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Softening Coefficient of Reinforced Concrete Elements Subjected to Three-

Dimensional Loads  
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ABSTRACT 

Reinforced concrete structures are prone to fail under the effect of complex three-

dimensional loading conditions. Accurate constitutive models for concrete under the effect of 

triaxial stresses are therefore necessary in order to predict the proper response. Strong interaction 

between in-plane and out of plane shear loads has been observed in experimental tests of 

concrete structures. This paper presents the derivation of concrete constitutive laws under the 

effect of triaxial stresses, in particular the softening coefficient, using the results of large-scale 

tests on representative concrete panels. The experimental program of 7 full-scale panel 

specimens is briefly described, and the results are then used to derive analytical expressions for 

the softening coefficient under the effect of bi-directional shear. Finally, existing membrane 

shear theories are modified to take into consideration the effect of applied out-of-plane shear. 

The response of the tested panels proved to be accurately predicted using the new theory. 
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INTRODUCTION 

The behavior of many complex structures such as curved beams, spiral stairs, plate 

structures such as slabs and foundation mats, and shell structures such as domes, oil platforms, 

and nuclear containment structures as shown in Figure 1 requires knowledge of the constitutive 

laws of reinforced concrete elements subjected to a triaxial state of stress. Previous experimental 

tests of concrete specimens subjected to triaxial loads focused on the behavior under hydrostatic 

compression (e.g. Gerstle, 1981). Experimental evaluation of representative concrete specimens 

under the effect of combined triaxial tension/compression loads has not been fully explored. In 

particular, the effect of out-of-plane loads typically results in a different crack pattern that will 

alter the main characteristics of the concrete material. As a result, the softening behavior of 

concrete under triaxial loading and other constitutive parameters will change. There exists a need 

to revise current models of concrete structures subjected to three-dimensional loads. 

RESEARCH SIGNIFICANCE 

The purpose of this work is to develop appropriate material parameters for concrete 

subjected to a triaxial state of stress, in particular the softening coefficient. Such parameters were 

not properly derived in the literature, and are needed for accurate prediction of the behavior of 

complex three-dimensional reinforced concrete structures. The softening coefficient greatly 

affects the behavior of concrete structures; and while it has been extensively evaluated for two-

dimensional stresses, no information exists for its value in the case of three-dimensional state of 

stress. This research attempts to fill this gap in the literature by proposing new functions for the 

concrete softening coefficient in the case of three-dimensional loads. To conduct this task, large-

scale reinforced concrete panel specimens are tested at the University of Houston Universal 

Panel Tester under the effect of in-plane and varying out-of-plane loads. The results are used to 
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improve existing shear theories to account for the effect of out-of-plane loads. It is expected that 

the newly-developed concrete material properties will enhance the accuracy of model simulation 

of complex reinforced concrete structures. 

MODELING OF RC ELEMENTS UNDER A 3D STATE OF STRESS 

Vecchio and Selby (1991) presented an analysis of reinforced concrete 3D solids. The 

constitutive relations implemented in the formulation are relations extrapolated from two-

dimensional models and based on the modified compression field theory. The same constitutive 

laws used in evaluating the membrane shear were adopted for concrete in the direction of the 

largest principle compressive and tensile strain. They used the same previous constitutive 

relationships for the intermediate principle direction whether it is in compression or tension. The 

researchers reported that more work is required to refine and verify the accuracy of the three-

dimensional formulation especially in the absence of a complete three-dimensional model for 

concrete.  

Mullapudi and Ayoub (2013) used Vecchio and Selby’s model in the formulation of 

shear fiber element to predict the behavior of different structural members subjected to complex 

loadings. The values of the concrete uni-axial strains in principal directions 1, 2, and 3 have eight 

conditions, and the strength in one direction is affected by the strain state in the other directions. 

Adebar et al. (1989) developed a model to consider the interaction between membrane shear and 

transverse shear. The combination of transverse and membrane shear involves tri-axial strains. 

Adebar proposed to consider biaxial strains over the thickness of the section, but tri-axial strains 

are considered at one reference plane (usually the section mid-plane or the plane at the centroid 

of the flexural tension reinforcement). The influence of tri-axial strains on the biaxial strains 

stresses is assumed to be uniform over the thickness and is accounted for by a set of membrane 
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force corrections xN , 
yN , and 

xyN . Adebar proposed an equation for the crack check 

considering the reinforcement to be aligned in 3 directions. The tri-axial relationship is a 

generalization of the biaxial relationship in the Modified compression field theory.  

Maekawa et al. (1996) proposed the strain decomposition and stress recomposition. The 

3D strain field is decomposed into three in-plane sub-spaces. In each sub-space, the component 

stresses are computed using the 2D crack model and constitutive laws. All component stresses on 

the decomposed sub-spaces are re-composed again to form the three-dimensional stress field. An 

orthogonal co-ordinate system is set up so that the principal axis (1) is normal to the initially 

introduced crack plane and the remaining axes (2 and 3) are located within the reference plane. 

