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SIMPLE MODULES FOR THE PARTITION ALGEBRA AND

MONOTONE CONVERGENCE OF KRONECKER COEFFICIENTS

C. BOWMAN, M. DE VISSCHER, AND J. ENYANG

Abstract. We construct bases of the simple modules for partition algebras which are indexed

by paths in an alcove geometry. This allows us to give a concrete interpretation (and new

proof) of the monotone convergence property for Kronecker coefficients using stratifications of

the cell modules of the partition algebra.

Introduction

A fundamental problem in the representation theory of the symmetric group is to describe

the coefficients in the decomposition of the tensor product of two Specht modules. In [BDO15],

the first two authors and Orellana proposed a new approach to this problem by using the Schur–

Weyl duality between the symmetric group Sn and the partition algebra PQ
2k(n). The Kronecker

coefficients are interpreted as the decomposition multiplicities which arise in restricting a simple

PQ
2k(n)-module to a Young subalgebra.

The purpose of this article is to construct bases of the simple modules of partition algebras

and begin exploring the applications of these bases to the study of the Kronecker coefficients.

We proceed by embedding the branching graph of the partition algebra into a parabolic alcove

geometry of type Ar−1 ⊆ Ar and defining n-permissible paths in this graph via a certain geo-

metric condition. We construct a cellular basis indexed by paths in this graph with the following

remarkable property: The paths which are n-permissible form a basis for the simple module and

those that are n-impermissible form a basis for the radical of the cell module (see Theorem 6.6

and Corollary 6.7). In the case that the algebra is semisimple, the resulting bases are equal

to those constructed in [Eny13b]. That this geometry governs the representation theory of the

partition algebras is perhaps surprising, but could be explainable through interactions with the

associated parabolic category O, via Deligne’s tensor category (see [EA16] and [CO11]).

We further show that these bases precisely encode the decomposition of the restriction of a

simple module (along the tower of the partition algebras) into indecomposable direct summands

(see Theorem 5.6). As a corollary, we determine the branching rule of the partition algebra in

terms of the geometry.

Similar bases for a certain subset of the simple modules for the Brauer algebra (namely those

appearing in Schur–Weyl duality with the symplectic and orthogonal groups) were constructed

in terms of an alcove geometry of type Ar ⊆ Dr in [DVM17]. Graded bases (of a completely

different flavour) for all simple modules for the walled Brauer algebra were constructed in terms

of an alcove geometry of type Ar ×As ⊆ Ar+s in [BS12]. For semisimple partition and (walled)

Brauer algebras these questions were first answered in [EG17], where the authors construct

cellular bases which are compatible with induction and restriction.

We turn now to the Kronecker coefficients. One attempt to understand these coefficients is via

their limiting behaviour and stability properties. Murnaghan observed that as we increase the

length of the first row of the indexing partitions, the sequence of Kronecker coefficients obtained

stabilises. The limits of these sequences are known as the stable Kronecker coefficients. This

stability has been proven using invariant theory [Lit58], geometric methods [Bri93, Section 3.4],

and by means of vertex operators [Thi91, Section 3]. In [BDO15] we observed that increasing

the length of the first row of the indexing partitions corresponds to increasing the parameter n
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for the partition algebra. The stability is then naturally explained by the fact that the partition

algebra is semisimple for large values of n. Moreover, the stable Kronecker coefficients are

given a concrete representation theoretic interpretation as the decomposition multiplicities of

the restriction of a cell module for the partition algebra to a Young subalgebra.

The bases constructed in this paper allow us, for the first time, to study simple modules for

partition algebras directly. Correspondingly, many formulas [BDO15, BO05, BOR09, Ros01,

RW94] for computing Kronecker products proceed indirectly by (implicitly) expressing the Kro-

necker coefficient as a signed sum of stable Kronecker coefficients. Our main result gives explicit

bases for the simple modules; the action of the generators of the partition algebra on these

bases have been described in [Eny13b]. This gives a direct approach to studying the non-stable

Kronecker coefficients (which we will explore in further work) and for studying Murnaghan’s

stability phenomena (see below).

In [Bri93] Brion showed that, as we increase the length of the first row of the indexing

partitions, the sequence of Kronecker coefficients obtained is weakly increasing (in addition to

having a stable limit). This monotone convergence property has been proved using geometric

methods [Bri93] and by analysing integer points in polyhedra [Ste12]. In this paper, we provide

a new proof of this monotone convergence property which follows from the simple fact that any

n-permissible path is also (n+ 1)-permissible. This answers a question posed to us by Briand.

Notation: The focus of this paper is the representation theory of the partition algebra over

the field Q and with integer parameter n. However, we wish to use results from Enyang [Eny13b]

on the seminormal representations of the partition algebra with parameter z over the field Q(z).

We will relate these in the usual manner. Let z be a variable and define R := Z[z] with field of

fraction F := Q(z). Given n ∈ Z>0, we define On to be the localisation of R at the prime ideal

p = (z−n). Then we have natural embeddings R ↪→ On ↪→ F and projection map πn : On → Q
given by specialising to z = n, giving both F and Q the structure of On-bimodules. Throughout

the paper, all modules for the partition algebras (over R, F, On and Q) will be right modules.

The first three sections are not new but recall all the necessary background. In Section 1,

we define the partition algebra over R and recall its cellular structure. In particular, we recall

the properties of the Murphy-type basis constructed inductively on the branching graph by

Goodman and Enyang in [EG17]. In Section 2, we consider the representations of the partition

algebra over F. In particular, we recall some of the properties of the seminormal bases for

cell modules constructed by Enyang [Eny13b]. In Section 3–7 we work over the field Q. In

Section 3, we apply the general framework developed by Mathas to generalise the seminormal

bases to the partition algebra over Q with integer parameter. In Section 4 we introduce a

reflection geometry (for a fixed parameter n) on the branching graph for the partition algebra

and reinterpret results due to Martin on the representation theory of the partition algebra over

Q in this geometrical setting. We also develop properties of this geometry which will be needed

in the following sections. In Section 5 we study the restriction of cell and simple modules. This

will be used in Section 6 to describe a basis for the radical of cell modules, and hence also for

simple modules. The main results are Theorem 6.5 and Corollary 6.6. These are then used in

Section 7 to give a new proof of the monotone convergence of Kronecker coefficients.

Acknowledgements. The authors are grateful for the financial support received from the Royal

Commission for the Exhibition of 1851 and EPSRC grant EP/L01078X/1. The authors would

also like to thank Emmanuel Briand for some useful discussions.
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1. The Partition algebra: Branching graph and Cellularity

For a fixed k ∈ Z>0, a set-partition of S = {1, 2, . . . , k, 1̄, 2̄, . . . , k̄} is a collection of disjoint

subsets of S whose union is S. We call each subset of a set-partition a block. For example,

d = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}}

is a set-partition (for k = 8) with 5 blocks.

A set-partition of S can be represented by a partition diagram consisting of a frame with

k distinguished points on the northern and southern boundaries, which we call vertices. We

number the southern vertices from left to right by 1, 2, . . . , k and the northern vertices similarly

by 1̄, 2̄, . . . , k̄ and connect two vertices by a path if they belong to the same block. Note that

such a diagram is not uniquely defined, two diagrams representing the set-partition d above are

given in Figure 1.
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Figure 1. Two representatives of the set-partition d.

Let z be a variable and set R = Z[z]. We define the partition algebra PR2k(z) to be the set

of R-linear combinations of set-partitions equipped with a product defined as follows. Given

two partition diagrams x and y, consider the concatenation of x above y, where we identify

the southern vertices of x with the northern vertices of y. If there are t connected components

consisting only of middle vertices, then the product xy is set equal to zt times the diagram

with the middle components removed. Extending this by linearity defines the multiplication on

PR2k(z).

We let PR2k−1(z) denote the subspace of PR2k(z) with basis given by all set-partitions such that

k and k belong to the same block. The subspace PR2k−1(z) is closed under the multiplication

and therefore is a subalgebra of PR2k(z). We also view PR2k(z) as a subalgebra of PR2k+1(z) by

adding to each diagram an additional block consisting of {2k+ 1, 2k + 1}. So we obtain a tower

of algebras

PR0 (z) ⊂ PR1 (z) ⊂ . . . ⊂ PRk−1(z) ⊂ PRk (z) ⊂ . . .

and we can define restriction functors reskk−1 from the category of PRk (z)-modules to the category

of PRk−1(z)-modules.

There is an anti-isomorphism ∗ on PRk (z) given by flipping a partition diagram through its

horizontal axis.

The representation theory of the partition algebra can be described in terms of a directed

graph, called the branching graph, with vertices given by partitions (to be distinguished from

the set-partitions considered earlier).

Let l denote a non-negative integer. A partition of l, denoted λ ` l, is a weakly decreasing

sequence λ = (λ1, λ2, . . . ) of non-negative integers such that
∑

i>1 λi = l. We denote by ∅ the

unique partition of 0. If λ is a partition, we will also write |λ| =
∑

i>1 λi. With a partition, λ,

is associated its Young diagram, which is the set of nodes

[λ] =
{

(i, j) ∈ Z2
>0 | j 6 λi

}
.

3



Given a node α = (i, j) ∈ [λ] specified by i, j > 1, we say the node has content j − i and write

c(α) = j − i. The diagram [λ] is frequently represented as an array of boxes with λi boxes on

the i-th row. For example, if λ = (3, 2), then

[λ] = .

We will identify the partition λ with its Young diagram and write λ in place of [λ]. We write

λ ⊆ µ when [λ] ⊆ [µ]. Let λ be a partition. A node (i, j) is an addable node of λ if (i, j) 6∈ λ
and µ = λ∪ {(i, j)} is a partition. We also refer to (i, j) as a removable node of µ. We let A(λ)

and R(λ) respectively denote the set of addable nodes and removable nodes of λ.

The branching graph, Y, for the partition algebra is defined as follows. We take the vertex

set ∪k>0Yk where

Yk = {(λ, k) | λ ` l 6 bk/2c}.
We call Yk the set of vertices on level k.

For (µ, k− 1) ∈ Yk−1 and (λ, k) ∈ Yk we have an edge (µ, k− 1)→ (λ, k) if and only if either

λ = µ, or k is even and λ = µ ∪ {α} for some α ∈ A(µ), or k is odd and λ = µ \ {α} for some

α ∈ R(µ).

