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When compared with other summary statistics (mean size, size variance, orientation 

variance), visual estimates of average orientation are inefficient. Observers act as if 

they use information from no more than two or three items. We hypothesised that 

observers would attain greater sampling efficiency when their task was to perform a 

texture segmentation rather than a did not require an explicit representation of mean 

orientation. We tested this hypothesis using a texture-segmentation task. Two arrays 

of 32 wavelets each were presented; one left and one right of fixation. Orientations in 

the target array were sampled from wrapped normal distributions having two different 

means with the same variance. One distribution defined orientations above the 

horizontal meridian, the other defined orientations below the meridian. All 

orientations in the other array were defined by a single wrapped normal distribution 

having the same variance as each of the distributions in the target array. Contrary to 

our hypothesis, results indicate that observers effectively ignored all but one item 

from the top and bottom of each array. In fact, we found no change in the threshold 

difference between the target's two means when all but one item from the top and 

bottom of each array were removed. We are forced to conclude that the visual system 

does not compute the average of more than a few orientations, even for texture 

segmentation.
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Introduction 

Human observers are thought to be fairly adept at perceptual tasks that require 

statistical summaries of feature content. In order to quantify this proficiency, we 

typically use the mathematical concept of efficiency (Fisher, 1925). Given any sample 

size N, efficiency is the ratio of M to N, where M is the sample size that the ideal 

observer would need in order to estimate a statistic with the same precision as a 

human observer.   

 For example, when presented with two sets, containing (N = 8) circles each, 

human observers can select the set whose circles have the larger average diameter as 

well as the otherwise-ideal observer that perfectly measures the diameters of M = 5 

randomly selected circles in each set (Solomon, Morgan, & Chubb, 2011; Gorea, 

Belkoura, & Solomon, 2014). Thus, we can say that the efficiency of size averaging 

can be as high as 5/8 or 62.5%. The efficiency for discriminating between sets of 

circles on the basis of the variance in their diameters is similarly high (Solomon, et 

al., 2011), as is the efficiency for discriminating between sets of wavelets on the basis 

of the variance in their orientations (Solomon, 2010). 

 Efficiency typically falls when the display set-size N is increased. The 

effective set-size M, on the other hand, may be more resilient to this manipulation. 

For example, Morgan, Mareschal, Chubb, & Solomon (2011) reported that human 

observers discriminated between dot patterns with different levels of positional 

variance as well as an ideal observer that used 5 or 6 randomly selected dots, 

regardless whether each dot-patterns contained 11 or 121 dots. Solomon (2010) 

explicitly tested the null hypothesis that each observer had a maximum effective set-

size Mmax, such that M = min{Mmax, N} for N = 1, 2, 4, and 8, when trying to 
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discriminate between sets of wavelets on the basis of their average orientation or 

orientation variance. 

 Solomon (2010) was unable to reject this null hypothesis, and the maximum 

effective set-size for orientation averaging was surprisingly low. Maximum-likelihood 

estimates of Mmax varied (across observers) between values of 1 and 3. A subsequent 

review of the literature (Solomon, May, & Tyler, 2016) suggests that low values such 

as these are fairly typical in tasks that require observers to estimate average 

orientation. 

 We do not know what prevents human observers from attaining higher values 

of Mmax, but we had an idea. All previous experiments on orientation averaging 

required observers to estimate the average orientation in an array of oriented stimuli, 

like Gabor patterns or line segments, and compare that average with something else, 

like another average or the vertical meridian. We hypothesized that effective set-sizes 

might be greater if the task did not require observers to form explicit estimates of 

average orientation. Instead, we designed the task described below, in which 

observers looked for a boundary between arrays having different average orientations. 

Contrary to our hypothesis, observers did no better than an otherwise-ideal observer 

that ignored all but one item from each array. In a second experiment, we found no 

change in performance when all but one item was removed from each array. 