Here three 2D sub-spaces designated by axes (1,2), (2,3), and (1,3) can be defined. The first 

crack is seen in the (1,2) and (1,3) planes, while plane (2,3) contains no cracks at this moment 

because it coincides with the plane of the first crack itself. Any further crack is treated in the 2D 

sub-spaces, based on the initial crack. 

Marti (1990) proposed a design method for slabs subjected to combined membrane and 

transverse shear by satisfying equilibrium without consideration of deformation. In this model, 

the slabs were divided into two top and bottom covers in addition to a concrete core. The model 

assumes that the covers will carry moments and membrane forces, while the transverse shear is 

assigned to the core. A limit for the nominal shear stress due to the principle shear force has been 

suggested that differentiates between uncracked and cracked core areas. For the case of 

uncracked core, no transverse reinforcement has to be provided and the in-plane reinforcement 

must not be strengthened to account for transverse shear. For diagonally cracked core areas, a 

truss-model-based design procedure has been developed that permits the dimensioning of the 

necessary transverse and in-plane reinforcements. 
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MEMBRANE SHEAR SOFTENED TRUSS MODEL  

Several models for in-plane shear in concrete elements that were based on the smeared-

crack approach were developed in the past three decades. In these models, the equilibrium 

equations assume the stresses in the concrete struts and steel bars to be smeared. Similarly, the 

strains of steel and concrete are also smeared, and are obtained by averaging the strains along a 

steel bar that crosses several cracks. The constitutive laws of concrete and steel bars were 

developed through large-scale panel testing, and relate the smeared stresses to the smeared 

strains of the element (Belarbi and Hsu 1994, 1995; Hsu and Zhang 1996). The first work to 

develop such constitutive laws was the one by Vecchio and Collins (1981), who proposed the 

compression field theory (CFT) to predict the nonlinear behavior of cracked reinforced concrete 

membrane elements. The CFT, however, was unable to take into account the tension-stiffening 

effect of the concrete. The researchers later improved their model and developed the modified 

compression field theory (MCFT) (Vecchio and Collins 1986), in which the tension stiffening of 

concrete was accounted for by imposing a concrete tensile stress across the shear crack. At the 

University of Houston, Belarbi and Hsu (1994, 1995) and Pang and Hsu (1995) used a different 

approach and developed the rotating-angle softened-truss model (RA-STM). In this model, the 

tension-stiffening effect of concrete was taken into account. Later, the UH research group 

improved their work and developed the fixed-angle softened-truss model (FA-STM) (Pang and 

Hsu 1996; Hsu and Zhang 1997; Zhang and Hsu 1998). This model is capable of predicting the 

concrete contribution to shear resistance by assuming a shear stress along the crack direction. 

Zhu et al. (2001) derived a rational shear modulus and developed a simple solution algorithm for 

the FA-STM. The work was further extended by determining the Hsu/Zhu ratios (Zhu and Hsu 

2002) for Poisson effect. This led to the development of the softened membrane model (SMM), 

which can accurately predict the entire response of the specimen, including both the ascending 
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and the descending branches. While these pioneering models greatly enhanced the basic 

understanding of the in-plane shear behavior of RC elements, they cannot be directly 

implemented for the case of elements subjected to three-dimensional shear loads. The reason is 

that the three-dimensional loading condition greatly affects the crack pattern and the failure 

mode of the specimen. There is a need to expand the scope of smeared crack models to account 

for three-dimensional load effects. Before doing this, a brief review of previous work related to 

the behavior of reinforced concrete structures subjected to two-dimensional loading is presented 

as this will be expanded to account for three-dimensional effects.  

In the past 20 years, Hsu and his colleagues performed over 130 panel tests using the 

Universal Panel Tester (Hsu et al. 1995) at the University of Houston. A series of three rational 

models for the monotonic shear behavior of reinforced concrete elements (panels) was 

developed. Figure 2 describes the stresses acting on the components of a reinforced concrete 

membrane element subjected to in-plane shear and normal stresses. The directions of the 

longitudinal and the transverse steel bars are designated as   and t  axes, respectively, 

constituting the t  coordinate system as shown in Figure 2 (a).  The normal stresses are 

designated as   and t  in the   and t  directions, respectively, and the shear stresses are 

represented by t  in the t  coordinate system. Based on the reinforced concrete sign 

convention for Mohr’s circles, a positive shear stress t  is the one that causes clockwise rotation 

of a reinforced concrete element (Hsu, 1993). 

