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Abstract

This thesis presents research into the development and calibration of relative
value fixed income trading models. The first chapter provides some background
into the models studied, chapters two and three focus on calibration problems
relating to an earlier version of the model: the relative value Nelson Siegel and
Svensson model (rv-NSS). Chapter four introduces a more advanced version
of the model, the relative value Dynamic Nelson and Siegel model (rv-DNS).
Chapter five draws overall conclusions and discusses avenues for further research.

Contributions to the literature:

• Chapter 2

– Shows that Differential Evolution could be successfully applied to
calibrate the rv-NSS

• Chapter 3

– Compares the widest set of ridge regression estimators ever assembled

– Modified (r-k) Class Ridge Regression (MCRR) did not specify how
to estimate all of its parameters, two methods to address this were
introduced

– Improved Ridge Estimators (IRE) had convergence problems, chap-
ter three tries to address these succeeding in the majority of condi-
tions tested

– Linearized Ridge Regression Estimator (LRRE) had estimation prob-
lems at the lowest volatility levels, an attempt was made to fix this

– Although no one estimator dominated in every scenario tested the
LRRE came closest to fulfilling that goal

• Chapter 4

– Introduces a dynamic relative value trading model based on the Dy-
namic Nelson Siegel Model (DNS) introduced by Diebold and Li
(2006)

– This is the only relative value trading model based on the DNS

– Successfully tests the model on simulated and real data

Overall the thesis successfully introduces a functioning relative value fixed in-
come trading model based on the Nelson and Siegel approach.
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1.1 Introduction

This thesis centers on three chapters which address the issue of relative value

trading in the fixed income market using models based on the Nelson and Siegel

approach. Chapters two and three tackle calibration problems relating to an

earlier version of the model while the fourth chapter introduces an augmented

version of the model that looks to incorporate some of the more recent additions

to the literature. This chapter gives some background research into the under-

lying models and associated calibration problems. Each of the central empirical

chapters was written to be self contained, so there will be some overlap with the

material presented in this chapter and those later chapters. The final chapter

summarizes the main findings and gives avenues for future research.

1.1.1 Nelson Siegel Yield Curve Model

To determine relative values, it is first necessary to model the underlying zero

coupon yield curve. The model proposed by Nelson and Siegel (1987) and its

extension by Svensson (1994) is a well known method for estimating the zero

coupon rates which is popular with policy makers with nine out of thirteen cen-

tral banks reportedly using the Nelson and Siegel and/or the Svensson variant

BIS (2005).

The original Nelson-Siegel model consists of three basis functions, which when

combined are sufficiently flexible to allow most commonly encountered yield

curve shapes to be modelled. The Nelson-Siegel-Svensson (NSS) model includes

an additional factor.
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The NSS can be defined mathematically as follows:

y(τ) = β1+β2

(
1−exp

(
− τ
λ1

)
(
τ
λ1

) )
+β3

(
1−exp

(
− τ
λ1

)
(
τ
λ1

) − exp
(
τ
λ1

))
+β4

(
1−exp

(
− τ
λ2

)
(
τ
λ2

) − exp
(
τ
λ2

))
(1.1.1)

where:

τ = maturity of the instrument being modelled

y(τ) = zero coupon rate at the maturity indicated by τ

β1 = loading factor on the first basis function

β2 = loading factor on the second basis function

β3 = loading factor on the third basis function

β4 = loading on the fourth basis function

λ1 = Determines the shape of the second and third basis functions

λ2 = Determines the shape of the fourth basis function

The first three basis functions represent the NS model, the addition of the fourth

factor then gives the NSS model. The basis functions are illustrated in figure

1.1.1. The first basis function, shown at the top of the picture is simply a

constant, and can somewhat heuristically, be interpreted as the long term level

of interest rates. The second basis function starts off at one when τ = 0 and

decays rapidly as τ increases, it can be interpreted as the curve’s steepness.

The third basis is shown at the botton of the graph, it starts off at zero and

then rises to a maximum value as τ is increased, it then falls back to zero as τ

continues to increase, it can be interpreted as a hump relating to the curvature

of the curve. The similarity of these basis functions to the empirical factor

loading found by Bliss (1997) and Litterman and Scheinkman (1991) was noted

in Diebold and Li (2006). The additional basis function introduced by Svensson

(1994), has the same mathematical structure as the third basis function but a
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different lambda value and represents an additional hump located at a different

point on the curve. This allows an even richer array of term structures to be

modelled.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t = 0 to 30y

yi
el

d

Figure 1.1.1: The Nelson-Siegel Basis Functions

1.2 Relative Value Fixed Income Strategies

Duarte et al. (2007) produced the seminal paper on relative value fixed income

arbitrage. The paper looked at several commonly used fixed income relative

value trading strategies using data from the US fixed income market from Dec

1988-Dec 2004. They wanted to test whether such strategies were true arbitrage,

or are simply strategies that have highly negatively skewed PnL distributions.

Meaning that they make small profits most of the time but occasionally expe-

rience catastrophic losses. Indeed the title of the article includes the phrase

“Nickels in front of a Steamroller?”.

As shown in Duarte et al. (2007) one class of fixed income relative value strat-

egy with such a negatively skewed PnL distribution, at least for the data they

14



tested, is the swap spread. A swap spread is where one fixed rate is traded

against another. As explained in Chincarini (2012), one high profile example

of such a trade came from LTCM: they had several versions of these trades,

across different yields and even markets, and initially they had quite some suc-

cess with these types of trade. However, in August 1998 they had established

a large short position in the 10y US swap spread, meaning they were receiving

the 10y swap rate and paying the 10y treasury rate. The average of this spread

between January 1991 and July 1998 was 43 basis points (bp) with a standard

deviation of 8 bp. In January 1998 the spread had widened to 55 bp and so

was approximately 2 standard deviations above the mean. LTCM established a

short position expecting the spread to revert. However, by August 4, 1998 the

spread had widened to 65.8 bp. There had only been 5 days over the January

1991 to July 1998 period in which the spread has been wider than this, includ-

ing the all time high of 71 bp, and so LTCM most likely expected it to revert.

However, in the wake of the Russian default, the spread widened to reach 97

bp on September 18 1998, causing LTCM huge losses. LTCM had several such

swap spreads and combined they were LTCM’s single biggest source of losses,

35% according to Lowenstein (2000).

Happily Duarte et al. (2007) also found that the yield curve type arbitrage con-

sidered in this thesis produced significant profits using the same data, even after

accounting for transaction costs and even hedge fund fees. They note that there

are several different versions of the these strategies but they share the common

theme of identifying rich and cheap points on the curve. The profit is then re-

alized by putting on a position that exploits those mispricings, this is then held

until the mispricing reverses. They only focus on curvature trades: The example

they give is of the 2 year swap rate being high relative to the model, where the

model is based on the values of the 1y and 10y rates which are referred to as the

key points. So they receive the 2 year swap rate whilst simultaneously taking

offsetting long positions in the 1 year and 10 year swap rates, so leaving the

overall position market neutral. Another archetypal example of a yield curve

15



trade, is the steepener trade where two maturities are traded against each other

to capture changes in the steepness of the yield curve.

To fit the zero coupon curve they used a two dimensional Vasicek model which

was set to match the key points exactly whilst matching the remaining points

as well as possible. It should be noted that they ran their tests on the same

data that they used for calibration, but the authors claim that lookahead bias

should not arise in their model formulation. However, it doesn’t seem that

their arguments are completely convincing. It’s at least conceivable that by

calibrating their curve based on the spread between the curve and all the non

key points for the whole data set, would mean that the resultant curve will

encode some information about future relative value opportunities. They did

claim in a footnote that they repeated the analysis with out of sample data and

the results were very similar to those in the report (they did not however report

those results). They use a trigger level of 10 bp to enter the trades (no mention

is made of how this figure was derived so there may be scope for look ahead

bias there too).

1.2.1 The Relative Value Nelson Siegel Svensson Model

The initial focus of this thesis was to build a model analogous to the one in

Duarte et al. (2007) but instead basing it on the NSS model. The reason being

is that the Vasicek model belongs to the affine arbitrage free class of models,

and as shown by Duffee (2002) this class of models has a forecasting ability no

better than a random walk. Whereas Diebold et al. (2006) and De Pooter (2007)

showed that the NS model and models based on that approach tend to provide

better forecasts. In addition the second and third NS basis functions mimic the

steepener and curvature opportunities that the model is seeking to exploit. It

was hoped that by basing the relative value model on these basis functions, it

would be easier to identify and model those opportunities, as opposed to the

Vasicek model which lacks such intuition. It was decided to try and model the
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yield curve out to 30y to allow a richer array of relative value opportunities to

be exploited. Duarte et al. (2007) used two key points to fit a 10y long section

of the curve, as the goal here was to fit the whole yield curve out to 30y, it was

decided to use four key points rather than two.

The original relative value Nelson Siegel Svensson model (rv-NSS) is based on

the four suitably chosen key points that were chosen so that they are well spaced

across the yield curve and correspond to the most liquid points on the yield

curve. The Svensson model is used because it has four free parameters (the

betas associated with each basis function) which can be used to match the

four key points. The remaining points on the curve are then priced relative to

these key points with lambdas in the NSS basis functions suitably calibrated to

capture the historic relationship between the remaining rates and the key points.

The main assumptions underlying the model are:

• The key points 2, 5, 10, 30y represent the most liquid points on the curve

• The curve can be accurately modelled from the Nelson-Siegel basis func-

tions

• These functions are calibrated to capture the historic relationships be-

tween different points on the curve

• These historic relationships are assumed to be stable meaning that they

should not be updated unless there is some kind of regime change in the

market

Analogously to the Duarte et al. (2007) paper, the central idea is that based

on the current position of the key rates the model shows us where a non-key

rate such as the 7y point should be priced based on its long term historical rela-

tionships to the key points. One can then observe the difference between where

the model thinks the price should be based on their historical relationships and
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where the 7y is currently trading in the market. This difference or spread rep-

resents how rich or cheap the 7y looks on an historical basis. By building up a

time series of these spreads one can model how they evolve over time and use

this as a basis for proprietary trading decisions, or alternatively market making

decisions where one would look to skew their prices downwards when quoting

for a price that appears rich and conversely upwards when a price appears cheap.

The third and fourth bullet points spell out the key assumptions that the model

can capture the historical relationships between the key points and the rest of

the curve accurately and that those relationships don’t change. However regime

changes, where there is a discrete and persistent change in interest rate dy-

namics can occur. Two prime examples of regime changes in US rates, which

have been identified in the literature, are the Fed monetary policy experiment

between October 1979 and October 1982 and the oil shock in the seventies.

These regime changes were studied by Hamilton (1988), Gray (1996), and Gar-

cia and Perron (1996) who found that using regime switching models that allow

for discrete and persistent changes in the model parameters were best able to

model data with these types of changes. If such a regime change occurred it

would obviously no longer be reasonable to expect the spread to revert in the

same time frame as before or even to the same level as before. However, such

regime changes have been incorporated into the Dynamic Nelson and Siegel

model which is introduced in section 1.2.3.

By assuming the key points are matched exactly it is also implicitly assumed

that the key points are able to move independently of each other, i.e. a 1 bp

movement in the 2y rate will not affect the values of the 5y, 10y and 30y rates

which must all match their market observed values by design. However all the

other non key rates will be affected by the movement, especially those closest

to the 2y point.
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The main objectives of the model are:

• A time series of the spreads can be used to make proprietary trading

decisions

• Current rich/cheapness of a given point can be used to make market mak-

ing decisions

1.2.2 The Calibration Problems

Models based on the Nelson and Siegel basis functions have some well docu-

mented calibration problems. Earlier papers did not identify the root causes

of the problems instead reporting their symptoms which are broadly termed as

“numerical instability”.

Fabozzi et al. (2005) noted that the estimates for β1, the long term level of

rates, and β2, slope in the long term level of rates, in the three factor NS model

have unit roots, a finding echoed by Diebold and Li (2006).

Bolder and Streliksi (1999) noted that the model is non-linear in the λ values,

they also identified that it has multiple local minima, as illustrated in figure

1.2.1, which means that multiple starting values are necessary for the optimiza-

tion process. Indeed they feel that virtually all possible starting values would

have to be tested to gain certainty over the results which obviously would be an

onerous task computationally.

Similar to Bolder and Streliksi (1999), Cairns and Pritchard (2001) show that

the Nelson and Siegel (1987) model has a calibration surface that exhibits mul-

tiple local minima, they note that this can cause parameter instability as the

model jumps between minima on different calibration days.
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Figure 1.2.1: The Optimization Surface
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Gurkaynak et al. (2006) report that the estimated parameters can be unstable of-

ten jumping from one day to the next despite there being little actual movement

in the yield curve being estimated. The authors note that this instability was

also observed by Anderson and Sleath (1999) who showed that even a small shift

in the input data can produce notable changes in the estimated parameters and

fitted yields. Building on the work of Waggoner (1996), Anderson and Sleath

(1999) linked this to the condition number of the Svensson model. The condi-

tion number quantifies the sensitivity of a model’s outputs, to a small change to

the model’s inputs. In linear regression, overly high sensitivity to model inputs

is often caused by multicolliearity i.e. when there is a near linear relationship

amongst two or more of the predictor variables. The condition number can

be used to quantify the multicollinearity effect inherent in the model, Ander-

son and Sleath (1999) did not seek to address the multicollinearity problem nor

did they even explicitly link the high condition number to multicollinearity how-

ever this was an important step in identifying the source of the numerical issues.

Diebold and Li (2006) did note that multicollinearity can be a problem when us-

ing the original Nelson and Siegel (1987) model. They addressed the estimation

problems by fixing the value of λ a priori, before calibrating the remaining pa-

rameters, of course this solution is only as good as the assumption upon which

it is based. Indeed Hurn et al. (2005) show that the assumed value for λ in

Diebold and Li (2006) is not suitable for the UK gilts market.

De Pooter (2007) also noted the optimization problems, and also links these

problems to multicollinearity. He notes that multicollinearity can arise in the

NSS from the λ parameters being too similar (the problem was also noted by

Hurn et al. (2005)). De Pooter (2007) addressed the problem by adding a con-

straint that the second lambda value must be such that its associated hump is

located at a maturity at least 12 months shorter that the hump associated with

the first λ. This is a somewhat ad-hoc solution and its performance relies on

the assumption that the two humps can never be closer than 12 months apart
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is always valid. De Pooter (2007) also shows that multicollinearity arises in

NS/NSS type models as λ tends towards zero and as it tends towards infinity.

This leads to non identification issues which can result in extreme parameter

estimates.

Attempts to address these issues in the literature are: Gilli et al. (2010) who were

the first to accurately identify the calibration problems as being attributable to

two key factors: the non-convex optimization surface exhibiting multiple local

minima, and the intrinsic multicollinearity problems. High correlation can be

a symptom of multicolliearity and figure 1.2.2 illustrates how the level of cor-

relation changes between the loading factors as the value of λ changes, the left

graph illustrates this for β1 and β2, the middle for β2 and β3 and last one for

β3 and β4. They went on to address the first problem by applying Differential

Evolution, a population based optimization technique similar to genetic algo-

rithms. Anneart et al. (2012) sought to address the multicollinearity problem

(but not the optimization surface issues) by applying basic ridge regression to

the three factor Nelson and Siegel (1987) model.

Figure 1.2.2: NSS Basis Function Correlations for Different Candidate λs
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1.2.3 The Dynamic Nelson Siegel Model

There has been a spate of recent additions to the literature relating to Nelson

Siegel style models which was prompted by the development of the Dynamic

Nelson Siegel (DNS) model, introduced by Diebold and Li (2006). They em-

ployed a two step estimation procedure in which the λ value shown in equation

(1.1.1) is fixed (note that there is only one λ in the paper as they were modelling

the NS rather than the NSS model). The DNS extends the NS into a dynamic

framework where the loading factors on the NS basis functions are given first

order auto regressive dynamics AR(1). They also introduced a more general

Vector Auto Regressive (VAR) version but this was not found to add significant

value. Diebold et al. (2006) recast the DNS into a state space framework. To

estimate the state space model parameters a Kalman filter was used to esti-

mate the log-likelihood of the state space model, this log-likelihood was then

maximized using a numerical optimization routine. This procedure had two

key benefits, first it allowed all the parameters to be estimated in one step and

secondly it allowed the λ to be estimated from the data. Although the optimal

λ value was still assumed to be constant over the entire data set.

This assumption of a constant λ value has been criticized in the literature by

Koopman et al. (2010) who feel it may be too restrictive, especially when con-

sidering long periods of time. Indeed they got statistically different estimates

for the value of λ when testing over different time periods. They address this by

estimating λ as an additional time varying parameter in the state space frame-

work. To estimate changes in the λ value they initially used a step function

to model the changes, but then went on to use a spline based method to allow

smoother changes in the λ value, with the spline based method producing the

best results. Similarly the problems of regime switching mentioned in section

1.2.1 could also cause the value of λ to change, Levant and Ma (2013) address

this shortcoming by generalizing the DNS model into a Markov switching frame-

work. They looked at a model that had two regimes with different λ parameters
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in each regime (in addition they also looked at DNS based Markov switching

models where the volatility switched in each regime). Xiang and Zhu (2013) also

experimented with a regime switching DNS model with differing volatilities in

each regime. They tested with up to three regimes, but found that two regimes

worked best on the data they tested. Both authors reported improved forecast-

ing abilities when this regime changing machinery is included in the DNS.

The DNS was also augmented by Christensen et al. (2011) who produced an

arbitrage free version. Their work was later extended by Hevia et al. (2014)

and Bandara and Munclinger (2012) who produced an arbitrage free version of

the DNS model with Markov switching. The Markov switching versions again

produced improved forecasts.

1.3 Plan of Thesis

Chapters two and three focus on the calibration problems relating to the rv-

NSS. As described previously the rv-NSS shares the same calibration problems

as the NSS model upon which it is based.

Chapter 2:

Gilli et al. (2010) showed how the non-convexity and multiple local minima

problems could be addressed in the context of the NSS model by using differ-

ential evolution (DE). However the calibration procedure used in the rv-NSS

is quite different to that of the NSS so the DE based optimization scheme had

to be adapted. Chapter two shows how it was possible to adapt the DE based

optimization procedure to fit the rv-NSS and as such represents a new contri-

bution to the literature.
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Chapter 3:

The only remaining calibration problem for the rv-NSS was multicollinearity.

Ridge regression is known to produce more reliable parameter estimates when

harmful levels of multicollinearity are present and Anneart et al. (2012) had

already sought to address the multicollinearity problem in the context of the

regular NS model by using ridge regression. This prompted the idea to apply

ridge regression to the rv-NSS to address its multicollinearity issues. There

has been a plethora of ridge regression estimators in the literature but it’s not

straightforward to identify which is best as their performance varies in response

to the level of multicollinearity and error variance. There have been attempts to

identify the best ridge estimators in the past using simulation based comparison

studies. The largest of which was conducted by Clark and Troskie (2007). How-

ever since then several new estimators have been proposed. So it was decided to

conduct a new simulation study, to extend the work of Clark and Troskie (2007)

by including the new estimators (and some older ones). The simulation study

in chapter three encompasses the widest range of ridge regression estimators

ever assembled in one study, as such it represents a new contribution to the

literature. The Modified (r-k) Class Ridge Regression (MCRR) introduced by

Batah et al. (2009) did not specify how to estimate some of its parameter values,

chapter three introduced two ways to address this issue and this represents a

further contribution to the literature. In addition the Improved Ridge Estima-

tors (IRE) of Liu et al. (2013) experienced convergence problems and chapter

three tries to address these succeeding in the majority of conditions tested. The

Linearized Ridge Regression Estimator (LRRE) of Gao and Liu (2011) also had

estimation problems at the lowest volatility levels and an attempt was made to

address this too. Although the solution did fix the LRRE’s convergence issues

at the lowest volatility levels, this was at the expense of its performance at ev-

ery other volatility level. These amendments to the estimation procedures for

the IRE type estimators and the LRRE represent further contributions to the

literature. Although no estimator was found to be best in every scenario tested,
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the LRRE was found to be best or joint best in the majority of the scenarios

tested, and this is chapter three’s final contribution to the literature.

Chapter Four:

The results of the simulation study in chapter three along with the results of

chapter two meant that the two key calibration issues had now been addressed,

and the rv-NSS could now be implemented effectively. However, at this stage

there was a change of direction, I’d started researching Dynamic Nelson and

Siegel models (DNS) which were first introduced by Diebold and Li (2006), this

led me to think that a relative value model based on the DNS would have several

advantages, over rv-NSS.

• The DNS incorporates the time series dynamics of the loading parameters

internally

• The Kalman Filter used in estimation of the DNS, can help to alleviate

the multicollinearity problems

• The DNS has regime switching variants and so can handle regime changes

• The DNS can be made arbitrage free

As detailed in chapter 4 some changes to the rv-NSS logic were necessary, but

Chapter 4 details how the DNS can be developed into a fixed income relative

value trading model. This represents a new contribution to the literature. The

rv-DNS is also successfully calibrated and tested on both simulated and histor-

ical data, this also represents a new contribution to the literature.

