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Abstract 

Current accounts in the memory field suggest that perceptual mechanisms underpin 

both perception and memory processes. The overlap between perceptual and 

mnemonic mechanisms has been mainly shown when processing arbitrary stimuli 

(e.g., shapes and colours). Nevertheless, it still unclear how more socially meaningful 

stimuli such as others’ bodies are perceived and later maintained in memory.  

This thesis investigates the encoding and memory maintenance of visually perceived 

body-related information. Chapter 1 reviews current accounts in the overall memory 

field. Secondly, it reviews evidence for the presence of a memory system to encode 

and maintain body-related information in working memory. Chapter 2 describes the 

EEG technique and proposes a novel method to isolate brain activity arising in 

sensorimotor cortex from concomitant visual activity that is elicited at the sight of 

visually perceived body stimuli. Chapter 2.5 outlines how the stimuli for the 

experiments of this thesis were created. Chapter 3 reports the first study looking into 

the transformation of visual bodily percepts into mnemonic body representations. This 

was done by adapting well-known working memory paradigms and the EEG method 

outlined in Chapter 2. The results showed that holding in memory body-related stimuli 

involves visual acquisition but quick recoding of the visual input onto somatosensory 

cortices. Chapter 4 includes another new EEG study that allowed exploration of more 

anterior brain areas (i.e., motor regions) during memory maintenance of body images 

in memory. To this end, visual-evoked potentials were combined with motor-cortical 

potentials. Chapter 5 followed up the two previous EEG studies with three different 

behavioural versions centred on interfering with the on going processing of body 

stimuli. Specifically, different forms of sensorimotor suppression were applied during 

encoding and maintenance of body-related information in memory. Altogether, the 
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methodology and experiments of this PhD work suggest that compared to mnemonic 

processing of non-body-related images, holding body-related stimuli in memory 

(beyond the perceptual stage) recruits brain areas such as somatosensory and motor 

cortices. Finally, Chapter 6 reflects on the results of these studies, offering an 

overview of this PhD work, as well as on the limitations, technicalities, and potential 

future studies. 
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Abbreviations 

 

AON: Action observation network 
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vdCDA: visually-driven contralateral delay activity 
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1 Chapter 1: Introduction 

Human cognition is ultimately grounded in three processes: encoding, maintenance, 

and recall of information. In the encoding stage, external events are perceived 

through our senses and transformed into mental representations. For instance, seeing 

a human body does not simply involve the perception of colour and contours, but its 

transformation in the brain into an internal body representation. By doing this, we 

move from mere visual information to functional and meaningful cognition that allows 

us to understand, imitate, and learn from others’ bodies. However, while there is a 

reasonably good understanding of the neurocognitive mechanisms behind the 

processing of arbitrary visual stimuli such as colours and shapes, less is known about 

the mechanisms underpinning encoding and maintenance of visually perceived body-

related information. Specifically, it is unclear how such visual-to-body mnemonic 

representations are accomplished in the brain. 

In order to understand what memory for body-related information is and why it needs 

to be studied, it is essential to portray the subject within the overall memory 

framework. In this chapter I first outline general models and behavioural studies in 

memory processing, particularly in the working memory (WM) domain. Secondly, I 

revise more recent models based on brain imaging and electrophysiological studies. 

Third, I introduce the image of the body as a unique type of visual stimulus, as well as 

revising behavioural studies on sensorimotor memory —related to memory 

processing of visually perceived bodies and actions. Lastly, I consider the potential 

neural candidates of the latter processing and I formulate a novel theoretical model, 

which will be explored in the later experimental chapters.   
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1.1. Introducing working memory 

Let’s start from scratch in reasoning about the fundamental purpose of memory, and 

therefore, in which ways it operates. Our senses collect information depicting 

potential interactions with the surroundings. This perception, in the service of action, 

does not emerge in a cognitive vacuum but in a functional frame that requires 

updating and learning information. This postulate entails, at least, three statements 

that will guide the rest of this piece of work: i) perception is malleable, ii) actions are 

purposeful and feedback upon perception, and iii) the interaction between both 

processes requires a mechanism affecting prospective behaviour. Here, perceiving 

and acting upon the environment (e.g., approaching a neuroscience book or trying a 

new dish) are meaningless if they do not affect the way one will behave later in time, 

and this requires information to be stored.  

Memory comprises the process in which a perceived event is codified in terms of 

demands and material (encoding), consolidated in a way that the transient percept 

can be later accessed (storage), and recalled from storage to be used (retrieval). 

While these processes are true for any given type of memory-representation, 

memory processing has been split in several types, components, and subsequent 

frameworks. This division is not arbitrary but functional, and it can be traced to the 

work of William James, who already established a distinction between primary and 

secondary memory (James, 1890). The former refers to the initial storage, in which 

information is currently available, whereas the latter refers to those memories that 

require active and conscious access (i.e., actively inspecting past information); a 

valid distinction that would be later examined with modern techniques (Cowan, 1995; 

Soto et al., 2011; Soto and Silvanto, 2014).  

One of the most important contributions to current models of memory processing, 

especially for working memory (WM) models, comes from the multi-component 
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memory model of Atkison and Shiffrin (1968). This model portrays several mnemonic 

stages in which information is processed via different memory stores. Initially, 

sensory information is merely acquired. Secondly, it is encoded through strategies 

such as rehearsal and chunking. The latter stage fosters the information from a 

fragile state into a more consolidated form that can be accessed from long-term 

memory. The model of Atkison and Shiffrin could explain some aspects of memory 

performance such as primacy and recency effects (Glanzer, 1972), as well as data 

from specific cases of amnesic patients (Shallice and Warrington, 1970; Scoville and 

Milner, 1957). However, it possessed several important limitations: first, it assumed 

that holding information in short-term memory (STM) guarantees its transference to 

long-term memory. Secondly, it assumed that deficits in the short-term store would 

lead to impaired maintenance of on-going information. Thirdly, the short-term store 

was a form of mandatory period/step to reach a long lasting memory association. All 

three assumptions have proven to be wrong (see Baddeley and Levy 1971; Craik 

and Lockhart, 1972; Craik 2002). 

The ‘all or nothing’ trait regarding the flow of information in the multicomponent-

model, its oversimplified linear course, and the incoming view of short-term storage 

as a more dynamic system, led researchers to shift their theoretical approach and 

experimental paradigms examining memory storage. While the multicomponent-

model declined, the understanding of STM as a workspace to hold in memory task-

relevant information (namely, working memory; WM) steadily increased.   

1.1.1. The multicomponent model of working memory 

The current term ‘working memory’ (WM) developed from the preceding STM 

concept, (in many cases both are still indistinguishably used). However, while STM 

refers to the transient storage of information, WM involves temporary maintenance of 

information and its manipulation (Baddeley, 2012). STM can also be understood in 
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the context of experimental designs or in the context of a theoretical system to store 

information. In the first case, STM would refer to those experimental tasks in which 

information to-be-remembered is stored over a short delay. Despite this, results from 

STM paradigms are likely to reflect both STM and LTM associations (Waugh and 

Norman, 1965; Atkinson and Shiffrin, 1968; Baddeley 2012).  

The seminal paper of Baddeley and Hitch (1974) broke apart the multicomponent-

model of Atkison and Shiffrin (1968). The authors proposed three inter-related 

subsystems instead of a unitary one, in which information is not only stored but also 

manipulated (i.e., storing while working in the information). The three subsystems 

were delineated when examining the capacity limits in memory processing, that is, 

the quantity of information that can be stored in memory (see Miller, 1956; Baddeley 

and Hitch, 1974). Previous studies showed that concurrent tasks to the memory task 

disrupt memory performance by exhaustion of common computational resources. 

Examples of concurrent tasks, also known as secondary or suppression tasks, 

comprise a wide range of experimental manipulations that aim to target specific 

functions and memory systems. Overall, these include perceiving, reasoning, and 

handling different types of information during the encoding and consolidation in 

memory of the stimuli to-be-remembered (e.g., words, numbers, spatial locations, 

digits, body movements, and so on).  

Despite Baddeley and Hitch showing decreases of memory performance by the use 

of concurrent tasks aiming to overload STM, in some cases participants’ performance 

did not break down. Instead, they observed a monotonic decrease in memory 

performance, which did not interact with memory load. Importantly, constant 

decreases in memory performance (when performing a concomitant task) are usually 

driven by general effects of cognitive load such as binding of information, whereas a 

break down in performance typically indicates an overloading of a particular memory 



	 29 

system. In both cases general processes such as binding and attentional 

mechanisms are present. However, in the second case, once the memory limit is 

reached, a prompt decay in memory performance can be observed (Cocchini et al., 

2002; Logie, Zucco, Baddeley, 1990; Repovš and Baddeley, 2006). Overall, by 

combining different types of concurrent-secondary tasks with memory tasks, 

Baddeley and colleagues ‘manufactured neuropsychological patients’, allowing them 

to reveal the presence of several non-overlapping memory systems.  

The initial multi-component model of WM (Baddeley and Hitch, 1974) (Figure 1-1) 

included three systems: a multidimensional code integrating information (central 

executive) and two slave systems storing semantic and visuo-spatial information. The 

term slave refers to a model of communication protocol, a concept borrowed from 

computer sciences and engineering, denoting hierarchy and direction of control from 

master to slaves systems. The three systems were defined as follows: the central 

executive (CE) exerts the role of a central controller regarding attentional control of 

action. Secondly, the phonological loop is a modular system that stores and holds 

verbal information by vocal and subvocal rehearsal. Different manipulations have 

shown that memory for verbal information decreases with concomitant verbal 

processing, overwriting and displacing its content. For instance, phonological 

similarity of the stimuli to-be-remembered decreases memory performance, affecting 

the correct recall and order of the information (Watkins, Watkins, and Crowder, 1974; 

Lewandowsky and Farrell, 2008). Holding in memory longer words, which take longer 

to vocalize and process, increases the chance of decay and leads to worse retrieval 

(Baddeley et al., 1975; Hurlstone et al., 2014). Also, articulatory suppression (i.e., 

concurrent verbal task) seems to depend on internal speech or subvocalization. 

Obstructing this subvocalization nullifies the aforementioned word length and 

phonological effects (Baddeley et al., 1975; Baddeley and Larsen, 2007).  
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Figure 1-1: the original Baddeley and Hitch (1974) multicomponent model of working memory. 

Note. Reprinted from “Working Memory: Theories, Models, and Controversies” by Baddeley. 

A, 2012, Annual Reviews of Psychology 2012:63,1-29. 

 

The third subsystem refers to the visuo-spatial sketchpad, a memory system to 

manipulate and store both visual and spatial content. Nevertheless, after the 

formulation of the original multicomponent model of WM, researchers showed that 

visual and spatial information are slightly disentangled between different systems. 

Studies on visuo-spatial memory using different versions of the Corsi block-tapping 

test have showed that visual features such as colours, but not spatial information 

(e.g., coordinates in space) decrease recall of visual information and vice versa 

(Milner, 1971). Furthermore, neuropsychological evidence indicates that some 

patients are exclusively impaired in memory maintenance of either visual or spatial 

information (Della Sala et al., 1999; Darling et al., 2006; Klauer and Zhao, 2004). 

Overall, since its original proposal, the multicomponent model of WM has been 

revisited, challenged, and expanded. Newer proposals suggest additional systems to 

deal with a wider range of stimuli that seem to differ in the nature of the information to 

be stored (Fig.1-3). Specifically, the existence of a WM system has been proposed to 

hold in memory body-related information such as body movements and tactile 

information. Here, body-related information would be encoded in a body-related 

system that goes over an above other memory systems. This information would be 
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encoded and stored in a body-related system because the nature of the information 

(bodily) is conveyed in the percept regardless the type of acquisition (Fig. 1-2) (this 

matter will be expanded later in the chapter). 

  

 

 

Figure 1-2: Schematic illustration of storage in specialized systems of limited capacity. A, 

successful maintenance of three visual items in the visual sketchpad. B, successful 

maintenance of visual and semantic items in visual and phonological loop, respectively. Since 

the items do not belong to the same category/nature, these are correctly encoded and 

maintained in independent WM storages. C, dual tasks that require the visual sketchpad, 

such as holding in memory visual stimuli and perceiving additional visual events, disable the 

visual memory process by exhaustion of resources that otherwise could be allocated to 

memory maintenance. D, increasing memory load of the same stimuli category (visual items) 

leads to poor memory performance during recall of visual items. Conversely, this process 

does not overload other memory systems, leaving enough workspace for the correct recall of 

other non-related visual items (e.g., semantic) 
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Figure 1-3: Hypothetical flow of information between perception and WM. VSSP, visuo-spatial 

sketchpad. Note. Reprinted from “Working Memory: Theories, Models, and Controversies” by 

Baddeley. A, 2012, Annual Reviews of Psychology 2012:63,1-29. 

 

To this point, three important ideas need to be considered: i) WM is underpinned by 

several systems that are limited in capacity, ii) these systems are specialised in 

processing distinct types of information, and iii) these systems have been delineated 

by asking participants to perform suppression tasks that aim to disrupt the usual 

course of the memory trace. If these suppression tasks include computations or 

stimuli that require the same mechanisms needed to successfully encode and recall 

the stimuli to-be-remembered, decreasing memory performance is be observed (e.g., 

exposing participants to additional semantic information while remembering words).  

1.1.2. Sensory recruitment during WM: link between perception  
and memory 

The neural underpinnings of WM are usually examined while participants recall 

differences between a briefly presented memory phase, containing the stimuli to-be-

remembered, and a test phase that differs in 50% of the trials (i.e., delayed matching-

to-sample tasks). While doing this, a distributed network of brain regions that 
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comprises prefrontal cortex (PFC) and more posterior modality-specific sensory 

areas are active. Specifically, brain activity during maintenance of stimuli in WM has 

been well described in PFC (Fuster and Alexander 1971; Romo and Salinas 2003; 

Kostopoulos et al. 2007). The dorsolateral PFC assists with the maintenance of 

information by directing attention towards internal representations of sensory stimuli, 

which seem to be stored over more posterior areas of the brain (Curtis and 

D’esposito, 2003). These latter regions include sensory areas such as visual, 

somatosensory, and auditory cortices. Importantly, these brain regions do not only 

play a role during the perceptual stage but also during memory encoding. For 

instance, visual cortex and associated cortices seem to have a role in the 

acquaintance, perception, and maintenance of visual stimuli in memory (Becke et al., 

2015; Tood and Marois, 2004). The correspondence between sensory-input modality 

and the neural underpinning for the maintenance of stimuli in WM is similarly 

observed across modalities such as tactile (Zhou and Fuster 1996; Kaas et al. 2013, 

Katus, Grubert and Eimer, 2015) and auditory (Arnott et al., 2005). 

1.1.2.1.  Persistent sensory activity during WM processing 

Increasing activity in brain areas with a role in perceptual processing has been 

observed between the presentation of the stimuli to-be-remembered and their recall 

(Fig. 1-4). For instance, Vogel and Luck (2004) showed how mean amplitude of EEG 

waveforms are modulated according to the number of coloured lines and squares to-

be-remembered in a visual WM task. The authors showed how after a short 

presentation phase, when the stimuli disappeared, brain activity over posterior sites 

started to increase around 300ms after the onset of the stimuli, steadily increasing 

from memory load 1 to 4; load referring to the number of items to be remembered. 

The increase in mean amplitudes seemed to also correlate with the memory capacity 

of the participants and with the capability to handle the information. A follow-up paper 
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showed that compared to participants with low memory capacity, higher performers 

exhibited smaller increases in brain amplitudes, presumably reflecting less depletion 

of computational resources under similar tasks (Vogel et al., 2005).  

The so called persistent, delayed, sustained, or suprathreshold activity is 

characterised by i) steady increases on brain activity that are concomitant to the 

number of items to-be-remembered, ii) the increase of this activity seems to 

correspond to participants’ memory capacity and efficiency of the storage, iii) 

sustained activity seems to reach a plateau when participants’ memory performance 

breaks down (when memory capacity is reached). iv) This activity can be observed 

through multiple techniques. For instance, using electrophysiological and 

neuroimaging paradigms (e.g., Vogel and Machizawa, 2004; Pessoa et al., 2002), in 

lesion studies (Bisley and Pasternak, 2000) by microstimulation in the monkey’s 

brain (Bisley, Zaksas and Pasternak, 2001), as well as using intracranial recordings 

in the human brain (Axmacher et al., 2007). v) the corresponding activity usually 

takes the form of persistent activity during the consolidation of the information in WM, 

being affected by attentional shifts of attention and different types of sensory 

interference (Pasternak and Greenlee, 2005; D’Esposito and Postle, 2015). 

Importantly, vi) it is observed in those perceptual brain regions that match the 

sensory acquisition of the percept (i.e., visual cortices in visual WM tasks). 

The very specific role of this persistent activity and its relation between attentional 

control and memory consolidation are still being investigated (e.g., van Dijk et al., 

2010; Lewis-Peacock et al., 2012). Nevertheless, its sensory source and memory 

modulation have led to sensory recruitment models of WM (Pasternak and Greenlee, 

2005; Postle, 2006; Sreenivasan et al., 2014; Postle, 2006; D’Esposito, 2007; 

D’Esposito and Postle, 2015; Serences et al., 2009). These models propose that WM 

is better characterize as a reestablishment of the perceptual stage, in which transient 
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maintenance of stimuli occurs in sensory cortices that also process these same 

stimuli in the absence of WM demands (D’Esposito and Postle, 2015; Tsubomi et al., 

2013). Moreover, sensory recruitment models also postulate that brain regions with a 

role in perceptual processing develop in correspondence to long-term associations 

that reflect how information is treated in WM. Remarkably, the philosopher David 

Hartley articulated a similar proposal three centuries ago. He proposed that 

memories are linked to associations in the same regions of the brain that processed 

the original sensory experience.  

	

 

Figure 1-4. Schematic illustration of sensory recruitment models of WM in the visual domain. 

A, perceiving visual information such as coloured polygonal shapes elicits brain activity in the 

visual stream, which is reflected by the concomitant EEG waveform plotted in blue. B, 

encoding and maintenance of similar visual information in the absence of direct sensory 

stimulation also elicits brain activity in the visual stream, plotted again in the blue EEG 

waveform. In both cases, perception and WM maintenance, similar patters of brain activity 

can be observed, portraying a functional role of perceptual brain areas beyond the perceptual 

stage.  

 

In conclusion, behavioural research in WM has delineated several non-overlapping 

systems that are specialised in processing different types of tasks and stimuli. More 

recently, neuroimaging studies have shown evidence of where and when in the brain 

this is happening. Brain areas playing a role in perceptual processing also hold the 

percept in WM. This has an essential impact in the way we understand brain 
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function, as well as and in designing new methods and paradigms. It also implies that 

brain streams that have been found to play a role in the perceptual domain are likely 

to also contribute to WM processing. 

 

1.2.  Working memory for body-related information 

In the previous sections I outlined research accounts in the overall working memory 

field. Here I focus on WM processing for a particular set of stimuli: visually perceived 

body-related information such as body postures and actions. To this aim, I introduce 

what makes bodily stimuli so unique. Then, I review behavioural evidence for a 

specialised storage of sensorimotor information –related to bodies and actions. Third, 

I speculate about the neural candidates of such WM system. To this purpose, I 

consider two pieces of information: sensory recruitment models of WM (which 

postulate resemblance between perceptual and memory mechanisms) and studies 

on action observation.  

1.2.1. Introducing the body as a percept to be remembered 

Most of the studies that examine WM use arbitrary non-body-related stimuli. However, 

bodily stimuli such as images of body postures and actions possess specific features 

that differ from those that can be extracted, recoded, and later accessed from non-

body-related stimuli. These fundamental differences are summarized in the following 

points/paragraphs.  

(1) The majority of WM studies use participants’ recognition to test memory 

performance. Specifically, at the end of the trial, participants are asked to detect 

differences between the memory and test stimuli/displays (e.g., in delayed matching-

to-sample tasks). However, in WM studies using visually perceived body-related 

information, memory performance can be tested by asking participants to recognize 

differences between visual stimuli/displays or by asking them to actively execute the 
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percept to be remembered. For instance, a given paradigm may ask participants to 

detect differences between visual displays of actions or ask the participants to 

perform the actions studied during the memory phase. (2) The first point highlights 

how in WM for bodily information, a shared container of reference (the body itself) is 

common to the origin and source of the memory and the observer. (3) In memory for 

non-body-related information all stimuli can be accessed at once. (i.e., encoding all 

stimuli in a single display). Conversely, numerous body-related stimuli such as actions 

are generally accessed in serial order, one at the time. In other words, there is only 

one representation and corresponding execution at a time, with transitions between 

movements in a discrete hierarchically-organized and goal directed manner (Endress 

and Wood, 2011). (4) Stimuli such as body postures, movements, and actions are 

dynamic. They involve either arbitrary and intransitive pattern or well-defined 

configurations of movements. Moreover, processing of body form (patterned 

postures) and body movements (fluent moves) seem to follows slightly different 

memory routes. Vicary and colleagues (2014) showed how recognition of patterned 

and fluent body movements specifically interfere with patterned-based and motion-

based interferences, respectively. (5) The characteristics of body-related stimuli are 

defined by the goal of the actions conveyed in the visual percept. When perceiving 

body movements to-be-remembered, for instance, hand movements to spatial targets 

can be done with more than one effector. Other examples require specific 

configurations of the body (e.g., performing an arabesque) (Smyth and Pendleton, 

1989). Therefore, bodily stimuli can be encoded at distinct levels, from more abstract 

(an action regardless the specific kinematics) to more specific (a very specific type of 

action). (6) Visual stimuli depicting body postures, movements, and actions convey 

information that can be independent of temporal and spatial coordinates. They can 

exist in different times and locations in space, in a similar time but in different 
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locations, as well as, in identical locations at different times. Recognising these 

parameters in the actions would depend on additional information that, contrary to 

memory for non-body-related information, body postures and actions may convey. 

Specifically, contrary to memory for non-body-related stimuli, bodily ones can convey 

specific agents for specific bodily stimuli (e.g., memorising actions depending on 

specific agents). 

1.2.1.1. Behavioural evidence for a separate WM system for body-related 

information 

In the following sections I review behavioural studies that support the existence of a 

WM system dedicated to encode and maintain visually perceived body-related 

information. As for the aforementioned WM systems (e.g., visuo-spatial sketchpad 

and phonological loop), the present system has been mostly delineated by the use of 

interference tasks (note that since Chapter 5 includes three experiments specifically 

using interferences/suppression tasks, a table summarizing all studies using 

interferences can be found in Chapter 5, table 5-1). Last, as noted in the previous 

section, WM for bodily stimuli can be studied via paradigms examining memory 

performance by action reproduction or action recognition, hence the following studies 

are presented according to this classification.  

1.2.1.2. Memory for actions reproduction 

Researchers have studied memory for action reproduction by asking participants to 

observe/encode, maintain, and reproduce actions in serial order. Moreover, as in 

previous WM studies, these tasks are used in the context of dual tasks paradigms, in 

which the aim is to examine whether specific memory processes can be concurrently 

performed with another task. Precisely, Smyth and colleagues (1988; 1989) asked 

participants to perform two WM conditions, one in which participants had to remember 

different numbers of body movements, and a second condition in which they had to 
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remember movements to specific spatial locations. At the same time, participants 

were also asked to perform two concurrent tasks: a movement suppression task and 

a spatial suppression task. The results showed a interaction between memory 

performance in the memory tasks and the type of suppression task. Specifically, 

memory span for body movements was significantly impaired by alternating 

configurations of the participants’ hand (i.e., movement/sensorimotor suppression) but 

not by a spatial suppression task performed with the same body part. Conversely, 

memory span for spatial locations in space was significantly affected by a spatial 

suppression task. These early studies suggested the presence of a WM system 

dedicated to maintain body-related information, which can be dissociated from a more 

specialised system for spatial information about locations.  

Later studies replicated the dissociation showed in the studies of Smyth et al (1988; 

1989). Precisely, in the first experiment of Woodin and Heil (1996) participants were 

asked to remember body configurations adapted from Smyth et al. (1988) and 

location in space using the Brooks tasks (Brooks, 1967), which consists in holding in 

memory a set of numbers and their relative spatial locations within a matrix (e.g., 

place 3 in the lower right corner, then place a 2 above this position). Then, 

participants were instructed to perform two suppression tasks aiming to disrupt visuo-

spatial memory and body processing, a square tapping task and a body-tapping task. 

Results showed that memory span for spatial locations in the Brooks task decreased 

when accompanied by the square tapping whereas span for body configurations 

diminished when concomitant to body tapping. Further studies have also found 

double dissociation between spatial and sensorimotor processing. Rumiati and 

Tessari (2002) tested participants to remember pantomimes of object-related actions 

during articulatory, motor, and spatial suppression. The authors found that motor and 

spatial suppression could be dissociated even when both types of suppression 
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required similar amount of cognitive resources. In other words, dissociation between 

motor and spatial storage for actions was delineated by the use of suppression tasks 

that in principle were equally demanding. Hence, their results are unlikely to be due to 

dissimilarities in the difficulty of the suppression tasks. 

Other studies have been designed to take advantage of long-lasting associations, 

built through body experience, and their effects in WM processing. Cortese and Arnau 

(2010) asked ballet dancers to encode different ballet movements while performing 

motor or spatial suppressions tasks. The results showed that memory performance 

for ballet movements was affected by the motor suppression task, whereas memory 

for the locations in the stage in which the movements had to be done was affected by 

the spatial suppression task. A more recent study has shown that body experts and 

non-experts also differ in the use of verbal and sensorimotor processing. Moreau 

(2013) tested wrestlers and non-experts to remember full body stimuli displaying 

movements of arms and legs during concomitant articulatory or motor suppression. 

The results showed that non-experts relied more in verbal codes, and that overall, 

body experts did better than non-experts (i.e., during the non-suppression and verbal 

suppression conditions). However, motor suppression affected experts’ performance 

to the point that the advantage of expertise was completely nullified.  

Interestingly, not only is memory for body-related information affected by a number of 

body-related computations such as body movements, but also movements 

themselves seem to be affected by memory processes associated with processing 

visually perceived bodily input. The second experiment of Woodin and Heil (1996) 

showed how different stages of a continuous body movement were disrupted by the 

memory encoding of specific types of information. The patterned phase of the 

participants’ continuous movement was disrupted when observing and remembering 

the body configurations used in the aforementioned studies of Smyth and colleagues.  
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1.2.1.3. Memory for actions recognition 

In the aforementioned studies there was an overlap between the encoding of body-

related information and the active use of the body to disrupt the memory processing 

of such information (i.e., the use of the body in both stimuli and suppression tasks). 

Could the effects described in those studies be due to such overlapping? Smyth et al. 

(1990) showed that memory for visually perceived body configurations is disrupted by 

just observing other’s actions during the retention period in which body movements 

are being maintained in memory. Moreover, other bodily computations such as 

holding a second set of movements and copying others’ actions also decrease 

memory span for body movements. The latter example is remarkable because even 

when body movements were used as a filler task, in the absence of WM demands, 

they were still interfering with the recall of the body stimuli to-be-remembered.   

In other studies, participants have to detect differences between different displays of 

body postures and respond to this task in the absence of execution. Furthermore, at 

the same time they are also asked to hold visual and spatial information of non-body-

related stimuli such as arbitrary objects (i.e., colours squares). In 7 different 

behavioural experiments Wood (2007) showed that maintaining these later stimuli did 

not disrupt memory span for body postures.  Conversely, WM for body-related stimuli 

is disrupted by having to remember serial information. For instance, when body 

postures and objects are sequentially displayed and the task implies serial 

maintenance, memory performance is affected (Smyth and Pendleton, 1990; Woodin 

and Heil, 1996; Wood 2007; Vicary et al., 2014). The mechanisms dedicated to 

sensorimotor information could support also other types of non-body-related 

sequential information (Wood 2007; Schubotz 2007).  
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1.2.1.4. Capacity limits in body-related WM 

Support for a separate storage for sensorimotor memory also comes from delineating 

the mnemonic capacity of its underpinning system. While researchers still 

investigating the exact mechanisms limiting our memory capacity (Ma, Husain, and 

Bays, 2014; Constantinidis and Klingberg, 2016), there is general agreement on our 

highly limited capacity of storage. Only three or four simple visual stimuli can be held 

in memory (Luck and Vogel, 1997), and others found that even less can be stored if 

these possess greater load of information (Alvarez and Cavanagh, 2004). For 

actions, only between two and three are well maintained in working memory (Wood, 

2007; Wood 2008; Wood, 2011; Smyth 1990; Smyth 1988, Gao, Bentin and Shen, 

2014). However, nine sensorimotor properties (i.e., type of action, body side, and 

duration) distributed across three body actions can be remembered as well as three 

properties across three actions (Wood 2007). These studies also show that when 

encoding actions in addition to other non-body-related features, participants’ 

performance decline. For instance, maintaining in memory the agent, point of view, 

and background scenario of specific actions decreases memory performance (Wood 

2008; Wood 2010; Urgolites and Wood, 2013, respectively). Thus, similarly to visual 

WM for simple objects, where binding a conjunction of visual properties does not 

translate in a big loss of capacity storage (Luck and Vogel, 1997), binding properties 

inherent to body actions in working memory seems to require little computational 

effort. On the other hand, if these are not body-related, additional computational 

processing is needed to bind information that probably belongs to different working 

memory storages.  
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Figure 1-5. Schematic illustration of body-related storage in a specialized WM system of 

limited capacity. A, successful maintenance of a single body-related stimulus in WM. B, 

successful maintenance of a single body-related stimulus and semantic information in WM. 

Since this information does not belong to the same category/nature, stimuli are correctly 

encoded and maintained in supposedly independent WM storages. C, tasks that require use 

of the body-related WM system, such as perceiving bodily events, disable such a system by 

exhaustion of resources that otherwise could be allocated to memory maintenance. D, 

increasing memory load of the same stimuli category (bodily items) leads to poor memory 

performance during recall of body-related information. Conversely, this process does not 

overload other memory systems, leaving enough workspace for the correct recall of other 

non-related bodily items. 

 

1.2.1.5. Wrapping up behavioural evidence of a specialised WM system for 

body-related information  

Considering the compound of studies included in this section, it is possible to 

postulate the existence of a WM system dedicated to encode and maintain body-
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related information. In dual-task paradigms, this system (or subsystem) is not 

impaired by memory or perceptual tasks that use non-body stimuli (i.e., colours, 

matrices, words). Moreover, it is engaged whether memory for actions is tested in 

delayed matching tasks or in paradigms asking participants to actively perform the 

actions to-be-remembered, that is, the mechanisms behind this WM system seems 

to be driven by the nature of the information conveyed in the percept (i.e., 

supramodal). Crucially, the consolidation of visually perceived body-related 

information seems to be overloaded by adding sensorimotor-like load to the visual 

display (i.e., quantity of body-related information conveyed in the visual display) or by 

using one’s sensorimotor system during movement/motor suppressions. Altogether, 

there is behavioural evidence for a WM system for body-related information, the 

neural underpins which seem to exist on our own body representation in the brain. 

1.2.2. Neural candidates for a WM system to encode body-related 

information 

To our knowledge there are no studies investigating how and where in the brain 

perceived bodily information is encoded and maintained during WM. Yet, it is 

possible to speculate with a certain confidence about the neural candidates for such 

processes. Here, there are three important pieces of information that need to be 

considered: (1) as I outlined in the previous sections, sustained activity that increases 

with memory load has been observed in sensory areas during WM tasks. Precisely, 

sensory recruitment WM models postulate that perceptual brain areas also play a key 

role in memory processing (D’Esposito and Postle, 2015). Nevertheless, these 

findings have been found in studies mostly using non-body-related stimuli. (2) 

Behavioural studies in WM for visually perceived actions suggest that similar 

specialised mechanisms underpin the perception of others’ bodies, as well as one’s 

sensorimotor processing (namely, similar brain areas that we use to move and feel 
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our own body). Last, (3) there are a large number of studies that have studied 

perception of others’ bodies and actions; showing that our own body in the brain 

plays a crucial role in perceiving such bodily interactions. Altogether those three 

points concatenate into the following idea: neural candidates for a WM system to 

process body-related information are possibly those with a role in perception of 

bodies and actions. For this reason it is important to encapsulate these brain areas 

and their functions during action observation. 

1.2.2.1. Brain regions known to have a role in body and action observation 

Observing whole bodies activates the fusiform body area (FBA), the function of which 

differs slightly from the extrastriate body area (EBA), a brain region with neurons that 

fire when seeing specific body parts (Downing et al., 2001). Moreover, there is also 

the fusiform face area, which responds to the sight of faces. Note that findings about 

these brain areas suggest that face and body selective regions are closely related. As 

Gelder et al. (2010) suggested, it is possible that when seeing either faces or bodies, 

the brain fills the gap and recreates automatically the remaining bodily percept. 

Remarkably, visual perception of static bodies such as body postures elicits neural 

processing in brain regions usually associated with perception of complex motion 

(Kourtzi and Kanwisher, 2000) and motor regions (Urgesi et al., 2006). The 

engagement of regions linked to processing of dynamic influx during perception of 

static bodies suggests that the brain extracts fluency from snapshots.  

Body movements convey information about the kinematics, the internal and external 

dynamics that act on the human body, and causes of the body to move in the way it 

does. When bodies are observed, the perceivers’ brain engages a distributed network 

of neural regions that respond to those features; the widely known mirror system, 

located over our own motor system responds to somebody else executing actions. 

Originally discovered in the area F5 and PF of the macaque monkey, mirror neurons 
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discharge when an action is either executed or observed (di Pellegrino et al., 1992; 

Gallese et al., 1996). Despite the cytoarchitecture and function of these neurons being 

still controversial, many studies have reported mirror-like activations in the human 

brain (Mukamel et al., 2010). Interestingly, despite bodily information being initially 

perceived through different sensory modalities, further mirror activations take place 

over sensorimotor and somatosensory brain areas. EEG studies using sounds of 

actions elicited larger mu rhythm suppression, a neural marker of sensorimotor 

processing, over the contralateral hemisphere to the dominant hand when compared 

to hearing control sounds (Pineda et al., 2013).  

Brain regions with mirror properties (i.e., vPMC, dPMC, IPS, S1) (Fig. 1-6) and the 

more posterior and ventral regions (posterior parietal and occipitotemporal) regions 

comprise the action observation network (AON). The AON includes several structures 

of brain systems partially overlapping and contributing to both perception and 

execution (Kilner, 2011), and more specifically, functions related to visuomotor 

processing and acquisition of motor skills (Sakai et al., 2002; Grèzes et al., 2003). 

Altogether, AON is modulated by sensorimotor experiences that are acquired over 

time, that is, a form of long lasting association linked to both perception and execution 

of a particular set of actions. For instance, learning new body movements enhances 

parietal and premotor cortices; areas known to participate in perception of others and 

one’s own motor acts (Cross, Hamilton and Grafton 2006; Calvo-Merino et al., 2005). 

The patterns of activity within these regions vary depending on how body experience 

is gained (e.g., just by seeing actions and/or by actively engaging in learning actions) 

(Calvo-Merino et al., 2006; Cross et al., 2009).  

More recently, connectivity analysis has showed that participants’ experience for 

body movements modulates reciprocal attenuations between parietal and more 

posterior cortices (Gardner et al., 2015); areas of the brain involved in the processing 
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of body image and visual input, respectively. Furthermore, machine learning 

techniques and fMRI data have revealed that brain regions typically associated to 

motor production and posterior additional sensory areas code actions at different 

levels. Inferior parietal and occipitotemporal lobes code actions at abstract levels. 

Contrariwise, premotor cortex seems to code actions at the more concrete level. This 

latter finding implies that posterior brain areas carry an important weight in 

understanding the observed actions (Wurm and Lingnau, 2015).  

 

 
�V5    �EBA   �IPS 

�S1    �vPMC   �dPMC (incl. SMA)  
 

Figure 1-6. Schematic illustration of brain regions usually reported in studies of action 

observation. EBA: extrastriate body area; S1: primary somatosensory cortex; IPS: 

instraparietal sulcus; vPMC: ventral premotor cortex; dPMC: dorsal premotor cortex; SMA: 

supplementary motor area. 
 

