
              

City, University of London Institutional Repository

Citation: Fring, A. & Frith, T. (2017). Mending the broken PT-regime via an explicit time-

dependent Dyson map. Physics Letters A, 381(29), pp. 2318-2323. doi: 
10.1016/j.physleta.2017.05.041 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/17500/

Link to published version: https://doi.org/10.1016/j.physleta.2017.05.041

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:1

70
4.

07
26

7v
1 

 [
qu

an
t-

ph
] 

 2
4 

A
pr

 2
01

7

Mending the broken PT-regime
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Abstract: We demonstrate that non-Hermitian Hamiltonian systems with sponta-

neously broken PT-symmetry and partially complex eigenvalue spectrum can be made

meaningful in a quantum mechanical sense when introducing some explicit time-

dependence into their parameters. Exploiting the fact that explicitly time-dependent

non-Hermitian Hamitonians are unobservable and not identical to the energy operators

in such a scenario, we show that their corresponding non-Hermitian energy operators

develop a different type of PT-symmetry from the Hamiltonians that ensures the reality

of their energy spectra. For this purpose we analytically solve the fully time-dependent

Dyson equation with all quantities involved being explicitly time-dependent giving rise to

a time-dependent metric. The key auxiliary equation to be solved for the two level atomic

system considered here is the nonlinear Ermakov-Pinney equation with time-dependent

coefficients.

1. Introduction

It is well known that non-Hermitian Hamiltonians that commute with an antilinear oper-

ator for which its eigenfunctions are eigenstates [1] possess real eigenvalue spectra. PT -

symmetry [2] is a specific example for such an antilinear symmetry for which many ex-

amples have been worked out in detail, see e.g. [3]. Moreover, contrary to standard

text book wisdom, such type of systems can be made quantum mechanically meaningful

[4, 5, 6] by introducing new inner products for which operators associated to observables

are self-adjoint. However, for systems with infinite dimensional Hilbert spaces there are

also well known issues related to the boundedness of the operators involved [7, 8, 9]. For

instance, while the metric operator might be bounded the inverse of the Dyson map, needed

to facilitate the mapping from a non-Hermitian Hamiltonian to an isospectral Hermitian

Hamiltonian, might be unbounded [7]. There is also no guarantee that time-evolution oper-

ators for time-independent non-Hermitian Hamiltonians with real eigenvalues are bounded

operators [10].

http://arxiv.org/abs/1704.07267v1
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Another origin for the occurrence of unbounded time-evolution operators is the spon-

taneously breaking of the PT -symmetry. This scenario emerges for PT -symmetric Hamil-

tonians for which its eigenstates are not eigenstates of the antilinear symmetry operator,

in which case the spectrum develops complex conjugate pairs of eigenvalues. While such a

situation is the most interesting one in optical settings [11, 12, 13], where different channels

of gain and loss may be constructed, such systems will inevitably develop infinite grows in

energy and are therefore usually discarded as being non-physical in a quantum mechanical

framework. We demonstrate here that by introducing an explicit time-dependence into the

parameters of the quantum Hamiltonian, such systems can be made physically meaningful.

This possibility exists since in a quantum mechanical context those type of Hamiltonians

are no longer associated to the observable energy operator, as that operator acquires an

additional time-dependent correction term.

In order to find that correction term one needs to solve the time-dependent Dyson

relation for the Dyson map. So far only few explicit solutions to these relations are known

and progress has been made in various stages. The simplest scenario is to assume that

only the Hamiltonian is explicitly dependent on time, but the Dyson map or the closely

related metric operator are kept time-independent [14, 15]. More involved is to include

the time-dependence in the latter operator with a focus on finding solutions [16, 17] with-

out investigating the properties of the corresponding wavefunctions of the time-dependent

Schrödinger equation. In [18, 19] we studied the interesting possibility to keep the non-

Hermitian Hamiltonian time-independent with an explicit time-dependence in the Dyson

map. This allowed us to solve time-dependent Hermitian Hamiltonian systems by trans-

ferring the time-dependence from the Hamiltonian to the Dyson map or metric operators

when discussing expectation values. The corresponding solutions to the time-dependent

Schrödinger equation were found to be entirely consistent for a quantum mechanical de-

scription.