The first few levels of Y are given in Figure 2 where, to simplify the picture, we have displayed

the levels on the left hand side and the corresponding partitions on each level.

∅

1

0

2

3

4

∅

∅ (1)

∅ (1)

∅ (1) (2) (12)

Figure 2. The branching graph of the partition algebra up to level 4.

Definition 1.1. For k ∈ Z>0, we denote by Stdk the set of all paths on the branching graph Y
starting at (∅, 0) and ending at a vertex on level k. For (λ, k) ∈ Yk we denote by Stdk(λ) the

subset of Stdk consisting of all paths ending at (λ, k). If t ∈ Stdk(λ) we write it as a sequence

of vertices

t = (t(0), t(1), t(2), . . . , t(k − 1), t(k))

where t(0) = (∅, 0) and t(k) = (λ, k). To simplify notation we will sometimes identify t(k) =

(λ, k) with λ.

For 0 6 r 6 k and t ∈ Stdk we define t↓r ∈ Stdr, the truncation of t to level r, given by

t↓r = (t(0), t(1), . . . , t(r)).

Definition 1.2. If λ and µ are partitions, we write λ D µ if either |λ| < |µ|, or |λ| = |µ| and
r∑
i=1

λi >
r∑
i=1

µi for all r > 1.
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We write λ � µ if λ D µ and λ 6= µ. For (λ, k), (µ, k) ∈ Yk, we write (λ, k) B (µ, k) whenever

λ B µ.

We extend this to a reverse lexicographic ordering on the paths in Stdk(λ) as follows. Given

s, t ∈ Stdk(λ), we write s � t if there exists 0 6 r < k such that s(i) = t(i) for all r < i 6 k and

s(r) � t(r). We write s < t if we have either s � t or s = t.

Working inductively along the edges of the branching graph, Goodman and Enyang con-

structed in [EG17, Section 6] an element mst ∈ PRk (z) associated to any pair of paths s, t ∈
Stdk(λ). They showed that the set of all such elements form a cellular basis for PRk (z). More

precisely we have the following result.

Theorem 1.3. [EG17, Proposition 6.26 and Theorem 6.30] The algebra PRk (z) is free as an

R-module with basis

{mst | s, t ∈ Stdk(λ), (λ, k) ∈ Yk} .
Moreover, if s, t ∈ Stdk(λ), for some (λ, k) ∈ Yk, and a ∈ PRk (z) then there exist scalars

rtu(a) ∈ R, which do not depend on s, such that

msta =
∑

u∈Stdk(λ)

rtu(a)msu (mod PRB(λ,k)(z)), (1)

where PRB(λ,k)(z) is the R-submodule of PRk (z) spanned by

{mqr | µ B λ and q, r ∈ Stdk(µ)}.
Finally, we have that (mst)

∗ = mts, for all (λ, k) ∈ Yk and all s, t ∈ Stdk(λ). Therefore the

algebra PRk (z) is cellular, in the sense of [GL96].

Definition 1.4. Given (λ, k) ∈ Yk, the cell module ∆z
k,R(λ) is the right PRk (z)-module with

linear basis
{
mt | t ∈ Stdk(λ)

}
and right PRk (z)-action

mta =
∑

u∈Stdk(λ)

rtu(a)mu, for a ∈ PRk (z),

where the sum is over all u ∈ Stdk(λ) and the rtu(a) ∈ R are determined by equation (1).

These cellular basis are compatible with the restriction from PRk (z) to PRk−1(z). More precisely

we have the following result.

Proposition 1.5 ([EG17, Lemma 3.12]). Let (λ, k) ∈ Yk and assume that (ρ, k − 1) → (λ, k)

is an edge in Y. Define N�ρ ⊆ NQρ ⊆ ∆z
k,R(λ) by

NQρ = R−span{mt ∈ ∆z
k,R(λ) | t(k − 1) Q (ρ, k − 1)} and

N�ρ = R−span{mt ∈ ∆z
k,R(λ) | t(k − 1) � (ρ, k − 1)}.

Then N�ρ and NQρ are PRk−1(z)-submodules of reskk−1∆
z
k,R(λ) and the linear map

NQρ/N�ρ → ∆z
k−1,R(ρ) given by

mt +N�ρ 7→ mt↓k−1
, for t ∈ Stdk(λ) with t(k − 1) = (ρ, k − 1)

is an isomorphism of PRk−1(z)-modules.

The cellular structure on PRk (z) gives a bilinear form on the cell modules defined as follows.

Definition 1.6. Let (λ, k) ∈ Yk and s, t ∈ Stdk(λ).

We define a map 〈 , 〉 : ∆z
k,R(λ)×∆z

k,R(λ)→ R by

msumvt = 〈mu,mv〉mst mod PRB(λ,k)(z), for u, v ∈ Stdk(λ).

Then 〈 , 〉 is a symmetric bilinear form on ∆z
k,R(λ) which is independent of the choice of s, t ∈

Stdk(λ).
5



2. Jucys–Murphy elements and seminormal basis

In [HR05, Section 3] a family of so-called Jucys–Murphy elements L1, . . . , Lk for PRk (z) is

defined diagrammatically. A recursion for these Jucys–Murphy elements, analogous to the

recursion for the Jucys–Murphy elements in the group algebra of the symmetric group, is given

in [Eny13a, Section 3] or [Eny13b, Proposition 2.6]. We will not need the explicit definition of

these elements here but will recall their properties.

Proposition 2.1 (See [Eny13b, Proposition 3.15]). Assume that (λ, k) ∈ Yk. If t ∈ Stdk(λ)

and 1 6 i 6 k, then

mtLi = ct(i)mt +
∑
s�t

rsms

for scalars rs, ct(i) ∈ R. Moreover, if we write t = (t(0), t(1), t(2), . . . , t(k)), the coefficients

ct(i) ∈ R are given as follows. If i is even, we have

ct(i) =

{
z − |t(i)|, if t(i) = t(i− 1),

c(α), if t(i) = t(i− 1) ∪ {α},

and, if i is odd, we have

ct(i) =

{
|t(i)|, if t(i) = t(i− 1),

z − c(α), if t(i) = t(i− 1) \ {α}.

Therefore the elements L1, . . . , Lk form a family of Jucys–Murphy elements as in [Mat08].

Definition 2.2. Given t ∈ Stdk(λ), we let c(t) denote the content vector (ct(1), ct(2), . . . , ct(k)).

Example 2.3. For k = 6, we let t ∈ Std6(∅) and s ∈ Std6((3)) denote the paths

(∅,∅, (1), (1), (1),∅,∅) (∅,∅, (1), (1), (2), (2), (3))

respectively. These paths have content vectors c(t) and c(s) given by

(0, 0, 1, z − 1, z, z) (0, 0, 1, 1, 2, 2)

respectively.

A straightforward induction on k shows that this family of Jucys–Murphy elements satisfies

the separation condition (over R) given in [Mat08, Definition 2.8], which in essence says that

the content vectors distinguish between the elements of Stdk. This allows us to develop further

the representation theory of the partition algebra over the field of fractions F = Q(z).

We write

P F
k (z) = PRk (z)⊗R F.

To simplify notation, we will freely write Li,mt, and so on, in place of Li⊗ 1F, mt⊗ 1F, and so

on. If (λ, k) ∈ Yk, we define

∆z
k,F(λ) = ∆z

k,R(λ)⊗R F.

The algebra P F
k (z) is semisimple and the set {∆z

k,F(λ) : (λ, k) ∈ Yk} form a complete set of

isomorphism classes of simple P F
k (z)-modules.

Following [Mat08], Enyang constructed in [Eny13b] seminormal bases for the partition algebra

over the field F which diagonalise the action of the Jucys–Murphy elements and are orthogonal

with respect to the bilinear form 〈 , 〉. We recall the construction of these bases and some of

their properties.
6



Definition 2.4. Let (λ, k) ∈ Yk and t ∈ Stdk(λ). Define

Ft =
∏

16i6k

∏
u∈Stdk(ρ)
cu(i) 6=ct(i)

Li − cu(i)

ct(i)− cu(i)
,

where the product is taken over all (ρ, k) ∈ Yk. We also define

ft = mtFt.

Proposition 2.5 (See [Eny13b, Proposition 4.2]). Let k ∈ Z>0 and (λ, k) ∈ Yk.

(1) If t ∈ Stdk(λ), then we have that

ft = mt +
∑

s∈Stdk(λ)
s�t

rsms,

for scalars rs ∈ F.

(2) The set {ft | t ∈ Stdk(λ)} is an F-basis for ∆z
k,F(λ).

(3) We have ftLi = ct(i)ft for all t ∈ Stdk(λ) and i = 1, . . . , k.

(4) We have FsFt = δstFs and fsFt = δstfs for all s, t ∈ Stdk.

(5) We have 〈fs, ft〉 = δst〈fs, fs〉 for all s, t ∈ Stdk(λ).

Enyang described explicitly the action of the generators of the partition algebra on the semi-

normal basis {ft | t ∈ Stdk(λ)} for ∆z
k,F(λ). Enyang also gave an explicit inductive formula for

the value of the bilinear form on the seminormal basis elements. Here we only recall what we

will need later in the paper.

Proposition 2.6 (See [Eny13b, Proposition 4.12]). Let (λ, k) ∈ Yk and t ∈ Stdk(λ) with t(k−
1) = η. Write s = t↓k−1. Then we have

〈ft, ft〉 = γ(η,k−1)→(λ,k)〈fs, fs〉

where γ(η,k−1)→(λ,k) satisfies the following:

(1) If k is odd and λ = η, or k is even and λ = η ∪ {α} then γ(η,k−1)→(λ,k) ∈ Q.

(2) If k is odd and λ = η \ {α} then

γ(η,k−1)→(λ,k) =
(z − c(α)− |λ| − 1)

(z − c(α)− |λ|)
r

for some r ∈ Q.

(3) If k is even and λ = η then

γ(η,k−1)→(λ,k) =

∏
β∈A(λ)(z − c(β)− |λ|)∏
β∈R(λ)(z − c(β)− |λ|)

r′

for some r′ ∈ Q.

We will also make use of the following result

Proposition 2.7 (See [Mat08, Theorem 3.16]). For each (λ, k) ∈ Yk define

F(λ,k) =
∑

t∈Stdk(λ)

Ft.

