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ABSTRACT

Computational cognitive neurcimaging approaches can be leveraged to characterize the hierarchical organiza-
tion of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale
mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based
experiments. Meta-analytic coactivation networks were identified by jointly applying independent component
analysis {ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (ie.,
d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to
compare spatial network topologies, ultimately vielding fractionation profiles delineating how “parent”
funectional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed
dramatically across canonical networks: some exhibited complex and extensive fractionation into a large
number of sub-networks across the full range of model orders, whereas others exhibited little to no
decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity,
vielding three distinet groups of network fractionation profiles: high, moderate, and low fractionation.
BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association
regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these
outeomes suggest the impaortance of inter-lobar connectivity in functional brain organization. We conclude that
high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-
range, inter-lobar connectivity, particularly in fronto-parietal regions. In eontrast, low fractionation networks
may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lohar
communication.

Introduction

Enhanced insight into the network-level functional organization of
the human brain may provide a more complete and coberent frame-
work to appreciate the spectrum of human mental abilities. For
example, funclional connectivity analyses utilizing multivariate imnde-
pendent component analysis (ICA) have characterized the spatial
topography of consistently identified brain networks in resling stale
functional magnetic resonance imaging (rs-[MRI) data (Beckmann,
2012; Calhoun amd Adali, 2012). ICA-derived resting state networks
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(Beckmann et al, 2005; De Luca et al., 2006) extend across anatommi-
cally distributed regions, are consistent across studies (Damoiseaux
et al., 2006; Zuo et al., 2010) and species (Wey et al., 2014; Vincent
el al, 2007 Moeller et al., 2009}, and reliably define functional nenral
systems, such as the default mode (Raichle el al., 2001), perceplual
{e.g., visual or auditory), sensorimotor (eg., molor-hand, motor-
speech, premotor), and high-level cognitive networks (e.g., unilateral
and bilateral fronto-parietal regions associated with memory, language,
and central executive function) { Damoiseaux et al., 2006; Kiviniemi
el al, 2009 Biswal el al., 2010; Allen et al, 2011). We previously
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demonstrated that this network-based architecture persists across both
resting and task stales, as shown in a database-driven meta-analysis
from thousands of task conditions (Smith el al., 2009). Using ICA, a
primary set of activation networks was identified, which represented
the major modes of co-occurrence across the diverse range of activa-
tions veported in the literature. Subsequently, we reported a novel
approach in connectome discovery science in which ICA and pattem
classification techniques were jointly applied o characterize the
functional similarity across meta-analytic petworks (Laivd el al,
2011a). Using this approach, we identified four groupings of the major
coactivation networks with similar behavioral properties across stu-
dies: (a) motor and visuospatial integration, coordination, and execu-
tion, (b) visual processing, (¢} emotion and interoceplive processing,
and (d) higher cognition. Networks in the first three funclional groups
exhibited strongly thematic functional properties, whereas the [ourth
group was associated with a divergent set of properties that differed
across nelworks, vet all involved high-level cognitive processing.
While the spatial topographies of these canonical neural systems
have been consistently observed across studies, it is unclear how this
functional archilecture translates across different scales. Indeed,
although multivariate analyses of fMRI data have become commion-
place, such analyses are typically nol vel mudti-seale. Evidence from
graph theory approaches (Bullmore and Sporns, 2009) suggests that
the brain follows a modular organization, with communication hubs
(Achard et al., 2006; Hagmann et al., 2008; Buckmer et al., 2009) and
properties similar to those of small-world networks (Salvador el al,
2005; Meunier et al., 2009; He et al., 2009). However, there remains
much to be understood regarding the fractionation scheme that defines
how large-scale core systems are decomposed into sub-systems. ICA is
typically performed al a pre-selected model order d (e.g., generally, a
low ovder/scale of 20-40 components), rather than across multiple
scales. Although prior work has sought o develop analylic stralegies
for automatically identifying an oplimal model onder of interest
(Beckmann and Smith, 2004; Himberg et al., 2004; Li et al., 2007,
Fay el al., 2013), these methods are somewhat arbitrary and usually
depemnd upon a number of factors (eg., feld strength, number of tme
points, number of subjects, amd data quality). A recent study estab-
lished the importance of this dimensionality parameter (Wang amd Li,

ties of functional brain architecture. First, we applied ICA using a range
of model orders to a database of Lask-based activations reported in the
literature. Second, we applied meta-analytic connectivity modeling
(MACM; Laird et al., 2009a; Robinson et al., 2010; Eickhoff et al,
2010} to the resultant ICA components to idenlify a set of larpe-scale
coactivation networks at each model order, Meta-analytic coactivalion
networks are derived from activation patterns reported across a range
of experimental neurcimaging tasks and paradigms, are complemen-
Lary to seed-based resting state correlations, and have been validated in
a series of papers comparing findings W other network mapping
techniques (Robinson et al, 2010, 2012; Eickhoff et al., 2010, 2011;
MNaravanaet al.,, 2012; Jakobs et al., 2012; Reetz et al., 2012). Pairwise
correlation matrvices quantifying the similarily between networks at
sequential dimensionalities were caleulated Lo construct (ractionation
profiles describing how the parent networks were decomposed into
child sub-networks. Consistent with amd extending our previous work,
we hypothesized that perceptual and motor parent networks would
yield simple fractionation profiles with relatively few numbers of child
sub-networks. Conversely, we addilionally hypothesized that cognitive
parent networks would yield complex [ractionation profiles with
relatively large numbers of child sub-networks. We observed that the
fractionation profiles differed dramatically across canonical networks,
with some exhibiting complex ractionation into a large number of sub-
networks amd others exhibiting little to no decomposition, Hierarchical
clustering of the heterogeneous [ractionation profiles allowed us to
then classify networks into three distinel groups: high fractionalion,
moderate fractionation, and low factionation. Our resulls demonstrate
that varying model ovder provides enhanced insight into the helero-
geneous fractionation profiles of meta-analytic coactivaion networks.