 

1.3. Putting it all together: WM system for visually perceived 

body-related information (summary) 

Human interaction implies observing, learning, and reflecting about others’ bodies, 

movements, and actions. This requires perceiving and encoding bodily information 

acquired through our senses and its later transformation into internal body 

representations that can be later retrieved from memory —memories related to bodily 

information. By doing this, we go from mere sensory input to functional and 

meaningful cognition that allows us to recognize, understand, imitate, and learn from 
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others.  

Memory systems comprise several systems specialised in processing different types 

of information and subsequent tasks. There is good evidence for the presence of 

visuo-spatial and phonological systems handling visuo-spatial and semantic 

information. More recently, another system for the encoding and maintenance of 

visually perceived bodily information has been suggested (Baddeley 2012). The 

neural regions engaged in the latter system are largely unknown, however, 

behavioural studies suggest that our own cortical representation of the body in the 

brain may play a role in memory for observed actions and body postures. 

Importantly, contemporary models of WM postulate that brain areas contributing in 

perception also support WM storage. Therefore, it is possible to theorise that brain 

regions known to participate in perception of body stimuli also contribute to holding in 

WM these stimuli. Precisely, imaging, electrophysiological, and direct recording of 

brain activity have shown that a distributed network of brain areas known as the 

action observation network (AON) is engaged during perception of bodies. AON 

includes posterior sensory-input regions that ‘receive’ visual percepts of actions and 

static body postures, as well as more anterior cortices that are relevant for the 

perceivers’ body movement and sense of touch (i.e., sensorimotor and 

somatosensory cortices).  

Therefore, the WM system for encoding and maintenance of visually perceived bodily 

input is probably overlapping the regions of the AON. Considering the behavioural 

evidence revised before (e.g., Smyth et al., 1988,1989,1990; Cortese and 

Rossi‐Arnaud, 2010) such overlap is probably arising over sensorimotor and 

somatosensory regions. Thus, brain areas contributing to body perception are likely 

candidates to store visual bodily percepts. This framework provides additional 

systems tightly linked to action and bodily perception with functional properties 



	 49 

related to memory cognition. Nevertheless, it remains unclear if body-related cortices 

are involved (beyond perception) in maintaining body stimuli to-be-remembered in 

memory. Here, several specific research questions arise: 

 

1.3.1 Research questions 

Experimental/theoretical questions:  

• Does the sensory entry modality or the nature of perceived information (body 

vs. non-body-related) dictate where in the brain information is processed and 

maintained in WM? 

• Is our own body representation over sensorimotor cortices maintaining body-

related percepts in WM beyond the perceptual stage? (i.e., encoding and active 

maintenance of bodily stimuli when these are not within direct view).  

• Do distinct body-related brain areas (motor and somatosensory cortices) 

participate in the encoding and maintenance of body stimuli? And how are 

these dissociated from the concomitant visual processing of body images? 

• What is the causal role of these body-related body areas in the brain during 

maintenance, consolidation, and retrieval of the stimuli to-be-remembered and 

how are these detached from other types of sensory information? 

 

Technical/methodological questions:  

• How can we dissociate brain activity arising from body-related regions and 

sensory-input regions such as visual cortices? (while preserving high temporal 

resolution). 

• Given that previous studies have shown that somatosensory and sensorimotor 

cortex support the perception of bodies and actions, how can we explore the 

discrete contribution of these areas from concomitant visual activity? 
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1.4.  Artistic Impressions I 

 

         
 

 

     

 

 

 
 

 
 

 

Visual Realm - Merged landscapes: Vision I – VI (2015) Photography on board (21 x 21cm) / AGP. 

Colours, luminance, contrasts, and shapes provide an immeasurable part of our vivid phenomenological 

experience. Countless memories are built though vision. This collection contains two elements: (1) 

Visual textures and colours embedded in the models’ head in those posterior areas where research has 

showed that visual information is held (landscapes were taken in the Serra de Tramuntana, Mallorca. 

World Heritage Site). (2) Parts of the models’ heads are covered by their hands. This occlusion is not 

arbitrary. My PhD work seeks to understand how these regions could hold other types of memories such 

sensorimotor (—related to body movements and actions). 
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2. Chapter 2: Revealing hidden 

representations of the body in the brain 

 
An important part of the work presented in this thesis is theoretical, as well as purely 

methodological. This is partially due to the complexity of my object of study: the body, 

as a percept to be remembered it embraces experimental and conceptual challenges 

that are present in both action observation and memory fields.  

In this second chapter, I first present a very short introduction to electrophysiological 

recordings. Secondly, I consider how further paradigms need to consider processing 

of body-related stimuli as a very particular set of neural processes/responses. Third, I 

revise, expand, and propose a novel EEG paradigm that aims to dissociate visual 

and somatosensory processing during encoding of visual bodily stimuli. Fourth, I 

outline methodological aspects that need to be considered in this paradigm and other 

EEG studies that examine neural responses associated to perception of body stimuli. 

Altogether, when considering the points developed in this chapter (and by 

considering how EEG works), it is possible to create new approaches that have the 

potential to explore with high temporal resolution the involvement of body-related 

cortices when seeing and encoding bodily-related information.   

 

2.1. Basic foundations of EEG recording 
2.1.1. Measuring EEG activity 

Extracellular field recordings are the result of superimposed electric fields that 

originate in those electric currents generated by active neurons (Fig. 2-1). Initially, 

any of the excitable membranes found between neuronal elements (i.e., axons, 

dendrite, soma, and so on) build up a voltage difference in both the intra- and 

extracellular space (Murakami et al., 2002, 2003; Murakami and Okada, 2006). 
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Depending on the cytoarchitecture of the neural generators (e.g., properties of the 

tissue and alignment of neurons) the electrical fields created by the voltage 

deflections of numerous thousands of postsynaptic potentials enable the recording of 

brain activity by using different techniques such as electroencephalogram (EEG) (for 

further details on origins of extracellular recordings see Buzsáki et al., 2012), 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Principles of ERP generation. A, Schematic pyramidal cell during 

neurotransmission. An excitatory neurotransmitter is released from the presynaptic terminals 

in the apical dendrite, causing positive ions to flow into this region of the postsynaptic neuron. 

This creates a net negative extracellular voltage (represented by the “ – ” symbols) just 

outside the apical dendrite. To complete the circuit, voltage will flow through the neuron and 

then exit in the region of the cell body and basal dendrites (represented by the “ + ” symbols). 

This flow of current forms a small dipole. The polarity of this dipole would be inverted if an 

inhibitory neurotransmitter were released rather than an excitatory neurotransmitter. It would 

also be inverted if the neurotransmission occurred at the cell body or basal dendrites rather 

than at the apical dendrite. B, Folded sheet of cortex containing many pyramidal cells. When 

a region of this sheet is stimulated, the dipoles from the individual neurons summate. C, The 

summated dipoles from the individual neurons can be approximated by a single equivalent 
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current dipole, shown here as an arrow. By convention, the arrowhead indicates the positive 

end of the dipole. The position and orientation of this dipole determine the distribution of 

positive and negative voltages recorded at the surface of the head. D, Example of a current 

dipole with a magnetic field traveling around it. E, Example of the magnetic field generated by 

a dipole that lies just inside the surface of the skull. If the dipole is roughly parallel to the 

surface, the magnetic field can be recorded as it leaves and enters the head; no field can be 

recorded if the dipole is oriented radially (perpendicular to the surface). Note: Reprinted with 

permission from “An Introduction to the Event-Related Potential Technique, 2nd edition” by 

Luck, S.J. 2014, MIT press.  

 

After a session of EEG recordings, the neural responses to the events of interest are 

averaged together. In the particular case of event-related potentials (ERPs), the 

averaging of the signal also includes non-specific brain activity, however, averaging 

the neural responses locked to a particular event across many trials averages out 

event-unrelated brain activity while including/enhancing consistent and task-related 

neural responses (Glaser and Ruchkin, 1976; Luck, 2014). In a very ideal world this 

would be enough to examine scalp potentials. However, extracellular field recordings 

such as ERPs measured by EEG are spatiotemporally smoothed (Niedermayer and 

Lopes da Silva, 2005; Buzsáki et al., 2012). In particular, the spatial resolution of 

EEG, this is to say, from where in the brain the observed brain activity arises, is still a 

challenging issue 

2.1.2. ERPs - signal processing  

The ERP components described in the ERP literature refer to neural signals that are 

generated in specific brain regions when performing certain mental computations. 

These components are recorded at the scalp and exhibit the sum of numerous 

underlying components, namely, there is a superimposition of components arising 

from multiple sources. Therefore, the slopes and peaks observed in EEG waveforms 

reflect the sum of several and distinct neural sources. The mixture of components 

contributing to these superimposed waveforms in scalp potentials is the so-called 



	 55 

‘hard problem’ that affects spatial resolution and the estimations of the neural 

generators of the signal (Cohen, 2014; Luck, 2014). Moreover, usually many neural 

generators are active and their superimposed patterns of signal may cancel each 

other. This cancellation decreases the overall observed signal that is averaged 

against noise (i.e., against task-unrelated and non-specific activity). Additionally, the 

percentage of voltage that is propagated from within different brain regions also 

varies depending on the underlying brain tissues and across electrode positions 

(Ahlfors et al., 2010; Irimia et al., 2012; Tenke and Kayser, 2012). Contrary to 

functional magnetic resonance imaging (fMRI), in which relevant modulations can be 

observed without superimposed and propagating signals across independent and 

largely distributed voxels, superimposition and propagation across scalp potentials 

result in important constrains. The loss of relevant information regarding the original 

time course and neural source of the signal needs to be considered.  

Nevertheless, the temporal resolution of ERP-EEG is excellent, a matter that need to 

be considered when studying the very fast influx and processing of information in the 

brain. Components that peak as early as 20-40ms after stimulus onset can be 

already observed and documented (Urbano et al., 1997; Giard and Peronnet, 1999). 

This high temporal resolution is particularly relevant to compare mental chronometry 

across different populations and in examining the effects of experimental 

manipulations across conditions. Moreover, some of the problems regarding the 

superimposition of components can be overcome, not only by cutting edge 

implementations with already existent methods, but also by standard procedures. For 

instance, when examining ERP waveforms from various electrodes, the components 

across the scalp are quite similar but the contribution of each one of these across the 

observed electrodes actually differs (Fig. 2-2). Then, it is possible to picture the 

contribution of the components by comparing waveforms across both time and 
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electrode sites (Kappenman and Luck, 2012). Also, a paradigm that is based in well-

supported evidence enables to make solid inferences when approaching the data, 

from where and when a component may be found to its hypothetical interpretations 

and neural underpinnings. 

 

 
 

Figure 2-2.  Relation between the underlying component waveforms and the observed scalp 

waveforms. In this example, three components are present (C1, C2, C3), each of which has a 

source waveform (time course of voltage, shown at the bottom left) and a generator location 

(represented by the arrows in the head). The contribution of each component waveform to the 

observed waveform at a given electrode site is determined by a weighting factor that reflects 

the location and orientation of the generator relative to that electrode, along with the 

conductivity of the tissues that form the head. The table shows the weighting factors between 

the three components, and the three electrode sites are given in the table (but note that these 

are made-up values, not the actual weighting factors from a real head). The observed 

waveform at a given electrode site (shown at the bottom right) is equal to the sum of each of 

the component waveforms, multiplied by the weighting factor between each component and 

that electrode site. The weights are indicated by the w’s on the arrows between the 
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component waveforms and the observed waveforms (e.g., w2,3 represents the weighting 

factor between component 2 and electrode 3). Note: Reprinted with permission from “An 

Introduction to the Event-Related Potential Technique, 2nd edition” by Luck, S.J. 2014, MIT. 
 

 

2.2. Adapting ERP-EEG to explore the body in the brain 

In many cases ERP studies focus on understanding general principles of human 

cognition by examining mental operations and subsequent waveforms that are 

concomitant to arbitrary stimuli. Yet, as revised in Chapter-1, when dealing with body 

stimuli, there are certain characteristics that need to be considered. Here we are 

referring to body-related stimuli in a broad sense. Nevertheless, distinct body stimuli 

recruit similar, as well as different neural mechanisms, for instance, processing 

bodies and faces exhibit some differences in the latency of ERP components and 

neural generators, as well as certain similarities when compared against non-body-

related stimuli (for an excellent review on this topic see de Gelder et al., 2010). 

Several aspects delineate how ERP experiments that use body stimuli need to be 

designed. (1) To start with and very briefly, one of the most important differences at 

the conceptual level is that processing body-related information such as visually 

perceived body parts (e.g., hand images) implies that similar vessel (the body itself) 

is shared between the observer and the percept. This factor is assumed to be crucial 

in driving sensory signals and computations about bodily percepts onto our own body 

representation in the brain (Niedenthal, 2007; Rizzolatti and Sinigaglia, 2010). The 

underlying process is different from any other non-body-related stimuli because they 

do not obviously convey such bodily-framed quality. Body stimuli elicit sensorimotor 

associations that have been developed by repeated sensory stimulation within and 

between one and others’ bodies. Even when participants merely perceive body-

related information and no action execution is required, sensorimotor associations —
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related to bodily experiences, may play an important role (see for instance Calvo-

Merino et al., 2005).  

(2) A further factor that needs to be taken into account is the degree of ‘bodily 

elicitation’ conveyed in the experimental task. There is convergent evidence about 

the automaticity of body-related stimuli in driving embodied experience. Yet, factors 

such as the participants’ body posture, action intentions, experience with the body 

stimuli to-be-encoded, instructions asking participants to explicitly attend non-body or 

minor body-related information in a bodily percept (i.e., gender of an actor or the 

colour of his/her clothing), and the perspective of the body stimuli within the visual 

field can both augment and reduce sensorimotor processing. An example of the latter 

instance can be observed when participants are asked to decide whether or not 

different objects are suitable for manipulation after brief presentations of hand 

images matching or not the posture of the perceivers’ own hand. Matching egocentric 

primes result in faster RTs compared to non-egocentric ones, suggesting that the 

degree of overlapping between the effector and the body image facilitated the task 

(Jackson et al., 2006). From imaging data, another study reported greater activity in 

the left sensorimotor cortex for egocentric perception of actions than for non-

egocentric (Bruzzo et al., 2008). 

2.2.1. Considerations in the design of body stimuli 

Overall, the properties of the stimuli affect their processing. Many experiments have 

shown that visual processing of body stimuli drives processing over and above very 

initial perceptual brain areas. Importantly, parameters of bodily elicitation have to be 

well controlled, since the number of trials needed to record ERP is normally larger 

than the those needed for behavioural experiments, it is not possible to manipulate 

extensively the parameters of the stimuli across trials and additional caution needs to 

be taken when choosing and designing the stimuli (Picton et al., 2000). On top of 
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that, since body-related information conveys multiple and parallel features, it is 

important to display unambiguous information. If we are interested on designing an 

experiment on how stimuli are processed depending on their nature (i.e., body or 

non-body-related), the difference between them needs to be clear and as far as 

possible well controlled. For instance, encoding of hand images that resemble 

objects or convey semantic information (i.e., specific hand signs and gestures) would 

confound the elicited brain responses and the subsequent recorded waveforms 

across the scalp. For instance, Gao et al. (2014) showed that instructing participants 

to verbally encode biological motion in points of light display portraying different 

bodily actions abolished mu suppression (an index of embodiment) compared to 

when participants were not prompt to explicitly use verbal codes.  

2.2.2. Body vs. non body-elicited neural activity 

Any ERP-EEG experiment will face a number of challenges that will obscure data 

interpretations, namely those briefly reviewed, signal propagation, its decay and 

cancelation, the presence of multiple and active neural generators, and the 

superimposition of observed components. Moreover, experiments examining body-

related visual processing face an additional challenge: measuring ERP waveforms 

beyond those electrodes positioned over input-stimulated cortices, that is, measuring 

brain activity arising from cortex other than visual (e.g., central cortices such as 

somatosensory or more anterior as motor).  

Specifically, visual perception of body-related stimuli recruits ‘sensory-input’ cortical 

regions (i.e., visual stream). This initial ERP visual signal is generally referred as 

visual-evoked potential (VEP), but it can be also found as visually-evoked response 

(VER) and visually-evoked cortical potential (VECP). Measuring VEPs over 

posterior/occipital electrode sites allows good measuring of activity directly linked to 

computations of the visual system during visual processing. For instance, EEG 
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studies examining attentional processes in visual search paradigms for colours and 

shapes report VEPs modulations over posterior electrodes sites; the location on the 

scalp where actual activity from the visual system is usually observed (e.g., Norcia et 

al., 2015). Electrodes over more anterior sites do not always reflect modulations of 

brain activity neither interactions concomitant to these basic visual tasks.  

In addition to the visual cortex, the sight of body stimuli recruits sensorimotor, 

somatosensory, and other cortical regions across a distributed network of brain 

regions known as the action observation network (Calvo-Merino et al., 2006; Cross et 

al., 2006; Caspers et al., 2010; Molenberghs et al., 2012). The visually ‘acquired’ 

body percept is rapidly recoded over one’s body-related cortices, which play a 

fundamental role in extracting, predicting, and performing computations related to 

others’ bodies and actions, as well as one’s sense of body movement. However, in 

EEG-ERPs studies the initial sight of body stimuli elicits the aforementioned VEPs 

that spread from posterior/visual to more anterior and body-related cortices, masking 

thenceforth the brain responses that are also responsible for the processing of body-

related information. Therefore, encoding and other processes associated to the 

transformation of bodily information onto our own cortical body representation (i.e., 

sensorimotor and somatosensory) are difficult to tease apart from the VEPs linked to 

the signal delivering the visual percept. Measuring VEPs over posterior/occipital 

electrode sites allows good measuring of activity directly linked to visual processing 

but it does not facilitate direct inspection of the state of sensorimotor and 

somatosensory cortices. Consequently, the neural processes that are driven by the 

bodily nature of the information conveyed in the percept are difficult to dissociate 

from on-going visual signals.  
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2.2.3. Dissociating body-related cortical activity from visual 

concomitant generators 

How can we measure and dissociate visual processing from ERP components 

arising from body-related cortices? Here we proposed a solution to probe the state of 

body-related cortices (i.e., somatosensory cortex) during visual perception of body 

stimuli in ERP-EEG experiments. This proposal involves four key elements: i) the use 

of stimuli that differ in the type of neural mechanisms that they evoke: body vs. non-

body-related stimuli; alternatively this can be combined with the use of instructions 

that modulate the degree of bodily elicitation (e.g., attending actors’ body postures 

vs. attending to actors’ gender). ii) Eliciting ERPs ‘delivering’ visual body-related 

stimuli such as those VEPs elicited when seeing body stimuli. iii) Eliciting task-

irrelevant ERPs over those cortical areas classically shown to be involved in 

processing of body stimuli. iv) The last step involves subtracting and comparing ERP 

components from multiple regions of interest and across conditions that manipulate 

the degree of bodily elicitation conveyed in the task. In the following sections these 

steps are described.  

To illustrate how ERP components arising from body-related cortices can be 

dissociated from visual activity —VEPs, I revise and use as example a relatively 

recent study on somatosensory involvement during perception of emotional faces. 

Previous findings link our own somatosensory representation in the brain with 

perception of others’ facial expressions (Pitcher et al., 2009). In order to dissociate 

somatosensory waveforms from concomitant visual waveforms elicited when seeing 

faces, Sel and colleagues (2014) used somatosensory-evoked potentials (SEPs) 

while participants’ were observing faces with different emotional expressions. SEPs 

are obtained in response to brief cutaneous or transcutaneous stimulation, for 

instance, mechanical impacts on the fingertip, air puffs, and bipolar transcutaneous 
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electrical stimulation. These stimulations evoke ERP components in the contralateral 

primary and secondary somatosensory cortices (S1, SII). SEPs are a practical and 

non-invasive tool to assess the somatosensory system and its underlying processing.      

In Sel et al. (2014) SEPs were elicited in 50% of the trials by delivering a task-

irrelevant tactile tap either at the participants’ face or index finger. These SEPs were 

always presented 105ms after onset of the images, which according to TMS studies, 

it is the timing needed for face images to be processed in somatosensory cortex 

(Pitcher et al., 2008). Therefore, half of the trials contained VEPs elicited at the onset 

of the images while the other half contained a mixture of VEPs also elicited when 

perceiving images plus those SEPs elicited at the onset of the tactile tap. The only 

purpose of the task-irrelevant tactile taps was to reveal the state of somatosensory 

cortices during visual processing of facial emotions (Fig. 2-3). This design allowed 

measuring source waveforms of somatosensory processing (SEPs) by subtracting 

brain activity from trials containing only VEPs to those VisualTactile trials containing 

a mixture of both VEPs and SEPs. By conducting the subtraction (VEPsSEPs — 

SEPs), the authors exhibited novel evidence of pure somatosensory processing 

modulated by stimuli driven-activity, seeing facial expressions, with fine temporal 

resolution. Importantly, in the control condition, participants were asked to attend to 

the gender of the faces. Once participants attended the visual features embedded in 

this task, the modulations of isolated SEPs were not found.   
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Figure 2-3. Schematic illustration of subtractive methodology using SEPs and VEPs. From left 

to right, perceiving bodily stimuli elicits visual-evoked potentials that conceal possible and 

concurrent processing in other regions such as somatosensory cortices. Next, in a given 

experiment, 50% of trials in include visual perception of body-related stimuli, which evoke 

VEPs (central-bottom part). The remaining 50% of trials include similar VEPs, as well as 

somatosensory-evoked potentials (SEPs) elicited by task-irrelevant tactile stimulation (central-

upper part). The latter allows probing the state of the somatosensory cortices, which activity 

can be dissociated from visual activity in the subtraction illustrated on the right [(VEPs&SEPs) 

– (VEPs-only)].  

 

In brief, the method behind the subtraction of VEPS to the ERP signal containing 

VEPs and SEPs is a well-known procedure that has been widely implemented in 

numerous EEG-ERP paradigms across different subjects of study. The idea is to 

isolate specific ERP components by means of difference waveforms, particularly, 

computing differential activity by subtracting ERP waveforms elicited by one condition 

from the ERP waveforms elicited by another condition. In the case of Set el al., 

(2014), these conditions would refer to the type of activity reflected on scalps by the 

single or combining elicited ERPs during perception of facial expressions. Seeing 

images of faces ‘delivered’ the percept while eliciting VEPs and task-irrelevant SEPs 
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were then used to explore cortical areas linked to body processing. Next, by means 

of subtraction it was possible to isolate neural processes that were differently 

exposed in both conditions while reducing brain activity equally present in both 

conditions. This procedure is very useful in disentangling components that otherwise 

are difficult to observe and isolate.  

2.2.3.1. Types of subtractive-procedures 

Subtractive methodologies vary in their scope and design. For instance, in some 

studies different operations are inserted in a sequence of cognitive processes. In 

cognitive subtractions, each individual step is thought to reflect those cognitive 

processes and neural activations that compose the whole (much like differences of 

mental operations in Donders’ experiments) (Donders, 1868). Nevertheless, current 

postulates criticize the linearity of these types of subtractions, which neglect the 

interactions between cognitive processes and neural systems (Friston et al., 1996; 

Jennings et al., 1997; Price and Friston, 1997; Vidal et al., 2011). 

Another type of subtraction that is closer to the one proposed is that commonly found 

in studies examining how information from different sensory modalities is integrated. 

In multisensory integration different stimuli are presented through two or mores 

sensory modalities in a synchronised or desynchronised manner.  By subtracting 

brain responses to unimodal and multimodal presentation of stimuli, it is possible to 

dissociate waveforms that are likely to reflect sensory integration (Dell’Acqua et al., 

2003; Talsma et al., 2010; Mahoney et al., 2015). However, there are at least two 

important differences between this latter type of subtractions and the one introduced 

in (Sel et al., 2014). In many studies of multisensory integration, audiovisual 

integration is examined by comparing trials containing waveforms elicited by either 

visual, auditory, or the simultaneous presentation of both stimuli types. Sensory 

integration is assessed by computing the difference waveform between brain 
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responses to the audiovisual condition and the sum of unimodal auditory and visual 

conditions (i.e., Audiovisual – (Audio + Visual). This is substantially different from the 

subtraction performed in (Sel et al., 2014) (i.e., VisualTactile – Visual). First, these 

two subtractions differ in the number of scalars and operations that they take into 

account; only a single operation is used in the latter subtraction. Secondly, in the 

latter study SEPs per se do not provide any information about the visual input. SEPs 

elicited by a task-irrelevant tactile tap can hardly convey any valuable information 

about the characteristics of external body-related percepts (e.g., seeing others’ 

actions or body postures). Somatosensory responses to visually perceived body-

related information do not explicitly reflect sensory integration but probably 

associations that summon processing resources (Meyer et al., 2011; Sun et al., 

2016). This type of neural course is often invoked independently of intentional 

control; rather, stimuli salience drives the processing of information (e.g., seeing a 

human body moving through a still landscape). The only purpose of SEPs is to 

precisely make possible observing a driven signal that otherwise would be concealed 

by other concomitant processes.    

Relevant to understand our current approach, another EEG study has used task-

irrelevant ERPs to examine brain activity that otherwise is not easily observed. (Wolff 

et al., 2015) have recently published a paper in which they investigated neural 

activity linked to WM maintenance of visual stimuli that are not actively attended. The 

problem is that when visual stimuli are no longer attended, for instance during 

attentional shifts, brain activity regarding memory processes apparently fades even 

when the stimuli are still being held in memory (Stokes, 2015). In order to reveal this 

so called activity-silent, they proposed a paradigm that slightly resembles our 

proposal for investigating body-related cortices during processing of visually 

perceived information. They used a task-irrelevant visual stimulus that was shown 
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during the maintenance of the stimuli in memory. These latter stimuli functioned as 

task-irrelevant impulses to reveal hidden representations of the stimuli to-be-

remembered (much alike in echolocation, where simple impulses ‘ping’ are used to 

reveal unseen landscapes). Their results showed how a task-irrelevant stimulus may 

be used to drive a signal that otherwise remains concealed.  

We suggest that applying task-irrelevant SEPs while encoding body-related 

information elicits ERP components arising from body-related cortical regions that 

otherwise are concealed. Once SEPs are elicited, these act like impulses that reveal 

processing of body-related information. Importantly, in this context, SEPs per se have 

zero or very little cognitive relevance and their only purpose is to precisely elicit 

neural impulses that allow subtraction of concomitant components arising from 

distinctive neural generators.    

2.2.4. Considerations in data analysis and inspection  

I have introduced the ERP-EEG technique, the distinctiveness of the neural 

processes during encoding of visually perceived body stimuli, and a new method to 

isolate their processing beyond the visual stream. In the following sections I revise 

different methodological aspects that need to be considered in the design and data 

handling when using this method.  

2.2.4.1. Signal to noise ratio  

It also important to rule out possible confounds developing from subtractive 

procedures. For instance, when subtracting activity from visual-only trials (VEPs) 

from VisualTactile trials’ activity (VEPsSEPs) it is important to check that the number 

of trials in each stimulation condition is similar across other conditions. Otherwise the 

signal to noise ratio will virtually differ and the ERPs will show interactions and main 

effects that are not supposed to be there. Comparing the number of accepted trials 
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across all conditions and testing whether or not these are significantly different is a 

quick but first effective method of ruling out unwanted surprises.   

After checking the number of trials per conditions and computing difference 

waveforms, it is important to compare source waveforms across cortical regions and 

conditions. Specifically, somatosensory processing of body-related stimuli is 

supposed to arise from slightly postcentral cortices regions (i.e., mostly parietal 

electrode sites) and its activity should be recorded from electrode sites close to this 

area. If the tactile input is delivered at the very beginning of the trial, it is possible to 

observe an early component peaking around 45ms after tactile onset, which will likely 

reflect mere influx of tactile input (Hämäläinen et al., 1990; Eimer and Forster, 2003). 

Depending on the experimental design, this can be used to estimate from which 

electrodes it is possible to observe somatosensory processing. In any case, the 

difference waveform (VEPsSEPs – VEPs) resulting in visually driven SEPs needs to 

be compared across more anterior and posterior electrode sites. If the procedure has 

been effective in subtracting components that are present in both stimulation 

conditions, modulation of waveforms should be only found in expected 

somatosensory ROIs while waveforms over additional regions should not differ. 

Precisely, after subtraction it is recommendable to tests these waveforms against 

zero (no differences), as well as inspecting brain activity from other regions that 

should exhibit well-known components before subtraction (e.g., inspecting occipital 

electrode sites after subtraction of VEPs).  

2.2.4.2. Accounting for interhemispheric differences  

Our own body representation in the brain is lateralised; the right hand is represented 

over the left sensorimotor cortex and vice versa. Similarly, the lateralised dominance 

in controlling our own body seems to be reflected on the remapping of others’ bodies 

and actions in the our brain (Shmuelof and Zohary, 2006; Goslin et al., 2012). Body-
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related stimuli such as images and videos of hand, arm, and leg actions will likely 

drive brain activity in a lateralized manner (Buccino et al., 2001; Perry and Bentin, 

2009). The laterality and point of view of the stimuli conveyed in ERP studies 

requires considering this element as a unique factor that differs from the hemispace 

in which information is displayed. For instance, videos showing right hand actions 

that are displayed from an egocentric point of view on the right side of the screen 

would probably elicit greater brain responses in the contralateral sensorimotor 

hemisphere than left hand actions displayed in similar setting. Therefore considering 

the contralateral representation of body information in the brain, the design and 

further analysis of waveforms needs to include ‘hemisphere’ as factor with two levels 

(i.e., contralateral and ipsilateral).   

During inspection of somatosensory processing elicited by SEPs after subtraction of 

concomitant VEPs, the factor hemisphere can be analysed and ultimately expressed 

through different linear analysis. The first approach is to conduct a two-way analysis 

of variance ANOVA after subtraction of VEPS on the mean amplitudes. The resulting 

SEPs are compared between hemispheres and any other conditions of interest (i.e., 

Hemisphere (ispi-contralateral) x Condition (body and non-body-related perceptual 

task). A second approach is to subtract activity between both hemispheres and to 

compare activity between the remaining conditions by using a t-test. In both cases 

the p-values will be similar but the type of analysis and the way in which the data is 

shown in they corresponding figures will differ. Overall, hemisphere should be 

included as a factor in statistical analyses because body-related stimuli drive 

lateralized effects. Since interhemispheric differences are regional differences that 

need to be supported by appropriate tests, if two conditions or groups are different in 

a region but nor in another one, an interaction of group/condition by region is needed 

to show this difference (Kappenman and Luck, 2012; Keil et al., 2014). Alternatively, 
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it is also reasonable to report these effects by showing that one conditions differs 

from zero (no differences) whereas the second conditions does not.  

2.2.5. Considerations about tactile stimulation and its timing in the brain 

We proposed the use of SEPs to scrutinise processing of body-related stimuli over 

body-related cortices. Similar to the effect that differences in visual parameters 

posses in eliciting different VEPs, there are tactile parameters that need to be taken 

into account because their possible effects in the later modulations of SEPs. A first 

important parameter includes the stimulated body part: distal stimulation such as that 

produced by tactile stimulation on the feet takes generally longer to reach primary 

somatosensory cortex (S1) compared to stimulation on the hands or face. Secondly, 

somatosensory stimulation entails different submodalities (i.e., nociception, 

mechanoreception, thermoreception, proprioception and visceroception). This 

division follows differences in the afferent routes that go from the body to the brain 

(Cruccu et al., 2008). In the study of Sel and colleagues (2014), mechanical 

stimulators elicited information to travel through the dorsal column-lemniscal system. 

Conversely, the extralemniscal system underpins nocioception in pain studies.  

Different stimulators elicit diverse pathways towards somatosensory cortices, as well 

as different sensations, timing, and amplitudes. For instance, electrical stimulation is 

a relatively uncommon form of stimulation that bypasses sensory receptors. On the 

other hand, it elicits large SEPs and it is faster than other types of tactile stimulations 

(Foxe et al., 2000).  

Site and type of the stimulation are important factors in the design of experimental 

paradigms. For instance, if visual stimuli are supposed to be presented in synchrony 

to stimulation, it is not only relevant to double check the refresh rate of the screen but 

also how and when tactile stimulation is elicited at a neural level. Lastly, it is 

important to take into account that because the tactile stimulators produce noise that 
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could also evoke auditory evoked potentials, white noise should be played during the 

testing period. This white noise should be equally presented in both ears and should 

be measured from the participants’ head.    

2.2.6. Assumptions 

The subtractive nature of the method proposed in this article is based on several 

assumptions.  Despite the utility of difference waveforms, the data obtained after 

subtractions will be always noisier compared to parent waveforms (Luck, 2014). Also, 

what is actually subtracted needs to be carefully inspected in each individual 

experiment. For instance, (Teder-Sälejärvi et al., 2002) described how some 

interactions in multisensory integration could be actually accounted by a double 

subtraction of an anticipatory ERP that was equally present in all ERPs conditions 

(i.e., auditory, visual, audiovisual). Therefore, when computing multisensory 

integration in ‘Audiovisual – (Auditory + Visual) waveforms’ the anticipatory activity 

may be subtracted twice, creating the impression of an early interaction due to cross-

modal interaction (see a follow up of this issue in Talsma and Woldorff (2005). 

Parameters such as the participants’ expectation and the timing in which the evoked 

activity is elicited need to be carefully contemplated in subtractive methods.    

Another issue concerns the use of different sensory stimulations during encoding of 

body-related information and its effects on later subtractions. Isolating SEPs by the 

subtraction ‘VEPsSEPs – VEPs’ assumes that visual effects are equally distributed 

across conditions and that once the subtraction is conducted only SEPs modulations 

would be observed. Nevertheless, the latter could reflect interactions modulated by 

the integration of sensory input and attentional mechanisms that would specially 

affect early components (Busse et al., 2005). To avoid this, the physical features of 

the visual stimuli should be similar in the Visual and VisualTactile conditions (Luck, 

2014). If consistency is not feasible (e.g., when comparing body vs. non-body-related 
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stimuli), the stimuli should be well controlled though counterbalancing and the 

matching of parameters such as timing, size, difficulty, and brightness. Also, it is 

important to emphasize that the tactile stimulation used to elicit SEPs should be task-

irrelevant, so, other unexpected computations are not mistakenly measured.  

 

2.3. Summary 

With the advent of new methodologies, the ERP-EEG technique is steadily evolving 

towards a better temporal and spatial resolution. In this chapter, I considered the 

essential pros and cons of ERP-EEG technique and framed these in the field of 

embodiment. A recurrent issue in contemporary ERP research is that the sight of 

body stimuli elicits visual-evoked activity (VEP) that masks concomitant processes in 

sensorimotor cortices, known to play a crucial role in processing body-related 

information. Therefore, it is difficult to tease apart the brain activity in those brain 

areas from visual carry-over effects. Here we propose a novel method to dissociate 

visual and body-related cortical processing by the use of visual-evoked potentials 

(VEPs) and somatosensory-evoked potentials (SEPs). By eliciting SEPs during 

encoding of visually perceived body stimuli it is possible to probe the state of 

somatosensory cortex during such process (VEPsSEPs condition). However, the 

resulting activity contains a mixture activity due to SEPs and VEPs. For this reason it 

is necessary to include a homologous condition in which the only difference is the 

absence of SEPs (VEPs-only condition). Then, SEPs are isolated by computing the 

subtraction of mean average waveforms across conditions (i.e., VEPsSEPs – VEPs). 

This method allows exploring the involvement of body-related cortices when seeing 

and encoding bodily-related information with high temporal resolution.  
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2.4. Artistic Impressions II 

 

 

 

 

Bodily Realm – The method (2015) Photography on board (21 x 29cm) / AGP 

This image represents the moment in which a novel method allows to explore 

the regions that were once occluded in Artistic Impressions I. Here the model’s 

hands vanish. The Method embodied by the arm, delicately exposes new 

landscapes to be explored. 
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2.5 Chapter 2.5: Designing the stimuli to-be-

remembered 
 

The experimental work of this PhD thesis is grounded in the three manipulations 

detailed in Chapter 2, briefly:  (1) the use of stimuli that differ in the type of brain 

mechanism that they evoke (body vs. non body-related visual stimuli), (2) the use of 

ERP-EEG techniques that evoke brain activity in both visual and body-related 

sensory cortices (use of somatosensory and visual evoked potentials; SEPs and 

VEPs), and (3) the design of paradigms that isolate sensorimotor processing by 

means of subtraction between evoked potentials.  