The applied principal stresses for the reinforced concrete element are defined as 2  and 

1  based on the 12  coordinate system as shown in Figure 2 (d).  The angle between the 

direction of the applied principal compressive stress ( 2 axis) and the direction of the 

longitudinal steel (  axis) is defined as the fixed-angle 2 , because this angle does not change 
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when the three in-plane stresses,  , t , and t , increase proportionally. This angle 2  is also 

called the steel bar angle because it defines the direction of the steel bars with respect to the 

applied principal stresses. The principal stresses in concrete coincide with the applied principal 

stresses 
1  and 2  before cracking.  When the principal tensile stress 

1  reaches the tensile 

strength of concrete, cracks will form and the concrete will be separated by the cracks into a 

series of concrete struts in 2  direction as shown in Figure 2 (f).  If the element is reinforced with 

different amounts of steel in the   and t  directions, i.e., tt ff    in Figure 2 (c), the 

direction of the principal stresses in concrete after cracking will deviate from the directions of 

the applied principal stresses. The new directions of the post-cracking principal stresses in 

concrete are defined by the rd   coordinate system as shown in Figure 2 (e). Accordingly, the 

principal compressive stress and the principal tensile stress in the cracked concrete are defined as 

d  and r , respectively. 

The angle between the direction of the principal compressive stress in the cracked concrete 

( d axis) and the direction of the longitudinal steel (  axis) is defined as the rotating-angle  . 

The angle   is dependent on the relative amount of “smeared steel stresses,”  f  and tt f , in 

the longitudinal and the transverse directions as shown in Figure 2 (c). When tt ff   , the 

rd   coordinate gradually rotates away from the 12  coordinate and   becomes smaller with 

increasing load. With increasing applied proportional stresses (  , t  and t ), the deviation 

between the angle   and the angle 2  increases. This deviation angle   is defined as  2 . 

When the percentages of reinforcement are the same in the   and t  directions, the rotating angle 

  is equal to the fixed-angle 2 . 
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The fixed-angle softened-truss model (FA-STM) is based on the assumption that the 

direction of the cracks coincides with the direction of the applied principal compressive stress as 

shown in Figure 2 (f).  In the fixed-angle softened-truss model, all equations are derived based 

on the fixed-angle 2 .  

The three stress components  , t , and t  shown in Figure 2 (a) are the applied stresses 

on the reinforced concrete element viewed as a whole.  The stresses on the concrete struts are 

denoted as c

 , c

t , and c

t  as shown in Figure 2 (b). The longitudinal and the transverse steel 

provide the smeared (average) stresses of  f  and tt f  as shown in Figure 2 (c). The 

reinforcement is assumed to take only axial stresses, neglecting any possible dowel action.  

Summing the concrete stresses and the steel stresses in the   and the t  directions and 

maintaining the equilibrium of forces and moments give the following equations:  

 fc  
,   1 

tt

c

tt f 
,     2 

c

tt   
.     3 

Equations 1-3 are the basic equilibrium equations for both RA-STM and FA-STM. When 

the three concrete stresses ( ,  , c

t

c   and c

t ) in the t  coordinate are transformed to the 

principal rd   coordinate of concrete as in Figure 2 (g), we obtain the RA-STM. When the three 

concrete stresses ( ,  , c

t

c   and c

t ) are transformed to the principal 2-1 coordinate of the applied 

stresses as in Figure 2 (f), we obtain the FA-STM. 

Equilibrium and Compatibility Equations 

In the fixed-angle softened-truss membrane shear model (FA-STM), the direction of cracks 

is defined by the fixed angle 2  in the principal 2-1 coordinate of the applied stresses. The three 
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equilibrium equations are obtained from Eqs. 1 to 3 by expressing the concrete stresses 

( ,  , c

t

c   and c

t ) in terms of concrete stresses ( c

2 , c

1  and c

21 ) in the principal 2-1 direction 

through transformation (Pang and Hsu, 1996): 

 fccc   22212

2

12

2

2 cossin2sincos , 4 

tt

ccc

t f  22212

2

12

2

2 cossin2cossin , 5 

)sin(coscossin)( 2

2

2

2

212212   ccc

t , 6 

where 

c

1 , c

2  = smeared (average) stresses of concrete in 1 and 2  directions, respectively, 

c

21  = smeared (average) shear stress of concrete in 12   coordinate, and 

2  = angle of applied principal compressive stress ( 2 axis) with respect to 

longitudinal steel bars (  axis). 

The three compatibility equations, which represent the relationship through transformation 

between the strains (  , t , and t ) in the t  coordinate of the reinforcement and the strains 

( 1 , 2 , and 21 ) in the 12   coordinate of the applied principal stresses, are expressed as follows 

(Pang and Hsu, 1996): 

22
21

2

2

12

2

2 cossin2
2

sincos 


  , 7 

22
21

2

2

12

2

2 cossin2
2

cossin 


 t , 8 

)sin(cos
2

cossin)(
2

2

2

2

221
2212 





t , 9 

where 

2 , 1  = smeared (average) strains in 12   directions, respectively, and 

21  = smeared (average) shear strain in 2-1 coordinate. 