Methods
Iredependent component analysis of the BrainMap database

Following procedures established in our prior work, meta-analysis
was carried out using data archived in the BrainMap database (hilp://
brainmap.org; Fox and Lancaster, 2002; Laird et al, 2005a, 2009,
20111). Peak coordinates were extracted from 10,899 neurcimaging

2015), demonstrating that the number of components can ecritically
affect ICA results. Only a few studies have divectly compared ICA-based
resting state networks across different model ovders (Smith el al.,
2009; Kiviniemi et al., 2009; Abou-Elseoud et al., 2010; Pamilo et al.,
2012), suggesting a hierarchical network structure (Le., the 20 nel-
works observed at a low-dimensionality ICA can be decomposed into
distinet sub-networks at a model order of 70}, However, no study has
yeb synthesized the dynamic nature of these networks by scaling across
a wide range of model orders.

In a previous study, we examined mela-analylic lask co-occurrence
networks across multiple model orders using the BrainMap database,
and demonstrated a model order of 20 components provides an
optimal decomposition for low model onder ICA, while 70 components
is oplimal for higher model orders (Ray et al., 201 3). Although multiple
model orders were analyzed, our results did not include an integralive
assessment of the decomposition rajectories across all model orders,
for all networks. Here, we more [ully explored how large-scale
distributed meta-analytic coactivation networks fractionate into smal-
ler sub-networks and/for individual nodes using a multivariate, multi-
scale analysis. The emphasis of the present siudy is not on a single
moddel order, noris itour objective o propose thal higher model orders
are more or less meaningful than lower model orders. Rather, we
sought Lo characterize meta-analytic coactivation networks from a
wider lens and evaluate the dynamic range of fractionation profiles
across many model orders. To this emd, we leveraged two complemen-
tary neuroimaging mela-analylic techniques to examine how “parent”
functional brain systems can be decomposed into constituent “child”
sub-networks, thereby providing insight into the actionalion proper-

experiments representing activation locations observed among 100,861
healthy participants across a wide range of behavioral lask conditions.
Experiments were filtered Lo excluode patient populations, therely
mitigating potential bias due to effects of disease or trealment effects.

Coordinates reported in MNT space (Evans el al., 1993; Collins el al.,
1994} were converted into Talairach space (Talaivach and Tourmous,
1988) using the Lancaster ransformation (Lancaster el al., 2007),

reducing spatial disparity across normalization emplates (Laind el al.,
2010). The coordinates were then modeled with a three-dimensional
Gaussian probability distribution reflecting the spatial unecertainty of
each focus based on an estimation of the inter-subject and inter-
laboratory variability typically observed in neuroimaging experiments,
weighted by the number of subjects included in each experiment
{Eickhoff et al., 2009). This algorithm limils the meta-analysis to an
analomically constrained space specified by a grey matter mask, amd
includes a method that caleulates the above-chanee clustering belween
experiments (Le., random-efects analysis), rather than between foc (1.
e, fixed-cfects analysis), and also accounts for differences in sample
sizes across included studies (Eickhoff ol al., 2009). The probabilities of
all foei reported in a given experiment were compubed, resulling in a
modeled activation (MA) map for each experiment (Fig. 1, Step 1), The
per-experiment MA probability maps were converted into feature
vectors of voxel values and concatenated horizontally to form an
array of size n=10,899 experiments by v voxels. The spatial
resolution of the images was 2 mmx=2 mm=2 mm, and v was equal Lo
296,654 voxels.

Spatial ICA at a model order of o was applied to these dala using
FSL's MELODIC (multivariate exploratory linear optimized decompo-
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d=2 cananieal coactivation netwaorks 1o identify groupings of networks with fractomation profiles of similar complesdty.

gition into independent components; Beckmann el al, 2005) to
decompose the MA maps into o spaliuh:mtmml L'!J[I]EHJ[IL‘[I[E (FMEIB
Suflwan. Library; Smith et al., 2004; Woolrich et al., 200 i
et al., 2012) (Fig. 1, Slf_p 2} This approach tus |}|‘.‘L[I uan‘:d in previous
meta-analytic ICA smdies at dimensionalities of d=20 (Laind el al.,
2011a; Smith et al., 2009), as well as ranging from o=20-200 at
intervals of 10 (Ray el al, 2003). Increasing ICA dimensionality yvields
increasingly smaller hram regions exhibiting erLamngl}' hl,ghr.r aver-
agt component zZ-scove values (Abou-Elseoud et al, 20010; Ray el al,
2013). Here, we performed ICA mulllpl.c' irmes [! 29) to extract sets of
d=20-300 independent components at intervals of 10, and thereby
characterized a greater range of model orders than has previously been
assessed. Thus, ICA was performed at 29 different model orders each
with d components, yielding a cumulative total of 4,640 components.
Ateach model order, ICA maps were converted to 2 statistic images via
a normalized mixture model fit and viewed on a Talairach space
template image (Kochumov et al 12). A threshold of z=>4 was
selected to provide mf.ltuhlulugu.al consistency to prior BrainMap-
based stdies of [CA component maps (Smith et al., 2009; Laind et al.,
2011a; Ray et al., 2013).

Generation of meta-analytic coactivation networks

ICA-derived spatially indepemdent components are known to be
consistent, and have been reported in a host of s-[MRI publications
amd in task-based BrainMap meLa-analylic coactivation studies (Smilh
etal., 2009 Laird et al., 2011a; Ray et al., 2013). At a low model order
(e.g, 20 4['?]'. the hrf.ud spatial patterns of the observed components
are easily recognizable (e.g., defanlt mode, medial visual, salience, ete.);

however, some varations are commonly observed in the extent of the
primary clusters, as well as the absence or presence of smaller,
secondary clusters. Given this variability, we sought o identify a more
extensive aml complete definition of the functional brain networks
underlying each of the ICA component images. Thus, to more fully
identify large-scale meta-analytic coactivation networks, we performed
meta-analytic connectivity modeling (MACM) on the ICA-derived
component images from each model order (Fig. 1, Step 3). That is,
this two-step strategy was chosen o first identify the spatially
independent networks using ICA and subsequently apply MACM to
refine and strengthen the ICA results. The MACM approach examines
coactivations for a user-defined region of interest and yields imagcq of
Lask- lusui connectivity (Laird o ta; Robinson et al, 2010;
Eickhoff et al., 2010). Thresholded Lu:l]pf.mcnl images across all model
orders m:rwd a5 seeds in the BrainMap database to identify brain areas
that were coactivated with voxels in each component map. Specifically,
the BrainMap database was queried for all experiments that reported
one or more activation coordinates within the spatial boundaries
delineated by each ICA spatial map. Search results were limited to
coordinates of brain activations (i.e, no deactivations) reported in
studies of healthy participants. The whole-brain coactivation coordi-
nates were extracted dlung with the corresponding metadata from the
BrainMap taxonomy (Fo al ), which characterize the experi-
mental design, L:u.ludmg Eu:ddi,gm class and behavioral domain, for
each experimental contrast.

