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Abstract

We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models

for analyzing the default risk of a sample of rated, non-financial U.S. firms. The setting allows for estimating

and testing the significance of time-varying effects. We use a variety of model checking techniques to identify

misspecifications. In our final model we find evidence of time-variation in the effects of distance-to-default and

short-to-long term debt, we identify interactions between distance-to-default and other covariates, and the quick

ratio covariate is significant. None of our macroeconomic covariates are significant.

JEL Classification: G32, G33, C41, C52

Keywords: Default risk modeling, Aalen’s additive regression model, martingale residual processes
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1 Introduction

Intensity regression models provide flexible and powerful tools for studying one of the most basic questions of

credit risk modeling: Which observable variables influence the default risk of corporations? Consequently, the

models are useful for risk management of loan portfolios by providing a strong statistical basis for credit scoring.

They also play an important role in academic studies investigating risk premia on corporate bonds or credit

default swaps. There, the purpose of the hazard regressions is to provide estimates of the “physical” or “real-

world” default probabilities. Combining these with “implied” or “risk-neutral” default probabilities obtained

from prices of financial instruments, we can measure the risk premium required by investors for assuming

default risk.

The statistical analysis of default data dates back at least to Beaver (1966) and Altman (1968), but the use

of survival analysis techniques (parametric and semiparametric Cox regressions and non-parametric methods)

is more recent. Examples of this literature includes Shumway (2001), Lando and Skødeberg (2002), Fledelius,

Lando, and Nielsen (2004), Couderc and Renault (2004), Das, Duffie, Kapadia, and Saita (2007), Duffie, Saita,

and Wang (2007), Chava, Stefanescu, and Turnbull (2011), Duffie, Eckner, Horel, and Saita (2009), Lando and

Nielsen (2010), Figlewski, Frydman, and Liang (2012).

The studies that employ regression models typically look at Cox models. Some of these studies use a non-

parametric baseline intensity – others used a constant baseline. But all other parameters remain fixed over

time. Furthermore, for reasons discussed later in the paper, there is often very little model checking after the

insignificant explanatory variables have been eliminated.

In this paper, we use additive Aalen models as an alternative to the Cox model. Using both non-parametric

and semi-parametric versions we are able to study not only whether explanatory variables are significant, but

also whether their effects vary with time. Both graphical techniques and formal tests are employed. To allow for

a comparison with a Cox regression study by Lando and Nielsen (2010), we use the exact same data set.

We find that both the additive structure and the use of time varying coefficients change the conclusions of

Lando and Nielsen (2010) somewhat. Model checking leads us to identify outliers from the data and helps us

resolve problems with model misspecification. We find evidence of time-variation in the effects of distance-to-

default and short-to-long term debt, and we identify the effect of interactions between distance-to-default and

two other covariates: the quick ratio and (log) pledgable assets. Before removing outlier, the quick ratio covariate

is insignificant – this, however, changes after the removal of outliers. None of our macroeconomic covariates are

significant which may indicate that their effects are captured through their influence on firm-specific covariates.

The flow of the paper is as follows: We first recall the specification of non-parametric and semi-parametric

Aalen models. We then summarize the estimation and testing procedures used, and after a data review we set up

a model using a time-varying baseline intensity and firm-specific variables only. This leads us to conclude that

the effects of certain firm-specific covariates are time-varying and that apparent model misspecifications may be

resolved by including two interaction terms. We then replace the time varying baseline intensity by a constant

baseline and global covariates (including a trailing monthly default rate), and replace regression functions by

constant parameters for those firm-specific covariates which did not have significantly time-varying effects. After

describing and implementing our model checking procedure, we discover that we need to remove several outliers
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from the data. We finish up by testing the revised model and looking at the model check once more, before we

conclude.

2 General model setup

Intensity models of default focus on describing the default time(s) of a debt-issuing firm through a stochastic

intensity process. Fix a probability space (Ω,F , P ) and a finite time horizon [0, T ]. For a cohort of n firms, the

default-history of firm i is summarized by a piecewise-constant, right-continuous counting process (Nit)t∈[0,T ]

with jumps of size 1 at the firm’s default times. The counting processes are assumed adapted to a common

filtration (Ft)t∈[0,T ], corresponding to the flow of information. In the absolute continuous case, the default

intensity of firm i is the non-negative, integrable, (Ft)-predictable process (λit)t∈[0,T ] such that

Mit = Nit −
∫ t

0

λis ds

is an (Ft)-local martingale. Intuitively,

λit = lim
h→0

1

h
E
(
Ni(t+h) −Nit

∣∣Ft) = lim
h→0

1

h
P
(
Ni(t+h) −Nit = 1

∣∣Ft) , (2.1)

so λit is the Ft-conditional mean arrival rate of default: Given Ft and survival up to time t, firm i’s probability

of default within [t, t+ h) is λith+ o(h).

Usually, (Nit)t∈[0,T ] is a one-jump process, corresponding to a single default. In this case, Nit = 1(τi≤t),

where τi is the single stochastic default-time for firm i. However, ambiguous definitions of real-world defaults

and the possibility of restructuring will cause some firms to have several registered defaults over time. We

therefore allow the counting processes in this paper to take any nonnegative integer value.

In the following, we will write the intensity as

λit = Yitαi(t), (2.2)

where (Yit)t∈[0,T ] is a left-continuous, (Ft)-predictable “at-risk indicator process,” taking the value 1 if firm

i is at risk of defaulting just before time t, and 0 otherwise. Here, αi(t) is the (Ft)-predictable “pre-default”

intensity that may depend on covariates and past events. With a slight abuse of language we will also refer to

αi(t) as the intensity of default of firm i.

In regression models, the variation in the intensities across firms is solely due to covariates. This means that

αi(t) = α(t |xit) for a common function α, specifying the functional form of dependency on a p-dimensional,

locally bounded vector xit = (xi1,t, . . . , xip,t)
T of covariate values at time t for firm i. The covariates might be

constant (industry classification, for example), but will in this paper always be time-varying. Some covariates

will be specific to firm i, and some will be macroeconomic variables shared by all firms. The predictability

condition on the intensity then boils down to predictability of covariates. In practice, this means that covariate

values entering the models at time t are required to be known just before time t.

The focus of this paper is the specification of α(t |xit), i.e. determining which firm-specific and

macroeconomic variables are significant explanatory variables, and how well α describes the data.
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2.1 Relative and excess survival regression: The Cox and Aalen models

The Cox model was introduced by Cox (1972) in a survival data setting and extended to the general counting

process framework by Andersen and Gill (1982). In this model, the intensity for firm i as

α(t |xit) = α0(t) exp(βββTxit),

where α0(t) is a locally integrable baseline intensity, which is left unspecified, while the vector βββ = (β1, . . . , βp)
T

of regression coefficients gives the time-constant effects of the covariates. The baseline intensity α0(t) corresponds

to the default intensity at time t when all covariates are identically equal to zero. The model thus assumes that

all firm-specific intensities are proportional to the same baseline intensity.

Consider two time-t covariate vectors x1t and x2t, and assume that these are identical except for the jth

coordinate, where x2j,t = x1j,t + 1. Forming the ratio of the intensities then gives

α(t |x2t)

α(t |x1t)
= exp

(
βββT (x2t − x1t)

)
= eβj ,

so the effect at time t of a one-unit increase in the jth covariate, when all other covariates are kept fixed, is

to multiply the intensity by the “relative risk” eβj . Note that eβj is constant over time – the Cox model thus

assumes that covariate effects are time-invariant and proportional to a baseline intensity.

In the models due to Aalen (1980, 1989), covariate effects act in an additive way on a baseline intensity. In

the nonparametric case, the additive model specifies the intensity for firm i as

α(t |xit) = β0(t) + βββ(t)Txit, (2.3)

where β0(t) is a locally integrable baseline intensity, left unspecified, and βββ(t) = (β1(t), . . . , βp(t))
T is a vector

of locally integrable regression coefficient functions, also left unspecified. The vector βββ(t) gives the time-varying

effects of the covariates. The baseline β0(t) again corresponds to the intensity at time t when all covariates

are identically equal to zero. We will also consider semiparametric versions of the additive model, where some

covariate effects are time-constant parameters.

As for the Cox model, consider two time-t covariate vectors x1t and x2t that are identical except for the

jth coordinate, where x2j,t = x1j,t + 1. Subtracting the intensities then gives

α(t |x2t)− α(t |x1t) = βββ(t)T (x2t − x1t) = βj(t),

so the effect at time t of a one-unit increase in the jth covariate, when all other covariate are kept fixed, is to

add the “excess-” or “absolute risk” βj(t) to the intensity.

In classical survival applications, the time-scale is usually duration-time, where t is measured as age or

time from entry to exit for each subject at risk. In historical default studies, however, the natural time-scale

is calender-time. The fact that this does not vary across firms makes it impossible to simultaneously identify

a time-dependent baseline intensity and the effects of global time-dependent covariates. In the Cox model, this

is handled by using a constant baseline, and similarly in the additive models, one sets β0(t) = θ0 for all t and

some real parameter θ0, which leads to a semiparametric additive model.
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2.2 Contrasting the Cox and the Aalen models

Using additive models for default intensities is unconventional, since one would a priori prefer models where

intensities are forced to stay positive. In fact, an advantage of the Cox model is that intensities are born strictly

positive. In additive models, we always run the risk of negative intensities, either as a result of estimation, or

when extrapolating to more extreme covariate values.

Why, then, do we propose applying additive models in default studies? A main reason is the flexibility gained

by relaxing the assumption of time-constant covariate effects. The additive models allow for simple estimation

of time-varying effects using least-squares methods known from ordinary linear regression, and the resulting

estimators are on a closed form that is easy to interpret and study. No smoothing is needed during estimation.

There are extensions of the Cox model that incorporate time-varying effects, they require an iterative estimation

procedure with smoothing in each iteration, which does not produce closed-form estimators and may blur the

time-variation of effects due to repeated smoothing (see Zucker and Karr (1990) or Martinussen and Scheike

(2006) and references therein).

