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Abstract: Conditioning, how animals learn to associate two or more events, is one of 

the most influential paradigms in learning theory. It is nevertheless unclear how 

current models of associative learning can accommodate complex phenomena without 

ad hoc representational assumptions. We propose to embrace deep neural networks to 

negotiate this problem.  
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Associative learning describes how two or more events (be they stimuli or responses) 

become associated (Box 1). This deceptively simple idea is one of the fundamental 

pillars in the study of learning and cognition. It has been proven to operate at both 

behavioural and neural levels, with a wide range of procedures and organisms, and to 

underlie higher-order cognitive processes (rule learning, concept formation). The 

rules of association formation may be simple but the world upon which they operate 

is not necessarily so. We argue that whereas models of associative learning often 

assume an arbitrary connectionist architecture, using deep networks to learn stimulus 

representations would allow for biologically plausible, hierarchical representations, 

better model comparison, and ultimately more accurate predictive models of learning. 

Although there is an on-going debate on the explanatory power of associative learning 

theory (see e.g., [1]), recent studies on the neural bases of trial and error learning [2], 

and the role of associative learning in evolutionary biology [3] and social interaction 

[4] seem to bolster the status of associative learning as one of the cardinal paradigms 

in behavioural neurosciences. The crux of the controversy nonetheless does not 

question experimental evidence, of which plenty exists, but whether such evidence is 

supported by current models within the terms of reference of traditional associative 

learning theory.  

 

The last decade has seen a surge of increasingly sophisticated computational models 

of association formation, stemming from both neuroscience and artificial intelligence 

(see e.g., [5,6]). For instance, reinforcement learning algorithms have been 

remarkably successful in modelling the role of dopamine in reward learning [7] and 

are at the heart of cutting-edge studies in model-free and model-based associative 

learning [8]. Typically, such models are embedded in neural networks that correct a 
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prediction error iteratively. Indeed, neural network architectures seem to be a logical 

way of representing connections between events, and the update rule they implement 

intuitively corresponds with the way predictions are adjusted as a result of learning. 

These update rules are also justified with respect to probability theory, i.e. Bayes’ 

rule. Notwithstanding their merits, there are still critical phenomena whose 

interpretation poses formidable challenges for such models –and this has been taken 

as evidence of the limited scope of associative learning theory itself: Importantly, but 

not exclusively, evidence of learning between motivationally neutral stimuli questions 

whether reward is an essential component of learning (the role of reward); learning 

about absent stimuli may suggest the involvement of stored information (the role of 

memory); solving complex stimulus and temporal structural discriminations seems to 

require postulating non-linear relationships in stimulus pattern integration (the nature, 

configural or elemental, of the stimulus representation); and the notion of goal-

directed behaviour raises incertitude on what the elements of an association might be 

(the content of learning). These are paradigmatic examples of topics that existing 

models of associative learning fail to explain in a systematic, consistent corpus.  

 

It is our claim that this inadequacy can mainly be ascribed to a representational 

problem deriving from such models being instantiated in connectionist networks, 

which even with numerous hidden layers rely on hand-crafted inputs and suffer in 

terms of robustness and generalization. Advances in deep neural networks, aka Deep 

Learning, may provide us with powerful tools for modelling how representations of 

events are formed, connected and learned about. The underlying idea is to exploit 

large (deep) neural networks consisting of multiple levels of abstractions [9], 

facilitated amid breakthrough progress in Big Data, GPU computational power, and 
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the development of “smart” training heuristics and architectures. Various techniques 

have been formulated to allow the formation of long-range dependencies along either 

the depth of a network (feed-forward nets) or temporally (recurrent nets). An example 

in the former case is the Rectified Linear Unit (ReLU) activation function, which has 

been contextualized in the stability analysis of synaptic connections. ReLU preserves 

error gradients due to its binary derivative and when combined with the dropout 

technique wherein units are randomly removed from the network during training, 

produces distributed, robust representations. This ensures similar network inputs 

activate similar high-level abstractions and removes detrimental feature co-

dependencies, thereby improving generalization (and discrimination). It is the unique 

synthesis of these techniques that makes Deep Learning suitable. Although it is 

arguable whether deep neural networks learn or act as human beings [10], they have 

been extraordinarily efficient in recognising complex images and audio signals [11], 

and in solving intricate control tasks [12].  

 

Our contention is based on the evidence that many learning phenomena do involve the 

formation of complex associations both in the interaction of structured sequences of 

paired events and, critically, in the formation of the stimulus representation per se; 

which deep learning naturally accommodates. In particular, we hypothesize that 

Convolutional Neural Networks (CNNs) show the necessary algorithmic and 

computational characteristics, namely, sparse connectivity and shift invariance, whilst 

keeping the error correction of many associative learning models, to account for 

phenomena that have thus far escaped a cohesive associative learning analysis. 

Crucially, in contrast to standard multi-layer networks, CNNs do not use ad hoc 

features, rather they define hierarchies of layers which automatically learn 
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representations at different levels of abstraction –such representations emerge from 

the aggregation of lower level features through convolutional and pooling layers.  