 

Constitutive Relationship of Cracked Concrete in Compression 
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The softened compressive stress-strain relationship of concrete is established in the 2-1 

coordinate as follows (Zhang and Hsu, 1998): 






































2

0

2

0

2
2 2








 c

c f , 1
0

2





, 10 

or  




























2

02

2
14

1
1




 c

c f , 1
0

2 



, 11 

where 
'

1

5.8 1
0.9 1

241 400
cf






   
            

, 12 

 

Constitutive Relationship of Cracked Concrete in Tension 

The tensile stress-strain relationship of concrete in the 12   coordinate is given as follows 

(Belarbi and Hsu, 1994): 

11  cE , cr 1 ,  13 

or  

4.0

1

1 












 cr

crf , cr 1 ,  14 

where 

cE  = elastic modulus of concrete taken as cf 3875  ( cf   and cf   are in MPa), 

cr  = concrete cracking strain taken as 0.00008, and 

crf  = concrete cracking stress taken as cf 31.0  ( cf   and cf   are in MPa). 

Constitutive Relationship of Steel Bars Embedded in Cracked Concrete 

The smeared (average) tensile stress-strain relationship of steel embedded in concrete in the t  

coordinate, can be expressed as follows: 

 sss Ef  , ns   , 15 
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 












y

s
ys BBff




)25.002.0()291.0( , ns   , 16 

 
)( spsps Eff   , 

ps   , 17 

 
)293.0( Byn   ,  18 

 

5.1

1
















y

cr

f

f
B


  19 

In the above equations,   replaces s in the subscript of symbols for the longitudinal steel, and t  

replaces s for the transverse steel. 

Constitutive Relationship of Cracked Concrete in Shear 

 Zhu et al. (2001) showed that the relationship between the shear stress and the shear strain of 

cracked concrete in the 12   coordinate system could be rationally derived from the equilibrium 

equations and the compatibility equations by assuming that the direction of principal stresses 

coincides with the direction of principal strains. The new constitutive law of concrete in shear is 

given as: 

21

21

21
21

)(2












cc
c

 20 

While the previously described pioneering models greatly enhanced the basic 

understanding of the in-plane shear behavior of RC elements, they cannot be directly 

implemented for the case of elements subjected to bi-directional shear loads. The main goal of 

this paper is to improve the constitutive laws of concrete subjected to three-dimensional loads 

through additional panel testing. For this purpose, the capabilities of the UH panel tester were 

extended by installing an additional 10 two-way hydraulic cylinders in the out-of-plane direction 

as shown in Fig. 3. These Ten cylinders were applied at the top and bottom of an out-of-plane 
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steel frame connected to the panel tester, and the other 10 on its side. The hydraulic jacks were 

mounted on the panel tester and fixed to the steel frame with structural bolts with a diameter of 1 

in. (25 mm). Upon installation of the jacks, they were connected to hydraulic lines. The 

installation of the out-of-plane hydraulic cylinders greatly enhanced the capabilities of the panel 

tester, which can now be used to test reinforced concrete elements subjected to a tri-directional 

state of stress. The next section briefly presents the results of the experimental tests. More details 

are given in Labib et al. (2013).  

EXPERIMENTAL RESULTS 

In total, eight reinforced concrete specimens were tested under the effect of bi-directional 

shear stresses. One of the specimens, OP0, was subjected to pure in-plane shear while another, 

OPR, was subjected to pure out-of-plane shear till failure. The other six specimens, denoted 

OP1-OP6, were subjected to a varying amount of out-of-plane shear loads of 13%, 22%, 28%, 

52%, 72%, 82% of the shear capacity respectively, before an in-plane shear load was applied 

until failure. The specimens were all 55" (1400 mm) square with a web thickness of 7" (178 

mm). The reinforcement arrangement was selected to represent the reinforcement grid in a 

typical shear wall.  All specimens had two layers of #6 reinforcing bars inclined with a 45 degree 

angle. Specimens OP1, OP2 and OP3 were rectangular in shape. Specimens OP4, OP5 and OP6 

had an I-cross sectional shape with a thicker edge of 16” (406 mm) and additional vertical 

reinforcement in order to resist larger out of plane loads, as shown in Figures 4 and 5. Specimen 

OPR also had an I-cross sectional shape, but its reinforcement was all in the vertical direction, 

since it was subjected to a pure out of plane load, as shown in Fig. 6. Further, to resist the out of 

plane shear load, closed stirrups across the width of the panels were required. These closed 

stirrups were substituted by U-shaped reinforcement bars for the case of inclined in-plane 
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reinforcement. The specimens were instrumented by 4 vertical, 4 horizontal and 2 diagonal 

Linear variable Differential Transducers (LVDTs) on each face of the panel. The material and 

geometric properties of all panels are given in Table 1.    