The ERP-EEG technique and the subtraction associated to its analyses have been 

already described in Chapter 2. Here I focus on the first point (i.e., stimuli evoking 

distinct brain mechanisms), which refers to the use of body and non-body-related 

stimuli. It is known that body-related stimuli do not only engage those sensory areas 

participating in the initial sensory acquisition of the information but also additional 

brain regions that process our own body in the brain (Di Pellegrino et al., 1992; 

Grezes and Decety, 2001). Since my PhD work seeks to understand how visually 

perceived body stimuli are maintained in WM, a set of body and non-body-related 

stimuli (all visual) were created. Including the dissociation of VEPs and SEPs by the 

use of the aforementioned method, comparing brain activity from participants holding 

in memory images of body and non-body visual stimuli may allow to ascertain the 

neural mechanisms underpinning WM for body-related information.  

2.5.1 Creating the visual stimuli for studies 1 to 3. 

Static images of hands were chosen as stimuli because they should elicit lateralized 

cortical activity that may arise, in principle, from the lateralized cortical representation 
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of the hands in the brain (Molenberghs et al., 2012; Perry and Bentin, 2009). This 

lateralization is crucial for the design and analyses of the studies included in this 

work (see Chapter 2 and method sections in further chapters). The neural 

underpinning of other body parts in the cortex is more centralised and does not 

provide such well-lateralized activity (Eickhoff et al., 2007). The non-body-related 

stimuli were polygonal shapes based on the hand images’ outlined by using the latter 

as templates.  

A total of 27 pairs of high-resolution hand images depicting different hand postures 

and polygonal shapes based on the hands’ outline were created. From these visual 

stimuli, 6 pairs of images were selected. The choice was based on the following 

criteria: only images that did not convey meaning or symbolism were selected. For 

instance, a hand posture photographed from the side, depicting a fist with the thumb 

up could be verbally coded as ‘OK’. It was important to avoid semantic coding and 

elicit brain activity mainly due to bodily or visual coding. Similarly, we wanted to avoid 

participants counting the number of fingers up (all stimuli have 2 or 3) or using 

semantics codes (stimuli do not resemble quotidian objects). This set of images was 

greyscaled, sized, and horizontally mirrored to the left to create 6 more pairs of 

images depicting left hands and corresponding control stimuli. 

Next, two pilot studies including 7 participants each were performed. The aims of 

these pilot studies were: i) ensuring that behavioural and further electrophysiological 

markers were correctly synchronized, ii) reducing order effects on the consolidation 

of the two set of stimuli in memory, iii) and matching difficulty between the control 

condition (shapes) and experimental condition (hands). This last point is especially 

important since EEG components are quite sensitive to task difficulty (e.g., Gherri el 

al., 2015). The procedure of these pilot studies was very similar to the main studies 

conducted in this thesis. In summary, participants were instructed to recall 
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differences between pairs of arrays depicting images of hands postures/finger 

positions or polygonal shapes. In each trial a central arrow cued the participants to 

covertly attend to the items in either the left or right hemifield. Then, the memory 

array was presented (100ms) and followed by a blank retention interval (900ms). 

Next, the test array was displayed until participants verbally response whether the 

memory and test array were similar or different. 

The results from those pilot studies led to the behaviourally matched set of stimuli 

shown in the Figure 2.5-1. Overall (in the second pilot study, after introducing 

modifications regarding colour and outline from pilot no.1) participants correctly 

recalled similarities/dissimilarities in 84% of the trials for both stimulus types in the 

load 1 condition (holding in memory one stimulus), and 68.5% in load 2 for both 

stimuli conditions. Furthermore, no order effects were observed (all ps > 0.05).   

	
A 

	
 

	

B 

	
	

	

Figure 2-5-1. Final set of body-related and non-body-related stimuli (control). A, set of 6 grey 

scaled right hands depicting hand/finger positions and their equivalent non-body-related 

stimuli (control conditions). B, images of right hands were horizontally mirrored to created 

stimuli set of left images and correspondent control stimuli.  
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3. Chapter 3: Neural dissociation for visual 

and sensorimotor WM: somatosensory 

brain areas 
 

3.1 Study 1: Introduction 

In Chapter 1 I reviewed prevailing models in the WM field, behavioural evidence for 

the specific existence of a WM system supporting the encoding of visually perceived 

body stimuli, and I proposed a number of neural candidates for this latter system. In 

brief, the neural regions that are likely to underpin WM for body-related stimuli are 

those contributing to action perception, as well as those underpinning our own 

cortical representation of the body in the brain, for instance, somatosensory cortices. 

In Chapter 2 I revisited the overall ERP-EEG technique and proposed a method that 

allows isolating somatosensory processing from the simultaneous visual response 

generated when seeing bodies. In the current chapter, I put into practice this method 

and investigated whether or not somatosensory cortices play a role in WM for visually 

perceived body stimuli. To examine this matter, I briefly outline current accounts in 

WM and I comment on EEG recordings of brain activity linked to WM processing. 

Secondly, I introduce the hypotheses of the study, its methodological aspects, and 

results. Third, I discuss the present findings and review the overall limitations.   

3.1.1 Sensory recruitment models of WM 

Working memory (WM) supports complex behaviours by maintaining task-relevant 

information (Baddeley, 2003). Persistent activity in perceptual cortices during 

retention of stimuli in WM has been linked to this process. Such activity is shown in 

the delayed period, during the consolidation of stimuli in memory, and it seems to be 

modulated by memory capacity performance specific to the sensory modality in 
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which stimuli to-be-remembered have been perceived (Vogel and Machizawa, 2004; 

Katus et al., 2014; McCollough et al., 2007; Katus et al., 2015). The exact properties 

of this persistent activity and its link to conscious control of attention are still debated. 

Nevertheless, its occurrence, modulated by memory capacity and load, as well as its 

sensory foundation have led to state-based models of working memory (D’Esposito 

and Postle, 2015). These have evolved from those models assuming that WM is 

underpinned by highly specialised systems (e.g., multicomponent model of WM, 

Baddeley and Hitch, 1974; Baddeley, 2012). However, the state-based models of 

WM acknowledge a more dynamic frame where in principle mnemonic content is not 

strictly supported by a limited number of memory systems; here, WM is more a 

neural property rather than a specific type of process.  

Two approaches arise within state-based models: one considering STM and WM as 

a reactivated form of LTM and a second approach considering WM as a 

reestablishment of perceptual experience. The difference between the models is 

relatively small. Both accounts have originated in the memory literature by studying 

different types of stimuli (D’Esposito and Postle, 2015). Activated LTM models have 

been proposed when studying symbolic stimuli such as digits, words, and letters (i.e., 

semantic content) whereas sensory recruitment models have been articulated when 

studying the maintenance in memory of colours, gratings, orientations, tactile taps, 

and auditory tones (i.e., ‘more perceptual features’). Nevertheless, both approaches 

converge upon the encoding of information in WM by activating one of the possible 

several states of the information. Therefore, a characteristic feature of these 

accounts is that encoding of information in working memory occurs when activating 

those internal states of information that are relevant for the on-going task, a process 

which ultimately leads to stored-featured content that seems to be underpinned by 

sensory cortices. 
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3.1.1.1 Sustained activity during visual WM 

One of the neural markers associated with WM, the findings of which supported the 

validity of the sensory recruitment models, is the presence of sustained activity 

during the delayed period of WM tasks. Specifically, sustained activity refers to that 

neural activation observed when participants engage in tasks that demand continued 

attention and mnemonic encoding. The term ‘sustained’ is often found in the ERP 

literature while persistent or supra-threshold activity is more present in fMRI studies. 

Sustained activity was already reported in the seminal work of Fuster and Alexander 

(1971) and in other important contribution such as the study of Ruchkin (1990).  

Remarkably, Vogel and Machizawa (2004) designed a paradigm that elicited 

sustained activity linked to WM, as well as exploiting the contralateral primary 

disposition of sensory cortices to isolate such activity from concomitant unspecific 

(non-memory-related) brain activity. They developed a bilateral change detection 

paradigm in which participants are asked to hold in memory either items presented in 

the left or right hemifield while fixating their gaze on a centred cross. Once all 

perceptual parameters are controlled (e.g., degrees of visual angles from a centred 

point), the contralateral visual system to the hemifield to-be-remembered exhibits a 

slow negativity that persists through the whole retention interval of the stimuli in WM. 

Conversely, the ipsilateral hemisphere exhibits activity closely related to the 

perception of stimuli that are not to-be-remembered. This manipulation allows for a 

subtraction of activity from contralateral and ipsilateral hemispheres (i.e., 

contralateral activity = ‘perception + memory encoding and consolidation’ minus 

ipsilateral activity ‘perception only’) (Fig. 3-1). Therefore this visual component 

(namely, contralateral delay activity) is supposed to reflect neural activity due to 

memory-only effects of encoding in experimental manipulations with increasing 

memory load. To this point the visual contralateral activity (i.e., vCDA) amplitude has 
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been linked to individual WM capacity (Cowan, 2010; Lefebvre et al., 2013), as well 

as to filtering capacity (Vogel et al., 2005), and it has been used in experimental 

paradigms designed to study object tracking, visual search, features binding, and 

effects of complexity in memory recall (e.g., Drew and Voger, 2008; Carlisle et al., 

2011; Peterson et al., 2015; Alvarez and Cavanagh, 2004; respectively).  

 

 

Figure 3-1. An illustration of a typical change detection trial and the resulting CDA waveforms. 

This example (adapted from Allon et al., 2014) is a grand average of 20 participants, at the 

PO7/PO8 electrodes, where the CDA is usually most pronounced. Subjects were presented 

with 3 colors for 200 ms, and had to memorize them during the 900-ms retention interval. The 

CDA is time-locked to the onset of the memory array, and the activity is measured throughout 

the retention interval (resulting, in this example, in a 1100-ms long time-window), but before 

the onset of the test array. Note that the waveforms include both right and left trials, such that 

the contralateral activity is generated from right electrodes on left trials and left electrodes on 

right trials (this is an example of a right trial, and hence PO7 registered contralateral activity 

and PO8 registered ipsilateral activity). The CDA is the subtraction of ipsilateral activity from 

contralateral activity. Note. Reprinted from “The contralateral delay activity as a neural 

measure of visual working memory” by Luria, R et al., 2016, Neuroscience and 

Biobehavioural Reviews 2016:62,100-108. Copyright (2016) with permission from Elsevier 
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3.1.1.2 Sustained activity during tactile WM 

As noted in the previous section, several studies have taken advantage of the 

contralateral organization of visual cortex, describing and isolating visual CDA 

sensitive to memory capacity (see Luck and Vogel, 2013). Interestingly, not only the 

visual stream is contralaterally organised; our own cortical representation of the body 

is also represented in a contralateralised manner. Somatosensory cortices (SCx) 

offer a similar contralateral organisation, of the body, (left hands represented in right 

SCx and vice versa), underpinning responsiveness (Blakenburg, et al., 2008; 

Auksztulewicz et al., 2012) and temporary storage of tactile information (Harris et al., 

2002; Spitzer et al., 2010; Spitzer and Blankenburg, 2008).  

Tactile contralateral delay activity (tCDA) has been described for tactile WM (Katus et 

al., 2014; Katus et al., 2015), that is, WM for different number of tactile taps, elicited 

through tactile stimulators, delivered on the participants’ body (e.g., fingertips), and 

registered through EEG. This tCDA follows the same scheme as the vCDA: it is 

computed by subtracting ipsilateral from contralateral activity and it originates in 

sensory areas (somatosensory cortices), which are modulated by memory load 

(number or frequency of tactile taps over the tip of the fingers). Importantly, the tCDA 

is specific to the hemisphere over the SCx holding the percept in memory. Tactile 

probes in the form of retro-cues, as well as exchanging the space where tactile 

stimulation is received when crossing the hands, engage the hemisphere receiving 

the influx of taps to-be-remembered (Katus et al., 2015).  

3.1.1.3 Sustained somatosensory activity linked to visual processing? 

Crucially, SCx not only process pure tactile information in a lateralized manner, they 

are also sensitive to visual bodily information (Shmuelof and Zohary, 2006; Buccino 

et al., 2001; Keysers et al., 2010). Body-related visual stimuli strongly influence 

where and how relevant information is processed in the brain (Kanwisher, 2010; 
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Pitcher et al., 2009; Urgesi et al., 2007), providing additional cortical regions such as 

SCx tightly linked to an early visual response with functional properties related to 

human behaviour (Sel et al., 2014; Meyer et al., 2011; Calvo-Merino et al., 2005). 

Therefore, in addition to visual sensory areas, perception of body images and actions 

engages our own body representation in sensorimotor and somatosensory cortices 

(Caspers et al., 2010; Molenberghs et al., 2012). Additional evidence for this comes 

from a wide range of findings; for instance, several studies have shown that tactile 

processing of one’s body is actually enhanced by seeing others’ body sensations 

(Schaefer et al., 2012; Blakemore et al., 2005). Other studies have shown that 

observing someone else’s pain (Costantini et al., 2008; Martínez-Jauand et al., 

2012), as well as observing the mere touch on others’ hands may activate the 

perceiver’s somatosensory regions; vicarious tactile processing  (Ebisch et al., 2008).  

Considering that (1) SCx seems to responds to visual perception of others’ bodies, 

and that (2) sensory recruitment WM models postulate that perceptual regions 

compute both the percept and its WM maintenance, SCx may allow us to measure 

sustained activity in form of a visually driven neural signature sensitive to visual 

memory load (namely visually-driven CDA —vdCDA). This sustained activity could 

represent a marker of encoding and maintenance of visual body-related information 

(e.g., hand images) in cortices other than visual. 

3.2 Aims, methodological approach, and predictions 
Aims of the study. In the current study we sought to answer whether the sensory 

entry modality or the nature and functional properties of the perceived information 

dictate where in the brain information is maintained in memory. Specifically, we 

examined whether or not somatosensory areas (SCx), which participate in 

processing the body percept, are also involve during active maintenance of the 

stimuli in memory.  



	 83 

Methodological approach. Items to-be-remembered were hand images and non-

body control geometrical shapes (in counterbalanced blocks). By dissociating early 

visual processing from visually driven but sensory independent cortical activity, we 

expect to uncover involvement of somatosensory cortices in encoding information 

during a WM task using body and non-body-related visual stimuli (independent of 

visual carry-over effects). To this end, we recorded visual-evoked potentials (VEPS) 

in half of the trials. In the other half, we recorded simultaneous visual and 

somatosensory evoked potentials (VEPs, SEPs) while participants performed the 

visual memory task. SEPs were evoked by delivering tactile probes to both index 

fingers. We subtracted brain activity from visual-only to visual-tactile trials to isolate 

purely somatosensory responses from carry-over visual effects during this task. 

Hence, we obtained SEPs free from VEPs in the same WM task. Moreover, based on 

the lateralisation of the display in the paradigm and the contralateral organisation of 

visual and somatosensory cortices, we also subtracted ipsilateral from contralateral 

activity.   

The factors of these experiment included: stimulus type (shape, hand images), 

memory load (1, 2 images), and hemisphere (ipsilateral, contralateral). These factors 

were computed in the analyses of VEPs and SEPs-after subtraction of VEPs. 

Predictions. We predicted that visual-evoked potentials (VEPs) would be modulated 

by memory load in the non-body-related stimulus condition; this activity would arise 

from engagement of visual areas over occipital sites (Vogel and Machizawa, 2004; 

Tsubomi et al., 2013). Additionally, once isolated from visually elicited activity in the 

same task, SEPs will reveal modulation of brain activity by memory load for body-

related stimuli (i.e., increasing number of hand images to-be-remembered) arising 

from engagement of SCx over parietal electrode sites. With this design and 

methodology, we sought to identify a new neural signature of a visual memory trace 
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beyond visual sensory cortices, exhibiting novel evidence for encoding of visual 

information in functionally different sensory cortical regions that match the perceptual 

characteristics of the perceived stimuli.  

3.3 Methods 

participants  

Twenty participants (10 males; mean age = 28.5) with normal or corrected-to-normal 

vision took part and gave informed consent, approved by City University London 

Psychology Department’s Research Ethics Committee. Sample size was chosen 

based on related studies and paradigms (e.g., Vogel and Machizawa, 2004; Tsubomi 

et al., 2013; Katus et al., 2014). 

Stimuli  

A set of 6 pictures of right hands depicting different postures with no meaning or 

symbolism was used. These hands were mirrored to the left, resulting in 6 pairs of 

right and left hands that were then greyscaled. For the control condition a set of 

geometrical shapes was created matching the hands’ outline, size, and colour. 

Experimental design and procedure 

Participants performed a visual memory task (Vogel and Machizawa, 2004) in which 

items to-be-remembered were hand images (depicting different finger/hand positions) 

and, in separate blocks, comparable geometrical shapes. Participants were cued on 

each trial by a central arrow to attend to items displayed in their left or right hemifield. 

This was followed by a bilateral memory array depicting 1 or 2 items presented in 

each hemifield (100ms) and then followed by a blank retention interval lasting nearly 

one second. A final test array that differed in 50% of the cases from the memory 

array by one item was displayed until participants verbally responded whether or not 

the memory and test arrays were identical (Fig. 3-2). Participants’ forearms rested on 

the top of a table with their hands separated in palm up position while covered by a 
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black surface. Visual stimuli were displayed using E-Prime Software (Psychology 

Software Tools).   

All stimulus arrays were presented within two 4.5° x 8.5°rectangular regions that 

were centred 6° to the left and right of a central fixation cross on a light grey 

background. Each memory array consisted of 1 or 2 hands (1.3° x 0.8°) in each 

hemifield. Right hands were shown on the right hemifield while left hands were on the 

left. Each stimulus was randomly selected from the set of twelve hands. In the control 

condition 1 or 2 polygonal shapes (1.3° x 0.8°) were selected and shown in a similar 

fashion. Position of all stimuli was randomized on each trial with the constraint that 

the distance between stimuli within a hemifield was at least 2.4° (centre to centre). 

Visual-tactile trials. In the other 50% of the trials, we elicited simultaneously VEPs and 

SEPs by applying task irrelevant single tactile taps simultaneously delivered to both 

hands on the tip of the participants’ index fingers at the onset of the visual memory 

array.  Tactile stimulation was applied using two 12 V solenoids driving a metal rod 

with a blunt conical tip that contacted with participants’ skin when a current passed 

through the solenoids. Both solenoids were placed on the tip of the index fingers, one 

for each hand. To mask sounds made by the tactile stimulators, white noise (65 dB, 

measured from participants’ head) was presented through a loudspeaker centrally 

positioned 90cm in front of the participants.  

This mechanical stimulation allowed us to probe the state of the SCx, exposing its 

underlying processing during memory encoding and maintenance of the visual stimuli 

by measuring the electrocortical activity (SEPs) elicited by task irrelevant tactile taps. 

To be able to isolate somatosensory processing (over and above carry over visual 

effects) over corresponding parietal electrode sites, we subtracted brain activity from 

those trials containing activity only due to VEPs (visual-only trials) to those trials 

containing a combination of visual and somatosensory activity due to the combined 
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VEPs-SEPs (visual-tactile trials). This allows isolating and observing somatosensory 

processing free of visual evoked activity (SEPs, VEPs-free) (Sel et al., 2014).  

Tessari and Rumiati (2004) showed that a mixed presentation of stimuli belonging to 

different categories is likely to involve intermixed, multiple, and overlapping encoding 

memory routes. Conversely, they showed that blocked designs allow observing a 

more clear involvement of discrete memory mechanisms. Since we sought to 

examine the specific involvement of SCx during encoding of hands and shapes stimuli 

(i.e., non body and body-related categories), the composition of the experimental list 

in the present study was blocked rather than mixed by stimulus condition. Specifically, 

We counterbalanced participants across stimuli conditions. Half of the participants 

started the experiment with the hand stimulus condition; performing 672 trials across 

8 blocks with breaks every 84 trials. Then, they completed similar number of trials, 

blocks, and breaks in the shape stimulus condition. In each trial the number and 

stimulus to-be-remembered were randomly selected from the corresponding stimulus 

set (i.e., specific hand postures or shape outlines). Similarly, the task-irrelevant tactile 

taps were randomly applied across half of the trials at the onset of the memory array. 

Overall, participants performed a total of 1344 trials, 672 for each stimulus condition 

(hands and geometrical shapes). This is equal to 336 trials for each load condition 

(load 1 and 2) of which half entailed the presentation of a task irrelevant tactile probe 

stimulus (visual-tactile trials) and the other half were visual only trials (visual-only 

trials).  

Participants’ sensitivity to detect changes.  

As indicated before, the test and memory arrays different in 50% of the cases by one 

item and participants verbally responded whether or not these were similar or 

different. Specifically, participants responded ‘yes’ and ‘no’ to indicate ‘same’ and 

‘different’ , respectively.  Afterwards, these responses were converted to proportions 
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of hit rates and false alarms that were used to calculate the index of sensitivity d’, 

which in theory considers individuals as active perceivers in conditions of more or less 

uncertainty. This index measures the distance between signal and noise means in 

standard deviation units. A value of 0 denotes that participants do not distinguish 

signal from noise, in other words, the do not detect differences between the old stimuli 

presented in the memory array and the new/different stimuli presented in the test 

array. Conversely, higher values of d’ indicate increasing capacity to distinguish the 

corresponding stimuli. In the context of the current experiments the proportion of 

‘same trials’ in which participants were right and the proportions of different trials in 

which participants were wrong were calculated. Then, these hit rate and false alarm 

proportions were subjected to the inverse of the normal cumulative distribution that is 

specified by the mean and standard deviation (d' = Z(H) – Z(F)). 
 

 

 

Figure 3-2. Task design and procedure study 

1. Participants performed both conditions in 

counterbalanced order. On 50% of the trials, 

task irrelevant tactile stimulation was applied 

to both index fingertips at the onset of the 

memory array (yellow triangles). Participants 

verbally responded whether the memory 

array and test array were the same or 

different. Electrode map showing electrodes 

over somatosensory (red) and visual (green) 

areas included in the statistical analyses.  

SOA: stimulus onset asynchrony. 
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EEG recording and data analysis 

Both conditions were performed in an electromagnetically shielded room using a 

75Hz LCD monitor. Event-related potentials were recorded with active electrodes 

from 64 scalp electrodes mounted equidistantly on an elastic electrode cap (M10 

montage; EasyCap). Electrodes were referenced to the right earlobe and re-

referenced to the average reference off-line. Vertical and bipolar horizontal 

electrooculogram was recorded for eye movements tracking and artifact correction 

purposes. Continuous EEG was recorded using a BrainAmp amplifier 

(BrainProducts; 500 Hz sampling rate). Off-line EEG analysis was performed using 

Vision Analyzer software (BrainProducts). The data were digitally low-pass-filtered at 

30 Hz, and ocular correction was performed (Gratton et al., 1983). The EEG signal 

was epoched into 1300ms segments, starting 200ms before the sample arrays of 

each trial. Segments were then baseline corrected to the first 100ms, and artifact 

rejection was computed eliminating epochs with amplitudes exceeding ± 85 µV.  

Grand averages were computed independently for hand and shape stimuli 

conditions, separately for the two memory loads and for visual and visual-tactile trials 

by averaging brain waveforms elicited at electrodes over the hemisphere 

contralateral and ipsilateral to the items to-be-memorized as indicated by the central 

cue. Visual contralateral delay activity (vCDA) was calculated as the difference 

between mean amplitudes recorded at right hemisphere electrode sites when 

participants were cued to the left side of the memory array and vice versa, removing 

thus any contribution of nonspecific bilateral neuronal activity, and separately 

calculated for load 1 and load 2 for the shape and hand conditions in the 300-900ms 

time window after onset of the sample array. Statistical analysis was performed for 

mean amplitudes at occipital and posterior parietal electrode sites (O1, O2, midway 

between PO7/P7, and midway PO8/P8 of the 10-20 system) (Vogel and Machizawa, 
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2004; Vogel et al., 2005; McCollough et al., 2007). In addition, we also analysed the 

effect of time course in 9 consecutive time windows of 100ms from the onset of the 

visual stimuli (Tsubomi et al., 2013). Mean amplitudes were compared across 

conditions by analysis of variance (ANOVA).  

We computed contralateral waveforms of somatosensory processing from trials in the 

visual-tactile condition. Visually driven contralateral delay activity (vdCDA) was 

calculated as the difference between mean amplitudes recorded at right hemisphere 

electrode sites when participants were cued to the left side of the memory array and 

vice versa. The underlying activity of somatosensory cortices when maintaining in 

memory visually acquired stimuli was analysed over parietal electrode sites at 

CP3/CP4 and CP5/CP6 of the 10-20 system. Then, to isolate somatosensory 

processing from the visual activity elicited by the onset of the stimuli on the screen, 

we removed VEPs by subtracting mean voltage amplitude of grand averaged VEPs 

on visual-only trials from the mean amplitudes of grand averaged ERPs on visual-

tactile trials (containing both somatosensory evoked potentials; SEPs and VEPs) (Sel 

et al. 2014). This subtractive methodology based on evoked activity from different 

neural sources has been commonly used to study multiple sensory modalities 

(Talsma et al., 2010; Senkowski et al., 2007; Talsma and Woldorff, 2005). In our 

specific case, to test SCx encoding of hands driven by the onset of the visual array, 

synchronously to VEPs, SEPs elicited by task-irrelevant tactile stimulation were 

employed (Sel et al. 2014). Under such conditions, evoked activity would contain a 

contribution from both sensory cortices elicited by VEPs and SEPs. This leads to the 

use of an only VEPs condition, which allows i) the examination of brain activity of 

visual cortices, ii) the subtraction of visual carry over effects over somatosensory 

cortices, and the consequent analysis on iii) effects of memory load over both 
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cortices.  When appropriate, Greenhouse-Geisser adjustments to the degrees of 

freedom were applied, and p values were corrected using Bonferroni correction. 

Estimating neural generators of the visually driven signal (e-LORETA, CSD) 

We used several approaches to estimate the neural generators of the EEG 

components in the experimental condition leading to a modulation by memory load 

(i.e., hand condition). We initially used eLORETA, BESA, and Current source density 

(CSD). Despite computing the forward-search dipole localization algorithm Brain 

Electric Source Analysis (BESA; Scherg and Berg, 1991), we did not embrace this 

approach because the forward model requires applying a number of localizers that 

need to be manually generated based on previous research and data assumptions 

need to be made. Given the novelty of our paradigm, we avoided this step. On the 

other hand, we did actually include the data from eLORETA and CSD. However, 

caution needs to be taken when considering the former model. Even when the 

estimated brain areas generating the visually driven signal (vdCDA) seem to 

correspond to those cortices eliciting the SEPs (VEP free), the CDA/vdCDA involves 

subtraction and computing a virtual signal that represents a single hemisphere 

modulated by memory load. However, eLORETA and sLORETA estimate neural 

generators/source localization based on spreading of brain activity in both 

hemispheres.  

Exact low resolution brain electromagnetic tomography 

Based on the scalp-recorded electric potential distribution, the exact low resolution 

brain electromagnetic tomography (eLORETA) (Pascual-Marqui, Michel and 

Lehmann, 1994; Pascual-Marqui, 2002; Pascual-Marqui, 2007) was used to compute 

the cortical three-dimensional distribution of current density associated to 

somatosensory-evoked activity (SEPs). The eLORETA method is a discrete, three-

dimensional distributed, linear, weighted minimum norm inverse solution, and it has 
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no localization bias even in the presence of structured noise. The particular weights 

used in eLORETA endow the tomography with the property of exact localization to 

test point sources, yielding images of current density with exact localization, albeit 

with low spatial resolution (i.e. neighboring neuronal sources will be highly 

correlated). In the current implementation of eLORETA, computations were made 

using the MNI152 template with the three-dimensional solution space restricted to 

cortical gray matter, as determined by the probabilistic Talairach atlas and 

anatomical labels as Brodmann areas are also reported using MNI space, with 

correction to Talairach space (Lancaster et al., 2000; Mazziotta et al., 2001; Brett, 

Johnsrude and Owen, 2002). Source estimation was performed on those time 

windows where analyses showed significant differences by memory load (i.e., 

differential activity of candidate brain regions when holding in memory different 

number of hand postures). This was done after subtracting VEPs and ipsilateral from 

contralateral activity, specifically, in the time windows from 200-300 ms, and 300-

900ms. We constructed whole brain topographical maps by mirroring vdCDA to both 

hemisphere, then, eLORETA was estimated.  

Current source density analysis (CSD). 

In addition to eLORETA, we estimated the neuronal generator patterns contributing 

to our results by transforming the scalp-recorded EEG to surface Laplacians. Such 

transformation leads to a conservative estimate of the neuronal generator patterns 

underlying the EEG signal (Nunez and Westdorp, 1994; Tenke and Kayser, 2012; 

Perrin et al., 1989), in which regardless of the orientation, location, number, or extent 

of active neural tissue, the effects of volume conduction from distant sources is 

reduced and a reference-independent representation of EEG/ERP data is obtained. 

Here, voltage levels (μV) at electrodes by valid head coordinates were transformed 

through CSD (units in μV/m2). This was obtained by transforming scalp potentials 
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resulting from voltage distribution on the surface of the head at a fixed time to surface 

Laplacians (lambda: 10-5, order of splines m: 4, legendre polynomial: 10) (Katus et 

al., 2014; Nunez and Westdorp, 1994). As voltage distribution is known at the 

electrodes, the procedure of spherical spline interpolation was used to compute the 

total voltage distribution.  

The CSD topographical maps of the visually driven CDA (vdCDA, VEP-free) were 

calculated as the earlier scalp-recorded EEG data by calculating the difference 

between contralateral and ipsilateral mean amplitudes, and separately calculated for 

load 1 and load 2 for the hand condition in the 200-300 and 300-900ms time windows 

after onset of the sample array. Statistical analysis was performed by analysis of 

variance and included mean averages of electrode sites along the scalp from anterior 

to posterior regions, respectively of the 10-20 system: midway between F7/AF7 - 

F8/AF8, and AF3/AF4; F5/F6 and F1/F2; FC5/FC6 and FC3/FC4; C5/C5 and C3/C4; 

CP3/CP4 and CP5/CP6; midway between PO3/P5 - PO4/P6, and P1/P2; midway 

between PO7/P7 - PO8/P8, and O1/O2. When appropriate, Greenhouse-Geisser 

adjustments to the degrees of freedom were applied, and p values were corrected 

using Bonferroni correction. 

 

3.4  Results 

3.1.1 Behavioural data 
Given the nature of our ERP subtraction methodology, it is possible that differences 

in the signal-to-noise ratio in different conditions could bias our results. To rule out 

this possibility, we additionally examined the number of accepted trials separately for 

trials cued to the left and right hemifield, for each memory load and type of stimuli in 

the visual-tactile and visual-only conditions. The results showed no effects of cue 

(F(1,19) = 1.017, P = 0.326), tactile stimulation (F(1,19) = 0.727, P = 0.404), stimulus type 
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(F(1,19) = 0.000, P = 0.997), nor a interaction between the previous the factors (F(1,19) = 

0.122, P = 0.731). These analyses imply that signal-to-noise ratio did not bias the 

results on later subtractions across conditions. These analyses imply that signal-to-

noise ratio did not bias the results on later subtractions across conditions. Therefore, 

any dissimilarity on mean voltage amplitude showed on parietal electrode sites was 

due to the increasing number of hand images to be held in memory.  

Participants correctly reported differences or similarities between the memory and 

test array in 77.3% of all trials in the visual-only condition and in 77.4% of all trials in 

the visual-tactile condition. Their performance was analysed using the sensitivity 

index d’, which considers false alarms and hit rates, representing then a more 

precise measurement of signal detection than accuracy only. Repeated-measures 

ANOVA showed neither an interaction between condition (visual-only and visual-

tactile), memory load, and types of stimuli (F(1,19) = 1.076, p = 0.313) nor a main effect 

of stimulus type (F(1,19) = .022, p = 0.883), nor main effect of condition (F(1,19) = .078, p 

= 0.782). Lastly, when comparing individually each single condition in the visual-only 

condition to its equivalent visual-tactile condition, no significant differences were 

found (all ps > 0.108). Overall, performance in the hand and shape conditions was 

very similar, and this similarity was found regardless of whether the trial included 

tactile stimulation as a single task-irrelevant tactile tap at the onset of the stimuli to be 

remembered or not (Fig. 3-3).  
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Figure 3-3. Behavioural results in all conditions study 1. Dots represent the means of 

individual participants, the red diamond the sample average. Overall performance in hand and 

shape conditions was similar and no significant differences were found between performance 

for memory load 1 and 2 in the hand and shape conditions regardless the tactile probes (all 

ps ≥ 0.05), n=20. D-prime: sensitivity index, d’ = Z (hit rate) – Z (false alarm rate).  

 

 

3.1.2 Visual evoked potentials 

This section includes those analyses concerning the visual contralateral delay activity 

(vCDA) on visual-only trials. Here, VEPs elicited at occipital electrode sites 

contralateral and ipsilateral to the memorized hemifield were analysed for the 

different memory loads and stimuli. A sustained negativity appeared circa 300ms 

after the onset of the sample array over visual cortex contralateral to the memorized 

hemifield. This visual contralateral delay activity lasted for the entire retention interval 

and increased with the number of items to be stored in working memory (Fig. 3-4).  
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Figure. 3-4. Ipsilateral and contralateral waveforms in shape and hand stimuli conditions. 

Visual-evoked potentials (VEPs) ipsilateral and contralateral to the cued side of the memory 

array pooled over lateral occipital and posterior parietal electrodes (midway between PO7/P7 

- PO8/P8, and O1/O2 of the 10-20 system). Grey bars indicate the memory array duration. 

 

We inspected this modulation of activity across memory loads by subtracting brain 

waveforms from ipsilateral to contralateral activity for each array size, removing thus 

any contribution of nonspecific bilateral neuronal activity. We then computed a 

repeated-measures ANOVA for each stimulus condition with hemisphere 

(contralateral and ipsilateral) and memory load (1 and 2) as factors. In the shape 

condition, the interaction hemisphere by load yielded a significant main effect of 

mean amplitudes of load (F(1,19) = 14.106, p = 0.001), hemisphere (F(1,19) = 11.679, p = 

0.003), as well as a significant interaction between load and hemisphere (F(1,19) = 

8.929, p = 0.008). Then, we performed follow-up t-tests comparing brain activity from 

ipsilateral and contralateral hemispheres in each memory load condition. We found 

significant differences between ipsilateral and contralateral hemispheres’ mean 

amplitudes in load 2 (t(19) = 4.407, p < 0.001). Interestingly, vCDA was also observed 

in the hand image condition and we found significant main effects of load (F(1,19) = 

11.638, p = 0.003) and hemisphere (F(1,19) = 19.090, p < 0.001). However, repeated-
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measures ANOVA in the hand stimulus condition yielded no significant interaction 

between the hemisphere and memory load factors (F(1,19) = 0.184, p = 0.673) (Fig. 3-

5). These results suggest that hand stimuli are also visually processed in this visual 

WM task. However, the evoked neural response did not elicit an interhemispheric 

difference modulated by load, which is indeed the characterizing feature of the vCDA 

(Luck and Vogel 2013). 

 
Figure 3-5. vCDA - Visual-evoked potentials (VEPs). Visual contralateral delay activity 

(vCDA). Contralateral minus ipsilateral visual-evoked potentials (VEPs) pooled over lateral 

occipital and posterior parietal electrodes for each memory load and stimulus conditions 

separately. Analysis of variance yielded a significant difference between memory load 1 and 2 

in the shape control stimulus condition (p = 0.008). No difference was found in the hand 

image stimulus condition (p = 0.673). 