The additive structure of the Aalen model is more robust towards model misspecification than the

multiplicative structure of the Cox model. When we talk about model misspecification in this paper, it is

in the sense of misspecification of the intensity. This may be a question of omitting relevant covariates or

including them in an incorrect functional form (e.g. specifying a linear effect of a covariate when the true effect

is nonlinear).

If a covariate is omitted, this corresponds to conditioning on a smaller filtration in the conditional

expectation in (2.1). With an additive structure on this conditional mean and time varying parameters, the

intensity will still be additive, though the remaining covariates may need to be transformed. In a Cox model,

the proportionality is ruined when covariates are omitted, and the relative risk estimates will be biased, as shown

by Struthers and Kalbfleisch (1986).

Including covariates in the wrong functional form in an additive model is a true misspecification, but the

parameter estimates will still be interpretable as e.g. linear effects (“how much does the intensity change per

change in the covariate overall?”). In a Cox model, the relative risk estimates are not interpretable as relative

risks when the model is not correctly specified.

In the case of a wrong functional form for covariates, (Mit)t∈[0,T ] is no longer a martingale. This means

that traditional variance estimates, which are based on martingale theory, will be biased. We will therefore use

alternative variance estimators that are robust towards this type of misspecification. Having robust variance

estimates and martingale based variance estimates allows us to detect model misspecification by comparing the

two. Any large differences may suggest that the martingale based variance estimator is biased and this will be

due to model misspecification. This idea is quite similar to the “Information Matrix Test” of White (1982).

The additive structure also permits methods from ordinary linear regression to carry over to the additive

models. We will, for instance, in our data analysis in Section 4, include linear interaction terms as a supplement

to the marginal effects of covariates and use a method known from ordinary linear regression to identify potential

outliers that may be a source of model misspecification.

Studying excess- or absolute risks may give a more nuanced picture of risk-factor importance than solely

relying on relative risks. Relative risks may be misleading and overstate the actual importance of risk-factors,
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especially if the event is relatively rare, as has historically been the case with defaults. If a one unit increase

in a covariate raises annual default probabilities from, say, 1 bps to 2 bps, the covariate’s relative risk increase

is 100% per year (a relative risk of 2), while its absolute risk increase is only 0.01% per year (an excess risk of

1bps). In this example, the relative risk may indicate an economically important default-predictor, while the

excess risk may indicate that the same covariate is only moderately important or perhaps even economically

insignificant.

As a final note, it is straightforward to obtain a non-negative estimate of the (past) intensity of a specific

firm: Estimate the integrated intensity based on the parameter estimates obtained from the Aalen model and

modify this estimate to be non-decreasing (by pooling adjacent violators – see Robertson, Wright, and Dykstra

(1988)). Smoothing this modified integrated estimate will produce a non-negative estimate of the intensity.

2.3 Frailty and dynamic effects

Unobserved or latent effects are receiving increased attention in empirical default studies. Such effects may be

due to omitted covariates or covariates subject to measurement error, but they may also correspond to effects

which are actually unobservable.

There are two dominating approaches for correcting for unobserved effects in survival models. First, one may

include “frailty” effects, where latent risk factors proxy unobserved effects – frailty is thus the survival analog of

random effects and is often used to model dependence between event times. For instance, Duffie, Eckner, Horel,

and Saita (2009) found evidence of a frailty process influencing historic U.S. corporate default probabilities by

including a latent Ornstein-Uhlenbeck process alongside observable risk factors in a Cox model. A key purpose

of this paper is to conduct a thorough check of time-varying effects, functional form, and interactions, hoping

to detect possible sources of misspecification that might otherwise show up as frailty effects. We therefore do

not include frailty effects in our paper but focus on means of teasing out more information on the effects of

observable variables.

Second, one may use the internal history of the observed counting processes as a correction for missing

effects. This is done by including time-dependent covariates directly linked to the observed history of the counting

processes in the regression models. We follow Aalen, Fekjær, Borgan, and Husebye (2004), who included such

covariates in an additive setting similar to ours, and call such covariates “dynamic.” In our data analysis in

Section 4, we will include a global dynamic covariate in the form of the trailing monthly default rate for the

previous month as a correction for unobserved effects in an additive regression. This dynamic covariate may at

a given time be viewed as reflecting the instantaneous default risk in the cohort. A significant effect may thus

suggest that the additive model at hand is missing global effects that drive default intensities upwards.

3 Additive regression models

In this section, we describe how the nonparametric and semiparametric additive models are estimated, and how

we test the relevant hypotheses of significance and possible time-variation of regression coefficients.

The focus is on two main model structures. First, the nonparametric additive model (2.3) with all covariate

effects as unspecified functions of time, restated here for convenience

α(t |xit) = β0(t) + β1(t)xi1,t + · · ·+ βp(t)xip,t. (3.1)
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Second, the semiparametric sub-model first introduced by MacKeague and Sasieni (1994), where more structure

is put on some of the regression coefficients. This is of interest when some effects are believed to be time-

invariant, but also when including global time-dependent covariates of both the macroeconomic or dynamic

type. Covariates with time-varying effects are collected in the p-dimensional covariate vector xit, whereas the q-

dimensional vector zit = (zi1,t, . . . , ziq,t)
T captures the time-invariant effects. Both are assumed to be predictable

and locally bounded. The semiparametric additive model then specifies the intensity as

α(t |xit, zit) = β0(t) + β1(t)xi1,t + · · ·+ βp(t)xip,t + θ1zi1,t + · · ·+ θqziq,t, (3.2)

where β0(t), . . . , βp(t) are as before while θ1, . . . , θq are real-valued parameters giving the time-invariant effects of

a one-unit increase in each component of zit. Note that, as discussed in Section 2.1, β0(t) = θ0 when we include

global time-dependent covariates in the regressions, in order to make all parameters identifiable. Martinussen

and Scheike (2006) propose a resampling-based inference procedure that allows the time-invariance of effects

to be tested, so that an initial nonparametric additive model may be reduced to a semiparametric. This is

implemented in the aalen-function as a part of their timereg package in R (R Development Core Team (2011))

which will be used in the data analyses of Sections 4 and 6.

3.1 The nonparametric additive regression model

In the general model (3.1), the regression functions βj(t) for j = 0, 1, . . . , p are unrestricted and consequently

difficult to estimate nonparametrically. However, similar to estimating a cumulative distribution function rather

than a density or a cumulative hazard instead of the hazard itself, it turns out that the cumulative regression

functions,

Bj(t) =

∫ t

0

βj(s) ds, j = 1, . . . , p,

are easier to estimate than the regression functions themselves. As in the case with the density or hazard,

estimators of the regression functions may be obtained by smoothing the cumulative estimates.

Estimation

The basic idea is to estimate the cumulative regression coefficients by step functions. We can write the increment

of (Nit)t∈[0,T ] over the small time interval [t, t+ dt) as

dNit = YitdB0(t) +

p∑
j=1

Yitxij,t dBj(t) + dMit, (3.3)

where

Mit = Nit −
∫ t

0

(
Yisβ0(s) +

p∑
j=1

Yisxij,sβj(s)

)
ds

defines a local martingale (Mit)t∈[0,T ] due to the assumed local boundedness of xij,t and local integrability of

βj(t) for all i and j. At each time t, the model (3.3) has the form of an ordinary linear regression with dNit as

the response, Yitxij,t as the predictors, dBj(t) = βj(t) dt as the parameters of interest, and dMit as the noise.

For the cohort of n firms, the full model may thus be written as

dNt = Xt dB(t) + dMt, (3.4)
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where Nt = (N1t, . . . , Nnt)
T , B(t) = (B0(t), . . . , Bp(t))

T , and Mt = (M1t, . . . ,Mnt)
T , while Xt is the n× (1 +

p)-dimensional, locally bounded matrix with ith row (Yit, Yitxi1,t, . . . , Yitxip,t). When Xt has full rank, the

ordinary least squares estimator of the increment of B(t) is given by

dB̂(t) = X−t dNt,

where X−t = (XT
t Xt)

−1XT
t is the usual least squares generalized inverse of Xt. When Xt has less than full rank,

dB(t) is not identifiable from the data, and we put dB̂(t) = 0. Also, note that dB̂(t) = 0 when dNt = 0, so that

all the increments are at default times.

To obtain an estimator for the vector B(t) of cumulative regression functions, we let J(t) be the indicator

of X(t) having full rank and aggregate dB̂(t) over the ordered default-times τ1 < τ2 < · · · to obtain

B̂(t) =

∫ t

0

J(s) X−s dNs =
∑
τk≤t

J(τk) X−τk 4Nτk , (3.5)

where 4Nτk is a vector of zeros except for a one at the component corresponding to the firm with a default

at τk. Note that when there are no covariates in the model (i.e. p = 0), the estimator (3.5) is just the usual

Nelson-Aalen estimator of the cumulative hazard – in this sense, the nonparametric additive model is the natural

generalization of nonparametric hazard estimation to the situation with covariates.

Using (3.4), we obtain

B̂(t)−B(t) =

∫ t

0

J(s) X−s dMs +

∫ t

0

(J(s)− 1) dB(s)

=

∫ t

0

J(s) X−s dMs + oP

(
1√
n

)
,

where the last equality holds under reasonable regularity assumptions (Martinussen and Scheike, 2006). Hence,

the deviation B̂(t)−B(t) is a vector-valued local martingale except for a negligible remainder term. The

asymptotic properties of the estimator (3.5) may be obtained by the martingale central limit theorem. In

case of model misspecifications, the process (Mt)t∈[0,T ] is no longer a local martingale, and care must be taken

when deriving the asymptotic properties of the estimator B̂(t). Both cases will be treated below.