 

Specifically, the capability to distinguish between elements which are common or 

unique to different stimuli is essential in solving non-linear discriminations and 

determinant in the formation of within-compound associations and in mediated 

phenomena. Current models of associative learning do not establish a mechanism to 

extract, bond, and compute common and unique features, but rather conceptualise 

them ex nihilo. CNNs, which hierarchically filter information using different 

receptive fields (kernels) might offer a solution. In these systems, similar inputs result 

in similar activation patterns within the network, offering a plausible substratum for 

producing commonalities in representation. For instance, to solve a non-linear 

discrimination as the one described in Box 2, both elemental (a) and configural (b) 

theories rely on hand-crafted internal units. Contrarily, a deep neural network (c) 

could produce the effect without hypothesizing arbitrary constructs: The network 

would be trained on raw sensory input by application of kernels along its depth, 

producing abstractions ranging from low-level to compressed high-level 

representations. The ReLU activation function would preserve the error gradient when 

backpropagating through the network and, in combination with the dropout technique, 

would promote sparse, decorrelated, and noise invariant representations; ensuring the 

same abstractions would be active in trials of the same type. The correlation of 

activation of common and unique features would lead to the associative formation of 

respective unitized nodes, which would link to the outcome. Through 

backpropagation, the network would learn to associate irrelevant features, negatively 

correlating them to the outcome – thus solving the discrimination. This procedure 
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would naturally extend to complex discriminations, automatically extracting patterns 

pertinent to the task.   

 

Summarizing, current models of associative learning rely on bespoke stimulus 

representations and on the addition of multiple layers to connectionist networks. We 

contend that this approach may have exhausted its explanatory scope: (a) 

representations need to be generated by the learners and (b) multi-layer networks 

must be accompanied with computational techniques that make them efficient. Deep 

Learning does precisely that. With this paper, we would like to spur the interest in this 

new technology in the associative learning community.  
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Box 1: A classical conditioning example. When a stimulus is perceived a central 

representational node becomes active. Pairings of two stimuli engender concurrent 

activation of their internal nodes. In a typical procedure, a stimulus A is paired with 

an outcome (O, aka unconditioned stimulus or reinforcer), a stimulus able to elicit an 

unconditioned response (UR). A, on the other hand, is said to be neutral to that 

response. With pairings, a link is progressively formed between the stimulus’ nodes, 
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as a result of which A becomes a conditioned stimulus for the outcome. Thereupon, 

presentations of A alone will activate O’s central representation, eliciting a 

conditioned response (CR) (top panel). The strength of the association (w) between A 

and O increases with the number of pairing trials as the error, that is the difference 

between the value of the prediction of O by A and the actual value of the occurrence 

of O, is reduced (bottom panel).  

(PLEASE INSERT FIGURE 1 HERE) 

 

 

Box 2: Elemental, Configural and Deep Learning network architectures. In a 

negative patterning discrimination, single A and B presentations are followed by an 

outcome (A à O and B à O), and combined presentations are not (AB à no O). To 

explain discriminative performance, elemental learning models (a) posit that the 

combination of stimuli conveys an extra feature X (in the form of explicitly added 

cues (Z), subtracted cues (Y), or a mixture of both) distinctive from those in A and B 

alone. Thus, during learning, A and B will become linked to the outcome (excitatory 

link, black) whereas X will develop an inhibitory link (red) to O which will prevent 

the response from occurring. Configural models (b), on the other hand, simply 

consider that, partially activated by A and B, the compound AB is distinctively 

represented in a hidden layer together with the stimuli themselves. During learning, 

direct excitatory and inhibitory associations will be formed from each node in the 

hidden layer to the outcome. In contrast, in one schematic Deep Learning solution of 

the discrimination combining CNN and associative learning rules (c), receptive fields 

would produce hierarchies of abstractions from an input of raw features. Common 

elements activation would be highly correlated, fostering associations between them 
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and creating unitized nodes of different common categories. In parallel, unique 

features would be extracted to nodes corresponding to the input patterns, which would 

link forward to the outcome and backward to the input.  Next, nodes activated by the 

same input would associate (e.g., presentations of A would result in the association 

between the common elements nodes and the unique A features nodes) and a new 

abstraction (A in such case) formed in subsequent layers. The proximity of the newly 

formed A, B and AB abstractions to the outcome would link them preferentially to it. 

At this point the network cannot solve the discrimination because A and B nodes 

separately predict the outcome but AB – which combines the elements from both – 

disconfirms it, and thus the error is high. Backpropagation of the outcome error would 

trigger the formation of associations between the unique elements nodes and promote 

the emergence of a node of unique A and B features that would be extracted in a new 

layer and linked to the outcome. Through backpropagation of the outcome error, 

features in fully connected layers within the network could learn to inhibit other 

features. Thus, the common elements, better outcome predictors, would strengthen 

their link to the outcome promoting inhibitory links between the unique elements and 

the outcome. Note that this a schematic description of a network that would in 

practice comprise a large number of layers and for which ReLU and dropout 

techniques are needed, and that the elements in the unitized nodes are not 

conceptualized features but explicit and automatically extracted by the filters.  

(PLEASE INSERT FIGURE 2 HERE) 
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FIGURE CAPTIONS 

 

Figure 1: A classical conditioning example, where an organism is exposed to the 

repeated occurrence (trials) of a pair of stimuli, A and O. 

 

Figure 2: Learning architectures in elemental, configural and Deep Learning models 

of a negative patterning discrimination. 
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