 
3.1.3 Somatosensory VEP-free Evoked potentials 

This section includes those analyses concerning the visually driven contralateral 

delay activity (vdCDA) on visual-tactile trials. To observe the pattern of neural 

responses within SCx in the visual memory task, over and above the carryover 

effects induced by visual activations elicited in the same task by the onset of the 

visual displays, we subtracted the mean amplitude of purely visually evoked activity 
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(visual-only trials) from the mean amplitude containing both visual and tactually 

probed somatosensory activity during the same memory task (visual-tactile trials) 

(Fig. 3-6). If SCx activity during memory storage of visually depicted body information 

reflects a truly somatosensory response, then tactually evoked responses should be 

differentially affected by the number of hand images (memory load) to be held in 

visual working memory.  

We analysed SEPs after subtractions of VEPs for both memory loads and stimuli 

types. Specifically, a repeated measures ANOVA with hemisphere (contralateral, 

ipsilateral), memory load (1,2), and stimulus factors (hand, shapes) yielded a 

significant triple interaction between all factors (F(1,19) = 10.447,  p = 0.004). We 

followed up the latter interaction by the stimulus factor. In the geometrical shape 

stimulus condition we did not find any significant effect of hemisphere (F(1,19) = 0.053,  

p = 0.820), load (F(1,19) = 0.001,  p = 0.975), nor interaction between these two factors 

(F(1,19) = 1.210, p = 0.285). In the hand condition, we found no main effects of 

hemisphere (F(1,19) = 2.512, p = 0.130) and load (F(1,19) = 0.178, p = 0.678). However, 

we found a large negative-going voltage modulated by memory load from 300 to 

900ms over the somatosensory cortex contralateral to the visually cued hemifield. 

This interhemispheric difference showed significantly larger amplitudes as the 

number of items to be remembered increased (i.e., hemisphere x load interaction) 

(F(1,19) = 11.846,  p = 0.003). We performed follow-up t-tests comparing mean 

amplitudes from ipsilateral and contralateral hemispheres for each memory load. We 

found a significant difference between ipsilateral and contralateral hemispheres’ brain 

activity in the memory load 2 condition (t(19) = 2.775, p < 0.012). This visually driven 

CDA revealed in SEPs (VEP-free) was only present in the hand condition and over 

parietal electrode sites (Fig. 3-7 and Fig. 3-9). No significant interaction between 

hemisphere and load was found when memorizing geometrical shapes.  
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Figure 3-6. Visual-tactile minus visual-only waveforms. Somatosensory-evoked potentials 

(SEPs) ipsilateral and contralateral to the cued side of the memory array pooled over lateral 

parietal electrodes (CP3/CP4 and CP5/CP6 electrodes of the 10-20 system), after subtracting 

carryover visual effects from the visual evoked responses (SEPs VEPs-free). Grey bars 

indicate the memory array duration. 

 

 

Figure 3-7. vdCDA - Somatosensory evoked-potentials SEPs (VEPs free). Visually driven 

contralateral delay activity (vdCDA) from SEPs (VEPs free). Contralateral minus ipsilateral 

somatosensory-evoked potentials (SEPs) pooled over lateral parietal electrodes for each 

memory load and stimulus conditions separately after subtracting carry over visual effects 

from VEPs contained in the visual-tactile condition. Analysis of variance yielded significant 

Hemisphere x Load x Stimuli interaction (P = 0.004), driven by a significant difference 

between memory loads in the hand image condition (P = 0.003). No differences were found in 

the shape condition (p = 0.285); left panel. Grey bars indicate the memory array duration; ns, 

non-significant; n=20. 
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Figure 3-8. vCDA and vdCDA amplitude 

differences. Activity from ipsilateral electrode 

sites subtracted from contralateral sites in load 1 

minus load 2 for both stimuli conditions. Error 

bars represent within subject SEMs. 

 

 

 

 
 

Figure 3-9. Topographical maps of the visual contralateral delay activity (vCDA) and visually 

driven contralateral delay activity (vdCDA). A, topography of the vCDA elicited by visual-

evoked potentials (VEPs) in shape and hand stimulus conditions 300-900ms after onset of the 

memory array in load 2, showing an occipital-parietal peak, prominent in the shape condition. 

B, topography of the vdCDA elicited by somatosensory-evoked potentials (SEPs) from which 

brain activity due to visual processing was subtracted 300-900ms after onset of the memory 

array in load 2, showing a lateral parietal peak, only in the hand condition. Topographic maps 

were derived by subtracting activity at electrodes ipsilateral from contralateral to the cued side 

and then from electrodes over the right minus left hemisphere. This activity was then mirrored 

to the opposite hemisphere to generate whole head topographic maps.  
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We also investigated the time course of the vdCDA by analysing consecutive 100 ms 

time windows (Tsubomi et al. 2013). Specifically, we analysed differences of mean 

amplitudes in the hand stimulus condition across bins of 100 ms between 300-900ms 

modulated by hemisphere and memory load (i.e., time window x hemisphere x load). 

No discernible differences were found along the binned waveforms during the 

retention interval (300-900 ms) (p > 0.05), suggesting a steady sustained activity 

during the retention interval. Interestingly, we also explored the neural response that 

preceded the 300-900 ms contralateral sustained negativity (Fig. 3-10). We found a 

significant main effect of hemisphere (F(1,19) = 5.607, p = 0.029) and a significant 

interaction of hemisphere by load. This was revealed as significant interhemispheric 

difference sensitive to memory load in the SEPs (VEPs-free) between 200 and 300 

ms of the stimuli onset (F(1,19) = 16.057, p = 0.001) (0-100 and 100-200 ms bins 

yielded non-significant results). Here, the follow-up t-tests showed a significant 

difference between ipsilateral and contralateral hemispheres’ mean amplitudes in 

load 2 (t(19) = 3.799, p < 0.001).  

We named this component visually driven N2cc (vdN2cc), which resembles 

previously described contralateral negativity to the attended hemispace in visual and 

tactile working memory and attention tasks (N2pc and N2cc, respectively) (Eimer 

1996; Eimer and Grubert 2014; Katus et al. 2015a). In particular these components 

have been associated with attentional selection preceding encoding of information in 

working memory. This suggests that also the topography and neural generators of 

attentional selection mechanisms depend on the functional properties of the 

perceived stimulus (i.e. somatosensory cortex for the attentional selection of body 

images).   
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Figure 3-10. Attentional component: Visually driven N2cc (vdN2cc). A, differences waveforms 

of contralateral minus ipsilateral VEP-free SEPs pooled over lateral parietal electrodes 

(CP3/CP4 and CP5/CP6 electrodes of the 10-20 system) for each memory load (visual 

processing subtracted). The red line indicates the analysis window (200-300ms) for which 

analysis of variance yielded significant difference between memory load 1 and 2 in the hand 

posture condition only (P = 0.001), n=20. This period was also used to plot the topographical 

map in the right, which precedes the time window of the vCDA and vdCDA (300-900ms). B, 

topographic map for lateralized brain activity in the 200 to 300 ms analysis window for 

memory load 2 in the hand posture condition confirmed a lateral parietal activity peak. The 

topographic map was derived by subtracting activity at electrodes ipsilateral from contralateral 

to the cued direction and then from electrodes over the right minus left hemisphere. This 

activity was then mirrored to the opposite hemisphere to generate a whole head topographic 

map. 
 

 

3.1.4 Source localization  

Exact Low-Resolution Brain Electromagnetic Tomography (eLORETA) 

Based on the scalp-recorded electric potential distribution, exact low-resolution brain 

electromagnetic tomography (eLORETA) (Pascual-Marqui, 2007) was used to 

estimate cortical source estimation. This was performed on the visually driven activity 

for the hand postures condition (200-300 ms; 300-900 ms), conditions in which 

memory load significantly modulated the mean amplitude of SEPs (VEP-free), by 

identifying a set of regions whose peak of activity was maximal when holding in 
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memory two hands depicting different postures compared to a single hand posture. 

In the 200-300 ms time windows, maximal differential activity was source localized in 

primary somatosensory cortices Brodmann areas (BA) 1/2/3, secondary BA40, and 

associative BA5. For the 300-900 ms time windows, maximal differential activity 

between memory loads was localized in these same areas BA 1/2/3 and B40 (Fig. 3-

11). Importantly, sensory input, and latter attentional and mnemonic activity (200-300 

ms, 300-900ms) are localized in similar somatosensory regions, suggesting 

functional processing in terms of stimuli representation, neural source, and function.  

 

 
 

Figure 3-11. Candidate brain areas in vdn2cc and vdCDA. Source localization maps 

generated by eLORETA. vdN2CC and vdCDA components corresponding to the 200-300ms 

and 300-900ms time windows of the hand stimulus condition (SEPs, VEPs-free). The areas in 

red show a lateral parietal activity peak, which corresponds to those areas exhibiting a 

modulation by memory load. The topographic map was derived by subtracting activity at 

electrodes ipsilateral from contralateral to the cued direction and then from electrodes over 

the right minus left hemisphere. This activity was then mirrored to the opposite hemisphere to 

generate a whole head topographic map.  
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Free reference estimation of neural generators: current source density (CSD)  

Current source density (CSD) analysis was conducted to examine the underlying 

sensory specificity of the vdN2cc and vdCDA and to validate the correct selection of 

lateral-parietal electrode sites. For this purpose, we converted scalp potentials to 

surface Laplacians. Irrespective of the orientation, location, quantity, or extension of 

active neural tissue, such conversion reduces the effects of volume conduction from 

distant sources and offers a reference-independent representation of EEG/ERP data. 

CSD topography offers a conservative estimate of the neuronal generator patterns 

contributing to scalp-recorded EEG (Nunez and Westdorp, 1994; Tenke and Kayser, 

2012; Perrin et al., 1989). Then, we newly isolated the sensory response elicited by 

the tactile probe in VEP-free SEPs. Here, we checked and confirmed the presence of 

the P50 component over central-posterior electrode sites circa 50 ms after applying 

tactile taps (Fig.3-12A), a sensory response shown to reflect influx of tactile input into 

primary SCx (Hämäläinen et al., 1990; Eimer and Forster, 2003). Next, we proceed 

to examine the later development of the CSD signal from SEPs VEP-free by 

computing the difference between contralateral and ipsilateral brain activity for the 

different memory loads in the hand condition.  

We found a well-defined negativity over parietal regions, which increased with the 

number of hand images to be remembered in the time window of the vdN2cc (F(1,19) = 

9.958,  p = 0.005) and vdCDA (F(1,19) = 12.001, p = 0.003) (Fig. 3-12). In both 

components no significant differences were found over more frontal and posterior 

electrode sites (all ps > 0.130). Interestingly, a slightly anterior to posterior shift can 

be observed over time in the CSD topographies. This is likely to reflect the underlying 

mechanism involved in processing visually acquired bodily information; a process 

known to elicit activity over posterior parietal brain regions such as secondary 

somatosensory and associative cortices in studies of action and touch observation, 



	 104 

where visuomotor transformation, somatosensory spatial discrimination, and 

integration of proprioceptive signals seem to play a crucial role (Meyer et al., 2011; 

Kuehn et al., 2014; Ebisch et al., 2008; Schaefer et al., 2009).  

 

            

Figure 3-12. CSD topographical maps SEPS (VEP-free) in the hand images condition. A, 

CSD scalp distribution in the P50 time windows after collapsing contralateral and ipsilateral 

evoked potentials for both memory loads revealed an early positivity over central-parietal 

electrodes upon arrival of brief tactile probes. B, CSD scalp distribution in the vdN2cc and 

vdCDA time windows of somatosensory-evoked potentials in the memory load 2 minus load 1 

condition after subtracting ipsilateral from contralateral activity. Analysis of variance yielded 

significant difference between memory loads over the parietal electrode sites (CP3/CP4 and 

CP5/CP6 electrodes of the 10-20 system -in red). No significant differences were found over 

more anterior and posterior scalp regions. **, p < 0.01; ns, non-significant, n=20. 
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3.5 Discussion 

In this study I present novel evidence for a signal driven by visual perception of body 

parts, which seem to elicit a memory trace beyond visual cortex, over somatosensory 

cortices (SCx). This visually driven contralateral delay activity (vdCDA) describes the 

involvement of SCx in encoding and maintaining visual bodily information (i.e. hand 

images) during a visual working memory task. Moreover, the subtraction of visual-

only trials from visual-tactile trials, allowed us to identify such vdCDA in the form of 

an independent neural response that was evoked in somatosensory cortices during 

visual processing, over and above possible carryover visual effects from the visual 

evoked responses. The subtractive method on which this work is based has been 

previously employed in other event related potentials studies (e.g., Teder-Sälejärvi et 

al., 2002; Dell’Acqua et al., 2003). However, only recently it has been used to show 

visually independent somatosensory activity (Sel et al., 2014). This approach allowed 

us to conclude that attentional selection and encoding of body images and its 

modulation by load in SCx is not a mere carryover effect from similar activation 

patterns in visual cortices. Finally, the similar contralateral disposition of the visual 

and somatosensory cortices has allowed us to compute parallel subtractions to show 

a lateralized effect in contralateral vs. ipsilateral hemispheres in visual and 

somatosensory cortices during a visual working memory task (see Vogel and 

Machizawa, 2004; Katus et al., 2014). 

Visual activity from visual-only trials. In congruency with previous studies (e.g., 

Luck and Vogel, 2013; Vogel et al., 2005; McCollough et al., 2007) arbitrary visual 

stimuli, such as the control geometrical shapes of the current work, elicited a similar 

visual contralateral delayed activation (vCDA) modulated by memory load in visual 

cortices. Specifically, we found an interaction of hemisphere by memory load, 

indicating increment of brain activity in the contralateral hemisphere to the cued 
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hemifield. This activity was concomitant to the increasing number of polygonal 

shapes to-be-remembered.  

SCx activity after subtracting visual activity from visual-only trials. In the hand 

images stimulus conditions, we found a significant contralateral delayed activation 

modulated by the number of items to be maintained in working memory (load) over 

SCx. Such a modulation over SCx was not found when remembering the control 

visual stimuli (geometrical shapes). In addition to a modulation of SCx during the 

delayed period of the WM task, we found an earlier negativity in the time range of 

previously reported attentional components (i.e., n2pc, Eimer et al.,1996). This 

modulation was found 200-300ms after the onset of the stimuli and over the 

contralateral SCx. It is possible that such modulation could reflect increasing 

demands on focused attention. 

Overall, the results of the visually driven signals vdN2cc and vdCDA over SCx exhibit 

novel evidence for encoding of visual information in functionally different sensory 

cortical regions, which match the functional and perceptual characteristics of the 

perceived stimuli (i.e. body images in SCx).  

3.5.1 Debate on the meaning behind sustained activity and WM 

The CDA, and other so called sustained, persistent, and above-threshold neural 

activity in working memory has also been recently target of extensive research. In 

particular, the CDA has been shown to reflect also selection and maintenance of 

object-tracking, being modulated by the quantity of objects to be tracked and 

correlated with ones’ individual tracking capacity (Drew and Vogel, 2008). Another 

study examining changes in effective connectivity by the means of EEG and single 

pulse TMS, delivered during the delay period of a visual working memory task over 

superior parietal lobule, revealed higher efficiency of stimulus processing during 

working memory training. After training, the experimental group showed increasing 
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memory capacity coupled with decreasing magnitude of the CDA (Kundu et al., 

2013). 

Overall, these and other work (e.g, Carlisle et al., 2011) suggest that persistent 

neural activity (e.g., CDA) may index demands placed on attention rather than taxing 

pure mnemonic activity. Remembering whether the long sustained CDA or earlier 

components, such as our also present modulation by load (200-300ms) over SCx in 

the hands condition only, relate closely to a more pure attentional or mnemonic 

process still a work in progress. Nevertheless, from our current understanding, 

despite the existing diversity within working memory models (including state-based 

and more specifically, sensory recruitment models), all converge upon the encoding 

of information into working memory by activating one of the possible several states of 

the information. Here encoding of information in working memory occurs when 

activating those internal states of the information that are relevant for the task at 

hand, process which ultimately is based on stored representations. In these models 

and in consistency to our data, encoding of information in working memory occurs 

when activating those internal states of information that are relevant for the task at 

hand (D’Esposito, 2007; D’Esposito and Postle, 2015), a process which ultimately 

leads to stored representations. Likewise, multivariate pattern classifiers trained to 

predict the locations on a working memory task have been shown to cross-predict the 

locations on other attentional paradigms, suggesting the resemblance and 

correspondence of the sustained activity over cognitive tasks (Jerde et al., 2012). 

3.5.2 Role of somatosensory cortex in WM for visually perceived body 

stimuli 

Somatosensory cortices hold a specific representation of our own body (Martuzzi et 

al., 2014) and its role in perception (Gazzola and Keysers, 2009; Bolognini et al., 

2011) and other cognitive processes (Romo et al., 2002) involving body stimuli have 
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recently been suggested. Importantly, our data provides the SCx with a new 

functional role: encoding and maintaining visual body information in short term 

memory. Consistent with our findings, current accounts in working memory have 

shifted from multicomponent models underpinned by highly specialised systems 

(Baddeley, 2003) to state-based models of working memory (D’Esposito and Postle, 

2015). These later models postulate that the temporary representation of stimuli 

occurs in brain areas such as sensory cortices, which also process these same 

stimuli in the absence of working memory demands, characterizing working memory 

as a re-establishment of perceptual experience (Tsubomi et al., 2013; D’Esposito and 

Postle, 2015; Postle, 2006). Our results contribute to this account by suggesting that 

visually perceived information is not necessarily sustained by perceptual relevant 

cortices but by those that are functionally relevant. 

In the present study, we speculate that SCx represents body-related stimuli or at 

least some of the dimensions that represent the percept in WM, and that this process 

is underpinned by exposition and functional associations between one’s experience 

and others’ bodies. This repeated perceptual stimulation is likely to be stored as 

sensory associations between the tactile sensation and the view of bodies (i.e., 

feeling or moving my own hands and seeing others’ hands).     

3.5.2.1 Further questions to be explored   

One of the relevant remaining questions concerns the content representations of 

SCx. Specifically, what is the exact role and content of SCx in subserving mnemonic 

processing? SCx seems to be able to represent tactile-related content and actions 

that are visually perceived, resembling activity elicited when touching or being 

touched (Keysers et al., 2004; Kuehn et al., 2013; Nakano et al., 2012; but see touch 

and use of tools, Chan and Baker, 2015). Seeing similar objects that have different 

textures elicits cortical activity which tactile-related information can be reliably 
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decoded from SCx. Conversely, more ‘pure visual’ properties such as colour did not 

elicit considerable changes in SCx (Hua-Chun sun et al., 2016). Seeing hands in 

action while interacting with different objects elicits also SCx activity that can be 

decoded in a content-specific manner.  

In the present study we specifically probed the state of SCx. However, there are 

additional brain regions that also contribute to perception of bodies and, potentially, 

to their maintenance in WM. Specifically, the motor cortex, which is located in the 

precentral gyrus has been strongly associated to the visual processing of body-

related information (see meta-analyses of brain regions in action perception from 

Caspers et al., 2010; Molenberghs et al., 2012). Similar to the the tactile 

representation of the body in SCx, a motor representation of the body in the brain is 

organised in a contralateral manner. Both sensory and motor cortical strips are 

adjacent, connected, and somehow overlapped. Considering that brain areas 

supporting perceptual functions do also play a role in WM, motor regions may 

contribute to WM for visually perceived information —this latter matter will be 

explored in the next experimental chapter.  

 

3.5.3 Conclusions 

The findings of this study go beyond previous WM models that do not reflect on the 

link between perception and memory, and that consider both processes as 

underpinned by dedicated systems (Baddeley, 2012). We revise contemporary 

accounts in STM and WM based on sensory recruitment with a novel characteristic: 

mnemonic encoding of stimuli to-be-remembered in terms of their functional 

associations and not only sensory acquisition properties. In the past, visual non-

body-related information showing lines, colours, or shapes (comparable to our control 

stimuli) has elicited activity over posterior cortices (Vogel and Machizawa, 2004; 
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Todd and Marois, 2004; Luck and Vogel, 2013; Vogel et al., 2005; McCollough et al., 

2007; Tsubomi et al., 2013). More specifically, CDA seems to originate in visual and 

associated cortices (Luria et al., 2016) as shown by some studies using MEG 

(Robitaille, Grimault and Jolicœur, 2009; Becke et al., 2015). Tactile percepts in form 

of frequencies or taps elicits tactile CDA (tCDA) originated in SCx (Katus et al., 2014; 

Katus et al., 2015; Harris et al., 2002; Katus and Andersen, 2015; Katus and Eimer, 

2015).  

Our results support a more dynamic representation of the information, in which 

neural memory storage occurs in a content-specific rather than in a sensory-modality 

(based on acquisition) manner. Here, the perceptual and functional characteristics of 

visual stimuli rather than the sensory input modality determine how information is 

encoded and stored. Thus, any neural region that participates in the representation of 

information may maintain information in memory. Possible mechanisms behind this 

could be based on hebbian learning (Sandberg et al., 2003) or synaptic reweighting  

of sensory input. In either case, content-specific processing that is driven by 

functional associations results in a more suitable memory framework that eases the 

need of relocating relevant information to a limited number of highly specialised 

memory systems (Postle, 2006; D’Esposito, 2007; D’Esposito and Postle, 2015). 

This process seems to go over and above those sensory cortices participating in the 

initial acquisition of the information, being mediated by the neural underpinnings that 

participate in the functional encoding of the stimuli to be remembered.   

In conclusion, current accounts postulate that WM is better understood as a 

reestablishment of perceptual experience in a ‘sensory input congruent-manner’ 

(e.g., somatosensory cortices to acquire, perceive, and also to maintain tactile stimuli 

in STM). However, research in the action perception domain has shown that ‘bodily 

matters’ (i.e., seeing bodies, actions, body-object interaction, etc.) engage brain 
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areas beyond those visual cortices used during the perceptual stage. In this first 

study, combining pieces of evidence from the WM and action observation fields 

resulted in our novel paradigm, which shows that even when a similar sensory input 

modality is used, engagement of sensory cortices during WM encoding depends on 

the nature of the stimuli to-be-remembered. A part of this novel mnemonic principle, 

body-related cortices seem to maintain visually acquired body stimuli in WM. 

Altogether, the results presented here show that WM follows also functional and not 

just sensory principles. 
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3.6 Artistic Impressions III 
 

 
                                                       
                                                            
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Left panel 

Bodily Realm – Escher’s allegory (2015) Photography on board (21 x 29cm) / AGP 

The Method reveals that when perceiving others bodies, we seem to represent some of their 

components over and above visual brain areas (those ones shown in the Visual Realm). Others’ bodies 

could be forged in our memories on the same regions that represent our own body. 

 

Right panels 

Portraits of thin air: Al, Duo, IR (2016) Photographs on board (29 x 29cm) / AGP 

Light reflected on bodies depicting bodily representations. From encoding to functional representation 

reflects on the step perception of mere light to functional representations. 
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4. Chapter 4: Sensorimotor recruitment 

during WM for body and non-body-related 

images 

 
4.1 Study 2: Introduction 

Behavioural studies suggest the presence of a WM system contributing to memory 

encoding of visually perceived body information. Moreover, according to the current 

WM framework, areas of the brain that may contribute to such a WM system are 

those playing a role in perception of body stimuli. In Chapter 3 I investigated one 

these neural candidates: somatosensory cortex (SCx). I applied a novel ERP-EEG 

method to explore SCx responses during a visual WM task where stimuli to-be-

remembered were body and non-body-related images. The results showed that brain 

activity increased with the number of body stimuli to-be-remembered over the 

contralateral SCx. Visual percepts (i.e., hand images) elicited a response modulated 

by memory load over and above visual electrode sites, what we called visually-driven 

contralateral delay activity or vdCDA. This suggests memory encoding of body-

related information in cortices that match the sensory features embedded in the 

percept.  

While the study in Chapter 3 was designed to examine activity in SCx, the present 

chapter explores whether or not the number of body images to be held in WM may 

modulate activity in motor cortex; brain region linked to perception of body-related 

stimuli too. To pursue this matter, I will briefly recap existing accounts in WM, as well 

as, those brain areas activated during perception of bodies. Secondly, I will present 

an ERP component associated to motor-cortical processing, and I will introduce how 

this component can be dissociated from concomitant activity elicited at the sight of 
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body stimuli during a visual WM task. Third, I will introduce the hypotheses of the 

study, methodological aspects, considerations, and the results of both visual and 

motor-cortical potentials. Last, I will discuss the present findings and review the 

overall limitations of this study.   

4.1.1. Outline of sensory recruitment models 

Expanding Chapter 1 to 3 on the origins and characteristics of sustained activity, it 

refers to that neural activation classically observed when participants engage in tasks 

that demand continued attention and mnemonic encoding. Ruchkin et al. (1990) and 

Vogel and Machizawa (2004) combined this specific marker of encoding and 

mnemonic processing with paradigms exploiting the contralateral primary disposition 

of sensory cortices. Specifically, they developed a bilateral change detection 

paradigm similar to that used in the study of Chapter 3, in which participants were 

asked to hold in memory either the items cued in the left or right hemifield while 

fixating their gaze in a centred cross.  

Once perceptual parameters are controlled, the hemisphere contralateral to the cued 

hemifield exhibits a slow negativity, which persists through the whole retention 

interval and increases with the number of items to be stored in WM. Conversely, the 

ipsilateral hemisphere exhibits activity more closely related to the perception of 

stimuli that are not to-be-remembered. This manipulation allows for a subtraction of 

activity from contralateral and ipsilateral hemispheres. Therefore this component 

(namely, contralateral delay activity; CDA) is supposed to reflect neural activity due 

to encoding and memory-only effects during experimental manipulations with 

increasing memory load.  

As described in the previous chapter, a tactile contralateral delay activity (tCDA) has 

been described for tactile WM (Katus et al., 2014, 2015). This tCDA follows the same 

scheme as the vCDA: sustained activity being modulated by the quantity of 
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information to-be-remembered over the contralateral sensory hemisphere. The loci of 

such modulation is revealed when event-related potentials are locked to the stimuli 

onset, as well as to retro-cues indicating what tactile or visual parameters that are 

embedded in a given percept need to be recalled (Katus and Eimer, 2016).  

Crucially, body-related brain areas do not only process tactile information in a 

lateralized manner, but also visually perceived body-related information. As revealed 

in Chapter 3, this allows observation of a visually driven neural signature sensitive to 

memory load (namely visually-driven CDA —vdCDA) that suggests encoding and 

maintenance of visual body-related information in areas other than visual (i.e., SCx). 

Relevant for the current study, motor cortex also process visually perceived body 

stimuli in a contralateral manner in both perceptual and actual motor domains (e.g., 

seeing hands and one’s hands). The following section summarises brain regions 

activated during perception of action and bodies.  

4.1.2. Outline of sensorimotor involvement during perception of bodies 

Motor areas are predominantly found in Brodmann areas 4, 6, and 8 over 

frontocentral and frontal cortices. Compared to SCx, which is located over the 

postcentral gyrus, primary motor cortex is located on the anterior verge of the central 

sulcus. Although motor production is the characteristic purpose of these regions, 

sensory stimulation also elicits responses in such brain areas. More precisely, recent 

papers suggest robust interactions between ‘purely’ motor areas and SCx in learning 

motor skills through observation (Lametti and Watkins, 2016). From posterior to 

anterior, the next brain region is the premotor cortex, which extends to the medial 

longitudinal fissure. This region is responsible for the guidance and control of body 

movements. Activity in premotor areas has been observed in tasks involving 

observation of bodily actions, as well as actions requiring imagining and preparing 

movements (Kranczioch et al., 2009, 2010; Grosbras et al., 2012). The anterior part 
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of the supplementary motor area (SMA) is curiously more active when imagining 

movements whereas the posterior and caudal region are more active during 

execution (Stephan et al., 1995; Grafton et al., 1996). Lastly, in a more anterior 

location, frontal eye fields have been associated to imitating, maintaining, and 

coordinating ordinal movements, as well as rehearsal of motor repertoires (Rizzolatti 

et al., 2002; Nachev et al., 2008) 

Overall, a distributed network of brain areas, including the aforementioned plus other 

regions such as inferior parietal lobe and superior temporal sulcus, comprise brain 

systems partially overlapping and contributing to both perception of bodies and 

execution of one’s movements (Kilner, 2011), as well as, functions related to 

visuomotor processing and acquisition of motor skills (Sakai et al., 2002; Grèzes et 

al., 2003). Strong evidence for the resemblance between perception and motor 

components within the motor areas comes from fMRI studies including sensorimotor 

experts viewing actions (Calvo-Merino et al., 2005, 2006; Pilgramm et al., 2010; Kim 

et al., 2011), sensorimotor imagery studies (Lotze et al., 1999; Fourkas et al., 2008), 

and studies on simulation (Cross et al., 2006). Altogether, encoding of body-related 

information follows functionally discrete and spatially overlapping regions that are 

relevant for encoding others’ bodies and actions (Jacquet and Avenanti, 2015).  

Besides the aforementioned fMRI studies, an EEG component associated to motor 

processing and source localized over motor regions has been thoroughly 

investigated (i.e., readiness potential). This component has been mostly associated 

to motor execution. However, some studies have shown that the readiness potential 

also reflects visually perceived body-related information. In principle, it seems 

possible to borrow such a component, adapting it to the study of WM for visual 

processing of body images. In the following section I introduce how the readiness 

potential is elicited, its temporal dynamics, and its neural generators.  
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4.1.3. Measuring motor processing by means of motor-cortical 

potentials  

The Bereitschaftspotential or readiness potential (RP) (Deecke et al., 1976; 

Shibasaki and Hallett, 2006; Smulders and Miller, 2012) refers to a movement-

preceding negativity that originates in motor cortices before a movement is 

implemented (Cunnington et al., 2003). The RP has been classically understood as 

an indicator of preparation for self-initiated and goal-directed upcoming movements 

(Shibasaki and Hallett, 2006). The RP is normally elicited by asking participants to 

perform/execute simple finger or arm movements and it is normally recorded through 

EEG. The RP could be considered within the family components of motor-cortical 

potentials (MCPs).  

According to the RP’s time course and source localization, two different periods can 

be distinguished: first, the RP appears as a steady bilateral activity that can be 

source localized over SMA. Second, it lateralizes over the motor cortices of the 

effector in the task around 300-500ms before the actual onset of the movement 

(Deecke et al., 1976; Cui and Deecke, 1999; Rueda-Delgado et al., 2014) (Fig. 4-1). 

These lateralized components are well known in their isolated version: the lateralized 

RP. In unilateral motor responses, structural and functional interhemispheric 

asymmetries are deducted by computing a double ERP subtraction between mean 

amplitudes (De Jong et al., 1988; Eimer and Coles, 2003). The subsequent 

lateralized readiness potential (LRP) amplitude is modulated by several factors such 

as the force, intention, or the complexity of forthcoming action (e.g., finger 

movements) (Cui et al., 2000a, 2000b) whether these are executed or imagined 

(Kranczioch et al., 2009, 2010). 

Another component of interest is the contingent negative variation (CNV), which can 

be measured from the onset of a warning stimulus to a forthcoming imperative 
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second stimulus involving a certain response. The CNV has been associated to 

orienting and expectancy towards a given signal (Leuthold et al., 2004; Leuthold and 

Jentzsch, 2009). Even though the CNV looks very similar to the RP and it engages 

similar neural generators, the RP is more lateralized, it requires motor response, and 

it is normally observed in the absence of external imperative stimuli. Remarkably, the 

lateralization of the RP seems to happen when participants decide consciously to 

perform a body movement (Trevena and Miller, 2002). An evident difference between 

RP and CNV is that the latter is expected to involve neural generators contributing to 

additional cognitive processes. Specifically, the later part of the wave of the CNV can 

be movement-related, as well as related to perception and other processes such as 

memory and attention (Smulders and Miller, 2012; Rueda-Delgado et al., 2014). The 

mix of cognitive processes found in the CNV is due to processing of the upcoming 

warning stimulus and the preparation of the movement to be implemented. 

Nevertheless, if a fast response is required in a CNV task, this activity would 

resemble that of the late RP: a response parameter associated with motor 

processing, involving sensory and motor associations that can be modulated by 

external factors inherent to the requirements of the task at hand (Frost et al., 1988; 

Leuthold and Jentzsch, 2009; Brunia et al., 2012).  

Relevant for the present study is the variant of both aforementioned components: the 

cued motor-cortical potential. Compared to the volitional RP, this motor preceding 

negativity is elicited by explicitly asking participants to execute a movement. In 

comparison to other motor-cortical potentials (MCPs), it is very similar to the RP and 

the late portion of the CNV. In the specific case of the RP, both the cued MCP and 

the traditional RP possess similar latencies but the cued MCP involves additional 

activation from lateral premotor cortex (Smith and Staines, 2012).  
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Despite MCPs having been normally associated with goal-directed bodily actions, the 

requirement of sensorimotor activity as arising inly prior to motor execution is 

debated. For instance, listening to ‘do and don’t do’ abstract or action-related 

sentences activates the motor regions, reflecting different modulations between 

positive and negative action-related sentences compared to abstract ones across 

fronto-parietal cortices (Tettamanti et al., 2008). An EEG study showed that volitional 

non-actions (i.e., choosing not to act), elicits ERPs comparable to those observed 

during volitional and instructed acts (Kühn et al., 2009). Another EEG study, 

Alexander et al. (2016) compared volitional decisions with and without motor 

responses, showing a similar RP regardless of the presence of the actual motor 

response. These authors argue in favour of the RP as a neural signature reflecting 

decision-related processes instead of purely motor activity. Direct recording of neural 

activity in the premotor cortex of the macaque monkey has shown that neurons 

respond to both acting and non-acting (i.e., refraining from doing it) and that some 

these neurons fire when particularly observing others in either one of these two motor 

conditions (Bonini et al., 2014). 

Overall, MCPs studies suggest that: i) sensorimotor cortices do not strictly support 

information-representation of the forthcoming movement. Instead, they seem to 

reflect the motor consequences of an act whether this is executed or not (i.e., the 

consequences of an action not to be performed).  ii) This idea is strikingly similar to 

Prinz’s work (Prinz, 1997; Schütz-Bosbach and Prinz, 2007), which tied perception of 

events to the motor consequences embedded in them. This postulate implies the use 

of stored associations and representations to guide future behaviour. iii) Supporting 

this, predicting others’ actions during action observation modulates the readiness 

potential (Pineda et al., 2000; Kilner et al., 2004; van Schie et al., 2004). Thus, motor 

cortices seem to play an important role in processing visual information related to 
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others’ bodies and actions. Similar to Chapter 3, this visual to sensorimotor 

transformation allows the possibility of measuring visually driven processing of body-

related stimuli during their maintenance in cortices other than visual (i.e., motor). 

 

 

Figure 4-1. Illustration of readiness potential waveform. Considering time-course, slope, and 

sensory generators, three periods have been generally identified: early RP develops until -

500 to -300ms before movement onset (central, bilateral). Late RP develops until movement 

onset, generally includes the half second before movement onset to -80 or to 0 ms (zero 

indicating participants’ actual motor response) (contralateral to the effector). A reaffererent 

potential in the form of a positive peak is generally observed around 150-200ms after 

movement onset. Positive ERP waveform plotted upward.  

 

 

4.2 Aims, method development, and predictions 
4.2.1  Concatenating concepts 

In this Chapter there are four different pieces of evidence that need to be considered: 

1) the resemblance between perceptual and WM mechanisms (D’Esposito and 

Postle, 2015), 2) the contribution of motor cortex in processing visual information 

regarding body-related stimuli, 3) the existence of an EEG component (readiness 

potential)  reflecting the state and underlying processing of the motor cortex, and 4) 
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the overlap between some of the neural generators reported in fMRI studies of action 

perception and EEG studies using the readiness potential (Fig. 4-2).  

Aims of the study. In the current experiment, we explore if encoding and 

maintenance of non-body and body-related stimuli elicits persistent activity in motor 

cortex, which participates in processing the latter stimuli in the absence of WM 

demands. More specifically, we examine whether or not the type and number of 

stimuli to-be-remembered involves recruitment of motor cortices. This would exhibit 

an enhancement by memory load of the ERP waveform over motor cortex. Such a 

result would also support sensory recruitment models of WM (Pasternak and 

Greenlee, 2005; Serences et al., 2009; D’Esposito and Postle, 2015), suggesting 

encoding of visual information in distinctive cortical regions that match the 

characteristics of the stimuli to-be-remembered, a process that it is known to 

delineate perception of bodies and actions. 