When the model is well-specified, we can estimate the covariance function of B̂(t) by the optional variation

process of the martingale part of the deviation B̂(t)−B(t) :

Σ̂ΣΣmar(t) =
∑
τk≤t

J(τk) X−τk diag(4Nτk) X−τk
T
. (3.6)

If the model is misspecified, Σ̂ΣΣmar(t) will be biased. In this case Martinussen and Scheike (2006) show that

√
n(B̂(t)−B(t)) =

1√
n

n∑
i=1

Qi(t) + oP (1), (3.7)

with

Qi(t) =

∫ t

0

J(s)
(
n−1XT

s Xs

)−1
XT
is

(
dNis −Xis dB(s)

)
,

and where Xit is the ith row of Xt. When n→∞ J(t)
(
n−1XT

t Xt

)−1

converges in probability, and (3.7)

is a normalized sum of independent and identically distributed processes. The covariance function of B̂(t) is
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consistently estimated by

Σ̂ΣΣrob(t) =
1

n

n∑
i=1

Q̂i(t)Q̂i(t)
T , (3.8)

where Q̂i(t) is obtained by replacing B(t) with its estimator in Qi(t). Since Σ̂ΣΣrob(t) is derived without use of the

local martingale property of (Mt)t∈[0,T ], it is robust to model misspecifications of the intensity, and is therefore

a robust covariance function estimator.

Large sample properties

When the model is correctly specified and regularity conditions are fulfilled, it follows from the martingale

central limit theorem that the normalized deviation
√
n(B̂(t)−B(t)) converges (for n→∞ and fixed T ) in

distribution to a mean-zero multivariate Gaussian martingale with a covariance function that may be estimated

consistently by the martingale-based estimator Σ̂ΣΣmar(t). In case of misspecifications, when (Mit)t∈[0,T ] is not a

martingale, the main asymptotic result is instead that
√
n(B̂(t)−B(t)), using (3.7), converges in distribution

to a mean-zero Gaussian process (but not a martingale) with a covariance function which may be estimated

consistently by the robust estimator Σ̂ΣΣrob(t). Martinussen and Scheike (2006) give the details and proofs.

The asymptotic results imply that an approximate 100(1− α)% martingale-based pointwise confidence band

for the jth cumulative regression coefficient is given by

B̂j(t)± z1−α/2

√
σ̂2

mar,jj(t),

where z1−α/2 is the (1− α/2)-quantile of the standard normal distribution and σ̂2
mar,jj(t) is the jth diagonal

element of Σ̂ΣΣmar(t). Alternatively, an approximate 100(1− α)% robust confidence band for the jth cumulative

regression coefficient may be obtained as

B̂j(t)± z1−α/2

√
σ̂2

rob,jj(t),

where σ̂2
rob,jj(t) is the jth diagonal element of Σ̂ΣΣrob(t).

In large samples, if the two types of variance estimates (i.e. the martingale-based and the robust) are

markedly different, it is an indication of model misspecification.

Kernel smoothing

B̂j(t) estimates the cumulated regression function
∫ t

0
βj(s)ds. However, we are really interested in its slope –

i.e. the regression function βj(t) itself. As assessing the slope of a step function graphically may be difficult, we

smooth the estimators of the cumulative regression functions to obtain estimators of the regression functions

themselves.

We will use kernel function smoothing, as first proposed in a survival model setting by Ramlau-Hansen

(1983). Then βββ(t) = (β0(t), . . . , βp(t)) is estimated at time t as a weighted sum of the increments of B̂(t) over

the interval [t− b, t+ b],

β̂ββ(t) =
1

b

∑
τk

K

(
t− τk
b

)
4B̂(τk), (3.9)
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where b > 0 is a bandwidth, determining the size of the interval [t− b, t+ b], while K(x) is a bounded kernel-

function vanishing outside [−1, 1] and integrating to 1, determining the weights. A typical choice is the

Epanechnikov kernel, where K(x) = 3
4 (1− x2) for |x| ≤ 1, and zero otherwise, but Aalen, Borgan, and Gjessing

(2008) discuss other kernels. Like other kernel estimators, (3.9) suffers from boundary effects: For small values of

t (i.e. when t− b < 0) the estimator is severely biased towards zero. We handle this problem by using a boundary

kernel, as also discussed by Aalen et al. (2008).

When the model is correctly specified and (Mt)t∈[0,T ] is a vector-valued local martingale, an estimator of

the covariance function of β̂ββ(t) is simply obtained as

Ĉov β̂ββ(t) =
1

b2

∑
τk

K

(
t− τk
b

)2

4Σ̂ΣΣmar(τk),

where 4Σ̂ΣΣmar(τk) = J(τk) X−τk diag(4Nτk) X−τk
T

is the increment of the martingale-based covariance function

estimator (3.6). If the model is misspecified, the covariance function of the function β̂ββ(t) has the same form

as above, but with 4Σ̂ΣΣmar(τk) replaced by 4Σ̂ΣΣrob(τk), i.e, the increment of the robust covariance function

estimator (3.8). These covariance function estimators may be combined with the large sample properties of B̂(t)

to construct approximate confidence bands for β̂ββ(t) in the usual way.

There exist techniques (such as cross-validation) for objectively choosing the bandwidth with an optimal

(in some sense) trade-off between bias and variances, but these will not be considered in this paper. We simply

rely on a subjective assessment of what is a reasonable degree of smoothing.

Resampling-based inference

The tests we use will be based on a resampling procedure presented and implemented by Martinussen and

Scheike (2006) – however, Aalen et al. (2008) give a more traditional martingale-based approach.

We are primarily interested in testing two hypotheses: The hypothesis of no effect of the jth covariate,

Heffect
0 : βj(t) = 0 for all t ∈ [0, T ].

and the hypothesis of a time-invariant effect of the jth covariate,

Htime
0 : βj(t) = θj for all t ∈ [0, T ].

The null of Htime
0 is the semi-parametric additive model with a parametric coefficient for the effect of the jth

covariate. Both hypotheses may be of interest over a shorter time-interval than the entire study time, but this

is usually not the case, and will not be considered here. Since the estimated cumulative regression coefficients

have nicer distributional properties than their smoothed counterparts, the hypotheses are usually formulated in

the equivalent forms

Heffect
0 : Bj(t) = 0 and Htime

0 : Bj(t) = θjt,

both for all t ∈ [0, T ].

Martinussen and Scheike (2006) propose testing the hypothesis of no influence, Heffect
0 , by the supremum

test statistic

Tsup = sup
t∈[0,T ]

∣∣∣∣∣∣
√
n B̂j(t)√
σ̂2

rob,jj(t)

∣∣∣∣∣∣ , (3.10)
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where, again, σ̂2
rob,jj(t) is the jth diagonal element of Σ̂ΣΣrob(t) given in (3.8). This evaluates the maximal deviation

of the estimated cumulative regression coefficient B̂j(t) from the zero function, relative to its variation.

With regards to testing the hypothesis of time-invariance, Htime
0 , Martinussen and Scheike (2006) propose

the process

√
n

(
B̂j(t)−

B̂j(T )

T
t

)
for t ∈ [0, T ] (3.11)

as a basic starting point for evaluating the time-invariance of the jth regression coefficient – the idea is that

B̂j(T )/T is an estimator of the time-constant coefficient θj under the null. This process may then be turned

into the Kolmogorov-Smirnov test statistic

TKS = sup
t∈[0,T ]

√
n

∣∣∣∣∣B̂j(t)− B̂j(T )

T
t

∣∣∣∣∣ , (3.12)

or the Cramer-von Mises test statistic

TCvM = n

∫ T

0

(
B̂j(t)−

B̂j(T )

T
t

)2

dt. (3.13)

The former is a maximal deviations test statistic, sensitive to single large deviations from the null, while the

latter is a sum of squared deviations type statistic, sensitive to small but persistent deviations from the null.

To test the hypotheses, Martinussen and Scheike (2006) propose evaluating the variability of test statistics

through a resampling-scheme that approximates the distribution of the estimated vector of cumulative regression

coefficients B̂(t). Based on the iid. representation (3.7), their main result is that, conditional on the data

(Nit, Yit,xit) for i = 1, . . . , n, the normalized deviation
√
n(B̂(t)−B(t)) has the same limiting distribution as

R(t) =
1√
n

n∑
i=1

uiQ̂i(t),

where u1, . . . , un are iid. standard normally distributed stochastic variables, and Q̂i(t) is as in (3.8). The result

utilizes the “conditional multiplier central limit theorem” (van der Vaart and Wellner, 1996). Note that R(t) a

weighted sum of the observable Q̂i(t)/
√
n with standard normally distributed weights. In fact, any normalized

distribution could have been used for the weights, but the choice of a normal distribution fits well with the

limiting distribution.

Obtaining P -values for the tests may be done through replication of R(t). The idea is to hold the observed

data fixed whilst repeatedly generating series of iid. standard normal variables u
(r)
1 , . . . , u

(r)
n , and approximating

the distribution of Tsup by the empirical distribution of the processes

sup
t∈[0,T ]

∣∣∣∣∣∣
√
nR

(r)
j (t)√

σ̂2
rob,jj(t)

∣∣∣∣∣∣ ; r = 1, 2, . . . ,

where R
(r)
j (t) denotes the rth resample of the jth element of R(t). Similarly, approximations of the distributions

of TKS and TCvM are obtained by approximating the distribution of the process (3.11) by the empirical

distribution of the processes

√
n

(
R

(r)
j (t)−

R
(r)
j (T )

T
t

)
; r = 1, 2, . . . .
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Finally, the deviation of the estimated regression coefficient from the null of time-invariance may be assessed

by plotting the observed process (3.11) as a function of study time along with a number of the resampled processes

under the null. A similar behavioral pattern in the observed and resampled processes would suggest consistency

with the null of time-invariance. The advantage of this graphical method is that it pinpoints where in time

deviations from the null might occur.

3.2 The semiparametric additive regression model

The methods used to estimate and conduct inference in the semiparametric Aalen model (3.2) are to a large

extent similar to the ones presented in the previous sections for the nonparametric model. We will therefore only

briefly outline the procedure of finding estimators and the resampling-based method of inference. Martinussen

and Scheike (2006) give a detailed account.

Estimation

For the semiparametric Aalen model, the increments of the counting processes are given as

dNt = Xt dB(t) + Zt θθθdt+ dMt, (3.14)

where Nt, Xt, B(t), and Mt are as in (3.4), while θθθ = (θ1, . . . , θq)
T and Zt is the n× q-dimensional, locally

bounded matrix with ith row (Yitzi1,t, . . . , Yitziq,t).

