preceding context of length n,

the first n events in a melody, i.e. {s(t ) | 1 ≤ t ≤ n}, do not have a valid context.

One may rely on a task-independent prior assumption to represent these missing

events. Since we deal here with one-hot encodings of musical events which may

be interpreted as our knowledge of the probability of occurrence of an event, we

represent each non-existent context event by a vector of dimensionality |[τpi tch]|
of any other input vector (which is the number of pitches occurring in the dataset),

but with each element of value 1/|[τpi tch]|. This signifies a uniform distribution,

and thus a lack of any knowledge whatsoever about the nature of these missing

events. Consider for the sake of example a simple case where the musical pitch of

an event s(t ) can assume one of only three values. Here, these would be represented

by [τpi tch] = {[1,0,0], [0,1,0], [0,0,1]}. Thus, |τpi tch | = 3, and an event belonging to

a missing context would be represented by the vector [1/3,1/3,1/3]. While this as-

sumption is as good as any other (such as a vector containing only zeros, or one

with an additional dimension added to it to account for a missing context event)

with regards to the feed-forward neural networks, its probabilistic interpretation

is also meaningful in the case of the restricted Boltzmann machine in which each

musical event is represented as a set of units in the visible layer which together

make up a multinomial distribution. This allows a uniform choice of representa-

tion across both classes of models.
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Fig. 4.5 Figure with plots corresponding to the performance of feed-forward neu-
ral networks with different types of hidden layer activations, at different context
lengths. Each plot corresponds to the best number of hidden units for that type
of activation. The vertical error bars represent standard deviation of the cross en-
tropies.

4.4.1 Feed-forward Neural Networks

Each candidate model of the grid search was trained upto a maximum of 250 iter-

ations, and that with the best validation set error was chosen for evaluation on the

test set. Based on a preliminary grid search on the datasets where only the learn-

ing rate was varied, the initial learning rate ηi ni t was set to 0.05. During training,

this value decayed with the number of iterations according to the schedule given

by ηi = ηi ni t /(1+ i /β), where β = 50 is the number of iterations after which each

step of decay occurs (Senior et al., 2013). The number of hidden units in the mod-

els nhi d was varied as {25,50,100,200}. Both L1 and L2 weight-decay were set to

identical values λ1 = λ2 = λ and were either on (λ = 0.0001) or off (λ = 0). Addi-

tionally, the three different hidden layer activation types listed in Table 4.1 were

considered while evaluating the feed-forward neural networks. The length of the

preceding context of musical events was varied between 1 event and 8 events. The

results of the evaluation are shown in Figure 4.5. The horizontal axis corresponds

to the number of immediately preceding pitches used for predicting the next one

(the context length). The vertical axis corresponds to prediction cross entropy (cf.

Section 3.6). It should be noted that this is a quantity which is to be minimised, and

thus a smaller value reflects better predictive performance. The values of cross en-
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tropy plotted in the figure are the averages across all 8 datasets of the chorale and

folk melody corpus. Detailed results for each of the 8 datasets can be found Tables

A.1, A.2 and A.3 of Appendix A.

It was observed that three key factors influenced the performance of the mod-

els. These are (1) the size of the hidden layer, (2) the hidden unit activation type,

and (3) the length of the preceding context. Increasing the size of the hidden layer

resulted in improved predictions for all models except those containing hyperbolic

tangent (TanHU) hidden units, where a hidden layer of 50 units performed better

than those with more. In networks with the TanH activation, performance con-

sistently worsened with increase in hidden layer size when models used context

lengths greater than 5 for prediction. Increasing the context length generally re-

sulted in an improvement in predictive performance in the case of all the models

upto a certain point beyond which the performance deteriorated. This deteriora-

tion was less notable in the case of the LogSigU networks. Of the three hidden layer

activation types and the various context lengths, the best predictive performance

was observed in the case of the ReLU networks at a context length of 5, closely

followed by the TanHU and LogSigU networks. An additional advantage of ReLUs

happens to be that this type of activation is faster to compute, and also has a sim-

pler gradient which facilitates faster learning (Krizhevsky et al., 2012). Moreover,

the results here are also in agreement with previous work which has demonstrated

the effectiveness of ReLUs on various other machine learning tasks, particularly

when used in deep neural networks (Nair and Hinton, 2010; Zeiler et al., 2013).

4.4.2 Restricted Boltzmann Machines

We examined the two variants of the restricted Boltzmann machine (RBM) de-

scribed above — those trained generatively and discriminatively. In both cases,

each candidate model of the grid search was trained up to a maximum of 500 itera-

tions, and that corresponding to the iteration with the best validation set error was

chosen for evaluation on the test set. The result of this can be considered equiva-

lent to early-stopping where learning is terminated according to a certain heuristic

when the performance of a model does not improve in successive iterations during

training. An initial search on the learning rate ηi ni t was carried out by varying it as

{0.01,0.05,0.1}. Based on this search, a learning rate of 0.01 was found to be suit-

able for the generative RBM, and 0.1 for the discriminative one. Unlike the FNNs,

a schedule was not used here and the learning rate was kept constant throughout

the training process. The number of hidden units in the models nhi d , was initially
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Fig. 4.6 Figure with plots corresponding to the performance of Restricted Boltz-
mann Machines with different types of hidden layer activations, at different con-
text lengths. Each plot corresponds to the best number of hidden units for that
type of activation. The vertical error bars represent standard deviation of the cross
entropies.

varied as {25,50,100}. On observing that the best performing model in the case of

the generative RBM contained 100 hidden units, the search was extended to 200

hidden units as well. On the other hand, it was extended in the opposite direction

to 10 hidden units for the discriminative RBM whose best case contained 25 hid-

den units. Weight decay (only L1) λ was either on (λ = 0.0001) or off (λ = 0). The

length of the preceding context of musical events was varied between 1 event and

8 events, as in the case of the FNN above. The results of the evaluation are shown

in Figure 4.6. The horizontal axis corresponds to the number of immediately pre-

ceding pitches used for predicting the next one (the context length). The vertical

axis corresponds to prediction cross entropy (cf. Section 3.6).It should be noted

that this is a quantity which is to be minimised, and thus a smaller value reflects

better predictive performance. The values of cross entropy plotted in the figure

are the averages across all 8 datasets of the chorale and folk melody corpus. The

key factors influencing the performance of the models here are (1) the size of the

hidden layer and (2) the length of the preceding context. It was observed here as

well that increasing the size of the hidden layer resulted in improved predictions

for the generative RBM, with the best model containing 100 hidden units. Near

identical performance was observed with models containing 200 hidden units but
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Model Context Cross Entropy

n-gram (b) 2 2.957
n-gram (u) N/A 2.878

FNN 5 2.819(±0.200)
DRBM 5 2.819(±0.208)
RBM 8 2.799(±0.168)

Table 4.2 Table comparing the best predictive performance of the different models
in the evaluation.

these have been considered worse as they are less parsimonious than those con-

taining 100 units. On the other hand, a better predictive performance was oberved

in discriminative RBMs with a smaller-sized hidden layer containing 25 units. Sim-

ilarly, increasing the context length also resulted in better predictive performance.

In the generative RBMs, no deterioration in performance within the range of con-

text lengths examined was observed, unlike the the case of the FNN and the dis-

criminative RBM. However, it is to be noted that in the case of 3 of the 8 datasets

(bach, kinder and shanxi) the performance did either remain the same or slightly

worsen at longer context length, but this effect was averaged out when considering

the remaining datasets. Detailed results for each of the 8 datasets for both the RBM

variants can be found in Tables A.4 and A.5 of Appendix A.

4.4.3 Discussion

Table 4.2 contains the best predictive performance of each of the models consid-

ered in the comparison here. As mentioned previously, the results are averaged

across all 8 datasets. One will notice the progressive improvement in the best-case

performance from the n-gram models, to the non-recurrent connectionist mod-

els, RBM performing better than the rest. One can possibly attribute the difference

observed here between the n-grams and the connectionist models to the differ-

ence in their respective learning mechanisms. In the n-gram models, probabili-

ties are determined using counts of the occurrence of a certain event after various

event contexts. When a context for prediction does not match any of those that

the model has already come across in the training data, back-off and interpolated

smoothing techniques are applied to make up for this lack of information in the

model (Pearce and Wiggins, 2004). In contrast, the connectionist models learn a
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Fig. 4.7 Figure comparing the predictive performance of the different connectionst
models of melody with that of the two best equivalent n-gram models of bounded
and unbouded order in (Pearce and Wiggins, 2004). The vertical error bars repre-
sent standard deviation of the cross entropies.

smooth function between the inputs and the outputs, and thus use an approxima-

tion that is also learned from data to possibly make better informed predictions

when encountering unseen inputs. Paired t tests were carried out between pairs of

the best of each class of connectionist model listed in Table 4.2 i.e., DRBM v RBM,

FNN v DRBM and FNN v RBM, and it was found that only the difference in perfor-

mance between the RBM and the FNN was significant [t (79) = 6.56, p < 0.001]. The

error bars in Figures 4.5, 4.6 and 4.7 represent the average of the standard deviation

of the prediction cross entropies over the different datasets in the IDyOM corpus.

One will note the large overlap between these error bars. However, this standard

deviation is not directly related to the statistical significance of the difference be-

tween the performance of the models as evaluated by the paired t test.

Figure 4.7 illustrates the improvement in predictive performance with context

length of the bounded order n-gram models and non-recurrent connectionist mod-

els. The performance of the n-gram models peaks at a context length of 2 and

worsens thereafter. On the other hand, each of the connectionist models performs

progressively better with increasing context length, typically upto 5 events or more.

A similar observation was made in (Bengio et al., 2003) in language modelling ,

where neural network language models also showed progressive improvement in

performance up to longer context lengths than n-gram models. It is supposed in
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(Pearce and Wiggins, 2004) that the U-shape cross entropy curve of the n-gram

model is due to the fact that, while increasing the order bound provides the model

with more specific contextual information for making predictions, the higher order

contexts are also more likely to fail to produce a prediction. Therefore, the model

will escape down to lower order models more frequently, thereby wasting more of

the probability mass available on assigning escape probabilities.

Among the connectionist models, the performance of the DRBM and the FNN

worsens at context lengths greater than 5. This can be explained as follows. A

machine learning model addresses the task of approximating the true function

which explains observed data. The process of learning its parameters given the

data may be viewed as a search in what is known as the Hypothesis Space (Mitchell,

1982). This space contains the set of all possible solutions to the approximation

task where each solution, also referred to as a hypothesis, is a different combi-

nation of the values of the model’s parameters. One of the key factors that influ-

ences the result of this search is the dimensionality of the hypothesis space, which

is nothing but the number and nature (discrete or continuous) of the parameters.

The effective size of the hypothesis space increases exponentially with its dimen-

sionality. It was demonstrated in (Hughes, 1968) using PAC-learners (a type of ma-

chine learning model), and now a generally agreed upon fact that, that the accu-

racy of the final hypothesis arrived at is substantially reduced as the dimensionality

of the hypothesis space increases with the number of data samples being the same.

In the present case, the increase in context length automatically results in an

increase in the number of model parameters (the size of the weight-matrix be-

tween the input units and the hidden units) of the FNN, the RBM and the DRBM.

This leads to an increase in the dimensionality of the hypothesis space, while at

the same time the number of data samples in the training set remains the same

making the models susceptible to the above mentioned Hughes phenomenon. One

way to counter this effect is to reduce the size of the hidden layer which in turn

reduces the number of parameters of the model. On the other hand, the Hughes

phenomenon can only be mitigated to the extent to which this reduction in size

of the hidden layer does not adversely affect the performance of the model since

the hidden layer comprises the features used by it in order to make predictions.

This explanation is also supported by the observation that with increasing context

length, smaller hidden layer sizes are preferred in the grid search upto a certain

point beyond which a further reduction does not afford any benefit.

Alternatively, the worsening or relatively marginal improvment in the perfor-

mance of these non-recurrent models at longer contexts can also be attributed to
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the nature of the corpus. It was noted in work by Pearce and Wiggins (2004), where

the same corpus was used and similar trend observed, that this trend could have

been due to the short length of the melodies in the dataset which limited the mod-

els from exploiting information in contexts greater than 6 events. This is exactly the

context length at which the DRBM and FNN begin to display signs of worsening in

performance while that of the RBM continues to improve but at a slower rate than

when the context length is shorter.

Finally, one will also notice that while at lower context lengths the discrimi-

native RBM has slightly better predictive performance than the generative one, the

case is the opposite at higher context lengths. While the Hughes phenomenon does

indeed explain the worsening of performance of the DRBM at longer contexts, it

does not comment about the relative performance of the generative-discriminative

RBM pair. In order to explain the latter we consider the following perspective. As

context length increases linearly, so does the dimensionality of the input vector.

And given a constant hidden layer size, so do the number of model parameters to

be learned in both models. On the other hand, the amount of data available to

learn these parameters remains constant despite the increase in context length.

This can be viewed as an effective decrease in the amount of data available to train

a model as context length increases i.e., that there is progressively less data avail-

able than the ideal amount required to estimate the parameters of a model as con-

text length increases. Now, in a study conducted by Ng and Jordan (2001) it was

found that given a generative-discriminative model pair, as the number of train-

ing examples increases there can be two distinct regimes of performance. In the

first regime, the generative model has already approached its asymptotic error and

is thus doing better. And in the second which follows, the discriminative model

approaches its lower asymptotic error and does better. This explanation seems

plausible here. In other words, the progressive increase in the input dimension-

ality of the model with context length (but not in the amount of data) may not be

permitting the discriminative model to reach its lower asymptotic error at longer

context lengths, as a result of which its performance is sub-optimal. This is not a

concern at smaller context lengths where the DRBM performs better than its gen-

erative counterpart, the RBM. The explanation is also supported by the fact that

there is a preference in the former for a smaller hidden layer in the grid search as

context length increases while this is not so in the latter.
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4.5 Summary

This chapter introduced the application of two classes of non-recurrent Connec-

tionist melody models to monophonic music modelling. The models learn to gen-

erate a probability distribution over the possible musical pitch of the next note

given the pitches of a fixed number of immediately preceding notes (in sequence).

The predictive performance of the models was assessed with the help of their re-

spective prediction cross-entropies over an unseen test dataset. This performance

was compared against those of n-gram models from previous work (Pearce and

Wiggins, 2004). The results indicate that the best case of each connectionist model

outperforms the n-gram models of both bounded and unbounded order. The for-

mer were also found to be able to use information available in longer sequences to

make predictions than the latter. While during the evaluation issues pertaining to

insufficient data and possibly sub-optimal model parameters were encountered,

as discussed above, results demonstrate the efficacy of non-recurrent connection-

ist models for modelling sequences of musical pitch. The next chapter presents

further improvements using their recurrent counterparts.
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Chapter 5

Recurrent Melody Models

This chapter continues the discussion on connectionist melody models intitiated

in the previous one with the introduction of recurrent extensions to the models

covered there. These recurrent models rely on an implicit representation of time,

wherein a real-valued vector summarising information pertaining to previous time-

steps is propagated forward through time. In the case of the models considered

here, this vector contains the activations of the model’s hidden layer, as illustrated

in Figure 5.1. The passage of information is achieved through what are known as

recurrent connections which serve to implement the notion of memory in these

models. This recurrence affords the key representational advantage that the model’s

memory is no longer limited to the events explicitly given as input to it. This is in

contrast to the non-recurrent models described in Chapter 4. Owing to this advan-

tage, recurrent connectionist models have been a popular choice for modelling

sequential data. We consider three such models, all of which depend on both the

musical event at the current time-step and the state of their respective hidden layer

from the previous time-step. The first of these is the Recurrent Neural Network (El-

man, 1990), which can be considered the recurrent extension of the Feed-forward

Neural Network from the previous chapter. Likewise, the second is the Recurrent

Temporal Restricted Boltzmann Machine (RTRBM) (Sutskever et al., 2009) - the re-

current extension of the generatively learned RBM. Furthermore, we propose a

new model that we refer to as the Recurrent Temporal Discriminative Restricted

Boltzmann Machine (RTDRBM). It is obtained by carrying out a novel discrimina-

tive learning (and inference) procedure on the RTRBM. The parameters of these

models can be learned using entire sequences (not just windowed subsequences),

and it was found that they outperform their non-recurrent counterparts, and thus

the n-grams, on the folk and chorale melody corpus introduced in Section 3.2 with
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the RTDRBM outperforming the rest.
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Fig. 5.1 An illustration of the passing of state information from previous time-steps
to the future in a simple recurrent neural network. The figure on the right shows
how the recurrent connection in the hidden layer between h(t−1) and h(t ) in the
compact representation of the model on the left can be unfolded in time to better
illustrate the passage of temporal state information in it.