 

Methods 

This experiment was conducted in compliance of the Declaration of Helsinki, where 

applicable. It was approved by City University London’s Senate Ethics panel, in 

conjunction with the EPSRC project ‘‘The Efficiency of Visual Statistics’’ (see 

Acknowledgment). Data were collected from the two authors plus a third 
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psychophysicist, JF, who gave his informed consent to participate. He was selectively 

recruited on the basis of his high efficiency for gaze-averaging (Florey, Clifford, 

Dakin, & Mareschal, 2016).  

 Stimuli were generated and responses were collected on a MacBook Pro 

computer, with the brightness turned all the way up, so that background luminance 

was 20 cd/m2. When luminance and/or contrast is an experimental variable, it is 

important to correct display nonlinearities. Neither luminance nor contrast is a 

variable in our experiments, consequently it was not necessary to correct for the 

MacBook's native gamma function. The Psychtoolbox (Brainard, 1997; Pelli, 1997) 

was used for stimulus generation. Psychophysica (Watson & Solomon, 1997) was 

used for data analysis. Both codes are available upon request. Head positions were not 

restrained, but observers were asked to maintain a comfortable viewing distance 

(~0.65 m) for the duration of the experiment. 

 On each trial of Experiment 1, observers were presented with four arrays, 

containing N=16 wavelets each. Two arrays appeared on the left side of fixation. 

Together, they formed a donut-shaped configuration. The other two arrays formed a 

donut-shaped configuration on the right side of fixation. (See Figure 1.) All four 

arrays appeared simultaenously, and remained visible for 1.7 s.  

 Donut centers were positioned on the horizontal meridian, 4.8 degrees of 

visual angle away from a small fixation spot, which remained visible throughout the 

experiment. The visual angle between the center of each wavelet and the center of its 

donut was 1.5, 2.4, 3.2, or 3.6 degrees.  

 Experiment 2 was virtually identical to Experiment 1, except that each array 

contained only N=1 wavelet. That is, there were 4 wavelets on each trial. Their 

centers were positioned 4.8 degrees of visual angle left and right of the vertical 
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meridian and 2.8 degrees above and below the horizontal meridian. These four 

wavelets, therefore, occupied positions corresponding to the centers of the four arrays 

in Experiment 1. 

 Each wavelet in both experiments was specified by the Gabor function: the 

product of a 1-dimensional sinusoid and a 2-dimensional Gaussian blob. The sinusoid 

had a spatial frequency of 2.4 cycles per degree and the blob had a space constant (i.e. 

the Gaussian standard deviation) of 0.31 degrees of visual angle. As the specific 

luminance profile of each wavelet was not critical to this study, no attempt was made 

to correct for the Mac's native gamma function (ɣ = 2.35). Consequently, our wavelets 

were not true Gabor patterns. Each was presented at maximum contrast. Its spatial 

phase was selected independently from a uniform distribution over all 2π radians.  

 

   

Figure 1. Sample stimulus from Experiment 1. Observers reported whether the orientation-defined 

texture boundary was left or right of fixation. This is a particularly easy trial! 

 

 On each trial, we randomly selected the wavelets left or right of the vertical 

meridian to be the "target." Wavelets on the other side of the vertical meridian were 

therefore the "nontarget." Orientations in the target were independently sampled from 
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two wrapped normal distributions. One distribution defined orientations above the 

horizontal meridian (i.e. in the top half of the target), the other distribution defined 

orientations below the meridian (i.e. in the bottom half of the target). The two 

distributions had different expected values (µTT and µTB for the top and bottom halves 

of the target, respectively), but the same standard deviation, σ. Orientations in the 

both halves of the nontarget (indexed by NT and NB) were defined by a single 

wrapped normal distribution having the same standard deviation. The expected values 

of all three wrapped normal distributions were randomly selected from a uniform 

distribution over all π radians. However, the expected values of the target distributions 

were correlated, as described in the next paragraph. 