We estimate the unknown regression functions and parameters by minimizing the integrated sum of squares,∫ T

0

J(t)
(
dNt −Xt dB(t)− Zt θθθdt

)T (
dNt −Xt dB(t)− Zt θθθdt

)
, (3.15)

where, again, J(t) is the indicator of Xt having full rank. Re-writing dNs −Xs dB(s)− Zs θθθdt as the sum of its

projections on span Xt and its orthogonal complement, we obtain, when J(t) = 1,

Xt

(
X−t dNt − dB(t)−X−t Zt θθθ dt

)
+
(
I−Xt X

−
t

)(
dNt − Zt θθθ dt

)
,

where I is the n× n identity matrix, while, as usual, X−t is the least squares generalized inverse of Xt. Hence,

(3.15) splits into a sum of two terms,∫ T

0

J(t)
(
X−t dNt − dB(t)−X−t Zt θθθ dt

)T
XT
t Xt

(
X−t dNt − dB(t)−X−t Zt θθθ dt

)
+

∫ T

0

J(t)
(
dNt − Zt θθθ dt

)T (
I−Xt X

−
t

)(
dNt − Zt θθθ dt

)
,

as
(
I−Xt X

−
t

)T (
I−Xt X

−
t

)
=
(
I−Xt X

−
t

)
and

(
I−Xt X

−
t

)T
Xt = 0. Minimizing the latter term first and

the former second yields the estimators

θ̂θθ =

(∫ T

0

J(t) ZTt
(
I−XtX

−
t

)
Zt dt

)−1 ∫ T

0

J(t) ZTt
(
I−XtX

−
t

)
dNt, (3.16)

B̂(t) =

∫ t

0

J(s) X−s
(
dNs − Zs θ̂θθ ds

)
. (3.17)

In the non-parametric case, the minimizer of the integrated sum of squares and the pointwise sums of squares

is the same. Thus, the present estimator (3.17) generalizes the one given for the nonparametric case in (3.5).
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Combining (3.16) and (3.17) with (3.14) gives the normalized deviations

√
n(θ̂θθ − θθθ) = U−1 M

(1)
T , (3.18)

√
n(B̂(t)−B(t)) = M

(2)
t −V(t) U−1 M

(1)
T + oP (1), (3.19)

where

U =
1

n

∫ T

0

J(t) ZTt
(
I−XtX

−
t

)
Zt dt, V(t) =

1

n

∫ t

0

J(s) X−s Zs ds,

M
(1)
t =

1√
n

∫ t

0

J(s) Zs
(
I−XsX

−
s

)
dMs, M

(2)
t =

1√
n

∫ t

0

J(s) X−s dMs.

When the model is correctly specified, (M
(1)
t )t∈[0,T ] and (M

(2)
t )t∈[0,T ] are vector-valued, local martingales

(due to the assumed local boundedness of Xt and Zt), thus showing that θ̂θθ is an unbiased estimator of θθθ, while

B̂(t) is an approximately unbiased estimator of B(t). In case of a misspecified model, the process (Mt)t∈[0,T ] is no

longer a local martingale. In the following, we handle the two cases separately when deriving variance-estimates

and asymptotic properties for the estimators (3.16) and (3.17).

When the model fit is reasonable, the deviations (3.18) and (3.19) imply that a martingale-based estimator

of the covariance matrix of θ̂θθ is given by

Ψ̂ΨΨmar = U−1 [M(1)](T ) U−1,

while a martingale-based estimator of the covariance function of B̂(t) is given by

Υ̂ΥΥmar(t) = [M(2)](t) + V(t) Ψ̂ΨΨmar V(t)T

−[M(1),M(2)](t) U−1 V(t)T −V(t) U−1 [M(1),M(2)](t),

where the optional variation and covariation processes of (M
(1)
t )t∈[0,T ] and (M

(2)
t )t∈[0,T ] are

[M(1)](t) =
1

n

∫ t

0

J(s) ZTs
(
I−XsX

−
s

)
diag(dNs)

(
I−XsX

−
s

)
Zs,

[M(2)](t) = n

∫ t

0

J(s) X−s diag(dNs) X−s ,

[M(1),M(2)](t) =

∫ t

0

J(s) ZTs
(
I−XsX

−
s

)
diag(dNs) X−s

T
.

If the semiparametric additive model is misspecified, Ψ̂ΨΨmar and Υ̂ΥΥmar(t) will be biased. To address this,

Martinussen and Scheike (2006) show that

√
n(θ̂θθ − θθθ) =

1√
n

U−1
n∑
i=1

Ki,

where

Ki =

∫ T

0

J(t)
(
ZTit − ZTt Xt

(
XT
t Xt

)−1
XT
it

) (
dNit −Xit dB(t)− Zit θθθ dt

)
,
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with Xit as the ith row of Xt and Zit as the ith row of Zt. When n is large, this represents the deviation
√
n(θ̂θθ − θθθ) as a normalized sum of iid. terms, showing that the covariance function of θ̂θθ may be estimated by the

sandwich-type estimator

Ψ̂ΨΨrob = U−1

(
1

n

n∑
i=1

K̂i K̂
T
i

)
U−1,

where K̂i is obtained by replacing θθθ and B(t) with their estimators in Ki. As Ψ̂ΨΨrob was derived without relying

on the martingale property, it is robust to model misspecifications. Similarly,

√
n(B̂(t)−B(t)) =

1√
n

n∑
i=1

Oi(t) + op(1),

where

Oi(t) =

∫ t

0

J(s)
(
n−1 XT

s Xs

)−1
XT
is

(
dNis −Xis dB(s)− Zis θθθ ds

)
−V(t) U−1 Ki.

Hence, copying the above argument, this suggests that the covariance function of B̂(t) may be estimated by the

robust estimator

Υ̂ΥΥrob(t) =
1

n

n∑
i=1

Ôi(t) Ôi(t)
T . (3.20)

Large sample properties

The asymptotic properties of θ̂θθ are in case of a well-specified model obtained through a standard application of the

martingale central limit theorem, which under suitable regularity assumptions implies that
√
n(θ̂θθ − θθθ) converges

(for n→∞ and fixed T ) in distribution to a mean-zero, multivariate normal variable with a covariance which is

consistently estimated by Ψ̂ΨΨmar. If the model is not well specified, the same convergence result holds, but Ψ̂ΨΨmar

has to be replaced by Ψ̂ΨΨrob, which may also be shown to be a consistent estimator of the asymptotic covariance.

The details are given by Martinussen and Scheike (2006).

The situation is slightly more complicated for B̂(t) due to the more involved nature of the corresponding

deviation (3.19), which depends on
√
n(θ̂θθ − θθθ). When the model is well-specified and the necessary regularity

conditions are fulfilled, Martinussen and Scheike (2006) show that combining the martingale central limit theorem

and the continuous mapping theorem gives that
√
n(B̂(t)−B(t)) converges in distribution to a mean-zero,

multivariate Gaussian process (i.e.not a martingale). Its asymptotic covariance function is estimated consistently

by Υ̂ΥΥmar(t). If the model is misspecified, the same result holds, but Υ̂ΥΥmar(t) has to be replaced by Υ̂ΥΥrob(t). Note

that the asymptotic distribution of
√
n(B̂(t)−B(t)) is not a martingale in either case. These results may in

large samples be used to construct approximate pointwise confidence bands for B̂(t) in the usual way.

Resampling-based inference

Three hypotheses arise naturally when conducting inference in the semiparametric additive model. The first

two are the null hypotheses of no influence and time-invariance of the time-varying regression coefficients that

we also considered for the nonparametric model. The third is the simple null hypothesis θl = θ̃, where the lth

time-constant regression coefficient is tested against the null of some known, real-valued parameter θ̃. Usually,
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θ̃ = 0, in which case we are testing the influence of the lth time-constant covariate effect. This hypothesis is

tested in the usual manner using e.g. the Wald test statistic, which in case of a well-specified model is given by

TWald =
θ̂l − θ̃√
ψ2

mar,ll

,

where ψ2
mar,ll is the lth diagonal element of Ψ̂ΨΨmar. Alternatively, in case of a misspecified model, we instead use

ψ2
rob,ll, the lth diagonal element of Ψ̂ΨΨrob. In either case, the asymptotic properties of θ̂θθ imply that TWald will

under the null be approximately standard normally distributed in large samples.

With regards to the hypotheses of no influence and time-invariance for the a priori time-varying regression

coefficients, Martinussen and Scheike (2006) propose a resampling-based method analogous to what was done

for the nonparametric additive model. As for the nonparametric additive model, we can assess the deviation

of an estimated, time-varying regression coefficient from the null of time-invariance by plotting the observed

process (3.11), as a function of study time, along with a number of the resampled processes under the null.

4 Data and model specification

Our empirical results are based on an analysis of U.S. industrial corporate defaults occurring between 1982

and 2006. In this period, the U.S. economy suffered three major economic recessions between ‘81-‘82, ‘91-‘92,

and ‘01-‘02. We use the exact same data set as Lando and Nielsen (2010), but, for convenience, we repeat the

description of the data below. Other default studies have used the same data supplemented with additional

defaults from other sources – e.g. Li and Zhao (2006), Das et al. (2007), Davydenko (2007), and Le (2007). Our

main purpose here is to investigate the role of time-varying coefficients and the importance of model checking

in an additive intensity regression setting.

4.1 Data

The sample includes all U.S. industrial firms with a debt issue registered in Moody’s Default Risk Service

Database, or DRSD (Moody’s Investor’s Service c©, 2010), which essentially covers the period since 1970,

including universal identifiers facilitating the combination with other data sources. However, due to sparseness

of data, the study time was chosen as the period between January 1st 1982 and January 1st 2006, giving a

total of 289 observation months. The sample was restricted to firms for which accompanying stock market data

from CRSP (Center for Research in Security Prices c©, 2010) and accounting data from CompuStat (Standard &

Poor’s c©, 2010) could be obtained, and for which there were at least 6 months of available data. All consecutive

default events occurring within a 1-month horizon of any previously registered default ascribed to the same

parent company were excluded from the data in order to correct for observations of multiple defaults caused by

parent-subsidiary relations within the same corporate family. The final result is a study cohort of 2,557 firms

comprising a total of 370 defaults.

