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Quillen’s stratification for fusion systems

Markus Linckelmann

Abstract

The purpose of this note is to provide a reference for the fact that the proof of Quillen’s
stratification for finite group cohomology carries over to fusion system. As in the case of
Quillen’s stratification for block varieties, the proof is similar to the usual proof for group
cohomology except for the use of fusion stable bisets, whose existence is due to Broto, Levi,
and Oliver.

It is pointed out in work of Benson, Grodal, and Henke [3, Remark 3.7] that there seems to
be no reference for Quillen’s stratification for fusion systems and that such a reference would be
the only missing link to generalise [3, Theorem A] to arbitrary fusion systems. See Todea [8,
Theorem 1.1] for an explicit statement and proof of [3, Theorem A] for fusion systems along these
lines. Quillen’s stratification for arbitrary fusion systems is a straightforward adaptation of the
block cohomology version in [5], which is in turn an adaptation of Benson’s presentation in [2] of
some of Quillen’s results in [6], [7]. We mention below that this can be used to obtain alternative
proofs of [4, 5.1] and of [4, 5.6]. Let p be a prime, P a finite p-group, and let F be a fusion
system on P . Let k be an algebraically closed field of characteristic p. Denote by H∗(P ; k)F the
subalgebra of F-stable elements in H∗(P ; k), and by VF the maximal ideal spectrum of H∗(P ; k)F .
For any subgroup Q of P denote by VQ the maximal ideal spectrum of H∗(Q; k), and set V +

Q =

VQ \
⋃
R<Q (resQR)∗(VR). Denote by VF,Q and V +

F,Q the images of VQ and V +
Q in VF under the map

r∗Q induced by the algebra homomorphism rQ : H∗(P ; k)F → H∗(Q; k) given by composing the

inclusion H∗(P ; k)F ⊆ H∗(P ; k) with the restriction resPQ : H∗(P ; k)→ H∗(Q; k).

Theorem 1. With the notation above, the following hold.

(i) The variety VF is the disjoint union of the locally closed subvarieties V +
F,E, where E runs over

a set of representatives of the F-isomorphism classes of elementary abelian subgroups of P .

(ii) Let E be an elementary abelian subgroup of P . The group W (E) = AutF (E) acts on V +
E and

the restriction map resPE induces an inseparable isogeny V +
E /W (E)→ V +

F,E.

Since any subgroup of P is isomorphic, in F , to a fully F-centralised subgroup, the set of
representatives in statement (i) of Theorem 1 may be chosen to consist of fully F-centralised
elementary abelian subgroups of P . As mentioned before, one way to prove Theorem 1 is to adapt
the proof for block fusion systems; this proof follows closely Benson’s presentation in [2] of parts
of Quillen’s original work in [6], [7], with only additional ingredient the fusion stable bisets whose
existence has been shown by Broto, Levi, and Oliver in [4, 5.5].

Remark 2. Theorem 1 yields an alternative proof of [4, 5.1] stating that the product of the
restriction maps H∗(P ; k) → H∗(E; k), with E running over the elementary abelian subgroups of
P , induces an inseparable isogeny H∗(P ; k)F → lim

← E
H∗(E; k), where E is the full subcategory
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of F consisting of all elementary abelian subgroups of P . It also yields a proof of [4, 5.6], stating
that H∗(P ; k) is finitely generated over H∗(P ; k)F , because the varieties VP and VF have the same
dimension (namely the rank of an elementary abelian subgroup of maximal order of P ).

Following [5, §3], if Q is another finite p-group, then any finite P -Q-biset X on which P and
Q act regularly on the left and right, respectively, induces a norm map nX : H∗(Q; k)→ H∗(P ; k)
extending Evens’ norm maps in the obvious way. By [5, 3.1], if ψ : R → P is an injective group
homomorphism, then resψ ◦ nX = n

ψX , where ψX is the R-Q-biset obtained from restricting the
left action by P to R via ψ. If X is a transitive P -Q-biset on which P and Q act regularly, then
X = P ×(R,ψ) Q for some subgroup R of P and some injective group homomorphism ψ : R → Q;
that is, X is the quotient of P ×Q by the relation (ur, v) ∼ (u, ψ(r)v), where u ∈ P , v ∈ Q and r ∈
R. In that case, nX = nPR ◦ resψ, where resψ : H∗(Q; k) → H∗(R; k) is the restriction map along
ψ, and where nPQ : H∗(Q; k)→ H∗(P ; k) is the Evens norm map (see e.g. [2, 4.1]). The exact sign

of nPR, hence of nX , depends on a choice of coset representatives, and thus the statements below
involving norm maps hold modulo keeping track of signs. Since H∗(P ; k) is graded-commutative
(hence commutative if p = 2) we set H ·(P ; k) = H∗(P ; k) if p = 2 and H ·(P ; k) = Heven(P ; k) if p
is odd.

Proposition 3 ([4, 5.5] ). There is a finite P -P -biset X with the following properties.

(i) Every transitive subbiset of X is isomorphic to P ×(Q,ϕ) P for some subgroup Q of P and some
group homomorphism ϕ : Q→ P belonging to F .

(ii) |X|/|P | is prime to p.

(iii) For any subgroup Q of P and any group homomorphism ϕ : Q→ P in F , the Q-P -bisets ϕX
and QX are isomorphic.