To apply an out-of-plane shear load, first the south bottom and north top jacks apply a 

compressive load on the panel, while the south top and north bottom jacks apply a tensile load of 

the same magnitude. This will create two equal end moments acting at the edges of the panel. To 

equilibrate these moments, the out-of-plane jacks need to react with forces at the top and bottom 

of the specimen. To account for the associated end moments resulting from the application of the 

out-of-plane shear, the specimens had thicker edges where they were provided with additional 

flexural reinforcement, as discussed earlier. Once the out-of-plane loads are applied, an in-plane 

shear load is subsequently superimposed. This is performed by applying equal amounts of tensile 

and compressive stresses in the horizontal and vertical principal directions of the panel 

respectively.  

The in-plane shear stress-strain relationship of all panels is shown in Figure 7, and the 

experimental results are presented in Table 1. The results reveal a strong effect of the out of 

plane load on the in-plane shear strength 

INCORPORATING TRANSVERSE SHEAR IN MEMBRANCE SHEAR THEORY 

The reduction in the strength of the membrane shear element when applying transverse 

shear affected the constitutive law of the concrete model. Using the same equilibrium and 

compatibility equations for the 2D membrane element, transverse shear can be related to the 

softening of the compression strut in the membrane shear theory. As we mentioned earlier, 

applying transverse shear reduced the membrane shear capacity for the panels. This reduction in 

the strength can be modeled as an extra softening effect for the compression strut of the 
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membrane shear element. To evaluate the value of softening coefficient in the case of bi-

directional shear loads, the following procedure is followed: 

The softening coefficient is the ratio between the compressive stresses in the concrete 

strut and the cylinder compressive concrete strength. The compressive stresses in the concrete 

strut were calculated as follow: 

strut = 2 - tension  21 

The tensile strength of concrete was evaluated based on the previously mentioned tensile 

stress- strain relationship. The softening coefficient for the OP series panels is presented in Table 

2 for the different out of plane shear loads.   

The same procedure was followed by Pang (Pang and Hsu, 1995), and the specimens’ 

material properties and calculated softening coefficients are summarized in Table 3 for the case 

of in-plane loading only. Belarbi (Belarbi and Hsu, 1995) used a different approach, where the 

softening coefficients were calculated as the ratio between maximum applied vertical 

compressive stresses on the panel to the cylinder compressive strength of the concrete. The 

material properties of their specimens and the corresponding softening coefficients are shown in 

Table 4. The softening coefficient for the OP series, Belarbi’s, and Pang’s panels are all shown 

in Figure 8 as a function of the applied lateral strain.  

The softening coefficient for the OP series was less than that of the Pang’s and Belarbi’s 

panels. The panels with higher out-of-plane shear had lower softening coefficient. The difference 

between the softening coefficient for each panel in the OP series and that predicted by equation 

12 is summarized in Table 5. The difference can be considered as a reduction in the softening 

coefficient due to the application of out-of-plane shear. Using least-square fitting, a mathematical 

expression for the ratio between the new and original softening coefficient is proposed as follow:  
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10000
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xxf   Where 100
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 Figure 9 shows the experimental and mathematically-derived relation between the 

percentage of applied transverse shear and reduction factor of the softening coefficient. The 

correlation between the experimental data and mathematical model has an R
2
 = 0.909. This 

slightly lower value is due to the fact that the correlation is not very accurate for high levels of 

out of plane loads. The complete expression for the softening coefficient including the effect of 

the concrete compressive strength, the lateral tensile strain, deviation between fixed and rotating 

angle and finally the effect of out-of-plane shear will therefore be: 
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Figure 10 shows the softening coefficient versus the applied lateral tensile strain at 

different levels of out-of-plane shear load. At a specific lateral tensile strain, it can be seen that 

increasing the applied out-of-plane shear caused a reduction in the softening coefficient, which 

will result in reducing the compressive strength of the compression strut. The out-of-plane shear 

stresses did not change or affect the constitutive laws for concrete in tension or those of the mild 

steel embedded in concrete.  

Based on the above relationships, a solution algorithm (Figure 11) was then implemented 

to predict the strength of elements subjected to combination of in-plane and out-of-plane shear, 

where the ratio between out-of-plane shear to the maximum capacity of the element in the out-

of-plane direction has to be specified. The membrane shear response for the OP series panels was 

predicted using the aforementioned algorithm. Figures 12 to 17 show the shear stress-strain 

prediction of the model to the behavior of the panels. The model was able to predict accurately 

the ultimate strength for most of the panels. The model overestimated the strength of specimen 
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OP6 and underestimated the strength of panel OP5. This can be attributed to the lack of accuracy 

of the mathematical model for high values of out of plane loads. In addition, for Panel OP5, the 

experimentally measured concrete strength was 8.92 ksi (61.5 MPa), which is 27% higher than 

the average concrete strength of other panels for which the mathematical equation was 

calibrated; this can justify the relatively lower accuracy of the model. Panel OP6 was subjected 

to a pure out-of-plane shear load without any in-plane compressive vertical loads, which resulted 

in the opening of flexural cracks along the specimen. These cracks further weakened the 

specimen, and hence the model was not able to accurately describe its behavior. 