Then the set {F(λ,k) | (λ, k) ∈ Yk} forms a complete set of pairwise orthogonal primitive central

idempotents in P F
k (z) and we have

∆z
k,F(µ)F(λ,k) = δλµ∆z

k,F(µ)

for all (µ, k) ∈ Yk.
7



3. Generalising seminormal basis to the non-separated case

Throughout this section we fix n ∈ Z>0.
We wish to study the representations of the partition algebra over the field Q and with

parameter n. We will relate these to the representations over R and F in the usual manner.

Given n ∈ Z>0, we define On to be the localisation of R at the prime ideal p = (z−n). Then we

have a natural embedding R ↪→ On ↪→ F and projection map πn : On → Q given by specialising

to z = n. We can consider the On- and Q-algebras

POnk (z) = PRk (z)⊗R On and PQ
k (n) = POnk (z)⊗On Q,

and their cell modules

∆z
k,On(λ) = ∆z

k,R(λ)⊗R On and ∆n
k,Q(λ) = ∆z

k,On(λ)⊗On Q

for (λ, k) ∈ Yk. To simplify notation, we will freely write Li and mt instead of Li ⊗ 1Q and

mt ⊗ 1Q.

Over the field Q the family of Jucys–Murphy elements Li, 1 6 i 6 k no longer satisfies the

separation property, and so the algebra PQ
k (n) is not semisimple in general.

The radical, rad ∆n
k,Q(λ), of the form 〈 , 〉 on the cell modules ∆n

k,Q(λ) is non-trivial in general.

We can define

Lnk,Q(λ) = ∆n
k,Q(λ)/ rad ∆n

k,Q(λ).

Then, by the general theory of cellular algebra developed by Graham and Lehrer in [GL96] we

have that

{Lnk,Q(λ) 6= 0 | (λ, k) ∈ Yk}

form a complete set of pairwise non-isomorphic simple PQ
k (n)-modules (see [GL96, Theorem

3.4]). Moreover, we have that if Lnk,Q(µ) is a composition factor of ∆n
k,Q(λ) then µ P λ (see

[GL96, Proposition 3.6]). Given a non-zero Lnk,Q(λ), we fix a projective cover Pnk,Q(λ).

Any algebra A decomposes into a direct sum of indecomposable two-sided ideals, called the

blocks of the algebra A. It is a general fact that every simple A-module is a composition factor

of a unique block of A. Moreover, if A is a cellular algebra, then it is known that all composition

factors of a cell module belong to the same block of A (see [GL96, 3.9.8]).

The partition algebra P F
k (z) studied in Section 2 is semisimple and so its block decomposition

is simply given by the two-sided ideals generated by the primitive central idempotents given in

Proposition 2.7.

Mathas developed a general framework in [Mat08, Section 4] which (partially) generalises the

theory of seminormal bases and associated central idempotents to the non-separated case. We

now recall his results in the case of the partition algebra PQ
k (n).

Definition 3.1 (See [Mat08, Definition 4.1]).

(1) For t ∈ Stdk, we define rn,t(i) = πn(ct(i)) and the n-residue vector, rn(t), to be the

vector (rn,t(1), rn,t(2), . . . , rn,t(k)), that is, the specialisation of the content vector c(t)
at z = n.

(2) For s, t ∈ Stdk we say that t and s are in the same n-residue class and write t ≈n s if

rn(t) = rn(s).
(3) For (λ, k) ∈ Yk and t ∈ Stdk(λ) we write

[t]n = {s ∈ Stdk | s ≈n t} and [t](λ,k)n = {s ∈ Stdk(λ) | s ≈n t}.

(4) Let (λ, k), (µ, k) ∈ Yk. We write (λ, k) ∼n (µ, k) if there exists t0, t1, . . . , tr ∈ Stdk with

t0 ∈ Stdk(λ) and tr ∈ Stdk(µ) such that tj ≈n tj+1 for all j = 0, 1, . . . , r − 1. In this

case we say that (λ, k) and (µ, k) are in the same n-linkage class.
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Example 3.2. Let n = 2 and k = 6. We have two paths

t = (∅,∅, (1), (1), (1),∅,∅) s = (∅,∅, (1), (1), (2), (2), (3))

whose content vectors are given in Example 2.3. Specialising to z = 2 we have that r2(t) =

r2(s) = (0, 0, 1, 1, 2, 2) and so t ≈2 s and (∅, 6) ∼2 ((3), 6).

Definition 3.3. Let (λ, k) ∈ Yk and t ∈ Stdk(λ). We define

F[t]n =
∑
s∈[t]n

Fs ∈ P F
k (z) and f̃t,n = mtF[t]n ∈ ∆z

k,F(λ).

Now, we note that inverting the equations given in Proposition 2.5(1) we have

mt = ft +
∑

w∈Stdk(λ)
w�t

awfw = mtFt +
∑

w∈Stdk(λ)
w�t

awmwFw (2)

Note that all terms on the righthand-side of the final equality are labelled by paths in Stdk(λ).

Therefore, multiplying equation (2) on the right by Fs, for some s ∈ Stdk, and applying Propo-

sition 2.5(4), we deduce that

mtFs = 0 for s 6∈ Stdk(λ). (3)

Multiplying equation (2) on the right by F[t]n we deduce that

f̃t,n = mtF[t]n = (mtFt +
∑

w∈Stdk(λ)
w�t

awmwFw)F[t]n = ft +
∑

w∈Stdk(λ)
w�t
w≈nt

awfw ∈ ∆z
k,F(λ). (4)

The next lemma shows that in fact these elements are defined over the ring On.

Lemma 3.4 (See [Mat08, Lemma 4.2]). Let (λ, k) ∈ Yk and t ∈ Stdk(λ). Then we have

F[t]n ∈ P
On
k (z) and f̃t,n ∈ ∆z

k,On(λ).

We can therefore make the following definition.

Definition 3.5. For each (λ, k) ∈ Yk and t ∈ Stdk(λ) we define

gt = f̃t,n ⊗ 1Q ∈ ∆n
k,Q(λ).

Proposition 3.6 (See [Mat08, Proposition 4.9]). Let (λ, k) ∈ Yk. The set {gt : t ∈ Stdk(λ)}
form a basis for ∆n

k,Q(λ). Moreover, for s, t ∈ Stdk(λ) we have

〈gs, gt〉 =

{
〈ms, gt〉 if s ≈n t
0 otherwise

Definition 3.7. For each (λ, k) ∈ Yk, define [(λ, k)]n = {s ∈ Stdk | s ≈n t for some t ∈ Stdk(λ)}
and set

F[(λ,k)]n =
∑

s∈[(λ,k)]n

Fs.

Then F[(λ,k)]n ∈ P
On
k (z) and so we can define

G(λ,k) = F[(λ,k)]n ⊗ 1Q ∈ PQ
k (n).

Note that if (µ, k) ∼n (λ, k) then G(λ,k) = G(µ,k).

Let Yk/ ∼n be a set of representatives for the n-linkage classes on Yk.
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Proposition 3.8 (See [Mat08, Corollary 4.6 and 4.7]). The set {G(λ,k) | (λ, k) ∈ Yk/ ∼n} form

a complete set of pairwise orthogonal central idempotents in PQ
k (n) and we have

∆n
k,Q(µ)G(λ,k) =

{
∆n
k,Q(µ) if (µ, k) ∼n (λ, k)

0 otherwise

In particular, if ∆n
k,Q(λ) and ∆n

k,Q(µ) are in the same block then (λ, k) ∼n (µ, k).

We will see in the next section that in fact the G(λ,k)’s are primitive central idempotents;

equivalently, that ∆n
k,Q(λ) and ∆n

k,Q(µ) are in the same block if and only if (λ, k) ∼n (µ, k).

4. Residue classes, Reflection geometry and blocks

In this section we give a geometrical interpretation of the n-linkage classes on Yk and the

n-residue classes on Stdk. The main idea was already introduced in [BDK15] but here we take

it further by looking at the geometry on the whole branching graph Y (rather than just on one

level Yk).
Let {ε0, ε1, ε2, . . . } be a set of formal symbols and set

Z∞ =
∏
i>0

Zεi

We will write each x =
∑

i>0 xiεi ∈ Z∞ as a vector x = (x0, x1, x2, . . .). We take the infinite

symmetric group S∞ to be the group generated by the transpositions si,j (for i, j > 0 and

i 6= j) where each si,j acts on Z∞ by permuting the i-th and j-th coordinates of the vectors.

Define the graph Z with vertex set given by the disjoint union tk>0Zk where Zk = Z∞ for

all k > 0 and

(1) if k is even and x ∈ Zk, an edge x→ y if y ∈ Zk+1 with y = x− εi for some i > 0,

(2) if k is odd and x ∈ Zk, an edge x→ y if y ∈ Zk+1 with y = x+ εi for some i > 0.

For any partition λ = (λ1, λ2, λ3, . . .) define

λ[n] = (n− |λ|, λ1, λ2, λ3, . . .) ∈ Z∞

(adding infinitely many zeros after the last part of λ). Define also ρ ∈ Z∞ by

ρ = (0,−1,−2,−3, . . .).

We now define an embedding ϕn of the graph Y into Z. For each k > 0 and each (λ, k) ∈ Yk
we define ϕ[n](λ, k) ∈ Zk as follows,

ϕn(λ, k) =

{
λ[n] + ρ if k is even,

λ[n−1] + ρ if k is odd.
(5)

Note that ϕn(Y) is then the full subgraph of Z on the vertex set ϕn(tk>0Yk).

Example 4.1. Let n = 2 and λ ∈ Y6. The coordinates ϕ2(λ, 2k) ∈ Z2k for k > 0 are as follows,

ϕ2(∅) =(2,−1,−2,−3, . . . ) ϕ2((1)) =(1, 0,−2,−3, . . . ) ϕ2((2)) =(0, 1,−2,−3, . . . )

ϕ2((1
2)) = (0, 0,−1,−3, . . . ) ϕ2((3)) =(−1, 2,−2,−3, . . . ) ϕ2((2, 1)) =(−1, 1,−1,−3, . . . )

ϕ2((1
3)) =(−1, 0,−1,−2, . . . ).

and ϕ2(λ, 2k + 1) ∈ Z2k+1 for k > 0 is as follows,

ϕ2(∅) =(1,−1,−2,−3, . . . ) ϕ2((1)) =(0, 0,−2,−3, . . . ) ϕ2((2)) =(−1, 1,−2,−3, . . . )

ϕ2((1
2)) = (−1, 0,−1,−3, . . . ) ϕ2((3)) =(−2, 2,−2,−3, . . . ) ϕ2((2, 1)) =(−2, 1,−1,−3, . . . )

ϕ2((1
3)) =(−2, 0,−1,−2, . . . ).