Once the whole-brain coactivation coordinates were identified for
each thresholded component, the activation likelihood estimation
(ALE) method was used to perform MACM, yvielding a meta-analytic
image representing the above-chance probability that a given voxel
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coactivated with the component seed map. In MACM, an ALE scove is
caleulated at every voxel in the brain (Turkeltaub el al, 2002; Laird
et al., 2005bh; Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012), and
these ALE scores are transformed to Pyvalues to identify locations with
significantly higher ALE scores than an empircally derived null
distribution. Each ALE map was thresholded at a false discovery rale
(FDR) threshold of P < 0.05 with a minimum cluster size of 250 mm®.
This procedure yielded a statistically significant MACM map delineal-
ing whole-brain meta-analytic coactivation networks for each of the
4640 ICA component images across.

Fractionation profiles: spatial correlations across model orders

Alter generating the meta-analylic coactivation networks across all
model orders, we sought to establish a hievarchical framework of
network fracionation profiles. At the lowest model order, 20 coactiva-
tion networks were obtained, representing the major modes of fune-
tional activation observed during task performance, which corre-
sponded to the petworks of correlated spontaneocus fuctualions
observed during the resting state (Smith el al,, 2009). Given the high
reproducibility of these canonical networks across multiple studies, we
then aimed Lo characterze how these networks fractionate into sub-
networks as a lunction of increasing model order. To this end, we
ulilized the Pearson correlation coefficient. The procedure began by
first masking each unthresholded MACM image o include only those
voxels in the Talairach brain mask (Eochunov et al., 2002). Then, each
MACM was reduced from a three-dimensional matrix to a one-
dimensional array, where the length of the array was equal Lo the
number of voxels in the brain mask (ie, same size for all images). The
one-dimensional arvay corvesponding to a single model order was
computed for every model order o, the resulls were subsequently
concatenated to generate a dx v matrix, Next, we computed the Pearson
corvelation coefficients between network pairs oblained al model
orders 20 amd 30, and assigned each child network observed at model
order 30 to a single parent network al model ovder 20 based on the
highest observed corvelation coefficients. A high corvelation coefficient
indicated a strong correspondence between spatial topographies across
adjacent model orders. By evalualing the highest coefficient at d=30
and assigning to the corresponding parent at d=20, we allowed for
multiple child networks o be assigned Lo a given parent (Le., sinee 30
= 20), thereby indicating polential fractionation of a single parent
network into multiple child sub-networks, Next, to establish the second
level of hierarchical organization, we computed the corvelations
between network pairs at model ovders 30 and 40. This step-wise
procedure was iteratively repeated for all consecutive model order
pairings § and i(+10, yielding a hierarchical assembly of parent-child
assipgnments in which the sub-networks at suceessive model orders
were assigned Lo a given parent network at the previous model order.
The results yvielded a dsd+10 malrix of correlation coefficients (Fig 1,
Step 4). In this way, the hierarchical parent-child assignments from all
moddel orders allowed us o assign all 4,640 child sub-petworks and
ultimately construet network factionation profiles delineating how
each of the 20 canonical coactivation networks were fractionated.
Importantly, if the relative difference between correlations of model
order pairings was found to be within 10% of the average observed
difference between highest and second-highest correlations, a child was
assigned Lo multiple parents. This was implemented Lo account for
scenarios in which a child sub-petwork may polentially “belong” to
multiple parent networks (see Supplemental malerial for move details),

We anticipated a wide range of different [ractionation profiles for
the 20 canonical coactivation networks, in accordance with our
hypotheses that low-level perceptual and motor coactivation melworks
would fractionate into a relatively small number of sub-networks,
whereas high-level cognitive coactivation networks would fractionale
into a relatively high number of sub-networks. To evaluate the
heterogeneity of the fractionation profiles for the 20 canonical coacti-

vation networks, we generated an nxt array, where n refers Lo the =20
canonical networks and ¢ refers to the 29 model orders (e, from 20 to
300 in intervals of 10). Each value of the array indicated the number of
fractionated child sub-networks observed at a given model order. The
20 canonical metworks were subsequently grouped into clusters by
applying hierarchical clustering analysis W this arvay using the average
linkage algorithm and the ewclidean distance melric (Laivd el al,
201 1a, 2015} (Fig. 1, Step 5). Given the small number of variables, we
identified a clustering solution using simple visual inspection of the
resultant dendrogram.

Functional decoding of meta-analytic cooctivation networks

We also evaluated the functional properties of the observed meta-
analytic coactivation networks  across mulliple model  onders.
Experiments in the BrainMap database have been manually annotated
with metadata that describe the experimental design of each archived
sudy. This metadata includes the “behavioral domain”, which classi-
fies the mental function isolated by the experimental contrast, There
are five main levels of behavioral domain classification: action, cogni-
tion, emotion, interoception, and perception. A complete description of
the BrainMap metadata taxonomy, along with a comprehensive list of
behavioral domains is available at hitp: /brainmap.org/ taxonomy, We
analyzed the per-experiment behavioral domain annotations to
determing the mental functions that were most likely to contribute to
the observed coactivation networks. Forward and reverse inference
analyses {Poldrack, 2006; Yarkoni el al, 2011) were performed on the
distributions of behavioral domains for each coactivation network Lo
determine over-representation compared W the entive BrainMap
database (Cieslik et al., 2013; Nickl-Jockschat et al., 2015). Forward
inference is the probability of observing activity in a brain region given
knowledge of the psychological process, whereas reverse inference is
the likelibood that a given metadata term resulted in an activation
within a network. In the forward inference approach, we lested
whether the conditional probability of activalion given a particular
label [PlActivation|Domain)] was higher than the baseline probability
of activating the region in question per se [P(Activation}]. Significance
was eslablished using a binomial test (P < 0,05, corrected for multiple
comparisons using Bonferroni's method), which was appropriate since
our goal was Lo compare the observed distribution to the expected
distribution given only two categories (Le., fequency of term within a
network and across the entire database). In the reverse inference
approach, we identified the most likely behavioral domain given
activalion in a particular network. This likelihood P{Domain]
Activation) can be derived from PActivation|Domain) as well as
P(Domain) and PlActivation) using Bayes rule. Significance (P < 0.05,
corrected for multiple comparisons using Bonferroni's method) was
then assessed by means of a chi-squared Lest.