The database classifies any of the following 9 events as constituting a default: Chapter 7, chapter 11,

distressed exchange, grace period default, missed interest payment, missed principle payment, missed principal

and interest payment, prepackaged chapter 11, and suspension of payments. In particular, we do not correct the

timing of a “Distressed exchange,” which in the DRSD is registered as the time of completion of the exchange,
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although as suggested by Davydenko (2007), it would probably be more appropriate to instead collect separate

information on the announcement date of the exchange.

Of the 370 realized defaults in the cohort, 25 defaults happened to firms which had already defaulted earlier.

To be precise, 22 firms experienced 2 defaults and a single firm defaulted 4 times.

Covariate specification

The idiosyncratic covariate specification to be employed in the regressions consists of the following 5 balance

sheet variables obtained from CRSP and CompuStat:

– Quick ratio for the previous month, calculated as the book value of cash and short-term investments

added the book value of total receivables, all relative to the book value of total current liabilities. This

measures the firm’s ability to use its near cash assets to immediately extinguish current liabilities.

– Pledgeable assets for the previous month, calculated as the book value of total current assets plus the

book value of net property, plant, and equipment. This measures the firm’s ability to convert liquid assets

to collateral that may be transferred to a lender to secure debt.

– Trailing 1-year equity return for the previous month. This measures the firm’s efficiency at generating

profits from shareholders’ equity (or assets less liabilities) and is thus a reflection of how well the firm uses

investment funds to generate growth on earnings.

– Trailing 1-year distance-to-default for the previous month and estimated over a one-year rolling

window. Our distance measure is the option-implied measure as used for example in Duffie et al. (2007)

(see page 660 of that paper). This measures roughly how far - measured in standard deviations of log

returns - assets are from hitting a default triggering boundary. The default triggering level is the sum of

the notional of short-term debt and half of the notional of long-term debt.

– Percentage short-term debt for the previous month calculated as the book value of debt in current

liabilities divided by the sum of the book value of debt in current liabilities and the book value of total

long-term debt. This is a measure of the firm’s vulnerability to a sudden funding shock.

All the above are time-dependent covariates which are clearly predictable due to the 1-month lagging. In case of

missing monthly values, the latest quarterly observation was substituted as a proxy, and if also this was missing,

the latest yearly observation was used. In addition, we examined the influence of the firm’s book asset value, its

equity value, and the value of its fixed assets. The book assets and the pledgeable assets were highly correlated,

and including both in the analysis would give problems with collinearity. A preliminary analysis showed that

our estimates are almost identical regardless of which one we choose. The equity return was preferred over

the equity value since the latter seemed to cause instabilities during estimation and unintuitive results due to

excessively large values and high correlation with other covariates. The fixed assets also caused instabilities

during estimation, and were dropped altogether from the covariate specification.

The macroeconomic covariate specification consisted of the following 7 variables obtained from CRSP and

the U.S. Federal Reserve Board:

– Trailing 1-year return on the S&P 500-index for the previous month. The change on this index is

considered one of the major predictors for the future state of the U.S. economy.



18

– Spread between yields on Moody’s Baa- and AAA-rated corporate bonds for the previous

month. This is a measure of the credit risk that the market is factoring on lower grade bonds. A widening

usually suggests that the market is forecasting greater credit risk due to a slowing economy.

– Trailing 1-year percentage change in U.S. Consumer Price Index (CPI) for the previous month.

The index measures the average price of consumer goods and services purchased by households and its

percentage change thus measures the level of inflation.

– Trailing 1-year percentage change in average weekly earnings for the previous month. This is an

indicator of short-term earnings growth.

– Trailing 1-year percentage change in U.S. domestic crude oil First Purchase Price (FPP) for

the previous month. High oil prices might have a negative impact on U.S. economic growth.

– Spread between the 10- and 1-year U.S. Treasury yields for the previous month. This measures

the extra cost of holding long-term debt compared to the cost of holding short-term debt.

– Trailing 1-year percentage change in U.S. unemployment rate (UR) as percentage of civilian labor

force (seasonally adjusted) for the previous month. The rate itself is a major macroeconomic indicator,

and its change measures the difference between labour relationships newly broken and labour relationships

newly initiated.

As for the idiosyncratic covariates, predictability is ensured through the 1-month lagging. Alternative versions

of the above macroeconomic variables were also considered along with the U.S. industrial production and

several versions of the U.S. gross domestic product (GDP), but only the above showed some signs of reasonable

significance or did not cause instability during estimation.

Lastly, the following global dynamic covariate will be used:

– Trailing monthly default rate for the previous month. The trailing monthly default rate is calculated

at each month as the realized number of defaults during that month relative to the number of firms at

risk at the beginning of the month.

Including the lagged version, and not the monthly default rate itself, ensures predictability. This dynamic

covariate may at a given time be viewed as a reflection of the instantaneous default risk in the cohort – a

significant effect may thus suggest missing global effects driving default intensities upwards.

[Figure 1 about here.]

The at-risk and empirical default patterns of the study cohort are illustrated in Figure 1. The upper left

panel shows that the final dataset contains a minimum of 1,005, an average of 1,142, and a maximum of 1,363

firms at-risk at any given point in the study time. The upper and lower right panels show the effect on the

cohort of the recessions in the U.S. economy. The monthly default rate reaches its maximum of 0.611% during

the ‘01-‘02 recession. Note that the lower right panel also depicts the path of the trailing monthly default rate

used in the analysis in a 1-month lagged version as a global dynamic covariate.

[Figure 2 about here.]

Figure 2 shows nonparametric Nelson-Aalen estimates of the default intensity in the cohort due to the

passing of time itself – i.e. without correcting for covariate effects. The left panel shows the cumulative estimate,
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From this graph, the slope seems fairly constant except for during the recessions of ‘91-‘92 and ‘01-‘02. The

smoothed plot in the right panel, obtained through kernel smoothing of the increments of the Nelson-Aalen

estimator, is better at showing the time-variation. It captures the same tendencies as the empirical default

patterns in Figure 1 and clearly shows that the default intensity is much larger during the recessions compared

to periods of economic upturns. During the ‘01-‘02 recession the smoothed monthly default intensity peaks at

just over 3%.

Table 1 shows summary statistics for the covariates included in our analysis and we indicate the expected

sign of the effects of each covariate on the default intensities of firms. The firm-specific covariates are grouped

with respect to defaults and non-defaults to give a rough idea of whether the values of covariates of defaulting

firms differ from those of non-defaulted firms in a way consistent with the expected sign of the effect of the

covariate. This seems to be the case, although the ratio of short-to-long term debt is seen to be of almost the

same magnitude (or maybe even slightly greater) for non-defaulting firms compared to defaulting firms across

all statistics.

Note that the table shows extreme maximum values for both the quick ratio, the pledgeable assets, and the

1-year equity return covariates when compared to their 75% quantiles. The influence of these potential outliers

will be examined during model check in Section 6.

[Table 1 here in separate landscape page.]

[Figure 3 about here.]

4.2 Nonparametric Aalen analysis

Initially, a nonparametric additive model including time-varying effects for all five idiosyncratic covariates was

fitted using the aalen function from the timereg package in R (R Development Core Team (2011)) with robust

standard errors. Apart from the additive specification replacing the Cox specification used by e.g. Lando and

Nielsen (2010), our main departure in this initial fit is the time-varying coefficients on the idiosyncratic covariates

and a general time-varying baseline intensity.

As mentioned in Section 2.1, it is impossible to simultaneously identify a time-varying baseline and the

time-constant effects of global (both macroeconomic and dynamic) covariates when the time-scale is calendar-

time. We therefore initially fit the model with a time-varying baseline, which can be viewed as a time-varying

proxy for all global tendencies. Afterwards, in Section 4.3, we consider the semiparametric submodel where the

time-varying baseline is replaced by a constant term and where the 7 macroeconomic covariates and the global

dynamic covariate all have time-constant effects.

Figure 3 illustrates the first interesting observation of our study: The 1-year distance-to-default is, in the

terminology of Kalbfleisch and Prentice (2002, p. 199), “responsive,” in the sense that it alone weakened the

effect and increased the misspecification of both the quick ratio and the pledgeable assets. Such behavior is a

sign of missing interactions in the model.

Estimated cumulative regression coefficients B̂j(t) =
∫ t

0
β̂j(s) ds for the quick ratio and the pledgeable

assets from the reference model without interactions are shown in Figure 3 with confidence bands along with

the corresponding estimates from an extended model including interactions between the two and the 1-year
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distance-to-default. The estimates from the model not including interactions are considerably smaller than the

estimates from the extended model and have robust confidence bands which are much wider than the bands

based on martingale theory. Including the interaction terms corrects this behavior. In fact, the estimates from

the extended model are almost identical to estimates from a model not including the 1-year distance-to-default

(not shown). Note that the interactions are economically plausible, as it is reasonable to expect that the effect of

a firm’s distance-to-default on default risk depends on asset level and short-term liquidity. However, even in the

model including interactions, the robust confidence bands for the quick ratio coefficient are still somewhat larger

near the end of the study time than the ones based on martingale-theory, suggesting that there is still some

misspecification with regards to this covariate. Inspired by this finding, we tried all other possible combinations

of two-way interactions, but none seemed to improve the overall fit.

[Figure 4 here on separate page.]

Estimated cumulative regression coefficients from the extended model including the two interactions are

shown with confidence bands in Figure 4 for all but the quick ratio and the pledgeable assets, which were given

in the right panels of Figure 3. The effect of each of the firm specific covariates is as expected. The percentage

short-term debt is seen to increase default intensities, but the effect seems to wear off near the end of the

study time, from around 2004 and onwards. On the other hand, default intensities fall as we increase the 1-year

equity return, the 1-year distance-to-default, the quick ratio, or the book asset value. The pledgeable assets are

unimportant until about 1987, or for nearly the first 5 years of the study time. The cumulative estimates for

the interactions are both increasing, but have much lower magnitude than the effects of the 1-year distance-

to-default, the quick ratio, and the (log) pledgeable assets, so that they only dampen, or correct, but do not

completely remove the marginal effects of the covariates. The baseline is increasing suggesting that, given the

covariate specification used here, it proxies for default increasing effects.

[Table 2 about here.]