Remark 4.2. Note that if x = (x0, x1, x2, x3, . . .) is a vertex in ϕn(Y) then we have

x1 > x2 > x3 > . . .

Moreover we either have x0 > x1, or x0 = xj for some j > 1, or xj−1 > x0 > xj for some j > 1.
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The composition factors of the cell modules ∆n
k,Q(λ) for all (λ, k) ∈ Yk were originally de-

scribed (for k even and n 6= 0) by Martin in [Mar96] in terms of n-pairs of partitions. This

result was then extended to include the case n = 0 by Doran and Wales in [DW00]. We now

reformulate it in terms of reflections on the graph Z. This reformulation had already been

observed in [BDK15] in a slightly different form.

Definition 4.3. Let λ, µ be partitions. We say that (λ, µ) from an n-pair if λ ⊂ µ and µ differs

from λ by a single row of boxes the last of which having content n− |λ|.

Lemma 4.4. Let (λ, k), (µ, k) ∈ Yk with |λ| < |µ|. Then we have ϕn(µ, k) = s0,j(ϕn(λ, k)) for

some j > 1 if and only if either k is even and (λ, µ) form an n-pair, or k is odd and (λ, µ) form

an (n− 1)-pair.

Proof. (See also [BDK15, proof of Theorem 6.4]). We prove the result for k even. The case

k odd is identical. Suppose that (λ, µ) form an n-pair. Then by definition, there exists some

j > 1 such that

µ = (λ1, λ2, . . . , λj−1, µj , λj+1, . . .)

with µj − j = n− |λ|. So we have

ϕn(µ, k) = (n− |µ|, λ1 − 1, . . . , λj−1 − (j − 1), n− |λ|, λj+1 − (j + 1), . . .).

Now, as |µ| = |λ|+ (µj − λj) and µj = n− |λ|+ j we have

n− |µ| = n− (|λ|+ (µj − λj))
= n− |λ| − (n− |λ|+ j) + λj

= λj − j.
Thus we have ϕn(µ, k) = s0,j(ϕn(λ, k)) as required.

Conversely, suppose that ϕn(µ, k) = s0,j(ϕn(λ, k)) for some j > 1. Then λ and µ only differ

in row j and the last box in row j of µ has content µj−j = n−|λ|. So (λ, µ) form an n-pair. �

Using Lemma 4.4, we can now reformulate Martin’s (and Doran and Wales’) result about

the blocks and decomposition numbers for the partition algebra and extend it to include the

case when k is odd. We recall that for an arbitrary cellular algebra, every cell module belongs

to a unique block [GL96, (3.9.8)] and that every simple module appears as the head of some

cell module [GL96, (3.4)]. Therefore to determine the PQ
k (n)-blocks, it is enough to determine

when two cell modules belong to the same PQ
k (n)-block.

Theorem 4.5. Two cell modules ∆n
k,Q(λ(a), k) and ∆n

k,Q(λ(b), k) belong to the same PQ
k (n)-block

if and only if (λ(a), k) and (λ(b), k) belong to a sequence of the form

(λ(1), k), (λ(2), k), . . . , (λ(r), k)

for some 1 6 a, b 6 r satisfying |λ(1)| < |λ(2)| < . . . < |λ(r)| and ϕn(λ(j+1), k) = s0,j(ϕn(λ(j), k))

for all j = 1, . . . , r − 1.

Moreover, the cell module ∆n
k,Q(λ(j)) for j = 1, . . . , r−1, has two composition factors, namely

Lnk,Q(λ(j)) as its head and Lnk,Q(λ(j+1)) as its socle, and ∆n
k,Q(λ(r)) = Lnk,Q(λ(r)) is simple, except

for the case when k is even, n = 0, and λ = ∅ where we have ∆0
k,Q(∅) ∼= L0

k,Q((1)).

Remark 4.6. Note that if ϕn(λ, k) = s0,j(ϕn(λ, k)) for some j > 1, then (λ, k) is alone in its

block and ∆n
k,Q(λ) = Pnk,Q(λ) = Lnk,Q(λ).

Proof. For the case k is even, this is just a reformulation of [Mar96, Proposition 9] (and [DW00]

for the case n = 0). The case k is odd and n > 1 is obtained using the Morita equivalence

between PQ
2k+1(n) and PQ

2k(n − 1) given in [Mar00, Section 3] (see also [BDK15, Theorem 5.2]

for a detailed proof). This equivalence is obtained using an idempotent ξ ∈ PQ
2k+1(n). We have
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ξPQ
2k+1(n)ξ ∼= PQ

2k(n − 1) and under this isomorphism we have ξ∆n
2k+1,Q(λ) ∼= ∆n−1

2k,Q(λ) for all

(λ, 2k + 1) ∈ Y2k+1.

Now when n = 1, we claim that 〈 , 〉 on any ∆1
2k+1,Q(λ) for λ ∈ Y2k+1 is non-degenerate. Let

λ ∈ Y2k+1 and write λ = (λ1, λ2, . . . , λ`) for λ1 > λ2 > . . . > λ` > 0. Let t denote the path

t = (−ε0,+ε1, . . . ,−ε0,+ε1︸ ︷︷ ︸
2λ1

, . . . ,−ε0,+ε`, . . . ,−ε0,+ε`︸ ︷︷ ︸
2λ`

,−ε0,+ε`+1,−ε`+1, . . . ,+ε`+1,−ε`+1︸ ︷︷ ︸
2(k−|λ|)

).

One can verify (using the definitions in [EG17, Section 6.5]) that

mt =

7̄

7̄|λ| k+1

×

 ∑
g∈Sλ1×···×Sλ`

g


and therefore 〈mt,mt 〉 = λ1! . . . λ`! which is non-zero in Q. In particular, the form 〈 , 〉 on

∆1
2k+1,Q(∅) is non-degenerate and so L1

2k+1,Q(∅) 6= 0. This shows that the above Morita equiv-

alence cannot hold in this case (as the number of simple modules of these two algebras does not

coincide). However, we still have an idempotent functor from the category of PQ
2k+1(1)-modules

to the category of ξPQ
2k+1(1)ξ ∼= PQ

2k(0)-modules taking cell modules to the corresponding cell

modules (by an identical argument to that used in the proof of [BDK15, Theorem 5.2]). Given

(λ, 2k + 1) ∈ Y2k+1 and (µ, 2k + 1) ∈ Y2k+1 \ {∅} we have that

[∆1
2k+1,Q((λ, 2k + 1)) : L1

2k+1,Q((µ, 2k + 1))] = [ξ∆1
2k+1,Q((λ, 2k + 1)) : ξL1

2k+1,Q((µ, 2k + 1))]

= [∆0
2k,Q((λ, 2k)) : L0

2k,Q((µ, 2k))]

by [Gre07, (6.6b)Lemma]. Finally, we observe that (∅, 2k + 1) is maximal in the dominance

order and so ∆1
2k+1,Q(∅) is the unique cell-module in which L1

2k+1,Q(∅) appears as a composition

factor (and it appears with multiplicity equal to 1 in this module, by cellularity). Therefore the

decomposition numbers are as claimed. The structure of the cell modules follows immediately

(because there are only two composition factors and each cell module has a simple head). �

Motivated by Theorem 4.5 and Remark 4.2, we make the following definition.

Definition 4.7. Let x = (x0, x1, x2, . . .) be a vertex in Z. We say that x is

(1) on the j-th wall if x0 = xj for j > 1;

(2) in the first alcove if x0 > x1 > x2 > x3 > . . .

(3) in the j-th alcove, for some j > 1, if x1 > x2 > . . . > xj−1 > x0 > xj > xj+1 > . . .

The following lemma follows directly from Remark 4.2.

Lemma 4.8. Let x be a vertex in ϕn(Y). Then there exists a unique j > 1 such that either x

is in the j-th alcove or x is on the j-th wall.

Lemma 4.9. Let (λ, k), (µ, k) ∈ Yk with |λ| < |µ|. If ϕn(λ, k) = s0,j(ϕn(µ, k)) for some j > 1

then ϕn(λ, k) is in the j-th alcove and ϕn(µ, k) is in the (j + 1)-th alcove.

Proof. Write x = ϕn(λ, k) and y = ϕn(µ, k). We have x = (x0, x1, x2, . . . , xj−1, xj , xj+1, . . .)

and y = (xj , x1, x2, . . . , xj−1, x0, xj+1, . . .). By assumption, |λ| < |µ| and xi = yi for all i > 1

except for i = j; therefore we must have xj < yj . Thus we have

xj−1 > x0 = yj > xj

and x is in the j-th alcove. And we also have

yj = x0 > y0 = xj > yj+1 = xj+1

and y is in the (j + 1)-th alcove. �
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Remark 4.10. Any non-semisimple PQ
k (n)-block is given by a subset of Yk of the form

{(λ(j), k) ∈ Yk | (ϕn(λ(j), k)) = s0,j . . . s0,2s0,1(ϕn(λ, k)) for some ϕn(λ, k) in the first alcove}.

In particular, each (λ(j), k) belongs to the jth alcove for j > 1.

Proposition 4.11. Let x, y be vertices in ϕn(Y). Assume that x is in the j-th alcove and that

y → x is an edge in the graph Z. Then we are in precisely one of the following cases:

(1) y is in the j-th alcove.

(2) y is on the j-th wall and either y = x+ εj or y = x− ε0.

(3) y is on the (j − 1)-th wall and either y = x+ ε0 or y = x− εj−1.

Proof. As y → x is an edge in Z we have that y = x ± εk for some k > 0. As x is in the j-th

alcove we have

x1 > x2 > . . . > xj−1 > x0 > xj > xj+1 > . . .

and so y satisfies

y1 > y2 > . . . > yj−1 > y0 > yj > yj+1 > . . .