Resulls
Creneration of meta-araly tic conctivation networks

ICA was applied at 29 dimensionalities (d=20-300 in intervals of
10} to over 10,899 modeled experiment images archived in the
BrainMap database. For the resullant ICA spatial components, Uhe
average number of significant voxels (2 > 4) per component exhibited a
logarithmic decrease with model order (R*=0.972) (Fig. 2, green) while
the average z-score per component increased lineady (R*=0.950) (not
shown), in agreement with prior work (Abou-Elseoud el al., 2010; Ray
¢l al, 2013). Meta-analytic connectivity modeling (MACM) was
performed on each of the resultant 4,640 ICA maps, yvielding meta-
analytic coactivation networks., For the MACM-based coactivation
networks, the average number of significant voxels per MACM ex-
hibited a linear decrease with model order (R*=0.977) (Fig. 2, blue). As
model order increased, both the ICA components and the MACM-
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based coactivation network maps exhibited a shift from broad, spatially
extended networks encompassing multiple brain regions to smaller and
more localized individualized sub-networks andfor nodes. At d=20, the
mean ICA component  whole-brain volume was 109,381 mm®
{sd=45,111 mm”) and the mean MACM-based coactivation network
volume was 335,446 mm” { sd=65,750 mm’ ). In contrast, at d=300, the
mean ICA component whole-brain volume decreased to 24,240 mm?
(sd=4696 mm”) and the mean MACM-based coactivation networks
volume decreased to 255,748 mm? (sd=52,645 mm?). Notably, the
relative difference was such that the ICA components decreased in
volume across madel order at a greater rate than did the MACM maps.
Moreover, these data illustrate that in comparison Lo the ICA compo-
nenl maps, the MACM-based coactivation networks caplured a more
larpe-scale and widely distributed spatial topology, with an average
volume across all model orders greater than six limes as large (Le., the
ICA component images had an average volume of 43,383 mm® across
all model orders whereas the larger MACM coaclivation networks had
an average volume of 289,361 mm?).

Al the lowest model order, 20 canonical coactivation networks were
oblained, representing the major modes of funcltional activation
exhibited by the brain over a range of asks. Multiple prior ICA studies
{Damoiseaux et al., 2006; Smith et al., 2009; Zuo et al, 2010; Laird
el al., 2011a; Allen et al, 2011; Wisner et al., 2013) have consistently
reported  these networks, including the: dorsal atlention network,
which is localized to dorsal fronto-parietal regions, such as the frontal
eye fields and intraparietal sulei (Corbetla and Shulman, 2002; Fox
el oal., 2006; Dosenbach el al, 2006); left- and right-lateralized
ecenlral execulive networks in dovsolateral prefrontal and posterior
parietal cortices (Vincent el al, 2008; Sridharan el al., 2008); salience
network in the anterior insula and anterior cingulate cortices (Sceley
elal, 2007; Menon and Uddin, 2010); anterfor and poster default
maode networks, including dorsomedial prefrontal cortices, posterior
cingulate, and precuneus (Raichle et al., 2001; Buckner el al., 2008);
self-referential network in ventromedial prefrontal  cortices
(Manting et al, 2007); visuomotor coordination network in
medial premotor and supplementary motor areas; hand sensorimo-
tor network in bilateral hand areas of the somatosensory and motor
cortices; mouth sensorimotor network in bilateral face aml mouth
areas of the somatosensory and molor corlices; posterior associa-
tion network in the medial posterior parietal association area of the
superior parietal lobule (Schepeans el al, 2005); anditory network

in primary and secondary auditory cortices located in bilateral superior
Seifrite et al.,

2002); medial and lateral visual

temporal gyri

networks in striale and extrastriate visual cortices; visual associa-
tion network in middle temporal visual associalion areas al the
tcmpﬂm-ocmpltal Junclu:m mntmu.a] assn-c],aﬁon network {]i.u

with pMLng of scenes and pLams and includes retrosplenial cortex
and lingual gyri (Henderson et al., 2007; Chai et al., 2010); temporo-
limbie network including amygdala and parahippocampal gy,
basal ganglia and thalamus network (Robinson el al, 2009:
Kim et al., 2013); and ecerebellum network (Dobromyslin el al,
2012). In addition, one artifactual component was observed, which was
disregarded, and all subsequent analyses proceeded with 19 canonical
coactivalion networks. In BrainMap-based ICA analyses, noise compo-
nents ave not observed due Lo artifacls such as movement, physiological
noise, or CSF partial volume, but instead are thought Lo correspond Lo
coordinate-based template mismateh errors (Laivd el al., 2011a).

Heterogeneity of network fractionation profiles

After generating the MACM-based coactivation networks, we con-
structed fraclionation profiles by iteratively evaluating the parent-child
assignments of these networks across consecutive model onders,
slarting from the observed spatial corvelation between networks at
model orders 20 and 30. Parent-child assignments were determined for
each of the canonical coactivation networks observed at the lowest
model order by following them through the full range of model onders.
When comparing d=30 to d=20 networks, the mean assigned correla-
tion cocfficient value was 0.909 (sd=0.066), whereas the mean assigned
correlation value when comparing d=290 lo d=300 was 0.925
(sd=0.059). Across all pairwise model order comparisons (eg,
2030, 30x40, .., 290=300), the average mean assigned correlation
value was 0,928 (sd=0.066]), with a minimum of 0.648 and maximum
of 0.996. There were 4,620 assignments made fom model onder 20 to
300, assuming a child sub-network was matched Lo only a single parent
network (e, highest correlation assignment only). We computed the
number of mes in which the correlations between the child amd
potential parvents were observed to be within 0.01 of the highest
correlation and found that to occur for 312 assignments, or 6.3% of
the otal. These 312 child petworks were assigned Lo multiple parent
networks, yvielding an overall sum of 4,932 parent-child assignments
across the entire analysis.