 

 
     �V5    �EBA   �IPS 

     �S1    �vPMC   �dPMC (incl. SMA)  
 

Figure 4-2. Schematic illustration of overlapping brain regions in studies of RP and action 

perception. Coloured circles cover brain regions contributing to action perception. Yellow 

shadow covers brain regions that are also modulated in studies of RP. EBA: extrastriate body 

area; S1: primary somatosensory cortex; vPMC: ventral premotor cortex; dPMC: dorsal 

premotor cortex; IPS: intraparietal sulcus; SMA: supplementary motor area. 
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Methodological approach. To address our aims, we developed a novel paradigm 

inspired by that proposed in Chapter 2 and used in Chapter 3. This paradigm 

enables dissociating visual processing from visually driven activity in brain areas 

beyond visual cortex (i.e. in motor cortices). This paradigm takes advantage of two 

major neural features: the lateralized organization of sensory systems, and the use of 

stimuli that differ in the type of processing that they evoke (non-body and body-

related stimuli).  

We recorded both visual and motor-related cortical potentials while participants 

performed a visual WM task in which stimuli to-be-remembered were hand images 

depicting different hand positions and analogous geometrical shapes. We computed 

the aforementioned vCDA, as well as recorded cued motor-cortical potentials (MCPs) 

during the retention interval of each trial. Cued motor-cortical potentials (MCPs) are 

closely related to the volitional readiness potential or Bereitschaftspotential (Deecke 

et al., 1976; Shibasaki and Hallett, 2006). This multifaceted component arises from 

frontal and motor cortices and reflects underlying processing of one’s motor 

responses (e.g., forthcoming complexity of an executed or imagined action; 

(Kranczioch et al., 2009, 2010) and others’ observed bodily actions (van Schie et al., 

2004).  

The key factors of this experiment included: stimulus type (hand, shape images), 

memory load (1, 2 images), and hemisphere (ipsilateral, contralateral). These factors 

were computed in the analyses of visual-evoked potentials and motor-cortical 

potentials after subtraction of visual carry-over effects; VEPs and MCPs, 

respectively. 

Predictions. By developing a WM paradigm comprising both visual and motor 

cortical-potentials, we sought to examine effects of memory load across visual and 

motor brain regions. We predicted that once dissociated from visually elicited activity 
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in the same WM task, MCPs arising from engagement of motor areas would reflect 

increasing activity depending on the number of body-related images to-be-

remembered (i.e., enhanced brain activity when remembering one hand image 

compared to two hand images over motor electrode sites). This would exhibit novel 

evidence for neural recruitment in functionally different sensory cortical regions that 

match the perceptual and functional characteristics of the perceived stimuli. 

Therefore, with our design and methodology, we expect to identify a novel signature 

that represents the encoding of visual percepts beyond the expected early visual 

processing. 

4.3 Methods 

Participants  

Twenty participants (10 females; mean age = 29) with normal or corrected-to-normal 

vision took part and gave informed consent for this study, approved by City, 

University of London Psychology Department’s Research Ethics Committee. The 

sample size was chosen based on related studies and paradigm (Vogel and 

Machizawa, 2004; Katus et al., 2015)  

Stimuli  

A set of 6 pictures of right hands depicting different hand postures and finger 

positions with no meaning or symbolism was used. These hands were horizontally 

rotated to the left, obtaining 6 pairs of right and left hands that were then greyscaled. 

In parallel we created a control condition based on a set of geometrical shapes 

matching the hands’ outline, size, and colour.  

Experimental design and procedure 

Participants were seated in front of a LCD monitor (75 Hz) in a dimly lit, 

electromagnetically shielded room. Participants’ forearms rested on the top of a table 
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with their hands separated about 25cm, in palm down position, and covered by a 

black opaque surface.  

Participants performed both stimuli conditions (i.e., hand and geometrical shapes) in 

counterbalanced order. They were instructed to recall differences between pairs of 

arrays depicting different hand postures or shape forms. At the beginning of each trial 

a central arrow cue (200ms) instructed the participants to covertly attend to the items 

in either the left or the right hemifield. After the offset of the arrow cue (300-400ms), 

the memory array was displayed for 100ms and followed by a blank retention interval 

(800ms). At the end of the retention interval the fixation cross changed from red in 

colour to green until the end of the trial, 100ms later the test array was displayed. In 

half of the blocks participants were instructed to ignore this colour change while in 

the other half and at the beginning of the corresponding blocks, they were instructed 

to prepare and produce a task-irrelevant motor response at the onset of the green 

fixation cross. This response was done by simultaneously pressing two different keys 

with the index fingers of both hands. Finally, the test array was displayed until 

participants’ verbally responded whether or not the stimuli in the cued hemifield of the 

test array were identical to those in the memory array. One of the items in the test 

array differed from the memory array in 50% of the trials; the rest of the stimuli 

remained the same. All trials were separated by a 700ms blank interval. 

Shapes and hands stimuli were displayed using E-Prime Software (Psychology 

Software Tools). All stimulus arrays were presented within two 4.5° x 8.5° rectangular 

regions that were centred 5° to the left and right of a central fixation cross on a grey 

background. Each memory array consisted of 1 or 2 hands (1.3° x 0.8°) in each 

hemifield, each stimulus randomly selected from the set of twelve hands. Right hands 

were shown on the right hemifield while left hands were displayed on the left. The 

rationale behind this choice is based on the clear contralateral representation of the 
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hands in the motor cortex. This allows observing contralateral activity over motor 

regions that can be dissociated from concomitant visually evoked activity when 

seeing and remembering the stimuli. In the control condition 1 or 2 polygonal shapes 

(1.3° x 0.8°) were selected and shown in a similar fashion. The positions of all stimuli 

were randomized on each trial with the restriction that distance between stimuli within 

a hemifield was maintained to a minimum of 2.4° (centre to centre).   

 

																					  
Figure 4-3. Task design and procedure study 2. Illustration of trial displaying memory load 2, 

cued to the left hemifield, in hand and shape stimuli conditions (participants performed both 

stimuli conditions in counterbalanced order). On half of the trials, participants performed a 

task-irrelevant motor response by simultaneously pressing two different keys with both index 

fingertips at the onset of the green fixation cross array (yellow triangles). Participants verbally 

responded whether the memory array and test array were the same or different. Electrode 

map shows electrodes over visual (red) and motor ROIs (blue). SOA: stimulus onset 

asynchrony. 
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Since previous studies have shown that holding in WM 2 items may well lead to limits 

in WM capacity (Alvarez and Cavanagh, 2004; Olsson and Poom, 2005; Luria et al., 

2010); memory load 1 and 2 would allow detecting increasing activity related to 

memory encoding and maintenance of the stimuli. During the experiment, the 

presentation of the stimuli and tasks was blocked: In counterbalanced order, half of 

the participants started by completing the hand stimulus condition while the other half 

started by the shape stimulus condition. We also counterbalanced those trials in 

which participants were asked to exert an irrelevant motor response (visual-motor 

condition). Specifically, visual and visual-motor trials were counterbalanced across 

entire blocks of 84 trials. The number and specific type of stimulus from the stimulus 

sets were randomly selected. Overall, participants performed a total of 1344 trials, 

672 for each stimulus condition (hands and geometrical shapes). This is equal to 336 

trials for each memory load condition (load 1 and 2).  

EEG recording and data analysis.  

EEG was recorded with active electrodes from 64 scalp electrodes mounted 

equidistantly on an elastic electrode cap (M10 montage; EasyCap). Electrodes were 

referenced to the right mastoid and re-referenced to the average reference off-line. 

Vertical and bipolar horizontal electrooculogram was recorded for eye movements 

tracking and artifact correction purposes. Continuous EEG was recorded using a 

BrainAmp amplifier (BrainProducts; 500 Hz sampling rate). Off-line EEG analysis 

was performed using Vision Analyzer software (BrainProducts). The data were 

digitally low-pass-filtered at 30 Hz, and ocular correction was performed (Gratton et 

al., 1983). Trials with horizontal eye movements (HEOG exceeding ± 55 µV) or other 

artifacts (voltage exceeding ± 85 µV at any electrode) were excluded from analyses. 

The EEG signal was epoched into 1750ms segments, starting 200ms before the 

sample array of each trial and ending 550ms after the onset of the green fixation 
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cross. This included stimulus-locked potentials in the visual-only condition and both 

stimulus-locked and response-locked potentials elicited by the irrelevant-task motor 

response in the visual-motor condition. Importantly, all segments were then baseline 

corrected to the first 100ms. Following this, segments comprising stimulus-locked 

potentials were epoched into 1200ms and segments comprising response-locked 

potentials were epoched into 1250ms (-1150ms preceding the motor response to 

100ms after).  

Stimulus-locked potentials: Grand averages were computed independently for the 

two stimuli conditions, separately for the two memory loads, and for visual-only trials 

by averaging brain waveforms elicited at electrodes over the hemisphere 

contralateral and ipsilateral to the side to be memorized as indicated by the central 

cue. Then, visual contralateral delay activity (vCDA) was computed from 300 to 

800ms after the onset of the stimuli to be remembered as the difference between 

contralateral amplitudes (averaging evoked potentials over right visual hemisphere 

when attending left hemifield and over left visual hemisphere when attending the right 

hemifield) and ipsilateral amplitudes (average of evoked potentials over the right 

visual hemisphere when attending the right hemifield and vice versa) (Luck, 2012). 

Statistical analysis was performed for mean amplitudes in accordance with sites and 

time windows reported in previous studies, specifically, occipital and posterior 

parietal electrode sites (midway between POz and PO3, midway between PO7 and 

P3 / midway between POz and PO4, midway between PO8 and P4 of the 10-20 

system) (Luck et al., 1993; Vogel and Machizawa, 2004; Vogel et al., 2005). 

Response-locked potentials: Motor-related cortical potentials (MCPs) reflect 

processes involved in movement planning, observation, execution, and motor 

learning. Previous studies describe a steep negativity approximately half a second 

before onset of voluntary movements which is found over the contralateral M1 cortex 
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of the moving hand. The cued MCP employed in the present study is somewhat 

similar to the volitional Bereitschaftspotential (Deecke et al., 1976; Brunia et al., 

2012): It follows similar temporal dynamics, however, it involves additional activation 

over premotor areas.  

MCPs were obtained by averaging the elicited activity preceding the irrelevant-task 

motor response in the visual-motor condition, meaning that they were measured with 

respect to the moment the participants performed the motor execution (from -1150 to 

100ms, 0ms being the actual motor response). We then computed statistical analysis 

of MCPs that allowed us to explore our main hypothesis: neural recruitment of brain 

regions matching the perceptual and functional characteristics of the perceived 

stimuli (i.e., sensorimotor regions modulated by the number of hand images to-be-

remembered). To this aim, we averaged contralateral MCPs (averaging brain activity 

over right motor hemisphere when attending left hemifield and over left motor 

hemisphere when attending the right hemifield) and ipsilateral amplitudes (average of 

evoked potentials over the right hemisphere when attending the right hemifield and 

vice versa). In accordance to the aforementioned temporal dynamics, as well as 

electrodes sites used in previous research (Kranczioch et al., 2009; Smith and 

Staines, 2012), we defined two regions of interested (ROI) that were analysed from -

500ms to -50ms before the onset of the movement produced in the task-irrelevant 

motor response. There were two hemisphere factors (contralateral and ipsilateral) 

and two ROIs: frontocentral (midway between C1 and FC1/midway between C1 and 

FC2, FC3/FC4, FC5/FC6) and frontal (F1/F2, F5/F6, and AF3/AF4). All the factors 

included in the analyses were hemisphere (contralateral, ipsilateral), ROI 

(frontocentral, frontal), channel (3 electrodes), memory load (1,2), and stimuli types 

(hand, shape images). In regards to the electrode sites, note that different studies 

have used various arrangements. Sommer et al. (1994) recorded RP at 2, 4, and 6 



	 130 

cm from Cz (lateralized), as well as in more posterior and anterior electrode 

positions. They found fairly similar activity across electrodes with mean amplitudes 

differencing from zero (no differences). These results suggest that positioning of the 

electrodes is not very critical (Smulders and Miller, 2012) 

Importantly, to deduct visual effects over more frontal and motor cortices, we 

imported individual markers from participants’ motor responses in trials of the 

response-locked potentials of the visual-motor condition to the corresponding 

segments of the visual-only condition. By doing this we created ‘virtual markers’ in 

the visual-only condition at the estimated timing in which a motor response in the 

visual-motor task was done. Then, activity from visual-only trials locked to this virtual 

response was subtracted to the mean amplitudes of visual-motor trials (containing 

both motor and visual evoked potentials). This process provided us with motor 

cortical potentials from which visual activity spreading from more posterior areas was 

subtracted. This methodology is based on previous studies examining integration as 

well as dissociation of brain activity from distinct sensory modalities (Talsma and 

Woldorff, 2005; Senkowski et al., 2007; Talsma et al., 2010; Sel et al., 2014) and a 

more recent study examining motor activity linked to decision and volitional 

processing of movement (Alexander et al., 2016) 

Lastly, in all analyses, Mauchly's W was computed to check for violations of the 

sphericity assumption and Greenhouse–Geisser adjustments to the degrees of 

freedom were applied when appropiate. The P values were corrected for multiple 

comparisons using Bonferroni correction. 

Electrophysiological source localization. Based on the scalp-recorded electric 

potential distribution, the Standardised Low Resolution Brain Electromagnetic 

Tomography (s-LORETA) (Pascual-Marqui et al., 1994; Pascual-Marqui, 2002) was 

used to estimate the brain generators associated with modulations by memory load 
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between stimuli types in MCPs. Specifically, the differential activity between the hand 

and shape stimuli conditions in the time window from -500 to -50ms of the MCPs 

after subtraction of visual-only trials’ activity was subjected to source localization. 

sLORETA provides an approximate three-dimensional discrete solution to the inverse 

EEG problem. It estimates the most active brain areas using a 5mm resolution brain 

volume template of the Montreal Neurological Institute (MNI). MNI coordinates were 

translated to Talairach coordinates by Talairach Daemon. Compared with other 

dipole-based methods, s-LORETA has the advantage of estimating activity sources 

without any a priori assumptions about the number of sources or their location.  

 

4.4 Results 
4.4.1 Behavioural results 

In the shapes stimulus condition, participants correctly reported differences or 

similarities between the memory and test array in 78% of all trials in the visual-only 

condition and in 73.5% of all trials correct in the visual-motor condition. Very similar 

performance followed the hands stimulus condition with 77% of all trials correct in the 

visual-only and 73% of all trials in the visual-motor condition. Performance was 

analysed using the sensitivity index d’, which considers false alarms and hit rates, 

representing a more precise measurement of signal detection than percentage of 

correct trials only. Repeated measures ANOVA with factors stimulus type (shapes 

versus hands), task (visual-only versus visual-motor), and memory load (1 versus 2) 

showed main effects of task (F(1,19) = 52.127, p < 0.001) and load (F(1,19) = 238.249, p 

< 0.001), as well as a significant interaction of stimulus type and load (F(1,19) = 6.718, 

p = 0.018). We followed up this stimulus type by load interaction by separately 

comparing stimulus type for load 1 and load 2. No significant differences between 

stimulus type were found for either memory load (t(1,19) = 1.105, p = 0.283 and t(1,19) = -

1.554, p = 0.137, respectively). No significant interaction of stimulus type X task X 
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load was found (F (1,19) = 0.236, p = 0.633) (Fig. 4-4). We also examined the reaction 

time needed for the bi-manual task-irrelevant motor response, which was measured 

from the change of colour in the fixation cross (Fig. 4-3). Overall, participants pressed 

after 253.5ms in the shape stimulus condition and 254ms in the hand condition. 

Analysis of variance yielded no significant differences between stimulus type and 

memory load (F(1,19) = 0.835, p = 0.372). Participants consistently took slightly longer 

to exert the motor response when holding in memory two stimuli, a significant main 

effect of load was found (F(1,19) = 19.538, p < 0.001). Overall, performance was very 

similar in the hand and shape conditions, it was equally modulated when the trial 

included the motor response in the form of a task-irrelevant key pressing during the 

retention interval of the stimuli to be remembered.  

 

 
 

Figure 4-4. Behavioural results in visual and visual-motor conditions. Dots represent the 

means of individual participants; the diamond shapes the sample average. Overall 

performance in hand and shape conditions was similar and no significant interactions were 

found between performance for memory load 1 and 2 in the hand and shape conditions (all 

Ps ≥ 0.05), n=20. D-prime: sensitivity index, d’ = Z (hit rate) – Z (false alarm rate).   
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Moreover, given the subtractive nature of our methodology, it is possible that 

variance in the signal-to-noise ratio in the subsequent conditions could bias our 

analyses and results between stimuli types. To rule out this possibility, we also 

examined the number of accepted trials separately for trials cued to left and right 

hemifield, for each memory load and type of stimuli in the visual-motor and visual-

only task conditions. The only significant results were found as main effects of task 

(visual-only, visual-motor) (F(1,19) = 5.695, p = 0.028) and load (1,2) (F(1,19) = 123.394, 

p < 0.001). No effects of cue (F(1,19) = 0.780, p = 0.388), stimuli types (F(1,19) = 0.633, p 

= 0.436), nor other significant interactions between factors were found; quadruple 

interaction (F(1,19) = 0.445, p = 0.513). These results denote that signal-to-noise ratio 

did not bias the results on later subtractions across stimuli conditions. Dissimilarities 

of mean amplitudes over sensorimotor regions sites would be likely due to effects of 

memory load and processing visual information conveying distinctive properties 

(body and non-body-related).   

 

4.4.2 Visual recruitment: stimulus-locked potentials from visual-only 

trials 

Visual evoked-potentials elicited at posterior parietal and occipital electrode sites 

contralateral and ipsilateral to the cued hemifield were analysed for both memory 

loads and stimuli types. Approximately 300ms after the onset of the visual arrays, a 

sustained negativity appeared over visual cortices. This contralateral delayed activity 

(vCDA) persisted across the retention interval and increased with the number of 

images to be remembered. We examined this activity across memory loads by 

subtracting waveforms from the ipsilateral hemisphere to the cued hemifield to the 

contralateral hemisphere (Fig. 4-5). This latter step is assumed to remove 

nonspecific bilateral contributions of brain activity (Luck et al., 1993; Luck, 2005). We 



	 134 

then computed repeated-measures ANOVA for both stimuli types with hemisphere 

(contralateral, ipsilateral) and memory load (1, 2) as factors.  

 

 

Figure 4-5. Results of stimulus-locked visual potentials. (A) Contralateral minus ipsilateral 

visual-evoked potentials pooled over lateral occipital and posterior parietal electrodes for each 

memory load and stimuli conditions. Analysis of variance yielded a significant difference 

between memory loads 1 and 2 in both stimuli conditions. (B) Topography of the vCDA after 

onset of the memory array in load 2, showing an occipital-parietal peak in the time window 

300-800ms. Topographical maps show contralateral minus ipsilateral amplitude differences 

projected on the right hemisphere. (C) Differential activity between contralateral minus 

ipsilateral activity in load 2 minus load 1 for both stimuli conditions. Error bars represent within 

subject SEMs. Large grey squares indicate time windows for statistical analyses; n=20; 

positive ERP waveforms plotted upward 
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In the shape stimulus condition, the interaction hemisphere by load yielded a 

significant main effect of memory load (F(1,19) = 9.101, p = 0.007), hemisphere (F((1,19) 

= 21.679, p < 0.001), as well as a significant interaction between load and 

hemisphere (F(1,19) = 6.742, p = 0.018). We followed up this interhemispheric 

modulation by comparing differences in mean amplitudes within hemispheres 

between load 1 and 2 conditions. In the ipsilateral hemisphere, differences were 

found between maintaining 1 and 2 in WM (t(19) = 2.149, p = 0.045). In the 

contralateral hemisphere, differences in mean amplitudes were also found when 

maintaining 1 and 2 images of shapes (t(19) = 3.425, p = 0.003).  

Similar to the analyses of visual evoked-potentials in the shape stimulus conditions, 

we analysed the mean amplitudes evoked by hand images. We also found an on-

going negativity arising approximately 300ms after the onset of the images to be 

remembered. Repeated-measures ANOVA with hemisphere and load as factors 

yielded significant main effects of load (F(1,19) = 9.899, p = 0.005) and hemisphere 

(F(1,19) = 26.815, p < 0.001), as well as a significant interaction between load and 

hemisphere (F(1,19) = 11.552, p = 0.003). As we did in the follow up of such interaction 

in the shapes stimulus condition, we proceed to compare differences within each 

hemisphere’s activity during maintenance of 1 or 2 stimuli. In the ipsilateral 

hemisphere, no differences of in mean amplitudes were found (t(19) = 1.783, p = 

0.091). Conversely, in the contralateral hemisphere we found a significant difference 

between holding in WM 1 or 2 stimuli (t(19) = 3.818, p = 0.001). Overall, the vCDA, a 

neural marker indexing maintenance of information in visual WM (Tsubomi et al., 

2013) was similar across stimuli types.  
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4.4.3 Sensorimotor recruitment: response-locked potentials from 

visual-motor trials 

To examine brain activity from neural responses within motor regions in the visual 

WM task, over an above potential visual effects leaking from posterior to more frontal 

areas of the brain comprising motor regions, we subtracted mean amplitudes of 

visually elicited activity (visual-only trials) from mean amplitudes including both visual 

and motorically elicited cortical potentials during the same experimental session 

(visual-motor trials) (Fig. 4-6). As recent WM models postulate, if perceptual areas of 

the brain are involved in both perceptual and mnemonic processing, motor-related 

cortices (known to participate in perception and representation of bodily information) 

would reflect differences of mean amplitudes modulated by the quantity of body-

related information to be held in WM (memory load in the hand stimulus condition). 

 

 

Figure 4-6.  Response-locked potentials (-500 to -50ms). Whole topographical maps in all 

conditions, including task, memory load, stimuli types, and the subtraction from visual only 

trials’ activity to visual-motor trials’ brain activity. 
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MCPs in form of the canonical and sharp preceding motor negativity were clearly 

visible over frontocentral and frontal regions in both stimuli conditions. We computed 

mean amplitudes after deduction of visual activity from visual-only trials to visual-

motor trials in the time windows from -500 to -50ms. MCPs elicited at motor electrode 

sites contralateral and ipsilateral to the cued hemifield were analysed for both 

memory loads and stimuli types across frontocentral and frontal ROIs. Specifically, a 

repeated measures ANOVA with hemisphere (contralateral, ipsilateral), memory load 

(1,2), stimuli types (hand, shapes), ROIs (frontocentral, frontal), and channel (3 

electrodes) yielded main effects of ROI (F(1,19) = 32.251, p < 0.001) and channel 

(F(1,19) = 10.149, p = 0.002), significant double interactions between stimuli and 

hemisphere (F(1,19) = 4.931, p = 0.039), hemisphere and channel (F(1,19) = 4.979, p = 

0.012), load and ROI (F(1,19) = 8.906, p = 0.008), and significant triple interactions of 

load x hemisphere x ROI (F(1,19) = 6.769, p = 0.018) and stimuli x hemisphere x 

channel (F(1,19) = 4.630, p = 0.027). Crucially, we also found a significant interaction 

between all factors (F(1,19) = 5.995, p = 0.005).  

We followed up the latter interaction by analysing separately brain activity in each 

hemisphere. In the ipsilateral hemisphere we found main effects of ROI (F(1,19) = 

28.962, p < 0.001) and channel (F(1,19) = 9.122, p = 0.003). The factor type of 

stimulus did not reach significance (F(1,19) = 3.362, p = 0.082). No additional 

significant effects and interactions were found. In the contralateral hemisphere, we 

newly found main effects of ROI (F(1,19) = 34.451, p < 0.001) and channel (F(1,19) = 

11.392, p < 0.001). Interestingly, results showed a marginal interaction between 

stimuli and ROI (F(1,19) = 4.209, p = 0.054), which reached significance when 

interacting with load: stimuli types x ROI x load (F(1,19) = 6.046, p = 0.024).  

Given this interaction over the contralateral hemisphere between stimuli types, ROI 

and load, we proceed to examine the modulation of memory load by ROI for each 
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stimulus type. For shape stimuli, no main effect of load (F (1,19) = 0.093, P = 0.763) or 

interaction between load and ROI (F (1,19) = 0.162, p = 0.692) were found. The results 

only showed a main effect of ROI (F (1,19) = 58.942, p < 0.001), indicating a significant 

difference between the frontocentral and more frontal ROI regardless of memory load 

(t (1,19) = 7.678, p < 0.001). Contrary, maintaining hand images in WM elicited mean 

amplitudes that were distinctively modulated across ROIs (F (1,19) = 13.573, p < 0.002) 

depending on the number of images (i.e. hands) to be remembered (F (1,19) = 20.811, 

p < 0.001). Follow up of analyses separated by ROIs showed a significant difference 

of mean amplitudes in the frontal ROI when holding one hand vs. two hands (t(1,19) = 

3.260, p = 0.004; in contrast, frontocentral ROI (t(1,19) = -.676, p = 0.507) (Fig. 4-7). 

In addition, we also computed the interaction between hemisphere and memory load 

for mean amplitudes from those same electrode sites included in the former analyses 

of stimulus-locked potentials (i.e., vCDA). After subtraction of visual-evoked 

potentials, in both stimuli conditions repeated-measures ANOVA yielded no 

significant main effects of hemisphere or load (all Ps > 0.05). Moreover, the 

interaction between these factors did not reach significance when memorising 

geometrical shapes (F(1,19) = 0.175, p = 0.680) or hand stimuli (F(1,19) = 0.076 p = 

0.786. These latter results confirm that visual activity was certainly subtracted from 

the concurrent visual and motor activity of the visual-motor trials.  

Overall, MCPs modulated by memory load were found in the hand stimulus condition 

whereas no modulation by load was found in the shape stimulus condition. While 

activity from the ipsilateral hemisphere did not significantly interact with stimuli, mean 

amplitudes of the contralateral hemisphere showed a significant interaction between 

ROI, load, and stimuli types. Here, differential activity between holding in 1 or 2 hand 

images in WM was found over the frontal electrode sites. In essence, our results 

suggest that holding in WM body-related stimuli such as hand images involves neural 
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recruitment of motor regions, which are known to underpin the perceptual 

representation of body stimuli beyond visual cortices (namely, sensorimotor 

involvement in WM for visually perceived bodily information).  

 

 

 

 

Figure 4-7. Results of response-locked motor-cortical potentials (MCPs) in contralateral 

waveforms over central and fronto-central ROIs for each memory load and stimuli conditions 

after subtracting visual activity from visual-only trials. A motor preceding negativity can be 

observed nearly half second before the actual motor response (0ms). (A) In the central ROI 

no significant differences of mean amplitudes modulated by memory load were found. (B) A 

significant difference of mean amplitudes modulated by memory load was only found in the 

hand stimulus condition (**) No differences were found in the shape stimulus condition. Grey 

squares indicate time windows for statistical analyses and further sLORETA estimation. n=20; 

**, p < 0.01; positive ERP plotted upward. 
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4.4.4 Electrophysiological source localization 

Based on the scalp-recorded electric potential distribution, the Standardised Low-

Resolution Brain Electromagnetic Tomography (sLORETA) (Pascual-Marqui, 2002) 

was used to estimate cortical source estimation. It was performed on the MCPs 

(response-locked potentials, -500 to -50ms) after obtaining the differential brain 

activity between stimuli types once subtracted the brain activity due to each memory 

load (i.e., load 2 minus load within stimulus). This identified a set of regions whose 

peak of activity was maximal for the hands condition vs. shapes stimulus condition 

(Fig. 4-8). Candidate regions where maximum differential activity was due to load 

differences between stimuli conditions was source localized in classical motor cortical 

regions, in precentral and superior frontal gyrus (Brodmann areas 6/4), and 

postcentral gyrus over parietal lobe (BA 3). These include premotor cortex, SMA, 

primary motor cortex, and primary somatosensory cortex over caudal postcentral 

regions. 

 

 

Figure 4-8. Candidate brain areas in MCPs. Three-dimensional representation of sLORETA 

showing candidate regions with maximal differences due to load differences (i.e., load 2 

minus load 1) between stimuli conditions. Candidate regions were found in sensorimotor 

cortical regions (BA 3, 4, 6). 
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4.5  Discussion 

In the present study we explored the neural recruitment of visual and motor areas 

during WM for visual information depicting body-related stimuli. We present a novel 

signature of sensory recruitment during encoding and maintenance of these stimuli 

(i.e., hand images) beyond those perceptual streams engaged in the original influx of 

the percept. Such neural activity was found over frontal electrode sites in motor 

cortices and was elicited by asking participants to synchronously perform a bimanual 

task-irrelevant response during active maintenance of the stimuli in WM. 

Furthermore, we developed a novel paradigm based on elicited activity from different 

neural sources by subtracting evoked activity from visual-only trials to visual-motor 

trials, allowing us to detect independent neural responses evoked in motor cortices 

during visual processing, diminishing carryover visual effects from the visual evoked 

responses. The core of this method relies on combining different evoked-potentials to 

ultimately isolate a region or process of interest. In our specific case we combined 

and used two renowned neural signatures (i.e., vCDA and cued version of RP; 

MCPs). This methodology provided us with motor-cortical potentials from which 

visual activity spreading from more posterior areas was subtracted. Similar 

approaches have been taken in the past when studying integration of information 

from distinct sensory modalities (Talsma et al., 2010; Sel et al., 2014), and during 

decision-making associated to motor activity and volitional body movements 

(Alexander et al., 2016).  

Moreover, analogous to earlier studies examining visual and somatosensory 

mechanisms in attention and WM (Vogel and Machizawa, 2004; Katus et al., 2015), 

we took advantage of the primary contralateral organisation of motor cortices. Since 

our own hands’ cortical representation is well lateralized (Martuzzi et al., 2014) and 

observing others’ actions such as manual acts seem to engage similar areas than 
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those required in the action itself (Shmuelof and Zohary, 2006; Molenberghs et al., 

2012), we postulated that the resemblance between action and perception could 

underpin mnemonic representation of hand images. Precisely, this is likely the 

underpinning mechanism found in our interhemispheric difference: a neural trace 

beyond the input modality in which lateralization is driven by visually perceiving body 

information, known to engage sensorimotor regions in a lateralized somatotopic 

manner.  

Visual activity from visual-only trials. In congruency with previous studies, the 

visual-evoked potentials elicited an interhemispheric difference known as 

contralateral delay activity over visual brain areas (McCollough et al., 2007; Tsubomi 

et al., 2013; Luria et al., 2016). This delay activation is associated with encoding and 

active maintenance of visual stimuli such as shapes and colours in WM. Interestingly, 

visual areas during retention of hand images also exhibited vCDA.  

MCPs after subtracting visual activity from visual-only trials. Our experimental 

manipulations allowed us to observe a clear MCP, extending in a retrospective 

window from the encoding of the stimuli, through their consolidation in memory, until 

the actual motor response. Despite such a response being elicited over frontocentral 

and more clearly over frontal electrode sites in both hemispheres, an 

interhemispheric interaction modulated by the quantity of stimuli to-be-remembered 

and the type of stimuli was only found in the contralateral cortex of the attended 

hemispace. Follow-up tests of this modulation showed that only when participants 

were remembering images of hands the MCPs were modulated by load (i.e., 

increasing mean amplitudes with the number of body-related stimuli to be 

remembered). Such difference was not found when remembering the control visual 

stimuli (geometrical shapes). 



	 143 

Our findings exhibit novel evidence for neural recruitment in motor cortices during 

representation of visual information depicting body images in WM. Therefore, the 

nature of memoranda seemed to interact with sensorimotor cortices beyond visual 

areas, eliciting activity in cortices matching the sensory associations of the functional 

and perceptual encoding features of the perceived stimuli. 

4.5.1 Stimuli-specific and additionally driven neural signatures 

After perceiving sensorimotor information, the initial input seems to be rapidly driven 

onto body-related and associative brain areas, reaching a closer representation of 

our own body and effectors of the action in the brain, including premotor, parietal, 

and occipitotemporal cortical regions of the human brain (Caspers et al., 2010; 

Grosbras et al., 2012). Crucially, our data suggest that motor cortices possess a 

further role in encoding and maintaining visual body information. In congruency with 

our results, current accounts in WM postulate that temporary representation of stimuli 

befalls in brain areas such as sensory cortices (D’Esposito, 2007; Harrison and 

Tong, 2009; Tsubomi et al., 2013). These representations would arise by activating 

one of the several states of the information that have been built through perceptual 

experience and continuing sensory associations. The results from the current study 

contribute to this formulation by suggesting that visual information is not only re-

established by those brain regions involved in the initial sensory stream, but also by 

those ‘functionally built’ by previous sensory cortices. Interestingly a WM system 

dealing with sensorimotor components conveyed in body-related information has 

been suggested. Smyth and colleagues (1988, 1989, 1990) showed that observing 

another person’s body movements disrupts WM for body configurations. Moreover, in 

another study with a behavioural procedure comparable to ours, remembering body 

postures and simultaneously being asked for visual and spatial information of objects 

did not interfere with recalling the visually displayed body postures (Wood, 2007).  
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Similar to the present study, stimuli driven activity has been reported. Previous 

studies have described neural recruitment contingent to the specific characteristic to-

be-remembered within a given stimulus (Serences et al., 2009; Lee et al., 2013), as 

well as the type of stimulus included in the WM task. Fusiform face area and 

parahippocampal place area, known to particularly respond to encoding of faces and 

scenes, support memory associations between pairs of faces and buildings and 

specific memory maintenance within these categories (Ranganath et al., 2004). 

Other studies also found that fusiform face area and a further distributed network of 

brain regions including more frontal substrates are recruited during WM for faces 

(Gazzaley et al., 2004). 

A more recent study suggests that WM for real objects is greater than for non-real 

objects. Greater performance and encompassing CDA were found when holding in 

memory real objects (yet, this higher CDA seemed to vary depending on the memory 

load) (Brady et al., 2016). In the present study, we created control stimuli in form of 

analogous versions of the body-related stimuli and participants had similar 

behavioural performance in both stimuli conditions. Here, it is possible that 

perceptual differences could partially explain our results. However, as Brady et al. 

(2016) discussed, previous studies in long-term memory have already highlighted 

how the nature of the information embedded in the memoranda seems to play a key 

role beyond perceptual complexity (McWeeny et al., 1987; Konkle and Brady, 2010).  

Our dissociation of scalp potentials by the use of a task irrelevant motor task, the 

only purpose of which was to elicit an observable cortical response over 

sensorimotor cortex during encoding of visual information, is coherent to the 

distinctive conceptual information conveyed in our body and non-body-related visual 

memoranda. In the same vein, holding in WM manipulable objects has shown neural 

recruitment of motor brain areas that closely overlap those required for their actual 
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manual manipulation (Mecklinger et al., 2002, 2004). Nevertheless, we expand this 

work by adapting a well-known paradigm in WM with higher temporal resolution while 

developing a novel manipulation that suggests involvement of body-related cortices 

to hold body-related information (beyond motor affordances in memory for objects).  

4.5.2 Interhemispheric effects in cognition  

While the current study suggests novel evidence of sensory recruitment beyond input 

modality, it also opens a wide range of inquiries that require further work. One of the 

relevant remaining questions concerns the very specific content of the load effects 

over sensorimotor cortex. Sensorimotor cortices represent motor-related content and 

actions that are visually perceived, resembling activity elicited when actually moving 

our own body. For instance, seeing the characteristics conveyed in different actions 

elicits brain activity from which specific motor-content can be reliably decoded from 

motor-related brain areas such as premotor cortices (Wurm and Lingnau, 2015; 

Wurm et al., 2016). As reviewed by Man et al. (2013) fMRI studies decoding actions 

from motor and sensory systems expose shared representations in some of the 

dimensions between perceptual mechanisms of action observation and motor 

execution. Assuming the main postulate of sensory recruitment models (i.e., WM 

underpinned by perceptual brain areas), it is feasible to recognize that similar 

mechanisms support mnemonic processes link to body-related information.  