Chapter 5:

Chapter 5 summarizes the results of chapters 2, 3 and 4 and draws conclusions

based on those results. It also goes on to discuss potential avenues for further

research/development.
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Chapter 2

Calibration of the Relative

Value Nelson Seigel and

Svensson Model
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2.1 Abstract

This chapter introduces the relative value Nelson Siegel and Svensson model

(rv-NSS), like the standard Nelson-Siegel-Svensson (NSS) models upon which

it is based it suffers from problems in its calibration when standard derivative

based optimsiation techniques are employed. This is due to the fact that the

optimisation problem is non-convex and features multiple local minima. This

problem has already been addressed in Gilli et al. (2010) in the context of the

NSS model. They used a population based optimisation method called Dif-

ferential Evolution to tackle the problem and found that it produced superior

results to the derivative based optimisation techniques with which it was com-

pared. This chapter adapts their algorithm so that it can be used to calibrate

the rv-NSS. It then tests this adapted model’s performance against a more tra-

ditional derivative based method. The adapted model is found to outperform

the derivative based optimiser.
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2.2 Introduction

As explained in section 1.2.2 the non-convex nature of the optimization prob-

lem for models based on the NSS basis functions coupled with their non-linear

nature, mean that traditional derivative based optimization methods will tend

to struggle as they are inclined to get stuck in local minima. See figure 1.2.1

taken from Gilli et al. (2010) which illustrates the challenges posed when trying

to calibrate NSS type models. This problem has already been addressed for the

pure NSS model in the paper by Gilli et al. (2010). In that paper they found

that Differential Evolution, a type of population based optimization method,

was much better suited to the optimization of the NSS model than the deriva-

tive based methods they compared it to.

Chapter 2 looks to address these optimization problems in the context of the

rv-NSS model. The idea is to adapt the Differential Evolution algorithm so that

it could be applied to the rv-NSS model. Although at first blush the NSS and

rv-NSS appear quite similar mathematically, the logic behind the models and

crucially the calibration process is quite different. In the regular NSS model all

parameters are used to try and fit all the yields equally well. In the rv-NSS

model the betas are chosen to fit the key-rates exactly while the other yields are

fitted using the lambda values as well as possible on a least squares basis. This

meant that the differential evolution technique described in Gilli et al. (2010)

could not be applied as given. Instead the algorithm was altered to fit with the

differing calibration procedure for the rv-NSS model. As the multicollinearity

was still the focus of ongoing research at that stage, no method had been found

to calibrate the historical parameters. Instead the model will be calibrated to

simulated data, where the simulated data is generated using assumed values for

the historical parameters.
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2.3 Literature Review

The modelling of the zero coupon yield curve is fundamental to fixed income.

The zero coupon curve can’t be observed directly but rather it must be inferred

from the prices of fixed income assets traded in the market. The model proposed

by Nelson and Siegel (1987) and its extension by Svensson (1994) is a well known

method for estimating the zero coupon rates which is popular with policy makers

with nine out of 13 central banks reportedly using the Nelson and Siegel and/or

the Svensson variant BIS (2005).

The original Nelson-Siegel model consists of three parametric functions, which

when combined are sufficiently flexible to allow most commonly encountered

yield curve shapes to be modelled. The extension by Svensson (1994) simply

adds another factor thus allowing an even richer array of term structures to be

modelled. This chapter will focus on the Svensson formulation of the model.

The Nelson-Seigel-Svensson model will be used as the basis for a relative value

model. The idea is that the assets at the most liquid points on the curve will

be priced exactly, while the remaining assets are priced relative to these points.

As was highlighted by Gilli et al. (2010) the calibration of Nelson-Siegel-Svensson

type models has two key problems:

• The optimization problem is non-convex and has multiple local minima

• For certain portions of the parameter space the model can be badly con-

ditioned: causing the model to be overly sensitive to small perturbations

of the input data, and parameter estimates with grossly inflated variances

Only the first problem will be addressed in this chapter, the second problem

will be dealt with based on the results in chapter three.
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2.4 The Model

2.4.1 The Nelson-Siegel-Svensson Model

The Nelson-Siegel-Svensson model can be defined mathematically as follows

y(τ) = β1+β2

(
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− τ
λ1

)
(
τ
λ1

) )
+β3

(
1−exp
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)
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(
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) − exp
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))
(2.4.1)

where:

τ = maturity of the instrument being modelled

y(τ) = zero coupon rate at the maturity indicated by τ

β1 = loading factor on the first basis function

β2 = loading factor on the second basis function

β3 = loading factor on the third basis function

β4 = loading on the fourth basis function

λ1 = Determines the shape of the second and third basis functions

λ2 = Determines the shape of the fourth basis function
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The first factor is simply a constant, and can somewhat heuristically, be inter-

preted as the long term level of interest rates, the second can be interpreted

as the curve’s “steepness” (the difference between short and long term rates)

while the third can be interpreted as a “hump”(such humps are often observed

as the difference between an intermediate rate and both a longer term rate and

a shorter term rate, e.g. the 20y rate relative to the 10y and 30y rates). The

similarity of these factors to the empirical factor loading found by Bliss (1997)

and Litterman and Scheinkman (1991) was noted in Diebold and Li (2006).
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Figure 2.4.1: The Nelson-Siegel Basis Functions

A graph of the various basis function values versus the time maturity value is

shown in figure 2.4.1. Further intuition on the role of the different factors can

be gained when we consider the behaviours of their parameteric functions in

the limit. The constant 1 is independent of time and so as noted before can be

used to represent the long term level of rates. The second factor starts off at

one when τ = 0 and decays rapidly as τ increases, so it represents a short-term

factor. The third factor starts off at zero and then rises to a maximum value as

τ is increased, it then falls back to zero as τ continues to increase. The value of

λ1 in the third factor determines the location of its maximum value. Similarly
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the fourth factor which has the same mathematical structure as the third factor

but a different λ value (λ2) allowing a second hump to be added to the curve.

2.4.2 The Relative Value Nelson Siegel Svensson Model

The relative value Nelson Seigel Svensson model (rv-NSS) is based on the four

suitably chosen “key points” that should be chosen so that they are well spaced

across the yield curve and correspond to the most liquid points on the yield

curve. The remaining points on the curve are then priced relative to these key

points with the NSS basis functions suitably calibrated to capture the historic

relationship between the remaining rates and the key points.

The main assumptions underlying the model are:

• The key points: the 2y, 5y, 10y, 30y represent the most liquid points on

the curve

• The curve can be accurately modelled from the Nelson-Siegel basis func-

tions

• These functions are calibrated to capture the historic relationships be-

tween different points on the curve

• These historic relationships are assumed to be stable, meaning that they

should not be updated unless there is some kind of regime change in the

market, which means that the relationship between the key points and the

other rates had permanently changed

The central idea is that based on the current position of the key rates, the model

shows us where a non-key rate such as the 7y point should be priced based on

its long term historial relationships to the key points. One can then observe the
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difference between where the model thinks the price should be based on their

historical relationships and where the 7y is currently trading in the market.

This difference or “spread” between the model implied rate and the current

rate represents how rich or cheap the 7y looks relative to the historical date the

basis functions were calibrated to. By building up a time series of these spreads

one can model how they evolve over time and use this as a basis for proprietary

trading decisions, or alternately market making decisions where one would look

to skew their prices downwards when quoting for a price that appears rich and

conversely upwards when a price appears cheap.

Assumptions three and four spell out the key assumption that the model can

capture the historical relationships between the key points and the rest of the

curve accurately and that those relationships don’t change. However as noted in

Xiang and Zhu (2013) regime changes, where there is a discrete and persistent

change in interest rate dynamics can occur. Notable examples in the literature

of regime changes in US rates include, the Fed monetary policy experiment

between October 1979 and October 1982 and the oil shock in the seventies.

These regime changes were studied by Gray (1996), Hamilton (1988) and Garcia

and Perron (1996) who found they were better able to model interest rates over

these periods using regime changing models. If a regime change does occur and

assumption four is violated, then it is no longer reasonable to expect rates to

revert in the same time frames or even to the same level as before and so some

form of recalibration would be required.

The main objectives of the model are:

• The time series of the spreads can be used to make proprietary trading

decisions

• The current rich/cheapness of a given point can be used to make market

making decisions on any products priced using the model
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2.5 Model Calibration

2.5.1 Differential Evolution

As was reported in Gilli et al. (2010) several authors (Bolder and Streliksi (1999);

Gurkaynak et al. (2006) and De Pooter (2007)) have reported “numerical prob-

lems” when calibrating NSS type models.

Gilli et al. (2010) identified the root causes of these numerical instabilities to

be:

• The optimization problem is non-convex and has multiple local minima

• Large sections of the parameter space are ill-conditioned giving rise to

unstable parameter estimates

Only the first problem will be addressed in this chapter. As a consequence

of the non-convexity and multiple local minima derivative based optimisation

methods such as trust-region-reflective algorithm in Matlab are ineffective. To

tackle such problems Gilli et al. (2011) explain that so called population based

methods are more appropriate.

There are two main reasons why this makes population based methods better

suited to these type of problems:

• They allow members of the population to explore in up-hill directions of

the search space

• They keep within their populations inferior solutions

This may seem counterintuitive at first, but by allowing the members of the

population to explore up-hill they are able to find a way out of a local minima.

35



Keeping the inferior solutions in the population while this exploration takes

place means that they are more likely to have enough time to find their way

out. The net result is that population based methods are less likely to get stuck

in local minima.

The population based methods which have been applied in the literature to the

calibration of NSS type models are a genetic algorithm by Gimeno and Nave

(2009) and Differential Evolution which was applied by Gilli et al. (2010) and

Gilli et al. (2011). Both methods appear to provide good solutions when applied

to NSS type models and arguably either could have been used to calibrate

the rv-NSS, however as they are both population based methods there seemed

little point in using both methods. In this chapter it was decided to follow

the Differential Evolution approach as described in Gilli et al. (2010) and Gilli

et al. (2011). The calibration procedure for the rv-NSS, as will be explained in

the next section, is quite different to that of the regular NSS, this meant that

Differential Evolution could not be applied exactly as given in Gilli et al. (2010)

and Gilli et al. (2011) and changes had to be made.

2.5.2 Differential Evolution applied to Relative Value-Nelson

Siegel and Svensson Model

The original NSS was intended to fit the whole yield curve as closely as possible

in the least squares sense, it does this by varying all 6 input parameters until

an optimal fit is found. The rv-NSS is different as it seeks to fit only the key

points exactly and then to give the price of the other points on the curve based

on the position of the key points, and their historical relationships to the points

being priced. The calibration of the rv-NSS basis functions to historical data is

subject to the ill-conditioning problems mentioned earlier. As this problem will

not be addressed until the results of chapter three are available, the focus here

is to produce an algorithm that allows the rv-NSS to be estimated accurately
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given assumed values for the NSS-basis functions.

To ensure the key points are fitted exactly it was necessary to change the Dif-

ferential Evolution algorithm. Analogously to Nelson and Siegel (1987) and

Nyholm (2008) instead of all six parameters being used to fit all the points on

the curve, as with regular Differential Evolution, the algorithm was changed

so that only the λs vary. Conditional on the candidate λ values chosen the βs

are then selected to ensure that the 2, 5, 10, 30y points are matched exactly.

Given that the problem, conditional on the choice of the candidate λs, is linear

and there are as many unknowns as knowns the problem becomes a system of

simultaneous equations which can be solved via matrix inversion see equation

(2.5.1). However the problem of selecting the optimal λs retains the numerical

problems highlighted previously.


2y

5y

10y

30y

 =


1 1−exp−λ1τ2

λ1τ2

1−exp−λ1τ2
λ1τ2

− exp−λ1τ2 1−exp−λ2τ2
λ2τ2

− exp−λ2τ2

1 1−exp−λ1τ5
λ1τ5

1−exp−λ1τ5
λ1τ5

− exp−λ1τ5 1−exp−λ2τ5
λ2τ5

− exp−λ2τ5

1 1−exp−λ1τ10
λ1τ10

1−exp−λ1τ10
λ1τ10

− exp−λ1τ10 1−exp−λ2τ10
λ2τ10

− exp−λ2τ10

1 1−exp−λ1τ30
λ1τ30

1−exp−λ1τ30
λ1τ30

− exp−λ1τ30 1−exp−λ2τ30
λ2τ30

− exp−λ2τ30




β1

β2

β3

β4


(2.5.1)

In the full rv-NSS model we would then go on to find the optimal fit of the

lambdas to the historical calibration data. However as mentioned previously

the ill-conditioning of much of the lambda parameter space means that this is

not practical currently and remains the focus of future research. In this chapter

the problem of calibrating the rv-NSS model to simulated data is tackled.
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2.6 Testing Procedure

To test the effectiveness of the “Altered Differential Evolution” (ADE) algorithm

in fitting the rv-NSS model it is proposed that the ADE be used to fit the rv-NSS

to simulated data.

Analogously to the testing procedure used in Gilli et al. (2010), to give a

benchmark Matlab’s lsqcurvefit function was used to fit the simulated data

as well. Lsqcurefit is the function Matlab recommends for solving non-linear

least squares type problems. The function uses the trust-region-reflective al-

gorithm, which is a derivative based optimisation procedure which can handle

constraints on the input parameters (the function can also be set to run using

Levenberg-Marquardt algorithm but this option cannot handle such constraints

and so was not chosen here).

2.6.1 Generation of Simulated Data

To simulate the data it was necessary to generate values for each of the rv-NSS

model parameters. λ1 was generated from a uniform distribution over the range

0.75 ≤ λ1 ≤ 2.5 and λ2 over the range 2.5 ≤ λ2 ≤ 5.5. The permissible bounds

on the λs were based on those suggested by Gilli et al. (2010) as those likely to

result in acceptable levels of correlation between the NSS basis functions. They

actually used 0 ≤ λ1 ≤ 2.5 for the bounds on λ1 but in this study the range

of values shown above worked better. They do not necessarily represent the λs

one would expect to find when calibrating them to market data. To give the

curves realistic shape it was decided to base the βs on the actual 2y, 5y, 10y

and 30y rates observed in the euro swaps market between 2002 and 2011. This

is also in line with the underlying model logic where all other points are priced

relative to the key points according to the relationship dictated by the rv-NSS

basis functions.
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The method for simulating the data is summarised below

• Generate two λs from uniform distributions over the ranges 0.75 ≤ λ1 ≤

2.5 and 2.5 ≤ λ2 ≤ 5.5

• Take actual 2, 5, 10, and 30y rates from a series of dates covering 2002 to

2011 in the euro swaps market, and solve for the β values using the known

λ values and rates

• These simulated parameter values are used to generate a yield curve. The

remaining maturities are generated using the same parameter values eval-

uated at their corresponding maturities

A total of 2,571 simulated curves were produced, corresponding to the number

of trading days between 2002 and 2011, and each was estimated ten times by

both optimisers. For lsqcurvefit this meant that 10 different pairs of initial

guesses were used for each curve tested. The only prior assumption used for

both optimisers was that the location of the two humps and hence the lambda

values are located somewhere along the 30y term structure. Thus the initial

guesses for the two lambda values were drawn from anywhere from 0.1-30y for

lsqcurvefit (allowing zero to be chosen as an initial guess prevented lsqcurvefit

from converging). The ADE’s initial population was chosen from the full 30y

yield curve. Both algorithms were constrained so that the final results would

fall within the 30y term structure. The ADE as a population type algorithm

generates an initial set of population parameters from the desired range, in this

case the full 30y term structure. So running the ADE 10 times is equivalent to

simply increasing the size of the population and/or the number of generations

calculated in each optimisation, however for the sake of comparison it was re-run

10 times as well.
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The comparison was made on a root mean square error basis (rmse):

RMSE =

√
(

1

n
Σni=1ys(i)− yest(i))2 (2.6.1)

where n represents the number of maturities being estimated

ys is the simulated rate

yest is the estimation of the simulated point produced by the optimisers.

The simulated yield curves for each day are then passed into the ADE and

lsqcurvefit and the esimated parameter values returned. As all the curve points

are generated using the same parameter values the implicit assumption is at

the point of observation they lie on their long term historic mean values. The

practical upshot is that a perfect fit for all the rates is possible not just the key

rates.

The best, worst and median estimates over the ten runs for each curve were

collated.

40



2.7 Results and Discussion

2.7.1 Results of Calibration to Simulated Data

The calibration results are summarised in table 2.7.1 below:

Model Median of Median

RMSE (Original Priors)

Largest

RMSE Value

Median Difference between

Max and Min RMSE

ADE 1e-14 0.55 1e-14

Lsqcurvefit 0.37 46 0.66

Table 2.7.1: Summary Results of Calibrations (all results in basis points)

As can be seen from the table 2.7.1 Lsqcurvefit produced a median of medians

error of 0.37 basis points (bp) which is good while ADE produced a median of

medians RMSE of the order of 1e−14 bp which is virtually perfect. By design

both algorithms fit the key rates exactly so the errors are distributed across

the remaining points. As noted previously the data being fitted were originally

generated from a rv-NSS model, therefore a perfect fit is possible for all points

on the curve. Whether or not the lsqcurvefit median value is material would

depend on the application, for a prop trading tool depending on the size of the

signal from the proprietary trading model and its size relative to the rmse noise

it may be acceptable, however for a market making tool it might not be. The

largest individual observed rmse values were 46bp for lsqcurvefit and 0.55bp for

ADE. The 46bp rmse value would be material for any conceivable application

of the model.

Moreover when one considers the variation around these results by looking at

the maximum and minimum rmse values produced over the ten random starts,

one finds that the ADEs estimates to be far more stable than their lsqcurvefit
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equivalents. Taking the median of the difference of the maximum and minimum

rmse values for both methods, one finds that lsqcurvefit had a median spread

between its highest and lowest rmse values of 0.66bp while the corresponding

value for ADE was of the order 1e−14 bp, again virtually perfect.

These differences are also illustrated with the graphs shown in fig 2.7.1, which

show the results produced when the optimisers were used to estimate simulated

data constructed using rates observed in the market in 2002. The first column

of the graph shows the results for lsqcurvefit, with the left arm signaling the

lowest observed rmse value over the ten runs, the ‘.’ the median rmse value

and the right arm the largest observed rmse value. The middle graph shows the

corresponding results for ADE. Clearly the ADE results are much more stable

across the ten restarts. The graph in the final column shows the differences in

the median values between the lsqcurvefit results and the ADE results across the

ten restarts. Clearly ADE is more accurate than lsqcurvefit. The corresponding

results for the remaining simulated data are shown in the appendices.

Although there are periods where the performance of lsqcurvefit is comparable

to that of ADE it can be seen that over the whole test period lsqcurvefit can not

be relied upon to produce the correct results and even when it does produce the

correct median value the variance associated with that estimate is much higher

than the corresponding ADE estimate.

A further set of results was obtained for lsqcurvefit with the initial estimates

drawn from a much tighter range of values. This range was chosen to match

the range of values from which the actual λ values underlying the simulated

data were drawn. Thus it is assumed that the analyst has prior information.

As might be expected for a derivative based optimisation procedure applied to

a problem with multiple local minima, its performance is very sensitive to the

initial estimates used. This proves to be the case with lsqcurvefit: with the

tighter priors it is able to match ADE over a much wider set of dates see fig.

2.7.2. Remember however that the ADE results were produced without any
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prior information other than we expect both λs to appear somewhere in the

30y term structure. Even with these tighter priors the highest observed rmse

error for lsqcurvefit was of the order of 12bp which would almost certainly be

material. Also even with these tight priors if the order of the priors is reversed

so that the inital guess for λ1 is produced from the range of values used to

choose the true λ2 and vice versa, lsqcurvefit produces very poor results at least

as bad as running it without the prior information. Moreover there would still

be the problem of producing reliable prior information in practice. Even if it

could be done initially, problems would likely still arise if a regime shift in the

market meant that these priors are no longer valid. By contrast ADE was able

to produce these results without the need for these tighter priors. Results for

several other years of simulated data are given in the appendices and the pattern

is the same with ADE continuing to outperform lsqcurvefit.
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Figure 2.7.1: Max, Min and Median errors for 2002
44



0 0.05 0.1 0.15

2002

2003

Gradient Search
0 0.05 0.1 0.15

Differential Evolution

Max min and median errors of solutions and Difference in Median Errors for 2002 with Tighter Inital Estimates

−0.05 0 0.05
∆ of medians

Figure 2.7.2: Max, Min and Median errors for 2002 with Tighter Initial Estimates
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2.8 Conclusion

As was shown previously by Gilli et al. (2010) all NSS type models are problem-

atic to calibrate because of their non-convex nature and multiple local minima.

This chapter introduced the rv-NSS model which is subject to the same prob-

lems. To estimate the rv-NSS it was necessary to alter the DE algorithm that

was given in Gilli et al. (2010) to produce the ADE. As can be seen from the

results produced the ADE model clearly outperforms the derivative based opti-

misation methods employed by lsqcurvefit in estimating the rv-NSS, even when

tighter priors are used for lsqcurvefit it is liable to produce significant errors.

ADE however is able to produce reliable results without the need for any prior

information. This now meant that the problems relating to the non-convex

multi local minima nature of the rv-NSS optimisation surface had been ad-

dressed, however the multicollinearity problem still remained and this will be

tackled in chapter three.
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2.9 Appendices

2.9.1 Appendix 1: The Results of the Comparison for all

the remaining Simulated Data
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Figure 2.9.1: Max, Min and Median errors for 2003
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Figure 2.9.2: Max, Min and Median errors for 2004
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Figure 2.9.3: Max, Min and Median errors for 2005
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Figure 2.9.4: Max, Min and Median errors for 2006
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Figure 2.9.5: Max, Min and Median errors for 2007
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Figure 2.9.6: Max, Min and Median errors for 2008
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Figure 2.9.7: Max, Min and Median errors for 2009
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Figure 2.9.8: Max, Min and Median errors for 2010
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Figure 2.9.9: Max, Min and Median errors for 2011
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2.9.2 Appendix 2: The Results of the Comparison with

the Tighter Priors for all the remaining Simulated

Data
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Figure 2.9.10: Max, Min and Median errors for 2003 with Tighter Initial Estimates
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Figure 2.9.11: Max, Min and Median errors for 2004 with Tighter Initial Estimates
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Figure 2.9.12: Max, Min and Median errors for 2005 with Tighter Initial Estimates
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Figure 2.9.13: Max, Min and Median errors for 2006 with Tighter Initial Estimates
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Figure 2.9.14: Max, Min and Median errors for 2007 with Tighter Initial Estimates
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Figure 2.9.15: Max, Min and Median errors for 2008 with Tighter Initial Estimates
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Figure 2.9.16: Max, Min and Median errors for 2009 with Tighter Initial Estimates
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Figure 2.9.17: Max, Min and Median errors for 2010 with Tighter Initial Estimates
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Figure 2.9.18: Max, Min and Median errors for 2011 with Tighter Initial Estimates
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Chapter 3

A Simulation Study of

Ridge Regression

Estimators
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3.1 Abstract

Clark and Troskie (2007) which extended the work of Kibria (2003) compared

the performance of a set of ridge regression techniques empirically using Monte

Carlo simulation. Each candidate ridge regression technique was judged on its

mean square error (MSE) performance relative to OLS. This chapter seeks to

expand their results by increasing the set of estimators considered to include

some of the more recent additions to the ridge regression literature as well as

some older ones. This represents the most comprehensive and up to date com-

parison in the literature to date. In addition some of the estimators considered

such as the modified r-k class ridge regression (MCRR) introduced by Batah

et al. (2009) did not specify how to estimate all the parameters in their model.