Once the pairwise parent-child assignments were computed, each
sub-network at d=30 and higher was matched to its corresponding
canonical coactivation network at d=20. Based on these assignmenls,
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Fig. 3. Hetemgeneity of Fractionation Profles. The number of child sub-netwarks observed for each of the canonieal eoactivation networks was plotted as a funetion of maodel arder.
Hierarchical clustering of these data (inset) demonstrated three gmupings of similar fractionation prafiles: high fractionation, moderate factionation, and Jow fractionat jon.

wee observed that the number of child sub-networks assigned to each of
the canonical networks varied considerably across the canonical net-
works. For example, at d=300, a mean of 26.95 sub-network assign-
ments were made to each canonical network (sd=21.31; moc=58;
min=0), Le., on average, 26.95 of the d=300 networks were assigned to
each of the d=20 canonical networks. Fig. 3 depicts the number of child
sub-networks observed at each model order for the canonical parvent
networks. Thus, the observed factionation profiles differed dramati-
cally across canonical networks: some networks exhibited complex and
extensive [ractionalion inlo a large number of sub-networks across the
full range of model orders, whereas others exhibited lite to no
decompaosition as model order increased. Given this variability across
networks, we performed hierarchical clustering analysis on the nxt
array of values indicating the number of fractionated child sub-
networks observed al a given model ovder, where n=19 canonical
networks and =29 different model orders. Hierarchical clustering
using the average linkage and ewclidean distance yielded a simple
dendrogram in which three clusters were visually observed (Fig. 3,
inset). Accordingly, clustering analysis demonstrated that the overall
fractionation of systems into sub-systems could be categorized into
three groups: high fractionation, moderate fractionation, and low
fractionation.

The three-cluster solution shown in Fig. 3 {insel) forms the basis for
the network groupings provided in Figs. 4-6, which illustrate the
spatial topography of the canonical coactivation networks (Lop row),
along with the corresponding fractionaltion profiles for high, moderate,
and low fractionation patterns (middle row), respectively. Within the
spatial maps, the black contour lines define the ICA component (seed)
images, while the more extensive transparent spectrum color map
defines the MACM-based coactivation networks. Within the fractiona-
tion profiles, the pattern of child assignments for the canonical
networks across all model orders is visualized as a set of hierarchical
layouts using Cytoscape version 3.2.0 (Shannon el al., 2003). A single
element (Le., straight line) of each profile plol correspomnds Lo a sub-
network observed at a given model order, which is distinguished by a
color gradient (eg., from light blue at d=20 1o light green at d=300,
ele). Child metworks from consecutive model orders are situated
adjacent to each other. Gray lines connecting elements indicate a
decompaosition branch with extensive [ractionalion of networks, neoces-
sitaling a larger spatial allocation for visualization (Le, these lines do
not indicate dissimilarity). Large connective arcs are indicative of
shared networks at higher model onders between two distinet decom-
position branches. Motably, the profiles shown in Fig. 4 (Networks 1-7)

exhibil high fractionation with extensive aml complex decomposition of
the selected canonical networks into many child sub-networks. For
example, the right-lateralized central executive network (Fig. 4,
Network 1), comprising right dorsolateral prefrontal and posterior
parietal regions, displayed the highest degree of [ractionation with 58
constituent components al model order 300, The dorsal atlention
(Metwork 2), hand sensorimotor (Network 3), cerebellar (Metwork 4),
salience (Metwork 5), basal ganglia and thalamus (Metwork 6),
visuomotor coordination (Network 7), visual association (Network 8),
and mouth sensorimotor (Network 9) networks also exhibited high
fraclionation patterns, in ovder of decreasing profile complexity. In
contrast, the patterns in Fig. 5 (Networks 10-12) are simpler, with
fewer sub-networks amd less branching. These moderate [ractionation
profiles included the lateral visual (Network 10), left-lateralized central
executive (Network 11), and temporo-limbic (Network 12) networks.
Lastly, the profiles in Fig. 6 (Metworks 13-19) exhibited little o no
fraclionation into sub-networks, bul instead suggested that these
canonical networks were stable and persistent across model orders.
Low fractionation networks included the auditory (Metwork 13),
posterior default mode (Network 14), medial visual (Network 15),
anterior default mode (Metwork 16), contextual association (Network
17), self-referential (Network 18), and posterior association (Network
19) networks,

Functional decoding of meta-analytic cooctivation networks

Forward and reverse inference analyses were carvied out on the
BrainMap behavioral domains associated with experiments contribul-
ing to each meta-analytic coactivation network to characterize their
associaled mental processes. The significant behavioral domains ol-
served al both the lowest and highest model orders (i.e., d=20 and 300)
are visualized in Figs. 46 (botlom row), providing a summary of how
mental processes vary fom canonical brain networks (d=20) to
constituent fractionated sub-networks (d=300). The mean number of
significan! domains across all networks was 15,05 at d=20 amd 13.51 at
d=300; an average of 13.97 significant domains per component was
observed across all model orders. This variable distribution of sig-
nificant behavioral domains is visualized as set of altribute civele
layouts using Cytoscape (Shannon el al., 2003). Here, the five
categories of BrainMap behavioral domains are represented by differ-
ent colors at the periphery of the circle: “Action” (red), “Cognition”
{green), “Emotion” (blue), “Interoception” {yellow), and “Perceplion”
{magenta). Individual coloved squares al the periphery of each civele
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Fig. 4. High Fractonation Networks. Clusteding mevealed a group of seven canonical networks with complex fractiomation pmodiles exhibiting the highest degme of decompasition, shown

in arder of deemasing number of child sub-metwaorks. H gh (ractionation netwarks mcluded {(from left 1o ||,.;|'.I:l: {1} ||,.:|'.I-L'1I-e'| almed central execut ve metwork, {2) dorsal attention

welwork, (3) hamd sensorimator network, (4) cerebellar netwark, {5) salience netwark, (&) basal ganglia and thalamus network, {7) visuomolor coordination netwark, (8) visual

asmociation network, and (%) mouth sensorimotor network. Upper row: meta-analvtic cosct vation networks; middle mw: fractionstlon profiles; bottom row: behavioml profiles.

correspond to the sub-categories within a given behavioral domain (see
hitp://brainmap.org’ axon for a complete list). Two lypes of
shapes are viewed inside each circular plot: a large whilte diamond
representing the results at d=20 and smaller gray circles represenling
the results at d=300. Note that more complex fracionation profiles in