A second issue to be explored concerns the particular role of ipsilateral and 

contralateral motor cortices in memory. MCPs and magnetic field cortical-potentials 

show that even unilateral manual responses elicit neural activity associated to motor 

preparation over ipsilateral and contralateral hemispheres (Kristeva et al., 1991; 

Erdler et al., 2000). Functional connectivity supports both motor cortices through 

mechanisms of interhemispheric inhibition and facilitation that together with 

interactions of local intracortical circuits shape motor cortical output (Reis et al., 
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2008). Based on standard procedures, our contralateral and ipsilateral waveforms 

are based on mean amplitudes across participants attending to either the right or left 

hemifield; including right and left hand images, respectively. We assumed that our 

averaged waveforms reflect a linear lateralization driven by visually perceiving body 

information, known to engage sensorimotor regions in a contralateral and 

somatotopic manner. Nevertheless, contralateral/ipsilateral MCPs’ amplitudes could 

vary depending on the laterality of the hand images conveyed in the array to be 

attended/ignored (i.e., left and right hands). Note that here we are strictly referring to 

the effect that lateralized body images (left/right limbs and body parts) have on 

driving lateralized brain activity. 

A third issue to be explored concerns potential ‘simon effects’ (i.e., faster and more 

accurate responses when stimuli are presented in the same location as the 

responses, even if these are irrelevant to the task). From a S-R compatibility 

framework, it is possible that our stimuli, which were presented in a lateralized 

manner (i.e., left and right hemifields), could have prompted participants in their task-

irrelevant motor responses or even in their verbal responses during the upcoming 

memory task. Encoding hand images at the beginning of the trials and having to wait 

to exert a motor response 800ms later could have recruited additional resources just 

to refrain from initiating an earlier/prompted motor response. Nevertheless, MCPs 

seem to arise after response selection (being affected by S-R compatibility effects) 

but before motor programming (being affected by response complexity) (Praamstra, 

2007; Smulders and Miller, 2012). Note that we kept constant the timing of the cue 

indicating when to press (lowering expectancy effects), the motor response was kept 

as simple as possible (mere key pressing), the motor response itself was task-

irrelevant (no extra cognitive load), and that other non-specific bilateral contributions 
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(e.g., attentional shifts) were assumed to be deducted by the subtraction of mean 

amplitudes from visual-only trials. 

Our study was not designed to shed light on the –intra and –inter hemispheric 

effects, nor on the specific direction of the increasing interhemispheric differences 

between load and stimuli conditions, but to show effects that resemble perceptual 

processing of body-related information during memory consolidation for bodily 

percepts to-be-remembered. Overall, hypotheses on mnemonic content are difficult 

to tease apart within the context of the present study. Further studies may untangle 

mnemonic content and sensorimotor processing during WM for body-related images 

by studying lateralization of MCPs during encoding of lateralized-body images. 

4.5.3 Conclusions 

In conclusion, we combined pieces of evidence from different research fields to 

create a novel paradigm using the readiness potential as probe of motor processing 

in a visual WM task. Readiness potential is associated with the lateralized motor 

representation of the body part used to execute a given movement, and it is 

modulated by complexity of the performed, imagined, and observed actions (Eimer 

and Coles, 2003; Kilner et al., 2004; Masaki et al., 2004; Kranczioch et al., 2009).  

Our findings show how the sensory channel to ‘acquire’ the information does not 

necessarily dictate the active maintenance of stimuli to-be-remembered. This 

maintenance seems also contingent to those functional associations underpinning 

the neural representation of the percept in WM. We provide original evidence for a 

novel principle of WM processing, which is grounded on the relevance of previous 

motor and sensory associations as precursor of persistent neural activity link to WM. 

While previous studies have shown that visual information similar to our control 

condition stimuli is represented in posterior and visual cortices (Todd and Marois, 

2004; Vogel and Machizawa, 2004; McCollough et al., 2007; Tsubomi et al., 2013) 
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and tactile information in somatosensory cortices (Harris et al., 2002; Katus et al., 

2014) our results support a more dynamic process, in which the memoranda can be 

represented beyond sensory-input cortices. Thus, information-representation is not 

forcefully constrained in a limited number of highly specialised memory systems 

(Postle, 2006; D’Esposito and Postle, 2015). This sort of efficient model of 

information-representation is now becoming prominent in WM research whereas in 

the action observation field it has been well established in the study of the 

equivalence between perception and motor execution.   
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4.6  Special section: Artistic impressions III  

 

 

Bodily Realm – Tactile or motor? (2015) Photography on board (30 x 45cm) / AGP 

Holding bodily images in one’s memory implies sensorimotor resonance in the brain. Bodily-visual 

information is shared across cortical regions, beyond the visual and the first of the stops in bodily 

matters, the sense of touch, motoric regions seem to be involved too. 

 

 

            

Bodily Realm – Multidimensional bodies (2015) Photography on board (30 x 45cm) / AGP 

Our own body is a kaleidoscopic representation. Multiple representations of the body co-exist, 

dimensions and layers, echoing, mirroring and changing over time.  
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5. Chapter 5: Disrupting sensorimotor processing 

during WM for body and non-body-related 
images. 

 
 

5.1. Introduction 

Previous studies have suggested the presence of a WM system contributing to 

memory encoding of visually perceived body information (e.g., Smyth el al., 1988; 

Moreau 2013). In the previous chapters I investigated two brain regions that could 

underpin such system: (1) in the first EEG study - Chapter 3, I examined brain activity 

arising from somatosensory cortex during a WM task where stimuli to-be-

remembered were body and non-body-related images. (2) In the second EEG study 

– Chapter 4, I developed a version of the latter paradigm that allowed us to examine 

activity arising from motor cortex. Our results showed that the number of body 

images to be held in WM (i.e., memory load) modulates contralateral somatosensory 

and motor cortices. Conversely, this interaction did not appear when encoding control 

non body-related images.  

Nevertheless, the enhancement of EEG waveforms reported in the previous studies 

does not indicate whether or not such activity is directly linked to an effective 

encoding of the stimuli in WM. The EEG studies were not designed to investigate the 

causative role of the sensorimotor complex during WM. For these reasons, in the 

current chapter we adapted the behavioural paradigm used in the previous studies to 

create three experiments. These experiments incorporate a dual task that is 

concomitant to the encoding and maintenance of the stimuli in WM. The purpose of 

the dual task is the disruption of sensorimotor processing. Then, if sensorimotor 
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cortices as responsible for the factual encoding of visually perceived body 

information, memory performance may be affected by exhaustion of mnemonic 

resources.  

In the following chapter I outline behavioural studies that have used dual tasks (also 

known as concurrent, secondary, or suppression tasks) to interrupt WM maintenance 

of bodies and actions. Then, I will introduce how suppression tasks can be used to 

interrupt and/or overload the processing of those areas investigated in the previous 

EEG studies. Third, I will introduce the overall hypotheses of the study, 

methodological aspects, and considerations. Importantly, the specific goal, context, 

and results of the three experiments are presented separately in the corresponding 

sections. Finally, I will discuss the main findings of the three experiments  

5.1.1. Delineating systems: use of interference in processing of body-

related information 

A well-known method to inspect the role of a memory system is the insertion of an 

experimental manipulation that alters its regular functioning. This can be 

accomplished by asking participants to perform a task (i.e., a secondary task) during 

the encoding, maintenance, and/or retrieval of the stimuli to-be-remembered (i.e., 

primary memory task). Researchers have used secondary tasks to interrupt and 

interfere with memory systems by exploiting their limited capacity and their rather 

specialised processing of information; the principle behind this approach is based on 

the limited capacity of any cognitive system. If a given system is both limited in 

capacity and dedicated to a particular type of information (A but not B), it is possible 

to disrupt its course by asking a participant to process additional A. Contrary to this, 

asking someone to process or carry-on a B-related task should not interfere 

dramatically with the corresponding memory processing. Therefore, much like 

investigating patients with specific impairments or brain damage, manipulations that 
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exhaust cognitive resources in typical populations help to delineate and investigate 

the workings of the brain. Disentangling and targeting specific memory processing is 

challenging, as several types of information are normally embedded in a single 

percept and each type is potentially processed across different systems. Behavioural 

studies that manipulate the course of memory encoding and consolidation usually 

need to include several manipulations and experiments in the same paper.  

Studies using behavioural interferences to interrupt memory encoding of visually 

acquired body-related information are scarce. To our knowledge there are 

approximately a dozen. In the present chapter, table 5-1 lists the studies that have 

used interference tasks to provide evidence of a WM system for visually perceived 

body-related information. The studies in the table normally include presentation of 

stimuli in serial order, memory tested through visual recognition or action execution, 

and different types of interferences such as articulatory and spatial.  

One of the first things to note on the table is the larger number of studies that have 

tested memory recall by using visual recognition compared to action execution. 

However, the results lead to similar conclusions: separation between memory 

systems for spatial, verbal, visual, and body-related stimuli. For instance, Smyth and 

colleagues (1988, 1989) showed a double dissociation between the number of body 

movements to-be-remembered (i.e., hand movements) and another task involving 

hand movements to specific spatial locations. Specifically, participants were asked to 

reproduce an increasing number of hand configurations while performing two different 

concurrent tasks (movement and spatial). The results showed that memory span for 

hand movements was significantly impaired by alternating the opening and closing of 

the hand, but not by the pointing with the hand to different locations. In another 

experiment, spatial memory was tested using the Corsi block task while participants 
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were newly asked to perform a movement or a spatial suppression task. Performance 

in the Corsi block was significantly affected only by the spatial suppression task.  

The double dissociation shown in the results of Smyth et al. (1988, 1989) suggests 

the presence of a WM system dedicated to maintaining body-related information, 

which can be dissociated from a more specialised system for spatial information 

about locations in space. Interestingly, the sensorimotor interference of the motor 

suppression seem rather independent on the body part involved in both suppression 

and further recall. The number of correctly remembered hand configurations 

decreased when motor suppression involved in moving the left or right hand during 

encoding of right hand movements (Smyth and Pendleton, 1989).  

In a similar vein, Woodin and Heil (1996) asked participants to remember a set of 

numbers in their relative spatial locations within a matrix (Brooks, 1967) as well as 

body configurations adapted from Smyth et al. (1988). Here, a square tapping task 

and tapping of the body were used as suppression tasks for spatial and body 

processing, respectively. Results showed that memory span for spatial locations in 

the Brooks task were worse when accompanied by square tapping whereas span for 

body configurations diminished when concomitant to body tapping.  

Interestingly, encoding body-related stimuli seems to interfere with movements and 

actions that do not require a memory component. In a second experiment, Woodin 

and Heil (1996) tested participants’ memory in the Brooks task and for the Smyth 

studies’ body configurations. Interestingly, participants were rowing while encoding 

those tasks. Rowing involves two continuous movements: spatial movements of the 

oar to ‘catch’ the water and a reposition of the body configuration to close the driving 

phase and prepare for the following catch (hands away movement). The results 

showed that encoding the Brooks tasks made worse the timing of the participants’ 

catch but not the hands away movement whereas the inverse outcome was found 
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when asked to remember body configurations. These results indicate that different 

stages of a continuous movement alternating between processing of spatial and body 

configurations can be specifically affected by memory tasks demanding spatial and 

more body-centred computations.  

5.1.1.1. Perception of bodies and actions interferes WM for actions  

Smyth et al. (1990) showed that just observing another person’s body movements 

while holding in memory body configurations decreased memory span. In three 

different experiments they showed that after a short interval, recall of body 

configurations is affected by watching similar movements during the interval, as well 

as by reproducing similar movements, and encoding another set of movements during 

the interval. Conversely, making or observing movements to spatial locations, as well 

as articulatory suppression did not interfere to the same extent with memory span for 

body configurations.  

Moreover, a delay match paradigm adaptation from studies in WM for arbitrary stimuli 

such as coloured squares and lines (e.g., Luck and Vogel, 1997) showed that 

responding to differences between computerized displays of body postures and 

actions, and also being asked to hold in memory visual and spatial objects does not 

interfere with recalling bodily actions (Wood 2007) (Wood experiments 4-8, see table 

5-1). Conversely, sensorimotor memory, here specifically related to observed actions, 

is affected by remembering other types of non-body-related information when both 

stimuli set possess some degree of sequential information. Then, holding in memory 

changes in non-body stimuli that occur within a continuous presentation and a 

determined space interferes with holding in memory body stimuli that have been 

presented under similar characteristics (Smyth and Pendleton, 1990; Woodin and 

Heil, 1996; Wood 2007; Vicary et al., 2014).  
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Study Exp 
no. 

Task Main experimental 
manipulations 

Body stimuli  
to-be-remembered 

Non-body stimuli  
to-be-remembered  

Recall for body 
stimuli 

 

Main findings 

Smyth et 
al. (1988) 

Exp. 1 Serial encoding of body 
movements and words 
(similar in Exp. 1 and 2) 
 

Presence of articulatory 
suppression 

Bending, crossing, and 
straighting limbs (similar in 
all experiments) 
 

Words 
 

By action execution 
(similar in all 
experiments) 
 

Articulatory suppression decreased recall of both 
body and non-body stimuli 
 

 Exp. 2   Presence of motor suppression Words Motor suppression decreased recall of body 
movements but not of words 
 

 Exp. 3 Serial encoding of body 
movements and spatial 
locations 

Presence of motor or articulatory 
suppression 

 Spatial locations (Corsi 
Block) 

 Articulatory and motor suppression but not spatial 
decreased recall for body movements. Motor 
suppression did not affect spatial recall.  
 

 Exp. 4 Serial encoding of familiar 
movements  

Presence of motor or articulatory 
suppression  

NA Familiarity decreases the effect of articulatory 
suppression. Memory for body movements was 
similar. 
 

 Exp. 5 Serial encoding of familiar 
movements 

Presence of spatial suppression Spatial locations (Corsi 
Block) 

Recall of body movements did not affect spatial 
suppression, which impacted recall of spatial 
locations 
 

Smyth 
and 
Pendle-
ton 
(1989) 

Exp. 1 Serial encoding of hand 
movements 

Presence of motor or spatial 
suppression with left or right 
hand 

Configurations of the right 
hand (finger positions / hand 
postures)  

NA By action execution 
(similar in all 
experiments) 
 

Regardless laterality of interference, the motor but 
not the spatial suppression decreased memory span 
for hand movements  
 

 Exp. 2 Serial encoding of spatial 
locations 

Presence of spatial suppression 
with left or right hand 
 

NA Spatial locations (Corsi 
Block) 

By pointing locations 
with right hand 

Regardless laterality of interference, spatial 
suppression decreased memory span for spatial 
locations  

       Further analyses: combining data from Exp. 1 and 2 
shows that suppression tasks are slower when 
paired with matching memory tasks.  
 

Smyth 
and 
Pendle-
ton 
(1990) 

Exp. 1 Serial encoding of body 
movements (similar from 
Exp. 1 to 3)  
 

Recall after immediate, delayed, 
or filled delay with articulatory, 
motor, or spatial task. 

Bending, crossing, 
straighting limbs (similar to 
Smyth et al., 1988 and 
similar from Exp. 1 to 3) 
 

NA By action execution  Merely copying other’s actions during retention of 
body movements disrupts memory for movements.  

 Exp. 2  Recall after filled delay with 
watching other’s actions / 1 vs. 2 
sets of movements to-be-
remembered  

 Spatial locations (Corsi 
Block) 

By pointing locations 
with right hand 

Just observing other’s actions decreases memory 
span for body movements / Holding a second set of 
body movements impairs memory / Spatial-filler task 
impacted in a lesser degree memory for body 
movements.  
 

 Exp. 3  As above but recall of body 
movements with no order (free 
recall) 

 As above As above Similar to Exp .1 and 2, only watching or having to 
recall higher span of body affects memory span for 
movements. Average immediate-free recall: 4 
movements.  
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 Exp. 4 Encoding locations in 
space  

Immediate recall, delayed, or 
filled delay with observation of 
motor or spatial task. 

 Spatial locations (Corsi 
Block) 

By pointing locations 
with right hand 

Serial recall was affected by watching the pointing of 
locations during the filler task. Watching body 
movements did not affect this. 

Overall results: just watching and doing similar 
movements during retention of movements affects 
recall of body movements (in free and serial recall). 
Less interference is found when intervening tasks 
are word or spatially related.  
 

Quinn 
and 
Ralston 
(1986) 

Exp. 1 Encoding locations in 
space as exe-cuting 
movements (similar all 
Exp) 
 

In/compatible arm movements 
during encoding locations to-be-
remembered 

NA Spatial locations 
(Brooks task) (similar in 
all Exp.) 

NA Incompatible movements affected memory for 
spatial locations. 

 Exp. 2  Same as above but 
manipulating degree of 
familiarity with the tasks 

NA  NA Regardless of familiarity and subsequent allocation 
of attention, incompatible movements affected 
memory for spatial locations 
 

 Exp. 3  In/compatible movements were 
performed passively (arm being 
moved) or actively 

NA  NA Performing both active an passive arm movements 
while encoding locations in space led to poorer recall 
of locations in space 
 

Woodin 
and Heil 
(1996) 

Exp. 1 Serial encoding of body 
movements and spatial 
locations (fairly similar in 
both Exp. 1 and 2) 

Presence square tapping or 
body tapping during encoding of 
stimuli to-be-remembered 

Meaningless actions: 
bending, crossing, 
straighting limbs (adapt. 
from Smyth et al., 1988 and 
similar in Exp. 1-2) 
 

Brooks task (in both 
Exp.) 

By action execution 
(similar in both Exp.) 

Similar to Smyth et al. (1988, 1989). Double 
dissociation between type of suppression and 
memory: square tapping affected memory for 
locations and body tapping affecting only memory 
span for body movements.  

 Exp. 2  Rowing while encoding stimuli 
to-be-remembered 

   Selective impairment in continuous rowing 
movement (‘catch water’ timing affected by encoding 
locations and patterned body posture ‘hands away’ 
disrupted by encoding body movements. 
 

Rumiati 
and 
Tessari 
(2002) 

Exp. 1 Serial encoding of actions 
(similar in Exp. 1 to 3) 

Presence of motor suppression 
and degree of familiarity with 
actions to-be-remembered  

Meaningful actions 
(pantomimes of objects use) 
and meaningless actions 
(modified pantomimes) 
 

NA By action execution 
(similar in Exp. 1 to 3) 
 

Memory span for meaningful actions is better than 
memory for meaningless actions 

 Exp. 2  Presence of articulatory 
suppression concomitant to 
motor suppression or spatial 
suppression 
 

Same as above NA  Articulatory + motor suppression affects more 
memory span for actions than articulatory-only and 
articulatory + spatial suppression 
 

 Exp. 3  Only articulatory, motor, or 
spatial suppression (i.e., no 
simultaneous) 
 

Same as above NA  Motor suppression affects more memory span for 
actions than spatial suppression  

 Exp. 4 Encoding of object 
pantomimes  

Presence of articulatory, motor 
and spatial suppression 

Words related to object 
pantomimes 

NA  Similar word recalling after suppressions. Motor and 
spatial suppressions required similar resources 
(e.g., effects not due to distinct difficulties in 
suppression tasks) 
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Wood 
(2007) 

Exp. 1 Serial encoding of actions 
in delay-match paradigm 
(similar in Exp. 1-4) 
 

Only the increasing number of 
actions 

Avatar displaying full body-
meaningless actions (similar 
in all Exp.) 

NA Visual recognition in a 
detection change 
(delayed match) 
(similar in all Exp.) 

Only 2.5 actions are remembered. WM capacity 
highly limited. 
 
 

 Exp. 2  Duration of encoding (short and 
long display) 

 NA  As above, only 2.5 actions remembered 
independently of the time of encoding (500ms vs. 
750ms displays) 
 

 Exp. 3  Participants asked to also 
remember type and duration of 
actions 
 

 NA  Memory capacity is similar for different types of 
action properties 

 Exp. 4  Participants asked to also 
remember type, duration, and 
laterality of actions 

 NA  Integrated representations of actions: It is possible to 
remember 9 properties distributed across 3 actions 
as well as 3 properties distributed across 3 actions.  
 

 Exp. 5 Serial encoding of actions 
and objects in a delayed-
match paradigm  
 

Participants asked to remember 
0 to 3 actions as well as 0 to 6 
other non-body stimuli. Recalled 
to both 

 Coloured squares (all 
presented at once) 

 Equal memory for actions regardless number of non-
body-related stimuli maintained in WM / Diff. 
systems of WM (for observed actions and objects) 

 Exp. 6 As above As above, but participants only 
recalled one stimulus type at the 
end of the trial  
 

 As above  Similar results to Exp. 5  

 Exp. 7 Serial encoding of actions 
and spatial locations in a 
delayed-match paradigm  
 

As above but participants had to 
recall actions or spatial locations 
(0 to 6 locations) 

 Locations in a grid   Similar results to Exp. 5 and 6 / Diff. systems of WM 
(for observed actions and spatial locations) 

 Exp. 8 Serial encoding of actions 
and objects in a delayed-
match paradigm  
 

Similar to Exp. 5 and 6.  Coloured squares in 
serial order (as the body 
stimuli) 
 

 Memory span for serial actions affected by 
concomitant encoding of serial non-body-related 
information. Some WM processes are shared when 
encoding serial information. 
 

Wood 
(2008) 

Exp. 1 Serial encoding of actions 
and agents in a delayed-
match paradigm (similar  
in all Exp). 
 

Participants asked to remember 
either actions or agents’ actions, 
or both (similar in all Exp). 
 

Avatar displaying full body-
meaningless actions (similar 
in all Exp.) 

Agents of actions: 
avatars with diff 
coloured clothing) 

Visual recognition in a 
detection change 
(delayed match) 
(similar in all Exp.) 

Maintaining both agents and actions in WM 
consumes resources associated with binding. 
Agents and actions seemed to be stored in different 
WM systems 
 

 Exp. 2    Agents displayed in non-
overlapping spatial 
locations 
 

 In either or binding conditions, memory performance 
reflected performance of the WM system with lowest 
capacity /  

 Exp. 3    Agents were presented 
with a 50ms gap 
 

 Similar to Exp.1 and 2 

 Exp. 4 As above As above As above Agent differed in 
colour/type of clothing, 
gender, age, and facial 
features 
 

As above Similar to Exp.1 to 3  
 
 
 
Overall conclusions Exp 1 to 3: binding actions and 
agents requires binding features from different 
memory stores. Visual cues aid this process 
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Cortese 
and 
Rossi-
Artnaud 
(2010) 

Exp. 1 Serial encoding of ballet 
movements 

Presence of spatial suppression 
(finger tapping)  

Ballet movements were 
listened and not visually 
presented.  

 By action execution 
(similar in all 
experiments) 
 

Spatial suppression did not interfere with memory 
span for ballet movements (Approx. 3.6 movements 
regardless suppression) 
 

 Exp. 2 Serial encoding of ballet 
movements in specific 
spatial locations 
 

Presence of spatial or motor 
suppression  

As above  Concurrent to ballet 
move-ments, locations 
visually diplayed 
  

Ballet movements 
performed in specific 
locations on stage 

Motor suppression increased errors on recalling 
ballet movements when these are coupled with 
spatial locations.  

 Exp. 3 Serial encoding of 
locations in space 

Same as above  NA Locations in space 
(crosses across stage) 

Walking to locations 
on stage 

Only spatial suppression increased the number of 
errors when recalling spatial locations 
 

 Exp. 4 Serial encoding of ballet 
movements 

Similarity between ballet 
movements (list of similar vs. list 
of dissimilar movements) 

As Exp. 1 and 2 NA By action execution More errors when ballet movements to-be-
remembered were more similar. Equivalent to 
memory studies using words, similarity plays a role 
in WM for patterned movements 
 

Moreau 
(2013) 

Exp. 1 Serial encoding of body 
postures 

Expert and non-expert 
participants. Presence of verbal 
and motor suppression.  

Full body stimuli displaying 
movement of arms and legs.  

NA By recognition of body 
movements (ordered) 
in a visual display 
showing all stimuli 

Body experts did better during non-suppression and 
verbal suppression conditions. The latter affected 
more the non-experts. Conversely, motor 
suppression affected more the experts.  
 

Vicary et 
al. (2014) 

Exp. 1 
 

Serial encoding of dance-
like actions in a delayed-
match paradigm (similar  
in both Exp.) 

Encoding dynamic actions or 
snapshots of these actions / 
being tested for snapshots or 
dynamic stimuli 

Dance-like actions from 
Calvo-Merino et al. (2005) 

NA Visual recognition in  
a detection change 
(delayed match) 
(similar in both Exp.) 
 

Congruency effects between encoding and test form: 
Greater performance for dynamic movements when 
preceded by encoding of dynamic stimuli and vice 
versa.  

 Exp. 2  Encoding static or dynamic 
actions and presence of static or 
dynamic spatial suppression 

As above Spatial loc (Corsi Block) 
displayed at once(static) 
or sequentially(dynamic) 
 

 Recognition of dynamic stimuli was impaired by 
dynamic but not by static spatial suppre-ssion. 
However, no effect of suppressions were found 
when encoding static actions 

Shen et 
al. (2014) 

Exp. 1 Encoding of biological 
motion 

Only the increasing number of 
actions 

Points of light displaying 
actions. 1 to 5 actions 
showed at once (similar in 
all Exp.) 

NA Visual recognition in  
a detection change 
(delayed match) 
(similar in all Exp.) 
 

Only two to three actions can be retained. With 
longer encoding performance increased by one 
more action.  

 Exp. 2 Encoding of biological 
motion and colours 

Task requirements: encoding of 
stimuli displaying biological motion, 
non-biological motion, or both 
(Similar in Exp 2 to 5) 

 Coloured figures  Doing both memory tasks (for biological motion and 
coloured stimuli) does not affect memory performance. 
Independency of systems. 

 Exp. 3 Encoding of biological  
motion and spatial loca- 
tions 
 

    Memory for biological motion and spatial locations did 
not mutually affect each other.  

 Exp. 4 Encoding of biological  
motion and shapes 
 

  Geometrical shapes  Memory for biological motion and shapes did not 
mutually affect each other. 

 Exp. 5 Encoding of biological  
and non-biological  
motion  

  Circled stimuli, rotating 
and moving  

 Memory for biological motion is affected  
by maintaining non-biological motion.  
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5.2. Aims, methodological approach, and predictions Exp 1 to 3 
5.2.1. Concatenating concepts 

In the present study there are five points that need to be considered 1) behavioural 

studies indicate that a similar cognitive system underpins perception, execution, and 

memory for bodies and actions (table 5-1). 2) In Chapter 3 and 4, we showed that two 

of the neural candidates to support such processes, somatosensory and motor 

cortices, exhibit brain amplitudes that increase together with the number of body 

images to-be-remembered. 3) Nevertheless, the modulation of brain amplitudes per se 

does not convey whether or not those brain regions support the effective/causative 

encoding of visually perceived body stimuli in WM. 4) Therefore, we decided to 

interrupt the likely sensorimotor processing of body images by adding a secondary task 

(i.e., moving one’s hand/s) that was performed in three different versions across three 

different experiments. The only purpose of the secondary task was to interrupt/overload 

sensorimotor processing through exhaustion of computational resources that could be 

otherwise allocated to the primary memory task.  

Aims of the study. While our EEG studies showed contralateral involvement during 

encoding and maintenance of hand images in WM, earlier studies from Smyth and 

colleagues indicated a more general involvement where either hemisphere 

(contralateral and ipsilateral) seems to participate in such processes. Here, we aim to 

shed light on these, at first sight, contradictory observations. Specifically, the present 

study sought to answer two complementary questions; the first one refers to whether or 

not contralateral sensorimotor areas, which showed enhancement of activity during 

encoding and maintenance in Study 1 and 2, support memory maintenance of the 

stimuli in WM (i.e., is memory performance for visual stimuli depicting right hand 

postures disrupted by a sensorimotor interference performed with the right hand?). The 

second question concerns the overall involvement of such cortical areas: the question 



	 161 

of whether or not sensorimotor cortex plays a role in WM for body-related visual 

information as a general system (i.e., regardless contralaterality; is memory 

performance for visual stimuli depicting hand postures disrupted by a sensorimotor 

interference performed with either hand?). 

Methodological approach. We adapted the previous two EEG studies, creating three 

different behavioural versions of the same visual WM paradigm. In the first two 

experiments participants had to remember different left or right hand postures while 

performing a unimanual motor suppression with their left or right hand. In the third 

experiment, this latter motor suppression was bimanual and the key factor was its 

presence or absence. In addition to the behavioural analyses computed in the previous 

studies (i.e., sensitivity index d’) the proportion of hits and false alarms, the index of 

bias C, as well as reaction times were analysed.  

The main factors in Experiment 1 were as follow: memory load (1, 2, 3 images), 

congruency of the unimanual suppression task (congruent: e.g., participants’ left hand 

movement while encoding left hand images; incongruent: participants’ left hand 

movement while encoding right hand images). In experiment 2: memory load (1, 2, 3 

images), stimulus type (shape, hand images), congruency (incongruent, congruent 

suppression). In Experiment 3: memory load (1, 2, 3 images), stimulus type (shape, 

hand images), bimanual suppression task (present, absent). Remarkably, the inclusion 

of memory load 3 in the current experiments may allow exploring effects of memory 

load that our previous and more extended EEG experiments did not incorporate. We 

did not include memory load 3 in the previous electrophysiological studies because this 

would have involved more than 4.5 hours of testing by participant (in one single 

session), which seems utterly fatiguing and compromising for the results.  

Predictions. We predicted that WM performance for body-related information would be 

disrupted by the motor suppression whereas memory for non-body-related stimuli 
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would not be affected by such suppression. More specifically, we predicted that motor 

suppression would interact with increasing memory load of body stimuli to-be-

remembered. Conversely, no interaction is expected when holding in memory non-body 

stimuli. With these designs and methodology, we sought to modulate participants’ 

performance by actively engaging their sensorimotor system in a dual task that may 

exhaust resources allocated to sensorimotor WM.  

 

5.2.2. Experiment 1 

In Experiment 1 I asked whether or not contralateral sensorimotor cortices play a 

specific and causal role in the effective encoding and maintenance of body-related 

information. To answer this, a unimanual motor suppression used in Smyth and 

Pendleton (1989) was adapted to the current WM paradigm.  

Specifically for this first experiment, on each trial, participants performed a delay-match 

paradigm between arrays consisting of 1 to 3 different hand images, each displaying 

distinct hand postures. In a congruent condition participants had to remember right 

hands while constantly squeezing a stress-ball with the right hand and vice versa. In 

the incongruent condition they had to remember right hands while doing the same with 

the left hand (and vice versa).  

 

5.2.2.1.  Methods 

Participants 

Ten participants (6 females; mean age = 25) with normal or corrected-to-normal vision 

took part and gave informed consent for this experiment, approved by City, University 

London Psychology Department’s Research Ethics Committee. The sample size was 

chosen based on related studies and paradigm (Wood, 2007, 2008). 

 

 



	 163 

Stimuli 

The stimuli used in the current behavioural experiments were the same as those used 

in the first pilot study and the two later EEG studies. A set of 12 pictures containing 6 

right and 6 left hands depicting different postures/finger positions were used.  

Experimental design, and procedure 

The paradigm was similar to those used in the previous studies of this PhD work, 

except for the insertion of the secondary task. Specifically, participants were seated in 

front of a LCD monitor (75 Hz) in a dimly lit, electromagnetically shielded room. The 

forearms of the participants were placed on the top of a table with their hands 

separated approximately by 25cm, in palm up position and covered by a black opaque 

surface. Participants performed only one stimulus condition (hand images). They were 

asked to recall differences between pairs of arrays depicting different hand postures. In 

each trial a central arrow cue  (200ms) instructed the participants to covertly attend to 

the items in either the left or the right hemifield. After the offset of the arrow cue (300-

400ms), the memory array was displayed for 100ms and followed by a blank retention 

interval of 900ms (Fig. 5-1). As in the preceding studies and in order to avoid potential 

confounding of sensorimotor encoding of the stimuli in WM with motor responses in the 

recall, participants responded verbally whether or not the memory and test array were 

similar or different (P = 0.5). Participants responded ‘yes’ if the stimuli were the same 

or ‘no’ if the stimuli were different, these answers were entered by the experimenter, 

who listened to the participant throughout a speaker/output connected to a microphone 

placed inside the faraday cage.   

Shapes stimuli were displayed using E-Prime Software (Psychology Software Tools). 

All stimulus arrays were presented within two 4.5° x 8.5° rectangular regions that were 

centred 4° to the left and right of a central fixation cross on a light grey background. 

Each memory array consisted of 1, 2, or 3 hands (1.3° x 0.8°) in each hemifield, each 
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hand being randomly selected from the stimulus set. Right hands were shown on the 

right hemifield while left hands were displayed on the left. The positions of all stimuli 

were randomized on each trial with the restriction that the distance between stimuli 

within a hemifield was maintained to a minimum of 2.4° (centre to centre).   

Importantly, we counterbalanced the laterality of the hand involved in the motor 

interference. At the beginning of each block, participants were instructed to squeeze a 

stress ball with either their left or right hand at a constant pace and during the whole 

block; participants only stopped during the breaks (2 breaks in a 20 minutes task). In 

half of the trials the movement of the hand was congruent to the laterality of the hands 

to-be-remembered (moving left/right hand while encoding left/right hands, respectively) 

while in the other half of trials the movement was incongruent (moving left/right hand 

while encoding right/left hands, respectively) (Fig. 5-1). The resulting paradigm had a 

total of 252 trials, this is equal to 84 trials for each memory load (1, 2, and 3), half 

comprising the task-irrelevant sensorimotor suppression in congruency with the 

laterality of the stimuli to-be-remembered  (congruent condition) and the other half with 

the incongruent matching between the moving hand and those hands to-be-

remembered (incongruent condition).   

5.2.2.2. Data pre-processing and analysis  

Participants’ sensitivity. In the earlier studies of this thesis the index of sensitivity d’ was 

calculated for each memory load. The overall aim of those analyses was to show that 

hand and shape images conditions had an overall similar difficulty and that differences 

in ERPs were not reflecting differences in difficulty. This similarity was accomplished in 

several steps during the matching process described in chapter 2.5. Given that the aim 

of the current behavioural studies is to investigate effects of sensorimotor suppression 

over participants’ memory performance, it is important to examine not only the final 

sensitivity index d’ (i.e., sensitivity to distinguish signal from noise) but also to 
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investigate how the components leading to its result are modulated. Therefore, in the 

current behavioural experiments I also analysed the specific hit rates and false alarms.  

 

 
 

Figure 5.1. Task design and procedure Exp1. In 50% of the trials participants encoded left hand 

images while squeezing a stress ball with their left hand and vice versa (congruent trials) while 

in the other 50% they encoded left hand images while using their right hand and vice versa 

(incongruent trials). Participants responded verbally whether or not the memory and test array 

were the same or different (P = 0.5). Here the figure depicts a ‘different congruent trial - load 3’ 

in which hands to-be-remembered are shown in the left hemifield.  

 

As a reminder, d’ measures the distance between signal and noise means in standard 

deviation units. The value 0 indicates failure to distinguish signal from noise, in other 

words, to distinguish old stimuli from new/different stimuli, whereas higher d’ values 

indicate increasing capacity to distinguish these. Negative d’ values are generally due 

to sampling error or confusion with the response. d' is calculated by computing the 

difference between hit rates and false alarms. In the context of the current experiments 

this means: calculating the proportion of trials out of the total number of ‘same trials’ in 
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which participants correctly state similarity between memory and test arrays, and 

calculating the proportion of trials out of the total number of ‘different trials’ in which 

participants wrongly state similarity between memory and test arrays (i.e., false 

alarms). Then, both proportions are subjected to the inverse of the normal cumulative 

distribution that is specified by the mean and standard deviation [d' = Z(H) – Z(F)] (the 

hit and false-alarm rates are named H and F, respectively.)  

In addition to the hit rates, false alarms, and the corresponding d’, in the next 3 

experiments I have also calculated the index of bias c. This parameter measures the 

distance between the criterion of responses and the neutral point where no response is 

preferred. This neutral point refers to the specific point where the distribution of signal 

and noise do actually meet. Positive values of C generally indicate participants’ bias to 

respond ‘no’ whereas negative values indicate bias towards responding ‘yes’, meaning 

by latter that memory and test stimuli are similar. C can be calculated by adding the 

proportion of hit rates to that of false alarms after inverse normalisation and by 

multiplying this result by ‘-0.5’.  