 Observers were instructed to report whether the target was right or left of 

fixation. They were also asked to maintain fixation at the center of the laptop screen, 

but we did not enforce compliance with this additional request. For reasons described 

in the Modeling section, we used a minimum of two standard deviations (σ) with each 

observer. Both of these standard deviations were fairly small, so that the wrapped 

normal distributions were well-approximated by normal distributions.  

 Standard deviations in used in Experiment 1 were, for JAS, 0, 4°, 8°, and 16°; 

for MJM, 0, 6°, and 8°; and for JF, 0 and 8°. Standard deviations used in Experiment 

2 were, for JAS, 0 and 16°; for MJM, 0 and 8°; and for JF, 0 and 8°. For each 

observer, each experiment, and each standard deviation, we used at least 4 66-trial 

QUEST staircases (Watson & Pelli, 1983) to obtain independent, maximum-

likelihood estimates of the "threshold" angle, Δµ=|µTT–µTB|, between the expected 

values of the two distributions defining the target, required for 81%-correct responses. 

 

Modeling 
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 On each trial, the ideal observer perfectly measures the orientation of each 

wavelet in the display. The ideal observer then calculates the sample mean 

orientations (𝜃!!,𝜃!",𝜃!", and 𝜃!") in each half-donut. The ideal observer responds 

correctly if and only if 𝜃!! − 𝜃!" > 𝜃!" − 𝜃!" . Thus, the ideal observer's 

probability correct can be written: 

 Pideal C( ) = P
θ TT −θ TB( )2
θ NT −θ NB( )2

>1
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

.  (1) 

 

Recall that each orientation was independently selected from a distribution that was 

well-approximated by the normal distribution. Consequently, the differences between 

sample means are even-better approximated by independent normal distributions, 

𝜃!! − 𝜃!" ∼𝒩 Δ𝜇, 2𝜎! 𝑁  and 𝜃!" − 𝜃!" ∼𝒩 0, 2𝜎! 𝑁 , and  

 Pideal C( ) = 1− F 1( ) ,  (2) 

where F is the cumulative distribution function of the non-central F-ratio distribution, 

with 1 degree of freedom in the numerator and denominator and non-centrality 

parameter 𝜆 = 𝑁 Δ𝜇 ! 2𝜎! . The ideal observer's threshold is the value of Δ𝜇 at 

which Pideal C( ) = 0.81 . 

 In order to establish the efficiency of human performance, it is necessary to 

compare it with the inefficient observer (IO). The IO is ideal, except it uses only a 

fraction (M/N) of the available information. Thus it responds correctly if and only if 

𝜃!!∗ − 𝜃!"∗ > 𝜃!"∗ − 𝜃!"∗ , where  𝜃!!∗ − 𝜃!"∗ ∼𝒩 Δ𝜇, 2𝜎!! 𝑀  and  

𝜃!"∗ − 𝜃!"∗ ∼𝒩 0, 2𝜎!! 𝑀 . Its probability correct can be written: 

 PIO C( ) = P
θ TT

∗
−θ TB

∗( )2
θNT

∗
−θNB

∗( )2
>1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (3) 
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 = 1− F ∗ 1( )  , (4) 

where 𝐹∗ is the cumulative distribution function of the non-central F-ratio 

distribution, with 1 degree of freedom in the numerator and denominator and non-

centrality parameter 𝜆∗ = 𝑀 Δ𝜇 ! 2𝜎! , and its threshold is the value of Δ𝜇 at 

which PIO C( ) = 0.81 . It should be noted that the IO is ideal when M = N. 

 The purpose of our experiment was to see whether efficiencies would increase 

when explicit representations of average orientation were not required. For 

establishing efficiency, the IO provides a sufficient baseline against which human 

performance can be compared (see Fig. 2 for examples). Consequently, it isn't strictly 

necessary to consider more complicated models of performance.  However, we know 

that the IO is a poor model for human behavior because, whatever the value M, its 

threshold will be proportional to the standard deviation of external noise (σ). 