EFFECT OF IN-PLANE SHEAR REINFORCEMENT 

Figure 18 shows the softening coefficient for different panels with different reinforcement 

ratios subjected to varying amounts of out-of-plane shear stresses and calculated using the 

aforementioned relationships. It can be noticed that the panels with lower reinforcement ratio 

achieved lower softening coefficient at higher lateral tensile strain. However, panels with higher 

reinforcement ratio achieved higher softening coefficient at lower lateral tensile strain. Figure 19 

shows the stress-strain diagram for the panels with different in-plane shear reinforcement. The 

considered in-plane shear reinforcement ratios are 1%, 1.7%, and 2.5%. The panel with 1% 

reinforcement ratio was subjected to three different ratios of out-of-plane shear stresses which 

were 20%, 50%, and 90%. The panels with reinforcement ratios of 1.7% and 2.5% were 

subjected to one level of out-of-plane shear ratio which was 20% and 90%, respectively. The 

panels with 1% in-plane shear reinforcement had the steel yielding first followed by crushing of 

the concrete. Applying 20% of the out-of-plane shear load did not change the failure mode; 

yielding of steel observed first followed by concrete crushing. Applying 50% and 90% of the 

out-of-plane maximum capacity had the concrete crush before yielding of the steel. For panels 

with in-plane reinforcement ratios of 1.7% and 2.5%, applying the out-of-plane shear had the 
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concrete crushing before yielding of steel. Panels with 1% and 2.5% in-plane shear 

reinforcement and subjected to 90% of the out-of-plane shear ratio had almost the same capacity, 

which gives indication that at higher out-of-plane shear strength, the ratio of in-plane shear 

reinforcement is not significant. Figure 20 shows the interaction diagram between in-plane and 

out-of-plane shear strength for an element with different in-plane shear reinforcement ratio. 

From the figure, strong interaction is observed for panels with high in-plane shear reinforcement.   

SUMMARY AND CONCLUSIONS 

This paper aims at developing constitutive relations for RC elements subjected to bi-

directional shear loads. Test results of 7 full scale reinforced concrete elements subjected to 

different combination of in-plane and out-of-plane loads are presented. The results showed clear 

interaction between applied in-plane shear and out-of-plane shear stresses. From the 

experimental data, a new expression for the softening coefficient in the presence of out of plane 

shear was developed. The effect of applying out-of-plane shear was then included in the 

membrane shear theories by modifying the softening coefficient of the compression strut. There 

was no observed change in the constitutive laws for concrete in tension or for the mild steel 

embedded in concrete. The model was able to capture the behavior of the tested panels rather 

accurately. Finally, the effect of the in-plane shear reinforcement ratio on the interaction diagram 

between in-plane and out of plane shear load capacity was investigated. 
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FIGURE CAPTION 

 

Figure 1 Three dimensional panel elements under various types of stresses 

Figure 2 Reinforced concrete membrane elements subjected to in-plane stresses. 

Figure 3 3D universal panel tester 

Figure 4 Reinforcement layout of panel OP4 (Dimensions in mm) 

Figure 5 Reinforcement layout of panel OP5 and OP6 (Dimensions in mm) 

Figure 6 Reinforcement layout of panel OPR (Dimensions in mm) 

Figure 7 Membrane shear response of the tested specimens 

Figure 8 Softening coefficient versus Lateral strain  

Figure 9 Reduction in the softening coefficient versus percentage of out-of-plane shear 

Figure 10 Effect of applying out-of-plane on the softening coefficient 

Figure 11 Flow chart of solution procedure for softened membrane model under the effect of out-

of-plane shear load 

Figure 12 Experimental and analytical in-plane shear stress-strain relationship for OP1 

Figure 13 Experimental and analytical in-plane shear stress-strain relationship for OP2 

Figure 14 Experimental and analytical in-plane shear stress-strain relationship for OP3 

Figure 15 Experimental and analytical in-plane shear stress-strain relationship for OP4 

Figure 16 Experimental and analytical in-plane shear stress-strain relationship for OP5 

Figure 17 Experimental and analytical in-plane shear stress-strain relationship for OP6 

Figure 18 Effect of out-of-plane shear on softening coefficient of membrane elements with 

different reinforcement ratio 

Figure 19 Effect of out-of-plane on shear stress-strain relationship for membrane shear elements 

with different reinforcement ratios 

Figure 20 Effect of in-plane shear reinforcement ratio on the in-plane and out-of-plane 

interaction diagram 

 

 



 21 

Table 1: Summary of the results for OP series 

 

Panels OP0 OP1 OP2 OP3 OP4 OP5 OP6 OPR 

Thickness mm (in.) 178 (7) 178 (7) 178 (7) 178 (7) 178 (7) 178 (7) 178 (7) 178 (7) 