This implies that either y is in the j-th alcove, or yj−1 = y0 (that is, y is on the (j − 1)-wall),

or yj = y0 (that is, y is on the j-th wall). Now we have yj−1 = y0 implies either y = x+ ε0 or

y = x− εj−1. Similarly we have yj = y0 implies either y = x− ε0 or y = x+ εj . �

Lemma 4.12. Let t = (t(0), t(1), . . . , t(k)) ∈ Stdk and let ϕn(t) = (x(0), x(1), . . . , x(k)) be its

image in Z. Then the n-residue vector rn(t) is given by

rn,t(i) =

{
x
(i)
j if x(i) = x(i−1) + εj for some j > 0,

n− 1− x(i)j if x(i) = x(i−1) − εj for some j > 0.

Proof. This follows directly from the definition of the embedding ϕn given in (5) and Definition

3.1(1). �

Example 4.13. Let n = 2. For k = 6, we let t ∈ Std6(∅) and s ∈ Std6((3)) denote the paths

(∅,∅, (1), (1), (1),∅,∅) (∅,∅, (1), (1), (2), (2), (3))

respectively from Example 2.3. We have that ϕ2(s) is given by the following sequence of points

(2,−1,−2) (1,−1,−2) (1, 0,−2) (0, 0,−2) (0, 1,−2) (−1, 1,−2) (−1, 2,−2)

and ϕ2(t) is given by the following sequence of points

(2,−1,−2) (1,−1,−2) (1, 0,−2) (0, 0,−2) (1, 0,−2) (1,−1,−2) (2,−1,−2)

(Here we have only depicted the first three coordinates (x0, x1, x2) as the coordinates x3, x4, . . .

are fixed.) These paths both have the same 2-residue vector: r2(s) = r2(t) = (0, 0, 1, 1, 2, 2).

This can be calculated as in Lemma 4.12 above or by setting z = 2 in the two distinct content

vectors given in Example 2.3.

Proposition 4.14. Let s, t ∈ Stdk. Then we have s ≈n t if and only if s and t agree everywhere

except possibly on some intervals [a, b] for 0 < a < b 6 k and for each such interval [a, b] there

exists some j > 1 satisfying the following conditions.

(1) We have that t(a) = s(a) and ϕn(t(a)) is on the j-th wall. Moreover, if b 6= k then we also

have that t(b) = s(b) and ϕn(t(b)) is on the j-th wall.

(2) Either all ϕn(t(i)) for a < i < b are in the j-th alcove and all ϕn(s(i)) for a < i < b are in

the (j + 1)-th alcove, or vice versa.

(3) ϕn(t(i)) = s0,j(ϕn(s(i)) for all a < i < b.
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Proof. We write

ϕn(t) = (x(0), x(1), x(2), . . . , x(k)) ϕn(s) = (y(0), y(1), y(2), . . . , y(k)).

Note that (2) follows from (3) using Lemma 4.9. It is enough to show that

(I) if x(i) = y(i) and x(i+1) 6= y(i+1) then x(i) is on the j-th wall for some j > 1 and y(i+1) =

s0,w(x(i+1));

(II) if x(i) 6= y(i) and y(i) = s0,j(x
(i)) then y(i+1) = s0,j(x

(i+1)).

First we fix some notation. For 0 6 i 6 k, we let ui (respectively vi) denote the row in which

the coordinates of ϕn(t(i)) and ϕn(t(i− 1)) (respectively of ϕn(s(i)) and ϕn(s(i− 1))) differ, in

other words

x(i) = x(i−1) ± εui y(i) = y(i−1) ± εvi .
It follows from Lemma 4.12 that t ≈n s if and only if

x(i)ui = y(i)vi

for all 1 6 i 6 k. We start by proving (I). Assume that x(i) = y(i) and x(i+1) 6= y(i+1) and so

ui 6= vi. As t ≈n s we must have

x(i+1)
ui = x(i)ui ± 1 = y(i+1)

vi = x(i)vi ± 1

and so x
(i)
ui = x

(i)
vi . Thus we must have that one of ui or vi is equal to 0. Assume without loss

of generality that vi = 0. Then we have

x(i)ui = x
(i)
0

and so x(i) is on the ui-th wall. To simplify the notation we set u = ui. We have

y(i+1)
m = x(i+1)

m

for all m except m = 0 and m = u and we have

y
(i+1)
0 = x(i+1)

u .

We also have

y(i+1)
u = x(i)u = x

(i)
0 = x

(i+1)
0 .

Thus we have

y(i+1) = s0,u(x(i+1))

as required.

Now we turn to (II). Assume that x(i) 6= y(i) and y(i) = s0,j(x
(i)). As t ≈n s we must have

x
(i+1)
ui = y

(i+1)
vi and so x

(i)
ui = y

(i)
vi . As y(i) = s0,j(x

(i)) we must have that one of ui or vi is equal

to 0 and the other is equal to j. Without loss of generality we assume that ui = 0 and vi = j.

Then we have

x(i+1) = x(i) ± ε0 y(i+1) = y(i) ± εj .
Thus we have

x(i+1) = (x
(i)
0 ± 1, x

(i)
1 , x

(i)
2 , . . . , x

(i)
j , . . .) y(i+1) = (x

(i)
j , x

(i)
1 , x

(i)
2 , . . . , x

(i)
0 ± 1, . . .).

So we have y(i+1) = s0,j(x
(i+1)) as required. �

Example 4.15. Let k = 6 and n = 2, the subgraph of the first 6 levels of ϕ2(Y) intersected

with Z{ε0, ε1, ε2} is depicted in Figure 3. We have used partition notation in Figure 3. The

coordinate notation obtained by applying ϕ2 is given in Example 4.1. The dashed lines on the

diagram depict the 1-st and 2-nd walls; the vertices are drawn in such a manner that the points

obtained by reflection through a wall matches the points one obtains by reflecting in the dashed

lines of the diagram.
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Figure 3. For k = 6 and n = 2, the subgraph of the first 6 levels of ϕ2(Y)

intersected with Z{ε0, ε1, ε2}.

Example 4.16. Let s and t be as in Examples 2.3 and 4.13. We saw in Example 4.13 that

s ≈2 t. It is clear from Figure 3 that s and t are obtained from one another by a single reflection

through the 1st wall.

It follows from Proposition 4.14 that if (λ, k) ∼n (µ, k) with λ 6= µ then ϕn(λ, k) and ϕn(µ, k)

belong to distinct alcoves (see Remark 4.10). Suppose that ϕn(λ, k) is in the a-th alcove and

ϕn(µ, k) is in the b-th alcove for some a, b > 1. We can assume that b > a. Moreover we have

ϕn(µ, k) = s0,b−1 . . . s0,a+1s0,a(ϕn(λ, k)).

But then using Theorem 4.5 we know that ∆n
k,Q(λ) and ∆n

k,Q(µ) belong to the same block. Thus

we can strengthen Proposition 3.8 as follows.

Theorem 4.17. Let (λ, k), (µ, k) ∈ Yk. Then we have that ∆n
k,Q(λ) and ∆n

k,Q(µ) belong to the

same block if and only if (λ, k) ∼n (µ, k). In particular, we have that

{G(λ,k) : (λ, k) ∈ Yk/ ∼n}

form a complete set of primitive pairwise orthogonal central idempotents in PQ
k (n).

5. Restricting cell and simple modules

We have seen in Proposition 1.5 that the restriction of any cell module has a filtration by

cell modules and that the factors appearing are determined by the branching graph. In this

section, we fix n ∈ Z>0 and study in more details the restriction of all cell modules ∆n
k,Q(λ) and

all simple modules Lnk,Q(λ).
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Theorem 5.1. Let (λ, k) ∈ Yk with ϕn(λ, k) in an alcove. Then we have

reskk−1∆
n
k,Q(λ) =

⊕
(η,k−1)→(λ,k)

∆n
k,Q(λ)G(η,k−1)

where the direct sum is taken over all edges (η, k − 1)→ (λ, k) in Y. Moreover,

∆n
k,Q(λ)G(η,k−1) = Q−span{gt : t ∈ Stdk(λ) with t(k − 1) = η}

and we have an isomorphism

∆n
k,Q(λ)G(η,k−1) → ∆n

k−1,Q(η) : gt 7→ gt↓k−1
.

In order to prove this theorem we will need the following four lemmas.

Lemma 5.2. Let t ∈ Stdk and s ∈ Stdk−1. Then we have

FtFs =

{
Ft if t↓k−1 = s
0 otherwise.

Proof. It follows from the definition of Ft given in Defintion 2.4 that Ft = KFt↓k−1
for some

K ∈ P F
k (z). Now the result follows from the fact that the Fs’s for s ∈ Stdk−1 are orthogonal

idempotents. �

Lemma 5.3. Let (λ, k) ∈ Yk with ϕn(λ, k) in an alcove. If t, s ∈ Stdk(λ) satisfy

t(k − 1) 6= s(k − 1) then t 6≈n s.

Proof. We argue by contrapositive. By Proposition 4.14, if t(k) = s(k) = λ and s ≈n t, then

either

• ϕn(t(k)) belongs to the jth wall and ϕn(s(k − 1)) = ϕn(t(k − 1)) or ϕn(s(k − 1)) =

s0,j(ϕn(t(k − 1)));

• ϕn(t(k)) belongs to an alcove and ϕn(s(k − 1)) = ϕn(t(k − 1)).

The result follows by our assumption that ϕn(t(k)) belongs to an alcove. �

Lemma 5.4. Let (λ, k) ∈ Yk with ϕn(λ, k) in an alcove. Let (η, k − 1) → (λ, k) be an edge in

Y and let t ∈ Stdk(λ). Then we have

F[t]nF[(η,k−1)]n =

{
F[t]n if t(k − 1) = η

0 otherwise.

Proof. This follows from Lemmas 5.2 and 5.3. �

Lemma 5.5. Let (λ, k) ∈ Yk with ϕn(λ, k) in an alcove and let t ∈ Stdk(λ). Then we have

mtF[t]n = mtF[t↓k−1]n
.

Proof. Multiplying equation (2) on the right by F[t↓k−1]n
, we obtain

mtF[t↓k−1]n
= mt

∑
v∈Stdk−1
v≈nt↓k−1

Fv = (mtFt +
∑

w∈Stdk(λ)

awmwFw)
∑

v∈Stdk−1
v≈nt↓k−1

Fv. (6)

Using Lemma 5.2, for any w ∈ Stdk(λ) and v ∈ Stdk−1 we have FwFv = 0 unless v = w↓k−1 in

which case we have FwFv = FwFw = Fw. Therefore∑
v∈Stdk−1
v≈nt↓k−1

Fv

∑
s∈Stdk

s↓k−1≈nt↓k−1

Fs =
∑

s∈Stdk
s↓k−1≈nt↓k−1

Fs.