Judging from the confidence bands of the cumulative coefficients, all effects are significant over most of the

study time. The robust bands for all but the quick ratio and its interaction with the 1-year distance-to-default

are almost identical to the martingale-based bands, suggesting limited model misspecification with respect to

the rest of the covariates.

To determine if the changes in the slopes of the cumulative estimates are significant, the observed test

processes (3.11) for the extended model including interactions are plotted in Figure 5 along with 50 resampled

test processes under the null of time-invariance. Only the observed test processes corresponding to the short-to-

long term debt ratio, the 1-year distance-to-default, and the interaction between the latter and the pledgeable

assets truly exhibit extreme behavior over longer periods of time compared to the resampled test processes.

The rest are at best borderline extreme, and only over limited periods of time. Hence, we only expect the three

mentioned effects to be significantly time-varying.

The graphical considerations are supported by test statistics and associated P -values based on 1,000

resamples of each cumulative coefficient in Table 2. All the estimated cumulative coefficients are highly

significant. The Kolmogorov-Smirnov and Cramer-von Mises tests of time-invariance agree fairly well for all

cumulative coefficients, and the hypothesis of a time-constant effect is only clearly rejected for the effects of
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the short-to-long term debt ratio, the 1-year distance-to-default, and the interaction between the latter and the

(log) pledgeable assets. The test results correspond well with the impressions from the plots.

Note that while the overall conclusions are comparable to findings by e.g. Lando and Nielsen (2010),

we obtain a description of how the effects of covariates vary with time and how this may cause model

misspecification.

[Figure 5 here in seperate landscape page.]

[Table 3 about here.]

4.3 Semiparametric Aalen analysis

The next step is to introduce the macroeconomic covariates and the global dynamic covariate instead of the

general time-varying baseline intensity in a semiparametric Aalen model. As mentioned above, to identify

the parameters, this means that we have to use a constant baseline intensity. Based on the results from the

nonparametric Aalen model, the semiparametric model is fitted allowing for time-varying effects of the short-to-

long term debt ratio, the 1-year distance-to-default, and the interaction between the 1-year distance-to-default

and the (log) pledgeable assets.

Table 3 shows the time-constant parameter estimates from this model, while estimated regression coefficients

β̂j(t) for the short-to-long term debt ratio, the 1-year-distance-to-default and the interaction between the latter

and the (log) pledgeable assets are shown as smoothed functions with confidence bands in Figure 6.

Consider first the time-constant effects. The most pronounced time-constant default decreasing effect is the

1-year equity return, which when increased by 1% lowers intensities by 1.52 percentage points. Note, however,

that using robust standard errors, the effects of the quick ratio and the interaction between the quick ratio and

the 1-year distance-to-default are insignificant. The robust standard errors for these two effects are also seen

to be somewhat larger than the martingale-based standard errors. This shows that the misspecifications first

observed in Figures 3 and 4 are also present for the corresponding time-constant effects. In fact, had the Wald

test statistics for these two effects been calculated using the martingale-based standard errors, we would have

mistakingly judged them as being clearly significant. The robust standard errors for the rest of the time-constant

coefficients, both idiosyncratic, macroeconomic, and dynamic, are, however, almost identical to the standard

errors based on martingale theory.

[Figure 6 about here.]

The table also shows that the global dynamic effect is of large magnitude and highly significant, suggesting

a high level of unobserved variation in the cohort: A 1% increase in the monthly default rate implies an excess

risk of 6.97 percentage points, which is a large shift, but plausible given that the observed monthly default rate

in the data has a maximum of 0.611%. On the other hand, none of the macroeconomic effects are significant

at conventional levels. A slight indication of a default decreasing effect is found for the 1-year CPI change, but

only at the 10% level. In contrast to what is expected from univariate economic reasoning, the Baa-AAA yield

spread decreases intensities, but the effect is very small, and its sign is therefore not a big concern. Finally, note

that the 1-year return on the S&P500 index has, as expected, a default decreasing effect in the additive model,
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although not significant at conventional levels. This particular covariate has been reported in other studies to

have the “wrong” sign in Cox models, see for example Duffie et al. (2009) and Lando and Nielsen (2010).

Turning to the time-varying coefficients β̂j(t) in Figure 6, the variational pattern over time is in all three

cases closely connected to the recessions in the U.S. economy, with all three effects being most pronounced

during the recessions as compared to in-between periods. The magnitude of the short-to-long term debt ratio

effect varies greatly depending on the recession at hand: A 1% increase corresponds to an excess risk of around

7.00 percentage points during the ‘91-‘92 recession, while the same increase implies an excess risk of almost 14.00

percentage points, or twice as much, during the ‘01-‘02 recession. The effect of the 1-year distance-to-default is,

on the other hand, fairly much the same during both mentioned recessions, where an increase of one standard

deviation lowers intensities by about 3 percentage points. Comparing this with the time-constant estimates in

Table 3, the 1-year distance-to-default has the most influential default decreasing effect of all included covariates.

The effect of the interaction is a time-varying correction to the marginal effects of the 1-year distance-to-default

and the pledgeable assets.

5 Model check

Despite the existence of several goodness-of-fit methods for survival models, actual model checking is still

somewhat overlooked in practice. The problem is that classical model check procedures looking at residuals all

originate from similar methods used in ordinary statistics, but the way in which they are to be interpreted in

the survival data setup with censoring is unclear. For instance, the usual martingale residuals first considered

by Barlow and Prentice (1988) are not normally distributed – hence, the interpretation of such residuals is not

as straightforward as in classical regression analysis, and it may therefore be difficult to judge the quality of a

model-fit from a plot of the residuals.

Nevertheless, model checking may actually lead us to alter the model specification. In our case, it leads

us to conclude that potential problems with the fit of the additive model is due to over-influence of firms with

extreme covariate values. Before presenting these findings, we describe graphical model checking methods for

the nonparametric Aalen model.

An advantage of the nonparametric Aalen model is that its additive structure fits well with martingale

theory, producing residual processes which are exact local martingales when the model is correct – this is

neither the case for the semiparametric additive model nor for the Cox model, for which the residual processes

are only approximate (asymptotic) local martingales. As the semiparametric Aalen model is a submodel of its

nonparametric counterpart, we will focus on model-check for the nonparametric model.

Aalen et al. (2008) discuss a graphical method based on so-called “martingale residual processes” – a method

that has also been applied to the Cox model. Using the nonparametric additive model form (3.4), define the

martingale residual process (Mres,t)t∈[0,T ] as the accumulated difference between the vector of counting processes

and the vector of estimated cumulative intensity processes at the time points where the model is estimable,

Mres,t =

∫ t

0

J(s) dNs −
∫ t

0

J(s) Xs dB̂(s). (5.1)
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Inserting the expression (3.5) for the estimator B̂(t), applying the model form (3.4), and using the definition of

the least squares generalized inverse X−t , we get

Mres,t =

∫ t

0

J(s)
(
I−XsX

−
s

)
dNs =

∫ t

0

J(s)
(
I−XsX

−
s

) (
Xs dB(s) + dMs

)
=

∫ t

0

J(s)
(
I−XsX

−
s

)
dMs.

Under the assumption that Xt is locally bounded, this proves that the process (Mres,t)t∈[0,T ] is a vector-valued

local martingale when the nonparametric additive model is true. As mentioned, this exact result does not carry

over to semi-parametric models – whether of the Aalen or the Cox type.

5.1 Covariate misspecifications: Grouped martingale residual processes

The firm specific martingale residual processes are typically not of much use on their own due to the relatively few

number of recurrent default events. It is more useful to aggregate over groups of firms with respect to covariate

values and conduct graphical model-check based on the grouped residual processes. Specifically, assume that

a grouping of the firms is given, and let G(t) denote the set of all firms belonging to group G at time t. The

grouping is allowed to depend on time, such that firms may move from one group to another during the study

time, as would naturally be the case when grouping is based on time-dependent covariates. It is, however,

essential that the grouping is predictable, such that information needed to group firms at time t is available just

before time t. The martingale residual process of group G at time t then takes the form

M
(G)
res,t =

∫ t

0

∑
i∈G(s)

dMres,it, (5.2)

where Mres,it is the ith element of the time-t vector Mres,t in (5.1). These grouped residual processes may then

be plotted as functions of study time in order to assess the model fit with respect to covariates. If the model fits

well, the resulting plots will fluctuate around zero and show no overdispersion or particular trends.

5.2 The model fit as a whole: Model-based covariance of residual processes

The martingale residual processes may also be of use in a different manner, aimed at judging the model fit

as a whole. The method is explained by Aalen et al. (2008), and involves estimating a model-based covariance

function for the martingale residual processes. The idea is that if we standardize martingale residual processes by

dividing them with their estimated standard deviation at each time t, then the time-varying mean and standard

deviation of the standardized processes should stay close to 0 and 1, respectively, if the model fits well.

To elaborate, assume that the nonparametric additive model is true, so that the process (Mres,t)t∈[0,T ] is a

vector-valued local martingale. Its covariance function may then be estimated by its optional variation process

ΣΣΣres(t) =
∑
τk≤t

J(τk)
(
I−XτkX−τk

)
diag(XτkX−τk 4Nτk)

(
I−XτkX−τk

)T
. (5.3)

Standardized residual processes are then obtained at each time t by calculating

Mres,it√
σ2

res,ii(t)
; i = 1, . . . , n,

where σ2
res,ii(t) is the ith diagonal element of ΣΣΣres(t). A plot of the mean and standard deviation of the

standardized residual processes as a function of time will then give a graphical assessment of the model fit

as a whole: If the model gives a reasonable fit, the mean will stay close to 0, and the standard deviation to 1.
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5.3 Outliers and over-influence: Diagonal cumulative hat processes

The leverages are a useful diagnostic for finding observations that may be overly influential in linear regression

models. The leverages are the diagonal elements of the so-called hat matrix, which is given by the product of

the design matrix and its least squares generalized inverse. For the additive model, we define a cumulative hat

matrix as

Hcum(t) =
∑
τk≤t

XτkX−τk . (5.4)

The idea is to look for observed firm processes with particularly high influence by plotting the diagonal elements

hcum,ii(t) of Hcum(t), called the diagonal cumulative hat processes, as functions of the successive default times

in the cohort.