Moreover, in comparison to the earlier studies, the next three behavioural experiments 

include memory load 3 and different forms of sensorimotor suppression (dual task). It is 

expected that participants’ capacity to hold in memory 3 items will lead to collapse, so a 

minimum rate of ‘0’ hits and a maximum rate of false alarms ‘1’ are likely to be attained 

(p = 0 and p = 1). When both hit rates and false alarms are extreme values, the 

corresponding d’ can still being calculated, however, if only one of these two is an 

extreme the computation is compromised. One of the most common ways to solve this 

problem is by applying the (1/2N) rule. Here extreme proportions of 0 or 1 are 

exchanged by the values obtained in 1/(2N) and 1—1(2N) where N is the number of 

similar and different trials. By dividing by 2 the total number of trials it is possible to 

create ‘virtual halves’ of a single hit rate and false alarm. However, this approach may 
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lead to biases on the final computations by over- as well as underestimating the 

population d’. A preferred approach is to use the so-called log-linear rule for which each 

cell frequency in the contingency table is increased by 0.5. More explicitly, this implies 

adding 0.5 to each cell in the 2x2 table where the proportion of hit rates and false 

alarms are calculated and by correcting the values in the formulae to obtain d’ (for full 

details, see Hautus, 1995). This latter approach is implemented several times across 

the following behavioural experiments. 

Participants’ reaction time. In analogy to the use of d’, the way in which different 

manipulations and corresponding factors influence reaction time (RT) can be used to 

investigate those processes generating and modulating RTs. In the current chapter, 

experiment 2 and 3 include recordings of participants’ verbal responses (i.e., ‘yes / no’ 

answers to whether or no the test and memory array were similar).  

The pre-processing of RTs was made before the subsequent analyses. First, error 

trials were discarded: since the correctness of the response is concurrent to the 

observation, it is assumed that RTs in error trials reflect an “atypical” train of processes. 

Given the uncertainty of what process is measured in error trials of standard RT 

paradigms, experimenters normally analyse only right trials; the same principle is 

assumed in EEG studies. Secondly, the data were cleaned via removal of outlying 

data: very short RTs (<100ms) were probably initiated before the actual onset of the 

test array; that is, they were anticipatory. Similarly, most simple tasks take between 

700 and 1000ms to be accomplished; long RTs (>2000ms) in the current experiment 

would probably reflect attentional shifts or sampling error. In Exp 2 and 3 trials 

containing RTs below 100ms or beyond 2000ms were removed from further analyses.  

Lastly, it is important to highlight that distribution of RTs in paradigms comprising very 

simple tasks are fairly symmetrical whereas distributions from tasks combining memory 

and perceptual decisions are usually skewed (i.e., bounded on the left side but not to 
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the right). When skewed distributions are analysed, the median is preferred over the 

mean because the median and the sample medians around the true value are less 

sensitive to extreme values. However, under conditions of small samples and unequal 

sample sizes, using the median may well bias the results, and subsequently, upcoming 

conclusions about participants’ performance (Miller, 1988). Similar to other WM 

experiments examining processing of body-related information (see for instance Vicary 

et al., 2014; Ding et al., 2015) and given that each memory load provides different 

number of right trials (decreasing right trials with higher memory load) analyses of RTs 

were based on mean average.  
 

5.2.2.3. Results and discussion Exp.1 
5.2.2.3.1. Indexes of sensitivity and bias 

All data from the congruent trials (i.e., encoding right hands/moving right hand and vice 

versa) were combined. Similarly, data from the incongruent trials (encoding right 

hands/moving left hand and vice versa) were also merged. Then, hit rates, false 

alarms, sensitivity index D-prime, and bias index C were calculated and subjected to 

analysis of repeated measures ANOVA with factors congruency (congruent, 

incongruent) and memory load  (holding in memory 1, 2, or 3 items).   

Hit rates 

Contrary to our predictions, participants’ proportion of hits rate was higher when moving 

the hand matching the laterality of those to-be-remembered (e.g., moving left and 

encoding left hands). The main effect of congruency reached statistical significance 

(F(1,9) = 7.052,  p = 0.026). On average, participants in the incongruent condition 

reached a hit rate of .77 compared to the .82 hit rate in congruent trials. Regarding 

memory load, results showed a main effect (F(1,9) = 18.847,  p < 0.001) that did not 

interact with congruency (F(1,9) = 1.555,  p = 0.238). Subsequently, independently of the 
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number of hands presented in the study phase (i.e., 1, 2, or 3), the effect of congruency 

on hit rates was equally present during this task.  

False Alarms 

Independently of moving left and/or right hands and encoding left and/or right hands 

participants’ proportion of false alarms did not differ (F(1,9) = 0.416,  p = 0.535). As 

expected, the effect of load was found to be significant (F(1,9) = 42.814,  p < 0.0001) 

whereas the interaction between congruency and load factors did not reach 

significance (F(1,9) = 0.136, p = 0.874). 

Bias - C 

Despite the effect of congruency approaching significance (F(1,9) = 4.048,  p = 0.07), the 

effect of load and the interaction between both factors was not significant, (F(1,9) = 

0.026,  p = 0.974) and (F(1,9) = 0.248,  p = 0.783), respectively. Interestingly, the 

increasing cognitive demands associated with greater memory load did not modulate 

the drift of participants towards responding ‘yes’, which in this particular case refers to 

participants reporting that stimuli presented in the the memory and test arrays are 

similar. 

Sensitivity - d’ 

The sensitivity index Dprime in load 1 and load 2 was very similar to those observed in 

the previous EEG studies of this work (i.e., around 2.2 for memory load one and 

approximately 1 for memory load two). In load 3 the participants’ capacity to retain in 

memory the items decreased substantially, with an average d’ of .39 collapsed across 

congruent and incongruent conditions. Nevertheless, this performance deviated from 

zero (i.e., null capability to distinguish trials) (t(9) = 3.827,  p = 0.004). 

Participants’ discrimination between signals (stimuli) and noise (no stimuli) was similar 

regardless the congruency of the hands movements and the laterality conveyed in the 

hands to-be-remembered. While there was a predictable and strong main effect of 
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memory load (F(1,9) = 80.028,  p < 0.0001), no effect of congruency (F(1,9) = 0.639,  p = 

0.445) or interaction between these  two factors were found (F(1,9) = 0.524,  p = 0.601).  

 

 

Figure 5-2. d’ results in all conditions Exp1. Dark blue represents the incongruent condition, light 

blue represent the congruent condition. Overall performance in the hand stimulus conditions 

was similar and no significant differences were found between performance in memory load 1, 

2, and 3 regardless congruency of the suppression; n=10. D-prime: sensitivity index, d’ = Z (hit 

rate) – Z (false alarm rate); H1I and H1C (one hand to-be-remembered, incongruent and 

congruent condition, respectively); error bars represent within subject SEMs. 

 

The results of Experiment 1 are summarised in table 5-2. The results showed that 

participants’ performance did not differ depending on whether they moved or not the 

same hand than those items to-be-remembered. Specifically, encoding, retaining, and 

retrieving left and right hand images from WM while respectively moving left and right 

hands did not differ from doing the same in the absence of matching between the 

laterality of the movement and the hand images (i.e., moving left hand-encoding left 

hands). These results are in line with those of Smyth and Pendleton (1989), who 

showed that either encoding left or right hand movements while exerting motor 

suppression only with the right hand yielded similar results. Overall, these results hint 

towards a WM system for body-related information, underpinned by sensorimotor brain 
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areas, that does not completely care about the processing of body-related lateralised 

information.  However, these accounts are difficult to tease apart in the context of the 

present experiment because it did not include a condition absent of suppression, as 

well as a condition with non-body-related stimuli. The following two experiments 

consider these latter manipulations and add the online monitoring of the motor 

suppression and the additional recording of reaction times.  

 

Table 5-2 

Means and Standard Errors (SE) for Hit Rate, False Alarm Rate, 

sensitivity d’, and bias C in all conditions of Experiment 1 

Suppression Load Hit FA d' C 

Incongruent 1 .91 (.02) .23 (.03) 2.16 (.11) -.30 (.10) 

 
2 .77 (.05) .42 (.05) 1.09 (.24) -.33 (.13) 

 
3 .66 (.05) .55 (.04) .30 (.14) -.29 (.11) 

 Congruent 1 .93 (.02) .24 (.04) 2.31 (.15) -.39 (.11) 

 
2 .80 (.04) .46 (.06) 1.05 (.18) -.41 (.13) 

 
3 .74 (.03) .57 (.04) .49 (.12) -.44 (.09) 

Note. Standard errors are in parentheses 
 

 

5.2.3.  Experiment 2 

The absence of congruency effect between the laterality of perceivers’ hand movement 

and the hands to-be-remembered in Experiment 1 could be due to a lack of influence of 

the motor suppression. It is possible that just squeezing a stress ball at a constant 

rhythm does not exert enough interference to reveal a rather weakly specific 

contralateral effect. In Experiment 2 I explored similar hypotheses that those of Exp. 1, 

namely: whether or not contralateral sensorimotor cortices play a specific and causal 

role in the effective encoding and maintenance of body-related information. However, 

three modifications were implemented: (1) the difficulty of the motor suppression was 

greater than that of Exp.1. Since previous studies have shown trade-off effects between 

memory performance and motor performance (see Woodin and Heil, 1996; table 5-1), in 
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Exp.1 participants could have interrupted or changed the rhythm of the motor 

suppression while encoding the stimuli. (2) In the current experiment participants were 

trained to keep a constant suppression with a metronome and the suppression was 

visually monitored with cameras during the whole experiment. (3) Contrary to Exp.1, the 

control non-body-related stimuli (polygonal shapes) were also included in the next two 

experiments. (4) In addition to the previous experiments, reaction times measured from 

the onset of the test array were measured in all conditions. By implementing these 

additional manipulations and control measures we expect to enhance the capacity of the 

experiment to assess underlying mechanisms of sensorimotor processing.  

 

5.2.3.1. Methods 

Participants 

In experiment 2, thirty-two participants that did not take part in the previous experiment 

(18 females; mean age = 20) with normal or corrected-to-normal vision took part and 

gave informed consent for this experiment, approved by City, University London 

Psychology Department’s Research Ethics Committee. From these participants a total 

of 8 were excluded from further analyses because due to an error in the hardware 

responses were not correctly recorded and/or because participants did not reach d’ 

values of 1 in at least one of the conditions with memory load 1. It is important to stress 

that in the previous studies the values of d’ at individual levels did not normally fall 

bellow 1. Therefore a total of twenty-four participants were included in further analyses.  

Stimuli, experimental design, and procedure 

The stimuli and procedure used in Experiment 2 were similar to those used in 

Experiment 1, except for 1) the very specific type of sensorimotor suppression and 2) 

the inclusion of shapes as control stimuli. Here participants were instructed to 

continuously touch one by one the tip of the thumb with each one of the remaining 

fingers’ tips. This movement always started by connecting the thumb and the index 
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finger and finished by meeting the thumb and the pinky’s tips. Once all fingers’ tips met, 

the movement was restarted in the same direction and frequency (with hands in palm up 

position, moving more lateral to central fingers, i.e., from index to pinky) (Fig. 5-3). We 

expected that in comparison to the hand movement in Exp.1, the increasing difficulty of 

the present movement would exhibit stronger interfering effects.  

In order to control the frequency and subsequent speed of the sensorimotor 

suppression, participants were instructed to produce 28 touches in each finger by 

minute, which are around 140 single touches per minute. This was done by training 

participants to carry on the WM task while listening to a digital metronome at 140BPM 

(beats per minute). Once the participants felt comfortable doing the dual task, the 

metronome was switched off and the recording of participants’ responses started while 

the movement was maintained until the next break. Lastly, given that previous studies 

have shown a trade-off between accuracy of body movements and body-related 

memory tasks, it was important to monitor that participants maintained a constant pace 

in the motor suppression during the whole experiment. In order to monitor participants’ 

hand movements, several lights and cameras were incorporated under the black 

opaque surface covering the hands from the participants’ eyesight.  

As in the previous experiments of this PhD thesis, participants were counterbalanced 

across stimuli conditions: half of the participants completed first all trials in the hand 

stimulus condition whereas the other half of participants completed first the shape 

stimulus condition. Experiment 2 had a total of 504 trials, this is equal to 252 trials by 

stimulus condition, including 84 trials in each memory load (1, 2, and 3). In random 

order of presentation, half of the trials comprised the task-irrelevant sensorimotor 

suppression in congruency with the laterality of the stimuli to-be-remembered 

(congruent condition), the other half of trials involved an incongruent matching 

between the moving hand and the hands to-be-remembered (incongruent condition). 
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Figure 5-3. Task design and procedure Exp.2. On 50% of the trials participants encoded left 

hand images while moving their left hand fingers (i.e., touching one by one the thumb with the 

rest of the fingers’ tip) and vice versa (congruent trials) while in the other 50% they encoded 

left hand images while doing the suppression with their own right hand and vice versa 

(incongruent trials). Participants were instructed to produce a single touch between the 

fingertips at a constant pace of 140BMP. The figure depicts a ‘different congruent trial - load 

3’ in which hands to-be-remembered are shown in the left hemifield.  

 

 

5.2.3.2. Results and discussion Exp. 2 
5.2.3.2.1. Indexes of sensitivity and bias 

The data was pre-processed and analysed as in Experiment 1. Repeated measures 

ANOVA with factors congruency and memory load was performed for hit rates, false 

alarms, C, and d’. In addition, Experiment 2 also included factor stimulus (hand images 

and geometrical shapes). The subsequent ANOVA resulted on a 2 (congruent / 

incongruent) x 2 (hand / shape images) x 3 (load 1/ 2/ 3). Summary of all data is 

presented in table 5-4.     
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Hit rates 

In comparison to experiment 1 the overall proportion of hit rates was slightly smaller, 

especially in load 1 and load 2. Conversely, when encoding three stimuli the proportion 

of hit rates in both experiments was very similar (approximately 0.75 regardless stimuli 

and condition).  

Beyond the already expected main effect of load (F(2,46) = 28.555,  p < 0.0001), no other 

main effects or interactions were found, namely, nor stimuli (F(1,23) = 0.772,  p = 0.389) or 

congruency exhibited significant effects (F(1,23) = 0.141,  p = 0.710), as well as the double 

interactions between factors stimulus type and congruency (F(1,23) = 0.348,  p = 0.561), 

stimulus and load (F(1,23) = 0.189,  p = 0.828), and congruency by load (F(1,23) = 0.375,  p 

= 0.689) did not reach significance. Similarly, the triple interaction between all factors did 

not show differences modulated by the corresponding factors (F(2,46) = 1.876,  p = 0.165). 

False Alarms 

Inspection of the previous and current experiment indicates that overall participants 

made similar proportions of false alarms in all memory loads (steadily increasing across 

loads from 0.23 to 0.56). The subsequent analyses revealed a near significant main 

effect of stimulus type (F(1,23) = 3.456,  p = 0.075), a significant main effect of load (F(1,23) 

= 133.838,  p < 0.0001), and a double significant interaction between these two latter 

factors: stimulus by load (F(2,46) = 7.828,  p = 0.001). Follow-up t-test revealed that such 

interaction was driven by a significant difference with higher number of false alarms in 

the hand condition vs. shape stimulus condition (t(23) = 3.023,  p = 0.006). No other main 

effects or interactions were found (all ps > 0.493).  

Bias - C 

Overall it was found a C value between -0.28 and -0.4 that was present in all conditions 

regardless the remaining factors congruency, load, and stimulus. The general tendency 

of participants to respond ‘yes’ (i.e., stating similarity between memory and test arrays) 
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was equal to that in experiment 1. Despite the results of experiment 1 showing a close 

to significant effect of congruency between participants’ hand movement and stimuli to-

be-remembered, here the effect of congruency on ones’ bias was far from significant 

(F(1,23) = 0.435,  p = 0.516). Interestingly, while in the earlier experiment memory load did 

not influence participants’ bias, in the current experiment a significant main effect of 

memory load was a found (F(2,46) = 9.720,  p < 0.001). No other main significant effects 

or interactions were found (all ps > 0.129). 

 

                 Shape condition       Hand condition 

 

Figure 5-4. d’ results in all conditions. Dark colours represent the incongruent condition, light 

colours represent the congruent condition. Overall performance in the hand and shape stimuli 

conditions was dissimilar (p < 0.05). However, the effect was found regardless the memory 

load and suppression conditions. n=24; D-prime: sensitivity index, d’ = Z (hit rate) – Z (false 

alarm rate); P1I and P1C (one shape to-be-remembered, incongruent and congruent 

condition, respectively); error bars represent within subject SEMs. 

 

Sensitivity - d’ 

Extreme values of hit rates and false alarms were corrected by the log-linear rule 

(Hautus, 1995) (see Methods Exp.1). Participants’ sensitivity to distinguish the presence 

of signal and noise (i.e., old/new, similar/different stimuli) in load 2 and 3 was slightly 

smaller than that found in experiment 1. This was more evident in the hand stimulus 

conditions: regardless of the congruency between the participants’ movement and 
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laterality of the hands to-be-remembered, d’ values were constantly below 1. This is 

reflected in the near significant double interaction between stimulus type and memory 

load (F(1,23) = 2.974,  p = 0.061) and the significant main effect of stimulus condition 

(F(1,23) = 6.931,  p = 0.015). The remaining effects and interactions did not approach 

significance (all ps > 0.307) (Fig. 5-4).  

5.2.3.2.2. Reaction times 

After pre-processing of RTs (see methods in Experiment 1 for full explanation) the 

mean of all participants’ verbal responses were found between 850 and 1000ms after 

onset of the test array. Here only a significant main effect of memory load was found 

(F(2,46) = 58.868,  p  < 0.0001). This effect exhibited a steady increasing in reaction 

time with greater memory loads. The remaining factors i.e., stimulus (F(1,23) = 0.781,  

p = 0.386), congruency (F(1,23) = 0.001,  p = 0.981), and all possible interactions 

between factors did not reach significance (all ps > 0.392). Overall the analyses of 

RTs indicate that hand movements performed with either the left or right hand do not 

modulate the concurrent encoding of hand images that match the laterality of such 

hand movements nor the encoding of non-body-related shape images (Fig. 5-5) 

(which do not convey such lateralized representations). 

The overall results of Experiment 2 are summarised in table 5-3. After increasing the 

sample size, enhancing the motor suppression, measuring RT, and including the control 

shaped stimuli, the results showed that similar to Experiment 1, participants’ 

performance did not differ whether their lateralized movement matched or not the 

laterality of the left or right hands to-be-remembered. The absence of motor suppression 

was also observed in the shapes stimuli condition.  

Furthermore, the RT in both stimuli conditions did not reveal any interaction with 

memory load (Fig. 5-3). The only relevant significant difference was found as a main 

effect of stimulus condition in the participants’ sensitivity d’. Regardless of memory load 
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and congruency, the overall d’ was lower in the hand stimulus conditions (M = 1.12, SD 

= .33) than in the shape stimulus condition (M = 1.27, SD = .29). The main effect of 

stimulus condition, the ubiquitous effect of memory load, and the lack of interaction 

between these factors and the congruency of the motor suppression suggest that such 

suppression is equally present or equally absent. Since the past two experiments did not 

include a no-movement condition such possibility is difficult to tease apart. Therefore, 

Experiment 3 includes a movement factor with two levels: movement and no-movement.  

 

 

   Shape condition     Hand condition 
 

 
 

Figure 5-5. Reactions times in all conditions Exp.2. Dark colours represent the incongruent 

condition, light colours represent congruent condition. Overall performance in the hand and 

shape stimuli conditions was similar and no significant differences were found between 

memory loads 1, 2, and 3 regardless the congruency of the suppression. n=24; P1I and P1C 

(one shape to-be-remembered, incongruent and congruent condition, respectively); ms: 

milliseconds; error bars represent within subject SEMs. 
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Table 5-3 

Means and Standard Errors (SE) for Hit Rate, False Alarm Rate, sensitivity d’, bias C, and reaction times 

in all conditions of Experiment 2  
                                                     Shape condition                                   Hand condition 

Sup Lo Hit FA     d'        C RT  Hit FA d' C        RT 

Inc 1 .88 (.01) .23 (.03) 2.13 (.12) -.22 (.08) 869 (27)  .86 (.02) .19 (.02) 2.14 (.12) -.14 (.06) 885 (28) 

 
2 .77 (.02) .40 (.02) 1.05 (.09) -.25 (.05) 956 (30)  .73 (.03) .45 (.03) .81 (.10) -.28 (.06) 979 (29) 

 
3 .73 (.03) .55 (.03) .58 (.11) -.43 (.08) 1000 (33)  .77 (.03) .59 (.03) .59 (.13) -.53 (.07) 1001 (32) 

 
            

Con 1 .88 (.02) .25 (.02) 2.05 (.10) -.30 (.07) 872 (23)  .87 (.01) .22 (.02) 2.02 (.11) -.20 (.05) 885 (29) 

 
2 .75 (.03) .37 (.03) 1.15 (.14) -.22 (.07) 966 (26)  .75 (.03) .48 (.03) .077 (.09) -.34 (.07) 984 (32) 

 

3 .76 (.03) .55 (.03) .65 (.09) -.47 (.08) 979 (34)  .72 (.03) .58 (.03) .39 (.10) -.43 (.08) 1008 (35) 

Note. Standard errors are in parentheses; Sup: suppression; Lo: memory load; Inc: incongruent, Con: congruent; RT in 

milliseconds. 

 

5.2.4.  Experiment 3 

Experiment 2 suggests that congruency effects between the laterality of the perceivers’ 

hand movement and the laterality of hands to-be-remembered do not exert a strong 

influence in the participants’ ability to remember body and control non-body-related 

information. The d’ values of Experiment 2 seem to indicate a main effect of stimulus 

type, where the overall sensitivity towards hand stimuli was lower than that for shapes 

stimuli. There is a lack of interaction between the congruency of such suppression, the 

type of encoded stimuli, and the memory load. Smyth and Pendleton (1989) showed 

that performing a motor suppression with either the left or right hand decreased 

memory span for hand postures of right hands (table 5-1). Conversely, a spatial 

suppression also performed with the left or right hand did not decrease such memory 

span. Therefore, it is possible that the motor suppression in Exp.2 was exerting a 

general interference, which is independent of the hand generating the hand 

movement/suppression. However, this hypothesis is difficult to tease apart because 

Exp.2 did include a non-suppression condition. 

In Experiment 3 I asked whether or not sensorimotor cortices play a more general and 

causal effect in the effective encoding and maintenance of body-related information. To 
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this aim, the unimanual motor suppression of the previous experiment was performed 

simultaneously with both hands. Therefore, the key factor here is the presence or 

absence of motor suppression. By implementing this manipulation we expect to exhibit 

a more general involvement of the sensorimotor system (i.e., somewhat independent of 

the laterality and effector) on specifically holding in WM images of body but not body-

related stimuli.  

5.2.4.1. Methods 

Participants 

In experiment 3, fourteen new participants (9 females; mean age = 21) with normal or 

corrected-to-normal vision took part and gave informed consent for this experiment, 

approved by City, University London Psychology Department’s Research Ethics 

Committee. Three participants were excluded due to low performance in memory load 

1 (d’ < 1). Neither in the very first pilot nor in the later EEG studies did the participants’ 

sensitivity usually all below 1.  

Stimuli, experimental design, and procedure 

The stimuli and procedure used in Experiment 3 were similar to those used in 

Experiment 1 and 2, except for the specific movement conditions. In Experiment 3 

participants were instructed to perform the same sensorimotor suppression as in 

Experiment 2, but simultaneously with both hands and in only half of the trials. These 

conditions were implemented in counterbalanced blocks.  

Experiment 3 included a total of 504 trials, this is equal to 252 trials by stimulus 

condition, including 84 trials in each memory load (1, 2, and 3), half comprising the 

task-irrelevant sensorimotor (movement condition) and half without it (no-movement 

condition). As the previous experiments of this thesis, participants were 

counterbalanced between stimulus conditions. Moreover, blocks containing the motor 

interference (movement condition) were also counterbalanced across the experiment. 
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The number of hand or shape images to-be-remembered was randomly selected 

across trials. 
 

5.2.4.2. Results and discussion Exp. 3 
5.2.4.2.1.  Indexes of sensitivity and bias 

The data was pre-processed and analysed as in Experiment 1 and 2. Repeated 

measures ANOVA with factors stimuli and memory load was computed for hit rates, 

false alarms, sensitivity index d’, and bias index C. However, in the current experiment 

there was no congruency factor, instead the presence of movement (i.e., moving or not 

both hands while encoding stimuli) was the third factor. The corresponding ANOVA 

followed a 2 (movement / no-movement) x 2 (hand / shape images) x 3 (load 1/ 2/ 3) 

design.      

Hit rate 

The overall proportion of hit rates was higher in the no-movement condition than in the 

movement condition: results showed a significant main effect of the factor movement 

(F(1,10) = 28.555,  p = 0.021). Nevertheless, participants’ movement did not interact with 

any other factors, namely: movement x stimulus (F(1,10) = 1.777,  p = 0.212), movement 

x load (F(2,20) = 0.678,  p = 0.519), stimulus x movement x load (F(2,20) = 0.812,  p = 

0.458). The only main effect reaching significance was load (F(2,20) = 17.493,  p  < 

0.0001) which showed a decreasing proportion of hit rates with increasing number of 

stimuli to-be-remembered.  

False Alarms 

Overall false alarms in the present experiment was slightly higher than the previous two 

experiments. Here the false alarms ranged from 0.24 to 0.61 (compared to the 0.23 to 

0.56 of the previous experiments). Moreover, the descriptive statistics exhibit a general 

difference between the proportions of false alarms in the hand stimulus conditions 

compared to the shape stimulus condition. However, further inspection of such 
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difference indicates no differences between encoding of hands and shapes in WM  

(F(1,10) = 3.424,  p = 0.094). Then, besides the predictable load effect (F(2,20) = 80.777,  p 

< 0.0001), only an interaction between movement and load (regardless of stimuli types) 

approached significance (F(2,20) = 3.107,  p = 0.067). All the remaining effects and 

interactions were not significant (i.e., greater than 0.130).  

Bias - C 

The C values in experiment 3 ranged from -0.30 to -0.53 (compared to the -0.28 to -0.4 

found in the previous experiments). Once again it was found that participants tend to 

respond ‘yes’ (i.e., reporting that both memory and test arrays were similar). Despite 

the previous experiments finding some differences, here no main effects or interactions 

yielded significant differences (all ps > 0.090). Only two ‘occurrences’ seemed to 

slightly modulate participants’ bias: the increasing memory load and its further 

modulation with ones’ hand movement, however, these factors did not reach 

significance (F(2,10) = 2.734,  p = 0.089 and F(2,10) = 3.128,  p = 0.094, respectively)    

Sensitivity - d’ 

Participants’ sensitivity to discriminate the stimuli between the memory and test arrays 

was examined. The means across all conditions showed that in general the movement 

of both hands impaired participants’ performance (Fig. 5-6). The factor movement was 

found to be significant (F(1,10) = 7.004,  p = 0.024). In other words, the conjunction of hit 

rates and false alarms that is considered in d’ was modulated by the motor suppression 

in the form of a bimanual hands movement. Next, results showed a significant main 

effect of memory load (F(2,20) = 80.777,  p < 0.0001), which exhibited decreasing d’ with 

increasing memory load regardless of the presence of hands movement during 

encoding of both hand and shape stimuli. Lastly, the results from the triple interaction 

between stimulus, load, and movement did not reach significance (F(2,10) = 2.454,  p = 

0.111). In similar a vein, all other factors and interactions did not reach significance: 
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stimulus (F(1,10) = 1.727,  p = 0.218), stimulus X movement (F(1,10) = 1.455,  p = 0.256), 

stimulus X load (F(2,20) = 1.504,  p = 0.246), and movement X load (F(2,20) = 1.015,  p = 

0.380).  

 

Table 5-4 

Means and Standard Errors (SE) for Hit Rate, False Alarm Rate, sensitivity d’, bias C, and reaction 

times in all conditions of Experiment 3  
                                             Shape condition                            Hand condition 

Sup Lo Hit FA d' C   RT  Hit FA d' C RT 
NoM 1 .95 (.02) .25 (.03) 2.24 (.16) -.39 (.09) 786 (38)  .85 (.05) .23 (.03) 2.03 (.25) -.20 (.09) 785 (.35) 

 
2 .81 (.03) .47 (.04) 1.06 (.16) -.44 (.09) 855 (39)  .79 (.05) .52 (.04) .85 (.18) -.49 (.12) 832 (25) 

 
3 .82 (.03) .53 (.03) .92 (.14) -.53 (.08) 893 (43)  .76 (.03) .62 (.05) .40 (.19) -.53 (.07) 854 (28) 

 
            

Mov 1 .83 (.03) .31 (.05) 1.59 (.15) -.25 (.12) 872 (41)  .84 (.02) .31 (.05) 1.71 (.19) -.29 (.15) 828 (34) 

 
2 .77 (.03) .42 (.04) 1.01 (.18) -.30 (.09) 913 (46)  .72 (.04) .52 (.06) .57 (.19) -.34 (.10) 931 (33) 

 
3 .69 (.04) .54 (.04) .43 (.14) -.31 (.08) 954 (44)  .70 (.03) .56 (.03) .46 (.13) -.39 (.12) 958 (40) 

Note. Standard errors are in parentheses; Sup: suppression; Lo: memory load; Mov: movement condition; 

NoM: no movement condition; RT in milliseconds. 

 

 

5.2.4.2.2.  Reaction time 

RTs data was pre-processed as in Experiment 2. Then, mean reaction times of all 

participants’ verbal responses were found to be between 780 and 960ms after onset of 

the test array (approximately 60ms faster than in experiment 2). Similar to the majority 

of parameters computed in the current behavioural experiments, the results of the 

ANOVA showed a main effect of memory load (F(2,20) = 27.377,  p < 0.0001). However, 

while in experiment 2 only load seemed to modulate the time needed for the 

participants to respond, here the presence of hands movement while encoding and 

maintaining the stimuli to-be-remembered also modulated participants’ performance 

(F(1,10) = 14.285,  p < 0.004).  

Interestingly, a triple interaction between stimulus x movement x load was also found 

(F(2,20) = 4.180,  p = 0.030). The follow-up of this interaction by stimuli types showed 

significant main effects in the hand stimulus condition for both movement and load 
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factors (F(1,10) = 11.973,  p = 0.006; F(2,20) = 21.107,  p < 0.001, respectively), as well as 

a significant interaction between these two factors (F(2,20) = 3.925,  p = 0.036). Follow-

up t-tests showed significant differences in load 2 and load 3, but not in load 1 when 

moving both hands (Fig. 5-7). Specifically, holding in memory 2 and 3 hand images 

while performing the motor suppression led to slower RTs than carrying the memory 

task alone (t(10) = 3.212,  p = 0.009, t(10) = 4.100,  p = 0.002, respectively). In the shape 

condition, the results also showed a main effect of movement (F(1,10) = 12.177,  p = 

0.006) and memory load (F(2,10) = 18.387,  p < 0.0001), but no interaction between 

them was found (F(2,20) = 0.908,  p = 0.419).   

 

                 Shape condition Hand condition 

 

Figure 5-6. d’ results in all conditions. Dark colours represent the no-movement 

condition, light colours the movement condition. Overall performance in the hand and 

shape stimuli conditions was similar. No interactions between stimuli conditions, load, 

and movement were found. n=11; D-prime: sensitivity index, d’ = Z (hit rate) – Z (false 

alarm rate); P1NoM and P1MoV (one shape to-be-remembered, no movement and 

movement condition, respectively); error bars represent within subject SEMs. 
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                 Shape condition Hand condition 

 
 

Figure 5-7. Reactions times in all conditions. Dark colours represent the no-movement 

condition, light colours represent movement condition. Responses in the hand stimulus 

condition were slowed down as memory load increased (i.e., stimulus condition X memory 

load X movement presence, followed by memory load X movement in the hand stimulus 

condition only). n=11; ms: milliseconds; P1NoM and P1MoV (one shape to-be-remembered, 

no-movement and movement condition, respectively); error bars represent within subject 

SEMs. 

 

The analyses of memory performance in Experiment 3 did not yield significant 

results. Beyond the expected main effect of load, values of d’, including its 

corresponding components, did not show main effects neither interactions. Further, it 

was found a reduction of participants’ sensitivity to discriminate the stimuli regardless 

the stimulus type condition. A significant main effect of movement was found without 

any further interactions. Nevertheless, the analyses of RTs revealed a significant 

triple interaction (i.e., stimulus type X memory load X movement) where only the 

hand stimuli elicited slower responses across memory loads that were concomitant to 

the movement of the motor suppression. These latter results highlight the possible 

presence of a trade-off effect in participants’ performance; an effect already observed 

in Smyth and Pendleton (1989) and Woodin and Heil (1996).  
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5.3.  General discussion 

In the present study we sought to interfere with the on-going sensorimotor processing 

during a WM task for body and non-body-related images, exploiting the contralateral 

disposition of the sensorimotor cortex by using manual and bimanual motor 

suppression. We tailored the EEG experiments (Chaper 3 and 4) to three different 

behavioural experiments, ‘inducing impairment’ of sensorimotor processing by means 

of a sensorimotor suppression: i) in Experiment 1 participants’ held in memory left or 

right hand images while moving the hand matching or not the laterality conveyed in 

the visual display (i.e., unimanual congruent/incongruent motor suppression). ii) 

Experiment 2 was similar to the first but included the control shape stimulus 

condition, enhanced and monitored suppression, and measures of RTs. iii) 

Experiment 3 was similar to Exp. 1 and 2 but motor suppression was present in form 

of a bimanual task, but only in 50% of the trials.  

The results revealed an expected effect of memory load, which was present across 

the three experiments, mainly in the proportion of hit rates and d’. Exp.1 exposed a 

lack of main effects and interactions; contrary to our initial hypothesis, the 

congruency of the movement matching the hands to-be-remembered did not 

modulate participants’ performance. In Experiment 2 the results showed a main effect 

of stimulus condition. The overall sensitivity to distinguish old and new stimuli 

between the memory and test arrays was somewhat lower in the hand stimulus 

condition compared to the shape condition. Interestingly, the main difference 

between Exp.1 and 2 was the increasing difficulty of motor suppression. The motor 

suppression in the second experiment required, in principle, higher motor control and 

tactile processing. The lower performance in the hand stimulus condition could be 

due to an overall effect of the suppression, priming the underlying mechanisms of the 

single task too. The results of these experiments show that the effect of the 
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suppression seemed general and irrespective of the matching laterality between the 

stimuli and the perceivers’ actual movement.  

In Experiment 3 we tested participants without the motor suppression, which showed 

that performance dropped in the dual task compared to the single task condition in 

both stimuli conditions. Despite no other effects or interactions being found in the 

proportion of hit rates, false alarms, d’, and C, analyses of the reaction times 

revealed slower responses with increasing memory load and motor suppression (i.e., 

stimuli X memory load X task movement interaction). The follow-up analyses 

exhibited that RTs of verbal responses, indicating similarities/differences between 

arrays, increased with memory load in the hand stimulus condition (i.e., in memory 

load 2 and 3, but not 1). 

Our results are consistent with Smyth and Pendleton (1989), who found a double 

dissociation between the type of suppression task and memory performance. One of 

the suppression conditions included participants squeezing a tube. The second 

suppression task involved a spatial tapping task. Squeezing a tube with either the left 

or right hand, varying the position of the hand, decreased memory span for hand 

movements presented with either the left or right hand. Conversely, performing a 

spatial tapping task with either the left or right hand interfered with the memory span 

for spatial locations but did not affect memory span for movement patterns. 

Therefore, suppression was task/stimuli-driven but irrespective of the effector. 

Moreover, Smyth and Pendleton (1989) also showed that execution of suppression 

tasks is slower when paired with the matching memory tasks (spatial suppression – 

spatial memory task). In Experiment 3, RTs in the hand stimulus condition increased 

with memory load during the motor suppression. This interaction could reflect trade-

off effects in which decelerating responses allow better sensitivity (i.e., d’ values). 
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Such trade-off could explain the lack of differences in performance between stimuli 

conditions in Experiment 3.  