I yield an increased number of sub-mnetworks (e, more gray

circles) as compared Lo less complex fractionation profiles with fewer
sub-metworks in Figs. 5 aml 6. Colored lines externding from the white

diamond and gray circles indicate significant behavioral domains (and
sub-domains) correspomding to the networks at d=20 and 300,
respectively; the spatial location of the diamond and cireles within

each plot illustrates the strength of correspomdence. For example, the
posterior default mode metwork in Fig. 6 (Metwork 14) is associated
with mulliple behavioral sub-domains at d=20, bul it is located
spatially closer to “"Cogniion” (green lines), emphasizing this
nelwork's weighting toward cognitive processes (e.g., social cognilion
and autobiographical memory).

ig. 4 reveals that the highly fractionated networks demonstrated a
complex amd widespread diswibution across a range of behavioral
domains, corresponding to an association with numerous mental
processes, Other networks shown in Figs, 5 aml 6, while still exhibiling
recruitment across multiple domains, displayed a less complex profile,
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I"i.g. 5. Modermte Factiomation Networks. Clustering mvealed a BIALD af six% canondcal
networks with moderate factomation prdiles exhibiting less complesdty amd branching
compared 1o the high fractionation group, shown in order of decreasing number of child
sub-networks Modemte factonation networks included (from left 1o right): {100 lateral
vizual network, (110 lefi-latemlized central execul ve netwaork, and {12) I<'|:||:-c||l:|-I||:|]:-|-:'
network Upper mw: meta-amalvtie coactivation networks; middle row: fractionation

profiles; bottom mw: behadoral prodiles.

exhibiling significant association with only a few behavioral states.
Impoantly, the behavioral profiles shown in Figs, exhibited at
least one significant association with all five behavioral domains at

moddel order 300, indicating fractionation into a diverse range of
nelworks that recruit across multiple mental states regardless of high,
moderate, or low fractionation profiles. The only exceplion to this was
observed for the self-referential network (Fig. 6, Network 18), which
demonstrated a simple, one-dimensional fractionation profile amd was
associated with the behavioral domains of Cognition, Emotion,
Intercception, and Perception, but not Action (red).

Visualiza tion environmernt

The meta-analytic coactivation networks and corresponding fune-
tional decoding results can be explored in an online visualizalion
environment: hitp://vielab.cs fiwedu/brainvis, This visualization maps
the fractionation of the observed meta-analytic coactivation networks
across a limited number of exemplar model orders, e.g, d=20, 30, 70,
and 120, within a single zoomable and pannable view. The networks
are depicted as 2D point-glyphs amd fractionation is explicitly shown by
visual links spanning lower o higher order networks, Network glyphs
are augmented by small icons indicating coronal metwork views,
making metworks easily recognizable within a reduced space.
Selection of individual networks allows users o expand o show
higher resolution network images along all three projection planes in
a conmected view., In addition, the visualization explicily embeds
functional decoding resulls (e, behavioral domain terms) within the
same space using visual links with a salience divectly proportional to
the strength of the corvelation. The unified 2D layout of meta-analytic
coactivation networks and behavioral terms is oplimized to group
Logether fractionaling compoments and behavioral terms that they link
Lo, thus revealing clusters of structurally and behaviorally related data.
The visualization relies on data driven documents (D3) (Bostock el al
2011) to render itsell into regular browsers amnd provide advanced
interaction capabilities.

Discussion

We jointly applied independent component analysis (ICA) and

Mo Further
Correlations

Fig. 6. Low Fractomation Networks. Clustering revealed a group of six canonical networks with low fractionation profiles exhibiting little 1o no deconposition, shown in onler of

decreasing number of child sub-networks Low faetionation networks included {from left to right): {13) awditory netwaork, { 14) posterior defaull mode network, (15) medial visual

wetwork, {16) amterior default made netwaork, {17) contextual association netwark, (18) self-referential metwark, and {19 psterior asaocialion network. Upper mw: mela-amalytic

coact vation netwaorks; middle mw: fractionation prof

& botbom row: behadoral profiles.
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mela-analytic connectivity modeling (MACM) across a range of model
orders to BrainMap coordinate-based data to derive meta-analytic
coactivation networks. In contrast to ICA alone, this joint ICA-MACM
approach allowed a richer characlerization of sub-network architecture
across a wider range of model orders than previously described (i.e.,
d=20-300). Pairwise correlation malrices quantifying the similarity
between networks at sequential dimensionalities were caleulated to
construct fractionation profiles describing how the canonical “parent”
networks were decomposed into constituent “child” sub-networks. The
observed lractionation profiles differed dramatically across canonical
networks, with some exhibiting complex fractionation into a large
number of sub-networks and others exhibiting little to po decomposi-
tion. Hierarchical clustering of the heterogeneous lractionation profiles
allowed us to classily networks into three distinel groups: high
fractionation, moderate fractionation, and low fractionation. These
outeomes provide insight into the functional architecture of the human
brain.

Our hypothesis that low-level perceplual and molor pelworks
would yvield simple factionation profiles with relatively few numbers
of child sub-networks while high-level cognitive networks would yield
complex fractionation profiles with relatively large numbers of child
sub-networks was partially supported, in agreement with prior work
(Dring et al., 2011). As shown in the bottom rows of Figs. 4-6, many of
the high fractionation networks emphasized cognitive behavioral
domains (green lines), while many of the low [ractionation networks
did not. Of the high factionation networks, the right central executive
(Fig. 4, Network 1), dorsal attention (Network 2, salience [ Network 5),
and visuomotor coordination (Network 7) networks all demonstrated
strong cognitive roles and exhibited high fractionation pallerns.
Specifically, both the dorsal attention and central execulive networks
recruil across bilateral frontal and parietal regions and ave known Lo be
involved in coordinating externally divected atlentional resources and
management of highly adaptive control processes, respectively
{Corbetta and Shulman, 2002; Fox et al.,, 2006; Dosenbach et al.,
2006; Vincenl el al, 2008:; Sridharan et al., 2008). Similardy, the
salience amd visuomotor coordinaion networks are responsible for

respectively. Moreover, the cerebellar (Network 4) and basal ganglia/
thalamus (Network 6) networks were observed in the high (ractionation
group: these networks are known to be highly heterogeneous and have
been observed to activate across a wide range of cognilive paradigms
{Robinson et al, 2009; Kim et al., 2013; Dobromyslin et al,, 2012;