Therefore if we multiply on the right of equation (6) by this sum we obtain

mtF[t↓k−1]n
= mtF[t↓k−1]n

(
∑

s∈Stdk
s↓k−1≈nt↓k−1

Fs) = mt(
∑

s∈Stdk
s↓k−1≈nt↓k−1

Fs) = mt(
∑

s∈Stdk(λ)
s↓k−1≈nt↓k−1

Fs)
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where the final equality follows from equation (3). Note also that as ϕn(λ, k) is in an alcove we

have that for any s, t ∈ Stdk(λ) we have s ≈n t if and only if s↓k−1 ≈n t↓k−1. Thus we get

mtF[t↓k−1]n
= mt(

∑
s∈Stdk(λ)

s≈nt

Fs) = mt(
∑

s∈Stdk
s≈nt

Fs) = mtF[t]n

where the penultimate equality follows from equation (3). �

Proof of Theorem 5.1. We have ∆n
k,Q(λ) = Q−span{gt | t ∈ Stdk(λ)} where gt = mtF[t]n ⊗ 1.

Now by definition we have G(η,k−1) = F[(η,k−1)]n ⊗ 1. So using Lemma 5.4 we obtain

∆n
k,Q(λ)G(η,k−1) = Q−span{gt : t ∈ Stdk(λ) with t(k − 1) = η}

and

reskk−1∆
n
k,Q(λ) = ∆n

k,Q(λ)
(∑

(η,k−1)∈Yk−1/∼n G(η,k−1)

)
=
⊕

(η,k−1)→(λ,k) ∆n
k,Q(λ)G(η,k−1),

where the first equality holds by Theorem 4.17 and the second equality holds by equation (3).

Now, using Proposition 1.5, for each edge (η, k − 1)→ (λ, k) in Y we have a chain of POnk−1(z)-

submodules

N
�(η,k−1)
On ⊆ NQ(η,k−1)

On ⊆ ∆z
k,On(λ)

where

N
Q(η,k−1)
On = On−span{mt : t(k − 1) Q η} = On−span{f̃t,n : t(k − 1) Q η},

(where the second equality follows from equation (2) and Definition 1.2) and similarly

N
�(η,k−1)
On = On−span{mt : t(k − 1) � η} = On−span{f̃t,n : t(k − 1) � η}.

By Proposition 1.5, we have an isomorphism

N
Q(η,k−1)
On /N

�(η,k−1)
On → ∆z

k−1,On(η) : mt 7→ mt↓k−1
.

Now using Lemma 5.5 we have f̃t,n = mtF[t]n = mtF[t↓k−1]n
, and under the above isomorphism

we have

f̃t,n 7→ mt↓k−1
F[t↓k−1]n

= f̃t↓k−1
.

Specialising to z = n we get the isomorphism

∆n
k,Q(λ)G(η,k−1) → ∆n

k−1,Q(η) : gt 7→ gt↓k−1
,

as required. �

We now describe the restriction of simple modules in an alcove. This will be used in the next

section to construct bases for the radical of cell modules (and hence for the simple modules).

Theorem 5.6. Let (λ, k) ∈ Yk. If ϕn(λ, k) is in the j-th alcove then

reskk−1 L
n
k,Q(λ) ∼=

⊕
(µ,k−1)→(λ,k)

Lnk−1,Q(µ) (7)

where the sum is taken over all edges (µ, k − 1) → (λ, k) in Y such that ϕn(µ, k − 1) is either

in the j-th alcove or on the (j − 1)-th wall.

If ϕn(λ, k) lies on the j-th wall then

reskk−1 L
n
k,Q(λ) ∼=

⊕
(µ,k−1)→(λ,k)

Pnk−1,Q(µ)
⊕

(ν,k−1)→(λ,k)

Lnk−1,Q(ν) (8)

where the sum is taken over all edges (µ, k − 1)→ (λ, k) and (ν, k − 1)→ (λ, k) in Y such that

ϕn(µ, k − 1) is in the (j + 1)-th alcove and ϕn(ν, k − 1) lies on a wall.
17



For µ maximal, respectively non-maximal in its block, the submodule structure of Pnk−1,Q(µ)

is given by the following strong Alperin diagrams

Lnk−1,Q(µ)

Lnk−1,Q(µ−)

Lnk−1,Q(µ)

Lnk−1,Q(µ)

Lnk−1,Q(µ−)Lnk−1,Q(µ+)

Lnk−1,Q(µ)

respectively; here ϕn(µ+, k − 1) = s0,j+1(ϕn(µ, k − 1)) and ϕn(µ−, k − 1) = s0,j(ϕn(µ, k − 1)).

Note that if k is even, n = 0 and λ = ∅ then both sides of the equation in (8) are zero and

so the result trivially holds in this case.

In order to prove this theorem we will use the following lemma.

Lemma 5.7. Let (λ, k) ∈ Yk with ϕn(λ, k) in the j-th alcove. Suppose that there exists an edge

(η, k − 1)→ (λ, k) in Y with ϕn(η, k − 1) on the j-th wall. Then either

(1) k is even, λ = η and we have (µ, k) := (η + εj , k) ∈ Yk, or

(2) k is odd, λ = η − εj and we have (µ, k) := (η, k) ∈ Yk.

In both cases there is an edge (η, k − 1)→ (µ, k) in Y and ϕn(µ, k) = s0,j(ϕn(λ, k)).

Proof. Suppose that (η, k−1)→ (λ, k) is an edge in Y and ϕn(η, k−1) is on the j-th wall. Then

using Proposition 4.11 we have either k is even and ϕn(η, k− 1) = ϕn(λ, k)− ε0 or k is odd and

ϕn(η, k − 1) = ϕn(λ, k) + εj . In the first case we define (µ, k) = (η + εj , k) ∈ Yk (note that µ is

a partition as ϕn(λ, k) is in the j-th alcove). In the second case we define (µ, k) = (η, k) ∈ Yk.
In both cases we have an edge (η, k− 1)→ (µ, k) and ϕn(µ, k) = s0,j(ϕn(λ, k)) as required. �

Proof of Theorem 5.6. If ϕn(λ, k) lies on a wall, then ∆n
k,Q(λ) = Lnk,Q(λ) = Pnk,Q(λ) and this

module is self-dual. Restriction maps a self dual projective module to a direct sum of self-

dual projectives. The characters of the indecomposable projective modules can be calculated

using Theorem 4.5 and Proposition 1.5; this and self-duality determine the structure of the

indecomposable projective modules.

We now assume that ϕn(λ, k) lies in the j-th alcove. We prove this result by downward

induction on the degree of partitions in each block. First consider the case where (λ, k) has

maximal degree in its block. Using Theorems 4.5 and 5.1 we have

reskk−1L
n
k,Q(λ) = reskk−1∆

n
k,Q(λ) ∼=

⊕
(η,k−1)→(λ,k)

∆n
k−1,Q(η)

where the sum is over all edges (η, k − 1) → (λ, k) in Y. Now using Proposition 4.11 and

Lemma 5.7, for any such edge we have that either ϕn(η, k − 1) is in the j-th alcove or on the

(j − 1)-th wall. Note also that as Lnk,Q(λ) is self dual, so is its restriction and so we have

∆n
k−1,Q(η) = Lnk−1,Q(η) for any edge (η, k − 1)→ (λ, k). So we are done in this case.

Now assume that (λ, k) is not maximal in its block. Then using Theorem 4.5 we have

(µ, k) ∈ Yk with ϕn(µ, k) = s0,j(ϕn(λ, k)) in the (j + 1)-th alcove, |µ| > |λ| and an exact

sequence

0→ reskk−1L
n
k,Q(µ)→ reskk−1∆

n
k,Q(λ)→ reskk−1L

n
k,Q(λ)→ 0.

Using Theorem 5.1 and induction, this short exact sequence becomes

0→
⊕

(θ,k−1)→(µ,k)

Lnk−1,Q(θ)→
⊕

(η,k−1)→(λ,k)

∆n
k−1,Q(η)→ reskk−1L

n
k,Q(λ)→ 0. (9)
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Note that for all (θ, k− 1) appearing in (9) we have that ϕn(θ, k− 1) is either in the (j + 1)-th

alcove or on the j-th wall, and for all (η, k − 1) appearing in (9) we have that ϕn(η, k − 1) is

either in the j-th alcove, on the j-th wall or on the (j − 1)-th wall.

As Lnk,Q(λ) is self-dual, so is its restriction and so we have a surjection⊕
(η,k−1)→(λ,k)

Lnk−1,Q(η)→ reskk−1L
n
k,Q(λ)

where the (η, k − 1) appearing in the direct sum are as in (9). Now, any Lnk−1,Q(η) with

ϕn(η, k − 1) in the j-th alcove, or on the (j − 1)-th wall does not appear on the left hand side

of the short exact sequence given in (9) and so must appear in reskk−1L
n
k,Q(λ).

Finally, for any Lnk,Q(η) with ϕn(η, k−1) on the j-th wall we have an edge (η, k−1)→ (µ, k)

in Y by Lemma 5.7, and thus Lnk−1,Q(η) appears on the left hand side of (9). If the composition

factors of
⊕

(η,k−1)→(λ,k) ∆n
k−1,Q(η) are multiplicity free, then such a simple module cannot

appear in reskk−1L
n
k,Q(λ). It remains to show that the composition factors are multiplicity-free,

as claimed. If (η(1), k − 1), (η(2), k − 1) → (λ, k), then (η(1), k − 1) 6≈n (η(2), k − 1) by our

assumption that ϕn(λ, k) belongs to an alcove (see also the proof of Lemma 5.3). Therefore the

composition factors of
⊕

(η,k−1)→(λ,k) ∆n
k−1,Q(η) are multiplicity free by Theorem 4.5. �

6. A basis for the radical of a cell module

Throughout this section we continue to fix n ∈ Z>0. The aim of this section is to provide

an explicit basis for the radical of the bilinear form on any cell module ∆n
k,Q(λ) for PQ

k (n), and

hence also for any simple module.