In ordinary linear regression, the average value of the diagonal elements of the hat matrix is r/n, where r is

the rank of the hat matrix, which is the number of independent parameters of the model, and n is the number

observations. Diagonal elements well above r/n are said to have high leverage, and Aalen et al. (2008), amongst

others, recommend investigation of observations with diagonal hat matrix element above 2r/n.

With respect to the nonparametric additive model, this theory may be applied at each default time in the

cohort. Hence, the outlying process criterion is

hcum,ii(t) > 2r
∑
τk≤t

1

Y� τk
, (5.5)

where Y� τk is the number of firms at risk at default time τk.

6 Revising the model

The initial analyses of Section 4 using the Aalen models gave intuitive results about the influence of the included

risk factors that are largely consistent with results from Cox models found by e.g. Duffie et al. (2009) and

Lando and Nielsen (2010). There were, however, also signs of model misspecifications. First, robust standard

errors were considerably larger than regular standard errors for several covariates, even after correcting for

interactions. Second, several significantly time-varying effects where identified, indicating that the time-invariant

proportionality assumption of the Cox model applied elsewhere is a misspecification for these covariates. Finally,

the significance of the global dynamic effect suggests that the covariate specification applied here is missing

essential elements. Hence, there is good reason for a deeper analysis of the misspecifications and the data. All

results presented in this section are based on own implementations in R (R Development Core Team (2011)).

6.1 Martingale residual processes

Graphical assessment of martingale residual processes, suitably grouped with respect to the values of covariates,

may give a good indication of functional form misspecifications and outliers due to extreme covariate values.

We study the martingale residual processes of the nonparametric additive model including all five idiosyncratic

covariates and the two interactions.

Figure 7 shows grouped martingale residual processes (5.2) for each of the five idiosyncratic covariates.

Grouping is done at each default time according to the quantiles of each covariate, with 50 equidistant groups
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in each case: Group 1 corresponds to values between the 0% and 2% quantiles, group 2 corresponds to values

between the 2% and 4% quantiles, and so on. This allowed for the isolation of the very extreme covariate values

while maintaining a reasonable amount of firms in each group at each default time.

If the model fits well, all residual processes would stay close to zero and not show signs of over-dispersion or

trends. The impression from the figure is therefore that deviations from the model mostly occur in the extreme

(both low and high) quantiles of the covariates, with especially the high quantiles causing misspecifications.

This is expected, but the plots allow us to give a detailed account of the misspecifications. More defaults than

expected occur in the highest quantile groups of the quick ratio, the 1-year equity return, and the 1-year distance-

to-default. There are slightly more defaults than expected in the highest quantile group of the short-to-long term

debt ratio, but the deviation is limited to around the year 2001, which had a historically high default rate. On

the other hand, fewer defaults than expected occur in the lowest quantile groups of the 1-year-equity return and

the 1-year distance-to-default, while it is in the highest quantile groups of the (log) pledgeable assets that fewer

defaults than expected occur. In the latter case, the deviation is again limited to around the year 2001. Most of

the non-extreme quantile groups show no truly alarming signs.

The deviations in the high quantile groups of the quick ratio, the 1-year equity return, and the 1-year

distance-to-default are either due to outliers, or due to certain firms having excessively high values of these

covariates, yet still defaulting. Analogously, the deviations in the lowest quantile groups of the 1-year equity

return and the 1-year distance-to-default are due to certain firms having negative values for these covariates,

yet still not defaulting. The deviation in the highest quantile groups of the (log) pledgeable assets is somewhat

unintuitive, but may be due to a considerable amount of defaults amongst firms with relatively high values of

pledgeable assets around the year 2001.

The deviations seen in the figure suggest that simple transformations or inclusion of, say, quadratic terms,

would not correct the misspecifications, since they are limited to the extreme quantile groups. Transformations

yielding reasonable residual processes would have to “squeeze” together the distribution of the covariates, so that

outlying values are neutralized, and such would tend to blur effects. Transformations of the form x 7→ −e−ax

for a > 0 were used in a preliminary version of this paper. Hence, a detailed analysis of influential observations,

particularly ones due to extreme covariate values, is necessary.

[Figure 7 here on separate page.]

[Figure 8 about here.]

6.2 Model-based covariance of residual processes

The grouped martingale residual processes revealed a considerable amount of model misspecification at the

extreme quantiles of the covariates. However, looking back at the results from Section 4.2, robust standard errors

were quite close to martingale-based standard errors for most covariates, suggesting that the misspecifications

might not be of crucial overall importance for the final results.

To get an idea if the model fits as a whole, we standardize the martingale residual processes using the

model-based covariance function (5.3) and compare in Figure 8 their time-varying mean and standard deviation

with what would be the true values if the model fit well: The mean should stay close to 0 while the standard
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deviation should stay close to 1 if the model gives an adequate description of the data. The figure thus shows a

misspecification with respect to the standard deviation of the standardized residual processes, which increases

with time to a maximum value of just over 2. Hence, the standard deviation of the calculated residual processes

are greater than is expected under the model. The plot therefore shows that while the additive model on average

captures the patterns present in the data throughout the study time, the magnitude of variation in the data

which the model fails to explain is considerable. It thus seems that while the model is not entirely wrong in its

description of the defaults in the data, it apparently lacks essential explanatory risk factors.

[Figure 9 about here.]

6.3 Diagonal cumulative hat processes

To check whether the deviations from martingale-behavior seen in Figures 7 and 8 are due to over-influence of

some firms in the cohort, we calculated the cumulative hat matrix (5.4) for the nonparametric additive model

as a function of the successive default times in the cohort.

The left panel of Figure 9 shows the 2,557 diagonal cumulative hat processes corresponding to each firm in

the cohort along with the expected hat matrix and the outlying process criterion (5.5). Several processes exceed

the outlying process criterion, meaning that these firms have the highest influence on the results of the analysis.

In total, 177 processes were identified as exceeding the outlying process criterion at some default time, and these

are emphasized in the right panel of the figure. These firms were the ones with the most extreme (both high

and low) values of the idiosyncratic covariates. Among those firms there were 19 defaults distributed across 16

firms, with 3 firms defaulting twice.

When examining the 177 firms more closely, it was clear that they all have some covariate values that

are outliers which, for example, were many magnitudes higher than the maximum in the rest of the cohort.

This identification of over-influential firms confirms the observations from the study of the grouped martingale

residual processes, where it was noted that deviations from the additive model were primarily limited to the

extreme quantile groups.

6.4 Analysis based on clean data

Based on the results from the model check, we conduct an analysis of the data, omitting the 177 firms from

the cohort who were identified as over-influential. Omitting these firms resulted in a “clean” data set consisting

of 2,380 firms, comprising a total of 351 defaults. The 19 omitted defaults were fairly evenly distributed across

study time, and an analysis of the at-risk and default patterns in the clean data set showed no particular changes

compared to the full data set.

Model check for the cleaned data

Grouped martingale residual processes for a nonparametric additive model fitted to the clean data, including the

two interactions, showed much less dispersion in the extreme quantile groups and generally a better fit across

all covariates. As shown in Table 4, and detailed below, martingale-based and robust standard errors are also

in close correspondence. The standard deviation of the standardized residual processes did not change much
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compared to the analysis on the full data set. There may therefore be room for additional covariates which we

have not considered. Overall, however, the model fit was considerably improved by omitting outliers in the data.

The trade-off is, of course, that the model is then not fitted to the full data set. On the other hand, we avoid

ad-hoc transformations of the functional form that are sensitive to a few extreme outliers.

Model fits for the cleaned data

[Table 4 about here.]

A nonparametric Aalen model was fitted to the clean data including all five idiosyncratic covariates and

the two interactions. Only the effects of the 1-year distance-to-default and the short-to-long term debt ratio had

significantly time-varying effects – the hypothesis of time-invariance was clearly not rejected for the rest of the

effects. Hence, cleaning the data removed the time-variation of the effect of the interaction between the 1-year

distance-to-default and the (log) pledgeable assets compared to the analysis on the full data set.

Based on these findings, a semiparametric additive model was fitted to the clean data with time-

varying effects for the 1-year distance-to-default and the short-to-long term debt ratio, while the rest of the

idiosyncratic covariates had time-constant effects. The time-varying baseline was replaced by a constant term,

the macroeconomic covariates, and the global dynamic covariate. Table 4 gives the estimates for the time-

constant effects. The smoothed coefficients for the time-varying effects of the 1-year distance-to-default and the

short-to-long term debt ratio did not change compared to what is given in Figure 6, and are not repeated here.

Consider first the time-constant idiosyncratic effects in Table 4. Comparing with the results in Table

3 for the semiparametric model fitted to the full data set, the effects of the quick ratio and its interaction

with the 1-year distance-to-default are now of considerably larger magnitude, and their robust standard errors

are in good correspondence with the martingale-based standard errors. Both effects are therefore significant

regardless of which standard errors we use to construct test statistics. Thus, cleaning the data has corrected the

misspecification first observed for these effects. In fact, the quick ratio now has the most pronounced default

decreasing time-constant effect, lowering default intensities by 2.18 percentage points per unit increase.

Finally, with respect to the global effects, the borderline significant effects of the 1-year CPI change found

in Table 3 is now clearly insignificant at conventional levels. On the other hand, the global dynamic effect is

still highly significant, and its magnitude has not changed much compared to the model fitted to the full data

set. In conclusion, the significance of the global dynamic effect was not an artifact of over-influence of certain

firms. It is conceivable, that the dynamic covariate captures an effect related to the business cycle which our

macro variables do not capture and which is not transmitted through the firm specific covariates. Note that this

fits well with the analysis of the standardized martingale residual processes which indicated that the model is

missing essential risk factors, even after cleaning the data. This is a topic of future research.

7 Conclusion

This paper has studied additive models for stochastic default intensities. We model the mean arrival rate of

default events using nonparametric and semiparametric versions of Aalen’s additive regression model. Using

both firm-specific and global covariates, we fit the models and conduct model check on a sample of rated,

non-financial U.S. corporates, covering the period 1982 to 2005.
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In additive models, covariates act in an additive way on a baseline intensity. The nonparametric model has

time-varying effects for all covariates, while the semiparametric model allows for some parametric, time-constant

effects. This makes the additive models more flexible than the often applied Cox model in describing covariate

effects and how they may change over time.