mouth sensorimolor network (Metwork 9; associated with speech-
motor processing (Laind el al, 2011a)), were observed in the high
rather than moderate or low [ractionation group. Similarly, the visual
association network (Wetwork B) was observed to be highly factio-
nated, although at the low end of this group. Conversely, the left central
execulive network (Fig. 5, Network 11), associated with langnage amd
memory tasks (Laird et al., 2011a), exhibited a moderate rather than
high fractionation pattern. Most notably, the anleror aml posterior
defanlt mode networks (Networks 16 and 14, vespectively) demon-
strated velatively simple fractionalion patlemns in comparison Lo other
copnitive networks. Lastly, the self-referential network (Network 18;
Mantini et al., 2007), associated with self-related (Northoff et al., 2006;
Araunjo et al., 2013; Amdrews-Hanna et al., 2010), olfactory, gustatory,
and affective processing (Laird et al., 2011a), exhibited no fractionation
and was not observed o decompose into any child sub-networks as
maodel order increased.

Given these exceplions, we considered other interpretations for the
observed heterogeneily of network fractionation beyvond a cognilive-
motor-perceptual gradient. Comparison of the three groupings shown
in Figs. 4-6 revealed that high factionation networks were frequently
localized to regions in the prefrontal cortex, sugpesting that fractiona-
tion complexily may potentially evolve from primitive Lo more ad-
vanced networks, For example, Wey el al. (2014) examined resting
slale networks in IMRI data across four primate species, including
humans, chimpanzees (a Greal Ape), baboons (an Old World primate),
and capuchin monkeys (a New World primate). Across all species, most
networks were nol lateralized to a single hemisphere, and the few
networks exhibiting left and righl asymmetries were present in both
humans and non-human primates (NHP). In conlrast, only humans
displayed networks composed of both frontal and parietal nodes,
whereas the frontal and parietal nodes were split into distinet networks
among NHP. Thus, the notable difference bebween resting slate
networks in humans and NHP was moulti-regional, inter-lobar corn-
nectivity. Tmportantly, inter-lobar fronto-parietal conneclivity is ex-
emplified by the dorsal attention amd central executive networks, which
are associated with higher-order cognitive processes. In light of these
findings, an alternative and parsimonious explanation for the current
resulls may lie in the evolutionary significance of mulli-regional, inter-
lobar connectivity, such that high [mactionation networks are more
widely distributed across the brain, whereas low fractionation networks
are more localized within single lobes. The idea that stable networks
correspond to networks with reduced connectivity in the context of
ICA-derived fractionation has been proposed by others (Abou-Flseoud
el al, 2010; Pamilo et al., 2012). Our present resulls generally agree

Riedel et al., 2015).

In contrast, muoltiple perceptual petworks demonstrated low Lo
mdoderate fractionation patterns (Figs. 5 and 6), including the anditory
(Metwork 13) and medial and lateral visual (Networks 15 and 10). The
contextual association metwork (Wetwork 17), which is commonly
associated with perception of scenes and places (Henderson el al,
2007; Chai el al., 2010) and is more broadly responsible for contextual
processing (Bar et al, 2008; Sulpizio et al, 2013), persisted intact
across many model orders, but fractionated into three sub-networks at
model order d=270: anterior, with corresponding parietal coactiva-
tions; posterior with occipital coactivations; and inferior, with cere-
bellar coactivations (Baldassano el al, 2013). The posterior parietal
association petwork (Metwork 19) in medial superior parietal lobule
(Scheperjans el al., 2005), associated with higher somatosensory
perception of egocentric space (Parkinson et al., 2010; Lester and
Dassonville, 2014: Land, 2014), was not observed subsequent to d=30,
and thus exhibited no further corvelations. Bevond d=30, the posterior
parielal association network was subsumed by the hand sensorimotor
network (Network 3) and incorporated into its fractionation scheme,

Despile these examples that were congruent with our prediclions,
we observed a few exceptions in which the results did not agree with
ourinitial hypotheses. The hand sensorimotor (Fig, 4, Network 3) and

with the distributed inter-lobar theory as an explanation for the
significance underlying high-to-low network fractionation. Extensive
inter-lobar coactivations were observed for the high fractionation
networks, particularly across [ronlo-parietal regions. Inter-lobar coac-
tivations were reduced in moderate fractionation networks, and low
fractionation pelworks emphasized intra-lobar coactivations, particu-
larly in medial regions. Indeed, the prominent difference in fractiona-
tion complexity for the right and left central executive network
(Metworks 1 and 11, respectively) may be explained by the extensive
fronto-parietal coactivations of the highly fractionated network and the
greater emphasis of intra-lobar coactivation (specifically in Broca's
area) in the less fractionated network,

MNevertheless, an important outlier to this interpretation is the
defanlt mode network (DMN). This highly reproducible (Meindl ! al.,
2010) and heritable (Glahn el al., 2010) network is associated with
spontaneous and non-goal-directed cognition during the resting state
{Raichle el al., 2001; Buckner el al., 2008) and social cognition, sell-
monitoring, and episodic memory in the task state (Laind el al., 200%a;
Spreng et al., 2009). Given ils long-range coactivations, we expected Lo
observe extensive and complex fractionation of the DMN, particularly
since it has been shown Lo exhibit heterogeneous network strocture
{Buckner ot al, 2008; Harrison et al., 2008: Andrews-Hanna et al.,
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2010) well beyond the anleror and posterior subdivisions observed al
low-model orders (Metworks 16 and 14, respectively). However, the
DMN demonstraled minimal fractionation, which potentially reflects a
significant difference between meta-analytic task-based (Laird ol al.,
200%a) and resting state network organization (Buckner el al., 2008
Harrison et al., 2008; Andrews-Hanna et al,, 2010). That is, while
during task DMN is involved in certain goal-directed behaviors with
shrong cognitive roles, the fundamental organization of the DMN
cannol be captured during task but instead should rely on a combina-
tion of both task and resling state data for a morve comprehensive
assessment.