5.1 Recurrent Neural Network

The recurrent neural network (RNN) can be seen as an extension of the feedfor-

ward neural network (FNN) to model sequences more efficiently. The idea is to in-

troduce the notion of memory in the network which is propagated forward through

time. The architecture of a simple RNN is illustrated in Figure 5.2. The key differ-

ence to note in this figure is the presence of an additional set of input units denoted

by h(t−1) which corresponds to the state of the hidden layer of the network in the

previous (most recent) time-step (Elman, 1990). This additional input serves as

the network’s memory which, in theory, represents longer-term history than just

the n (n ∈ Z+) immediately preceding events. The remainder of the input layer

corresponds to the event of the most recent time-step in the sequence. While sev-

eral variants of the RNN exist for supervised learning depending on the modelling

task in question (Graves, 2012), here we describe the specific case where the true

output at time-step t is re-introduced as input at time-step (t +1). Given an input

sequence x(1:T ) with a corresponding output label sequence y (1:T ), at each time-

step t , the RNN learns a mapping between the input x(t ) and its corresponding

output label y (t ) while additionally taking into account its memory of the past rep-

resented by the state of its hidden layer h(t−1) in the previous time-step. This is

done in a manner similar to the FNN by first mapping the inputs to a hidden layer
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p(1)

y(1)

p(2)

y(2)
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h(0) h(1) h(2) . . .
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x(1)

p(1)

x(2)

. . .

Whh
bh
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Whh
bh

bo

Wi h Wi h

Who Who

Fig. 5.2 Architecture of the RNN unfolded in time. At a given time-step t , the state of
the hidden layer from the previous time-step h(t−1) is responsible for propagating
the information pertaining to the model’s state in previous time-steps forward in
time.

h(t ) as

u(t )
h =W ⊤

i hx(t ) +W ⊤
hhh(t−1) +bh

h(t ) = fh

(
u(t )

h

)
(5.1)

with the weight matrices Wi h ∈ Rni×nh , Whh ∈ Rnh×nh , and hidden bias vector bh ∈
Rnh . The hidden layer is, in turn, mapped to the output layer y(t ) as given by

u(t )
o = bo +W ⊤

hoh(t )

y(t ) = fo
(
u(t )

o

)
.

with the weight matrix Who ∈Rnh×no , and the output bias vector bo ∈Rno . In order

to predict the first event y (1) in the sequence given the input x(1), the initial state of

the hidden layer activation vector h(0) are learned from data and count as parame-

ters of the model. Thus, the RNN has as its parameters the input-to-hidden weights

Wi h , the hidden-to-hidden weights Whh , the hidden-to-output weights Who and

the hidden and output layer biases bh , bo respectively and the initial state of the

hidden layer h0.

As before in the case of the FNN, we experiment with the three different types

of hidden layer non-linearities listed in Table 4.1, i.e. logistic sigmoid, hyperbolic

tangent and rectified linear. Furthermore, the optimization criterion for learning

the model parameters is once again the negative log-likelihood function given by
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(4.2). The network thus has as many output units as the number of predictable

musical events, and its output is a probability distribution P
(
y(t )|x(t )

)
. The choice

of the function fo applied at the output layer remains unchanged from that used in

the case of the FNN of Chapter 4 as the prediction task is the same here as well, i.e. a

C -class classification task where each class corresponds to a value of musical pitch.

The network in this case also has C output units where the value of each unit y (t )
c is

obtained from the corresponding activation of that unit u(t )
oc by the application of

the softmax functionσmax , given by (4.1) which allows one to interpret the outputs

of the network as class-conditional probabilities P
(

y (t )
c |x(t ),h(t−1)

)
(Bridle, 1990).

5.1.1 Learning

The model parameters can be learned using a temporal variant of the backpropa-

gation algorithm, known as Backpropagation Through Time (Werbos, 1990). The

BPTT algorithm is essentially an extension of the original backpropagation algo-

rithm (Rumelhart et al., 1988) applied to an RNN, under the assumption that the

RNN is equivalent to a deep FNN with as many hidden layers as its intended tem-

poral memory. This analogy becomes clear if one unfolds the RNN in time as

shown in Figure 5.1. Just as the error E p can be computed for each training ex-

ample pair (xp ,yp ) in the case of the Feed-forward Neural Network, here the error

E t can be computed at each time-step t for the (xt ,yt ). The gradient of the er-

ror w.r.t. a given model parameter (weights) in the case of the RNN is computed

differently according to whether or not the parameter is included in the recursive

definition of the model. In the case of weights between the hidden and the output

layers Who , these are computed as before in the case of the FNN as

∂E t

∂Who
= ∂E t

∂y(t )

∂y(t )

∂u(t )
o

∂u(t )
o

∂Who
.

However, this is not the case with Wi h and Whh which are defined recursively as

given in (5.1). The derivatives of the error w.r.t. these, which are written as

∂E t

∂Wi h
= ∂E t

∂y(t )

∂y(t )

∂h(t )

∂h(t )

∂Wi h

∂E t

∂Whh
= ∂E t

∂y(t )

∂y(t )

∂h(t )

∂h(t )

∂Whh
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contain the term h(t ) which depends on h(t−1) and so on. For these weight matrices,

the gradients are thus given by

∂E t

∂Wi h
=

t∑
k=0

∂E t

∂y(t )

∂y(t )

∂h(t )

∂h(t )

∂h(k)

∂h(k)

∂Wi h

∂E t

∂Whh
=

t∑
k=0

∂E t

∂y(t )

∂y(t )

∂h(t )

∂h(t )

∂h(k)

∂h(k)

∂Whh
.

The same applies to the hidden layer biases, whose derivatives are given by

∂E t

∂Whh
=

t∑
k=0

∂E t

∂y(t )

∂y(t )

∂h(t )

∂h(t )

∂h(k)

∂h(k)

∂b(t )
h

.

The exact expressions for the partial derivative depend on the non-linearity in use

in the hidden layer of the model. Here as well, the cost function is negative log-

likelihood just as with the FNNs, and is given by (4.2). Using this cost function and

the above expressions of the gradients, the optimal parameters of the model cor-

responding to a given dataset can be obtained using the iterative gradient-based

optimisation technique described in Section 3.3. In the present work, each se-

quence is treated as a single mini-batch while computing gradients of the error

with respect to the model parameters.

5.2 Recurrent Temporal Restricted Boltzmann Machine

The Recurrent Temporal Restricted Boltzmann Machine (RTRBM) is a generative

model proposed for modelling high-dimensional temporal data (Sutskever et al.,

2009) which contains a sequence of RBMs, such that the RBM at time-step t is

conditioned on that at (t −1) through a set of time-dependent model parameters.

In the case of the RTRBM, these parameters are the biases to the visible and hidden

layers. The model is based on the idea originally introduced in conditional RBMs

(CRBMs) (Taylor et al., 2007), where the biases of the RBM at time t are conditioned

(through a linear function) on the values of the visible layers v (τ) of RBMs at time

τ< t . As the CRBMs are limited by the Markov assumption, and cannot account for

long-term dependencies, the temporal RBM (Sutskever and Hinton, 2007) (TRBM)

was proposed in which the same time-dependent biases are now conditioned on

the hidden states h(τ) of the RBMs in previous time-steps τ < t . Finally, in order

to simplify the heuristic learning procedure involved with the TRBM, the RTRBM

was proposed where these biases are conditioned on the hidden states h(τ) of the
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RBMs in previous time-steps τ< t .

v(1) v(2)

h(0) h(1) h(2) . . .

p(0) p(1) p(1) p(2) . . .

Whh
c(1)

Whv

b(1)

Whh
c(2)

Whv

b(2)
W W

Fig. 5.3 Architecture of the RTRBM unfolded in time. At any given time-step t , the
mean-field state of the hidden layer from the previous time-step ĥ(t−1) contributes
to the dynamic biases b(t ) and c(t ) of the visible and hidden layers respectively, and
is responsible for propagating information pertaining to the model’s state in pre-
vious time-steps forward in time. In the melody modelling application, it models
the joint probability of events p(t−1) and p(t ) at any time-step t .

The RTRBM models the joint probability distribution of its visible and hidden

layers v(t ) and h(t ) respectively at any time-step t . This joint probability takes the

form

P
(
v(t ),h(t )|ĥ(t−1))= exp

(−E
(
v(t ),h(t ); ĥ(t−1)

))
Zĥ(t−1)

where E
(
v(t ),h(t ); ĥ(t−1)

) = −(
h(t )⊤W v(t ) +c(t )⊤h(t ) +b(t )⊤h(t )

)
and Zĥ(t−1) is a nor-

malisation factor with the same interpretation as in the case of the RBM in Section

4.3. Here we work with a variant of the RTRBM in which both the visible and hidden

layer biases b(t ) and c(t ) (the superscripts indicate time) depend on the mean-field

values of the hidden units ĥ(t−1) at the previous time-step as follows (Boulanger-

Lewandowski et al., 2012):

b(t ) =Whv ĥ(t−1) +b

c(t ) =Whhĥ(t−1) +c

where ĥ(t ) is given by

ĥ(t ) =σ(
W v(t ) +c(t ))

=σ(
W v(t ) +Whhĥ(t−1) +c

)
(5.2)

It is to be noted that (5.2) is the defining equation of an RNN with hidden units ĥ(t )

and a logistic sigmoid non-linearity. This RTRBM is characterised by six parame-

ters in all: W , Whh , Whv , ĥ(0), b and c, where W represents the undirected weights

between the visible and the hidden layers of the constituent RBM, Whh and Whv
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5.2 Recurrent Temporal Restricted Boltzmann Machine

the directed weights between the hidden layer at time (t −1) and the hidden and

visible layers at time t respectively, and ĥ(0) is a vector of initial mean-field values

of the hidden units. Here as well b and c are respectively the time-invariant visible

and hidden layer biases of the RBM. The joint distribution of a sequence according

to this model is formalised as

P
(
v(1:T ),h(1:T )|ĥ(0:T−1))= T∏

t=1
P (v(t ),h(t )|ĥ(t−1))

= exp
(∑T

t=1−E(v(t ),h(t ); ĥ(t−1))
)∏T

t=1 Zĥ(t−1)

5.2.1 Learning

In order to learn the parameters of the RTRBM, one must maximise the log-likelihood

function logP
(
v(1:T ),h(1:T )

)
. This involves computing the partial derivatives of this

function with respect to the various model parameters. Given ĥ(1), . . . , ĥ(T−1) all

the RBMs at different time-steps are de-coupled, thus allowing one to carry out

Gibbs sampling for each RBM independently. This property can be exploited to

compute the approximate gradients of the parameters as given in the Contrastive

Divergence (CD) algorithm as if the RBM at a certain time-step t was indepen-

dent of those at other time-steps. The RTRBM can be thought of as a sequence

of conditional RBMs whose parameters are the output of a deterministic RNN.

So once the gradients are computable at each time-step, this can be extended to

sequences with the help of the Backpropagation Through Time algorithm as de-

scribed in (Sutskever et al., 2009; Mittelman et al., 2014). This is given by:

∂ logP
(
v(1:T ),h(1:T )

)
∂θ

=
T∑

t=1

∂ logP (v(t ),h(t )|ĥ(t−1))

∂θ

= ∂ logP (v(1),h(1)|ĥ(0))

∂ĥ(0)
+

T−1∑
t=1

∂ĥ(t )

∂θ

∂A

ĥ(t )

where θ is the general notation for the parameters, and ∂A

ĥ(t ) is defined recursively

as
∂A

ĥ(t )
=W ⊤

hhĥ(t+1)(1− ĥ(t+1))
∂A

ĥ(t+1)
+ ∂ logP (v(t+1),h(t+1)|ĥ(t ))

∂ĥ(t )

5.2.2 Discriminative Inference in the RTRBM

In order to address the prediction task which involves computing a conditional dis-

tribution, discriminative inference can be carried out in the RTRBM as explained
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in Section 4.3.1. This will result in the following expression for the posterior prob-

abilities at time t :

P (y(t )|x(1:t )) = P (y(t )|x(t ), ĥ(t−1))

= exp(−E f r ee (x(t ),y(t )))∑
y∗ exp(−E f r ee (x(t ),y∗))

. (5.3)

This equation is reminiscent of (4.3), with the distinction that it takes into account

temporal information carried forward from the previous time-step through ĥ(t−1).

This inference can be carried out on the generatively learned RTRBM. However,

in order to accurately model the distribution in the visible layer of the model, the

sampling step of the Contrastive Divergence algorithm would assume two sets of

multinomial units, one corresponding to the one-hot representation of the musical

pitch at time-step (t −1), and the other to that at time-step t .

x(1) y(1) x(2) y(2)

h(0) h(1) h(2) . . .

p(0) p(1) p(1) p(2) . . .

Whh
c(1)

Whv

b(1)

Whh
c(2)

Whv

b(2)
W U W U

Fig. 5.4 Architecture of the RTDRBM unfolded in time, in which discriminative
learning and inference is carried out for classification under the assumption that
one set of visible units y(t ) represents a multinomial distribution in the number of
classes, and the rest are the inputs x(t ). It is equivalent to the RTRBM used for the
same task when learned generatively. At any given time-step t , the mean-field state
of the hidden layer from the previous time-step ĥ(t−1) contributes to the dynamic
biases b(t ) and c(t ) of the visible and hidden layers respectively, and is responsible
for propagating information pertaining to the model’s state in previous time-steps
forward in time. In the melody modelling application, it models the joint proba-
bility of events p(t−1) and p(t ) at any time-step t .

5.3 Recurrent Temporal Discriminative RBM

The Recurrent Temporal Discriminative Restricted Boltzmann Machine (RTDRBM)

that we propose here is depicted in Figure 5.4. One will notice that it is identical

in structure to the RTRBM described in Section 5.2, where the visible and hidden

layers of the RBM at time t are conditioned on the mean-field values of the hidden
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5.3 Recurrent Temporal Discriminative RBM

layer at time (t −1) (Boulanger-Lewandowski et al., 2012). The difference between

the two is in the cost function that is optimized during learning in each case. The

RTDRBM uses a discriminative cost function, while the RTRBM a generative one.

The main motivation for proposing the RTDRBM here is to directly learn the dis-

tribution P
(
y(1:T )|x(1:T )

)
over a sequence of input-label pairs {x(1:T ),y(1:T )}, rather

than the joint probability P
(
y(1:T ),x(1:T ),h(1:T )

)
like the RTRBM.

The first step in this direction is to carry out discriminative inference in the

RTRBM, in a manner similar to (5.3). It can be extended to an entire sequence of T

events as follows (mathematical proof in (5.4), (5.5), and (5.6) provided by Son N.

Tran):

P
(
y(1:T )|x(1:T ))= P

(
y(1:T ),x(1:T )

)∑
y(1:T ) P

(
y(1:T ),x(1:T )

)
=

∏T
t=1 P

(
y(t ),x(t )|y(1:t−1),x(1:t−1)

)∑
y(1:T )

∏T
t=1 P

(
y(t ),x(t )|y (1:t−1),x(1:t−1)

)
=

∏T
t=1 P

(
y(t ),x(t )|ĥ(t−1)

)∑
y(1:T )

∏T
t=1 P

(
y(t ),x(t )|ĥ(t−1)

)
=

∏T
t=1 P

(
y(t ),x(t )|ĥ(t−1)

)∏T
t=1

∑
y(t ) P

(
y(t ),x(t )|ĥ(t−1)

)
=

T∏
t=1

P
(
y(t )|x(t ), ĥ(t−1)) (5.4)

One will notice that, just as in the case of the RTRBM, given ĥ(1), . . . , ĥ(T−1), this

leads to a de-coupling of each time-step in this case as well, except that here the

model at each time-step is a DRBM and thus the name Recurrent Temporal DRBM.