This chapter addresses this shortcoming. Moreover the Improved Ridge Esti-

mators (IRE) of Liu et al. (2013) experienced convergence problems and this

chapter also tries to remedy these problems, with success in the majority of

conditions tested. The Linearized Ridge Regression Estimator (LRRE) of Gao

and Liu (2011) also had estimation problems at the lowest volatility levels and

an attempt was made to fix this too. Although the solution did fix its con-

vergence issues at the lowest volatility levels, this was at the expense of its

performance at every other volatility level. However these amendments to the

estimation procedures for the IRE type estimators and the LRRE represent

a further contribution to the literature. No estimator is completely dominant

under all conditions tested but the LRRE was the best under most scenarios

considered.
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3.2 Introduction

In chapter two it was shown that Differential Evolution could be adapted suc-

cessfully to fit the rv-NSS model. However as discussed in section 1.2.2 the

second source of the calibration problems is the inherent multicollinearity in

models utilizing the NS basis functions. The problem gives rise to two undesir-

able consequences:

• The beta parameter estimates become unstable

• The problem becomes ill-conditioned

The first problem means that when applying OLS estimation, although the

model retains its well known BLUE properties (Best, Linear, Unbiased, Estima-

tor), so that the fit to the observed yields remains optimal in the error sum of

squares (ESS) sense, the beta estimates are unreliable often taking large non-

sensical values. Given that one of the chief outputs of the rv-NSS model is a

time series of the model parameters, unstable parameter estimates are clearly a

serious problem. The ill-conditioning which also arises from the multicollinear-

ity means that even slight perturbations in the inputs can have large effects on

the estimated parameters, this again means that the estimated parameters will

be unreliable.

Anneart et al. (2012) showed how ridge regression can be applied to the NSS

model to address the multicollinearity problem. Ridge regression reduces the

multicollinearity but the price paid is that it introduces a bias into the estimate.

Given that reliable parameter estimates is critical to successful implementation

of the rv-NSS model, this made it imperative to find the best estimator possible.

This prompted research into ridge regression estimators.
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The problem is that although there have been many different ridge regression

estimators suggested in the literature, no one estimator can be shown to be

universally optimal, with estimator performance varying in response to changes

in the level of error volatility and the level of multicollinearity present in the

design matrix. To try and identify which estimator was best or at least best

in a given level of error volatility/multicollinearity it was decided to conduct a

simulation study, extending the work of Clark and Troskie (2007), encompassing

the widest range of ridge regression estimators seen in the literature to date

and incorporating the most recent estimators. The simulation study tested the

estimators on five different design matrices with condition numbers ranging from

over 700 (which represents severe multicollinearity) to 5 (which usually indicates

no harmful multicollinearity is present). For each matrix eight different levels

of error volatility were tested ranging from 0.0001 to 400. Each estimator was

judged on the Mean Square Error (MSE) value it produced relative to OLS (the

MSE is the variance of the parameter estimate plus its bias squared). Thus it

quantifies the trade off between the variance and bias of each estimator providing

a good measure upon which to compare the ridge regression estimators.
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3.3 Theory

Multiple Linear Regression

The ordinary multiple linear regression model can be represented algebraically

as:

Y = Xβ + e (3.3.1)

• Y is a (n x 1) vector containing the observations of the response variable

• X is a (n x p) fixed matrix containing the observations of the explanatory

variables

• β is a (p x 1) vector of unknown parameters

• e is a (n x 1) vector containing the unobserved errors which are assumed

to be multivariate normal with E(e) = 0 and V ar(e) = σ2

The ordinary least squares (OLS) estimator is a well known solution to this

problem that seeks to minimize the sum of squared residuals (SSR):

SSR = (y −Xβ̂)T (y −Xβ̂) (3.3.2)

The resulting estimator is known to be BLUE (Best, Linear, Unbiased, Estima-

tor). It can be expressed mathematically as

βOLS = (X ′X)−1X ′Y (3.3.3)
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Multicollinearity

Multicollinearity in the linear regression model refers to the situation in which

one of the predictor variables can be expressed as a near linear combination of

the others. The OLS estimator is derived under the assumption of no multi-

collinearity in the X matrix. When this assumption is violated it still retains

its BLUE properties but its β estimates become unstable and their variance

estimates inflated. These problems have been highlighted in the literature by:

Hoerl and Kennard (1970) and Mayer and Wilkie (1973) amongst others:

Belsley (1991) page 1 succinctly summarizes these problems in the quote below:

There are few statistical practitioners who have escaped the “collinear-

ity problem” in their work, this certainly being true for those who

have attempted to use linear regression to estimate models using

nonexperimental data. Its symptoms are tell tale: high standard

errors, low-t-statistics, nonsensical or overly sensitive parameter es-

timates.

In practice it is not simply a case of there either being multicollinearity present

or not but rather a question of how much multicollinearity is present, see for

example Mason et al. (1975).

The presence of strong multicollinearity gives rise to very small eigenvalues in

the eigen-decomposition of the (X ′X) matrix. It is this that gives rise to the

deleterious effects described above.
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3.3.1 High standard errors/Low t-values

The reason these small eigenvalues are problematic can be best appreciated

when one considers the mathematical expression for the variance of an OLS

estimator:

V ar = σ2Tr(X ′X)−1 = σ2

p∑
i=1

1

λi
(3.3.4)

Where Tr() represents the trace of a matrix, and λ represents the eigenvalues

of the (X ′X) matrix. As can clearly be seen a small eigenvalue will cause the

variance of the estimators to be inflated.

Ill-Conditioning

The small eigenvalue also gives rise to the ill-conditioning problem. The degree

of ill-conditioning can be assessed using the condition number κ:

κ(X) =
σmax(X)

σmin(X)
(3.3.5)

Where σmax(X) and σmin(X) represent the maximal and minimal singular val-

ues of X. The singular values are the square roots of the eigenvalues of the X ′X

matrix so that the condition number too is inflated by the presence of a small

eigenvalue (relative to the largest eigenvalue).
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Ridge Regression

Ridge type estimators seek to address these problems by adding an amount k to

the diagonal of the X ′X matrix. By considering the basic Hoerl and Kennard

(1970) ridge estimator an appreciation of how it works can be gained:

β̂k = (X ′X + kIp)
−1X ′Y (3.3.6)

When the value of the ridge parameter k is set to zero the estimator is the same

as the OLS estimator, so the ridge estimator encompasses the OLS estimator.

Conversely when you increase k towards infinity the estimator βk shrinks to-

wards zero (i.e. it is over shrunk). This shrinkage of the estimated parameters

means that ridge regressions are part of the shrinkage class of estimators.

Under the ridge formulation the variance of the estimator becomes

V ar =

p∑
i=1

λi
λi + k

(3.3.7)

As k is increased, the variance of the estimator is reduced.

The price paid is that the estimator is biased with the bias for the Hoerl and

Kennard (1970) model given in Gross (2003) as:

E(βk) = β − k(X ′X + kIp)
−1β (3.3.8)

Strictly this expression for the bias only applies if k is fixed rather than chosen

stochastically, as it is in practice, Gunst and Mason (1977).

So the more k is increased, the more biased the estimator becomes.
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This trade off between reducing the variance and increasing the bias is best

captured by the Mean Square Error Criterion. In the case of linear regression

this can be expressed as:

MSE(βk) = E(β̂k − β)2 (3.3.9)

This can be shown to be equivalent to

MSE(βk) = V ar(βk) + bias(βk, β)2 (3.3.10)

The key is to find the value of k that provides the optimal trade off between

variance and bias. Although optimal estimators can be derived, most rely on

knowing the true β parameters and/or variance. In practice empirical approx-

imations to these optimal parameters must be found. Worse, no one estimator

works best in all situations so the goal is to identify which estimators are most

likely to work best in a given situation.

3.3.2 Literature Review

There have been a vast number of papers looking at different ways to estimate

the ridge parameter. The seminal ridge regression paper by Hoerl and Kennard

(1970) included a graphical technique called the ridge trace. Golub (1979)

introduced a computationally intensive technique based on generalized cross

validation. Other methods to estimate the ridge parameter were suggested by

McDonald and Galarneau (1975) and Hemmerelle (1975) amongst others. Hoerl

et al. (1975) and Hemmerelle (1975) generalized the ridge parameter from a

scalar to a vector of values, the estimation of these latter models was furthered

in De Boer and Hafner (2005). Goldstein and Smith (1974) derive a generalized
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ridge regression (ki) such that each estimator βi has a smaller MSE than its LS

equivalent.

There have been several comparison papers that have sought to evaluate the

relative performances of the different estimators proposed in the literature via

computer simulation. Some of the more notable ones are: Gunst and Ma-

son (1977) who compared Ridge Regression, Principal Components Regression

(PCR), Least Squares Latent Root and James-stein estimators. They found

that PCR performs best although ridge regression performs well for most of

the scenarios considered. They attribute the relative underperformance of ridge

regression to the difficulty in estimating k.

Dempster et al. (1977) use a factor experiment to study a variety of shrinkage

estimators including ridge regression. No one estimator performed uniformly

better but ridge regression with a Bayesian method for estimating k was found

to be one of the better performers.

Wichern and Churchill (1978) tested Hoerl and Kennard (1970), Lawless and

Wang (1976), Hoerl et al. (1975), McDonald and Galarneau (1975) and a graphi-

cal technique due to Vinvod (1976). Although no one rule was uniformly better

than the others, they found the McDonald and Galarneau (1975) performed

well when the correlation between the regressors is moderate to high and that

multicollinearity as measured by the ratio of the largest to smallest eigenvalue

is high.

Kibria (2003) used a similar scheme to compare four known estimators: Hoerl

and Kennard (1970), Hoerl et al. (1975), Lawless and Wang (1976) and Hocking

et al. (1976) and three new ones that they introduced. Again no one estimator

was found to be optimal in all scenarios although they did find that one of

their estimators, Geometric Mean (GM), to be one of the better performing

estimators.
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Clark and Troskie (2007) extended the work of Kibria (2003) and also introduced

two new estimators. Once again no estimator dominated all the others for all

of the situations examined.

This chapter aims to expand on the work of Clark and Troskie (2007) and to

extend the comparison to include a wider array of models. The additional mod-

els include the modified class ridge regression model (MCRR) introduced by

Batah et al. (2009) which combines the unbiased ridge regression model (URR)

proposed by Crouse et al. (1995), the r-k model introduced by Baye and Parker

(1984) and the PCA model introduced by Massy (1965) (this model was later

extended by Marquardt (1970)). The MCRR itself was further generalized by

Al-Gereari (2012) analogously to the way Marquardt (1970) generalized the

PCR model but no methods were given to estimate the additional parameter

and so this model was not included in this comparison. In addition this chap-

ter will also include the jack-knifed ridge estimation technique of Singh et al.

(1986)(JRR), the idea is to introduce the bias by introducing jack-knifing re-

sampling techniques. Lastly the current chapter includes the Linearized Ridge

Regression Estimators (LRRE) introduced by Gao and Liu (2011) and its gen-

eralizations the Improved Ridge Estimators introduced in Liu et al. (2013).

3.4 The Models

Following Kibria (2003) and Clark and Troskie (2007) the OLS estimator is put

into its canonical form before introducing the estimators as this simplifies the

exposition.

First it is necessary to consider the eigen-decomposition of the X ′X matrix as

X ′X = V ΛV ′.
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Canonical Form

Y = X∗α+ e (3.4.1)

Where X∗ = XV and α = V ′β.

The OLS estimator is thus:

α̂ = (Λ)−1X∗
′
Y (3.4.2)

and the generalized ridge regression is

ˆα(K) = (Λ +K)−1X∗
′

(3.4.3)

Where K is a diagonal matrix with individual ki on each diagonal element.

3.4.1 Ridge Parameter Estimators

In each case σ̂2 is the residual variance from the OLS regression. Most of

the estimators up to the Kibria paper have a similar structure, with the main

difference being how the αs are utilized:

3.4.2 Hoerl and Kennard

k̂HK =
σ̂2

max(α̂2
i )

(3.4.4)

As noted by Kibria (2003), (and Clark and Troskie (2007)), Hoerl and Kennard

(1970) suggests setting the value of the denominator to the maximum α value.
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3.4.3 Hoerl Kennard and Baldwin

k̂HKB =
pσ̂2∑p
i=1 α̂

2
i

(3.4.5)

Hoerl et al. (1975) base their estimate on the harmonic mean of all the eigen-

values, p is the number of regressors.

3.4.4 Lawless and Wang

Most ridge estimators are derived under the assumption that X ′X = Ip i.e.

the identity matrix. When this assumption is violated, Lawless and Wang

(1976) show how the problem can be reparameterized to address the issue.

Following the derivation given in Gross (2003), y = Zϑ + ε, Z = X(X ′X)−
1
2 ,

ϑ = X(X ′X)
1
2 β under this reparameterization Z ′Z = I. The denominator is

thus ϑ̂′ϑ̂ = β̂Λβ̂.

k̂LW =
pσ̂2

β̂Λβ̂
(3.4.6)

3.4.5 Kibria

In a similar spirit to Hoerl et al. (1975), Kibria (2003) gave a series of estimators

in which the αs were averaged in different ways, arithmetic (AM), geometric

(GM), and median (MED):

k̂AM =
1

p

p∑
i=1

σ̂2

α̂2
i

(3.4.7)
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k̂GM =
σ̂2

Πp
i=1α̂

2
i

(3.4.8)

k̂MED = Median

{
σ̂2

α̂2
i

}
, i = 1, 2, . . . , p (3.4.9)

3.4.6 Index of Informational Complexity (ICOMP) Ridge

Type Estimator

Clark and Troskie (2007) present two new estimators for the ridge parameter

based on Bozdogan’s ICOMP Bozdogan (1998), which is an information criterion

designed to be used in model selection. When applied to estimating the ridge

parameter they show that

ICOMP (C1(
∑̂
θ̂

)) = −2 logL(θ̂) + dN2 −N1 (3.4.10)

where

L(θ̂) is the log-likelihood function

N1 = log |(Λ + kIp)
−1Λ(|Λ + kIp)

−1| =
∑p
i=1 log

(
λi

(λi+k)2

)
N2 = log

(∑p
i=1

λi
(λi+k)2

)
− log(d)

∑
θ̂ is the estimated parameter covariance matrix

d is the rank of
∑
θ̂

As noted by Clark and Troskie (2007) this function must be solved numerically,

in this study Matlab’s fmincon function was used to solve for k. This k value is

then k̂ICOMP .
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3.4.7 KS Ridge Type Estimator

Clark and Troskie (2007) also presented a second ridge estimator that is based

on the ICOMP ridge type estimator and the Lawless and Wang estimator.

kS =

kLW if kICOMP < kLW

kICOMP otherwise
(3.4.11)

3.4.8 Jackknife Ridge Regression Estimator

As shown in eqn. 3.3.8 the Ridge Regressors are biased. However Singh et al.

(1986) show that this bias may be estimated using jack-knifing. The estimated

bias is then subtracted from the original Ridge Regression estimate giving you

the Jackknife Ridge (JRR) Regression Estimator

β̂J(K) = (I −K2A−2)α̂(K) (3.4.12)

Where A = (Λ +K)

3.4.9 Modified (r-k) Class Ridge Regression Estimator

Batah et al. (2009) melded two previous estimators, the URR and the PCR, to

create the Modified (r-k) Class Ridge Regression (MCRR). These earlier models

are introduced first:
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Unbiased Ridge Regression (URR) Estimator

Swindel (1976) generalized the Hoerl and Kennard (1970) model to incorporate

prior information, this allowed shrinkage of the estimated beta parameters to

values other than zero. Crouse et al. (1995) based their Unbiased Ridge Regres-

sion (URR) on this structure. They allowed their estimates to shrink towards

the OLS estimates which are unbiased, creating what they called the URR.

β̂(k, J) = V (Λ + kIp)
−1V ′(X ′Y + kJ) (3.4.13)

J ∼ N(β, σ
2

k I) for k > 0

k̂URR =


pσ̂2

(β̂ − J)(β̂ − J)− σ̂2tr(X ′X)−1
if(β̂ − J)(β̂ − J)− σ̂2tr(X ′X)−1 > 0

pσ̂2

(β̂ − J)(β̂ − J)
otherwise


(3.4.14)
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Principal Components Regression (PCR)

PCR due to Massy (1965) is not a ridge regression per se but it can also be

used to treat multicollinearity, instead of adding the ridge parameter to ensure

that the smallest eigenvalues do not cause a problem, the smallest eigenvalues

and their associated eigenvectors are removed completely. So the eigenvector

decomposition of X ′X becomes:

X ′X = (Vr, Vp−r)

(
Λr 0

0 Λp−r

)(
V ′r

V ′p−r

)
(3.4.15)

Where Vr represents the matrix containing the ordered set of largest eigenvectors

up to r, while Vp−r contains the remaining eigenvectors. Λr is an r ∗ r diagonal

matrix containing the r largest eigenvalues in descending order, similarly Λp−r

is a (p − r) ∗ (p − r) diagonal matrix containing the remaining eigenvalues in

descending order.

Thus the decomposition is broken down into the first r principal components

and the last p− r principal components; which are discarded.

The PCR estimator can thus be expressed as:

ˆβPC(r) = Vr(Λr)
−1X∗

′

r Y (3.4.16)

Examination of the MCRR expression below shows it to be a combination of

the URR and PCR

ˆβMCRR(r,K, J) = Vr(Λr +KIr)
−1V

′

r (X ′Y + kJ) (3.4.17)

This is also a generalization of the r-k model introduced by Baye and Parker
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(1984) allowing shrinkage towards J rather than 0 in the case of the r-k model.

ˆβr−k(r, k) = Vr(Λr + kIr)
−1V

′

r (X ′Y ) (3.4.18)

Note that to facilitate comparisons with the URR model, both these models

were tested using kURR.

Unfortunately Batah et al. (2009) does not specify how to estimate the number

of principal components to retain. So to make the estimator operational a

suitable method to estimate the number of principal components to retain had to

be found. The literature on how to estimate the number of principal components

to retain is vast, but one of the most common is to base the choice on the

condition number, see eqn: 3.3.5. The principal components are removed in

order of magnitude, starting with the smallest, until the condition number is

less than 10, see Belsley (1991) (p129). This can be considered the benchmark

method for selecting which principal components to remove. However this is a

rather simplistic approach and has been criticized by Jollife (1982) on the basis

that the eigenvectors with smaller eigenvalues may still have predictive power

and so removing them will increase the bias see also Mason and Gunst (1985).

To try and find a better method that balances the trade off between variance

and bias inherent in these ridge type models, a method was trialled where the

selection of the principal components is based on the theoretical MSE for each

estimator. The approach can be summarized in the steps below:

• Calculate all possible combinations of the principal components

• Calculate the theoretical MSE (to estimate the bias, the OLS estimate

was used as an estimator for the actual β value, on the basis that it is

unbiased)

• Select the principal component set that yields the lowest theoretical MSE
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Clearly the technique depends on how well the estimators of the unknown vari-

ables approximate their theoretical counterparts.

For all the estimators in this class (PCA, r-k, MCRR) both techniques were

tried in the study. The estimators where the principal components set as above

are simply denoted as PCA, r-k, and MCRR. Those that base their choice on

reducing the condition number below the threshold value are denoted: PCA CI,

r-k CI and MCRR CI respectively.

3.4.10 Linearized Ridge Regression Estimator

The original Liu estimator introduced by Liu (2003), combined the ORR with

the contraction estimator of Mayer and Wilkie (1973). The contraction esti-

mator is another type of shrinkage estimator, as can be seen from the equation

below, it shrinks each of the β parameters by the same amount. The Liu es-

timator has the advantage that it is linear in the d parameter, unlike ridge

regression estimators which are non linear in k which makes k harder to esti-

mate. Despite this advantage the Liu estimator has been criticized by Gruber

(1998) who questioned whether if gave any improvement over the shrinkage

estimators upon which it is based.

ˆβcont(ρ) =
1

1 + ρ
V α̂

ˆβcont(d) = dV α̂

(3.4.19)

where d = 1
1+ρ

ˆβLiu(d) = (Λ + I)−1(Λ + dI)α̂ (3.4.20)

Liu and Gao (2011) derived a transformation between the optimal parameters
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of their generalized version of the Liu estimator and those of the Generalized

Ridge Regression estimator (GRR) see eqn: 3.4.3. As opposed to regular ridge

regression where there is only one k value and all eigenvalues are treated equally,

GRR allows for more than one value of k to be used, this means that a larger

amount can be added to smaller eigenvalues and a smaller amount added to

larger ones. The downside is that there are more parameters to estimate. Given

this link they refer to their generalized Liu model as the Linearized Ridge Re-

gression Estimator as by solving for its optimal parameters which is a linear

problem, the optimal parameters for the GRR (which is a non-linear problem)

could be found. Liu and Gao (2011) solved for the optimal parameters under the

Prediction Error Sum of Squares Criterion (PRESS). Gao and Liu (2011) then

solved the optimal parameters under the MSE criterion, the optimal parameters

found under the MSE criterion are shown below.