Here we extend the previous analysis and consider a fully time-dependent scenario for

all quantities involved, that is the non-Hermitian HamiltonianH(t) together with its Hermi-

tian counterpart h(t) both being the defining quantities in the time-dependent Schrödinger

equations

h(t)φ(t) = i~∂tφ(t), and H(t)Ψ(t) = i~∂tΨ(t). (1.1)

The time-dependent invertible Dyson operator η(t) relates the solutions of these two equa-

tions by

φ(t) = η(t)Ψ(t), (1.2)

as well as the two Hamiltonians via the time-dependent Dyson relation

h(t) = η(t)H(t)η−1(t) + i~∂tη(t)η
−1(t). (1.3)

Following the standard arguments of time-independent PT -symmetric/quasi-Hermitian

quantum mechanics [2, 5, 6], by asserting that observable operators O in the non-Hermitian

system need to be related to a self-adjoint operator o(t) in the Hermitian system as o(t) =

η(t)O(t)η−1(t), this leads to the curious fact that the Hamiltonian H(t), being defined as

the operator satisfying the Schrödinger equation, is not observable. This feature has led
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to a controversy [20, 21] questioning whether it is at all possible to formulate a consistent

fully time-dependent framework for non-Hermitian Hamiltonian systems. The conundrum

is easily solved by making a clear distinction between the observable energy operator

H̃(t) = η−1(t)h(t)η(t) = H(t) + i~η−1(t)∂tη(t), (1.4)

and the unobservable Hamiltonian H(t) satisfying the time-dependent Schrödinger equa-

tion. In what follows we set ~ = 1. In an adiabatic approximation the energy spectrum

of this operator may be dealt with consistently at each instance of time [22]. In turn,

since H(t) is not an observable operator this also means that its eigenvalues do not have

to be real at any instance in time. It is this latter fact that we exploit to make sense of a

non-Hermitian Hamiltonian with complex conjugate eigenvalues as self-consistent quantum

mechanical system.

2. A two-level system with spontaneously broken PT-symmetry

To illustrate our point we consider a simple two-level spin model described by the non-

Hermitian Hamiltonian

H = −1

2
[ωI+ λσz + iκσx] , (2.1)

with σx, σy, σz denoting the Pauli matrices, I the identity matrix and ω, λ, κ ∈ R. The

two eigenvalues and eigenvectors for this Hamiltonian are simply

E± = −1

2
ω ± 1

2

√
λ2 − κ2, and ϕ± =

(
i(−λ±

√
λ2 − κ2)

κ

)
. (2.2)

Using Wigner’s argument [1, 2] the reality of the energy spectrum for |λ| > |κ| is easily

explained by identifying an antilinear symmetry operator, denoted here as PT , that

commutes with the Hamiltonian and for which ϕ± are simultaneous eigenstates of H and

PT
[PT ,H] = 0, and PT ϕ± = eiφϕ±, (2.3)

with φ ∈ R. When |λ| > |κ| in our example the symmetry operator is easily identified as

PT = τσz with τ denoting complex conjugation. When |λ| < |κ| the last relation in (2.3)

no longer holds and the eigenvalues become complex conjugate to each other, a scenario

usually referred to as spontaneously broken PT -symmetry. For the parameter range of

the latter situation this Hamiltonian would be regarded as non-physical from a quantum

mechanical point of view as it possesses channels of infinite grows in energy, such that the

corresponding time evolution operators would be unbounded.

However, when one introduces an explicit time-dependence into the Hamiltonian, H →
H(t), it no longer plays the role of the observable energy operator so that the complex

eigenvalues do not constitute any interpretational obstacle. For a meaningful physical

picture one only needs to guarantee now that the expectation values of H̃(t), as defined in

(1.4), are real and instead identify a new P̃T -symmetry to be responsible for this property
[
P̃T , H̃

]
= 0, and P̃T ϕ̃± = eiφ̃ϕ̃±, (2.4)

– 3 –
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with ϕ̃± denoting the eigenvectors of H̃ and φ̃ ∈ R. Notice that PT and P̃T are only

symbols here to denote different types of antilinear operators, which however to not send

t to −t as the time is only a real parameter in this context.