Lemma 4 (cf. [5, 3.3] ). Let X be a finite P -P -biset fulfilling the conclusion in Proposition 3.
Then, for any subgroup Q of P , there is a Q-Q-subbiset of QXQ isomorphic to Q.

Proof. It suffices to show that X has a P -P -subbiset isomorphic to P . By Proposition 3 (i) and
(ii), X has a P -P -subbiset isomorphic to ϕP for some automorphism ϕ of P in F . The stability
condition in Proposition 3 (iii) implies the result.

Proposition 5 ( cf. [5, 3.4]). Let X be a finite P -P -biset fulfilling the conclusions in Proposition 3,
let Q be a subgroup of P and let Y be the Q-Q-subbiset of QXQ which is the union of all Q-Q-orbits
of length |Q|. Set W (Q) = AutF (Q).

(i) The image of the norm map nXQ : H ·(Q, k)→ H ·(P, k) is contained in H ·(P ; k)F .

(ii) The set Y is non empty.

(iii) For any ζ ∈ H ·(Q, k)W (Q) such that resQR(ζ) = 0 for any proper subgroup R of Q we have
n
QXQ(ζ) = nY (ζ).

(iv) For any ζ ∈ H ·(Q, k)W (Q) we have nY (ζ) = ζ |Y |/|Q|.

Proof. This is identical to the proof of [5, 3.4].

The following translates [1, 5.6.2] and its block cohomology version [5, 3.5] to fusion systems:
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Proposition 6. Let X be a finite P -P -biset fulfilling the conclusions in Proposition 3. Let E be
an elementary abelian subgroup of P and let σE be a homogeneous element in H ·(E, k) satisfying
resEF (σE) = 0 for any proper subgroup F of E. Set W (E) = AutF (E). Let Y be the E-E-subbiset of

EXE which is the union of all E-E-orbits of length |E|. Write |Y |/|E| = pam for some nonnegative
intergers a, m, such that (p,m) = 1.

(i) For any η ∈ H ·(E, k)W (E) there is η′ ∈ H∗(P ; k)F such that rE(η′) = (σE · η)p
a

.

(ii) There is an element ρE ∈ H ·(P ; k)F such that rE(ρE) = (σE)p
a

and such that rF (ρE) = 0
whenever F is an elementary abelian subgroup of P such that no F-conjugate of E is containend
in F .

Proof. We may assume that η is homogeneous. Set ζ = nXE (1 + σE · η). By Proposition 5, we
have ζ ∈ H∗(P ; k)F . Moreover, rE(ζ) = n

EXE (1 + σE · η) = nY (1 + σE · η) = (1 + σE · η)p
am =

(1 + (σE · η)p
a

)m = 1 +m(σE · η)p
a

+ τ , where τ is a sum of elements of degree stricly bigger than
deg((σA ·η)p

a

) = pa ·deg(σE ·η). Define η′ to be the homogeneous part of ζ in degree pa ·deg(σE ·η),
divided by m. This shows (i). Applying (i) to η = 1 yields a homogeneous element ρE ∈ H ·(P ; k)F

such that rE(ρE) = (σE)p
a

. By the construction in (i), ρE is a scalar multiple of the homogenous
part of nXE (1 + σE) in degree pa · deg(σE). Let F be another elementary abelian subgroup of P .
Then rF (ρE) is a scalar multiple of the homogeneous part of n

FXE (1 + σE) in degree pa · deg(σE).
If E has no F-conjugate contained in F , then the biset FXE is a union of transitive bisets of the
form F ×(H,ψ) E, where H is a subgroup of F of order smaller than |E|, and where ψ : H → E is
an injective group homomorphism. Thus n

FXE (σE) = 0, and so rF (ρE) = 0. This completes the
proof of (ii).

Proof of Theorem 1. We follow the proof of [5, 4.2] with minor adjustments. Let E be an elementary
abelian subgroup of P . By the argument in [2, 5.6] preceding [2, 5.6.2], there is a homogeneous
element σE ∈ H ·(E, k)W (E) such that V +

E consists of all maximal ideals in H ·(E, k) not containing
σE , and such that resEF (σE) = 0 for any proper subgroup F of E. Thus V +

E can be identified
to the maximal ideal spectrum of the algebra H ·(E, k)[σ−1E ], obtained from localising H ·(E, k) at
σE . By [2, 5.4.8], the quotient V +

E /W (E) can be identified with the maximal ideal spectrum of
(H ·(E, k)[σ−1E ])W (E). Let ρE be the element in H ·(P ; k)F fulfilling Proposition 6 (ii). Then V +

G,E

consists of all maximal ideals in H ·(P ; k)F containing ker(rE) and not containing ρE . Since rE
maps ρE to a power of σE , rE induces an algebra homomorphism

H ·(P ; k)F [ρ−1E ] −→ (H ·(E, k)[σ−1E ])W (E)

such that, by 6, the image of this homomorphism contains a pa-th power of every element in
(H ·(E, k)[σ−1E ])W (E). Upon taking varieties, this is equivalent to saying that r∗E induces an insep-
arable isogeny V +

E /W (E)→ V +
F,E . This proves (ii). If F is another fully F-centralised elementary

abelian subgroup of P such that F contains no F-conjugate of E, then ρF ∈ ker(rE) by Proposition
6. By the above description of V +

F,E , it follows that V +
F,E and V +

F,F are disjoint. This proves (i).
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