ˆβLRRE(D) = V (Λ + I)−1(Λ +D)V ′ ˆβOLS (3.4.21)

D is diagonal with the optimal di = di∗

d∗i =
λi(α

2
i−σ

2)

σ2+λiα2
i

Clearly this relies on knowing α and σ Gao and Liu (2011) recommend starting

with the OLS estimates of these parameters and then iterating until convergence.

The theoretical underpinnings of this model are strong with Gao and Liu (2011)

showing that this estimator has optimal MSE properties within what they term

the Generalized Shrinkage Estimators (GSE) class of estimators.

ˆβGSE(A) = V AV ′ ˆβOLS (3.4.22)

This GSE class includes OLS, Hoerl and Kennard (1970), and the Liu type

estimators proposed by Liu (1993) and Liu (2003) as well as PCR Massy (1965).
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3.4.11 Improved Ridge Estimators

Liu et al. (2013) introduce three estimators, collectively termed, Improved Ridge

Estimators (IRE), that have an even lower theoretical MSE than the LRRE. The

cost is that these models are more highly parameterized.

The basic form of the estimators is:

ˆβIRE(K,D) = Q(K +D)P ′1Y (3.4.23)

Q and D are found from the singular value decomposition (SVD) of X

X = P (∆, 0)′Q′ (3.4.24)

P is an n ∗ n matrix

Q is a p ∗ p matrix

∆ is a diagonal matrix with the p largest singular values in descending order.

In each case below θ̂ =
∑p
j=1 δjα̂j

Ordinary IRE (OIRE)

The first IRE estimator is the OIRE. In this case D is chosen such that:

D = %1p1
′
p (3.4.25)

%̂∗ =

∑p
j=1 σ̂

2(δjα̂2
j − θ̂α̂j)/(σ̂2 + δ2j α̂

2
j )∑p

j=1(σ̂2 + θ̂δjα̂)2/(σ̂2 + δ2j α̂
2
j )− (pσ̂2 + pθ̂2)

(3.4.26)
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k̂∗j =
δjα̂2

j

(σ̂2 + δ2j α̂
2
j )
− %̂∗ (σ̂2 + θ̂δjα̂j)

(σ̂2 + δ2j α̂
2
j )

(3.4.27)

Type-I Generalized IRE (GIREI)

ˆD =

 d̂1′p if n > 2p,

%̂1p1
′
p if n ≤ 2p,

(3.4.28)

d̂∗j =
σ̂2(θ̂α̂j − δjα̂2

j )

(pσ̂2 + θ̂2)(σ̂2 + δ2j α̂
2
j )− (σ̂2 + θ̂δjα̂j)2

(3.4.29)

k̂∗j =
σ̂2(pδjα̂2

j − θ̂α̂j)

(pσ̂2 + θ̂2)(σ̂2 + δ2j α̂
2
j )− (σ̂2 + θ̂δjα̂j)2

(3.4.30)

Type-II Generalized IRE (GIREII)

D̂ =

 1pd̂
′ if n > 2p,

%̂1p1
′
p if n ≤ 2p,

(3.4.31)

d̂∗j =
1

p

( ∑p
i=1 α̂i

σ̂2 +
∑p
i=1 δ

2
i α̂

2
i

δjα̂j − k̂∗j

)
(3.4.32)

k̂∗j =
δjα̂2

j

qσ̂2 + δ2j α̂
2
j

−

(
p∑
i=1

α̂i

qσ̂2 + δ2j α̂
2
i

/

p∑
i=1

1

qσ̂2 + δ2i α̂
2
i

)
δjα̂j

qσ̂2 + δ2j α̂
2
j

(3.4.33)

where q = (p− 1)/p
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Analogously to the LRRE parameters Liu et al. (2013) recommend using the

OLS estimates for the unknown parameters and then iterating “until conver-

gence”. However in a private communication the corresponding author said that

they did not check the convergence properties of these estimators. Through some

trial and error it was found that 100 iterations seems to give reasonable results,

however convergence in not guaranteed in some cases, the estimator can diverge

away from the correct solution. The LRRE also experienced some convergence

problems at lower volatility levels.

To try and remedy this, a second method for selecting the optimal parameters

was trialled. At each iteration the theoretical MSEs were calculated substituting

in the OLS estimates for the true parameter values, (the OLS estimates were

used to calculate the bias on the basis that OLS is an unbiased estimator).

The parameters chosen were those that produced the lowest MSE value over all

the iterations rather than just taking the last value from the iteration process.

The rationale being: to still be able to find parameter estimates even when

divergences occur and to find the optimal parameter estimates in the MSE

sense. Both the parameters based purely on the iterative procedure and those

conditioned on their theoretical MSE were tested in the study for both the

LRRE and IRE type estimators.

3.5 Testing Methodology

The basic template for comparing ridge estimators has not changed much since

the seminal paper of McDonald and Galarneau (1975) but as this study is to

extend the results of Clark and Troskie (2007) their methodology is adopted.
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The X variables are simulated as shown below:

X̂ij =


√

1− ρ21Zij + ρ1Zi6 for j=1,2,3,i = 1, 2, . . . , n√
1− ρ22Zij + ρ2Zi6 for j=4,5,i = 1, 2, . . . , n

(3.5.1)

• Generate the X variables using 3.5.1 with rho pairs (0.99,0.99),(0.99,0.1),

(0.9,0.9),(0.9,0.1),(0.7,0.3)

• Simulate the Y variable using the standard βact X and different levels of

error volatility i..e. e ∼N(0, σ2) σ2=(0.0001,0.25,1,25,50,75,100,400)

• Standardize the X and Y variables

• Set βact equal to the eigenvector corresponding to the largest eigenvalue

from the standardized X matrix

• Evaluate each estimator using the standardized variables and then convert

back to the same scale as the original variables

• Calculate the average MSE for each estimator, this is averaged over 5000

simulations of the error variables

• Divide the average MSE of each estimator by the OLS average MSE. A

ratio more than 1 means the estimator underperformed OLS while a ratio

less than 1 shows how much it outperformed OLS

The βs are set equal to the largest eigenvalue of the standardized X matrix

because as is explained in Newhouse and Oman (1971) this value for β minimizes

the MSE value for the estimator (strictly this only holds if the explanatory

variables are fixed). The scaling chosen is also optimal (or close to optimal) for

MSE estimation, Belsley (1991).
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3.6 Results

In the following matrices 1-5, correspond to the matrices generated using the

ordered rho pairs given in the methodology section. The original estimators shall

refer to those estimators already considered in Clark and Troskie (2007) while

the new estimators shall refer to those estimators not included in that report.

The discussions refer to the full results which may be found in the appendices

to this chapter. Included at the beginning of each section is a summary table

that summarizes the performance of the estimator that performed best for each

ρ pair over the majority of volatility levels tested.

3.6.1 Population Size 30

Summary

Summary Results for n=30

σ2

(ρ1, ρ2) Best Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) LRRE 0.465 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.99, 0.10) LRRE 0.472 0.007 0.007 0.008 0.007 0.007 0.006 0.006

(0.90, 0.90) LRRE 8.418 0.053 0.032 0.021 0.019 0.019 0.018 0.016

(0.90, 0.10) LRRE 2.626 0.112 0.083 0.069 0.064 0.064 0.062 0.057

(0.70, 0.30) LRRE 1.993 0.179 0.157 0.143 0.134 0.129 0.127 0.121

Table 3.6.1: Best Estimator for Population Size 30

Table 3.6.1 shows the estimator that performed best in the majority of the

scenarios for each of the ordered rho pairs.
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Original Estimators

For matrices 1 and 2 (having the highest combination of correlations and hence

condition numbers), for σ2 ≥ 1, kS seems to be best and for σ2 ≥ 50 these results

are matched by kLW which is not too surprising as the kS defaults to kLW when

kICOMP < kLW . Indeed kS and kLW were able to match the performance of

the best estimator LRRE at these highest volatilities. At the lowest volatilities

kGM tends to produce the best results. kAM performs well for higher volatilities

giving results comparable to kS , kLW , but at the lowest volatility level tested it

seriously underperforms giving the worst results of the estimators tested. When

tested on matrix 1 with intermediate volatilities σ2 = 0.25 and σ2 = 1 kAM

outperforms kS , kLW , but for matrix 2 kS outperforms kAM , this is because

kICOMP outperforms in these scenarios and kS can switch to kICOMP . Overall

the performance of kICOMP was much better for matrix 2.

For matrices 3 and 4 kAM gives the best performance at higher volatilities giving

performances close to the LRRE results, however, at the lowest volatility levels

kAM still performs poorly. kGM continues to dominate at the lowest volatility

levels.

For the matrix with the lowest condition number, matrix 5, there is compar-

atively little multicollinearity, kHKB is best or close to best of the original

estimators for σ2 ≤ 1. After that kGM and kAM are best for higher volatilities,

indeed kAM outperforms LRRE for most of the high volatility scenarios but as

volatility decreases so does kAM ’s out-performance so that for σ2 ≤ 50 LRRE

is better. However both kGM and kAM struggle at lower volatility levels, with

kAM once again performing particularly poorly at low levels of volatility. kS

and kLW perform consistently well across all the volatilities considered.
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New Estimators

For the new estimators, JRR performs pretty consistently across all the volatil-

ities and correlation combinations but only manages to reduce the MSE to circa

60% of the OLS value, a similar reduction to that achieved by kHK . It seems

that the bias reduction offered by the jack-knifing is being offset by an increase in

the variance of the estimator. This criticism has been levelled at the jack-knifed

ridge estimator previously see Gross (2003) p143.

The URR performs pretty consistently too providing good improvements over

the OLS model for all combinations of volatility and correlation, indeed for

the highest correlation and lowest volatility it is the best estimator. It is also

consistently better than the JRR estimator.

As noted in section 3.4.9 the PCA based estimators appear as the PCR which

chooses the components so as to minimize the theoretical MSE and the PCR CI

which removes the eigenvectors in reverse order of their associated eigenvalue

size until the condition number of the matrix is reduced below 10. For the cor-

relation combinations associated with the highest condition number the PCR

CI performs better than PCR, indeed for the matrix with the highest condition

number (matrix 1) it is one of the best estimators in the study. For the test ma-

trices with lower condition numbers PCR CI can only match the OLS result and

is outperformed by PCR. The performance of the PCR CI for the matrix with

the highest condition number demonstrates that the technique can be successful

when the appropriate condition number threshold is applied. However getting

the right threshold does require some judgment and often auxiliary regressions,

Belsley (1991), which are hard to automate. It’s little surprise that PCR CI

performed no better than OLS for the matrices with lower condition numbers

(matrices 3, 4 and 5) as their condition numbers are already below the condition

number threshold of 10 to begin with, so all the principal components will be

included, hence the PCR CI estimate will be the same as the OLS estimate.
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As with the pure PCA estimators above, the r-k and MCRR estimators which

also incorporate principal components regression as part of their estimation,

also appear in two versions. The r-k and MCRR base their choice of principal

components to minimize their theoretical MSE value, the r-k CI and MCRR CI

remove principal components until the condition number of the matrix is reduced

below 10. For the matrices 1 and 2 the CI versions performed best. Indeed the

CI versions were amongst the best estimators in the whole study for matrix 1

(apart from the lowest volatility level where r-k CI underperformed). However

as the condition number of the matrices drops so does the outperformance of

the CI versions. For matrices 3-5 the performance of the two versions of the

estimator are broadly similar. However unlike the PCA based estimators above,

the CI versions of these estimators are able to outperform OLS for all matrices

considered for all but the lowest volatility levels.

As can be seen from table 3.6.1 the LRRE is consistently amongst the best or

close to the best of the estimators considered. The only scenarios in which the

LRRE is not best or close to best was at the lowest volatility level for matrices 3,

4 and 5. To address this the choice of β̂ was conditioned on the theoretical MSE

it produces, although the theoretical MSE itself relies on estimated parameters

it was hoped that it would reduce the incidence of large MSE values from being

generated. This had the desired effect in that the performance of the LRRE

was improved at the lowest volatility levels but at the cost of its performance

being compromised at every other volatility level.

The improved ridge estimators’ performance was qualitatively similar to the

LRRE but they are consistently worse than the LRRE (and some of the other

estimators considered). This is surprising as they can be shown to be theoreti-

cally superior to the LRRE, Liu et al. (2013) (in this paper the LRRE is called

the CRE and is derived and expressed differently, but the two however can be

shown to be mathematically equivalent). This theoretical advantage is thanks in

part to their higher parameterization. However it seems that this high parame-
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terization may be a double edged sword as the increased number of parameters

to be estimated comes with associated higher estimation errors and these seem

to offset the theoretical edge of the improved ridge models. It is possible that

these models may benefit from larger numbers of iterations commensurate with

their higher level of estimated parameters and given suitably high level of it-

erations it would catch and perhaps even surpass the LRRE. However as was

previously noted convergence of these estimators is not guaranteed and warrants

further investigation.

Similar to the PCA type models the IRE type models come in two forms: IRE

MSE which seeks to base the choice of β̂ on the choice that minimized the

theoretical MSE. The other version simply uses the value that is observed after

the last iteration. In contrast to the LRRE version the MSE versions of the

IRE estimators perform better than the results generated purely via iteration

in the majority of scenarios considered although at higher volatility levels the

improvement tended to be modest.
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3.6.2 Population Size 50

Summary

Summary Results for n=50

σ2

(ρ1, ρ2) Best Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) PCR CI 1.930 0.003 0.002 0.001 0.001 0.001 0.001 0.001

(0.99, 0.10) LRRE 0.032 0.006 0.006 0.007 0.006 0.006 0.006 0.005

(0.90, 0.90) LRRE 1.915 0.065 0.045 0.036 0.034 0.033 0.031 0.028

(0.90, 0.10) LRRE 3.627 0.098 0.076 0.070 0.068 0.065 0.063 0.056

(0.70, 0.30) LRRE 1.048 0.339 0.252 0.214 0.204 0.197 0.190 0.173

Table 3.6.2: Best Estimator for Population Size 50

Table 3.6.2 shows the estimator that performed best in the majority of the

scenarios for each of the ordered rho pairs.

Original Estimators

The pattern is similar to that above for matrix 1 and matrix 2: kS and kLW

continuing to do well at the highest volatilities. However kGM dominates them

at the lowest levels of volatility. The pattern also repeats for kAM . It performs

well for the higher volatilities, outperforming kS and kLW at the intermediate

volatility levels σ2 = 0.25 and σ2 = 1 for matrix 1, but again underperform-

ing kS at those volatility levels for matrix 2 as kS benefits from the improved

performance of kICOMP . Again it is one of the worst performing estimators at

the lowest volatility level and in many cases is the single worst estimator at this

level of volatility.
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The performances of the original estimators for matrices 3-5 are broadly similar

to those for population size 30. kAM continues to outperform LRRE at the

highest volatility levels, kGM also outperforms LRRE at the highest volatilities

but still under performs kAM . However LRRE is still the better at the lower

volatilities and still manages to be the best in the majority of the volatility

levels tested for matrix 5, so is still the best estimator for this matrix.

New Estimators

Both JRR and URR again produce consistent results, with the URR dominating

the JRR, producing results that approach those of the best estimators for almost

all the scenarios considered.

PCR CI is again very good when applied to matrix 1, it marginally outperforms

LRRE for population size 50, having been marginally outperformed by LRRE

for population size 30. Overall the results for the PCA based estimators: PCR,

PCR CI, r-k, r-k CI, MCRR and MCRR CI follow the same pattern for the

population of 50 observations as they did for the population of 30.

As can be seen from Table 3.6.2 LRRE continues to be the best or close to best

in all scenarios, the only exceptions are at the lowest volatility level, where again

it is outperformed by LRRE MSE. The other IRE estimators follow a similar

pattern to LRRE but continue to underperform the LRRE in all the scenarios

considered.
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3.6.3 Population Size 100

Summary

Summary Results for n=100

σ2

(ρ1, ρ2) Best Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) LRRE 0.465 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.99, 0.10) LRRE 0.472 0.007 0.007 0.008 0.007 0.007 0.006 0.006

(0.90, 0.90) LRRE 8.418 0.053 0.032 0.021 0.019 0.019 0.018 0.016

(0.90, 0.10) LRRE 2.626 0.112 0.083 0.069 0.064 0.064 0.062 0.057

(0.70, 0.30) LRRE 1.993 0.179 0.157 0.143 0.134 0.129 0.127 0.121

Table 3.6.3: Best Estimator for Population Size 100

Table 3.6.3 shows the estimator that performed best in the majority of the

scenarios for each of the ordered rho pairs.

The results again follow the pattern set from the results run on the populations

of 30 and 50, so it would seem that there is little difference between the results

computed on the population sizes tested. Overall the results for the original

estimators follow a very similar pattern to that found in Clark and Troskie

(2007).
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3.7 Conclusions

This chapter tests and compares the largest set of ridge type estimators and as

such represents a new contribution to the literature.

In addition one of the estimators, MCRR, was proposed without a method to

estimate one of its key parameters. Two methods were found to address this

shortcoming, this also represents a new contribution to the literature.

Although no one estimator dominated in all the scenarios considered, the LRRE

came closest to fulfilling this goal. It only struggled at the lowest volatility levels.

As described in the text it was possible to address the problems the LRRE

experienced at the lowest volatility level by conditioning the β estimate on its

theoretical MSE value, but this was done at the expense of compromising the

LRRE’s performance in all the remaining scenarios considered, so no complete

solution was found.

The PCA based estimators also performed well especially MCRR so it may be

that combining PCA techniques with LRRE could produce improved results.

This is despite the fact that LRRE was shown to be optimal in the class of

estimators that included PCR, but as was demonstrated by the performance

of the LRRE versus the IRE type estimators theoretical edge does not always

translate into empirical results. Indeed there are a plethora of ways to choose

which principal components to retain in a PCA regression, testing them all

would be outside the scope of this chapter, however further investigation may

yield additional performance gains for these techniques.

The URR is also worth a mention, despite being one of the older estimators it

provided good estimates in all scenarios tested.

The performance of the IRE type estimators was a little underwhelming given

99



their theoretical edge, they experienced problems with their convergence which

the current chapter tried to address by conditioning the choice of the optimal

β̂ on its theoretical MSE value. This was successful in the majority of the

scenarios tested but the improvement was small at the higher volatility levels

tested. A more thorough study of these estimators’ convergence properties and

or better estimates of its theoretical MSE using for example the bias estimator

from Gross (2003) p142, may allow these estimators to realize more of their

theoretical edge.

Given that no one estimator dominated in all scenarios it might be possible to

develop a composite estimator by selecting the most appropriate estimator for

the given condition number of the design matrix and error volatility, this is left

as future work.

These results meant that the last calibration problem relating to the rv-NSS

had been addressed and it was now possible to calibrate and test the model.