One might question here the need for a discriminative variant of the RTRBM,

as the inference in (5.3) can be carried out just as easily in the RTRBM. While this is

indeed true, our reason for experimenting with the RTDRBM is justified by a previ-

ous study on generative and discriminative learning (Ng and Jordan, 2001). A result

from that study which is particularly relevant here is that given sufficient training

examples, a discriminative model tends to do better on the task it is optimized

for than its generative counterpart. Moreover, it was also found in (Larochelle and

Bengio, 2008) that RBMs learned discriminatively were both efficient in their num-

ber of parameters and better at a classification task than those learned genera-

tively. Thus, we considered it of value to explore the idea of discriminative learning

in the RTRBM (which gives the RTDRBM). As we shall see later in Section 5.4, there

are indications of this type of behaviour here as well.
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5.3.1 Learning

The parameters of the model can be learned by maximizing its log-likelihood func-

tion which is given by

L = logP
(
y(1:T )|x(1:T ))

=
T∑

t=1
logP

(
y(t )|x(t ), ĥ(t−1)) . (5.5)

Similar to the RTRBM, the learning algorithm here involves the back-propagation

through time (Werbos, 1990) update of the model parameters (assuming a general

notation θ for the parameters) given by

∇θ = ∂L

∂θ
=

T∑
t=1

∂ logP (y(t )|x(t ), ĥ(t−1))

∂θ

=
T−1∑
t=1

∂ĥ(t )

∂θ

∂A

ĥ(t )
+ ∂ logP (y(1)|x(1), ĥ(0))

∂ĥ(0)
(5.6)

where

∂A

ĥ(t )
=W ⊤

hhĥ(t+1)(1− ĥ(t+1))
∂A

ĥ(t+1)

+ ∂ logP (y(t+1)|x(t+1), ĥ(t ))

∂ĥ(t )

5.4 Experiments

An evaluation of the recurrent models described above was carried out on the cor-

pus of chorale and folk melody datasets introduced in Section 3.2. This facilitated

comparison with melody models based on n-grams from previous work (Pearce

and Wiggins, 2004) and the non-recurrent melody models of Chapter 4. The evalu-

ation was carried out on 10 resampling sets of each of the 8 datasets in the corpus,

thus making it possible to also test the significance (Dietterich, 1998) of the differ-

ences in performance between the models where required. Training and test folds

identical to those in (Pearce and Wiggins, 2004) were used here as well. We ex-

tracted a small part of the training set (5% of the total number of samples) in each

case as the validation set.

A grid search was carried out to determine the best set of hyperparameters for

the corpus. Each model was learned up to a maximum of 250 iterations, and that

with the best validation set error was evaluated on the test set. A grid search was
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carried out to determine the best set of hyperparameters for each model. While

carrying out the iterative gradient-based learning on a model at each grid-point,

its performance on the validation set was checked after every 10 iterations. The

model corresponding to the iteration with the best validation set performance was

chosen to be evaluated on the test set, and this performance reported. Based

on a preliminary search on the datasets, the initial learning rate ηi ni t was set to

0.05. This value decayed with the number of iterations according to the sched-

ule given by ηt = ηi ni t /(1+ t/τ), where τ = 50 is the iterations after which each

step of decay occurs. The number of hidden units in the models nhi d was varied

as {25,50,100,200}. Both L1 and L2 decay were set to identical values λ1 = λ2 = λ

which was either on (λ= 0.0001) or off (λ= 0). This procedure was followed with all

the three recurrent connectionist models employed here. The parameters of each

of the models were learned over entire sequences, rather than on shorter truncated

sequences which is also common practice. This is done by treating each melody

as a single batch over which the parameters are updated within each iteration of

training. Thus the notion of a fixed context length does not apply to these recur-

rent models as in the case of the non-recurrent ones. Additionally, in the case of

the RNNs, the three types of hidden layer activations listed in Table 4.1 were also

examined.

Comparison with Previous Work

As was the case with the non-recurrent prediction models of Chapter 4, the recur-

rent ones here also deal only with long-term effects that are induced from a corpus,

and are thus compared with the two best performing n-gram LTMs in (Pearce and

Wiggins, 2004). The first of the said n-gram models is of unbounded order, and

is referred to as C∗I (where the ∗ refers to unbounded order), and uses the inter-

polated smoothing method proposed in (Moffat et al., 1998) to account for unfa-

miliar contexts. The second is of bounded order, and uses the same interpolated

smoothing method, but with a bounded order of 2 (and thus named C 2I ). These

have been explained earlier in Section 4.4. We refer the interested reader to (Pearce

and Wiggins, 2004) for further details on these two models.

Boundary Conditions

The recurrent models described in this chapter rely on a single musical event im-

mediately preceding the one to be predicted, and so only the first event in a melody

s(1) does not have a valid context. To handle this case, we rely on the same as-
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Model Context Cross Entropy

n-gram (b) 2 2.957
n-gram (u) N/A 2.878

FNN (nh = 200, hact = ReLU ) 7 2.819(±0.200)
DRBM (nh = 25, hact = Log Si gU ) 5 2.819(±0.208)
RBM (nh = 100, hact = Log Si gU ) 8 2.799(±0.168)

RNN (nh = 50, hact = TanHU ) N/A 2.787(±0.174)
RTRBM (nh = 100, hact = Log Si gU ) N/A 2.738(±0.182)

RTDRBM (nh = 100, hact = Log Si gU ) N/A 2.712(±0.168)

Table 5.1 A comparison between the best predictive cross entropy scores of each
type of recurrent and non-recurrent model examined in the present work, and n-
gram models from previous work.

sumption as the non-recurrent models described in Section 4.4 wherein each non-

existent context event is represented by a vector of dimensionality |[τpi tch]| equal

to that of any other input vector (which is the number of pitches occurring in the

dataset), but with each element of value 1/|[τpi tch]|. As explained there, this signi-

fies a lack of any knowledge whatsoever about the nature of these missing events.

The reader is referred to Section 4.4 for an example illustrating this assumption

and further details on it. 4.4.

5.4.1 Results

Table 5.1 contains the best predictive performance of each of the connectionist

models (both non-recurrent and recurrent) considered here, together with the equiv-

alent n-grams from (Pearce and Wiggins, 2004). The results are averaged across all

8 datasets. One will notice the progressive improvement in the best-case perfor-

mance from the n-gram models, to the non-recurrent and recurrent connectionist

models, with the RTDRBM outperforming the rest. The main influencing factor

with regard to the predictive performance of the different classes of models was

the hidden layer size. It was found both in the case of the RTRBM and the RT-

DRBM that a hidden layer size of 100 units resulted in the best predictive perfor-

mance. In the case of the RNNs, there was an additional factor which influenced

the performance of the models, namely the activation type of the hidden units. It

was observed that both hyperbolic tangent (TanH) and rectified linear (ReL) hid-

den layer activations resulted in the best performance of 2.787, however, the model
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corresponding to the former had a hidden layer size of 50 as opposed to the latter

whose hidden layer contained 100 units. This result is reminiscent of the case of

the FNNs in Chapter 4 where the best case of the TanH hidden layer FNN contained

fewer units than that of the networks with other hidden layer activations. Detailed

(dataset-wise) results of the best cases of the three recurrent models examined here

are available in Tables A.6, A.7 and A.8.

5.4.2 Discussion

When it comes to the recurrent models (the RNN and RTRBM), the recurrent con-

nections in these can be seen as propagating forward in time a “summary” of long-

term contextual information (Elman, 1990), and thus one only needs to explicitly

input the most recent time-step to them. They are thus free from the Markov as-

sumption and can take into account this long-term information while at the same

time limiting the number of model parameters between the input and hidden lay-

ers of the models. This is in contrast with the non-recurrent models whose input

space increases in size with context length. Furthermore, the latter are also un-

aware of the position of their fixed context subsequences in a melody as these are

essentially obtained by sliding time-windows over the melody.

As discussed in Chapter 4, while at lower context lengths the discriminative

RBM has slightly better predictive performance than the generative one, it is the

opposite case at higher context lengths. This was attributed to an increase in input

feature dimensionality with context length in relation to the amount of data, which

is equivalent to an effective reduction of the amount of available data. given a con-

stant feature dimensionality. It also resulted in a preference in the discriminative

case for a smaller number of hidden units from the grid search as context length,

and correspondingly the model input dimensionality increased while this was not

so in the generative case. This explanation is further supported in the results of

this chapter, where we find in the case of both the RTRBM and the RTDRBM, in

which the model input dimensionality is independent of the context length, that

the latter which is discriminatively learned performs better than the former which

is learned generatively. A paired t test between the two confirmed that the dif-

ference in performance was indeed significant [t (79) = 5.54, p < 0.001]. This was

also the case for the difference in performance between the RNN and the RTRBM

[t (79) = 5.03, p < 0.001].

Table 5.2 lists the performance of best of each class of models on each of the

datasets. One will notice a consistent trend across different models in the best pos-
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Dataset FNN RBM DRBM RNN RTRBM RTDRBM Average
jugoslav 2.715 2.722 2.705 2.681 2.676 2.655 2.692
elsass 3.054 3.002 3.060 2.970 2.945 2.897 2.988
schweiz 3.035 3.024 3.017 2.988 2.961 2.932 2.993
oesterrh 3.365 3.310 3.418 3.309 3.296 3.259 3.326
kinder 2.389 2.377 2.398 2.424 2.313 2.301 2.367
nova-scotia 2.750 2.727 2.738 2.679 2.635 2.609 2.690
bach 2.420 2.441 2.423 2.451 2.378 2.362 2.413
shanxi 2.827 2.798 2.795 2.792 2.703 2.685 2.767
Average 2.819 2.799 2.819 2.787 2.738 2.712

Table 5.2 Cross entropies of the best instance of each model class on the different
datasets, and the average of these values in the bottom row. The rightmost column
lists the average cross-entropy of all the models on each of the datasets.

sible cross entropies achievable by each of them on the datasets. Given a dataset,

the prediction cross entropy can be used to compare the performance of different

models. On the other hand, given a model, the best achievable cross entropy on a

given dataset by it sheds light into the nature of the dataset as well. For instance,

the greater the number of symbols (|[τpi tch]|) the greater the number of permuta-

tions of these that are possible in the sequences that make up the dataset. Those of

the permutations that appear in the melodies are determined by style or musical

tradition represented by the dataset. It was also mentioned above that the present

work does not carry out any key-normalisation (transposition of all melodies to the

same key) in order to compare the models evaluated here with those from previ-

ous work. Key variability in data creates ambiguity regarding the symbol that is

expected to follow a given context as this could differ across keys. Thus, normali-

sation of melodies to a common key would be expected to increase predictability

in the data and thus reduce the cross entropy on the corpus. In Chapter 6, it will be

demonstrated how introducing key-signature information as input to a model can

amount to a similar effect and result in improved predictive performance.

5.5 Summary

This chapter introduced recurrent extensions of the models in Chapter 4. Each of

these models uses the musical pitch of only the most recent note together with a

real-valued vector representing the model’s state in the previous time-step which

serves as a memory of its past (from the start of the melody) in order to predict a

probability distribution over the value of the pitch of the next note. The predictive
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performance of the models was evaluated using cross entropy as the measure and

compared against those of n-gram models from previous work (Pearce and Wig-

gins, 2004). The results indicate that the best case of each connectionist model

outperforms that of the n-gram models of both bounded and unbounded context

lengths, as well as the non-recurrent connectionist models for melody modelling

described in Chapter 4. Of all the models considered here, the RTDRBM performs

best. Furthermore, the observations regarding the comparative performance of

the RTDRBM proposed here and its generative counterpart the RTRBM can be ex-

plained using the same theory underlying discriminative and generative learning

(Ng and Jordan, 2001) which was used to explain the relative performance between

the generative and the discriminative RBMs in Chapter 4.
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Chapter 6

Ensembles of Melody Models

The prediction models described in the previous chapters are, in effect, probabilis-

tic classifiers which assign a class-label (the value of the pitch of the note s(t ) at

time-step t ) to a given input (the sequence of musical pitches leading up to s(t )) by

first generating a probability distribution over all class-labels (the possible values

of musical pitch [τ]pi tch in a dataset). Given two or more such classifiers wherein

each is learned differently, it is possible to combine their predictions in what is

known as an ensemble of classifiers (Valentini and Masulli, 2002). The technique

is commonly referred to as ensembling. It has been demonstrated that ensembling

can often improve the performance of a classification system (Opitz and Maclin,

1999; Dietterich, 2000; Zhou et al., 2002) by effectively combining the different

sources of information that the constituent classifiers represent. The advantage

of ensembling in predictive models of musical melody was first demonstrated in

(Conklin and Witten, 1995), and further studied in (Pearce, 2005). This was done

using aggregation rules which weight the prediction of each model in the ensem-

ble as an inverse of the Relative Entropy of its prediction. Models were combined

at two different levels. In the first, the ensemble contained models learned on dif-

ferent input features. And in the second, models whose parameters were contin-

uously updated during the prediction task (online models) were combined with

those whose parameters weren’t (offline models). In this chapter, we first intro-

duce the idea of ensembling and its use in machine learning. This is followed by

a description of the entropy-weighted combination rules of (Conklin and Witten,

1995; Pearce, 2005). We employ these rules to combine the predictions of multiple

models, all predicting musical pitch while using different melodic features as their

respective inputs. The results of the initial experiments presented here are positive

and encourage further exploration of this approach.
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6.1 Ensembles

An ensemble is a set of machine learning models whose decisions are combined

to improve the performance of the overall system (Valentini and Masulli, 2002).

The goal of ensembling is to effectively combine predictions of models which have

independently learned from different sources of information. Thus, a key consid-

eration in creating a successful ensemble is the diversification of the sources of

information that are brought together in it, and there exist ways to measure this

diversity (Kuncheva and Whitaker, 2003). A machine learning algorithm searches

a hypothesis space H to find the best possible hypothesis of a function F under-

lying the data given to it. An appropriate class of models is chosen to approximate

F . However, it is sometimes the case that the available data might not lead to

a good enough hypothesis with a given model. This can be due to various rea-

sons such as the size of the chosen model’s parameter set with respect to that of

the dataset, limited representational capability of the model, or a sub-optimal pa-

rameter set solution resulting from the non-convexity of the error surface along

which the model is optimised. It is under such conditions that ensembles of mod-

els which are by themselves not comprehensive tend to offer an improvement in

performance. There exist different ways in which models can be combined into

ensembles (Opitz and Maclin, 1999; Moreno-Seco et al., 2006).

Ensemble methods can be broadly classified into two types — non-generative

and generative (Valentini and Masulli, 2002). A non-generative ensemble puts to-

gether a set of several pre-determined models trained with their own respective

learning algorithms. This involves no modification to the constituent models, but

only the optimization of the method used to combine them. It is the outputs of the

individual models which are combined and in focus while optimizing the overall

system, while the models themselves remain untouched. Ensembles of this type

make use of the Dempster-Shafer combination rule, the Bayesian decision rule,

aggregation rules such as Minimum, Maximum, Average and Product and Ordered

Weight Averaging; in other words, rules which are learned on top of set of con-

stituent models. On the other hand, a generative ensemble aims to improve the

overall accuracy of the ensemble by directly boosting the accuracy and the diver-

sity of the constituent models. It achieves this in one of many ways, either by (1)

modifying the input data through resampling methods and feature selection, or

(2) by manipulating the aggregation of the classes by output coding methods, or

(3) by selecting subsets of the constituent models, or (4) by randomly modifying

the learning algorithms of the constituent models.
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6.2 The Mean and Product Combination Rules

In the present work, we employ two combination rules from the suite of non-

generative ensemble methods. These are the mean and product rules respectively.