Definition 6.1. Let ϕn(λ, k) denote a point in the j-th alcove for some j > 2. We say that

t = (t(0), t(1), . . . , t(k)) is a path which last enters the j-th alcove from the (j − 1)-th wall if

there exists 0 6 r < k with ϕn(t(i)) in the jth alcove for all r < i 6 k and ϕn(t(r)) lies on the

(j − 1)th wall.

Using Proposition 4.11 we can make the following definition.

Definition 6.2. Let (λ, k) ∈ Y. Given t ∈ Stdk(λ), we say that t is n-permissible if the

following conditions hold.

(1) if ϕn(λ, k) in the first alcove, then ϕn(t(i)) belongs to the first alcove for all 0 6 i 6 k.

(2) if ϕn(λ, k) in the j-th alcove for some j > 2, then t is a path which last enters the j-th alcove

from the (j − 1)-th wall.

We denote by Stdnk(λ) the set of all n-permissible t ∈ Stdk(λ).

In particular, if ϕn(λ, k) is on a wall then any t ∈ Stdk(λ) is n-permissible and so Stdnk(λ) =

Stdk(λ). If ϕn(λ, k) belongs to the first alcove, then a path t ∈ Stdk(λ) is permissible if and

only if t(i) belongs to the first alcove for all 0 6 i 6 k.

Example 6.3. Let n = 2 and k = 6 as in Figure 3. We have paths

s = (∅,∅, (1),∅, (1),∅,∅) t = (∅,∅, (1), (1), (1),∅,∅) u = (∅,∅, (1), (1), (2), (2), (3))

The paths s and u are 2-permissible but the path t is not. This is because ϕ2(t(3)) belongs to

the 1-st wall.

Lemma 6.4. Let (λ, k) ∈ Yk. We have that dimQ(Lnk,Q(λ)) = |Stdnk(λ)|.

Proof. This follows from Theorem 5.6 by induction on k. Note that for k even, n = 0 and λ = ∅
we have that Stdnk(λ) = ∅ and Lnk,Q(λ) = 0 so the result also holds in this case. �

Example 6.5. Let n = 2 and k = 6 as in Figure 3. We have that

dimQ(L2
6,Q(∅)) = 4 dimQ(L2

6,Q((1))) = 4.
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The next result lifts the dimension result given in Lemma 6.4 to an explicit basis.

Theorem 6.6. Let (λ, k) ∈ Yk. Then the set {gt | t ∈ Stdk(λ) \ Stdnk(λ)} forms a Q-basis for

rad ∆n
k,Q(λ).

Proof. If k is even, n = 0 and λ = ∅ then rad ∆0
k,Q(∅) = ∆0

k,Q(∅) and Std0
k(∅) = ∅ so we are

done. Now, if ϕn(λ, k) is on a wall then by Remark 4.6 we have that ∆n
k,Q(λ) is simple and so

rad ∆n
k,Q(λ) = 0. As we have Stdnk(λ) = Stdk(λ) in this case, we are also done.

Now suppose that Lnk,Q(λ) 6= 0 and ϕn(λ, k) is in an alcove, say the j-th alcove. We proceed

by induction on k. If k = 1 then λ = ∅. We have that ∆n
1,Q(∅) is one-dimensional, hence

simple and so rad ∆n
1,Q(∅) = 0. As we have Std1(∅) = Stdn1 (∅) the result holds in this case.

Assume that the result holds for k − 1 and prove it for k. Using Theorem 5.1 we have an

isomorphism

reskk−1∆
n
k,Q(λ)→

⊕
(η,k−1)→(λ,k)

∆n
k−1,Q(η) : gt 7→ gt↓k−1

(10)

for any t ∈ Stdk(λ), where the direct sum is over all edges (η, k − 1) → (λ, k) in Y. So the

pre-image of
⊕

(η,k−1)→(λ,k) rad ∆n
k−1,Q(η) under the isomorphism given in (10) gives precisely

the (unique) smallest submodule of reskk−1∆
n
k,Q(λ) with semisimple quotient. Now, note that

reskk−1∆
n
k,Q(λ)/reskk−1 rad ∆n

k,Q(λ) = reskk−1
(
∆n
k,Q(λ)/ rad ∆n

k,Q(λ)
)

= reskk−1L
n
k,Q(λ)

which is semisimple using Theorem 5.6. Thus, under the isomorphism given in (10), the pre-

image of
⊕

(η,k−1)→(λ,k) rad ∆n
k−1,Q(η) must be contained in reskk−1 rad ∆n

k,Q(λ).

Using Proposition 4.11, we know that for any edge (η, k − 1) → (λ, k) in Y we have that

either ϕn(η, k−1) is in the j-th alcove, on the (j−1)-th wall or on the j-th wall. If ϕn(η, k−1)

is in the j-th alcove, then by induction and using the isomorphism given in (10) we can deduce

that any gt with t ∈ Stdk(λ) \ Stdnk(λ) and t(k − 1) = (η, k − 1) must be in rad ∆n
k,Q(λ).

We claim that any gt with t↓k−1 ∈ Stdk−1(η) and ϕn(η, k − 1) on the j-th wall also belongs

to rad ∆n
k(λ). Then, using Lemma 6.4 the result will follow by a dimension count.

Now, if ϕn(η, k − 1) is on the j-th wall, then ∆n
k−1,Q(η) is simple, so it is enough to show

that one gt for t↓k−1 ∈ Stdk−1(η) is in the radical of ∆n
k,Q(λ). Suppose |µ| = m, then we choose

t to be any path satisfying t(0) = t(1) = . . . = t(k − 2m) = ∅ (the rest of the path can be

taken by adding boxes along the rows of η at every even step and with the last step going

from (η, k − 1) to (λ, k)). It is easy to see that for such a path t we have [t]
(λ,k)
n = {t} and

[t↓k−1]
(η,k−1)
n = {t↓k−1}. Thus we have

f̃t,n = ft ∈ POnk (z) and gt = ft ⊗ 1 ∈ PQ
k (n),

and similarly f̃t↓k−1,n = ft↓k−1
∈ POnk−1(z) and gt↓k−1

= ft↓k−1
⊗1 ∈ PQ

k−1(n). Now by Proposition

3.6 we have that 〈gt, gu〉 = 0 for all u ∈ Stdk(λ) with u 6= t (as t is alone in its residue class). It

remains to show that 〈gt, gt〉 = 0. Now we have

〈gt, gt〉 = 〈ft, ft〉 ⊗ 1

Let s = t↓k−1 ∈ Stdk−1(η). Then we have

〈ft, ft〉 = γ(η,k−1)→(λ,k)〈fs, fs〉 (11)

where the coefficient γ(η,k−1)→(λ,k) is given in Proposition 2.6. Now as ϕn(λ, k) is in the j-th

alcove and ϕn(η, k − 1) is on the j-th wall we know, from Lemma 5.7 and Proposition 2.6 that

either

(I) k is even, λ = η, η + εj is a partition and

γ(η,k−1)→(λ,k) =

∏
β∈A(λ)(z − c(β)− |λ|)∏
β∈R(λ)(z − c(β)− |λ|)

r′ (12)
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for some r′ ∈ Q, or

(II) k is odd and λ = η − εj and

γ(η,k−1)→(λ,k) =
(z − c(α)− |λ| − 1)

(z − c(α)− |λ|)
r

where α denotes the box removed from row j of η to get λ and r ∈ Q.

Now as ϕn(η, k − 1) is on the j-th wall we have

ηj − j =

{
n− 1− |η| if k is even

n− |η| if k is odd

In case (I) the partition λ = η has an addable box β in row j with content

c(β) = ηj + 1− j = n− |λ|.

Thus we get from (11) that 〈gt, gt〉 = 0. (Note that there is no possible cancellation in (12) as

the content of removable boxes and addable boxes of a given partition are all distinct.) In case

(II) the content of α is given by

c(α) = ηj − j = n− |η| = n− |λ| − 1.

Thus we get from (11) that 〈gt, gt〉 = 0 in this case as well. �

Corollary 6.7. Let (λ, k) ∈ Yk. Then the set {gt + rad ∆n
k,Q(λ) | t ∈ Stdnk(λ)} form a basis

Lnk,Q(λ). Moreover, if ϕn(λ, k) is in the first alcove, then for all t ∈ Stdnk(λ) we have f̃t,n = ft
and gt = ft ⊗ 1.

Proof. The first part follows directly from Theorem 6.6. The second part follows from the fact

that when ϕn(λ, k) is in the first alcove we have t(i) in the first alcove for any t ∈ Stdnk(λ) and

0 6 i 6 k. This implies that any such t is alone in its residue class. Hence f̃t,n = f in this

case. �

7. Monotone Convergence of Kronecker coefficients

In this final section, we apply Theorem 6.6 to the study of the Kronecker coefficients. These

coefficients appear in the classical representation theory of the symmetric group. Denote by

Sn the symmetric group of degree n. The simple QSn-modules, known as the Specht modules,

are indexed by partitions of n. We will use a slightly unusual notation for these partitions; the

reason for this will become clear in what follows.

For a partition λ = (λ1, λ2, λ3, . . .) and n ∈ Z>0 we define

λ[n] = (n− |λ|, λ1, λ2, λ3, . . .).

Note that for n sufficiently large λ[n] is a partition of n. Moreover, any partition of n can be

written as λ[n] for some partition λ.

For each partition λ[n] we denote by S(λ[n]) the corresponding Specht module for QSn. Now

for λ[n], µ[n], ν[n] partitions of n, the Kronecker coefficient g
ν[n]
λ[n],µ[n]

is defined by

g
ν[n]
λ[n],µ[n]

= dimQ HomQSn(S(λ[n])⊗ S(µ[n]),S(ν[n])).

Murnaghan discovered an amazing limiting phenomenon satisfied by the Kronecker coeffi-

cients; as we increase the length of the first row of the indexing partitions the sequence of

Kronecker coefficients stabilises (see [Mur38, Bri93, Val99] for various proofs). This is illus-

trated in the following example.
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Example 7.1. We have the following decomposition of tensor products of Specht modules:

n = 2 S(12)⊗ S(12) = S(2)

n = 3 S(2, 1)⊗ S(2, 1) = S(3)⊕ S(2, 1)⊕ S(13)

n = 4 S(3, 1)⊗ S(3, 1) = S(4)⊕ S(3, 1)⊕ S(2, 12)⊕ S(22)

at which point the product stabilises, i.e. for all n > 4, we have

S(n− 1, 1)⊗ S(n− 1, 1) = S(n)⊕ S(n− 1, 1)⊕ S(n− 2, 12)⊕ S(n− 2, 2).