Concrete strength MPa (ksi) 48.3 (7) 49.9 (7.2) 40 (5.8) 42.3 (6.1) 54.7 (7.9) 61.5 (8.9) 54 (7.9) 52 (7.5) 

Applied out-of-plane shear 

Max. applied in-plane jack force 

kN(kip) 
0 53 (12) 80 (18) 107 (24) 222 (50) 329 (74) 351 (79) 386 (87) 

Applied out-of-plane shear force 

kN(kip) 
0 20 (4.6) 31 (6.9) 41 (9.1) 85 (19.1) 125 (28.2) 134 (30.1) 147 (33) 

Applied out-of-plane shear stress MPa 

(psi) on the 90
° 
position 

0 
0.43 

(62.20) 

0.64 

(93.29) 

0.86 

(124.39) 

1.8 

(259.15) 

2.6 

(383.54) 

2.8 

(409.46) 

3.1 

(453.36) 

Applied out-of-plane shear stress MPa 

(psi) on the 45
°
 position 

0 
0.3 

(43.98) 

0.45 

(65.97) 

0.61 

(87.96) 

1.26 

(183.25) 

1.87 

(271.21) 

2.0 

(289.53) 

2.21 

(320.57) 

Applied in-plane shear 

Max. applied horizontal force kN (kip) 
184 

(41.43) 

160 

(35.92) 

172 

(38.78) 

141 

(31.66) 

114 

(25.71) 

127 

(28.66) 

44 

(9.81) 
0 

Max. applied vertical load kN (kip) 
196 

(44.21) 

179 

(40.29) 

174 

(39.19) 

151 

(33.92) 

124 

(27.85) 

137 

(30.75) 

63 

(14.2) 
0 

Corresponding Max. Horizontal strain
 0.02415

3 
0.0044 0.00858 0.00639 0.00465 0.00487 0.00044 0 

Corresponding Max. Vertical strain  -0.00332 -0.00175 -0.00131 -0.00233 -0.00166 -0.00181 -0.0008 0 

Applied in-plane shear stress MPa 

(ksi) 

8  

(1.165) 

7.2 

(1.037) 

7.3 

(1.055) 

6.1 

(0.886) 

5.0 

(0.729) 

5.6 

(0.808) 

2.6 

(0.37) 
0 

 

Normalized out-of-plane shear on the 

45
° 
position 

0 
0.043 

(0.52) 

0.072 

(0.86) 

0.093 

(1.12) 

0.171 

(2.05) 

0.238 

(2.86) 

0.271 

(3.25) 

0.332 

(3.98) 

Normalized out-of-plane shear on the 

90
° 
position 

0 
0.06 

(0.72) 

0.10 

(1.20) 

0.13 

(1.56) 

0.24 

(2.88) 

0.34 

(4.08) 

0.38 

(4.56) 

0.47 

(5.64) 

Normalized in-plane shear 
1.18 

(29.97) 

1.01 

(12.12) 

1.16 

(13.92) 

0.94 

(11.28) 

0.68 

(8.16) 

0.71 

(8.52) 

0.35 

(4.2) 
0 
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Table 2 Softening coefficient for OP series 

Panels 
'

cf  

(MPa) 
1  

(mm/mm) 
cE  

(MPa) 

crf  

(MPa) 
1  

(MPa) 

 
explt  

(MPa) 

 
c2  

(MPa) 
exp  

Out-of-

plane 

(%) 

OP0  0.01284      0.362 0 

OP1 49.91 0.00812 33435 2.21 0.345 7.24 14.13 0.283 13 

OP2 42.26 0.007664 30766 1.99 0.324 6.13 11.99 0.283 22 

OP3 39.64 .005012 29797 1.93 0.372 7.31 14.27 0.36 28 

OP4 54.67 0.002469 34993 2.27 0.586 5.10 9.65 0.176 46 

OP5 61.49 0.002835 37113 2.41 0.586 7.51 14.54 0.236 68 

OP6 54.25 0.002767 34860 2.27 0.558 3.45 6.27 0.116 72 
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Table 3 Softening coefficient for Pang (1991) panels 

Panels 
'

cf  

(MPa) 
1  

(mm/mm) 
cE  

(MPa) 

crf  

(MPa) 

c

1  

(MPa) 

 
explt  

(MPa) 

c

2  

(MPa) 

 
exp2

c  

(MPa) 
exp  

A1 42.19 0.05158 25348 1.99 0.151 2.275 4.398 2.351 0.104 

A2 41.22 0.02676 25056 1.99 0.193 5.370 10.548 5.467 0.256 

A3 41.64 0.01284 25182 1.99 0.262 7.659 15.056 7.914 0.362 

A4 42.47 0.00634 25431 1.99 0.351 11.313 22.274 11.299 0.524 

B1 45.22 0.02232 26243 2.07 0.220 3.964 7.707 3.998 0.170 

B2 44.05 0.01413 25901 2.07 0.262 6.129 11.995 6.184 0.272 

B3 44.88 0.01177 26143 2.07 0.282 4.357 8.431 4.453 0.188 

B4 44.74 0.01030 26103 2.07 0.296 5.067 9.838 5.157 0.220 

B5 42.81 0.00879 25534 2.07 0.310 7.156 14.001 7.190 0.327 

B6 42.95 0.00837 25575 2.07 0.317 9.148 17.979 9.252 0.419 

C2 41.5 0.03125 25140 1.99 0.186 0  7.321 0.264 

C3 44.74 0.01215 26103 2.07 0.282 0  11.347 0.397 

C4 41.98 0.00754 25286 1.99 0.324 0  9.196 0.448 
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Table 4: Softening coefficient for Belarbi (1991) Panels 