Let us therefore introduce an explicit time-dependence into the parameters of H, via

λ→ ακ(t), κ→ κ(t), and solve this problem for the time-dependent Hamiltonian

H(t) = −1

2
[ωI+ ακ(t)σz + iκ(t)σx] . (2.5)

To find the precise form of H̃(t) we need to solve first equation (1.3) for the Dyson map

η(t). As discussed in [18, 19], this is most easily achieved by pre-selecting some concrete

form for h(t)1. For simplicity we take this to be

h(t) = −1

2
[ωI+ χ(t)σz] , (2.6)

with χ(t) being a general undetermined function of time. Taking η(t) to be of the most

generic Hermitian form by using the notation

η(t) =
1

2
[η1(t) + η4(t)]I+η2(t)σx + η3(t)σy+

1

2
[η1(t)− η4(t)]σz, (2.7)

with real functions ηi(t), the time-dependent Dyson equation (1.3) for (2.5) and (2.6) is

solved when the component functions of η(t) satisfy the coupled first order equations

η̇1 =
κ

2
η2, η̇2 =

χ+ ακ

2
η3 +

κ

2
η1, η̇3 = −χ+ ακ

2
η2, η̇4 =

κ

2
η2, (2.8)

η1 = η4, χ = κ

(
η3
η1

+ α

)
. (2.9)

The overdot denotes here as usual a differentiation with respect to time. The equations

(2.8) are solved by

η1 = η4 = c

√
κ

χ
, η2 =

c√
κχ

(
κ̇

κ
− χ̇

χ

)
, η3 = c

(√
χ

κ
− α

√
κ

χ

)
, (2.10)

with c denoting an integration constant and χ(t) satisfying the nonlinear second order

equation

χ̈− 3

2

χ̇2

χ
+

[
3

2

(
κ̇

κ

)2

− κ̈

κ
+

1

2
κ2(1− α2)

]
χ+

χ3

2
= 0. (2.11)

Using the parameterizations χ = 2/σ2 or κ = 2/(σ2
√
α2 − 1) this equation is converted

into the Ermakov-Pinney (EP) equation [23, 24] for σ

σ̈ + λ(t)σ =
1

σ3
(2.12)

1Alternatively one may also solve the time-dependent quasi-Hermiticity relation H†ρ(t) − ρ(t)H =

i~∂tρ(t) for the metric operator ρ(t) and subsequently determine η(t) from ρ(t) := η†(t)η(t). However, as

argued in [19], usually this turns out to be more difficult.

– 4 –
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with time-dependent coefficient

λ(t) =
1

2

κ̈

κ
− 3

4

(
κ̇

κ

)2

− 1

4
κ2(1− α2) or λ(t) =

1

2

χ̈

χ
− 3

4

(
χ̇

χ

)2

+
1

4
χ2, (2.13)

respectively. Thus either way given the time-dependent field κ(t) in H(t) or χ(t) in h(t)

the remaining field is constrained by the EP equation with almost identical coefficients.

The EP equation emerges in many scenarios of time-dependent quantum mechanics and

various areas in mathematics, see for instance [25] for an overview. The general solution

for (2.12), as reported by Pinney [24], is

σ(t) =
(
Au2 +Bv2 + 2Cuv

)1/2
, (2.14)

where u(t) and v(t) are the two fundamental solutions to the equation σ̈ + λ(t)σ = 0 and

the constants A, B, C are constrained as C2 = AB −W−2 with W = uv̇ − vu̇ denoting

the corresponding Wronskian. Thus from the solution of the EP equation for fixed α we

can obtain now a specific solution for the Dyson map (2.10). As the exceptional point at

α = 1 for H leads to qualitatively different solutions, we treat this case separately from

the cases with α 6= 1.

2.1 The P̃T -symmetric regimes of H̃, α 6= 1

We are left with solving the EP equation so that (2.8) becomes an explicit solution to the

time-dependent Dyson equation. For definiteness we assume here that κ(t) is given and

determine χ(t), but as mentioned in the previous section the reverse computation requires

very little modification. Taking the time-dependent coefficient λ(t) in the EP equation to

be of the form (2.13) for α 6= 1 we find

u(t) =
1√
κ
eµ/2, v(t) =

1√
κ
e−µ/2, with µ(t) :=

√
1− α2

∫ t

κ(s)ds, (2.15)

such that the solution to the EP equation (2.14) becomes

σ(t) =
1√
κ

(
Aeµ +Be−µ ± 2

√
AB − 1/(1 − α2)