These rules combine the probability distributions predicted by each of the mod-

els that are contained in the ensemble. As it is the predicted distributions which

are combined, this approach is independent of the types of models involved. While

there is no single optimal way to weight the different predictions, one intuitive way

to go about it is to assign greater weights to those whose predictions reflect greater

certainty. It was demonstrated in (Conklin and Witten, 1995; Pearce, 2005) when

combining n-gram and variable order Markov models that an entropy-weighted

combination of the predictions that captures this intuition typically resulted in

a system with better predictive performance than any of the individual models.

Here, we describe these two rules for creating ensembles. Let M be a set of models

and Pm(s) be the probability assigned to symbol s ∈ S by model m, where S is the

discrete alphabet over which the prediction Pm(s) is being made.

The first approach involves taking a weighted arithmetic mean of their respec-

tive predictions. This is the mean combination rule (Tax et al., 2000), and is defined

as

P (s) =
∑

m∈M wmPm(s)∑
m∈M wm

where each of the weights wm depends on the entropy of the distribution Pm pre-

dicted by the corresponding model m in the combination such that greater en-

tropy (which implies greater uncertainty) is associated with a lower weight (Con-

klin, 1990). The weights are given by the expression wm = Hr el (Pm)−b , where the

relative entropy Hr el (Pm) is

Hr el (Pm) =
H(Pm)/Hmax(Pm), if Hmax(Pm) > 0

1, otherwise .

The bias b is a hyperparameter whose value is determined with the help of a val-

idation set. The quantities H and Hmax are respectively the Shannon entropy of

the prediction and its maximum possible value given the discrete alphabet, and

are defined as

H(P ) =−∑
s∈S

P (s) log2 P (s)

Hmax(S) = log2 |S|.
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where P (s ∈ S) = P (χ = s) is the probability mass function of a random variable χ

distributed over the discrete alphabet S such that the individual probabilities are

independent and sum to 1.

The second combination method — the product combination rule, is com-

puted by taking the weighted geometric mean of the probability distributions of

the models contained in the ensemble. This is given by

P (s) = 1

R

( ∏
m∈M

Pm(s)wm

) 1∑
m∈M wm

where R is a normalisation constant which ensures that the resulting distribution

over S sums to unity. The weights wm in this case are obtained in the same manner

as in the mean rule. It was observed in a previous application of these two combi-

nation methods to melody modelling (Pearce, 2005), that the product rule resulted

in a greater improvement in predictive performance.

6.3 Combining Models that Utilise Different Features

The connectionist models described in Chapters 4 and 5 dealt purely with musi-

cal pitch sequences. It is often the case that other musical features (referred to as

types in the multiple viewpoints framework) available in notated music are infor-

mative and can help in improving the predictive performance of these models. In

this section, we incorporate types other than pitch to demonstrate this improve-

ment. This is motivated by previous work on the subject. In (Conklin and Witten,

1995) various combinations of types, corresponding to features such as musical

pitch, interval, inter-onset interval, scale degree and metrical location were used

to progressively improve the quality of predictions of the pitch of the next note.

This was extended further in (Pearce, 2005), with the inclusion of additional types

corresponding to note duration, first note in a bar and in a piece, etc. and the

proposal of an iterative feature selection method which selected the optimal set of

features in order to improve the quality of predictions in each iteration. While the

experiments carried out here do not go into the same level of depth as (Conklin

and Witten, 1995; Pearce, 2005), we carry out some initial experiments to demon-

strate similar improvement on the addition of new features as inputs to the existing

pitch-only connectionist models.

We first briefly review the theory on Multiple Viewpoints described in Section

3.1. A musical event s refers to the occurrence of a note in a melody. A type τ
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refers to any of a set of musical features that can be used to describe an event. The

domain of a type, denoted by [τ] is the set of possible values of that type. A ba-

sic type is a directly observable or given feature such as pitch (chromatic pitch),

dur (note duration), keysig (key signature)or timesig (time signature). A derived

type can be derived from any of the basic types or other derived types. Examples

of derived types are ioi (inter-onset interval, derived from the basic type onset),

int (interval, derived from pitch), etc. Two or more types can be “linked” by tak-

ing the Cartesian product of their respective domains, thus creating a linked type,

and this type is also treated in the same way as any other basic or derived type. A

viewpoint modelling a type τ is a partial function which maps sequences of events

onto elements of type τ. A multiple viewpoint system (MVS) is a set of models,

each of which is trained on subsequences of one type, whose individual predic-

tions are combined in some way to influence the prediction of the next event in

a sequence. This is a key proposal of the framework which allows one to incor-

porate useful information from sequences of any arbitrary type in the context (an

input type) derived from a corresponding sequence of events to influence the pre-

dicted probability distribution over a certain type (a target type) corresponding to

the next event in the sequence. This is realised through the introduction of multi-

ple models, each of which relies on a different source of information (its respective

input types) to make a prediction about the target type. The accuracy of the predic-

tion depends on how informative the input type is of the target type. It is possible

to combine the information provided by different input types for possibly better

predictive performance on the target type.

In previous work implementing this idea using n-gram models (Conklin and

Witten, 1995; Pearce, 2005) it was first required to make a prediction about the in-

put type itself and then map this prediction to the domain of the target type. In

other words, these approaches first model the distribution P
(
Ψin

(
s(t )

) |Ψin

(
s(1:t−1)

))
,

and then rely on a deterministic mapping to derive P
(
Ψtgt

(
s(t )

) |Ψin

(
s(1:t−1)

))
. In

contrast to this, the connectionist models described in Chapters 4 and 5 can be

made to adopt a more direct approach, wherein the prediction task described in

3.5 may be viewed generally as one in which the input of a prediction model is

the sequence of events of a certain input type Ψi n
(
s(1:t−1)

)
and the model predicts

a probability distribution P
(
Ψtgt

(
s(t )

) |Ψin

(
s(1:t−1)

))
over a target type Ψtgt

(
s(t )

)
,

given a sequence s(1:T ) of musical events, such thatΨin

(
s(t )

) ∈ [τin] andΨtgt

(
s(t )

) ∈
[τtgt]. This differs from previous work employing n-gram models (Conklin and

Witten, 1995; Pearce, 2005) in that given an input type sequence, one does not have

to make a prediction about the input type itself first and then map this prediction
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to the domain of the target type. Furthermore, information from multiple input

types can be combined in two different ways (1) in a single model which is trained

using a set of input types (known as early fusion), and (2) with an ensemble con-

taining multiple models (known as late fusion). While the latter is only a special

case of what has been described in Section 6.2 so far, we describe the former be-

low.

Representing Multiple Input Types in the Same Model

As previously explained in Section 3.1.2, in order to input the type sequences to

the neural network models, we first convert each input type value into a |[τ]|-
dimensional binary one-hot encoded vector, where |[τ]| is the size of the syntac-

tic domain of the type τ. When a context event is missing or undefined, each el-

ement of the vector is initialized to 1/|[τ]| (cf. Section 4.4). Now when there is

more than one type in the input to a model, the one-hot vectors corresponding

to each of these types extracted from a musical event are concatenated along their

lengths to obtain an input vector for that event. This is similar to the idea of linking

types. And in the case of non-recurrent models, such vectors belonging to succes-

sive events in the context are in-turn concatenated as described in Section 4.1. For

example, say we rely on types τ1 and τ2 of syntactic domain sizes |[τ1]| = 4 and

|[τ2]| = 3 respectively, and the length of the context used by the model for predic-

tion is n = 2, the effective input feature vector to the model at a certain time-step

would have the dimensionality n(|[τ1]| + |[τ2]|) = 2× (4+ 3) = 14. In doing so, we

are effectively bypassing the need to compute a Cartesian product to use multi-

ple types within the same model, which has been the practice when when linking

types while using n-gram and variable order Markov models.

6.3.1 Experiments

In order to evaluate the combination of types, we selected one type which is related

to the “what” in music — scale-degree (intfref), and another which is related to

the “when” — inter-onset interval (ioi), from the many available choices. Our tar-

get type i.e. the one being predicted, is musical pitch (pitch) here as well. Through

the experiments in this section, we wish to first determine whether or not and to

what extent the addition of the above two types results in an improvement in the

predictive performance of a model that previously relied only on the type pitch as

input. This would require answering the first set of the following three questions:
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1. Does the model predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi
(
s(1:t−1)

))
show any im-

provement over P
(
Ψpitch

(
s(t )

) |Ψpitch

(
s(1:t−1)

))
?

2. Does the model predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,intfref
(
s(1:t−1)

))
show any

improvement over P
(
Ψpitch

(
s(t )

) |Ψpitch

(
s(1:t−1)

))
?

3. Does the model predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi,intfref
(
s(1:t−1)

))
simi-

larly also show any improvement over P
(
Ψpitch

(
s(t )

) |Ψpitch

(
s(1:t−1)

))
,

P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi
(
s(1:t−1)

))
and P

(
Ψpitch

(
s(t )

) |Ψpitch,intfref
(
s(1:t−1)

))
?

And second, we wish to determine how the results of combining the influences

of the two additional types through ensembling techniques compare with that ob-

tained when the same is done in a single model. Also relevant here is a comparison

between the mean and product rule ensembles. Previous work by Pearce (2005)

which compared the two concluded that the latter tended to outperform the for-

mer in the majority of cases, and recommended its use in practice. We consider

then a second set of questions:

1. How does combining the models predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi
(
s(1:t−1)

))
and P

(
Ψpitch

(
s(t )

) |Ψpitch,intfref
(
s(1:t−1)

))
using the mean rule compare with

the single model predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi,intfref
(
s(1:t−1)

))
?

2. How does combining the models predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi
(
s(1:t−1)

))
and P

(
Ψpitch

(
s(t )

) |Ψpitch,intfref
(
s(1:t−1)

))
using the product rule compare

with the single model predicting P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi,intfref
(
s(1:t−1)

))
?

3. How do the mean and product rules compare against each other?

The Prediction Model

To answer the above questions, we employ a variant of the basic feed-forward net-

work, which was originally introduced in (Bengio et al., 2003) as a language model

for word sequences. The choice of this model was motivated by its demonstrated

success on that task. It consists of a feed-forward network such as the one de-

scribed in Section 4.2, with an additional embedding layer (the bottom layer of

the network illustrated in Figure 6.1). A given input vector x ∈ Rni (cf. 6.3)is first

mapped onto the embedding layer v ∈Rne (where typically ni > ne ). The mapping

operation is replicated at each time-step for the vector corresponding to τ(t)
i n in the

input layer, wherein it is mapped onto a corresponding subset of units e(t) in the
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y

v

x

τ(t )
t g t

h

e(t−3) e(t−2) e(t−1)

τ(t−3)
i n τ(t−2)

i n τ(t−1)
i n

Wi e Wi e Wi e

Weh

Who

Fig. 6.1 The architecture of the feed-forward neural network with an embedding
layer v and hidden layer h. It models sequences of 4 musical events at a time so as
to predict the fourth event given the first three.

embedding layer as shown in Figure 6.1, according to the equation

e(t) =W ⊤
i eτ

(t)
i n

and v = [e(t−n+1) . . .e(t−1)] is the concatenation of the transformed vectors corre-

sponding to the input events of the context. Each mapping is known as a dis-

tributed representation of its corresponding one-hot vector and, given a fully-trained

network, contains information relating to the co-occurrence of that one-hot vec-

tor with others. The weight matrix Wi e involved in generating this mapping is also

learned just as the other weight matrices of the model. From here, the forward-

propagation steps are identical to those in the feed-forward neural network intro-

duced in Chapter 4. The embedding layer is then mapped onto the hidden layer

by multiplying it with a weight-matrix Weh ∈Rne×nh and applying an element-wise

non-linearity fh to the result uh of this product:

uh = bh +W ⊤
ehv

h = fh (uh) .

100



6.3 Combining Models that Utilise Different Features

where bh ∈ Rnh is the hidden layer bias. Here, fh is the Hyperbolic Tangent non-

linearity. Likewise, the hidden layer activations vector h ∈ Rnh thus obtained un-

dergoes the same process to produce the outputs.

uo = bo +W ⊤
hoh

y = fo (uo)

where bo ∈Rno is the output layer bias, and the projection happens via the weight-

matrix Who ∈Rnh×no . The output layer applies the softmax non-linearity, thus mak-

ing it a probabilistic model. The input-to-embedding weights Wi e , embedding-to-

hidden weights Weh , and hidden-to-output weights Who , together with the hid-

den and output layer biases bh and bo respectively make up the parameters of the

model.

This model was employed to predict the following six distributions relevant to

the above questions, and these are referred to in the rest of this section as:

1. Instance A which predicts the type pitch using a context of the same type as

its input, i.e. P
(
Ψpitch

(
s(t )

) |Ψpitch

(
s(1:t−1)

))
.

2. Instance B which predicts the type pitch using a context of this and the type

ioi as its input, i.e. P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi
(
s(1:t−1)

))
.

3. Instance C which predicts the type pitch using a context of this and the type

intfref as its input, i.e. P
(
Ψpitch

(
s(t )

) |Ψpitch,intfref
(
s(1:t−1)

))
.

4. Instance D which predicts the type pitch using a context of this and the

types ioi, intfref as its input, i.e. P
(
Ψpitch

(
s(t )

) |Ψpitch,ioi,intfref
(
s(1:t−1)

))
.

5. Instance Em which is an ensemble that combines Instance B and Instance C

using the mean rule with the entropy-based weighting scheme.

6. Instance Ep which is an ensemble that combines Instance B and Instance C

using the product rule with the entropy-based weighting scheme.

Evaluation & Methodology

The six prediction models listed above (Instance A through Instance Ep ) were eval-

uated on a subset of the folk and chorale melody corpus described in Section 3.2,

namely, the Chinese folk melody dataset. This particular dataset was chosen due

to it being the largest of the 8 contained in the corpus. The extension of this evalu-

ation to the rest of the corpus has been left as future work. In order to evaluate the
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prediction models here, we once again use cross entropy (see Section 3.7) as in the

previous chapters. We remind the reader that, since cross entropy represents the

divergence between the empirical distribution and the model’s predicted distribu-

tion, it is a quantity to be minimised and thus a lower value on the test data re-

flects better performance. Different neural network configurations were evaluated

by a grid search with a learning rate η = 0.01, the number of hidden units nhi d =
{25,50,100,200,400}, number of embedding units nemb = {5,10,20}, and weight de-

cay wdecay = {0.0000,0.0001}. The combination bias parameter b for computing

the entropy-based weights wm was varied as b = {0,1,2,3,4,5,6,7,8,16,32}, as in

(Pearce, 2005). This range was used for both combination rules. Each model was

trained using mini-batch gradient descent up to a maximum of 1000 epochs with a

batch size of 100 samples, and evaluated over 10-folds, with folds identical to those

used in (Pearce and Wiggins, 2004) as before. A small part of the training set (5%)

in each fold is extracted as the validation set for model selection over the various

hyperparameters.

6.3.2 Results & Discussion

Figure 6.2 compares the predictions of Instances A, B , C and D to answer the first

set of three questions pertaining to the addition of new types as input into a sin-

gle model. The first observation here is that only the addition of the intfref type

leads to any improvement. This is reflected in the similarity between the plots of

pairs of model instances which differ only in their use of the ioi type (1) Instance A

and Instance B , and (2) Instance C and Instance D . Paired t-tests between models

in both (1) and (2) at different context lengths confirmed that differences in per-

formance were not significant. The tests were performed over all 10 folds of the

dataset (n = 10). On the other hand, the addition of the type intfref does con-

tribute to an improvement in predictive performance from the pitch-only model

(Instance A). However, paired t-tests revealed that this difference was only signif-

icant at lower context lengths of up to 3 in the case of the first pair consisting of

Instance A and Instance C . Likewise, the difference in performance between In-

stance B and Instance D was found to be significant upto a context length of 4.