However as will be seen in chapter four the direction of the research changed at

this point to focus on a dynamic version of the model based on the Dynamic

Nelson and Siegel model (DNS) which was first introduced by Diebold and Li

(2006).
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3.8 Appendices

3.8.1 Appendix 1: Condition Numbers for each Popula-

tion Size

Condition Numbers

n

(ρ1, ρ2) 30 50 100

(0.99, 0.99) 724.951 336.765 287.586

(0.99, 0.1) 196.553 272.875 197.219

(0.9, 0.9) 52.284 34.705 40.548

(0.9, 0.1) 29.179 29.671 17.09

(0.7, 0.3) 10.439 5.055 6.049

Table 3.8.1: Condition Numbers by Correlation Pair and Population Size

Note that the condition number shown here is the ratio of the highest to lowest

eigenvalues, rather than the ratio of highest to lowest singular values used in

the rest of the chapter. This was done to facilitate comparisons with the appen-

dices of Clark and Troskie (2007) who use this alternate definition of condition

number.
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3.8.2 Appendix 2: Simulation Results for Population n=30

Eigenvalues of X’X and the β values for n=30

Correlation Structure (0.99,0.99) (0.99,0.1) (0.9,0.9) (0.9,0.1) (0.7,0.3)

λ1 4.950 3.183 4.423 2.763 2.477

λ2 0.018 1.044 0.208 1.030 1.050

λ3 0.014 0.738 0.178 0.971 0.863

λ4 0.011 0.019 0.107 0.142 0.372

λ5 0.007 0.016 0.085 0.095 0.237

β1 0.447 -0.550 -0.457 -0.573 0.548

β2 0.447 -0.549 -0.448 -0.578 0.527

β3 0.446 -0.553 -0.44 -0.556 0.568

β4 0.448 -0.179 -0.454 0.065 0.091

β5 0.448 -0.241 -0.438 -0.157 0.302

Table 3.8.2: Eigenvalues and Beta Values for Population Size 30
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Simulation Results for n=30

σ2

(ρ1, ρ2) Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) HK 1.000 0.587 0.564 0.551 0.557 0.559 0.559 0.558

HKB 0.998 0.354 0.311 0.277 0.282 0.283 0.283 0.280

LW 1.000 0.415 0.179 0.011 0.005 0.003 0.002 0.001

ICOMP 0.873 0.469 0.450 0.415 0.423 0.426 0.426 0.421

S 0.873 0.309 0.133 0.009 0.004 0.003 0.002 0.001

GM 0.651 0.176 0.146 0.068 0.059 0.053 0.050 0.040

AM 52.214 0.131 0.086 0.010 0.006 0.004 0.003 0.002

MED 0.688 0.265 0.181 0.130 0.131 0.130 0.130 0.128

JRR 1.000 0.673 0.613 0.563 0.569 0.570 0.570 0.567

URR 0.431 0.176 0.178 0.170 0.177 0.180 0.179 0.174

PCR 0.973 0.807 0.811 0.806 0.809 0.810 0.809 0.811

PCR CI 0.476 0.001 0.001 0.001 0.001 0.001 0.001 0.001

R-K 2.132 0.178 0.178 0.170 0.177 0.180 0.179 0.174

R-K CI 2.170 0.003 0.001 0.001 0.001 0.001 0.001 0.001

MCRR 0.439 0.170 0.172 0.165 0.172 0.174 0.173 0.168

MCRR CI 0.476 0.001 0.001 0.001 0.001 0.001 0.001 0.001

LRRE 0.465 0.001 0.001 0.001 0.001 0.001 0.001 0.001

LRRE MSE 0.645 0.486 0.486 0.478 0.485 0.487 0.487 0.486

OIRE 1.479 0.294 0.145 0.149 0.162 0.164 0.163 0.159

OIRE MSE 1.587 0.097 0.072 0.137 0.153 0.156 0.155 0.152

GIREI 1.000 0.902 0.998 0.480 0.389 0.346 0.317 0.261

GIREI MSE 1.000 0.703 0.600 0.373 0.325 0.299 0.279 0.239

GIREII 1.029 0.487 0.359 0.233 0.239 0.237 0.231 0.216

GIREII MSE 1.046 0.438 0.305 0.187 0.193 0.192 0.189 0.179

(0.99, 0.1) HK 1.000 0.59 0.541 0.525 0.52 0.523 0.522 0.521

HKB 0.998 0.320 0.257 0.218 0.212 0.214 0.212 0.212
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LW 0.999 0.369 0.154 0.020 0.014 0.012 0.011 0.009

ICOMP 0.892 0.100 0.089 0.085 0.083 0.086 0.084 0.086

S 0.892 0.088 0.058 0.015 0.012 0.011 0.010 0.009

GM 0.728 0.062 0.043 0.020 0.018 0.016 0.016 0.014

AM 101.610 0.373 0.142 0.016 0.010 0.007 0.006 0.004

MED 0.772 0.196 0.118 0.020 0.016 0.014 0.013 0.012

JRR 1.000 0.633 0.533 0.463 0.454 0.457 0.455 0.454

URR 0.988 0.162 0.151 0.149 0.145 0.147 0.146 0.146

PCR 0.944 0.813 0.816 0.817 0.809 0.811 0.814 0.812

PCR CI 0.474 0.022 0.022 0.022 0.022 0.021 0.022 0.022

R-K 0.933 0.163 0.151 0.148 0.144 0.146 0.145 0.145

R-K CI 0.474 0.025 0.020 0.017 0.017 0.017 0.017 0.017

MCRR 0.934 0.156 0.147 0.146 0.141 0.144 0.143 0.143

MCRR CI 0.474 0.023 0.020 0.018 0.018 0.017 0.017 0.017

LRRE 0.472 0.007 0.007 0.008 0.007 0.007 0.006 0.006

LRRE MSE 0.639 0.488 0.490 0.491 0.486 0.489 0.487 0.485

OIRE 0.845 0.055 0.103 0.158 0.154 0.156 0.153 0.150

OIRE MSE 1.031 0.038 0.085 0.152 0.148 0.150 0.147 0.144

GIREI 1.000 0.974 0.961 0.360 0.302 0.280 0.265 0.236

GIREI MSE 1.000 0.539 0.485 0.292 0.262 0.249 0.238 0.219

GIREII 0.853 0.213 0.160 0.143 0.137 0.138 0.133 0.131

GIREII MSE 0.792 0.192 0.156 0.138 0.131 0.132 0.127 0.126

(0.9, 0.9) HK 1.000 0.874 0.709 0.568 0.564 0.562 0.564 0.561

HKB 1.000 0.649 0.475 0.300 0.292 0.289 0.291 0.285

LW 1.000 0.861 0.654 0.102 0.070 0.059 0.054 0.043

ICOMP 0.998 0.640 0.594 0.545 0.543 0.542 0.545 0.540

S 0.998 0.639 0.539 0.096 0.068 0.058 0.054 0.043

GM 0.996 0.306 0.244 0.113 0.099 0.091 0.087 0.074

AM 1.024 0.811 0.380 0.065 0.044 0.035 0.031 0.021

MED 0.998 0.361 0.324 0.145 0.136 0.133 0.133 0.129
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JRR 1.000 0.919 0.790 0.593 0.582 0.578 0.580 0.573

URR 1.014 0.197 0.187 0.182 0.181 0.181 0.183 0.179

PCR 1.000 0.828 0.817 0.813 0.812 0.812 0.815 0.814

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.018 0.275 0.217 0.183 0.180 0.180 0.183 0.178

R-K CI 1.018 0.275 0.217 0.183 0.180 0.180 0.183 0.178

MCRR 1.014 0.193 0.182 0.177 0.176 0.176 0.179 0.174

MCRR CI 1.014 0.197 0.187 0.182 0.181 0.181 0.183 0.179

LRRE 8.418 0.053 0.032 0.021 0.019 0.019 0.018 0.016

LRRE MSE 1.064 0.502 0.493 0.493 0.491 0.491 0.493 0.489

OIRE 0.999 0.229 0.236 0.218 0.205 0.200 0.201 0.189

OIRE MSE 0.998 0.182 0.207 0.208 0.197 0.193 0.194 0.183

GIREI 1.000 0.932 1.008 0.428 0.344 0.310 0.294 0.248

GIREI MSE 1.000 0.633 0.586 0.350 0.298 0.274 0.266 0.230

GIREII 0.978 0.449 0.376 0.297 0.271 0.258 0.254 0.231

GIREII MSE 0.976 0.450 0.379 0.268 0.245 0.235 0.232 0.212

(0.9, 0.1) HK 1.000 0.905 0.759 0.576 0.565 0.564 0.563 0.566

HKB 1.000 0.706 0.521 0.304 0.289 0.286 0.283 0.281

LW 1.000 0.842 0.630 0.156 0.125 0.115 0.107 0.095

ICOMP 0.999 0.539 0.453 0.366 0.356 0.356 0.355 0.355

S 0.999 0.538 0.440 0.147 0.121 0.114 0.106 0.095

GM 0.998 0.484 0.316 0.117 0.100 0.093 0.088 0.077

AM 56.142 2.452 1.063 0.116 0.072 0.057 0.049 0.034

MED 0.998 0.628 0.412 0.135 0.113 0.108 0.102 0.092

JRR 1.000 0.937 0.804 0.564 0.546 0.543 0.540 0.537

URR 1.000 0.537 0.406 0.231 0.219 0.218 0.216 0.214

PCR 1.064 0.847 0.828 0.818 0.818 0.818 0.818 0.819

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.063 0.491 0.370 0.210 0.198 0.197 0.195 0.194

R-K CI 0.999 0.498 0.372 0.210 0.198 0.197 0.195 0.194
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MCRR 1.063 0.481 0.346 0.216 0.206 0.206 0.204 0.201

MCRR CI 1.000 0.537 0.406 0.231 0.219 0.218 0.216 0.214

LRRE 2.626 0.112 0.083 0.069 0.064 0.064 0.062 0.057

LRRE MSE 1.094 0.527 0.504 0.497 0.492 0.491 0.490 0.491

OIRE 96.090 0.266 0.425 0.242 0.216 0.210 0.204 0.197

OIRE MSE 51.462 0.224 0.298 0.228 0.207 0.203 0.198 0.192

GIREI 1.001 1.165 1.080 0.396 0.323 0.294 0.278 0.248

GIREI MSE 1.000 0.652 0.583 0.324 0.281 0.262 0.252 0.231

GIREII 2.356 0.750 0.445 0.275 0.247 0.238 0.232 0.221

GIREII MSE 2.897 0.510 0.356 0.257 0.233 0.226 0.220 0.210

(0.7, 0.3) HK 1.000 0.959 0.875 0.597 0.585 0.579 0.578 0.572

HKB 1.000 0.842 0.678 0.347 0.327 0.318 0.315 0.306

LW 1.000 0.922 0.790 0.273 0.232 0.215 0.208 0.190

ICOMP 1.000 0.833 0.746 0.606 0.598 0.594 0.593 0.589

S 1.000 0.833 0.732 0.270 0.231 0.215 0.208 0.190

GM 1.036 1.325 0.750 0.192 0.154 0.139 0.132 0.116

AM 2043.436 6.822 2.632 0.244 0.138 0.104 0.088 0.062

MED 1.014 1.741 0.883 0.233 0.190 0.176 0.168 0.152

JRR 1.000 0.982 0.912 0.627 0.608 0.599 0.596 0.587

URR 1.000 0.725 0.515 0.250 0.236 0.231 0.231 0.229

PCR 1.021 0.847 0.827 0.829 0.829 0.829 0.827 0.822

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.020 0.741 0.647 0.234 0.213 0.205 0.202 0.196

R-K CI 1.000 0.748 0.649 0.234 0.213 0.205 0.202 0.196

MCRR 1.021 0.577 0.422 0.240 0.228 0.223 0.223 0.218

MCRR CI 1.000 0.725 0.515 0.250 0.236 0.231 0.231 0.229

LRRE 1.993 0.179 0.157 0.143 0.134 0.129 0.127 0.121

LRRE MSE 1.042 0.535 0.519 0.514 0.510 0.504 0.502 0.493

OIRE 5.249 1.009 0.916 0.316 0.272 0.251 0.243 0.217

OIRE MSE 5.249 0.542 0.424 0.286 0.259 0.243 0.237 0.213
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GIREI 1.000 1.058 1.022 0.407 0.341 0.305 0.290 0.253

GIREI MSE 1.000 0.649 0.603 0.355 0.309 0.280 0.270 0.238

GIREII 5.432 0.774 0.521 0.361 0.322 0.298 0.286 0.250

GIREII MSE 4.496 0.562 0.422 0.341 0.308 0.285 0.275 0.240

Table 3.8.3: Simulation Results for Population Size 30
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3.8.3 Appendix 3: Simulation Results for Population n=50

Eigenvalues of X’X and the β values for n=50

Correlation Structure (0.99,0.99) (0.99,0.1) (0.9,0.9) (0.9,0.1) (0.7,0.3)

λ1 4.906 2.994 4.22 2.879 2.229

λ2 0.033 1.076 0.265 0.986 1.002

λ3 0.026 0.902 0.217 0.855 0.857

λ4 0.021 0.017 0.177 0.182 0.471

λ5 0.015 0.011 0.122 0.097 0.441

β1 -0.448 0.573 -0.444 0.561 -0.534

β2 -0.448 0.574 -0.443 0.554 -0.542

β3 -0.447 0.574 -0.448 0.547 -0.548

β4 -0.447 0.039 -0.46 0.253 -0.151

β5 -0.447 -0.104 -0.441 0.122 -0.312

Table 3.8.4: Eigenvalues and Beta Values for Population Size 50
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Simulation Results for n=50

σ2

(ρ1, ρ2) Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) HK 1.000 0.655 0.580 0.560 0.558 0.558 0.557 0.556

HKB 0.999 0.417 0.337 0.284 0.280 0.280 0.279 0.277

LW 1.000 0.607 0.313 0.021 0.01 0.007 0.005 0.003

ICOMP 0.954 0.479 0.460 0.415 0.409 0.409 0.407 0.402

S 0.954 0.427 0.230 0.017 0.009 0.006 0.005 0.003

GM 0.822 0.204 0.166 0.080 0.068 0.062 0.058 0.046

AM 127.167 0.210 0.120 0.019 0.011 0.008 0.007 0.004

MED 1.219 0.298 0.230 0.135 0.131 0.131 0.131 0.128

JRR 1.000 0.747 0.648 0.572 0.567 0.567 0.566 0.563

URR 0.814 0.163 0.164 0.166 0.166 0.166 0.165 0.165

PCR 0.933 0.808 0.808 0.810 0.807 0.809 0.808 0.805

PCR CI 1.930 0.003 0.002 0.001 0.001 0.001 0.001 0.001

R-K 3.490 0.167 0.165 0.166 0.166 0.166 0.165 0.165

R-K CI 4.590 0.006 0.003 0.001 0.001 0.001 0.001 0.001

MCRR 0.808 0.157 0.158 0.161 0.161 0.161 0.160 0.159

MCRR CI 1.930 0.003 0.002 0.001 0.001 0.001 0.001 0.001

LRRE 1.836 0.003 0.002 0.002 0.002 0.002 0.002 0.001

LRRE MSE 0.695 0.476 0.477 0.480 0.479 0.479 0.479 0.477

OIRE 14.406 0.232 0.155 0.165 0.161 0.157 0.154 0.156

OIRE MSE 6.929 0.097 0.083 0.154 0.152 0.149 0.146 0.148

GIREI 1.000 0.935 1.027 0.467 0.372 0.325 0.298 0.245

GIREI MSE 1.000 0.703 0.609 0.368 0.313 0.280 0.262 0.225

GIREII 2.409 0.506 0.379 0.256 0.243 0.230 0.223 0.210

GIREII MSE 2.421 0.458 0.333 0.211 0.201 0.191 0.186 0.178

(0.99, 0.1) HK 1.000 0.595 0.530 0.518 0.515 0.515 0.514 0.515

HKB 0.998 0.320 0.247 0.210 0.205 0.205 0.203 0.203
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LW 0.999 0.368 0.154 0.018 0.012 0.010 0.009 0.008

ICOMP 0.851 0.067 0.052 0.057 0.055 0.054 0.053 0.052

S 0.851 0.060 0.041 0.013 0.010 0.009 0.009 0.008

GM 0.656 0.052 0.038 0.017 0.015 0.014 0.013 0.012

AM 111.554 0.440 0.172 0.017 0.010 0.008 0.006 0.004

MED 0.473 0.192 0.118 0.017 0.013 0.012 0.011 0.01

JRR 1.000 0.629 0.515 0.446 0.438 0.438 0.436 0.436

URR 0.996 0.180 0.148 0.140 0.137 0.137 0.135 0.135

PCR 0.811 0.809 0.800 0.808 0.809 0.809 0.807 0.805

PCR CI 0.028 0.018 0.019 0.018 0.018 0.018 0.018 0.018

R-K 0.809 0.179 0.147 0.139 0.136 0.136 0.134 0.134

R-K CI 0.028 0.022 0.019 0.015 0.015 0.015 0.015 0.015

MCRR 0.808 0.173 0.143 0.137 0.133 0.133 0.132 0.132

MCRR CI 0.028 0.023 0.020 0.016 0.015 0.015 0.016 0.016

LRRE 0.032 0.006 0.006 0.007 0.006 0.006 0.006 0.005

LRRE MSE 0.488 0.478 0.472 0.481 0.479 0.478 0.477 0.478

OIRE 0.650 0.048 0.064 0.138 0.137 0.134 0.131 0.133

OIRE MSE 0.515 0.031 0.054 0.132 0.131 0.129 0.126 0.128

GIREI 1.000 0.937 1.033 0.391 0.317 0.283 0.263 0.231

GIREI MSE 1.000 0.598 0.497 0.298 0.262 0.243 0.229 0.210

GIREII 0.565 0.212 0.144 0.112 0.109 0.108 0.106 0.105

GIREII MSE 0.468 0.183 0.138 0.109 0.106 0.104 0.102 0.102

(0.9, 0.9) HK 1.000 0.933 0.808 0.576 0.563 0.560 0.561 0.565

HKB 1.000 0.765 0.574 0.314 0.296 0.292 0.292 0.292

LW 1.000 0.922 0.780 0.161 0.114 0.097 0.088 0.071

ICOMP 0.999 0.717 0.648 0.567 0.558 0.555 0.557 0.563

S 0.999 0.717 0.634 0.153 0.111 0.096 0.087 0.070

GM 0.997 0.402 0.304 0.136 0.117 0.107 0.102 0.087

AM 1.012 1.736 0.760 0.106 0.069 0.055 0.047 0.031

MED 1.001 0.467 0.370 0.166 0.151 0.146 0.143 0.141
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JRR 1.000 0.966 0.867 0.606 0.586 0.580 0.580 0.581

URR 1.003 0.195 0.180 0.176 0.172 0.172 0.174 0.176

PCR 1.000 0.830 0.816 0.813 0.811 0.808 0.810 0.814

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.016 0.428 0.278 0.180 0.173 0.172 0.173 0.174

R-K CI 1.016 0.428 0.278 0.180 0.173 0.172 0.173 0.174

MCRR 1.003 0.193 0.176 0.172 0.168 0.169 0.171 0.171

MCRR CI 1.003 0.195 0.180 0.176 0.172 0.172 0.174 0.176

LRRE 1.915 0.065 0.045 0.036 0.034 0.033 0.031 0.028

LRRE MSE 1.033 0.503 0.491 0.491 0.485 0.484 0.485 0.487

OIRE 1.036 0.233 0.240 0.228 0.207 0.202 0.200 0.192

OIRE MSE 1.038 0.206 0.217 0.215 0.198 0.195 0.194 0.187

GIREI 1.000 0.926 1.037 0.465 0.371 0.329 0.306 0.259

GIREI MSE 1.000 0.728 0.632 0.376 0.317 0.290 0.274 0.240

GIREII 1.059 0.607 0.433 0.289 0.281 0.260 0.251 0.218

GIREII MSE 1.027 0.544 0.431 0.302 0.273 0.260 0.252 0.223

(0.9, 0.1) HK 1.000 0.949 0.847 0.574 0.565 0.559 0.560 0.557

HKB 1.000 0.808 0.623 0.309 0.293 0.284 0.281 0.272

LW 1.000 0.915 0.766 0.196 0.153 0.134 0.123 0.100

ICOMP 0.999 0.601 0.501 0.368 0.364 0.359 0.358 0.353

S 0.999 0.601 0.499 0.182 0.148 0.132 0.122 0.100

GM 1.000 0.735 0.448 0.140 0.116 0.106 0.098 0.079

AM 1.107 5.134 2.130 0.203 0.114 0.086 0.070 0.043

MED 1.031 1.113 0.600 0.169 0.135 0.122 0.113 0.095

JRR 1.000 0.974 0.882 0.568 0.550 0.539 0.536 0.526

URR 1.000 0.551 0.422 0.213 0.207 0.202 0.200 0.193

PCR 1.000 0.836 0.822 0.814 0.813 0.811 0.816 0.818

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.000 0.499 0.442 0.204 0.195 0.190 0.188 0.181

R-K CI 1.000 0.507 0.443 0.204 0.195 0.190 0.188 0.181
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MCRR 1.000 0.463 0.343 0.198 0.195 0.192 0.191 0.183

MCRR CI 1.000 0.551 0.422 0.213 0.207 0.202 0.200 0.193

LRRE 3.627 0.098 0.076 0.070 0.068 0.065 0.063 0.056

LRRE MSE 1.052 0.511 0.501 0.491 0.493 0.488 0.490 0.484

OIRE 1.105 0.193 0.224 0.231 0.231 0.218 0.210 0.189

OIRE MSE 1.105 0.164 0.193 0.218 0.221 0.210 0.203 0.184

GIREI 1.000 0.918 1.021 0.477 0.401 0.345 0.316 0.257

GIREI MSE 1.000 0.698 0.579 0.372 0.334 0.297 0.278 0.234

GIREII 1.025 0.534 0.420 0.329 0.299 0.283 0.274 0.241

GIREII MSE 1.058 0.426 0.338 0.265 0.262 0.244 0.235 0.206

(0.7, 0.3) HK 1.000 0.985 0.949 0.626 0.606 0.596 0.592 0.580

HKB 1.000 0.935 0.825 0.403 0.370 0.354 0.345 0.324

LW 1.000 0.968 0.899 0.396 0.342 0.315 0.298 0.262

ICOMP 1.000 0.962 0.913 0.756 0.744 0.738 0.735 0.727

S 1.000 0.962 0.897 0.396 0.342 0.315 0.298 0.262

GM 1.001 2.405 1.365 0.290 0.222 0.195 0.178 0.146

AM 1.334 12.283 5.117 0.451 0.246 0.180 0.146 0.093

MED 1.004 3.460 1.696 0.358 0.278 0.248 0.228 0.192

JRR 1.000 0.997 0.975 0.689 0.661 0.644 0.636 0.615

URR 1.000 0.902 0.763 0.282 0.261 0.252 0.247 0.240

PCR 1.000 0.927 0.862 0.832 0.832 0.831 0.831 0.824

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.000 0.847 1.033 0.276 0.233 0.216 0.207 0.191

R-K CI 1.000 0.855 1.036 0.276 0.233 0.216 0.207 0.191

MCRR 1.000 0.724 0.574 0.258 0.246 0.239 0.235 0.226

MCRR CI 1.000 0.902 0.763 0.282 0.261 0.252 0.247 0.240

LRRE 1.048 0.339 0.252 0.214 0.204 0.197 0.190 0.173

LRRE MSE 1.013 0.612 0.551 0.520 0.515 0.509 0.506 0.490

OIRE 1.015 5.972 2.519 0.417 0.335 0.297 0.277 0.227

OIRE MSE 1.015 0.779 0.495 0.316 0.298 0.278 0.264 0.222
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GIREI 1.009 0.954 0.941 0.452 0.396 0.350 0.322 0.257

GIREI MSE 1.005 0.623 0.581 0.400 0.361 0.325 0.301 0.244

GIREII 1.011 1.023 0.641 0.419 0.375 0.342 0.321 0.261

GIREII MSE 1.011 0.690 0.486 0.393 0.359 0.329 0.310 0.252

Table 3.8.5: Simulation Results for Population Size 50
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3.8.4 Appendix 4: Simulation Results for Population n=100