Panels  '

cf (MPa) p ,(MPa) 1  

(mm/mm) 
exp  

REF 44.6 34.87 0.00053 0.782 

E0 38.2 33.56 0.00001 0.900 

E1.5-1 44.57 28.34 0.00202 0.636 

E1.5-1B 38.99 30.58 0.00289 0.784 

E2-1 47.7 23.4 0.00431 0.491 

E2’-1 39.58 29.88 0.00464 0.755 

E2’’-1* 41.24 27.13 0.00437 0.658 

E2-1A 44.85 30.38 0.00316 0.677 

E2-1B 38.31 21.98 0.00735 0.574 

E4-1 40.56 20.78 0.00902 0.512 

E4-.5 39.2 39.01 0.00865 0.468 

E4-2 37.03 18.94 0.00970 0.511 

E4-1A 37.3 20.49 0.00895 0.550 

E10-1* 40.69 10.3 0.02764 0.253 

E10-1A 36.88 12.9 0.02593 0.350 

E10-1B 39.58 12.51 0.03708 0.316 

R4-1* 41.98 33.26 0.00479 0.792 

R10-1 39.04 20.85 0.00961 0.534 

R30-1* 40.71 12.87 0.02933 0.316 

F2* 40.11 11.85 0.02798 0.295 

F3* 42.61 18.74 0.01433 0.440 

F4* 41.89 20.85 0.00726 0.498 
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Table 5: Reduction in the softening coefficient for OP series due to application of out-of-plane 

shear 

Panels 
 

(MPa) 

Out-

of-

plane 

(%) 

 
(mm/mm) theor   

Reduction 

Factor 

OP0  0 0.012840 0.363 0.362 0.995 

OP1 49.91 13 0.008120 0.437 0.283 0.649 

OP2 42.26 22 0.007664 0.446 0.283 0.635 

OP3 39.64 28 0.005012 0.519 0.360 0.692 

OP4 54.67 46 0.002469 0.638 0.176 0.276 

OP5 61.49 68 0.002835 0.616 0.236 0.383 

OP6 54.25 72 0.002767 0.620 0.116 0.187 

 

 

 

 



 26 

  

 
Fig. 1 Three-Dimensional Panel Elements under Various Types of Stresses 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Three dimensional panel elements under various types of stresses 
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Figure 2 Reinforced concrete membrane elements subjected to in-plane stresses. 
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Figure 3 3D universal panel tester 
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Figure 4 reinforcement layout of panel OP4 

 

 

 

 

 

 

 

 

 

Figure 5 reinforcement layout of panel OP5 and OP6 
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Figure 6 reinforcement layout of panel OPR 
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Figure 7 Membrane shear response of the tested specimens 
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Figure 8 Softening coefficient versus Lateral strain for Belarbi (1991), Pang (1991), and OP panels 
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Figure 9 Reduction in the softening coefficient versus percentage of out-of-plane shear 
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Figure 10 Effect of applying out-of-plane on the softening coefficient 
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Figure 11 Flow chart of solution procedure for softened membrane model under the effect of out-
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Figure 12 Experimental and analytical in-plane shear stress-strain relationship for OP1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Experimental and analytical in-plane shear stress-strain relationship for OP2 
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Figure 14 Experimental and analytical in-plane shear stress-strain relationship for OP3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Experimental and analytical in-plane shear stress-strain relationship for OP4 



 38 

0

200

400

600

800

1000

1200

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

OP5-exp

OP5-ana

S
h

e
a
r 

st
re

ss
 (

p
si

)

Shear strain (in./in.)

0

200

400

600

800

1000

1200

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

OP6-exp

OP6-ana

S
h

e
a
r 

st
re

ss
 (

p
si

)

Shear strain (in./in.)

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Experimental and analytical in-plane shear stress-strain relationship for OP5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Experimental and analytical in-plane shear stress-strain relationship for OP6
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Figure 18 Effect of out-of-plane shear on softening coefficient of membrane elements with different reinforcement ratio 
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Figure 19 Effect of out-of-plane on shear stress-strain relationship for membrane shear elements with different reinforcement ratios 
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Figure 20 Effect of in-plane shear reinforcement ratio on the in-plane and out-of-plane interaction diagram 