)1/2
. (2.16)

Parameterizing the constants further as A = c1 + c2, B = c1 − c2 we obtain the solution

χ(t) =
κ

ξ
, with ξ := c1 cosh µ+ c2 sinhµ±

√
c21 − c22 − 1/(1 − α2). (2.17)

Thus the Dyson map is obtained from (2.10) as

η1 = η4 =
√
ξ, η2 =

ξ̂
√
1− α2

√
ξ

, η3 =
1− αξ√

ξ
, with ξ̂ := c1 sinhµ+ c2 coshµ (2.18)

Since in all relevant equations η is accompanied by it inverse we have set c = 1 in (2.10)

without loss of generality. Noting that det η = η21 − η22 − η23 = ±2δ with δ := α + (1 −
α2)
√
c22 − c23 − 1/(1 − α2) the Dyson map is invertible for as long as α 6= 0 or c22 6= c23 +

1/(1 − α2).
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Next we turn to solving the time-dependent Schrödinger equation. This is easily

achieved for the first equation in (1.1) as h(t) is diagonal. We find the two orthonormal

solutions

∣∣φ+(t)
〉
= eiωt/2+iθ(t)

(
1

0

)
and

∣∣φ−(t)
〉
= eiωt/2−iθ(t)

(
0

1

)
, (2.19)

with
〈
φi(t)

∣∣φj(t)
〉
= δij for i, j = +,− and

θ(t) =
1

2

∫ t

χ(s)ds = arctan

{√
1− α2

[
c2 +

(
c1 ∓

√
c21 − c22 −

1

1− α2

)
tanh [µ(t)/2]

]}
.

(2.20)

Having found η(t) we obtain from (1.2) the solution for the Schrödinger equation related

to the non-Hermitian Hamiltonian H(t) as

∣∣ψ+(t)
〉
=

−eiωt/2+iθ(t)

2δ

(
−η1

η2 + iη3

)
and

∣∣ψ−(t)
〉
=
eiωt/2−iθ(t)/

2δ

(
η2 − iη3
−η1

)
. (2.21)

By construction these states are orthonormal with regard to the inner product with mod-

ified metric
〈
ψi(t)

∣∣η2ψj(t)
〉
= δij for i, j = +,−. Next we compute the energy operator

(1.4), which acquires the form

H̃(t) = −1

2

{
ωI+

χ

δ

[
i (αξ − 1) σx + i

(
ξ̂
√

1− α2
)
σy + (ξ − δ)σz

]}
. (2.22)

Since H̃(t) is related to a Hermitian Hamiltonian by a similarity transformation we expect

the eigenvalues of this Hamiltonian to be real when this transformation is well defined.

Indeed, it turns out that the energy expectation values for these states are real at any

instance in time and simply result to

Ẽ±(t) =
〈
ψ±(t)

∣∣∣H̃(t)η2ψ±(t)
〉

=
〈
φ±(t)

∣∣h(t)φ±(t)
〉
= −1

2
[ω ± χ(t)] . (2.23)

Thus as long as χ(t) is real the energy expectation values are real, which is the case when

c1,c2 ∈ R and c21 > c22 + 1/(1 − α2) for α < 1 or when c1 ∈ R and c2 ∈ iR for α > 1. We

depict the energy spectra as a function of time for some specific parameter values in figures

1 and 2.

The behaviour shown in the figures 1 and 2 is typical for non-Hermitian with an

antilinear symmetry. Thus we expect for H̃(t) that there exists an antilinear symmetry

P̃T that solves (2.4) and hence explains the reality and complexity of the eigenspectrum.

Evidently the operator PT as introduced above is not the correct symmetry and only serves

to explain the spectrum for H(t). Thus we make a generic Ansatz for this operator and

try to solve the first relation in (2.4). Indeed we find as the unique solution the antilinear

operator

P̃T :=
1√

(ξ − δ)2 + (α2 − 1)ξ̂
2

[
i
(√

1− α2ξ̂
)
σy + (ξ − δ)σz

]
τ . (2.24)

– 6 –
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Figure 1: Real energies in the P̃T -symmetric phase for κ(t) = sin(t/5), ω = 1, c1 = 4 and c2 = 1

(panel a) c2 = i (panel b).