The lack of significant improvement in the longer context lengths can possibly be

attributed to the Hughes phenomenon, whose effect was observed at longer con-

text lengths in the case of the prediction models discusseds in Section 4.4.3. Its

effect is expected to be more pronounced in the case of models which use higher

number of input features, and thus rely on a larger number of parameters. Alter-
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Fig. 6.2 Comparison between the predictive performances, on the Chinese folk
melody dataset, of the pitch-only NPMM (Instance A), its extensions which use
the intfref type (Instance B) and ioi type (Instance C ) as additional input, and both
these types together in a single model (Instance D).

natively, it might also be the case that the intfref type does not contribute any

useful information beyond a certain number of immediately preceding events in

this particular dataset.

These observations lead to the conclusion that, while it is indeed possible to

improve the predictive performance with the inclusion of new musical features in

the same model, it might not always be so. This could be confirmed in those cases

where the context length is small enough to not lead to any adverse effects pertain-

ing to data insufficiency. The experiment confirmed the prior expectation that the

explicit inclusion of the intfref type would help improve predictive performance

since scale degree information was originally absent in the input data due to the

lack of any transposition of the melodies. The importance of scale degree in musi-

cal pitch prediction was also observed in previous work involving n-gram models

(Pearce and Wiggins, 2006). The expectation was not the same with the type ioi

since it does not belong to the type set (Section 3.1) of pitch, i.e. it is not derived

from the type pitch. To what extent ioi influences the predictions of pitchwould

depend on the correlation between variations in both features in a given dataset,

and the results here suggest that this wasn’t the case.

In regard to the second set of questions listed above which meant to compare

the two ensembling techniques with a single model using the same features as in-
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Fig. 6.3 Comparison between the predictive performances, on the Chinese folk
melody dataset, of the three models that incorporate the types pitch, ioi and
intfref as inputs to a single model (Instance D), and as ensembles of multiple
models using the mean and product combination rules (Instance Em and Instance
Ep respectively).

put, the result is illustrated in Figure 6.3. While it might seem from this figure that

the average predictive performance of the two ensembles is slightly better than

that of the single model incorporating all three types, a paired t-test also revealed

that this difference was not significant in all context lengths except 6. This result

provides an initial confirmation that a single connectionist model incorporating

several different types as opposed to multiple models combined in an ensemble

could indeed be a feasible alternative.It was also observed that there was no sig-

nificant difference in the outcome of combining the said models using either the

mean or the product rules. This differs from the result in (Pearce, 2005) where it

was shown that the product rule resulted in better predictive performance than

the mean rule. When using the mean rule (Instance Em), a bias value of 1 resulted

in better prediction on a validation set with most of the context lengths, and was

hence chosen. The value of the bias was 0 in the case of the product rule (Instance

Ep ). It is the results corresponding to these bias values that have been plotted in

Figure 6.3. Finally, as more types were added as input to the models, it was found

that smaller embedding layers were being favoured in the grid search.

104



6.4 Summary

6.4 Summary

This chapter presented experiments on combining different models that predict

the musical pitch of the next note, each given different input melodic features.

This aimed to determine the extent to which the addition of new features within

the same model improves predictive performance and how this compares with a

combination of multiple models, each of which contains a subset of all the fea-

tures contained in the former. This was explored with a variant of the Feed-forward

Neural Network. It was found that out of the two new features that were added as

input to the model, there was an improvement in the quality of predictions only

in the case of one of these. Moreover, it was found that the addition of both the

features as inputs to the same model resulted in similar performance in compari-

son to ensembles that combine multiple models incorporating the same features.

The models were combined using two combination rules, namely the entropy-

weighted mean and the product rules introduced in (Conklin and Witten, 1995;

Pearce, 2005). It was observed that in the majority of cases, the performance of the

mean and product rules was very similar with the key difference being the choice

of combination bias value which was lower for the product rule. The reader is re-

ferred to Appendix B for more details on the results reported in this Chapter.
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Chapter 7

Extending the DRBM and RTDRBM

While the objective of this dissertation at the outset was to demonstrate the effi-

cacy of connectionist models for sequences of musical pitch, which led to the pro-

posal of the novel Recurrent Temporal Discriminative Restricted Boltzmann Ma-

chine (RTDRBM) architecture in Chapter 5, here we present two additional new

directions of work that came about in the process. In the first, the application of the

RTDRBM is extended to sequence labelling in general, of which music modelling

is only a special case. This involves a small modification to the originally proposed

prediction algorithm based on the relaxation of an assumption specific to the lat-

ter. This generalisation is evaluated on a benchmark dataset for Optical Charac-

ter Recognition (Kassel, 1995; Taskar et al., 2004). Results show that the RTDRBM

outperforms a set of baseline models by a clear margin. Second, we propose ex-

tensions to the Discriminative Restricted Boltzmann Machine (DRBM) which was

employed as a non-recurrent melody model in Chapter 4. In the work that orig-

inally proposed the DRBM (Larochelle and Bengio, 2008; Larochelle et al., 2012),

its hidden layer activations were of the Logistic Sigmoid type. Here, we prove the

validity of the generalisation of the said activations to three other types commonly

encountered in connectionist literature - Hyperbolic Tangent, Binomial, and Rec-

tified Linear. We carry out experiments on the benchmark MNIST digit dataset

(LeCun et al., 2006) to demonstrate the efficacy of the first two of these extensions.

Results show that these two variants of the original DRBM perform as well as the

logistic sigmoid. An evaluation of the latter (rectified linear) has been left as work

to be carried out in the future. This chapter serves to answer the fourth and final

research question in Section 1.2.
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7.1 Generalising the RTDRBM

This section proposes the extension of the Recurrent Temporal Discriminative Re-

stricted Boltzmann Machine (RTDRBM) to the general supervised learning prob-

lem of sequence labelling. A formalism for sequence labelling, much of which has

been adopted from parts of (Graves, 2012), is presented first. This is followed by an

explanation of how the RTDRBM can be used to address this task. The extended

model is evaluated on a dataset for Optical Character Recognition where it outper-

forms a set of 8 baseline models from a previous study (Nguyen and Guo, 2007).

7.1.1 Sequence Labelling

The goal of sequence labelling is to assign sequences of labels, drawn from a fixed

alphabet, to sequences of input data (Graves, 2012). We limit our attention to cases

where the alignment between the input sequence and the corresponding label se-

quence is predetermined so that only learning the relationship between the inputs

and labels is of importance. Furthermore, it is also assumed that the sequences are

independent and identically distributed so as to be able to apply the basic machine

learning framework (cf. Section 3.3.1) where this assumption must hold.

Sequence labelling tasks belong to one of three classes which make progres-

sively looser assumptions about the relationship between the input and label se-

quences (Graves, 2012). The first and most restrictive case is known as Sequence

Classification, where a single label corresponds to each sequence. As the name

suggests, this involves classifying an entire sequence (as opposed to individual el-

ements in it) as belonging to a class. The entire sequence can be processed before

the classification is made. In the second, less restrictive case known as Segment

Classification, the target sequence consists of multiple labels but the locations of

the labels are known in advance. As this involves assigning class-labels to individ-

ual elements in a sequence, i.e. the segments as a model comes across them, the

effective use of context (from either side of the segments to be classified) by the

model is vital to segment classification algorithms. And the third, least restrictive

case is known as Temporal Classification, wherein no assumptions are made about

the label sequences, except that their length is less than or equal to that of the in-

put sequences. They may even be empty. The key distinction between temporal

classification and segment classification is that the former requires an algorithm

that can decide where in the input sequence the classifications should be made.

The sequence labelling tasks in this chapter belong to the segment classifica-
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tion category, with the added constraint that the length of a label sequence is equal

to that of its corresponding input sequence, i.e. a prediction is made at every time-

step of the input sequence and thus the segment length is 1. Here we formalise

the task of segment classification. Let Str ai n be the set of training examples drawn

independently from a fixed distribution DX×Y . The input space X = (
RM

)∗
is the

set of all sequences of size M real-valued vectors. The target space Y = L∗ is the set

of all sequences over the finite alphabet L of labels. We refer to elements of L∗ as

label sequences. Each element is a pair of sequences (X ,Y ). The target sequence

Y = [y (1), . . . , y (T )] is as long as the input sequence X = [x(1), . . . ,x(T )]. The task is to

use Str ai n to train a prediction model h : X 7→ Y to label the sequences in a test

set Stest ⊂DX×Y as accurately as possible.

7.1.2 The RTDRBM for Segment Labelling

The Recurrent Temporal Discriminative Restricted Boltzmann Machine (RTDRBM)

was introduced in Section 5.3 where its application to the task of melody modelling

was described. In the RTDRBM, the probability distribution over the output vari-

able y (t ) at time-step t is given by

P (y(t )|x(1:t )) = P (y(t )|x(t ), ĥ(t−1))

where the vector y(t ) contains the conditional probabilities of the different possible

values of the class-label y (t ). According to this, the output y(t ) depends on the input

x(t ) and the state of the hidden layer ĥ(t−1) from the previous time-step. The latter

is given by

ĥ(t−1) =σ(W x(t−1) +U y(t−1) +c(t−1))

=σ(W x(t−1) +U y(t−1) +Whhĥ(t−2) +c) (7.1)

Thus, the state of the hidden layer ĥ(t−1) from the previous time-step which condi-

tions the output y(t ) is itself conditioned on the output y(t−1) of that time-step. In

the melody modelling task, the one-hot encoding of the musical pitch p(t ) (which

is to be predicted) substitutes the label y(t ) in (7.1), whereas that of the most recent

event from the context p(t−1) substitutes the input x(t ). A key assumption there is

that, at time-step t the true values p∗(1:t−1) of the preceding time-steps are known,

using which the value p(t ) can be predicted. This means that while predicting y (t ),

the true values of the previous outputs y∗(1:t−1) are available. This corresponds to
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the intuition that one has already heard the pitch of a note while anticipating the

next note, which is justified by the application.

Generally, however, this assumption may not always be satisfied as in the case

of the OCR dataset considered in this section in which the goal is to predict a se-

quence of output labels given a sequence of input features. Thus, in contrast to the

melody modelling task we cannot assume any knowledge of the correct label at the

previous time-step. This being the case, we directly use the probability distribution

predicted by the model at each time-step in order to generate the corresponding

hidden layer activations, and as the results in this section demonstrate, this can

lead to good quality predictions.

7.1.3 Experiments: Optical Character Recognition

Optical Character Recognition (OCR) involves the conversion of images of typed,

handwritten or printed text into machine-encoded text. OCR systems have been

commercially available since the middle of the 1950s, and used in postal address

reading, license plate recognition, publishing, billing systems and reading aids for

the blind (Govindan and Shivaprasad, 1990). The common goal for such applica-

tions is the digitisation of printed or handwritten text, which is motivated by the

need to index, search and retrieve from increasing number of sources of text. An

algorithm for OCR can either recognise each character independent of other char-

acters in the document or as a sequence, the latter of which would also exploit the

grammatical information present in character sequences. Here we consider the

latter, wherein sequences of individually segmented handwritten characters which

make up words serve as the inputs for an RTDRBM which outputs corresponding

symbols from the character vocabulary.

Dataset

The MIT OCR dataset1 originally compiled by Kassel (1995), and later refined by

Taskar et al. (2004) is a widely used benchmark dataset for evaluating sequence

labelling algorithms. It contains 6,877 words, which corresponds to 52,152 English

characters. The data are sequences of isolated characters, where an image of a

character, of size 16×8 is represented by a vector x ∈ {0,1}128 and belongs to one

of 26 classes. The refinement referred to above involved the removal of capitalised

leading characters, rasterising and normalising the images of each character. The

1http://www.seas.upenn.edu/~taskar/ocr/
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dataset is divided into 10 cross-validation folds and has one hold-out test set. We

train each RTDRBM, initialised with a different set of values of its hyperparame-

ters, on 9 folds and evaluate it on the final fold during model selection, and then

evaluate the best model on the test set (i.e. 10 times).

Baseline Models

We compare the performance of the RTDRBM on the sequence labelling task with

the 8 baseline models from the comparative study in (Nguyen and Guo, 2007).

These include the Multiclass Support Vector Machine (SVMmul ti cl ass) (Crammer

and Singer, 2002), Structured SVM (SVMstr uct ) (Tsochantaridis et al., 2005), Max-

Margin Markov Network (M 3N ) (Taskar et al., 2004), Averaged Perceptron (Collins,

2002), SEARN (Daumé III et al., 2009), Conditional Random Field (CRF) (Lafferty

et al., 2001; Peng and McCallum, 2006), Hidden Markov Model (HMM) (Rabiner,

1989), and an ensemble known as the Structured Learning Ensemble (SLE) (Nguyen

and Guo, 2007) which selects and combines predictions by a subset of all the other

models. We refer the reader to the cited work for further details on the models.

Methodology

In order to determine the best model for the task, a grid search was carried out.

The initial learning rate ηi ni t was set to 0.05. Early-stopping was enabled. For

this, the performance of the model on a validation set was determined after every

epoch. If the performance happened to be worse than the previous best one for

ten consecutive checks, the parameters were reverted back to their values in the

previous best model, and training was resumed with a reduced learning rate. And

if this happened five times, training was terminated. The learning rate reduction

was according to a linear schedule where it is progressively scaled by the factors 1
2 ,

1
3 , 1

4 , and so on at each reduction step. The number of hidden units nhi d was varied

as {100,200,300,400}. Both L1 and L2 decay were set to identical values λ1 =λ2 =λ
and were either both on (λ = 0.0001) or both off (λ = 0). The maximum number

of training epochs was set to 1000, but it was found that training did not exceed

200 epochs in any of the examined cases. Sequence learning was carried out using

mini-batch gradient descent with Backpropagation Through Time (BPTT), where

each batch contained data belonging to one sequence. The RTDRBM generates

a probability distribution over the different possible values of the classes at each

time-step. The label corresponding to the greatest probability class is chosen as

the prediction.
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Evaluation Measure

In this task, each model is expected to predict the correct label corresponding to

the image of a character. All the models are evaluated using the average loss per

sequence E(y,y∗), given by:

E(y,y∗) = 1

N

N∑
i=1

[
1

Li

Li∑
j=1

I
((

yi
)

j ̸=
(
y∗

i

)
j

)]

where y and y∗ are the predicted and the true sequence respectively, N is the total

number of test examples, Li is the length of the i th sequence, the index j refers to

the event in a sequence Li , and I is the 0−1 loss function. This measure was also

used in evaluating the various models in (Nguyen and Guo, 2007), which serve as

baselines here.

Results

Table 7.1 shows the comparative performance of the RTDRBM against a set of vari-

ous baseline structured learning models evaluated in a previously published study

(Nguyen and Guo, 2007). It is evident that the RTDRBM clearly outperforms the

Model Error (%)
RTDRBM 15.95(±0.0009)
SLE 20.58
SVMstr uct 21.16
HMM 23.70
M3N 25.08
Perceptron 26.40
SEARN 27.02
SVMmul ti cl ass 28.54
CRF 32.30

Table 7.1 Comparison between the prediction error (%) of the RTDRBM (contain-
ing 400 hidden units and trained with a learning rate of 0.05 and weight-decay of
0.0001) and models evaluated in (Nguyen and Guo, 2007).

other models. The best performance was obtained with an RTDRBM containing

400 hidden units, with weight-decay enabled. Table 7.2 compares the RTDRBM’s

error-rate on this dataset with published state-of-the-art, which use Neural Condi-

tional Random Fields (NCRF) (Do et al., 2010) and Gradient Boosted Conditional

Random Fields (GBCRF) (Chen et al., 2015). Since the best performance corre-

sponds to a model with the highest number of hidden units in the considered hy-
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Model Error (%)
NCRF 4.44
GBCRF 4.64(±0.0027)
RTDRBM 15.95(±0.0009)

Table 7.2 Comparison between the prediction error (%) of the RTDRBM (contain-
ing 400 hidden units and trained with a learning rate of 0.05 and weight-decay of
0.0001) and state-of-the-art on the OCR dataset which use Neural Conditional Ran-
dom Fields (NCRF) (Do et al., 2010) and Gradient Boosted Conditional Random
Fields (Chen et al., 2015).

perparameter grid, there is reason to believe that increasing the number of hid-

den units can further improve the performance on this dataset. Previous work has

also shown that unsupervised pre-training of the weights of connectionist models

can lead to better initialisation of their parameters and thus help with obtaining

more accurate models when this is followed by supervised learning (Bengio, 2009;

Boulanger-Lewandowski et al., 2012; Larochelle et al., 2012). These, and other re-

finements to the results have been left as future work.