Consequently, it cannot successfully account for human performance in the absence 

of external noise. 

 Equivalent-noise models (Nagaraja, 1964; Pelli, 1990; Dakin, 

2001) can. In addition to inefficiency, these models posit an internal noise, which 

decreases the fidelity with which stimuli are represented in the visual system. With an 

appropriate distribution, the addition of external noise can mimic the effects of 

internal noise. For that reason, such external noise is known as ‘‘equivalent’’ noise 

when its variance matches that of the internal noise. The effect of equivalent noise on 

performance is negligible when external noise has a much greater standard deviation. 

"High-noise" (Pelli & Farell, 1990) conditions such as this are required for estimates 

of efficiency that are uncontaminated by the imprecision with which individual 

stimuli are represented.   
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 As in most applications of signal-detection theory (Green & Swets, 1966), we 

assume that internal noise has a normal distribution. Within the visual system, the 

orientation of each item is perturbed by an independent sample of this internal noise. 

Consequently, if the variance of internal noise is denoted 𝜎!!, then noisy, inefficient 

(but otherwise ideal) human observers will get more-widely distributed values 

(𝜃!!∗∗ ,𝜃!"∗∗ ,𝜃!"∗∗ , and 𝜃!"∗∗ ), when they try to calculate the sample means of each half-

donut, such that 𝜃!!∗∗ − 𝜃!"∗∗ ∼𝒩 Δ𝜇, 2 𝜎! + 𝜎!! 𝑀  and 

𝜃!"∗∗ − 𝜃!"∗∗ ∼𝒩 0, 2 𝜎! + 𝜎!! 𝑀 . 

 Given these calculations, the noisy, inefficient observer's (NIO) decision 

process parallels that of the IO and ideal observer. Its probability correct can be 

written: 

 PNIO C( ) = P
θ TT

∗∗
−θ TB

∗∗( )2
θNT

∗∗
−θNB

∗∗( )2
>1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (5) 

 = 1− F ∗∗ 1( )  , (6) 

where F ∗∗  is the cumulative distribution function of the non-central F-ratio 

distribution, with 1 degree of freedom in the numerator and denominator and non-

centrality parameter 𝜆∗∗ = 𝑀 Δ𝜇 ! 2 𝜎! + 𝜎!! , and its threshold is the value of Δ𝜇 

at which PNIO C( ) = 0.81 .  

 

Results 

Each independently measured estimate of threshold appears as a small dot in Figure 2. 

Larger symbols illustrate maximum-likelihood estimates of these thresholds, based on 

all the responses in each condition. Blue and amber symbols, illustrating data from 

Experiments 1 and 2, respectively, have been slightly nudged right and left, 
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respectively, for greater legibility. In general, we found that thresholds increased with 

the standard deviation of wavelet orientations, and thresholds collected in Experiment 

2 (with N=1 wavelet per array) were similar to thresholds collected in Experiment 1 

(with N=16 wavelets per array). This similarity is inconsistent with our hypothesis. 

Specifically, it does not support the idea that texture boundaries can be detected by 

averaging orientation content across multiple elements. 

 Further evidence against our hypothesis was obtained by fitting the IO and 

NIO models to the thresholds depicted in Figure 2. Both models fit the data from JAS 

and MJM best when its calculations were based on just M = 1 wavelet pattern from 

each side of the potential texture boundaries. Observer JF was only slightly more 

efficient. For this subject, the NIO fit best when using M = 1.3 wavelets from each 

side of the potential texture boundaries.1  

 