Figure 2: Complex energies in the P̃T -broken phase for κ(t) = sin(t/5), ω = 1, c1 = 4 and c2 = 1

(panel a, b) c2 = i (panel c, d).

We verify that P̃T is involutory with P̃T 2
= I. Furthermore we verify that P̃T σxP̃T =

−σx and P̃T σzP̃T 6= σz. Thus when α 6= 0 the new P̃T -symmetry is not a symmetry of

H(t), i.e. we have
[
P̃T ,H(t)

]
6= 0 but

[
P̃T , H̃(t)

]
= 0. In order to guarantee that this

symmetry is unbroken we also need to satisfy the second equation in (2.4). We determine

the eigenvectors of H̃(t) as

ϕ̃± ∼
(

(1∓ 1)δ − ξ√
1− α2ξ̂ + i(1− αξ)

)
, (2.25)

– 7 –
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and verify that these vectors are indeed P̃T -eigenstates

P̃T ϕ̃± = eiω̃±ϕ̃±. (2.26)

with

ω̃+ = arctan

[
2
√
1− α2(1− αξ)ξ̂

1 + ξ(ξ − 2α+ ξα2) + (α2 − 1)ξ̂
2

]
, (2.27)

ω̃− = arctan

[ √
1− α2(1− αξ)ξ̂

2δ2 − 3δξ + ξ2 + (α2 − 1)ξ̂
2

]
+ π. (2.28)

Thus for the regime stated above the P̃T -symmetry is unbroken and the eigenvalues of

H̃(t) are therefore guaranteed to be real. We notice that for a > 1 also the Hamiltonian

H(t) is in its PT -symmetric phase, but P̃T is still not a symmetry for H(t).

2.2 The P̃T -symmetric regime of H̃ and P̃T -broken regime of H, α = 0

The value α = 0 is special as in this case the P̃T -operator commutes with both H̃(t)

and H(t), but the eigenvalues of the latter (2.2) are complex conjugate in this case. This

means we expect the eigenvectors of H(t) not to be eigenstates of the P̃T -operator. It is

instructive to verify this in detail and since the formulae simplify substantially in this case,

it is also useful to have a simpler example at hand. The two orthonormal solutions for h(t)

take on the same form as in (2.19) with

θ(t) =
1

2

∫ t

χ(s)ds = arctan

{
c2 +

(
c1 ∓

√
c21 − c22 − 1 tanh [µ(t)/2]

)}
, (2.29)

and the solutions for the Schrödinger equation related to the non-Hermitian Hamiltonian

H(t) are also given by (2.21) with det η = 2
√
c22 − c23 − 1. The energy operator (1.4)

simplifies to

H̃(t) = −1

2
ωI+

χ(t)√
c21 − c22 − 1

[iσx − (c1 sinhµ+ c2 coshµ)iσy − (c1 coshµ+ c2 sinhµ)σz] .

(2.30)

and the P̃T -operator reduces to

P̃T :=
1√

c21 − c22
[(c1 sinhµ+ c2 coshµ)iσy + (c1 cosh µ+ c2 sinhµ)σz] τ . (2.31)

Now both Hamiltonians are P̃T -symmetric, i.e. in addition to
[
P̃T , H̃(t)

]
= 0 we also

have
[
P̃T ,H(t)

]
= 0. However, whereas the eigenvectors ϕ̃+ ∼ {−η1, η2 + iη3}, ϕ̃− ∼

{η2 − iη3, η, } of H̃(t) are P̃T -symmetric, the eigenvectors ϕ± ∼ {±1, 1} of H(t) are not

eigenstates of the P̃T -operator. Hence we have

P̃T ϕ± 6= eiω±ϕ± and P̃T ϕ̃± = eiω̃± ϕ̃±. (2.32)

– 8 –
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Concretely we identity

ω̃± = arctan

[
±c

2
2 − c21 − (c1 coshµ+ c2 sinhµ)

√
c21 − c22 − 1

c1 sinhµ+ c2 coshµ

]
. (2.33)

Thus the H(t) system is always in the spontaneously broken P̃T -symmetry phase whereas

H̃(t) is P̃T -symmetric as long as c21 − c22 > 1.