7.2 Extensions to the DRBM

The Discriminative Restricted Boltzmann Machine (DRBM) (Larochelle and Ben-

gio, 2008; Larochelle et al., 2012) was proposed as a variant of the Restricted Boltz-

mann Machine (RBM) which could be used as a supervised learning model, in con-

trast to the RBM’s original purpose of unsupervised feature learning. The DRBM

is structurally identical to the RBM, and contains Logistic Sigmoid units (LogSigU)

in its hidden layer, with the exception that a part of its visible layer is always a set

of multinomial units corresponding to the class-labels, while the rest is assigned

to input features. This section describes the theory for generalising the originally

proposed LogSigU-DRBM to other hidden layer types (mathematical proof in Sec-

tions 7.2.1 and 7.2.2 provided by Son N. Tran). These consist of Hyperbolic Tangent

units (TanHU), Binomial units (BinU) (Teh and Hinton, 2001) and Rectified Linear

units (ReLU) (Nair and Hinton, 2010). Experiments are also carried out to on the

benchmark MNIST dataset (LeCun et al., 2006) in order to evaluate the efficacy of

the first two of these extensions and determine how they compare with the original

LogSigU-DRBM.
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7.2.1 Generalising the Conditional Probability

We begin with the expression for the conditional distribution P (y |x), as derived in

(Larochelle et al., 2012). This is given by

P (y |x) =
∑

h P
(
x,y,h

)∑
y∗

∑
h P

(
x,y∗,h

)
=

∑
h exp

(−E
(
x,y,h

))∑
y∗

∑
h exp

(−E
(
x,y∗,h

)) (7.2)

where y is the one-hot encoding of a class label y , and − log
∑

h exp(−E(x,y,h)) is

the Free Energy E f r ee of the RBM. We consider the term containing the summation

over h in (7.2):

exp
(
E f r ee (x,y)

)=−∑
h

exp
(−E

(
x,y,h

))
=−∑

h
exp

(∑
i , j

xi wi j y j +
∑

j
uy j h j +

∑
i

ai xi +by +
∑

j
c j h j

)

=−exp

(∑
i

ai xi +by

)∑
h

exp

(∑
j

h j
∑

i
xi wi j +uy j + c j

)
(7.3)

Now consider only the second term of the product in (7.3). We simplify it by re-

writing
∑

i xi wi j +uy j + c j as α j . Thus, we have

∑
h

exp

(∑
j

h j
∑

i
xi wi j +uy j + c j

)
=∑

h
exp

(∑
j

h jα j

)
=∑

h

∏
j

exp
(
h jα j

)
=∏

j

∑
k

exp
(
skα j

)
(7.4)

where sk is each of the k states that can be assumed by each hidden unit j of the

model. The last step of (7.4) results from re-arranging the terms after expanding

the summation and product over h and j in the previous step respectively. The

summation
∑

h over all the possible hidden layer vectors h can be replaced by the

summation
∑

k over the states of the units in the layer. The number and values

of these states depend on the nature of the activation type (for instance {0,1} in

case of LogSigU, {−1,+1} in case of TanHU, and so on). The result in (7.4) can be

applied to (7.3) and, in turn, to (7.2) to get the following general expression of the
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conditional probability P (y |x):

P (y |x) = exp
(
by

)∏
j
∑

k exp
(
skα j

)
∑

y∗ exp
(
by∗

)∏
j
∑

k exp
(
skα

∗
j

)
= exp

(
by

)∏
j
∑

k exp
(
sk

∑
i xi wi j +uy j + c j

)∑
y∗ exp

(
by∗

)∏
j
∑

k exp
(
sk

∑
i xi wi j +uy∗ j + c j

) (7.5)

The result in 7.5 generalises the conditional probability of the DRBM first intro-

duced in (Larochelle and Bengio, 2008). The term inside the summation over k

can be viewed as a product between α j corresponding to each hidden unit j and

each possible state sk of this hidden unit. Knowing this makes it possible to extend

the original model with the logistic sigmoid hidden layer activation type to other

types of activations.

7.2.2 Extensions to other Hidden Layer Types

We first use the result in (7.5) to derive the expression for the conditional probabil-

ity P (y |x) in the original LogSigU-DRBM (Larochelle and Bengio, 2008). This will

be followed by its extension to Hyperbolic Tangent, Binomial and Rectified Linear

hidden layer activations. Section 7.2.3 presents a comparison between the perfor-

mance of the DRBM with these different activations.

Logistic Sigmoid (LogSigU-DRBM)

The LogSigU-DRBM corresponds to what was originally introduced in (Larochelle

and Bengio, 2008). In this case, each hidden unit h j can either be a 0 or a 1, i.e.

sk = {0,1}. This reduces P (y |x) in (7.5) to

Plogsig
(
y |x)= exp

(
by

)∏
j
∑

sk∈{0,1} exp
(
skα j

)
∑

y∗ exp
(
by∗

)∏
j
∑

sk∈{0,1} exp
(
skα

∗
j

)
= exp

(
by

)∏
j
(
1+exp

(
α j

))
∑

y∗ exp
(
by∗

)∏
j

(
1+exp

(
α∗

j

))
which is identical to the result obtained in (Larochelle and Bengio, 2008).

Hyperbolic Tangent (TanHU-DRBM)

A straightforward adaptation to the original LogSigU-DRBM involves replacing its

hidden units with the Hyperbolic Tangent (TanH) non-linearity. We refer to this
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here as the TanHU-DRBM. This is straightforward because, just like the logistic

sigmoid, the hyperbolic tangent also assumes two values. However, in this case

each hidden unit h j can either be a −1 or a +1, i.e. sk = {−1,+1}. Applying this

property to (7.5) results in the following expression for P (y |x):

Ptanh
(
y |x)= exp

(
by

)∏
j
∑

sk∈{−1,+1} exp
(
skα j

)
∑

y∗ exp
(
by∗

)∏
j
∑

sk∈{−1,+1} exp
(
skα

∗
j

)
= exp

(
by

)∏
j
(
exp

(−α j
)+exp

(
α j

))
∑

y∗ exp
(
by∗

)∏
j

(
exp

(
−α∗

j

)
+exp

(
α∗

j

)) .

Binomial (BinU-DRBM)

It was demonstrated in (Teh and Hinton, 2001) how groups of N (where N is a pos-

itive integer greater than 1) stochastic units of the standard RBM can be combined

in order to approximate discrete-valued functions in its visible layer and hidden

layers to increase its representational power. This is done by replicating each unit

of one layer N times and keeping the weights of all connections to each of these

units from a given unit in the other layer identical. The number of these “repli-

cas” of the same unit whose values are simultaneously 1 determines the effective

integer value (in the range [0, N ]) of the composite unit, thus allowing it to assume

multiple values. The resulting model was referred to there as the Rate-Coded RBM

(RBMrate).

The intuition behind this idea can be extended to the DRBM by allowing the

states sk of each hidden unit to assume integer values in the range [0, N ]. The sum-

mation in (7.5) would then be SN =∑N
sk=0 exp

(
skα j

)
, which simplifies as below

SN =
N∑

sk=0
exp

(
skα j

)
= 1+exp

(
α j

) (N−1)∑
sk=0

exp
(
skα j

)
= 1−exp

(
(N +1)α j

)
1−exp

(
α j

)
in (7.5) to give

Pbin
(
y |x)= exp

(
by

)∏
j
∑N

sk=0 exp
(
skα j

)
∑

y∗ exp
(
by∗

)∏
j
∑N

sk=0 exp
(
skα

∗
j

)
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=
exp

(
by

)∏
j

1−exp((N+1)α j )
1−exp(α j )∑

y∗ exp
(
by∗

)∏
j

1−exp
(
(N+1)α∗

j

)
1−exp

(
α∗

j

)
. (7.6)

We shall henceforth refer to this model as the BinU-DRBM.

Rectified Linear (ReLU-DRBM)

The work of Nair and Hinton (2010) introduced what is known as the Rectified Lin-

ear Unit (ReLU) for the hidden layer of the RBM. This type of unit is inspired by the

aforementioned Binomial units (Teh and Hinton, 2001) and is a result of increas-

ing the number of replicas of a single binary unit to infinity. Adopting the same

intuition here in the case of the DRBM, this would mean that we allow the states sk

to assume integer values in the range [0,∞) and thus extend the summation SN in

the case of the above BinU-DRBM to an infinite sum S∞ resulting in the following

simplification

S∞ =
∞∑

sk=0
exp

(
skα j

)
= 1+exp

(
α j

) ∞∑
sk=0

exp
(
skα j

)
= 1

1−exp
(
α j

)
with the equation for the ReLU-DRBM posterior probability in (7.5) becoming

Prelu
(
y |x)= exp

(
by

)∏
j
∑∞

sk=0 exp
(
skα j

)
∑

y∗ exp
(
by∗

)∏
j
∑∞

sk=0 exp
(
skα

∗
j

)
=

exp
(
by

)∏
j

1
1−exp(α j )∑

y∗ exp
(
by∗

)∏
j

1

1−exp
(
α∗

j

) .

7.2.3 Experiments: Handwritten Digit Recognition

In this section we compare the performance of the first two variants of the Dis-

criminative RBM introduced above (TanHU-DRBM and BinU-DRBM) with that of

the originally proposed one with logistic sigmoid hidden units (LogSigU-DRBM)

(Larochelle and Bengio, 2008) on the MNIST handwritten digit dataset. It was ob-

served that the classification performances of both the TanHU-DRBM and BinU-

DRBM were on par with that of the LogSigU-DRBM. Evaluation of the ReLU-DRBM
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was not carried out, and has been left to be done in the future. We provide details

of the evaluation procedure and the available results in this section.

Dataset

We evaluated the said extensions to the Discriminative RBM on the MNIST dataset

which serves as a standard benchmark for classification machine learning algo-

rithms. The MNIST dataset consists of optical characters of handwritten digits.

Each digit is a 28× 28 pixel gray-scale image (or a vector x ∈ [0,1]784). Each pixel

of the image corresponds to a floating-point value lying in the range [0,1] after

normalisation from an integer value in the range [0,255]. The dataset is divided

into pre-determined training, and test folds containing 60,000 and 10,000 images

respectively. Of the training images, 10,000 are separated as the validation set de-

termine the training progress.

Methodology

A grid search was carried out to determine the best hyperparameters. The initial

learning rate ηi ni t was varied as {0.001,0.01,0.1}. Early-stopping was enabled. For

this, the performance of the model on a validation set was determined after every

epoch. If the performance happened to be worse than the previous best one for

ten consecutive checks, the parameters were reverted back to their values in the

previous best model, and training was resumed with a reduced learning rate. And

if this happened five times, training was terminated. The learning rate reduction

was according to a linear schedule where it is progressively scaled by the factors
1
2 , 1

3 , 1
4 , and so on at each reduction step. The number of hidden units nhi d was

varied as {100,500,1000,5000}. Both L1 and L2 decay were set to identical values

λ1 =λ2 =λ and were either both on (λ= 0.0001) or both off (λ= 0). The maximum

number of training epochs was set to 2000, but it was found that training ended

before this limit in anything between 50 and 150 epochs in all the examined cases.

The negative log-likelihood error criterion was used to optimise the model param-

eters, and it was found that stochastic gradient descent produced better results

than batch gradient descent with a batch size of 400. The DRBM generated a prob-

ability distribution over the different possible values of the classes. The class-label

corresponding to the greatest probability value was chosen as the predicted class.

As the MNIST dataset contains only a single data split, i.e. only one set of training,

validation and test sets, the results reported here are each an average over those ob-

tained with 10 different model parameter initialisations using different randomi-
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sation seeds.

In addition to the above described methodology, which was common to both

the TanH-DRBM and the BinU-DRBM, a few additional considerations were nec-

essary for the latter. Firstly, there is the choice of the number of bins nbi ns , cor-

responds to the number of states that can be assumed by each hidden unit of the

model. When the value of this hyperparameter is 2, the BinU-DRBM is equivalent

to the LogSig-DRBM. The value of nbi ns was initially varied as {2,4,8,16,32,64} in

our experiments. It was observed that in the case of the BinU-DRBM, there was

a tendency for arithmetic overflow errors, particularly when the value of nbi ns is

large. This is expected, if one considers the expression (7.6) for computing the

conditional probability in this model. In order to counter this, a lower learning

rate of 0.0001 was also included in the grid search, and excluded nbi ns = {16,32} in

the final run whose results are presented in Table 7.4.

Evaluation Measure

In this task, each model is expected to predict the correct label corresponding to

the image of a digit. All the models are evaluated using the average loss E(y,y∗),

given by:

E(y,y∗) = 1

N

N∑
i=1

I
(
yi ̸= y∗

i

)
where y and y∗ are the predicted and the true labels respectively, N is the to-

tal number of test examples, and I is the 0− 1 loss function. This measure was

also used in evaluating other models on the MNIST dataset, including the LogSigU

DRBM (Larochelle and Bengio, 2008) with which the models here are being com-

pared.

Results

Table 7.3 lists the classification performance on the MNIST dataset of the different

variants of the DRBM introduced here along with that of the LogSigU-DRBM in-

troduced in (Larochelle and Bengio, 2008). On this dataset, a difference of 0.2% in

classification error is considered statistically significant. As one can see, the per-

formance of the TanHU-DRBM and each of the BinU-DRBMs is equivalent to that

of the LogSigU-DRBM. All variants perform best with 500 hidden units. It was ob-

served, in the case of the BinU-DRBM, that the number of bins didn’t play as sig-

nificant a role as first expected in the performance of the model. There seemed to

be a slight deterioration in accuracy with an increase in the number of bins, but
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Model Error-rate (%)
LogSigU-DRBM (n = 500, η= 0.05) 1.81
TanHU-DRBM (n = 500, ηi ni t = 0.01) 1.84(±0.0007)
BinU-DRBM (n = 500, ηi ni t = 0.01) 1.86(±0.0016)

Table 7.3 A comparison between the originally proposed DRBM in (Larochelle and
Bengio, 2008) and two of the three extensions proposed in the present work. The
BinU-DRBM in this table is the one with nbi ns = 2.

this difference cannot be considered significant given the MNIST dataset. This is

illustrated in Table 7.4. It remains to be investigated whether this equivalent per-

formance of all variants of the DRBM is indeed something to be expected in theory,

or whether it is a result specific to the chosen dataset.

nbi ns ηi ni t Error-rate (%)
2 0.01 1.86%
4 0.01 1.88%
8 0.001 1.90%

16 0.001 1.92%

Table 7.4 Classification performance of the BinU-DRBM with different values of
nbi ns . All the models listed in the table use a hidden layer size of 500.