An advantage of the Cox models is that their log-linear structure ensures that estimated intensities are

positive. The way we estimate the Aalen model does not rule out negative values of estimated intensities.

Negative intensities are inevitable for extrapolations using extreme values of covariates, but even for data with

firms that have very small default intensities, estimated intensities for observed covariates may be negative.

The possibility of negative intensities and the non-parametric nature of the intensity function imply that we

should not think of Aalen models as a tool for prediction. Its purpose is to analyze how macro-economic and

firm-specific covariates have affected the default intensity in the past. The strength of the Aalen model is its

ability to model time-varying effects of covariates in a flexible, non-parametric manner.

We present the theory behind estimation and inference for both nonparametric and semiparametric additive

models, including how to test whether a covariate effect is time-varying. We use model checking techniques based

on visual inspection of martingale residual processes that help us identify model misspecifications, as well as a

method for identifying outliers that is very similar to what is known from ordinary linear regression. Our model

checking strongly influences the final model specification.

In our final model we find evidence of time-variation in the effects of distance-to-default and short-to-long

term debt, and we identify the effect of interactions between distance-to-default and two other covariates:

the quick ratio and (log) pledgable assets. In our final specification, which excludes outliers, the effect of

the interaction terms is not time-dependent. Furthermore, the quick ratio covariate is significant. None of

our macroeconomic covariates are significant which may indicate that their effects are captured through their

influence on firm-specific covariates.
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Figure legends

Figure 1. At-risk and empirical default patterns of study cohort. Upper left panel: Number of firms

at-risk at each time point in the study time, with the time-average of 1,142 firms at-risk indicated by the

horizontal line. Upper Right panel: Yearly number of defaults. Lower right panel: Monthly default rate in

% at each time point in the study time.

Figure 2. Nelson-Aalen estimates of cohort default intensity. Left panel: Estimated cumulative default

intensity due to the passing of time itself with approximate 95% martingale-based pointwise confidence

bands. Right panel: Smoothed default intensity due to the passing of time itself with approximate

95% martingale-based pointwise confidence bands. Smoothing done using the Epanechnikov kernel with

bandwidth 1.1 years and boundary correction at the left endpoint of the study time.

Figure 3. Missing interactions. Estimated cumulative regression coefficients for the quick ratio and (log)

pledgeable assets covariates with martingale-based 95% confidence bands (dotted lines) and robust 95%

confidence bands (dashed lines). Left panels: Estimates from the model without interactions. Right panels:

Estimates from extended model including interactions. Note that the value axis’ are not the same for the

two sets of plots.

Figure 4. Cumulative regression coefficients. Estimated cumulative regression coefficients for the baseline,

the 1-year equity return, the 1-year distance-to-default, the short-to-long term debt ratio, and the

interactions of the extended nonparametric additive model including interactions with martingale-based

95% confidence bands (dotted lines) and robust 95% confidence bands (dashed lines). The estimates form

this model for the quick ratio and the (log) pledgeable assets are shown in the right panels of Figure 3.

Figure 5. Testing for time-invariance. Observed test processes (3.11) for the cumulative regression

coefficients from the extended nonparametric additive model including interactions (thick black lines), along

with 50 resampled test processes under the null of time-invariance (thin grey lines).

Figure 6. Smoothed regression coefficients. Smoothed estimates (3.9) of regression coefficients for the

short-to-long term debt ratio, the 1-year-distance-to-default, and the interaction between the latter and the

(log) pledgeable assets from the semiparametric model with martingale-based 95% confidence bands (dotted

lines) and robust 95% confidence bands (dashed lines). Smoothing done using the Epanechnikov kernel with

bandwidth 1.3 years and boundary correction at the left endpoint of the study time.

Figure 7. Covariate misspecifications. Grouped martingale residual processes (5.2) for the nonparametric

Aalen model including all five idiosyncratic covariates and the two interactions. Grouping done at each

default time according to the quantiles of each idiosyncratic covariate, with 50 equidistant groups in each

case: Group 1 corresponds to values between the 0% and 2% quantiles, group 2 corresponds to values

between the 2% and 4% quantiles, and so on. Groups with outlying residual processes are marked by group

number.
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Figure 8. The model fit as a whole. Mean (lower curve) and standard deviation (upper curve) of

standardized martingale residual processes as functions of study time from the nonparametric Aalen model

including all five idiosyncratic covariates and the two interactions. The true values under the model, 0 and

1, respectively, are indicated by the dotted lines.

Figure 9. Outliers and over-influence. Analysis of over-influence through the cumulative hat matrix (5.4)

of the nonparametric additive model including all five idiosyncratic covariates and the two interactions.

The plots show the 2,557 firm-specific hat processes (thin grey lines) as functions of the default times in

the cohort, along with the expected hat matrix (lower thick solid line) and the outlying process criterion

(upper thick solid line). In the right plot, the 177 processes which at some default time exceed the outlying

process criterion are emphasised (thin dotted lines).

Figure 10. Model-based mean default intensity. Estimated mean monthly default intensity from the

semiparametric additive model fitted to the clean data. Estimate obtained by averaging the idiosyncratic

covariate values over all firms at risk at each monthly observation time (and also including the global

covariates) and applying the semiparametric additive form (3.2). Estimates of time-constant regression

coefficient were given in Table 4. Estimated cumulative regression coefficients for the 1-year distance-to-

default and the short-to-long term debt ratio were smoothed using the Epanechnikov kernel with bandwidth

1.4 years and boundary correction at the left endpoint of the study time.
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Table 2. Initial nonparametric Aalen analysis.

Supremum test of significance (3.10), Kolmogorov-Smirnov test of time-invariance (3.12) and Cramer-von Mises test of time-

invariance (3.13) for the cumulative coefficients from the extended nonparametric Aalen model including interactions. Associated

P -values are based on 1,000 resampled test processes.

Effect Supremum P -value Kolmogorov- P -value Cramer-von P -value

statistic Smirnov statistic Mises statistic

Baseline 12.10 0.00 0.42 0.01 1.69 0.00

Quick ratio 7.50 0.00 0.04 0.03 0.01 0.05

Pledgeable Assets (log) 8.54 0.00 0.05 0.01 0.02 0.01

1-year equity return 13.50 0.00 0.03 0.14 0.00 0.27

1-year distance-to-default 12.70 0.00 0.11 0.00 0.11 0.00

Short-to-long term debt 8.00 0.00 0.23 0.00 0.52 0.00

Distance-to-default × Quick 7.74 0.00 0.00 0.39 0.00 0.32

Distance-to-default × Assets 9.95 0.00 0.01 0.00 0.00 0.00
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Table 3. Initial semiparametric Aalen analysis.

Parameter estimates, regular (martingale-based) standard errors, robust standard errors, Wald test statistics, and associated P -

values for the time-constant effects from the semiparametric Aalen model. Test statistics and P -values are based on robust standard

errors. Effects are grouped according to covariate type: Idiosyncratic, macroeconomic, and dynamic.

Effect Estimate Standard Robust SE Wald P -value

error statistic

Quick ratio −0.000590 0.000095 0.000468 −1.26 0.21

Pledgeable Assets (log) −0.009850 0.001250 0.001330 −7.41 1.30 × 10−13

1-year equity return −0.015200 0.000916 0.001000 −15.20 0.00

Distance-to-default × Quick 0.000235 0.000024 0.000114 2.02 0.04

Baseline 0.115000 0.018200 0.018500 6.21 5.09 × 10−10

1-year S&P 500 return −0.021200 0.019200 0.019100 −1.10 0.27

Baa-AAA yield spread −0.009660 0.006360 0.006220 -1.55 0.12

1- year CPI change −0.003790 0.002280 0.002220 -1.71 0.09

1-year earnings change 0.001540 0.003050 0.003080 0.5 0.61

1-year oil price change −0.004990 0.005910 0.005830 −0.86 0.39

Treasury yield spread 0.002290 0.003250 0.003170 0.72 0.47

1- year UR change 0.000343 0.000272 0.000274 1.25 0.21

Monthly default rate 0.069700 0.023800 0.023600 2.95 3.31 × 10−3



38

Table 4. Semiparametric Aalen analysis of cleaned data.

Parameter estimates, regular (martingale-based) standard errors, robust standard errors, Wald test statistics, and associated P -

values for the time-constant effects from a semiparametric Aalen model fitted to the clean data. Test statistics are based on robust

standard errors. Effects are grouped with respect to covariate type: Idiosyncratic, macroeconomic, and dynamic.

Effect Estimate Standard Robust SE Wald P -value

error statistic

Quick ratio −0.021800 0.002150 0.002580 −8.45 0.00

Pledgeable Assets (log) −0.012500 0.001810 0.001840 −6.79 1.10 × 10−11

1-year equity return −0.015600 0.000993 0.001060 −14.72 0.00

Distance-to-default × Quick 0.004860 0.000421 0.000520 9.34 0.00

Distance-to-default × Assets 0.003200 0.000371 0.000379 8.44 0.00

Baseline 0.157000 0.023200 0.023200 6.77 1.31 × 10−11

1-year S&P 500 return −0.020700 0.022000 0.021900 −0.95 0.34

Baa-AAA yield spread −0.009920 0.007620 0.007430 −1.34 0.18

1- year CPI change −0.003120 0.002650 0.002570 −1.21 0.22

1-year earnings change 0.001610 0.003580 0.003610 0.45 0.65

1-year oil price change −0.006590 0.006360 0.006260 -1.05 0.29

Treasury yield spread 0.003450 0.003670 0.003590 0.96 0.34

1- year UR change 0.000353 0.000304 0.000305 1.16 0.24

Monthly default rate 0.077200 0.026700 0.026600 2.90 3.70 × 10−3
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Figure 1. At-risk and empirical default patterns of the study cohort.
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Figure 2. Nelson-Aalen estimates of the default intensity in the cohort.
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Figure 3. Missing interactions.
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Figure 4. Cumulative coefficients from initial nonparametric Aalen analysis.
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Figure 6. Smoothed regression coefficients.
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Figure 7. Covariate misspecifications.
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Figure 9. Outliers and over-influence.