Eigenvalues of X’X and the β values for n=100

Correlation Structure (0.99,0.99) (0.99,0.1) (0.9,0.9) (0.9,0.1) (0.7,0.3)

λ1 4.912 3.082 4.382 2.665 2.360

λ2 0.027 1.002 0.202 1.014 0.898

λ3 0.023 0.883 0.170 0.972 0.820

λ4 0.020 0.017 0.137 0.193 0.531

λ5 0.017 0.016 0.108 0.156 0.390

β1 -0.448 -0.562 -0.446 0.568 -0.529

β2 -0.447 -0.561 -0.449 0.579 -0.528

β3 -0.447 -0.561 -0.452 0.575 -0.500

β4 -0.447 -0.167 -0.444 0.106 -0.294

β5 -0.447 -0.165 -0.444 0.005 -0.323

Table 3.8.6: Eigenvalues and Beta Values for Population Size 100
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Simulation Results for n=100

σ2

(ρ1, ρ2) Estimator 0.0001 0.25 1 25 50 75 100 400

(0.99, 0.99) HK 1.000 0.778 0.624 0.557 0.557 0.555 0.555 0.556

HKB 0.999 0.521 0.391 0.284 0.282 0.279 0.279 0.279

LW 1.000 0.771 0.492 0.034 0.016 0.010 0.008 0.004

ICOMP 0.977 0.502 0.479 0.404 0.405 0.400 0.402 0.400

S 0.977 0.493 0.343 0.026 0.013 0.009 0.007 0.004

GM 0.822 0.239 0.200 0.093 0.083 0.076 0.071 0.055

AM 221.390 0.326 0.170 0.031 0.019 0.014 0.011 0.006

MED 2.150 0.311 0.289 0.140 0.139 0.138 0.137 0.137

JRR 1.000 0.844 0.715 0.574 0.571 0.568 0.567 0.567

URR 0.571 0.155 0.158 0.154 0.159 0.157 0.158 0.159

PCR 1.038 0.806 0.808 0.799 0.802 0.803 0.802 0.807

PCR CI 0.796 0.002 0.001 0.001 0.001 0.001 0.001 0.001

R-K 13.926 0.166 0.161 0.155 0.159 0.157 0.158 0.159

R-K CI 14.160 0.013 0.005 0.001 0.001 0.001 0.001 0.001

MCRR 0.579 0.150 0.153 0.149 0.154 0.152 0.153 0.154

MCRR CI 0.796 0.002 0.001 0.001 0.001 0.001 0.001 0.001

LRRE 0.763 0.002 0.002 0.002 0.002 0.002 0.002 0.001

LRRE MSE 0.715 0.471 0.474 0.471 0.473 0.472 0.472 0.474

OIRE 3.137 0.602 0.224 0.172 0.160 0.151 0.150 0.146

OIRE MSE 2.811 0.116 0.088 0.152 0.147 0.142 0.142 0.138

GIREI 1.000 0.897 0.937 0.640 0.512 0.435 0.388 0.283

GIREI MSE 1.000 0.784 0.659 0.459 0.394 0.348 0.320 0.248

GIREII 1.672 0.546 0.480 0.254 0.248 0.237 0.232 0.210

GIREII MSE 1.693 0.527 0.431 0.207 0.203 0.194 0.191 0.175

(0.99, 0.1) HK 1.000 0.788 0.617 0.530 0.524 0.522 0.521 0.519

HKB 0.999 0.497 0.341 0.221 0.216 0.213 0.210 0.207

115



LW 1.000 0.687 0.389 0.038 0.024 0.019 0.016 0.012

ICOMP 0.958 0.092 0.076 0.062 0.065 0.065 0.061 0.057

S 0.958 0.092 0.070 0.023 0.018 0.016 0.015 0.012

GM 0.895 0.090 0.061 0.026 0.023 0.021 0.020 0.016

AM 304.182 1.244 0.486 0.041 0.023 0.017 0.013 0.008

MED 1.282 0.244 0.192 0.030 0.021 0.018 0.017 0.014

JRR 1.000 0.824 0.645 0.462 0.453 0.448 0.446 0.441

URR 0.998 0.212 0.167 0.140 0.139 0.137 0.136 0.133

PCR 1.056 0.809 0.806 0.808 0.805 0.809 0.810 0.811

PCR CI 2.495 0.025 0.024 0.024 0.024 0.024 0.023 0.023

R-K 1.053 0.220 0.170 0.139 0.139 0.137 0.135 0.132

R-K CI 2.495 0.049 0.031 0.020 0.019 0.019 0.018 0.018

MCRR 1.054 0.196 0.158 0.135 0.135 0.134 0.132 0.129

MCRR CI 2.495 0.041 0.028 0.020 0.019 0.019 0.019 0.019

LRRE 2.427 0.010 0.008 0.008 0.008 0.008 0.008 0.007

LRRE MSE 0.893 0.481 0.478 0.483 0.480 0.480 0.479 0.477

OIRE 2268.456 0.935 0.225 0.164 0.155 0.148 0.141 0.131

OIRE MSE 11.364 0.039 0.037 0.144 0.145 0.140 0.135 0.126

GIREI 1.000 0.877 0.936 0.579 0.465 0.397 0.355 0.266

GIREI MSE 1.000 0.708 0.537 0.391 0.341 0.306 0.285 0.231

GIREII 2.804 0.349 0.232 0.124 0.129 0.125 0.120 0.114

GIREII MSE 2.838 0.250 0.198 0.120 0.123 0.119 0.115 0.109

(0.9, 0.9) HK 1.000 0.969 0.902 0.577 0.563 0.561 0.559 0.557

HKB 1.000 0.871 0.705 0.330 0.307 0.300 0.296 0.288

LW 1.000 0.965 0.890 0.233 0.160 0.127 0.109 0.073

ICOMP 1.000 0.757 0.671 0.548 0.535 0.533 0.532 0.530

S 1.000 0.757 0.671 0.215 0.152 0.123 0.106 0.071

GM 1.028 0.455 0.347 0.166 0.140 0.131 0.124 0.098

AM 2063.271 3.869 1.492 0.176 0.110 0.085 0.072 0.043

MED 0.999 0.537 0.403 0.207 0.175 0.165 0.160 0.148
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JRR 1.000 0.991 0.940 0.627 0.600 0.592 0.586 0.576

URR 0.998 0.207 0.180 0.164 0.164 0.165 0.165 0.164

PCR 1.045 0.834 0.815 0.808 0.805 0.806 0.805 0.804

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.041 0.610 0.349 0.175 0.168 0.167 0.166 0.163

R-K CI 0.998 0.610 0.349 0.175 0.168 0.167 0.166 0.163

MCRR 1.039 0.202 0.174 0.159 0.159 0.161 0.160 0.159

MCRR CI 0.998 0.207 0.180 0.164 0.164 0.165 0.165 0.164

LRRE 2.139 0.071 0.042 0.026 0.026 0.026 0.025 0.022

LRRE MSE 0.992 0.505 0.487 0.478 0.477 0.478 0.477 0.475

OIRE 4.504 0.693 0.296 0.252 0.224 0.214 0.205 0.185

OIRE MSE 4.544 0.227 0.176 0.205 0.198 0.197 0.191 0.176

GIREI 1.000 0.910 0.894 0.689 0.541 0.469 0.417 0.306

GIREI MSE 1.000 0.788 0.655 0.482 0.409 0.373 0.341 0.266

GIREII 2.569 0.610 0.472 0.272 0.291 0.295 0.291 0.248

GIREII MSE 2.253 0.612 0.484 0.255 0.267 0.268 0.264 0.225

(0.9, 0.1) HK 1.000 0.977 0.925 0.591 0.575 0.569 0.568 0.563

HKB 1.000 0.900 0.754 0.343 0.317 0.304 0.300 0.286

LW 1.000 0.958 0.871 0.278 0.218 0.189 0.173 0.137

ICOMP 1.000 0.760 0.634 0.426 0.417 0.411 0.410 0.404

S 1.000 0.760 0.634 0.263 0.212 0.186 0.171 0.137

GM 1.124 1.513 0.806 0.197 0.155 0.138 0.127 0.099

AM 5334.459 13.833 5.059 0.407 0.211 0.150 0.118 0.068

MED 1.009 2.549 1.159 0.254 0.193 0.167 0.152 0.121

JRR 1.000 0.994 0.954 0.610 0.582 0.568 0.563 0.546

URR 1.000 0.776 0.592 0.245 0.227 0.217 0.214 0.206

PCR 1.022 0.843 0.827 0.811 0.813 0.816 0.818 0.816

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.022 0.682 0.524 0.221 0.204 0.194 0.191 0.182

R-K CI 1.000 0.756 0.545 0.222 0.204 0.195 0.191 0.182
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MCRR 1.022 0.667 0.508 0.224 0.212 0.205 0.203 0.195

MCRR CI 1.000 0.776 0.592 0.245 0.227 0.217 0.214 0.206

LRRE 1.272 0.146 0.105 0.092 0.090 0.087 0.084 0.074

LRRE MSE 1.023 0.516 0.501 0.491 0.494 0.493 0.494 0.486

OIRE 2.248 0.269 0.301 0.255 0.254 0.243 0.238 0.209

OIRE MSE 2.236 0.206 0.241 0.234 0.240 0.233 0.230 0.203

GIREI 1.000 0.984 1.028 0.562 0.463 0.397 0.361 0.279

GIREI MSE 1.000 0.760 0.616 0.423 0.377 0.335 0.313 0.252

GIREII 1.790 0.923 0.631 0.325 0.313 0.299 0.292 0.246

GIREII MSE 1.670 0.565 0.420 0.296 0.293 0.282 0.276 0.234

(0.7, 0.3) HK 1.000 0.991 0.971 0.654 0.616 0.600 0.591 0.577

HKB 1.000 0.960 0.884 0.440 0.389 0.367 0.353 0.324

LW 1.000 0.982 0.942 0.466 0.384 0.346 0.322 0.265

ICOMP 1.000 0.971 0.928 0.750 0.731 0.722 0.717 0.707

S 1.000 0.971 0.927 0.465 0.384 0.346 0.322 0.265

GM 1.002 3.625 2.049 0.378 0.274 0.233 0.209 0.156

AM 1.150 23.962 10.139 0.820 0.419 0.291 0.229 0.128

MED 1.006 6.187 2.910 0.470 0.339 0.288 0.262 0.205

JRR 1.000 0.999 0.990 0.720 0.673 0.652 0.639 0.610

URR 1.000 0.811 0.539 0.235 0.219 0.214 0.213 0.208

PCR 1.000 0.926 0.859 0.821 0.828 0.830 0.829 0.825

PCR CI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R-K 1.000 2.839 2.482 0.387 0.281 0.243 0.225 0.193

R-K CI 1.000 2.840 2.482 0.387 0.281 0.243 0.225 0.193

MCRR 1.000 0.774 0.487 0.227 0.216 0.213 0.212 0.205

MCRR CI 1.000 0.811 0.539 0.235 0.219 0.214 0.213 0.208

LRRE 1.031 0.351 0.251 0.207 0.199 0.192 0.186 0.164

LRRE MSE 1.008 0.616 0.548 0.523 0.520 0.515 0.511 0.495

OIRE 1.008 5.893 3.412 0.475 0.369 0.331 0.310 0.250

OIRE MSE 1.008 1.256 0.716 0.332 0.317 0.303 0.292 0.241
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GIREI 1.000 0.948 1.068 0.590 0.488 0.437 0.398 0.300

GIREI MSE 1.000 0.737 0.641 0.480 0.421 0.389 0.361 0.278

GIREII 1.006 1.283 0.816 0.471 0.433 0.404 0.381 0.296

GIREII MSE 1.006 0.995 0.646 0.437 0.409 0.384 0.363 0.284

Table 3.8.7: Simulation Results for Population Size 100
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Chapter 4

Relative Value Dynamic

Nelson and Siegel Model
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4.1 Abstract

This paper asks whether the Dynamic Nelson Siegel model can be used as the

basis of a relative value trading model. It introduces a relative value trading

system based on the Dynamic Nelson-Siegel term structure model and illus-

trates its use on some sample data. The model seeks to identify relative value

opportunities in the steepness and curvature of the yield curve being tested.

The model was tested on empirical and simulated versions of the US Treasury

zero coupon curve: it was found to be profitable on both data sets. Although

based on the Dynamic Nelson and Siegel model it utilizes different outputs from

the Kalman filtering process to produce a trading signal and a threshold value

for the trading signal that determines where the trades should be entered and

exited and as such it represents a new contribution to the literature on Dynamic

Nelson Siegel Models.
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4.2 Introduction

The results of the simulation study in chapter three along with the results of

chapter two meant that the two key calibration issues had now been addressed,

and the rv-NSS could now be implemented effectively.

However, as part of my ongoing research, I’d started looking into Dynamic

Nelson and Siegel models (DNS) which were first introduced by Diebold and

Li (2006), this led me to think that a relative value model based on the DNS

would have some distinct advantages, compared to the rv-NSS.

Firstly the rv-NSS only produces estimates of the parameter values at each ob-

servation point, thus the modelling of the time series dynamics must be done

externally. The DNS model incorporates modelling of the time series of the

parameter estimates meaning that all the parameters can be estimated simul-

taneously and only one round of calibration is necessary.

Secondly the DNS utilizes a Kalman filter to estimate its log-likelihood. This

can help alleviate the multicollinearity problems as the filter knows what the

previous estimate was and uses this as a basis to calculate the new parameter

estimates making wild changes in the parameter estimates less likely.

Thirdly the standard rv-NSS does not account for the possibility of regime

changes and would rely on the analyst observing that a regime change had

taken place. This would then mean a recalibration of the model. By basing the

rv-DNS on one of the regime switching versions mentioned in section 1.2.3, such

regime shifts could be handled internally by the rv-DNS.

Fourthly as also mentioned in section 1.2.3 the DNS can be made arbitrage free,

this structure could also be applied to the rv-DNS. In contrast the rv-NSS does

not consider whether its curves are arbitrage free.
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So it was decided that chapter 4 would focus on developing and testing an rv-

DNS, for the first attempt it was decided to keep the model as parsimonious

as possible so it was decided not to use the Markov switching or arbitrage

free machinery mentioned above. However once the concept is validated these

generalizations could likely be added.

To adapt the model logic of the rv-NSS to a dynamic version some changes

had to be made. Originally it was planned to use the dynamic version of the

NSS model (DNSS) but as shown by Christensen et al. (2009), it is not possible

to have an arbitrage free version of the DNSS. Arbitrage freeness can only be

re-established with the addition of another basis function. This meant that if

the dynamic relative value model could be made arbitrage free, then either the

five factor version introduced by Christensen et al. (2009) must be considered

or the three factor DNS version must be considered. To reduce the risk of

over-fitting and to keep the model as parsimonious as possible, the three factor

version was chosen as the basis for the relative value model. Also as explained

previously, the rv-NSS model is designed to match some key curve points, even

with three factors it should be possible to match three key points, sufficient for

steepener and curvature strategies. It was hoped that this could be done in

the rv-DNS framework by adapting the DNS model to use constrained Kalman

filtering (see for example Simon (2009)). Ultimately this proved fruitless as,

when the number of loading parameters being estimated matches the number

of restrictions, essentially no filtering takes place and the model breaks down.

So the key point matching had to be dropped.

However the Kalman filter can be used to produce a prediction of where the

model thinks the curve should be based on the previous estimate from the fil-

tering process. This can then be used to calculate the model implied levels of

steepness and curvature. By subtracting these from the market observed lev-

els of steepness and curvature, we get a spread that quantifies the richness or
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cheapness of the strategies relative to the market implied ones. Thus when the

spread is suitably low a long position should be established and vice versa. To

determine what constitutes a suitably low level, some measure of the predicted

standard deviation of the observed error is required. Happily the Kalman filter

provides this too. This prior predicted standard deviation can be used to cal-

culate the standard deviation of the candidate strategies. The idea of using the

Kalman filter outputs in this way was based on an idea presented in Chan (2013)

who used a Kalman filter as part of a pairs trading strategy. Thus although the

rv-DNS is based on the DNS it differs in the outputs it uses from the Kalman

filtering process and the way in which it utilizes those outputs. Chapter four

introduces the rv-DNS and tests it on simulated and empirical data.

4.3 Literature Review

In order to develop and evaluate relative value strategies in fixed income it is

first necessary to have a good term structure model. As noted in Niu and Zeng

(2012) term structure models can be thought of as belonging to two classes:

• Financial theory based affine arbitrage-free class

• Statistically based reduced form class

The general framework for the first class was developed by Duffie and Kan (1996)

and Dai and Singleton (2000). Specific examples of these types of model include:

Vasicek (1977), Cox et al. (1985) and Hull and White (1990) even the Heath

et al. (1992) can be shown to be a member of this class. The arbitrage free nature

of these models is appealing both on theoretical grounds and to practitioners

when pricing derivative securities. However the main disadvantage is that the

forecasting ability of these models has been shown to be no better than that of

a random walk, Duffee (2002).
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The model proposed by Nelson and Siegel (1987) (NS) and its extension by

Svensson (1994) termed the Nelson Siegel and Svensson model (NSS), is a well

known example of the second class of models which is popular with policy mak-

ers with nine out of thirteen central banks reportedly using the Nelson and

Siegel and/or the Svensson variant according to report published by the Bank

of International Settlements (BIS) BIS (2005).

The original NS model consists of three parametric functions. As noted by

Diebold and Li (2006), each parametric function is similar to one of the level,

slope and curvature factors found in statistical factor analyses of the yield curve.

This gives the NS model intuitive appeal.

The weighted combination of these parametric functions are sufficiently flexible

to allow most commonly encountered yield curve shapes to be modelled. The

extension by Svensson (1994) simply adds another parametric function (a second

curvature factor), thus allowing an even richer array of term structures to be

modelled. The primary advantages of the model are that it is parsimonious,

and as will be discussed can be used as the basis for good forecasts. One of the

main criticisms of these models however has been that they do not explicitly

enforce no arbitrage, although as shown by Coroneo et al. (2011) the parameters

of no-arbitrage models are not statistically different from those obtained from

the NS model so it can be regarded as being arbitrage free at least in the case

of the US market data that they tested.

There has been renewed interest in the NS type models which was precipitated

by Diebold and Li (2006) who introduced the Dynamic Nelson-Siegel (DNS)

model which can be used for forecasting. The DNS extends the NS model by

recasting it into a dynamic framework where the loadings applied to each of

the NS parametric functions are given AR(1) dynamics. They employed a two

step estimation procedure based on ordinary least squares estimation with a

fixed lambda value, which was chosen beforehand to represent the point where

maximum curvature was thought most likely to occur. Diebold et al. (2006)
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reformulated this model into a state space framework. This allowed the pa-

rameters to be estimated in a one step process using the Kalman filter to es-

timate the log-likelihood of the state space model, and this log-likelihood was

then maximized using derivative based optimization techniques to find the maxi-

mum log-likelihood estimates of the parameters. In this new one step estimation

procedure it was also possible to estimate lambda from the data. Further their

paper showed that the model has good forecasting properties in the longer term.

De Pooter (2007) also showed that the DNS (and some generalizations thereof)

have good forecasting properties.

The question over the arbitrage freeness of the DNS was fully addressed by

Christensen et al. (2011) they combined the affine arbitrage free class of models

with the DNS model to produce an arbitrage free Dynamic Nelson-Siegel model

(AFDNS). This was done initially with continuous time dynamics and later

extended to discrete dynamics by Niu and Zeng (2012). The AFDNS retains

the level, slope and curvature factors of the NS/DNS but adds an additional

factor that ensures that the model is arbitrage free. As shown in Christensen

et al. (2011) the differences between the DNS and AFDNS models are most

apparent for the maturities in excess of ten years. In addition Christensen

et al. (2009) showed that the dynamic Svensson model cannot be re-cast into an

arbitrage free form, however by adding a fifth parametric function (an additional

slope factor) they were able to produce a dynamic Svensson like model that is

arbitrage free.

Xiang and Zhu (2013) and Levant and Ma (2013) criticize the assumption that

the lambda parameter is constant in DNS models, as empirical evidence suggests

that lambda may vary over time in response to changes in the business cycle,

monetary policy and times of market stress. Although lambda is estimated in

the Diebold et al. (2006) estimation procedure it is still assumed to be constant.

Two different methods to address this problem have been developed. Firstly

Koopman et al. (2010) extends Diebold et al. (2006) so that lambda is also a
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time varying parameter as well as the loading parameters. A second approach

has been to generalize the DNS model into a Markov switching framework.

Several papers have gone in this direction, Levant and Ma (2013) looks at two

models, one with different lambda parameters and one with different volatility

parameters in each regime. They use a Kalman filter to estimate the parameters

and a Kim filter to estimate the regimes. Xiang and Zhu (2013) introduce a

regime switching model which can have up to three volatility regimes, although

they find that two regimes seem to work best. They estimate their model using

Reverse Jump Markov Chain Monte Carlo. They also find that their model

offers superior out of sample forecasting results as compared to the original

DNS model. Hevia et al. (2014) and Bandara and Munclinger (2012) introduce

arbitrage free Markov Switching versions of the DNS model, Hevia et al. (2014)

also show that its forecasting performance is superior to that of the original

single regime DNS model. Lastly Christensen (2013) uses a Markov switching

model to handle the very current problem of rates being close to zero by having

one of the switching states be a zero bound state.

This paper introduces a relative value dynamic Nelson-Siegel model (rv-DNS).

The relative value strategies belong to one of two classes:

• Steepener

• Curvature

The original DNS model was used as the basis for the relative value model, also

the same data set and optimization method were employed to keep the new

model as consistent with the literature as possible. The simpler AR(1) version

rather than the VAR(1) version has been used because as shown in Diebold et al.