7.3 Summary

In this chapter, we presented extensions to two of the models previously used for

the task of melody modelling in Chapters 4 and 5. These are the DRBM and the RT-

DRBM Respectively. In the case of the RTDRBM, we relaxed a constraint that pre-

viously applied to the melody modelling scenario where the model was originally

introduced. This constraint states that while predicting a class-label y (t ) at time-

step t , the true values of the labels y∗(1:t−1) of the previous time-steps are avail-

able. Relaxing this constraint adapts the RTDRBM to general sequence labelling

tasks. Here we directly use the probability distribution generated by the model at

each time-step instead of the true label in order to generate the corresponding hid-

den layer activations. We evaluated the model on the benchmark OCR dataset for

sequence labelling and found that it outperformed all the baseline models evalu-

ated on this dataset in a previous study (Nguyen and Guo, 2007). In the case of the

DRBM, we first derived a general expression for the posterior probability distribu-

tion p(y |x) (where y is the class label and x is an input feature) according to this

model, which allows one to use hidden layer activations other than Logistic Sig-
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moid in this model with which it was originally introduced. We then evaluated two

variants of the model, with hidden layer activations Hyperbolic Tangent and Bino-

mial, and found that, on the benchmark MNIST dataset, all these had a classifi-

cation performance equivalent to the original Logistic Sigmoid DRBM (Larochelle

and Bengio, 2008).
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

At the outset, the goal of this dissertation was to demonstrate the efficacy of con-

nectionist models for sequences in monophonic music in following an informa-

tion theoretic approach that was previously exemplified through the use of n-gram

models in (Conklin and Witten, 1995; Pearce, 2005; Whorley et al., 2013). This ap-

proach extended the statistical modelling techniques, originally applied to text and

language analysis (Bell et al., 1989; Manning and Schütze, 1999), to music domain

based on two key observations: (1) that music has a rich internal structure and can

be expressed in terms of directly observable or derived musical features, each of

which can potentially influence the accuracy of predicting how a piece of music

evolves (2) that a predictive model of music can benefit from both (global) infor-

mation encountered in a large corpus, and (local) information available in an in-

dividual piece of music during prediction. The Multiple Viewpoint Systems (MVS)

framework which resulted, incorporated these observations to combine n-gram

models that (1) utilise different musical features in order to predict other related

ones and (2) take into account global or local sequential information in the form

of Long and Short Term Models respectively (LTM and STM).

During the first phase of the work summarised in this thesis, (Chapters 4 and 5)

a comparative evaluation of six different connectionist LTMs was carried out. This

included a set of non-recurrent architectures — the Feed-forward Neural Network

(FNN), the Restricted Boltzmann Machine trained both generatively (RBM) and

discriminatively (DRBM), and their recurrent counterparts — the Recurrent Neural

Network (RNN), the Recurrent Temporal Restricted Boltzmann machine (RTRBM)

and the Recurrent Temporal Discriminative Restricted Boltzmann Machine (RT-
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DRBM). This evaluation addressed research question 1 on the effectiveness of con-

nectionist models for melodic prediction. It was demonstrated that these architec-

tures can perform on par with, or better than the best of n-gram models previously

evaluated as LTMs on a corpus of folk and chorale melodies (Pearce and Wiggins,

2004). Moreover, the recurrent models can be trained on entire melodies free from

the Markov assumption that binds their non-recurrent counterparts, allowing the

former to potentially leverage valuable information contained in longer sequences

in order to make even better predictions. These results also allow one to draw par-

allels with similar results in connectionist language modelling (Schwenk and Gau-

vain, 2002; Bengio et al., 2003; Mikolov et al., 2010).

The aforementioned experiments dealt purely with sequences of musical pitch,

and can be thought of as the simplest case of Multiple Viewpoints (Conklin and

Witten, 1995). In an attempt to further generalise these and to address research

question 2 regarding the effectiveness of combining models that use different in-

put features, some preliminary experiments were carried out in Chapter 6 which

aimed at extending the set of types (musical features) used as input by the models

while still predicting the pitch type as before. It was found firstly that the addi-

tion of new types — intfref and ioi, as input together with pitch did indeed

improve the predictive performance of a given model (a variant of the FNN), when

compared to the case where only pitch was used as input. Moreover, whether

or not there was any improvement also depended on the type that the model was

augmented with. It was also observed that ensembles of models, each contain-

ing one extra type in addition to pitch performed as well as a single model that

incorporated all these types.

The last of the models listed above — the RTDRBM — is a novel contribution

of the present work. It was motivated by the observation that while discriminative

inference can indeed be carried out in the generatively learned RTRBM to make it

suitable for the music prediction task considered here, there hasn’t until now been

a proposal for learning the parameters of this recurrent model in a discriminative

fashion as demonstrated in the case of non-recurrent RBMs (Salakhutdinov et al.,

2007; Larochelle and Bengio, 2008). As noted by previous studies on discrimina-

tive and generative learning, the former can result in more robust models than

the latter under various circumstances dictated by the nature and quantity of the

available data (Ng and Jordan, 2001; Bishop and Lasserre, 2007). Formulating a

discriminative learning criterion for the RTRBM leads to the RTDRBM, with an ex-

pression for the error gradient at each time-step which can be computed exactly,

thus allowing one to use standard iterative gradient-based learning techiniques to
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learn its parameters.

The second phase of this dissertation saw a shift in focus from the original mu-

sic modelling goals towards machine learning. These were covered in Chapter 7.

It was decided, as a first step, to further extend the application of the RTDRBM to

more general sequence labelling tasks of which the music modelling task is only

a special case. This involved a small modification to the originally proposed pre-

diction algorithm based on the relaxation of an assumption specific to the music

modelling application. The generalised model was evaluated on the OCR dataset

(Kassel, 1995; Taskar et al., 2004) and compared against a set of 8 baseline models

(Nguyen and Guo, 2007) where it faired better than the rest.

A review of literature related to neural networks and restricted Boltzmann ma-

chines led to the observation that, while the performance of a variety of hidden

layer activations (Logistic Sigmoid, Hyperbolic Tangent, Rectified Linear, etc.) has

been explored with these models and their validity theoretically or empirically veri-

fied, the same had not been done with the Discriminative RBM (DRBM) which has

relied solely on Logistic Sigmoid units. This led to another novel contribution of

the present work. On further investigation into the possibility of making the same

extensions to the DRBM, it could be proved in theory that Logistic Sigmoid, Hy-

perbolic Tangent, Binomial and Rectified Linear units in the DRBM are all special

cases of the same general form and can be derived in a very similar manner using

this underlying form. The first two out of these three theoretical extensions were

also experimentally evaluated, and it was found that DRBMs containing either Hy-

perbolic Tangent or Binomial hidden layer perform on par with that containing

a Logistic Sigmoid hidden layer. The proposed extensions to the DRBM and the

invention of the RTDRBM can thus be seen as contributions that provide an an-

swer in affirmation to research question 3, i.e. whether the pursuit of answers to

the first two questions could lead to novel contributions that go beyond the said

application domain into the area of machine learning.

8.2 Future Work

In this section, we outline three main directions for future work. The first of these

involves extending the experiments carried out in Chapter 6 which combine mul-

tiple prediction models. The second is the application of the said melody models

to music classification, demonstrated here with the help of Restricted Boltzmann

Machines. And the third involves further extending some of the prediction models
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considered here to predict multiple types and not just pitch, as done here.

8.2.1 Experiments with Other Melodic Features

Chapter 6 addressed research questions 2 with encouraging results. It demon-

strated an improvement in the predictive performance of models previously re-

lying only on the type pitch as input on the inclusion of the intfref type as addi-

tional input. On the contrary, the addition of the ioi type did not have any positive

effect on the performance. The extended models were evaluated on the Chinese

folk melody dataset. These first steps towards a more comprehensive evaluation of

various types to determine their importance in predicting the type pitch may be

further extended in three ways. The first involves carrying out the same evaluation

on the remaining datasets of the folk melody corpus of Section 3.2 of which the

Chinese folk melody dataset is a part. Secondly, Chapter 5 showed how recurrent

connectionist models are more effective at modelling musical pitch sequences in

monophonic music than their non-recurrent counterparts. It is thus expected that

combining the extended input types with a recurrent model, say an RNN would

result in improved predictive performance when compared to the FNN used in

Section 6.3. Thirdly, the present work considered two additional types to augment

the input to the models with, from the numerous other types available for use. The

results are encouraging, and lead the way to a more comprehensive study as car-

ried out in (Conklin and Witten, 1995; Pearce, 2005; Whorley et al., 2013). Among

these, (Pearce, 2005; Whorley et al., 2013) also utilise a feature selection algorithm

that determines the optimal set of types for a given dataset or style of music. Such

a comprehensive study examining the effect of additional types is also considered

to be a necessary continuation of the present work, and has been left for the future.

8.2.2 Experiments with Models Updated During Prediction

One aspect of Multiple Viewpoints as introduced previously in (Conklin and Wit-

ten, 1995) has not been explored in the present work. This the idea of the Short-

Term Model (STM). A distinction can be made between two types of prediction

models on the basis of how their parameters are learned. While the parameters of

both types of models are learned through exposure to appropriate data, those of

the first are learned on a corpus of melodies (a training set), its parameters thus

being finalized beforehand and kept constant during the prediction stage (on a

test set). This model is known as a Long-Term Model (LTM). From a music cog-
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nition perspective (Pearce and Wiggins, 2004), it represents more global stylistic

characteristics acquired by a listener over a longer time-span. All the models ex-

amined in Chapters 4 and 5 are examples of the LTM. The parameters of the sec-

ond type of model are learned only while making predictions (on a test set), with-

out any sequence learning occurring in it beforehand. This is what is known as

the Short-Term Model (STM). It highlights the importance of context-specific in-

formation, available in a melody while it is being processed by a listener, in the

generation of expectations. A variant of the LTM which lies between the two, in-

troduced in (Pearce, 2005), is the LTM+. In addition to being learned offline on a

corpus of melodies like the LTM, it is also updated while making predictions just

like the STM. Another distinction between the LTM+ and the STM is that the for-

mer is continuously updated across melodies, while the latter is re-initialized after

each melody in the test set.

Predictions (in the form of probability distributions) made by each model about

a certain musical event in a sequence are combined using the two ensemble meth-

ods described in Section 6.2, and this has been shown to improve the quality of

predictions over individual models in the past (Conklin and Witten, 1995; Pearce,

2005). The idea of combining corpus-based long-term and context-sensitive short-

term predictions from different models was originally a feature of cache-based

language models (Kuhn and De Mori, 1990). It was introduced in the context of

music in (Conklin and Witten, 1995). The distinction between the long- and short-

term models is also akin to the that made in (Justus and Bharucha, 2001) between

“schematic” (LTM) and “veridical” (STM) knowledge in a modular view on music

processing.

To address this prediction task, we employed the Recurrent Temporal Discrim-

inative Restricted Boltzmann Machine (RTDRBM) introduced in Chapter 5. We

began by evaluating its utility as an STM by carrying out online learning in it. Ex-

periments revealed that, while learning did indeed take place, it did not progress

quickly enough (as a function of the number of data samples presented to the RT-

DRBM) to outperform existing state-of-the-art models where both the LTM and

STM are based on n-grams (Pearce and Wiggins, 2004). Contrary to our expec-

tations, and the evidence from similar experiments in previous work by Pearce

(2005), it was found that the LTM+ performed worse than the LTM. These results

are summarised in Table 8.1. It is clear that further work is required in this regard,

firstly to improve the performance of the STM, and secondly to verify whether the

LTM+ can indeed be made to perform better than the LTM and if not why this is so.

Both the negative results can be attributed to poor online learning in the RTDRBM,
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Model Cross Entropy
RTDRBM (LTM) 2.712

RTDRBM (LTM+) 2.756
n-gram (LTM) 2.878

n-gram (LTM+) 2.614

Model Cross Entropy
RTDRBM (STM) 3.363
n-gram (STM) 3.147

Table 8.1 Predictive performance of the LTM and LTM+ (left) and the STM (right)
implemented using the RTDRBM, and their comparison with the corresponding
best LTM, LTM+ and STM in the work of (Pearce and Wiggins, 2004). As one will ob-
serve, both the LTM+ and the STM which are updated during prediction fall short
of achieving a performance competitive to the n-gram models as the case is with
the LTM.

which is the issue that is to be addressed here. It was surprising to observe these

results despite adhering to the methodology adopted in (Mikolov and Zweig, 2012)

where the application (language modelling) bears a great resemblance to the one

here and the results were positive. One difference, however, between the two is in

the use of the Backpropagation Through Time (BPTT) algorithm. While (Mikolov

and Zweig, 2012) employed a variant of the BPTT algorithm, known as truncated

BPTT, which limits the length of the past sequence taken into account in updating

the model parameters to one event, the present works makes no such simplifica-

tion and takes into account the longest available sequence until a certain time-

step. Whether or not this may be resposible for the difference in results is to be

investigated.

8.2.3 Further Experiments with the DRBM

Section 7.2.2 introduced theory that facilitated the extension of the LogSigU-DRBM,

originally proposed in (Larochelle and Bengio, 2008) to three new variants, namely

the TanHU-DRBM, the BinU-DRBM and the ReLU-DRBM. The first two variants

were evaluated on the benchmark MNIST datasets, and found to perform on par

with the original LogSigU-DRBM. It remains to be seen whether there exist any ap-

plications where these variants can outperform the LogSigU-DRBM. For example,

the efficacy of the RBMrate proposed in (Teh and Hinton, 2001) which inspired the

BinU-DRBM was demonstrated on the FERET face recognition database (Phillips

et al., 1998). Alternatively, it may also be investigated whether it can be theoret-

ically proven that the equivalence in performance is indeed something to be ex-

pected. Moreover, the ReLU-DRBM was not evaluated in this dissertation owing to

arithmetic overflow errors that resulted during training. Similar errors encoun-
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tered in the case of the BinU-DRBM could be resolved by employing a smaller

learning rate and enabling weight-decay. The latter, however, resulted in poorer

performance. Work is also currently underway to optimise these extensions with

other error criteria, namely Average Cross Entropy and Mean Squared Error to

compare these with the Negative Log-Likelihood criterion used here.

8.2.4 Folk Melody Classification

Music classification involves assigning one or more class-labels to musical pieces

based on their content. A system for music classification can be evaluated accord-

ing to the accuracy of class-labels assigned to unseen pieces. Such systems are rel-

evant to studies in systematic musicology. In the present work, a set of RBM-based

prediction models was employed as a one-vs-all classifier in the classification of

7 different folk-melody styles from the corpus described in Section 3.2. This ap-

proach is inspired by previous work using statistical language models for this task

(Pérez-Sancho et al., 2008; Conklin, 2013). It also bears a resemblance to the ap-

proach in (Hörnel and Menzel, 1998) where a committee of neural networks, each

of which has learned a specific harmonisation style, was used to recognise different

styles according to how expected it is w.r.t. each network.

With one model trained on pitch sequences from each class, a given test melody

was assigned to the class whose model returned the lowest average cross entropy

value over that melody. As in Chapter 4, each of the models was trained on se-

quences of lengths ranging from 2 to 9. A grid search was carried out by vary-

ing the number of hidden units as {100,200,400}, the weight-decay coefficient as

{0.0000,0.0001}, and setting the learning rate to 0.01. It was found that the mod-

els corresponding to sequence length 6 had the overall best classification perfor-

mance, the results of which are shown in Table 8.1. The overall classification accu-

racy is 61.74%. There is a relatively high degree of confusion between classes cor-

responding to geographically close regions of Europe (Alsace, Yugoslavia, Switzer-

land, Austria, Germany), suggesting the need to further optimize the models, or

add more musical features.

Our approach towards classification of folk melodies has the following intu-

ition. Each model trained on a certain type of folk music can be viewed as an “ex-

pert" of that type of music. The analogy here is that of someone familiar with a

certain type of music being better equipped to expect how it might evolve in time.

This translates into the expectation for a model trained on a certain type of folk

melodies to make predictions with lower average cross entropy when presented
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Nova-Scotia 117 6 2 2 2 13 10 152
Alsace 8 33 11 7 15 15 2 91
Yugoslavia 15 14 54 9 17 7 3 119
Switzerland 6 9 10 33 22 11 2 93
Austria 5 16 10 14 41 14 4 104
Germany 14 23 10 15 14 132 5 213
China 11 3 2 2 5 1 213 237

Fig. 8.1 Confusion Matrix with results of the folk melody classification task.

with similar melodies. The confusion observed between some of the classes using

this approach seems to support this intuition.

This work is interesting from a musicological perspective. A system for mu-

sic classification can be used for assigning style/genre labels to unlabelled pieces

of music based on their musical content (Conklin, 2013). And as observed in the

above preliminary result, it can also offer interesting insights into the regional and

cultural origins of different styles of music (Tzanetakis, 2014). Given the state of

this experiment, two extensions are being considered. Firstly, the inclusion of

other musical features (musical intervals, note durations, and so on) can be ex-

pected to further improve the classification system by incorporating new informa-

tion. Furthermore, its comparison with existing systems of folk melody classifica-

tion such as (Li et al., 2006; Hillewaere et al., 2009; Conklin, 2013) is due.