                                                
1 Non-integer values such as this can be interpreted in two ways. One possibility is 
that they reflect a mixture of effective set sizes. For example, on some trials the 
observer might have used just one randomly selected element from each side of the 
potential texture boundaries, whereas on other trials the average of two or more 
elements was computed. In this case, M would reflect the root-mean-square of the 
mixture of effective set sizes. Alternatively, non-integer values of M might reflect an 
unequal weighting of two or more texture elements in calculations of the average 
orientation on each side of a potential texture boundary. 
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Figure 2 (online version; blue, amber, red, and purple can be replaced by black, gray, dotted and dot-

dashed for print). Results of Experiments 1 and 2. Threshold is the difference between the expected 

orientations in the top and bottom halves of the target "donut" for 81% response accuracy in our two-

alternative, forced-choice task. (See Figure 1.) Non-target and target orientations had the same standard 

deviation (”Stimulus S.D.”) on each trial. Each small blue symbol illustrates the result of a single block 

of 66 trials with two 32-wavelet donuts. Some of these have been obscured by the large blue symbols, 

which illustrate the single, maximimum-likelihood estimate of threshold for each Stimulus S.D. Solid 

blue curves illustrate the performance of the noisy, inefficient (but otherwise-ideal) observer, whose 

decisions are based on M randomly selected wavelets from the top and bottom of each donut. Best-

fitting values of the equivalent input noise and M are given in each panel. Amber symbols and curves 

illustrate analogously derived thresholds from the trials in which all but one wavelet was removed from 

the top and bottom of each donut. Black dashed lines illustrate the performance of the (noiseless) ideal 

observer and red lines illustrate the performance of the (noiseless) inefficient observer, whose 

(otherwise ideal) decisions are based on 1 randomly selected wavelet from the top and bottom of each 

donut. The purple curve illustrates the performance of an observer whose decisions are based on the 

orientation variances in 5-wavelet samples from each donut. Prior to computing variances, the 

orientation of each wavelet in each sample was perturbed by an equivalent input noise identical to that 

inferred using the noisy, inefficient observer.  
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Discussion 

When attempting to detect a boundary between two texture arrays, differing in their 

average orientations, our best observer performed as poorly as an otherwise-ideal 

detector, whose calculations were based on fewer than 2 elements per texture array. 

The other two observers performed as if they had ignored all but one texture element 

in each array. Indeed, their performances were largely unaffected when all but one 

texture element was removed from each array. We consider these data interesting in 

their failure to support our hypothesis that visual system really is capable of 

computing average orientation. We must conclude that the visual system does not 

compute the average of more than a few orientations, even for texture. This is in 

addition to its well-documented low efficiencies (e.g. Solomon, et al., 2016) in tasks 

that require explicit estimates of that average. 

 We must stress that an effective set-size of 1 does not imply use of a single 

element within each array. For example, consider an observer whose decisions are 

based on the sample variances of Q randomly selected wavelets from each 32-wavelet 

donut. Monte Carlo simulations indicate that this observer would have an effective 

set-size of 1 (i.e. efficiency would be 1/16) when Q = 5, a value well within 

conventional estimates for the effective set-size in tasks where the ideal strategy 

requires the computation of orientation variance (Morgan et al., 2008; Solomon, 

2010). Moreover, the performance of this "variance discriminator" is virtually 

identical to that of the NIO (with an effective set-size of 1 and comparable equivalent 

noise), regardless of external noise. This can be seen by comparing the blue and 

purple curves in Fig. 2. 

 Standard “back-pocket” models of texture segregation (Chubb & Landy, 1991) 
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typically hypothesize "second-order" mechanisms that are selective for regional (i.e. 

relatively large-scale) variation in the (rectified) output of more localized "first-order" 

mechanisms that share a preference for the same stimulus orientation. If the wavelets 

in our stimuli were well-matched to the receptive fields of first-order mechanisms, 

then intuition would suggest that second-order mechanisms would respond to input 

stemming from a relatively large pool of our wavelets. Therefore, we consider our 

very small values of effective set-size to be counter-intuitive. Either our intuition 

about back-pocket-model efficiency is wrong, or observers use something other than 

large-scale second-order filters, when detecting orientation-defined texture 

boundaries.  
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