(2006) it does not make a big difference to the results, at least on this data set,

and moreover keeps the model as parsimonious as possible. It was decided not

to use the no-arbitrage version because as noted before, the arbitrage free and
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the original version produce results that are statistically indistinguishable from

each other, but the original version does it in a more parsimonious way. Also the

main focus of this study will be on maturities up to ten years but as previously

mentioned the biggest differences between the DNS and AFDNS only become

apparent after the ten year point. Lastly making the model arbitrage free may

remove or at least attenuate some of the very relative value opportunities the

model is trying to capture.

As will be seen, although based on the DNS, the rv-DNS differs in the outputs

it takes from the Kalman filtering process and the way those outputs are used.

Rather than taking the fully filtered posterior estimates and trying to predict the

whole yield curve, it takes the partially filtered estimates based on the previous

day’s data and looks for deviations of the steepener and curvature strategies

away from their mean value.
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4.4 The Underlying Models

4.4.1 The Nelson-Siegel Model

The NS model can be defined mathematically as follows

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
(4.4.1)

The first factor is simply a constant, and can be interpreted as the long term

level of interest rates, the second can be interpreted as the curve’s steepness

while the last can be interpreted as the curvature of the yield curve. The

similarity of these factors to the empirical factor loading found by Bliss (1997)

and Litterman and Scheinkman (1991) was noted in Diebold and Li (2006).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t = 0 to 30y

yi
el

d

Figure 4.4.1: The Nelson-Siegel Basis Functions

Further intuition on the role of the different factors can be gained when we

consider the behaviors of their parametric functions in the limit. The constant

1 is independent of time and so as noted before can be used to represent the
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long term level of rates. The second factor starts off at one when τ = 0 and

decays rapidly as τ increases, so it represents a short term factor. The third

factor starts off at zero and then rises to a maximum value as τ is increased, it

then falls back to zero as τ continues to increase. The value of λ in the third

factor determines the location of its maximum value.

4.4.2 The Dynamic Nelson Siegel Model

Following broadly the exposition given in Diebold et al. (2006), who recast the

DNS model in state space form and as stated in the introduction using the

assumption that the loading parameters follow an AR(1) processes, so that:

y(τ)t = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(4.4.2)

So the loading factors are now time varying. As in Diebold et al. (2006) Lt,

St and Ct are the time varying Level, Slope and Curvature parameters, which

represents the value of the driving AR(1) processes at each point in time.
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State Space Representation

The measurement equation is:


yt(τ1)

...

yt(τN )

 =


1 1−exp−λτ1

λτ1

1−exp−λτ1
λτ1

− exp−λτ1
...

...
...

1 1−exp−λτN
λτN

1−exp−λτN
λτN

− exp−λτN



Lt

St

Ct

+


εt(τ1)

...

εt(τN )


(4.4.3)

This can be expressed in matrix form as:

Yt = BXt + Et (4.4.4)

Where Et∼ N(0,H) and H is a diagonal matrix with identical entries on the

diagonal.

The transition equation is:


Lt − µL
St − µS
Ct − µC

 =


a11 0 0

0 a22 0

0 0 a33



Lt−1 − µL
St−1 − µS
Ct−1 − µC

+


ηt(L)

ηt(S)

ηt(C)

 (4.4.5)

Which can also be expressed in matrix form as:

(Xt − µ) = A(Xt−1 − µ) + ηt (4.4.6)

Where ηt∼ N(0,Q) and Q is a diagonal matrix with differing values on the

diagonal.
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In order for the Kalman filter (which is introduced in the next section) the

measurement and transition errors must be orthogonal to each other and to the

initial state.

 εt

ηt

 ∼WN

 0

0

 ,

 H 0

0 Q



E(X0ε
′) = 0

E(X0η
′) = 0

4.4.3 Kalman Filter

The Kalman filter has two stages

• Prior step where the model parameters are estimated using the informa-

tion available up to the previous time step

• Update step where information from the latest observation is incorporated

into the model

Prior Step

The transition equation can be expressed as:

Xt = AXt−1 + (I − A)µ + ηt (4.4.7)

Thus the predicted state estimate is
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Xt|t−1 = E[Xt]t−1 = AXt−1 + (I − A)µ (4.4.8)

The predicted covariance estimate is

Pt|t−1 = E[(Xt −Xt|t−1)((Xt −Xt|t−1)′]t−1 = APt−1A
′ + Q (4.4.9)

Update Step

Measurement Residual

et = Yt −BXt|t−1 (4.4.10)

Measurement Covariance

St = V ar(et) = BPt|t−1B
′ + H (4.4.11)

Optimal Kalman Gain

Kt = Pt|t−1B
′S−1t (4.4.12)

Posteriori State Estimate

Xt|t = Xt|t−1 + Ktet (4.4.13)

Posteriori Covariance Estimate
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Pt|t = (I−KtB)Pt|t−1 (4.4.14)

4.5 Relative Value Dynamic Nelson Siegel Model

4.5.1 Relative Value Dynamic Nelson Siegel Model Logic

The rv-DNS like the DNS uses the Kalman filter to estimate the unobservable

system parameters, however the rv-DNS utilizes the outputs from the Kalman

filter in a different manner to create the signals used for the trading system.

The measurement error equation 4.4.10 represents the deviation of the observed

yield curve from the prior model estimate which is based on the previous Kalman

filter estimate. From this the corresponding relative value measurement errors

from the Steepener and Curvature strategy can be calculated as shown below.

This can then be subtracted from the empirically observed steepness and cur-

vature to give the spread between them which tells us how rich or cheap the

relative value strategy is relative to the model’s estimate. To determine what

constitutes a significant spread the measurement covariance eqn 4.4.11, which

also is based on the previous Kalman filter estimate, is used. The measurement

covariance gives the covariance of the error between the empirical and model

yield curves. This can be used to calculate the corresponding spread covariance

also shown below. Taking the square root of the spread covariance gives the

spread standard deviation which is used as the threshold value to decide when

to take a position. The idea is simply to buy when the spread is below the neg-

ative of the threshold value and to take an offsetting position when the spread

moves back above the positive value of the threshold and vice versa for short

positions. E.g. if the spread between the empirical and model curve steepness

is found to be higher than than the threshold value a flattener position would
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be established with an offsetting position taken when the spread between the

empirical and model steepness moves back below the negative of the threshold

value. The idea to use the Kalman filter outputs in this way was based on an

idea presented in Chan (2013) who used it as part of a pairs trading strategy.

4.5.2 rv-DNS signal

The following section presents these ideas mathematically. Analogously to

Diebold and Li (2006) the Steepener position is taken to be the difference be-

tween the longest and shortest maturities. Similarly the Curvature position is

taken to be twice the mid maturity rate minus the shortest and longest rates.

The model estimate of the curve based on the priori information

Ypredt = BXt|t−1 (4.5.1)

The relative value strategies are then calculated for the estimated and actual

yield curves

Steepener

Stt = Y (120)− Y (3) (4.5.2)

Curvature

Crv = 2Y (24)− Y (120)− Y (3) (4.5.3)

The signal is then simply the difference between the observed and predicted

steepener and curvature positions.

135



Psignal = Pact − Ppred (4.5.4)

Where P (Position) is used generically to represent either the steepener or cur-

vature trading position.

To calculate the threshold value, the well known formula for calculating the vari-

ances of linear combinations of random variables is applied to the measurement

covariance equation 4.4.11.

Variance Steepener

Applying the well known formula for the variance of two variables:

Var(St) = Var(Y (120)) + Var(Y (3))− 2Cov(Y (3), Y (120)) (4.5.5)

Variance Curvature

Similarly for three variables

Var(Crv) = 4Var(Y (24)) + Var(Y (3)) + Var(Y (120))− 4Cov(Y (3), Y (24))

−4Cov(Y (120), Y (24)) + 2Cov(Y (3), Y (120))

(4.5.6)
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4.5.3 Relative Value Dynamic Nelson Siegel Trading Rules

The main assumptions underlying the model are:

• The curve can be accurately modelled from the Nelson-Siegel basis func-

tions

• These functions are accurately calibrated to capture the relationships be-

tween different points on the curve

• The AR(1) structure accurately captures the dynamic relationship be-

tween the factors

• The Kalman filtered estimates are optimal, i.e. the data satisfies the

linear/Gaussian assumptions of the model

• The model assumes that any (large) observed deviations from the pre-

dicted curve values will revert at a later time point

The model trading rules for short positions are:

• If the signal is > standard deviation of the strategy error then a short

position is put on

• Each time the signal is > standard deviation of the strategy error, an

additional position is put on

• All open positions are closed the first time that signal < -standard devia-

tion of the strategy error by taking an offsetting long position

and analogously

The model trading rules for long positions are:
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• If the signal is < -standard deviation of the strategy error then a long

position is put on

• Each time the signal is < -standard deviation of the strategy error, an

additional position is put on

• All open positions are closed the first time that signal> standard deviation

of the strategy error by taking an offsetting short position

4.6 Testing Methodology

The model will be tested via means of a simulation study and an out of sample

test conducted on empirical data.

To test the model out of sample a walk-forward-analysis (WFA) which was

first introduced by Pardo (2008) was conducted. Rather than just having one

optimization and out of sample test set WFA breaks the data set into a number

of subperiods. These subperiods allow the model to be repeatedly optimized

and tested out of sample, the procedure is illustrated in fig: 4.6.1, which was

taken from Wiecki (2012). The advantages of this form of testing are that it

exposes the model to a variety of different market conditions and assesses its

out of sample performance in those differing market conditions. Also by testing

the model repeatedly out of sample it gives a more robust test compared to

traditional out of sample testing where typically there is only one out of sample

testing period, thus the WFA results are less likely to be the result of chance.

The WFA represents a stern test of any trading strategy. When deciding how

to split the data there are two conflicting goals: as many walk forward tests as

possible should be included, so the data should be split as small as possible,

but each subset must be large enough to produce robust parameter estimates

and sufficient trades for analysis. It was found that splitting the data into six

subperiods (called periods 1-6) of fifty eight months each best satisfied these
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conflicting requirements. So the model would be calibrated on periods 1 and 2

then tested on period 3. It would then be walked forward calibrated on periods

2 and 3 and tested on period 4 and so on.

In the simulation study 1,000 realizations of the data were generated using the

state space model shown in section 4.4.2 using the results from the optimization

step see section 4.9. The parameters used for the simulation study are different

to those used in the out of sample testing discussed above. The parameters

used in the simulation study were produced from calibration to periods 3, 4, 5

and 6 individually. These parameters were then used to simulate those same

periods, and the strategies were then run with the same parameters used in

the simulation, as such they can be thought of as in sample. The simulation

study will test that the model is working as intended and will also serve as a

benchmark for the out of sample results.

In addition it was decided to estimate the value of lambda in each of the cal-

ibration stages of the simulation study and the WFA, as this would allow its

stability across the periods to be observed. The calibrated lambda value will

still remain constant at the value from its corresponding calibration stage during

each testing period of the WFA.

To illustrate the model function a time series of the rv-DNS trading signal

against the threshold value will be presented, this should show whether it is

functioning as intended. In addition the profit and loss (PnL) will be calculated

in basis points (bp) according to the rules in the previous section. The base test

is that the strategies should be profitable and a break-down of the PnLs will also

be provided to give a fuller picture of how the strategies are performing including

the Sharpe Ratios (SR) to assess the strategies’ risk adjusted performance. The

testing was performed in Matlab and included the use of the Kalman Filter

toolbox by Murphy (2004).
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Figure 4.6.1: WFA methodology
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4.7 Empirical Data

The data set is virtually the same as that used in Diebold et al. (2006), (an

additional month was added to facilitate the WFA). The data set consists of

US treasury yields for the period from January 1972 until January 2001, for

the maturities 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and

120 months. They were derived from the bid/ask average quotes observed at

the end of each month using the Fama and Bliss (1987) approach. The data is

shown in fig 4.7.1.
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Figure 4.7.1: US Zero Coupon Curve 1972-2000

In accordance with the WFA methodology the data was then subdivided into 6

periods: Period 1=(Jan72-Nov76), Period 2=(Dec76-Sep81), Period 3=(Oct81-

Jul86), Period 4=(Aug86-May91), Period 5=(Jun91-Mar96) and Period 6=(Apr96-

Jan01).
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US Treasury Zero Coupon Yields Descriptive Statistics
Maturity (months) Mean Stdev Max Min ρ(1) ρ(12) ρ(24)
3 6.85 2.70 16.02 2.73 0.970 0.700 0.417
6 7.08 2.71 16.48 2.89 0.972 0.719 0.449
9 7.20 2.68 16.39 2.98 0.972 0.726 0.466
12 7.30 2.61 15.82 3.11 0.971 0.729 0.480
15 7.41 2.55 16.04 3.29 0.973 0.737 0.499
18 7.48 2.54 16.23 3.48 0.974 0.744 0.511
21 7.54 2.52 16.18 3.64 0.975 0.747 0.521
24 7.56 2.48 15.65 3.78 0.975 0.745 0.527
30 7.65 2.40 15.40 4.04 0.975 0.755 0.545
36 7.72 2.38 15.77 4.20 0.977 0.761 0.557
48 7.86 2.32 15.82 4.31 0.977 0.765 0.570
60 7.93 2.29 15.01 4.35 0.980 0.779 0.589
72 8.05 2.26 14.98 4.38 0.980 0.786 0.600
84 8.08 2.22 14.98 4.35 0.980 0.768 0.589
96 8.14 2.20 14.94 4.43 0.982 0.793 0.616
108 8.18 2.21 15.02 4.43 0.982 0.794 0.616
120 (level) 8.14 2.17 14.93 4.44 0.982 0.771 0.599
Slope 1.29 1.46 4.06 -3.51 0.929 0.410 0.055
Curvature 0.12 0.72 3.17 -1.84 0.788 0.259 0.110

Table 4.7.1: Summary Statistics for Empirical US Zero Coupon Yields

4.8 Results

4.9 Maximum Likelihood Estimation of the Op-

timal Parameters

There were eleven values to be optimized for each calibration of the data sets:

the AR(1) parameter, mean level and variance for all three loading parameters

Lt, St and Ct from equation 4.4.5. In addition the error variance on the

observations (which is assumed to be identical for all observations) and the

value of lambda from equation 4.4.3.

The optimal parameters were found using the MARSS (Multivariate Autore-

gressive State-Space Modelling) package in R provided by Holmes et al. (2015).
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The package allows maximum likelihood estimates of the parameters of linear

multivariate autoregressive state space models with Gaussian errors through

application of the EM (Expectation Maximization) algorithm. The package

performed excellently and was able to find robust estimates on much smaller

data sets than any other method tested. However the package as presented is

not able to estimate the lambda parameters. Thus it was necessary to augment

the algorithm with a separate step to update the lambda values between each

step of the EM algorithm. To find the optimal value, the log-likelihood was

differentiated numerically with respect to lambda using the numDeriv package

Gilbert and Varadhan (2015), the value of lambda that set this derivative to zero

was then found using the R function unitroot. Estimating lambda in this way

was based on an idea mentioned in Coroneo et al. (2014). It was also possible to

estimate the standard errors for the lambda estimate using the hessian function

from numDeriv and taking the inverse of its negative value (as the log-likelihood

is being maximized) and then taking the square root of the result. The various

parameter estimates are listed in table 4.9.1 onwards, each estimate is listed

with its standard error in brackets below it.

143



4.9.1 Maximum Likelihood Estimation of the Parameters

for each Subperiod

Parameter Estimates Subset 1
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.973 0 0 7.98 Lt 0.031 0 0 0.097 0.0147

(0.038) (10.07) (0.022) (0.008) (0.003)
St 0 0.919 0 -0.99 St 0 0.490 0

(0.050) (1.38) (0.070)
Ct 0 0 0.606 0.04 Ct 0 0 1.2152

(0.118) (0.46) (0.119)
Parameter Estimates Subset 2
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 1.018 0 0 4.78 Lt 0.120 0 0 0.135 0.0187

(0.026) (8.80) (0.036) (0.006) (0.003)
St 0 0.883 0 0.69 St 0 0.881 0

(0.060) (1.09) (0.092)
Ct 0 0 0.689 0.93 Ct 0 0 2.889

(0.095) (0.74) (0.173)
Parameter Estimates Period 3
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.966 0 0 8.10 Lt 0.251 0 0 0.133 0.024

(0.042) (14.17) (0.049) (0.006) (0.004)
St 0 0.733 0 -2.86 St 0 0.422 0

(0.083) (0.92) (0.067)
Ct 0 0 0.845 -1.40 Ct 0 0 1.097

(0.064) (0.96) (0.126)
Parameter Estimates Period 4
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.874 0 0 8.56 Lt 0.077 0 0 0.080 0.006

(0.072) (4.82) (0.028) (0.003) (0.002)
St 0 0.972 0 -2.26 St 0 0.114 0

(0.037) (2.83) (0.034)
Ct 0 0 0.794 -0.12 Ct 0 0 0.464

(0.082) (0.49) (0.075)
Parameter Estimates Period 5
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.963 0 0 6.45 Lt 0.063 0 0 0.062 0.004

(0.037) (7.41) (0.025) (0.001) (0.001)
St 0 0.994 0 1.79 St 0 0.089 0

(0.017) (8.39) (0.030)
Ct 0 0 0.918 -1.74 Ct 0 0 0.597

(0.052) (1.64) (0.079)
Parameter Estimates Period 6
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.951 0 0 5.44 Lt 0.054 0 0 0.082 0.003

(0.049) (5.95) (0.023) (0.004) (0.001)
St 0 0.982 0 1.52 St 0 0.071 0

(0.051) (3.68) (0.027)
Ct 0 0 0.857 0.39 Ct 0 0 0.210

(0.078) (0.51) (0.051)

Table 4.9.1: Results of the Maximum Likelihood Estimation for Periods 1-6
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4.9.2 Maximum Likelihood Estimation of the Parameters

for the WFA

Parameter Estimates Periods 1 and 2
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.997 0 0 6.02 Lt 0.077 0 0 0.123 0.017

(0.040) (4.37) (0.021) (0.005) (0.002)
St 0 0.910 0 -0.02 St 0 0.720 0

(0.037) (0.32) (0.059)
Ct 0 0 0.681 0.28 Ct 0 0 2.130

(0.070) (0.46) (0.107)
Parameter Estimates Periods 2 and 3
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.974 0 0 10.71 Lt 0.204 0 0 0.135 0.021

(0.020) (8.24) (0.031) (0.005) (0.002)
St 0 0.921 0 -1.26 St 0 0.728 0

(0.036) (1.12) (0.060)
Ct 0 0 0.802 -0.02 Ct 0 0 2.051

(0.056) (0.27) (0.110)
Parameter Estimates Periods 3 and 4
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.959 0 0 8.70 Lt 0.168 0 0 0.111 0.016

(0.020) (4.88) (0.028) (0.004) (0.002)
St 0 0.896 0 -2.48 St 0 0.284 0

(0.039) (0.98) (0.038)
Ct 0 0 0.845 -0.78 Ct 0 0 0.720

(0.048) (0.53) (0.071)
Parameter Estimates Periods 4 and 5
A Lt−1 St−1 Ct−1 µ Q Lt St Ct λ H
Lt 0.975 0 0 7.42 Lt 0.070 0 0 0.067 0.005

(0.030) (9.71) (0.019) (0.001) (0.001)
St 0 0.982 0 -2.07 St 0 0.096 0

(0.025) (4.57) (0.022)
Ct 0 0 0.918 -0.90 Ct 0 0 0.561

(0.037) (0.96) (0.057)

Table 4.9.2: Results of the Maximum Likelihood Estimation for WFA Calibration
Periods

As can be seen the Lt, St and Ct all show high persistence particularly the first

two. Examination of the estimated lambda values in table 4.9.1 reveals that

there is some variation between periods. It’s hard to discern a definite pattern

from only 6 values but the estimated lambda values for periods 2 and 3 are

significantly higher than the others. This may indicate the presence of a regime

change in the market over those two periods, that reverted back from period 4

onwards. A similar pattern is observed in the WFA calibration results but is

distributed slightly differently due to the differing bucketing of the data.

145



4.9.3 Simulation Study Results
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Figure 4.9.1: Results of Simulation Study for the Steepener Strategy
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Figure 4.9.2: Results of Simulation Study for the Steepener Strategy
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Figure 4.9.3: Results of Simulation Study for the Curvature Strategy
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Figure 4.9.4: Results of Simulation Study for the Curvature Strategy
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4.9.4 Steepener Trading System Out of Sample Results

for Empirical Data

Performance Summary: Period 3 Calibrated on Periods 1 & 2
Total Net Profit 1,660 bp Open Position PnL 683 bp
Number of Closed Trades 14 Number of Open Trades 1
Percent Profitable 100.0 %
Sharpe Ratio 1.16
Max Drawdown 0 bp

Performance Summary: Period 4 Calibrated on Periods 2 & 3
Total Net Profit 685 bp Open Position PnL 292 bp
Number of Closed Trades 2 Number of Open Trades 1
Percent Profitable 100.0%
Sharpe Ratio 0.46
Max Drawdown 0 bp

Performance Summary: Period 5 Calibrated on Periods 3 & 4
Total Net Profit 3,682 bp Open Position PnL 0 bp
Number of Closed Trades 14 Number of Open Trades 0
Percent Profitable 100.0%
Sharpe Ratio 0.46
Max Drawdown 0 bp

Performance Summary: Period 6 Calibrated on Periods 4 & 5
Total Net Profit 143 bp Open Position PnL (136) bp
Number of Closed Trades 14 Number of Open Trades 1
Percent Profitable 67%
Sharpe Ratio 0.42
Max Drawdown 127 bp

Table 4.9.3: Steepener Strategy Performance Summary for Empirical Data
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Figure 4.9.5: Steepener Signal and Cumulative PnL from application to Empirical

Data
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4.9.5 Curvature Trading System Out of Sample Results

for Empirical Data

Performance Summary: Period 3 Calibrated on Periods 1 & 2
Total Net Profit 836 bp Open Position PnL 181 bp
Number of Closed Trades 7 Number of Open Trades 1
Percent Profitable 100.0 %
Sharpe Ratio 0.75
Max Drawdown 0 bp

Performance Summary: Period 4 Calibrated on Periods 2 & 3
Total Net Profit 410 bp Open Position PnL 3 bp
Number of Closed Trades 5 Number of Open Trades 1
Percent Profitable 100.0%
Sharpe Ratio 0.87
Max Drawdown 0 bp

Performance Summary: Period 5 Calibrated on Periods 3 & 4
Total Net Profit 2,589 bp Open Position PnL (118) bp
Number of Closed Trades 12 Number of Open Trades 4
Percent Profitable 100.0%
Sharpe Ratio 0.47
Max Drawdown 0 bp

Performance Summary: Period 6 Calibrated on Periods 4 & 5
Total Net Profit 379 bp Open Position PnL (281) bp
Number of Closed Trades 7 Number of Open Trades 3
Percent Profitable 100%
Sharpe Ratio 0.73
Max Drawdown 0 bp

Table 4.9.4: Curvature Strategy Performance Summary for Empirical Data
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Figure 4.9.6: Curvature Signal and Cumulative PnL from application to Empirical

Data
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4.10 Discussion

The results of the simulation show that the strategy works well producing a pos-

itive PnL 100% of the time for the Curvature strategy for every test period apart

from period 5 where it is 99.3% profitable. The Steepener strategy produced

100% profitable trades in the simulation of period 3, and produces a respectable:

91.1%, 81.2% and 86.8% profitability in periods 4, 5 and 6 respectively.