2.3 The exceptional point of H(t) at α = 1

The value α = 1 is an exceptional point for H(t) as it marks the transition from real to

complex conjugate eigenvalues and at the same time the two eigenvectors coalesce. For

H̃ it also indicates the boundary of the real eigenvalues, but they do not become complex

conjugate to each other and the two eigenvectors remain different. The EP equation admits

a qualitatively different solution in this case. Taking the time-dependent coefficient to be

of the form (2.13) for α = 1 with given κ we find

u(t) =
1√
κ
, v(t) =

1√
κ
µ, with µ :=

∫ t

κ(s)ds, (2.34)

such that the solution to the EP equation (2.14) becomes

σ(t) =

√
µ

κ

(
Aµ+Bµ−1 ± 2

√
AB − 1

)1/2
. (2.35)

so that

χ(t) =
κ

ξ
, with ξ :=

1

2

(
B +Aµ2 ± 2µ

√
AB − 1

)
. (2.36)

Using these expressions the Dyson map is obtained from (2.10) as

η1 = η4 =
√
ξ, η2 =

ξ̂√
ξ
, η3 =

1√
ξ
−
√
ξ, with ξ̂ := Aµ +

√
AB − 1. (2.37)

In this case we compute det η = η21 − η22 − η23 = ±2δ with δ = A− 1 .

The energy operator (1.4) acquires the form

H̃(t) = −1

2

{
ωI+

χ

δ

[
i (ξ − 1) σx + iξ̂σy + (ξ − δ)σz

]}
(2.38)

Similarly as above we construct the antilinear symmetry operator for this operator

P̃T :=
1√

(ξ − δ)2 + ξ̂
2

[
iξ̂σy + (ξ − δ)σz

]
τ . (2.39)

The eigenvectors of H̃(t) are computed to

ϕ̃± ∼
(
(1∓ 1)δ − ξ

ξ̂ + i(1 − ξ)

)
, (2.40)

– 9 –



Mending the broken PT-regime

which are indeed P̃T -eigenstates, that is we have P̃T ϕ̃± = eiω̃±ϕ̃± with

ω̃+ = arctan

[
(1− ξ)ξ̂

1− (1 +A)ξ + ξ2

]
+ π, (2.41)

ω̃− = arctan

[ √
1− α2(1− αξ)ξ̂

3 + 2A(A − 2)− (3−A)ξ + ξ2

]
. (2.42)

This means as long as AB > 1 the energy operator H̃(t) is P̃T -symmetric with regard to

(2.39).

3. Conclusions

We have demonstrated that a non-Hermitian Hamiltonian in its spontaneously broken

PT -symmetric phase allows for a self-consistent quantum mechanical description when

an explicit time-dependence is introduced into its parameters. This is possible as the

Hamiltonian that satisfies the time-dependent Schrödinger equation becomes unobservable

and instead the energy operator develops real eigenvalues at any instance in time. We

identified the new antilinear operator P̃T that explains the reality of the spectrum of the

energy operator in parts of the parameter regime.

We have solved for the first time the time-dependent Dyson equation in conjunction

with the time-dependent Schrödinger equation in complete generality. Previously only

special cases were considered, e.g. one of the Hamiltonians was kept time-independent or

just the time-dependent Dyson equation was solved without further elaboration on whether

the solutions obtained can be used in the solutions to the time-dependent Schrödinger

equation.

Naturally it would be interesting to investigate different types of models and in par-

ticular extend the analysis to systems with infinite dimensional Hilbert spaces.

Acknowledgments: TF is supported by a City, University of London Research Fellow-

ship.

References

[1] E. Wigner, Normal form of antiunitary operators, J. Math. Phys. 1, 409–413 (1960).

[2] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT

Symmetry, Phys. Rev. Lett. 80, 5243–5246 (1998).

[3] C. M. Bender, A. Fring, U. Guenther, and H. F. Jones, Special issue on quantum physics

with non-Hermitian operators, J. Phys. A: Math. and Theor. 45(1), 010201 (2012).

[4] F. G. Scholtz, H. B. Geyer, and F. Hahne, Quasi-Hermitian Operators in Quantum

Mechanics and the Variational Principle, Ann. Phys. 213, 74–101 (1992).

[5] C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70, 947–1018

(2007).

– 10 –



Mending the broken PT-regime

[6] A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom.

Meth. Mod. Phys. 7, 1191–1306 (2010).
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