The limit of the sequence g
ν[n]
λ[n],µ[n]

as n increases are known as the stable (or reduced) Kronecker

coefficients and denoted by ḡνλ,µ. So for N sufficiently large we have

g
ν[N+n]

λ[N+n],µ[N+n]
= ḡνλ,µ for all n > 1.

This stability is rather startling from the point of view of the symmetric group. However,

in [BDO15], the Kronecker coefficients were given a new interpretation in the setting of the

partition algebra where this phenomenon becomes very natural. Using the Schur-Weyl duality

between the symmetric group and the partition algebra we obtain a new interpretation of the

Kronecker coefficients as follows. Let λ[n], µ[n], ν[n] be partitions of n with |λ| = r and |µ| = s

and write p = r + s. We write PQ
2r,2s(n) = PQ

2r(n) ⊗ PQ
2s(n) ⊆ PQ

2p(n) and write res2p2r,2s for the

restriction functor from PQ
2p(n)-modules to PQ

2r(n)⊗ PQ
2s(n)-modules. Then we have

g
ν[n]
λ[n],µ[n]

=

{
dimQ Hom

PQ
2r,2s(n)

(Ln2r,Q(λ)� Ln2s,Q(µ), res2p2r,2sL
n
2p,Q(ν)) if |ν| 6 p

0 otherwise
(13)

(see [BDO15, Section 3]).

Note that as |λ| = r and |µ| = s we have Ln2r,Q(λ) = ∆n
2r,Q(λ) and Ln2s,Q(µ) = ∆n

2s,Q(µ).

Now for sufficiently large values of n the partition algebra PQ
2p(n) is semisimple and Ln2p,Q(ν) =

∆n
2p,Q(ν) and so we have a new interpretation of the stable Kronecker coefficients as

ḡνλ,µ = dimQ Hom
PQ
2r,2s(n)

(∆n
2r,Q(λ)�∆n

2s,Q(µ), res2p2r,2s∆
n
2p,Q(ν))

for all n sufficiently large (see [BDO15, Corollary 3.2]).

Brion proved in [Bri93, Section 3.4, Corollary 1] that the sequence of Kronecker coefficients

g
ν[n]
λ[n],µ[n]

not only stabilises but is also monotonic. More precisely, he showed that

g
ν[n+1]

λ[n+1],µ[n+1]
> g

ν[n]
λ[n],µ[n]

Briand asked whether this monotonicity could also be explained in the context of the partition

algebra. In the rest of this section we will show that it does.

Using (13) we need to study simple modules for the partition algebra. We first make the

observation that we only need to consider simple modules labelled by partitions in the first

alcove. More precisely we have the following lemma.

Lemma 7.2. Let n, k ∈ Z>0 and let λ be a partition with |λ| 6 k. Then λ[n] is a partition if

and only if ϕn(λ, 2k) is in the first alcove.

Proof. We have that λ[n] is a partition if and only if n−|λ| > λ1. But this holds precisely when

n− |λ| > λ1 − 1 which is exactly the condition for ϕn(λ, 2k) to be in the first alcove. �

Lemma 7.3. Let (ν, k) ∈ Yk with ϕn(ν, k) in the first alcove. Then ϕn+1(ν, k) is also in the

first alcove. Moreover, if t ∈ Stdnk(ν) then t ∈ Stdn+1
k (ν).

Proof. We have ϕn(ν, k) in the first alcove if and only if{
n− |ν| > ν1 − 1 if k is even

n− 1− |ν| > ν1 − 1 if k is odd
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and ϕn+1(ν, k) in the first alcove when the same condition holds with n replaced by n+ 1. So

clearly we have that if ϕn(ν, k) is in the first alcove then so is ϕn+1(ν, k). Now t ∈ Stdnk(ν)

precisely when every ϕn(t(i)) for 0 6 i 6 k belongs to the first alcove. Hence if t ∈ Stdnk(ν)

then t ∈ Stdn+1
k (ν) as required. �

Lemma 7.4. Let (λ, k) ∈ Yk with ϕn(λ, k) in the first alcove and |λ| = bk/2c. Then we have

F[(λ,k)]n = F[(λ,k)]n+1
= F(λ,k).

Moreover, Lnk,Q(λ) (respectively Ln+1
k,Q (λ)) is alone in its block and we have

∆n
k,Q(λ) = Lnk,Q(λ) and ∆n+1

k,Q (λ) = Ln+1
k,Q (λ).

Proof. Let t ∈ Stdk(λ). As |λ| = bk/2c we have that every step in t is of the form ϕn(t(i)) =

ϕn(t(i − 1)) + εj for some j > 1 if i is even and ϕn(t(i)) = ϕn(t(i − 1)) − ε0 is i is odd (and

similarly for n + 1). As ϕn(λ, k) is in the first alcove, so is ϕn+1(λ, k), by Lemma 7.3. It

follows from Proposition 4.14 and Lemma 5.7 that [t]n = [t]n+1 = {t}. Note that this holds

for any t ∈ Stdk(λ) and so we get F[(λ,k)]n = F[(λ,k)]n+1
= F(λ,k) by definition. This implies

that the simple module Lnk,Q(λ) (respectively Ln+1
k,Q (λ)) is alone in its block and hence we get

∆n
k,Q(λ) = Lnk,Q(λ) (respectively ∆n+1

k,Q (λ) = Ln+1
k,Q (λ)) as required. �

Lemma 7.5. Let (ν, k) ∈ Yk. Then we have

F−span{f̃t,n | t ∈ Stdk(ν) \ Stdnk(ν)} = F−span{ft | t ∈ Stdk(ν) \ Stdnk(ν)}.

Proof. Recall from equation (4), that for any t ∈ Stdk(ν) we have

f̃t,n = ft +
∑
s�t
s≈nt

asfs (14)

where the sum is over s ∈ Stdk(ν). Now using Proposition 4.14, if s ≈n t then s(i) = t(i)
whenever ϕn(t(i)) is on a wall. It follows that t is n-permissible if and only if s is n-permissible.

Now the result follows from the fact that the change of basis given in (14) is unitriangular. �

Proposition 7.6. Let (ν, k) ∈ Yk with ϕn(ν, k) in the first alcove. Define On- and On+1-

modules

∆z,n
k,On(ν) = On−span{f̃t,n | t ∈ Stdk(ν) \ Stdnk(ν)},

∆z,n+1
k,On+1

(ν) = On+1−span{f̃t,n+1 | t ∈ Stdk(ν) \ Stdn+1
k (ν)}

and F-vector spaces ∆z,n
k,F(ν) = ∆z,n

k,On(ν)⊗On F and ∆z,n+1
k,F (ν) = ∆z,n+1

k,On+1
(ν)⊗On+1 F. Then we

have inclusions of F-vector spaces

∆z,n+1
k,F (ν) ⊆ ∆z,n

k,F(ν) ⊆ ∆z
k,F(ν).

Proof. This follows directly from Lemmas 7.3 and 7.5. �

Corollary 7.7. (see [Bri93, Section 3.4, Corollary 1]) Let λ[n], µ[n], ν[n] be partitions of n, then

g
ν[n]
λ[n],µ[n]

6 g
ν[n+1]

λ[n+1],µ[n+1]
.

Proof. Let r = |λ|, s = |µ| and p = r + s. We can assume that |ν| 6 p as otherwise g
ν[n]
λ[n],µ[n]

=

g
ν[n+1]

λ[n+1],µ[n+1]
= 0. Using Theorem 6.6 we have

∆z,n
2p,On(ν)⊗On Q = rad ∆n

2p,Q(ν) and ∆z,n+1
2p,On(ν)⊗On+1 Q = rad ∆n+1

2p,Q(ν).

Now consider 1λ,µ := F(λ,2r) ⊗ F(µ,2s) ∈ P F
2r(z)⊗ P F

2s(z) ⊆ P F
2p(z). Using Lemma 7.4 we have

1λ,µ = F(λ,2r) ⊗ F(µ,2s) ∈ POn2p (z) ∩ POn+1

2p (z)
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and

∆z,n
2p,On(ν)1λ,µ ⊗On Q = (rad ∆n

2p,Q(ν))(G(λ,2r) ⊗G(µ,2s))

= (ḡνλ,µ − g
ν[n]
λ[n],µ[n]

)(∆n
2r,Q(λ)⊗∆n

2s,Q(µ)).

Similarly we have

∆z,n+1
2p,On+1

(ν)1λ,µ ⊗On+1 Q = (ḡνλ,µ − g
ν[n+1]

λ[n+1],µ[n+1]
)(∆n+1

2r,Q(λ)⊗∆n+1
2s,Q(µ)).

Now, using Proposition 7.6 we have

∆z,n+1
2p,On+1

(ν)1λ,µ ⊗On+1 F = ∆z,n+1
2p,F (ν)1λ,µ ⊆ ∆z,n

2p,F(ν)1λ,µ = ∆z,n
2p,On(ν)1λ,µ ⊗On F

So we have

rankOn+1(∆z,n+1
2p,On+1

(ν)1λ,µ) 6 rankOn(∆z,n
2p,On(ν)1λ,µ). (15)

Moreover, it also follows from Definition 3.5 and Propositions 3.6 and 7.6 that

dimQ(∆z,n+1
2p,On+1

(ν)1λ,µ ⊗On+1 Q) = rankOn+1(∆z,n+1
2p,On+1

(ν)1λ,µ) (16)

dimQ(∆z,n
2p,On(ν)1λ,µ ⊗On Q) = rankOn(∆z,n

2p,On(ν)1λ,µ). (17)

It follows from equation (15) to (17) that

dimQ(∆z,n
2p,Q(ν)1λ,µ) 6 dimQ(∆z,n+1

2p,Q (ν)1λ,µ).

Now, as

dimQ ∆n
2r,Q(λ)⊗∆n

2s,Q(µ) = dimQ ∆n+1
2r,Q(λ)⊗∆n+1

2s,Q(µ),

we get

ḡνλ,µ − g
ν[n]
λ[n],µ[n]

> ḡνλ,µ − g
ν[n+1]

λ[n+1],µ[n+1]

and hence g
ν[n]
λ[n],µ[n]

6 g
ν[n+1]

λ[n+1],µ[n+1]
as required. �
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