Methodological considerations and limitations

The meta-analytic approach for examining coactivation networks
provides insight into functional brain organization across a wide range
of goal-directed tasks. However, it is important to acknowledge the
standard limitations thal accompany large-scale mining of the
BrainMap database. Working with pseudo-activation images derived
from peak coordinates, rather than the whole brain statistical para-
melric images, diminishes the high spatial complexity and rchness of
the original maps aml resulls in a loss of spatial sensitivity and
specificity (Salimi-Khorshidi el al, 2009). In addition, spatial precision
may be lost due to the variability of experimental parameters, such as
scanner strength, imaging paramelers, analysis pipelines, subject
sample size, data quality, and variations in behavioral paradigm
conditions. The functional decoding procedure is generally contingent
on the design and implementation of BrainMap's metadata laxonomy,
particularly for the behavioral domain field. These results are addi-
tionally dependent on the helerogeneity of experiments in the
BrainhMap database. There is an uneven distribution of experiments
archived in BrainMap in which 49% of experiments elicit cognilive
processes, 18% are emotion related processes, 16% of experiments are
perception related, 15% are associated with action paradigms, and 2%
with interoceptive experiments. Fulure work may involve expansion or
refinement of the BrainMap taxonomy Lo ascertain if functional
network differences can be discriminated al greater levels of resolution;
current investigations into the utility of texl-mining approaches for this
purpose arve ongoing (Turner el al, 2013). Prior work has demon-
strated that the ICA approach reliably yields consistent component
spatial maps (Ray el al., 2013), although that reliability is known to be
reduced at higher model orders (Abou-Elseoud et al, 2010; Pamilo
el al, 2012). As previously noted, the rationale for the combined
approach of applying ICA followed by MACM was Lo address, in part,
some of this variability and provide a more extensive and complele
definition of the unctional brain networks underlying each of the ICA
component images. Initial testing of this approach revealed that the
combined ICA-MACM method yvielded similar resulls compared to ICA
alone for model orders less than d=100; however, more robust
fractionation profiles were observed for the combined approach and
this correspondence diminished as model order was increased up to
=300

Beyomd these issues with data heterogeneity and reliability, gen-
erating multi-scale fractionation profiles via pair-wise correlations at
consecutive model orders relied on a procedure thal constrained the
parent-child assignments Lo a static hierarchical strocture thal may or
may nol have captured all possible decomposition scenarios. For
example, if a parent network at d=30 was nolt matched to a child
network at d=40, then the d=30 parent would not have any representa-
tion at d=50 and beyvond. As noted by Pamilo of al. (2012), fractiona-
tion profiles can be quite complex, amd some decompositions may nol
include a single parent network splitling into two child sub-networks,
but instead a merging of two or more parents. We attempted to address
some of this complexity by allowing for children to be assigned to
multiple parents, given a corvelation difference within 0.01. We
observed no evidence to suggest that if a parent network drops out of

the analysis the subsequent children were forced to match with
mismatehed parents (Le., that a network “skips a generation”). As an
alternative Lo matching the i+10 to | model order paivings, we initially
investigated a procedure in which all children were matched to the
d=20 canonical networks. We observed that the resultant corvelation
assignmenls were prone Lo error as model order increased and sub-
networks became progressively move differentiated from the canonical
networks. Our approach of examining the f+10 to i model order
pairings was thus preferved as it highlighted incremental changes in
network decomposition across model orders, thus providing a more
interpretable continnum of fractionation. Concern that the increased
power of the combined ICA-MACM approach (and larger extent of the
MACM-based images) was simply blurring and conflating the differ-
ences between networks was miligated by inspection of the child-
parent assignments. As shown in the Supplemental material, the
probability of a child petwork being associated with multiple parent
networks was observed W be quite low for the MACM-based results. In
contrast, we [ound that assignment of child sub-networks W parent
networks was more challenging when using the ICA component
images, due to the additional noise in the fractionation paltems
themselves as model order increased and the component size de-
creased.

Similarly, multiple approaches for compuling similarily across
model orders were considered, including the Dice index that has
proven useful for examining spatial similarities in statistical parametric
images exhibiting characteristic dependencies (Salimi-Khorshidi el al.,
2009). After considering the different factors, we chose Lo perform the
correlation analyses on the unthresholded meta-analytic z-statistic
images that account for the different numbers of experiments con-
tribvuting Lo the resulls, given that the MACHM values scale strongly with
it and thus provides the added value of assessing similarity belween
strength of network associated at a given spalial location. This
procedure has been consistently applied in our recent work (el
Eickhoff et al. (2016}, Ray et al. (2015) and Bzdok et al. (2015)), and
was originally established by Eickhoff et al. (201 1), Although this prior
work has suggested that analysis of the unthresholded images is
preferred over the thresholded images, a recent study (Sochal el al.,
2015) demonsirated that thresholding may improve the accuracy of
image similarily computations. In their study, Sochal et al. implemen-
ted a smaller degree of thresholding than what we have previously
tested; therefore, our fulure work may evaluate such an approach,

Lastly, we acknowledge the limitations in extending the present
work [rom task-based coactivation networks Lo resting stale networks.
Mennes el al, (2013) demonsirated that the complex relationship
between intrinsic and extrinsic connectivity, revealing thal evoked
interaction patterns show weaker correspondence Lo intrinsic connec-
tivity networks, particularly for subeortical and limbic regions, as well
as primary sensorimolor areas. There is no substitute foe the precision,
temporal resolution, and power of a carefully controlled task-based
neuroimaging experiment. With regards to the defaull mode network,
we reiterate that the current resulls suggest thal the funclional
organization of the DMN may not be caplured by mela-analytic
coactivalion [ractionation profiles, given the inherent differences
between task amd resting slates,

Conclusions

The [ractionation patterns of mela-analylic coactivation networks
were observed Lo be highly heterogeneous and followed a tripartite
maodel of high, moderate, and low factionation. Functional decoding of
coactivalion networks revealed a multi-domain association regardless
of [ractionation complexity. Our initial prediction emphasizing a
cognitive-motor-perceptual gradient from high o low fractionation
was found to be true in many ways, with some notable exceptions.
Further consideration of the results suggested an allernative inler-
pretation that instead emphasized the imporlance of inter-lobar
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connectivity as a critical feature in the organization of human brain
architecture. These outcomes suggest that high factionation networks
are complex and comprised of many constituent sub-networks reflect-
ing long-range, inter-lobar connectivity, particularly in fronto-parietal
regions. In contrast, low fractionation networks appear to reflect
persistent and stable networks that are more internally coherent and
exhibil less inter-lobar communicalion.
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