5.3.1. Absence of contralateral effects in processing WM for 

sensorimotor information? 

The present experiments barely suggest that motor suppression may affect WM for 

visually perceived body-related information. Interestingly, the mechanisms for such 

processes do not seem that well contralateralised. Performance in trials where 

participants encoded right hand images while moving the right hand was similar to 

those trials where they encoded also right hands but moved the left hand and vice 

versa.  

Considering the absence of contralateral effects in the current experiments, how is it 

possible that some studies (including our previous EEG studies) found contralateral 

processing of body-related information? The degree of contralateralisation seems to 

vary from moving/sensing one’s body to the perception and memory representation 

of others’ bodies. First, sensorimotor cortex is well contralateralised depending on the 

body part; the sense of feeling/moving one’s right hand is mostly underpinned by the 

left somatosensory and motor cortex  (i.e., upper limbs are well lateralised). 

Nevertheless, there are strong interhemispheric interactions linking somatosensory 

processing across the cortices of both hemispheres (Tame and Longo, 2015; Azañón 

et al., 2016) 

Secondly, while it is widely recognised that particular brain regions underpin both 

action execution and action observation, seeing others bodies and actions does not 

elicit the same degree of contralateral activity that would be recorded when executing 

the real action. Many studies have reported lateralised activity when perceiving 

others bodies and actions, but this does not always imply that brain structures and 

ensuing activity are contralateral. For instance, studies have indicated overall and 
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greater activity in the left sensorimotor areas regardless of the types of observed 

actions (Kalénine et al., 2010; Ortigue et al., 2010). On the other hand, other studies 

have found evidence for a more specific contralateral processing (see for instance 

Borghi and Cimatti, 2010). As noted in Chapter 2, the degree of embodiment elicited 

through different manipulations could explain how the brain engages in a more or 

less contralateralised manner. Overall, the ‘gap’ between what is observed (or 

encoded to be memorised) and the perceivers’ sensorimotor state (e.g., experience, 

posture, task) may define a point in the continuum of contralateralised activity that is 

observed. Reductions of such gap, when percept and perceivers are more alike, may 

lead to contralateral involvement of the brain regions that are necessary to carry on 

the action itself. Conversely, if such distance is augmented, for instance when a 

naïve participant observes a skilled hand movement, brain activity might be less 

contralateralised (but remain lateralised). This is different from the changes in BOLD 

signal described by (Cross et al., 2012) who described how perceiving novel body 

movements can lead to increasing involvement of brain areas contributing to the 

perception of bodies.  

5.3.2. Conclusions 

The current study suggests that holding in WM information about lateralised body 

parts (i.e., left and right hand images) is underpinned by the sensorimotor system in 

a general manner rather than in a laterality-matching manner. Contrary to our 

hypothesis, participants’ performance was similar whether they encoded left/right 

hands while suppressing left/right hands or right/left hands, respectively. These 

results are discussed in the context of the preceding EEG studies in the PhD 

summary of Chapter 6. Then, a modulation by memory load was only found in the 

hand stimulus condition when the motor suppression was applied to both hands. This 

suggests the presence of a system dealing with different features of visually 
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perceived body information that cannot deal with both tasks simultaneously. It could 

be suggested that both hands cannot be controlled independently and that the motor 

suppression elicits an overall interference. Thus, sensorimotor cortices may play a 

role in certain aspects along the encoding and maintenance of visually perceived 

bodily information in WM.    
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5.3  Artistic Impressions V 

 

               
 

Bodily Realm – Body deconstruction or tortillas de patatas (2015) Photography on 

board (45 x 30cm) / AGP 
 

If part of the memories that we create about others’ bodies is mapped over the 

representation of our body in the brain, do we represent such bodies in a somatotopic 

manner? (e.g., matching the observed body as a template in our own cortical body?).  
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6. Chapter 6: General discussion 
 

6.1. Introduction 

In the current chapter I review the work presented in this PhD thesis. I start by 

summarising the overall goals of my work, as well as the specific aims of each chapter 

and study. Then, I recapitulate the main results of each study and, based on others’ 

research and my own work, I reflect on the interpretation of these results. Next, I conclude 

this thesis by revising overall limitations, discussing some of the open questions that need 

to be further explored (i.e., open questions and research proposals), and by encapsulating 

the main findings and interpretations in a brief conclusion 

6.2. Summary of background and aims 

Observing, recognising, understanding, learning, and imitating others’ bodily actions are 

fundamental processes in human interaction. To implement any of those cognitive 

processes, one perceives another person’s action and transforms such percept into a 

representation that can be later updated, retained, and accessed. The transformation of 

body-related information into an associative form that can be later recalled in favour of 

prospective behaviour requires memory mechanisms.  

Most of the studies in the memory domain have used arbitrary stimuli such as sequences 

of numbers or letters, coloured squares, lines, and shapes, allowing us to identify non-

overlapping memory systems to store semantic and visuo-spatial information in WM 

(Baddeley and Hitch, 1974). A memory system to hold more socially meaningful stimuli 

such as bodies and actions was later proposed by Smyth and colleagues, who provided 

behavioural evidence of a system to encode, recall, and maintain others’ actions in one’s 

memory (Smyth et al., 1988,1989). Importantly, these and other studies suggested that 

this memory system for body-related information (e.g., visually perceived actions and body 
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postures) is underpinned by that neural circuitry that allow us to move and feel our own 

body, that is, our own body representation in the brain. Investigating these brain regions 

during encoding of visually perceived body stimuli is the main aim of the present thesis.  

With the advent of neuroimaging and novel electrophysiological techniques, two important 

discoveries in the fields of perception of actions and WM have guided my PhD work.  

Briefly, different studies in perception of actions and bodies showed that (1) a number of 

brain regions are active during action observation and action execution (di Pellegrino et 

al., 1992; Gallese et al., 1996). Therefore, part of the cortical areas that represent our own 

body and actions in the brain, allowing us to move and feel our body, play a key role in 

perception of others’ actions and bodies. Secondly, in the WM field, several studies 

showed that (2) brain regions contribute to perceiving and maintaining stimuli to-be-

remembered in WM. Accordingly, the brain regions contributing to perception also 

underpin the maintenance of the percept in memory (Fuster and Alexander, 1971; Harris 

et al., 2002; Vogel and Machizawa, 2004; Serences et al., 2009). Those two findings 

suggest that brain regions with a role in perception may contribute to storing percepts 

beyond the perceptual stage. In the case of perceiving bodies and actions, somatosensory 

and motor cortices may underpin encoding and maintenance of bodily percepts beyond 

online perception. The examination of these brain regions during encoding of visual body-

related stimuli is one of the main purposes of this thesis. In the next sections I revisit in 

more detail the aims and background information of the different chapters.  

 

Background and aims of Chapter 2: Revealing hidden representations of the body in the 

brain. Overall, there is a good understanding on how to design experiments examining 

WM for arbitrary stimuli and on the perception of bodies through neuroimaging techniques. 

However, there is no clear approach to develop EEG studies on WM for visually perceived 

body stimuli.  
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The aim of Chapter 2 was to develop a combination of method and guideline to study 

perception and memory encoding of body-related images. This method is based on the 

ERP-EEG technique. Importantly, there are two constrains that need to be considered 

when applying such technique: i) ERP-EEG possesses magnificent temporal resolution 

but low spatial resolution. ii) Encoding body images elicits a visual response that spreads 

from posterior/visual to more anterior and body-related cortices (i.e., the neural candidates 

to process bodies in memory). This visual-evoked potential (VEP) masks brain responses 

that are also responsible for the processing of body-related information. Therefore, 

encoding and other processes linked to the transformation of bodily information onto our 

own cortical body representation (i.e., sensorimotor and somatosensory cortices) are 

difficult to dissociate from the VEPs generated at the sight of body stimuli. To solve this 

issue, we proposed the elicitation of a time-locked neural response in somatosensory 

cortex during encoding of visual information. This can be accomplished by delivering task-

irrelevant tactile taps to the participants’ index fingers while they encode and hold in 

memory different numbers of body images. The tactile tap elicits a somatosensory-evoked 

potential (SEP) that allows measurement of somatosensory processing, which is 

modulated by the type of visual information ‘delivered’ by the VEP. Then, by means of the 

subtractive method detailed in Chapter 2 and 3, it is possible to dissociate SEPs from 

concurrent VEPS. Hence, it is possible to explore the involvement of body-related cortices 

when seeing and encoding bodily-related information with high temporal resolution.  

 

Background and aims of Chapter 3: Neural dissociation for visual and sensorimotor WM - 

somatosensory brain areas. Sustained activity has been associated with maintaining task-

relevant information in WM. This sustained activity seems to arise from those perceptual 

brain areas that participate in processing the percept in the absence of WM demands. 

Moreover, this form of activity increases with the number of stimuli to-be-remembered 

(i.e., memory load). For instance, Vogel et al. (2004, 2005) found an enhancement of EEG 
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waveforms arising from posterior/visual cortex that was concomitant to the number of 

visually depicted shapes to-be-remembered in a delayed match-to-sample task. Harris et 

al. (2002) and Katus and colleagues (2014, 2015) found that memorising a greater 

number of tactile taps encompasses increasing brain activity over somatosensory cortex. 

Despite the results of those studies showing enhancement of modality-specific cortices, it 

is unclear if sustained activity is defined by the sensory input modality or by the perceptual 

encoding properties of the information to-be-remembered.  

Since perception of body stimuli (e.g., hand images, but not shapes) involves brain areas 

beyond visual cortices (i.e., parietal/somatosensory cortices; SCx), modulation of 

sustained activity by memory load could be found over SCx as result of visually driven 

processing of hand images in WM. To explore this hypothesis, in Chapter 3 we recorded 

different levels of sensory response during encoding of visual stimuli depicting hand 

images and shapes. Specifically, we elicited and later dissociated visual-evoked potentials 

and somatosensory-evoked potentials (VEPs, SEPs) by using the method detailed in 

Chapter 2. Then we examined whether or not the number of hand images to-be-

remembered modulates visual cortex, as well as somatosensory regions beyond visual 

carry-over effects that are generated at the sight of body stimuli.  

 

Background and aims of Chapter 4: Sensorimotor recruitment during WM for body and 

non-body-related images. Current models portray WM as a reestablishment of perceptual 

experience. Interestingly, we know from studies on action observation that body-related 

stimuli elicit perceptual activity beyond sensory-input streams. However, whether or not 

such brain regions (somatosensory and motor cortices) are also recruited during WM is 

still unclear. 

In the previous chapter we applied a novel EEG method and developed a WM paradigm 

that allowed us to inspect one the neural candidates to support memory processing of 
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visual body images (i.e., somatosensory cortex, SCx). Here, we adapted this paradigm to 

explore another cortical region known for playing an important role in perception of bodies, 

the motor cortex. To this aim, we recorded visual and motor-cortical potentials during the 

active maintenance of body and non-body-related images in WM. The motor-cortical 

responses were elicited by a task-irrelevant key pressing that was performed during the 

retention interval of body and non-body-related images in WM. These motor-cortical 

potentials (MCPs) resemble the readiness potential (Deecke et al., 1976), an intricate 

component arising from motor cortices and known to expose the underlying processing of 

one’s forthcoming motor responses, the difficulty of an executed or imagined action 

(Kranczioch et al., 2009, 2010), as well as others’ observed bodily actions (van Schie et 

al., 2004). Remarkably, MCPs allowed us to probe the state of the motor cortex in a visual 

WM task by dissociating the underlying process from other on-going EEG components 

(see methods section Chapter 4). 

 

Background and aims of Chapter 5: Disrupting sensorimotor processing during WM for 

body and non-body-related images. In the previous chapters I examined cortical potentials 

of somatosensory and motor cortices, two of the brain regions that could potentially 

underpin a WM system for visually perceived body information. Nevertheless, while our 

EEG studies showed contralateral involvement during encoding and maintenance of hand 

images in WM, earlier studies from Smyth and colleagues indicated general involvement 

of the sensorimotor system. Specifically, the authors showed that either hemisphere 

(contralateral and ipsilateral) seems to be responsible for the maintenance of visually 

perceived body postures and actions in WM.  

In this chapter we aimed to investigate whether or not contralateral sensorimotor areas, 

which showed enhancement of activity during encoding and maintenance in the two EEG 

studies of this thesis, support memory maintenance of the stimuli in WM. In other words, 

do the contralateral left/right sensorimotor hemispheres support encoding of subsequent 
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right/left hand images? To explore such somatotopic mechanisms, we created three 

different behavioural experiments that were based on the previous EEG studies. In each 

of these experiments, we interfered with the hypothetical sensorimotor processing of body 

images by adding a secondary task. The secondary task was performed during the 

maintenance of the stimuli in WM and executed by moving one hand (experiment 1 and 2) 

or both hands (experiment 3). The purpose of the secondary task was to interrupt 

sensorimotor processing through exhaustion of computational resources. If sensorimotor 

cortex supports memory maintenance of hand images in a somatotopic manner (i.e., 

following contralateral processing), memory performance for right hand images would be 

lower when moving the right hand than when moving the left hand (experiment 1 and 2, 

Chapter 5). On the contrary, if sensorimotor cortex supports memory maintenance of hand 

images in a more general fashion (i.e., irrespective of laterality conveyed in the hands), 

memory performance for right hand images would be similar when moving the right hand 

and left hand.  

 

6.3. Summary of results 

In the following section I summarise the main results of the three studies presented in this 

thesis. The results of the first two EEG studies are divided according to the type of brain 

activity evoked in the experiment. The results of the behavioural study in Chapter 5 are 

described according to the experiment version (1 to 3). As a reminder, the analyses of all 

three studies were centred on analysing the effects of memory load and stimulus 

conditions (shape and hand images).  

Chapter 3 - Neural dissociation for visual and sensorimotor WM: somatosensory 

brain areas 

Visual-evoked potentials (VEPs) from visual-only trials. Approximately 300ms after the 

visual onset of the shapes and hands stimuli, the mean amplitude waveforms increased 

until the end of the retention interval over posterior electrodes. In the shape stimulus 
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conditions, this activity was higher when encoding 2 shapes than only 1. Conversely, no 

differences were observed when encoding hand images. Independently of the memory 

load (i.e., 1, 2), similar sustained activity was observed in the hand stimulus condition.   

Somatosensory-evoked potentials SEPs (VEPs free) from visual-tactile trials. Analyses of 

variance in SEPs, after subtracting carry over visual effects from VEPs contained in the 

visual-tactile condition, yielded a significant Hemisphere X Load X Stimulus interaction. 

The follow-up analyses showed a significant interaction between memory load and 

hemisphere in the hand stimulus condition over posterior parietal electrode sites. Brain 

amplitudes increased from load 1 to 2 in the contralateral hemisphere. No differences 

were found in the shape condition. Further analyses confirmed the specificity of the SEPs 

modulation by memory load. We applied CSD and analysed pair of electrodes across 

more posterior and anterior electrode sites; no significant effects were found.  

Despite the stimuli conditions being matched in memory performance, our results showed 

that only body stimuli elicited modulation of brain activity by memory load over SCx 

whereas non-body stimuli modulated activity over visual cortices.  

 

Chapter 4 - Sensorimotor recruitment during WM for body and non-body-related 

images 

Visual-evoked potentials (VEPs) from visual-only trials. The results showed an occipital-

parietal peak in the time window 300-800ms (during the retention interval) in both stimuli 

conditions. The analyses of variance yielded significant differences between memory load 

1 and 2 in both stimuli conditions. VEPs increased from load 1 to load 2 and no 

differences between stimuli conditions were found.  

Motor-cortical potentials MCPs (VEPs free) from visual-motor trials. After subtracting carry 

over visual effects from VEPs contained in the visual-motor condition, the analysis of 

MCPs’ variance yielded a significant Hemisphere X Load X Stimulus X ROI x Electrode 



	 200 

interaction. The follow-up analyses showed a significant difference between memory loads 

only in the hand stimulus condition over the contralateral frontal electrodes site. No 

differences were found in the shape condition, which activity did not differ from zero (i.e., 

no differential brain activity).  

Last, similar to the first EEG study, there were not behavioural differences between stimuli 

conditions and only body stimuli elicited modulation of brain activity by memory load over 

body-related cortical regions, in this particular case, over motor cortices.  

 

Chapter 5 - Disrupting sensorimotor processing during WM for body and non-body-

related images. 

Experiment 1. The results showed similar memory performance whether or not the 

participants moved the left or right hand while maintaining left or right hands in WM. 

Hence, recalling differences between left and right hand images while respectively moving 

left and right hands (i.e., congruent suppression) did not differ from doing the same in the 

absence of matching laterality between participants’ moving hand and the hand images on 

display.  

Experiment 2. Compared to the previous behavioural experiment, here the sample size 

and the difficulty of the hand movement were increased. Also, additional measures such 

as RT and memory performance for the control shaped stimuli were included. Similar to 

experiment 1, participants’ performance did not differ whether or not their lateralized hand 

movement matched and the laterality of the left or right hand images to-be-remembered. 

The absence of a specific somatotopic motor suppression was also observed in the shape 

stimulus condition. The only significant difference was found as a main effect of stimulus 

condition, in which regardless of memory load and congruency of the dual 

task/suppression, performance was lower in the hand stimulus condition.  
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Experiment 3. Compared to the previous behavioural experiments, there was no factor of 

congruency. The motor suppression was performed simultaneously with both hands or not 

performed (i.e., absence or presence of bimanual suppression). Similar to the previous 

experiments, analyses of participants’ memory performance did not yield significant 

results. Beyond the already expected effects of load, no main effects and interactions 

were found. Nevertheless, the analyses of RTs revealed a significant triple interaction (i.e., 

stimulus X memory load X movement). Here, only in the hand stimulus condition, 

participants were increasingly slower across memory loads (1 to 3) when exerting the 

bimanual motor suppression. 

 

6.4. Interpretations and discussion 

6.4.1. The role of somatosensory and motor cortex in processing visually 

driven body-related information  

In two different EEG studies, we found significant interactions between mean amplitudes 

of sustained activity and memory load. Such interactions were found in the hand stimulus 

condition over somatosensory and motor cortices, respectively. This suggests that 

somatosensory and motor cortices may play a role in encoding and maintaining visual 

body-related information in WM. Conversely, these body-related cortical regions did not 

exhibit effects of memory load in the shape stimulus condition. These findings are 

consistent with current accounts in WM, proposing that perceptual mechanisms shaped 

by experience are key to encode and maintain stimuli in WM (D’Esposito and Postle, 

2015). Here I speculate that SCx and motor cortices represent at least some of the 

dimensions that correspond to the whole percept conveyed in body-related stimuli. This is 

probably underpinned and modulated by exposition and functional associations between 

one’s experience and others’ bodies. Such recurrent perceptual stimulation is probably 

stored as sensory associations between tactile and motor sensations and the view of 

bodies  
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Our results do not imply that other brain areas (e.g., extrastriate body area, EBA; Downing 

et al., 2001) could participate in representing a bodily percept over time, but suggest that 

functionally-relevant perceptual cortices other than visual may well contribute to memory 

maintenance of visual information. Importantly, by functionally-relevant I mean that these 

brain regions (i.e., sensorimotor) are known to be shaped and participate in perceptual 

long-lasting associations, as well as in functional interactions in several cognitive domains 

that involve use of our own body beyond purely WM tasks.  

 

6.4.2. Subtraction of evoked potentials: visual, somatosensory, and motor-

cortical potentials 

The aforementioned EEG results were obtained after subtracting VEPs from visual-only 

trials to a conjunction of VEPsSEPs (visual-tactile trials; in Chapter 3) and VEPsMCPs 

(visual-motor trials; in Chapter 4). These subtractions allowed us to dissociate SEPs and 

MCPs from those VEPs generated at the sight of the visual stimuli, as well as, to perform 

analyses of mean amplitude waveforms arising from somatosensory and motor regions 

during visual processing of body and non-body-related stimuli. Here, it is important to 

emphasize that subtractions add a certain amount of noise to the data; noisy meaning that 

such data cannot be understood and interpreted accurately. In the current studies, there 

are several possible sources of noise: 

(1) In the first EEG study – Chapter 3, we subtracted VEPs elicited in the visual-only trials 

from VEPsSEPs (visual and concurrent somatosensory-evoked potentials) elicited in the 

visual-tactile trials. We assumed that such subtraction reflects pure SEPs, which are 

modulated by the visual content of the task. Nevertheless, distinctive cognitive processes 

could underlie visual-only trials and visual-tactile trials. In such case VEPsSEPs minus 

VEPs would not reflect pure SEPs, but an additional and unknown measure. Specifically, 

we could have ‘manufactured’ a cognitive subtraction, which often neglect interactions 

between cognitive processes, tasks, and neural systems (Friston el al., 1996; Friston et 



	 203 

al., 1997). We minimised these effects by reducing task differences (i.e., the tactile 

stimulation was task-irrelevant). We explained and emphasized to the participants that the 

tactile taps were irrelevant. Moreover, white noise was played during the whole task to 

mask possible confounding on the recording such as attentional shifts or auditory evoked-

potentials. Importantly, the behavioural results showed that participants perform equally 

across visual-only and visual-tactile trials. 

(2) In the second EEG study – Chapter 4, we subtracted VEPs elicited in the visual-only 

trials from VEPsMCPs (visual and concurrent motor-cortical potentials) elicited in the 

visual-motor trials by the participants’ key pressing during the retention interval of the task. 

In this study, there was a difference in behavioural performance. As expected, 

participants’ performance in the visual-motor trials was lower than in the visual-only trials. 

The task-irrelevant key pressing used to elicit a motor-cortical potential corresponded to a 

dual task with higher complexity compared to the single task (i.e., memory task). 

Therefore, distinctive cognitive processes do underlie the subtraction between brain 

activity from visual-only trials and visual-tactile trials. VEPsMCPs minus VEPs would not 

reflect pure MCPs, but additional factors than contain among others, difficulty and effort. 

Nevertheless, we considered these effects by matching the difficulty of the stimuli types. 

Therefore, the dissimilarities found in brain waveforms between holding in WM shape and 

hand images are likely due to the type of information delivered in the percept (i.e., body or 

non-body related).  

 

6.4.3. Visual contralateral delay activity (vCDA) in the present experiments 

In both EEG studies we found increasing activity, starting 300ms after the onset of the 

stimuli, which persist in form of a sustained waveform for the whole retention interval. This 

activity, specifically, visual contralateral activity (vCDA) was recorded from posterior visual 

electrode sites similar to those used in previous studies (Todd and Marois, 2004; 
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McCollough et al., 2007; Tsubomi et al., 2013). Despite the present two EEG experiments 

having used the same stimuli and the main memory task was similar, the results of the 

vCDA led to different results. In the first study, the vCDA was not modulated by memory 

load in the hand stimulus conditions whereas in the second study, the index of WM 

maintenance was significantly modulated by load. The reasons for such difference 

(between experiments) are not clear. Yet, here I postulate a number of possible causes:  

i) Memory systems and subsequent encoding are malleable: In the second EEG 

experiment, we found modulation of VEPs and vCDA in the visual-only trials for the hand 

stimulus condition. In this experiment, the motor system was already needed to produce 

the task-irrelevant key pressing that elicited the MCPs in the visual-motor trials. Even if the 

key pressing was specifically executed in the latter trials, these could have primed the 

encoding scheme in the visual-only trials. Then, the motor cortex could have been 

‘virtually suppressed’ even in the absence of a task requiring its use. In this sense, the 

MCPs reported in Chapter 4 could reflect a form of interference rather than encoding per 

se, which is still indicating that motor regions were engaged.  

ii) Small changes in perceptual settings: the distance of the stimuli from the center of the 

visual display was smaller in the second experiment. The visual stimuli were displayed 

one degree less towards the right and left hemifield. (5° compared to 6° in the first 

experiment). Since hand images were less peripheral, encoding could have switched to a 

more advantageous visual strategy. Another difference between experiments 1 and 2 is 

the position of the participants’ hand. In the second experiment, the hands were palm 

down whereas in the first one these were matching the posture of the hands in the display 

by being palm up. These modifications may well explain the differences in the visual 

engagement, as portrayed by the differential vCDA, across the EEG experiments.  

In consistency to the plasticity of perceptual and memory systems, as well as the effect of 

small modifications across paradigms, percepts are likely to be encoded depending on 
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previous sensory associations, top-down processes, as well as specific task-demands. 

For instance, Gao et al. (2014) showed engagement of motor cortices during WM for 

biological motion (i.e. actions in form of points of light display) and how later verbal 

encoding of these stimuli prevented motor cortices from participating in WM encoding. In 

another study, Tessari and Rumiati (2004) showed that encoding of meaningless and 

meaningful actions relies on distinct mnemonic routes. They prompted participants to use 

one or the other route by manipulating the order of presentation and proportion of the 

stimuli to be remembered, showing that when trials of meaningless and meaningful 

actions were mixed, memory performance reflected the expected performance for that 

system that would allow it to accomplishing both tasks. More recent studies further 

emphasize the close relationship between visual systems and more frontal regions. Wurm 

and Lingnau (2015) showed that visual regions such as inferior parietal and occipito-

temporal cortex can be decoded for abstract levels of actions while premotor cortex is for 

concrete levels of actions (i.e., specific kinematics). Overall, WM seems supported by a 

distributed and flexible network of brain regions (Christophel et al., 2017). 

 

6.4.4. Contralateral processing of visually perceived and lateralised body 
stimuli 

The previous EEG experiments showed an effect of memory load in the hand stimulus 

conditions over the contralateral somatosensory and motor cortices. This is indicated by 

the significant interaction of Hemisphere X Memory load. Such results suggest that right 

hands, displayed on the right hemifield were encoded in the left hemisphere, and left 

hands shown on the left hemifield were in the right hemisphere. In the last behavioural 

study, we investigated this by conducting three behavioural versions of the previous EEG 

studies. The results of these three experiments suggest an overall processing of the hand 

images (i.e., an absence of contralateral processing). This goes in coherence with Smyth 

and Pendleton (1988), but does not support our previous experiments and other evidence 
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for a more somatotopic and contralateral processing of visually perceived hands (Kalénine 

et al., 2010; Ortigue et al., 2010).  

It is somewhat possible that the contralateral effects observed in our EEG data were 

partially driven by the manipulation of the data. We averaged data from contralateral and 

ipsilateral activity under the assumption that contralateral activity from trials cuing to the 

right containing right hands and trials cuing to the left containing left hands possessed 

similar brain activity (and vice versa for ipsilateral activity). To explore this issue, 

contralateral and ipsilateral activity needs to be teased apart. This implies the design of 

further experiments with enough trials for each of the aforementioned experimental 

conditions.  
 

 

6.5.  Overall limitations and further developments 

While the present PhD work sheds some light on several research questions, it also open 

new challenges, possibilities, and questions that require further exploration. In the 

discussion of each individual chapter I detailed some of the potential and specific 

limitations of the corresponding study (namely, the problematic interpretation of sustained 

activity, the lack of information in our data about specific mnemonic content, the 

measurement of RT and trade-off effects in the behavioural study, and the inherent 

problems of data interpretation in subtractive methods/paradigms). In the following section 

I comment on more general aspects. Here I revisit limitations that concern the overall work 

of this thesis, as well as offering new ways to overcome these.  

6.5.1.  Alternative measures of WM processing  

The studies included in this thesis include measures of WM that are related to the 

participants’ ability to discern signal from noise data (i.e., signal detection theory; d’). We 

used these measurements to make sure that stimuli and loads were matched across 

conditions (body vs. non-body-related). Other studies in the WM field have used different 
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parameters, indexes, and formulae, as well as greater memory load. For instance, the 

studies that inspired the work presented in this thesis used up to 10 visual stimuli and 

measured K’ to measure WM capacity (Vogel et al., 2004). By including additional 

memory load it is possible to conduct further analysis linking participants’ behavioural 

performance and their corresponding brain activity. Precisely, the CDA has been usually 

studied as neural marker of WM, reflecting a correlation between participants’ memory 

capacity and the concomitant increasing brain amplitude. The current work did not intend 

to explore WM capacity for bodies and actions and the EEG and behavioural studies did 

not include experimental conditions with greater loads than 2 and 3. Therefore, in the 

context of the present experimental work, it is certainly difficult to fully understand the 

modulation of brain activity by memory load over body-related cortices.  

6.5.1.1. Estimates of K’ – memory capacity 

Further work needs to include greater memory loads, the calculation of memory capacity 

(K’), and analyses of the correlation between behavioural and electrophysiological data; in 

this regards, several theoretical and practical aspects need to be considered. To start 

with, memory capacity has been classically framed in discrete-slots memory models, 

which conceptualise WM as a limited number of slots (i.e., available workspace) (Cowan, 

2001). Researchers theorise on the variable number of slots that are used to retain stimuli 

to-be-remembered in WM and significant progress has been made by examining how 

different manipulations reduce the availability of workspace in WM, that is the memory 

capacity of the system.  WM capacity have been usually measured by using the approach 

of Pashler (1988), as well as the derivate method of Cowan (2001). In brief, these 

approaches postulate that if observers can maintain in memory K items from an array of S 

items, then the changing item should be one of the items being maintained in memory on 

K/S trials, which should lead to a correct performance on K/S of the changing (i.e., 

different) trials. This approach takes into account the effects of guessing by considering hit 
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rate H = hits/(hits + misses) and the false-alarm rate F = false alarms/(false alarms + 

correct rejections). The expressed formulae is K = S X (H - F), where K is the WM 

capacity, S is memory load (i.e., the size of the array), H is the hit rate, and F is the false 

alarm rate. By using this approach, a memory capacity of two to three items (i.e., approx. 

K = 2.4) has been reported in behavioural studies examining WM for body-related 

information (Wood, 2007; Wood 2008; Wood, 2011; Smyth 1990; Smyth 1988, Gao, 

Bentin and Shen, 2014).  

In regards to the correct method to quantify memory capacity K’, it is necessary to 

consider the existence of two widely used types of delayed-to-sample match paradigms: 

single-probed recognition and whole-display recognition. These two versions do not only 

differ in the type of presentation but also in the type of information provided to the 

participant. Contrary to the whole-display recognition task, in the single-probed version the 

participants know which item may change and, consequently, the cognitive demands and 

the result of these two versions may differ. Precisely, Rouder et al. (2011) highlighted that 

effects of guessing in single-probed and whole-display recognition tasks need to be 

specifically corrected by following the approach of Pashler (1988) and the method of 

Cowan (2001), respectively. Contrasting their popular use, these methods are not rivals or 

substitutes; the type of experimental paradigm defines the choice. Secondly, relevant for 

the studies included in this thesis, the two methods of estimating memory capacity fail to 

assess small set sizes. In principle all participants have the capacity to retain one item in 

WM, however, computing the outlined methods results in K < 1 because these do not 

consider factors such as distractions and variability across conditions.  

In summary, the studies of the current work include a small set size and subsequent 

memory load. This affects the scope of our studies by limiting the quantity of information 

that can be extracted form the data. Further studies need to consider tasks with greater 

memory loads and the further examination of the workspace required for such tasks (i.e., 



	 209 

memory load). To this aim, the specific type of delayed-to-sample match paradigm needs 

to be taken into account.  

 

6.5.2. Alternative measures combining WM and body-related processing 

The EEG studies presented here provided us with evidence of differential brain activity, 

which was located across distinctive brain regions and concomitant to the number and 

type of stimuli to-be-remembered (body and non-body-related). In addition, the 

behavioural study provided us with further insight about the causal role of the brain areas 

examined in the electrophysiological studies. Nevertheless, there are two important 

limitations concatenating the three studies: i) the electrophysiological waveforms that we 

obtained (i.e., vCDA, vdCDA, vdN2cc, and MCPs) do not disclose whether or not such 

neural signatures are necessary to encode and maintain the stimuli in WM. Furthermore, 

ii) the behavioural studies that we designed to ascertain the previous point were 

unspecific. The motor suppression used here to interrupt the memory consolidation was 

performed continuously throughout the whole trial and without an exhaustive control of the 

speed and kinematics of the movement. Therefore, it is unclear when and how such motor 

suppression may have had an effect. It is here where additional techniques such as TMS 

and EMG recordings could support further research by disrupting/stimulating and 

recording the underlying sensorimotor process with exact and high temporal resolution 

6.5.2.1. TMS to observe causal evidence of neural processing 

Electromagnetic pulses (TMS) can be used to induce brief changes in the on-going 

processing of information. Then, if a brain area is responsible for a cognitive process, 

applying TMS at specific frequencies (e.g., 10Hz) can briefly disrupt the course of this 

process and a causal change in the outcome behaviour can be observed (e.g., lower 

memory performance/recall). Hence, it is possible to understand the role of different 

neural regions, shedding light on whether these are responsible for a cognitive process or 
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are just a mere correlation of other parallel activity. In the past, this approach has showed 

causal evidence for engagement of a distributed network of brain regions, including 

sensorimotor and more anterior motor cortices, during visual perception of human bodies 

(Urgesi et al. 2007; Avenanti et al. 2013). Conversely, applying TMS over visual areas 

only disrupted processing of bodies that were in non-canonical positions (i.e., inverted). 

This suggests that processing of bodies implies the embodiment of observed postures 

onto the observers’ sensorimotor representations. In the context of the present 

experiments, TMS would disrupt and modulate memory performance for body stimuli 

when stimulation occurs over SCx during late time windows (i.e., 145, 300, 600ms), while 

no disruption of memory performance (or less disruption) should occur when participants 

are asked to remember polygonal shapes.  

6.5.2.2. TMS uncovering motor processing - motor evoked-potentials (MEPs): 

TMS can be also applied over the central scalp sites, reaching more focally motor 

cortices. This brain stimulation elicits the spinal cord and peripheral muscles to produce a 

neuro-electrical signal known as motor-evoked potential (MEP), which can be recorded by 

placing electrodes on different muscles of the participants’ hand. In the past the strength 

and modulation of MEPs have been shown to reflect underlying motor processing when 

observing others’ bodies and actions (Fadiga et al. 1995; Van Schie et al. 2004). In the 

context of this experiment, this can be further used to probe mnemonic storage of body-

related information when participants hold in memory distinct number of visually depicted 

hand images.  

 

6.6. Summary and conclusion 

In summary, this thesis examined memory encoding of visual images conveying body-

related information. We compared the processing of these images with that for non-body-

related visual stimuli. Furthermore, we developed two novel paradigms that allowed us to 
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explore and dissociate the neural candidates for such mnemonic process. Specifically, we 

examined brain activity arising from visual and body-related cortical regions. By measuring 

VEPs, SEPs, and MCPs (i.e., visual, somatosensory, and motor-cortical potentials) in a 

WM task for body and non-body-related stimuli, we found distinct neural responses across 

the subsequent brain areas. The results showed that beyond visual brain areas, 

sensorimotor regions over posterior and more frontal cortices were modulated by memory 

load when holding in memory body-related stimuli (i.e., hand images). Then, we 

developed a behavioural study to further examine the aforementioned EEG results. We 

found evidence of a trade-off effect between a task-irrelevant motor suppression and the 

encoding of body-related images, which convey motor information. Nevertheless, the 

specific somatotopic organisation of the encoding and maintenance of the stimuli in WM 

needs further inspection. Altogether, we provide original evidence for a WM processing 

based on sensorimotor associations as a precursor of persistent neural activity. While 

previous studies have shown that visual information elicits modulation by memory load in 

posterior and visual cortices (Todd and Marois, 2004; Vogel and Machizawa, 2004; 

McCollough et al., 2007; Tsubomi et al., 2013) and tactile information in somatosensory 

cortices (Harris et al., 2002; Katus et al., 2015; Katus and Eimer, 2016) our results 

suggest a more dynamic process, in which the memoranda elicits prior sensory 

associations, involving neural recruitment over and above perceptual-input cortices.  
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6.7 Artistic Impressions VI 

 
 

 

 

              

 
 

Bodily Realm - The Reason Why (2015). Photography on board (42 x 

29cm) / AGP 
 

The human brain exists for two reasons: to generate complex body 

movements, and to process others’ movements. Both processes 

underpinned slightly similar neural mechanisms, which are 

fundamental to experience our dynamic social environment.  
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