When applied to the simulated data the rv-DNS produced a Sharpe ratio of 1.12

for the Curvature strategy which can be considered good, and a Sharpe ratio

of 0.84 Steepener strategy which is still reasonable. The Curvature strategy

performed best on virtually every performance measure for the simulated data

sets (although the results for period 3 were only marginally better than the

Steepener results). These results are all the more impressive when one considers

that they were generated by simple trading rules using outputs directly available

from the Kalman filtering process, no additional tuning parameters were used.

Moreover there was no attempt to finesse the PnL/Sharpe ratios by including

stop losses/take profits, optimal position sizing (such as the Kelly Criterion) or

modifying the strategy to only take trades with positive carry. Similarly effects

that might have a deleterious effect, such as slippage or bid/offer spreads were

not considered either. This was all done intentionally as the goal was to test

whether the rv-DNS trading signal could produce the desired results without

the PnL being polluted by secondary effects. So these results reflect the raw

performance of the signal produced by the rv-DNS.

From the results of the simulation study it is evident that every subperiod

except subperiod 3 produces a PnL distribution which is leptokurtic, this is

especially true for the Steepener strategy. This echoes the results of Duarte et al.

(2007), which was discussed in section 1.2, they also found that the results of

curvature strategies are leptokurtic, although they were considering the kurtosis
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of the returns rather than the cumulative PnL. Similarly every period except

period 3 for the curvature strategy exhibited positive skewness again echoing the

results of Duarte et al. (2007). However, the distribution of the PnLs from the

Steepener strategy in every period except period 3 exhibits significant negative

skewness. This may in part be explained by the different trading strategy used

in this chapter rather than an intrinsic property of this type of strategy. The

leptokurtic/negative skew effects are at least partly the result of large PnLs

being produced when the signal spends a significant amount of time crossing

the entry level and so generating several trades in one direction. When the

signal finally does cross the opposite barrier all these trades exit at once. If

the exit produces a positive PnL the PnL will be positive (and most often

large as there are several trades) and vice versa. For example the best PnL

seen in the simulation study was for the Curvature strategy in period 3. It

had a raw PnL of 4,547 bp, and although it consists of 27 entries of trades

there are only 11 exits, one of which sees 11 trades close for a combined profit

of 2,257 bp. PnLs produced this way are volatile relative to their peers and

so are penalized by the Sharpe ratio. For example the best PnL previously

discussed has a relatively modest SR of 0.9. So the Sharpe ratios probably

give a better measure of the system performance. Of course the strategy could

be amended to prevent such PnLs from being produced: the most obvious

solution being to limit the number of open trades in any one direction at any

one time. Note also that the highest Sharpe ratios are generated by PnLs that

make lots of trades with different entries and exits and so these would not be

affected by a cap on the number of trades in any one direction. Therefore the

system performance could undoubtedly be boosted and the results as presented

represent a conservative estimate of the system performance, however the focus

of this study is to examine the performance of the signal in its basic form so no

such adjustments were made.

As noted previously the Nelson and Siegel basis functions are similar to the

empirical loading factors found by Bliss (1997) and Litterman and Scheinkman
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(1991) and in particular the second and third Nelson and Siegel basis functions

can be thought of as proxies for the steepness and curvature of the curve. There

does indeed seem to be some correlation between the level of the AR(1) param-

eters for the loading function on these basis functions and the profitability of

the strategy. Generally the lower the level of the AR(1) parameter the more

profitable the strategy tends to be, this is most apparent for the mean values

produced by the Steepener strategy in the WFA. This is logical as the strategy

is predicated on mean reversion and those loading factors with the lower AR(1)

parameters tend to be more mean reverting. Similarly the volatility of the error

process for the corresponding AR process also contributes to the profitability of

the strategy, with larger volatilities producing larger deviations for the model

to revert from. This is exemplified by the average values of the Curvature strat-

egy for the WFA in periods 3 and 6. Although both these periods have similar

values for their AR(1) parameter, period 3 produces the superior PnL thanks

to its larger volatility. However given the relatively small number of parameter

values tested it’s hard to be certain about these patterns at this stage. A full

sensitivity analysis for all the model parameters is left as future work but such

insights could be used to identify market conditions which are favorable and

vice versa.

The out of sample results produced positive PnLs for both strategies in ev-

ery period tested. Moreover they produced average Sharpe ratios of 0.63 for the

Steepener Strategy and 0.71 for the Curvature strategy, which represents an un-

derperformance relative to the simulated Sharpe ratios, but are still respectable.

In addition all the results produced in the out of sample testing (apart from sub-

period 5 which the out of sample results outperformed the simulation results)

were covered by the distribution of results in the simulation study. Thus the

out of sample results are comparable to results produced when the data satis-

fies all the assumptions upon which the model is based and the optimal filtering

parameters are used.
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The Steepener produced an average Sharpe Ratio in the out of sample testing,

that was closer to its simulated counterpart than the Curvature average was,

although this was largely due to a strong performance in the first out of sample

testing period. The Steepener strategy also tended to produce better out of

sample PnLs than the Curvature strategy in all but the last test period. The

Steepener strategy performed well in period 3 producing a PnL and Sharpe

ratio close to their simulated counterparts. Also its PnL figure for period 4 was

towards the top of the distribution of simulated PnLs although this was based

on very few trades resulting in a Sharpe ratio which was less impressive at 0.46

but still within one standard deviation of the mean of the Sharpe ratio for the

simulated data for that period. The Steepener strategy’s PnL outperformed

its simulated counterpart in period 5 and this will be discussed separately. Its

worst performance came in period 6 both relative to the other out of sample

Steepener results and the out of sample Curvature result for period 6. However

the Steepener strategy also performed poorly in period 6 in the simulation study,

and the out of sample result was less than one standard deviation from the

mean of the simulation study, similarly its Sharpe ratio is within one standard

deviation of its simulated counterpart so viewed in that context the results

seem reasonable. The underperformance of the Steepener strategy in period

6 (both out of sample and simulated), is likely linked to the volatility of the

autoregressive process for the Steepener loading parameter in this period which

is very low so there simply is not much movement for the strategy to capture.

In contrast, for the Curvature strategy the out of sample PnLs were towards

the lower end of the distribution of the simulated results (with the exception

of subperiod 5). As noted above they underperform the Steepener strategy out

of sample with the exception of period 6. This in tandem with the fact that

the number of trades they produced were also toward the lower end of the dis-

tribution of simulated results, especially for period 4, may suggest that using

the parameters from the previous two periods may attenuate the system perfor-

mance at least for the curvature strategy. A sensitivity analysis of the strategies
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to incorrect filtering parameters could be performed using simulated data and

this would help to help answer this question, however this is left as future work.

That said as we have seen raw PnL is not the best measure of system perfor-

mance and the curvature strategies do produce respectable Sharpe ratios out

of sample which are stable across the subperiods (excluding subperiod 5 which

will be discussed below). Moreover as noted previously the PnLs and Sharpe

ratios (and indeed number of trades produced) were all within the distribution

generated by the simulation study and so could have been produced even when

optimal parameters were used in the filtering process.

The out of sample PnLs for period 5 were larger than their simulated counter-

parts. These results were another example of a PnL where a large number of

trades were built up in one direction and then exited all at once. This is re-

flected in the Sharpe ratios for period 5, which are the worst for the Curvature

Strategy and close to worst for the Steepener strategy despite having by far the

largest PnL.

Potential improvements to the trading logic include: the previously discussed

cap on the maximum number of trades in any one direction and the use of the

sensitivity analysis to identify favorable market conditions. Also the decision to

use the strategy error as given from the filtering process was essentially arbitrary

and motivated by the desire to keep the model simple, however an additional

parameter could be incorporated to allow this value to be scaled and so tuned

to optimize the system performance. In addition application of basic money

management techniques such as optimal position sizing, stop losses/take profit

levels should allow more of the systems potential to be realized.

In terms of potential improvements to the underlying DNS model structure.

Given that the calibration results suggest a possible regime change in the lambda

values, it would be interesting to augment the model into one of the Markov

switching models discussed in the introduction as to allow it to detect and adapt

to a regime change during a trading period. Also the model currently assumes
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that the observation covariance matrix should be diagonal and that the value

on that diagonal should be constant. This may be overly restrictive especially

given the focus here on relative value trading where differences in measurement

error volatility across maturities may be an important source of signal. It would

be better to at least permit the values across the diagonal to change. Going

further one could model a full covariance matrix to capture the correlations in

the measurement errors. Similarly the decision to use the regular DNS model

rather than the arbitrage free one as the basis for the rv-DNS although well

motivated was ultimately a judgment call. Given that it would be relatively

straightforward to extend the rv-DNS model presented here to an arbitrage

free version (AF rv-DNS) and it would be interesting to test the arbitrage free

version to see what effect it has on the results. This is left as future work.

The initial results from the simulations and out of sample testing are encour-

aging, the next step would be to test the system on more recent data and/or

higher frequency data. The current ultra low rate regime would likely necessi-

tate some changes to the model, this problem has already been tackled in the

context of the pure DNS by Christensen (2013) and so this could serve as the

basis to allow the rv-DNS to incorporate a zero bound. This however would be

at the expense of higher parameterization putting extra stress on the calibration

process. Moving to higher frequency data would have to be carefully consid-

ered too, as noted in Meucci (2009), the Ornstein-Uhlenbeck process, which is

the discrete time analogue of the AR(1) processes used in the rv-DNS, behaves

pretty much like a Brownian motion, as at smaller time scales the effect of the

random component dominates the mean reverting component. This problem of

higher frequencies could be addressed either by modifying the rv-DNS model

or testing intermediate frequencies such as weekly or fortnightly to find which

ones still allow the mean-reverting dynamics to take effect while still allowing

more trades to be generated. Again this is all left as future work.

Lastly it must be emphasized again that aside from the calibration of the un-
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derlying DNS model, no attempt was made to fine tune the trading parameters

to finesse the PnL/Sharpe ratios, indeed the trading system based on the signal

produced was kept intentionally simple so that the power of the raw system

signal could be tested. So the results can be considered as promising at the

very least.

4.11 Conclusion

This paper introduces a rv-DNS trading model and illustrates its use, showing

that the DNS can be used as the basis for a profitable relative value trading

model. Although based on the regular DNS model it takes the outputs from the

Kalman filtering process and applies them in a different way to produce a trading

signal. These signals are then used to enter and exit Steepener and Curvature

positions as dictated by the trading rules. The rv-DNS was tested out of sample

using a walk forward analysis: The system produced positive out of sample

results in every period tested and also produced respectable Sharpe ratios. All

the trading rules employed were straightforward and did not incorporate any

additional manipulation of the data or the signal itself, thus at a minimum these

results must be considered as highly encouraging and hence the model provides

a good platform for further development.
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Chapter 5

Conclusions and Directions

for Future Research
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5.1 Conclusions

In chapter two it was shown that Differential Evolution could be adapted suc-

cessfully to fit the rv-NSS model, it contrasted the results with those obtained

from a derivative based optimizer and was shown to produce far superior results.

An additional round of testing was conducted in which prior information was

assumed for the parameter values, effectively constraining the range of starting

parameter values to be smaller. This did improve the results for the derivative

based method but it was still outperformed by the Differential Evolution based

method when used to calibrate the rv-NSS. These results extend the work of

Gilli et al. (2010) and represents a new contribution to the literature.

Clark and Troskie (2007) which extended Kibria (2003), compared a wide range

of ridge regression estimators, chapter three extends these results by including

the newest ridge estimators in the literature into the comparison study as well

as some older ones. As such this work represents a new contribution to the

literature.

The goal of chapter three was to identify the best performing ridge regression

estimator, ideally one that would be best in all the scenarios considered. The

study showed that no one estimator performed best in every scenario, but it was

possible to identify one estimator: the Linearized Ridge Regression Estimator

(LRRE) Gao and Liu (2011) that performed best for most of the scenarios

considered. This again represents a new contribution as the best estimator

differs from that found in the previous studies. The only place that this model

struggled was for the very lowest volatility level considered and when the level

of multicollinearity was medium to low. In such situations the LRRE model

tended to underperform OLS (the benchmark model for the tests). Indeed as

none of the other models were able to beat OLS in such situations it’s reasonable

to let the estimator default to the OLS estimate in such situations.
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The IRE type estimators of Liu et al. (2013) experienced convergence problems

and chapter three addresses those by conditioning the choice of the estimated

beta parameter on the theoretical MSE value it produces, with success in the

majority of conditions tested. This complements the work of Liu et al. (2013)

and represents a new contribution to the literature. As noted before the LRRE

of Gao and Liu (2011) also had estimation problems at the lowest volatility levels

and an attempt was made to fix this too, also by conditioning the estimated beta

on the theoretical MSE. Although the solution did fix its convergence issues at

the lowest volatility levels, this was at the expense of its performance at every

other volatility level. However this work still extends Gao and Liu (2011) and

represents a further contribution to the literature.

In addition the modified r-k class ridge regression (MCRR) introduced by Batah

et al. (2009) did not specify how to estimate the number of principal components

to retain in their model, chapter 3 examined two different ways to address

this shortcoming. The first method based on reducing the condition number

below a threshold level of 10 MCRR CI, the second was chosen to minimize the

theoretical MSE value MCRR (the other estimators that incorporated PCA: r-k

and PCR also had the number of principal components to retain determined in

the same way to facilitate a fair comparison ). The MCRR CI version performed

best when applied to matrices with the highest condition numbers, however

when applied to the remaining matrices the performance of the two versions of

the estimator tended to converge. This work extends Batah et al. (2009) and

represents the final contribution to the literature. Overall these results should

prove interesting to anyone using ridge regression.

Chapter four saw the introduction of the rv-DNS. It tested the model on simu-

lated and empirical data, the model was found to work as intended producing

positive results. The rv-NSS returned an average Sharpe ratio of 1.12 for the

simulated Curvature strategy which can be considered good and 0.84 for the

simulated Steepener strategy which is still respectable. The out of sample re-
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sults from the WFA produced an average Sharpe ratio of 0.71 for the Curvature

strategy and 0.63 for the Steepener strategy which represents an underperfor-

mance relative to the simulated results but are still reasonable. To my knowledge

there are no other relative value trading models based on the DNS and as such

the rv-DNS represents a new contribution to the literature. The new model

proposed will likely interest academics while the successful application should

interest practitioners.

Overall these three empirical chapters have shown how it is possible to success-

fully develop and calibrate a fixed income relative-value trading model based on

the Nelson Siegel approach.

5.2 Directions for Future Research

The results of chapters two and three mean that it is now possible to produce

plausible estimates of the rv-NSS parameters. Although this was not included

in this thesis, as the focus of the research switched to the rv-DNS, it would

still be interesting to calibrate and test the rv-NSS to compare and contrast the

results. One obvious comparison to make would be with the results produced

by Duarte et al. (2007) as the rv-NSS is a close analogue of the Duarte et al.

(2007) model. It would be interesting to see if the reported superior forecasting

abilities of the NSS compared to the Vasicek model translated into superior

trading performance for the rv-NSS as hoped.
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Moreover it would also be interesting to compare the rv-DNS to the Duarte

et al. (2007). Right now there are sufficient differences that would invalidate a

direct comparison of the results.

• Duarte et al. (2007) produces their results in sample

• they consider a different set of maturities

• they consider a different set of dates

• they only consider curvature trades

• their trading rules differ

– they take one position at a time

– they then hold it for 12 months

– whereas the rv-DNS takes a position every time a signal is generated

– the rv-DNS uses the same signal for entry and exit

– they use a predefined trigger level

– rv-DNS trigger level is based on the outputs from the Kalman filtering

process

However it would not be difficult to address these differences allowing a com-

parison to be made. If the rv-DNS results are found to be better than those

of the rv-NSS and Duarte et al. (2007) this would show that the modelling of

the dynamics internally adds value. Such a comparison would likely interest

academics and practitioners alike.

Another potential application of the rv-NSS is in HFT. As the rv-NSS bases its

update of the curve on the movement of the pillar points, it might be possible to

base a High Frequency Trading (HFT) strategy on it. As the pillar points move

the models estimates of the non pillar points will move, it could in theory be

possible to trade the change in relative value produced. For example as the pillar
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points change the rv-NSS estimate of the seven year rate will change relative

to the rate currently quoted in the market. If the spread has narrowed, then in

theory it would be possible to short the current seven year rate against the pillar

points and vice versa assuming you had a lower latency than the person quoting

the seven year rate. The simple nature of the calculations involved should help

to achieve the low latencies required.

The results of chapter 4 while perfectly reasonable in their own right likely

represented a conservative estimate of the rv-DNS performance. The system as

presented was kept intentionally straightforward so that the performance of the

raw signal could be examined. Now that chapter four has demonstrated that

the signal is genuine, the next step would be to build a system that optimizes

the PnL/Sharpe ratios produced, as discussed in chapter 4 there are a number

of ways in which this can be done:

Firstly it was apparent that the strategies’ performance was sensitive to the

level of the AR(1) parameter, with smaller parameter values (being more mean

reverting) producing better PnLs. Similarly the volatility of the AR process

also influenced the PnL produced with larger volatilities meaning there is more

movement to capture. By conducting a full sensitivity analysis of the model to

its inputs, it would be possible to identify which market conditions are favorable

and vice versa. By restricting trading to the more favorable periods overall

performance should be enhanced.

Secondly the threshold value could be scaled and tuned to optimize the PnL/Sharpe

ratios produced.

Thirdly optimal position sizing (perhaps based on how favorable the current

market conditions are) and similar money management techniques such as stop

losses/profit targets could be used to let the system realize more of its potential.

The results showed that some large PnLs could be produced when the model
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spends a significant amount of time criss-crossing one of the thresholds building

up several open positions before finally crossing the opposite threshold closing

out all the open positions. These PnLs could be positive or negative but even

when positive their volatile nature means that the associated Sharpe ratio tends

to be modest. The most obvious way to prevent this would be to cap the number

of trades which can be open at any one time. However it would be better to

try to identify what causes these PnLs to be produced in this way. From visual

inspection of the signals vs threshold graphs one possible explanation is that the

level of volatility is changing, with low volatility causing the signal to cluster

around the threshold initially, followed by a higher volatility period in which

it then crosses the other threshold. If this is the case then Markov switching

DNS models, with high and low volatility regimes such as Levant and Ma (2013)

and Xiang and Zhu (2013) could be used to extend the rv-DNS, to address this

problem.

In terms of improvements to the underlying DNS structure:

The assumption that the observation covariance matrix should be diagonal with

a constant on the diagonal may be overly restrictive. Given the strategies rely

on the relative movement of different points on the curve, differences in the

observation volatilities could be an additional source of signal.

The decision to use the regular DNS rather than the arbitrage free version was

based primarily on the desire for the model to be as parsimonious as possible.

By developing and testing the AF rv-DNS the veracity of this decision can be

tested.

Lastly there was some evidence of a regime change in the value of the lambda

parameter during the calibration to the empirical data. The results of the

previously suggested sensitivity analysis should allow the effect of this volatility

to be quantified. Using Markov switching type models this time with differing

lambdas in each regime could allow the model to handle such changes in the
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lambda value internally, as was done by Levant and Ma (2013) for the DNS.

More generally Koopman et al. (2010) showed how lambda could be made a

time varying parameter of the model like the betas in the DNS, this also could

be used as a basis to extend the rv-DNS.

Aside from improvements to the model structure, the other avenue for future

research is in terms of the data sets to which the model is applied. A logical

next step would be to test the model on more recent data. Given the current

ultra low rate regime this may necessitate the incorporation of the zero bound

version of the DNS presented by Christensen (2013). Going further it would be

interesting to apply the model to higher frequency data. Such an extension may

not be straightforward because as shown by Meucci (2009) at very short time

intervals the effect of the Brownian motion dominates the mean reversion part

of the process (he showed this in the context of the Ornstein-Uhlenbeck process

which is the continuous time analogue of the AR(1) process used in chapter

4). So moving to shorter time frames may mean that the model needs to be

adapted or that some intermediate frequency such as weekly or fortnightly can

be found that allows the frequency to be increased while still allowing the model

to function as intended.
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