8.2.5 Multiple Type Prediction

The present work has mainly focused on predicting just one type, namely pitch.

In order for the model to generate music, i.e. melodies, at least one additional

type is of interest. This is either ioi (inter-onset interval) and dur (note duration)

which introduces a sense of rhythm. There are multiple ways of doing this. The

most straightforward option would be to take the Cartesian product of the con-

cerned types and predict them with no change to the architecture of the model.

Another is to use a different model for each type to be predicted. However, these

two approaches do not exploit the benefits of using connectionist architectures.

We consider an alternative way of addressing this, through multiple sets of softmax

outputs in the model. This is illustrated in Figure 8.2 in the case of a Feed-forward

Neural Network (FNN), and can be extended similarly to an RNN. As shown here,
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Fig. 8.2 Adaptation of a model predicting a single type pitch to one that predicts
both pitch and ioi. It involves the addition of a second set of softmax units in the
output layer. This approach can be extended to other types of interest.

subsets of units belonging to the output layer of a network are treated as indepen-

dent sets of softmax units. This does not alter the learning procedure of the model

in any way for FNNs or RNNs. This can be considered to be an instance of Multi-

Task Learning (MTL) (Caruana, 1997) where a single network is used to address

two different tasks, one of predicting types τt g t1 and τt g t2 simultaneously, by us-

ing a shared intermediate representation in its hidden layer that suits both tasks.

In theory, this is expected to improve predictive performance in both tasks when

there is useful information that can be transferred between them. The extension

of this idea to the RBM-based models is not as simple, since such an extension

would still involve carrying out inference over the same number of possibilities as

the product of the domains of the target types involved. Thus, we don’t comment

on it here.

We carried out an initial experiment with the FNN in this direction. by looking

into the simultaneous prediction of the types pitch and ioi. We compared three

networks, all of which take as inputs the types pitch and ioi, and predict (1) the

type pitch (2) the type ioi, and (3) both pitch and ioi respectively. The evalua-

tion was carried out only on the Chinese folk melody subset of the folk and chorale

melody corpus introduced in Section 3.2. The context length of the models was

varied as {1,2,3,4,5,6,7,8}, the number of hidden units as {25,50,100,200}, weight

decay regularisation coefficient as {0.0000,0.0001}. The models were trained up to

a maximum of 1000 epochs with early-stopping enabled. In the case of the MTL

model, the overall performance was the equally-weighted average of the cross-

entropies of its individual constituent models during training. This influences the
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Fig. 8.3 A plot comparing the performance in predicting the type pitch by a model
predicting only this type (STL model), and another predicting both pitch and ioi
(MTL model).

computation of the error gradient in the model in order to update its parameters.

The results are illustrated in Figures 8.3 and 8.4 respectively.

The performance of the MTL model in predicting each of the two types is slightly

worse than that of the corresponding STL (Single-Task Learning) models. This is

contrary to our initial expectation. However, they are indeed close and exhibit a

similar trend, which we view this as an encouraging first step. It must be noted

that the results of this experiment were meant to serve as only a feasibility test

for the MTL model, which in our opinion has been successful. There is still scope

for optimising the performance of the models. Firstly, it is possible to experiment

with different schemes to weight the predictions of the two (or in general, more)

predictors that are contained in the MTL model. This could even be dynamic, and

adjusted during training based on the performance of the model on a validation

set. Furthermore, the early-stopping schedule employed here, when used else-

where in other experiments, was found to be too conservative, thus leading to sub-

optimal performance in those experiments, which led to the schedule employed in

Chapters 4 and 5. We suspect that re-running this experiments on this and other

datasets with these factors (and possibly others not mentioned here) taken into

account might lead to different observations, and leave this to be explored in the

future.
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Fig. 8.4 A plot comparing the performance in predicting the type ioi by a model
predicting only this type (STL model), and another predicting both pitch and ioi
(MTL model).

8.3 Reflections

The work presented in this thesis demonstrates how application-driven research

can lead to valuable insights at the level of more basic research that it is based

on. In particular, what started here with a study of models purely aimed at musical

pitch prediction in symbolic music data led to the development of a novel machine

learning architecture for sequence labelling in general and its application demon-

strated in the context of handwritten character recognition. Work improving the

proposed architecture and its extension to other application domains is currently

under way.

The results of the present work mirror the success of recurrent connectionist

models in a wide range of applications, most notably speech recognition (Graves

et al., 2013), natural language processing (Mikolov et al., 2010), temporal classifi-

cation (Graves, 2012) and game AI (Silver et al., 2016). Given this success and the

high level of research activity surrounding these models, one can only expect their

use to be more widespread in the future and their success even greater. Of par-

ticular interest to the author are the many variants of the Long Short Term Mem-

ory (LSTM) networks and Neural Turing Machines (Graves et al., 2014) which have

been shown to successfully overcome the memory limitations of traditional recur-

rent neural networks used here.
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And while music data in audio form is the current the mainstay of the mu-

sic technology industry which is driven by music streaming and recommendation

services, the future is nevertheless bright for musical information available in the

symbolic form as well as models that analyse this information. AI-based music

creation (or computational musical creativity) and music education are two im-

portant applications expected to drive the interest in the latter. It is the author’s

hope that the research carried out as a part of this thesis and its results will be con-

sidered valuable in these applications.
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Appendix A

Detailed Results for Chapters 4 and 5

This appendix contains further details of the results of the musical pitch prediction

task on which the non-recurrent and recurrent connectionist models were evalu-

ated in Chapters 4 and 5. In those chapters, the prediction scores (cross-entropy) of

the various models averaged across all 8 datasets of the melody corpus described

in Section 3.2 were presented. The prediction scores specific to each dataset are

listed here.

A.1 Feed-forward Neural Network

In chapter 4, feed-forward neural networks (FNNs) with three different hidden

layer activation types were examined, namely those with logistic sigmoid (LogSig),

hyperbolic tangent (TanH), and rectified linear (ReL) activations. The prediction

scores of the three models, averaged across the 8 datasets of the folk and melody

corpus were summarised in Figure 4.5. This section lists the dataset-specific pre-

diction scores for the three models. Table A.1 contains the results corresponding to

the network using logistic sigmoid hidden unit activations with 200 hidden units,

Table A.2 those of the network using hyperbolic tangent hidden unit activations

with 50 hidden units, and Table A.3 those of the network using rectified linear unit

activations with 200 hidden units.

A.2 Restricted Boltzmann Machines

In chapter 4, restricted Boltzmann machines (RBMs) learned in two different ways

— generatively and discriminatively — were evaluated on the 8 datasets of the folk

and chorale melody corpus. This section details the dataset-wise predictive per-
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Detailed Results for Chapters 4 and 5

Dataset l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
jugoslav 2.934 2.837 2.826 2.806 2.835 2.839 2.836 2.852
elsass 3.323 3.236 3.170 3.167 3.146 3.168 3.176 3.160
schweiz 3.361 3.267 3.207 3.179 3.156 3.160 3.174 3.169
oesterrh 3.618 3.521 3.462 3.460 3.455 3.481 3.462 3.470
kinder 2.740 2.643 2.583 2.539 2.517 2.494 2.459 2.460

nova-scotia 3.049 2.930 2.875 2.847 2.830 2.827 2.828 2.839
bach 2.702 2.570 2.527 2.485 2.467 2.461 2.473 2.475

shanxi 3.195 3.003 2.936 2.898 2.877 2.885 2.871 2.860
Average 3.115 3.001 2.948 2.923 2.910 2.914 2.910 2.911

Table A.1 Prediction cross-entropy of Feed-forward Neural Networks with 200 hid-
den units, and Logistic Sigmoid activations on each of the 8 datasets of the folk and
chorale melody corpus.

Dataset l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
jugoslav 2.867 2.766 2.737 2.745 2.749 2.759 2.773 2.792
elsass 3.205 3.123 3.065 3.050 3.056 3.078 3.103 3.109
schweiz 3.273 3.178 3.099 3.065 3.068 3.071 3.096 3.103
oesterrh 3.534 3.458 3.420 3.402 3.395 3.444 3.448 3.476
kinder 2.709 2.583 2.496 2.439 2.418 2.398 2.389 2.393

nova-scotia 3.013 2.876 2.809 2.779 2.770 2.774 2.784 2.779
bach 2.683 2.547 2.496 2.451 2.440 2.437 2.441 2.446

shanxi 3.136 2.937 2.865 2.831 2.815 2.824 2.830 2.835
Average 3.052 2.933 2.873 2.845 2.839 2.848 2.858 2.867

Table A.2 Prediction cross-entropy of Feed-forward Neural Networks with 50 hid-
den units, and Hyperbolic Tangent activations on each of the 8 datasets of the folk
and chorale melody corpus.

formance of these two variants of the Restricted Boltzmann Machine (RBM) sum-

marised in Figure 4.5. Table A.4 contains the results corresponding to the gen-

erative RBM containing 100 units in its hidden layer, and Table A.5 those of the

discriminative RBM containing 25 hidden units

A.3 Recurrent Neural Networks

In chapter 5, recurrent neural networks (RNNs) with three different hidden layer

activation types were examined, namely those with logistic sigmoid (LogSig), hy-

perbolic tangent (TanH), and rectified linear (ReL) activations. The prediction score

of the best of these was listed in Table 5.1. This section lists the dataset-specific

prediction scores for these three models.
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A.4 Recurrent Temporal Restricted Boltzmann Machine

Dataset l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
jugoslav 2.862 2.737 2.711 2.707 2.715 2.740 2.741 2.777
elsass 3.216 3.113 3.060 3.050 3.054 3.098 3.124 3.123
schweiz 3.278 3.144 3.078 3.029 3.035 3.023 3.064 3.057
oesterrh 3.536 3.413 3.376 3.379 3.365 3.422 3.410 3.476
kinder 2.708 2.545 2.444 2.390 2.389 2.369 2.373 2.384

nova-scotia 3.010 2.832 2.770 2.758 2.750 2.757 2.767 2.789
bach 2.682 2.516 2.454 2.421 2.420 2.409 2.425 2.442

shanxi 3.137 2.917 2.856 2.832 2.827 2.841 2.852 2.841
Average 3.054 2.902 2.844 2.821 2.819 2.832 2.845 2.861

Table A.3 Prediction cross-entropy of Feed-forward Neural Networks with 200 hid-
den units, and Rectified Linear activations on each of the 8 datasets of the folk and
chorale melody corpus.

Dataset l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
jugoslav 2.883 2.765 2.708 2.728 2.745 2.738 2.723 2.722
elsass 3.211 3.111 3.052 3.050 3.037 3.018 3.005 3.002
schweiz 3.290 3.161 3.073 3.041 3.034 3.041 3.040 3.024
oesterrh 3.533 3.431 3.379 3.380 3.351 3.338 3.312 3.310
kinder 2.727 2.567 2.469 2.420 2.393 2.409 2.375 2.377

nova-scotia 3.020 2.856 2.783 2.771 2.761 2.740 2.738 2.727
bach 2.690 2.517 2.457 2.423 2.429 2.425 2.429 2.441

shanxi 3.149 2.925 2.852 2.829 2.809 2.803 2.798 2.798
Average 3.063 2.917 2.847 2.830 2.820 2.814 2.803 2.799

Table A.4 Prediction cross-entropy of generatively trained Restricted Boltzmann
Machines with 100 hidden units, and Logistic Sigmoid hidden layer activations on
each of the 8 datasets of the folk and chorale melody corpus.

A.4 Recurrent Temporal Restricted Boltzmann Machine

This section details the dataset-specific predictive performance of the best Recur-

rent Temporal Restricted Boltzmann Machine on each of the 8 individual datasets

of the folk and melody corpus, the average of which was listed in Table 5.1 in Chap-

ter 5.

A.5 Recurrent Temporal Discriminative Restricted Boltz-

mann Machine

This section details the dataset-specific predictive performance of the best Recur-

rent Temporal Discriminative Restricted Boltzmann Machine on each of the 8 in-
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Detailed Results for Chapters 4 and 5

Dataset l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
jugoslav 2.864 2.744 2.707 2.708 2.705 2.720 2.703 2.707
elsass 3.196 3.123 3.042 3.031 3.060 3.069 3.100 3.114
schweiz 3.209 3.123 3.045 3.019 3.017 3.029 3.031 3.066
oesterrh 3.511 3.435 3.412 3.404 3.418 3.466 3.483 3.499
kinder 2.707 2.553 2.439 2.400 2.398 2.377 2.363 2.350

nova-scotia 3.011 2.850 2.792 2.763 2.738 2.753 2.745 2.751
bach 2.676 2.530 2.476 2.439 2.423 2.433 2.441 2.448

shanxi 3.115 2.897 2.846 2.795 2.795 2.802 2.793 2.804
Average 3.063 2.906 2.845 2.820 2.819 2.831 2.832 2.842

Table A.5 Prediction cross-entropy of discriminatively trained Restricted Boltz-
mann Machines with 25 hidden units, and Logistic Sigmoid hidden layer activa-
tions on each of the 8 datasets of the folk and chorale melody corpus.

Dataset LogSig TanH ReL
(nh = 200) (nh = 50) (nh = 100)

jugoslav 2.958 2.681 2.757
elsass 3.628 2.970 2.992
schweiz 3.587 2.988 2.994
oesterrh 3.829 3.309 3.278
kinder 2.507 2.424 2.383

nova-scotia 3.180 2.679 2.665
bach 2.599 2.451 2.440

shanxi 2.876 2.792 2.786
Average 3.146 2.787 2.787

Table A.6 Prediction cross-entropy of the best cases of Recurrent Neural Networks
with three different types of hidden-layer activations, on each of the 8 datasets of
the folk and chorale melody corpus.

dividual datasets of the folk and melody corpus, the average of which was listed in

Table 5.1 in Chapter 5.
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A.5 Recurrent Temporal Discriminative Restricted Boltzmann Machine

Dataset LogSig
(nh = 100)

jugoslav 2.676
elsass 2.945
schweiz 2.961
oesterrh 3.296
kinder 2.313

nova-scotia 2.635
bach 2.378

shanxi 2.703
Average 2.738

Table A.7 Prediction cross-entropy of the best cases of Recurrent Temporal Re-
stricted Boltzmann Machine with logistic sigmoid hidden layer activations on each
of the 8 datasets of the folk and chorale melody corpus.

Dataset LogSig
(nh = 100)

jugoslav 2.655
elsass 2.897
schweiz 2.932
oesterrh 3.259
kinder 2.301

nova-scotia 2.609
bach 2.362

shanxi 2.685
Average 2.712

Table A.8 Prediction cross-entropy of the best cases of Recurrent Temporal Dis-
criminative Restricted Boltzmann Machine with logistic sigmoid activations on
each of the 8 datasets of the folk and chorale melody corpus.
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Appendix B

Detailed Results for Chapter 6

This appendix describes the results presented in Chapter 6 in greater detail. These

are listed in four tables. The first one (Table B.1) corresponds to the results plotted

in Figures 6.2 and 6.3, and is related to the experiments carried out in Section 6.3

to test the effects of adding the types intfref and ioi as inputs to a prediction

model that originally relied only on the type pitch.

Model l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
Model A 3.123 2.928 2.887 2.853 2.843 2.838 2.816 2.831
Model B 3.120 2.951 2.903 2.854 2.858 2.859 2.850 2.839
Model C 2.905 2.818 2.814 2.790 2.807 2.807 2.800 2.811
Model D 2.916 2.833 2.822 2.802 2.808 2.823 2.810 2.822
Model Es 2.939 2.803 2.779 2.735 2.767 2.761 2.763 2.757
Model Ep 2.920 2.797 2.774 2.731 2.763 2.758 2.761 2.753

Table B.1 Numerical values corresponding to the plots in Figures 6.2 and 6.3. The
reader is referred to Section 6.3.1 for descriptions of the model in each row of the
table. The columns correspond to the different context length at which the model
was evaluated as it is a variant of the non-recurrent feed-forward neural network.
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