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ON THE STRUCTURE OF GENERAL
MEAN-VARIANCE HEDGING STRATEGIES

BY ALEŠ ČERNÝ AND JAN KALLSEN

City University London and Technische Universität München

We provide a new characterization of mean-variance hedging strategies
in a general semimartingale market. The key point is the introduction of a
new probability measure P� which turns the dynamic asset allocation prob-
lem into a myopic one. The minimal martingale measure relative to P� co-
incides with the variance-optimal martingale measure relative to the original
probability measure P .
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1. Introduction.

1.1. Overview. In incomplete market models perfect replication of contingent
claims is typically impossible. A classical way out is to minimize the mean squared
hedging error

E
(
(v + ϑ • ST − H)2)

over all reasonable hedging strategies ϑ and possibly all initial endowments v.
Here, the random variable H denotes the discounted payoff of the claim, the semi-
martingale S stands for the discounted price process of the underlying, the dot
refers to stochastic integration, and T is the time horizon. Mathematically speak-
ing, one seeks to compute the orthogonal projection of H on some space of sto-
chastic integrals.

This problem has been extensively studied both as far as general theory as well
as concrete results in specific setups are concerned. In order to render equal justice
(or rather injustice) to most contributions, we refer the reader to [38] and [45]
for excellent overviews of the literature. More recent publications in this context
include [2–4, 7–11, 17, 23–26, 32–36, 46].

The purpose of this piece of research is to provide a deeper understanding of
the structure of the mean-variance hedging problem in a general semimartingale
context. More specifically, we aim at concrete formulas for the objects of interest—
to the extent that this is possible without restricting to more specific situations.

If S is a square-integrable martingale, the answer to the above hedging prob-
lem is provided by the Galtchouk–Kunita–Watanabe decomposition of the claim
(cf. [19]). In particular, the optimal hedge ϑ is of the form

ϑt = d〈V,S〉t
d〈S,S〉t ,(1.1)

where Vt = E(H |Ft ) denotes the martingale generated by the contingent claim H .
If S fails to be a martingale, the hedging problem becomes much more involved.

Relatively explicit results have been obtained by Schweizer [42] under the condi-
tion of deterministic mean-variance tradeoff, which can be intepreted as a certain
homogeneity property of the asset price process S. In this case the optimal hedge is
the sum of two terms. The first satisfies an equation resembling (1.1). The second
can be interpreted in terms of a pure investment problem under quadratic utility.

In the current paper we reduce the general case to the expressions of [42]. This
is done by a specific nonmartingale change of measure. If the formulas of [42] are
evaluated relative to the new opportunity-neutral measure P � rather than P , they
yield the optimal hedge relative to the original probability measure P . We discuss
the links to the literature more thoroughly in Section 4.3.

The paper is structured as follows. Section 2 explains the setup of the mean-
variance problem at hand. In particular, we define a notion of admissibility which
ensures the existence of an optimal hedge. The measure change alluded to above
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and related objects are introduced in Section 3. Subsequently, we turn to the hedg-
ing problem itself. Finally, the appendix contains and summarizes auxiliary state-
ments on semimartingales. In particular, we prove a sufficient condition for square
integrability of exponential semimartingales which is needed in Section 4.

1.2. Semimartingale characteristics and notation. Unexplained notation is
typically used as in [28]. Superscripts refer generally to coordinates of a vector or
vector-valued process rather than powers. The few exceptions should be obvious
from the context. If X is a semimartingale, L(X) denotes the set of X-integrable
predictable processes in the sense of [28], III.6.17.

In the subsequent sections, optimal hedging strategies are expressed in terms of
semimartingale characteristics.

DEFINITION 1.1. Let X be an R
d -valued semimartingale with characteristics

(B,C, ν) relative to some truncation function h : R
d → R

d . By [28], II.2.9 there
exists some predictable process A ∈ A +

loc, some predictable R
d×d -valued process

c whose values are nonnegative, symmetric matrices, and some transition kernel
F from (� × R+,P) into (Rd,Bd) such that

Bt = b • At, Ct = c • At, ν([0, t] × G) = F(G) • At

for t ∈ [0, T ],G ∈ Bd .

We call (b, c,F,A) differential characteristics of X.

One should observe that the differential characteristics are not unique: for exam-
ple, (2b,2c,2F, 1

2A) yields another version. Especially for At = t , one can inter-
pret bt or rather bt + ∫

(x −h(x))Ft (dx) as a drift rate, ct as a diffusion coefficient,
and Ft as a local jump measure. The differential characteristics are typically de-
rived from other “local” representations of the process, for example, in terms of a
stochastic differential equation.

From now on, we choose the same fixed process A for all the (finitely many)
semimartingales in this paper. The results do not depend on its particular choice. In
concrete models, A is often taken to be At = t (e.g., for Lévy processes, diffusions,
Itô processes, etc.) and At = [t] := max{n ∈ N :n ≤ t} (discrete-time processes).
Since almost all semimartingales of interest in this paper are actually special semi-
martingales, we use from now on the (otherwise forbidden) “truncation” function

h(x) := x,

which simplifies a number of expressions considerably.
By 〈X,Y 〉 we denote the P -compensator of [X,Y ] provided that X,Y are semi-

martingales such that [X,Y ] is P -special (cf. [27], page 37). If X and Y are vector-
valued, then [X,Y ] and 〈X,Y 〉 are to be understood as matrix-valued processes
with components [Xi,Y j ] and 〈Xi,Y j 〉, respectively. Moreover, if both Y and a
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predictable process ϑ are R
d -valued, then the notation ϑ • [X,Y ] (and accordingly

ϑ • 〈X,Y 〉) refers to the vector-valued process whose components ϑ • [Xi,Y ] are
the vector-stochastic integral of (ϑj )j=1,...,d relative to ([Xi,Y j ])j=1,...,d . If P �

denotes another probability measure, we write 〈X,Y 〉P �
for the P �-compensator

of [X,Y ].
In the whole paper, we write MX for the local martingale part and AX for the

predictable part of finite variation in the canonical decomposition

X = X0 + MX + AX

of a special semimartingale X. If P � denotes another probability measure, we write
accordingly

X = X0 + MX� + AX�

for the P �-canonical decomposition of X.
If (b, c,F,A) denote differential characteristics of an R

d -valued special semi-
martingale X, we use the notation c̃, ĉ for modified second characteristics in the
following sense (provided that the integrals exist):

c̃ := c +
∫

xx�F(dx),(1.2)

ĉ := c +
∫

xx�F(dx) − bb��A.(1.3)

Observe that x�ĉx ≤ x�c̃x for any x ∈ R
d . The notion of modified second char-

acteristics is motivated by the following:

PROPOSITION 1.2. Let X be an R
d -valued special semimartingale with dif-

ferential characteristics (b, c,F,A) and modified second characteristics as in
(1.2) and (1.3). If the corresponding integrals exist, then

〈X,X〉 = c̃ • A,

〈MX,MX〉 = ĉ • A.

PROOF. The first equation follows from [28], I.4.52, the second from [28],
II.2.17 (adjusted for the truncation function). �

From now on we use the notation (bX, cX,FX,A) to denote differential char-
acteristics of a special semimartingale X. Accordingly, c̃X , ĉX stands for the mod-
ified second characteristics of X. If they refer to some probability measure P �

rather than P , we write instead (bX�, cX�,FX�,A) and c̃X�, ĉX�, respectively. We
denote the joint characteristics of two special semimartingales X,Y [i.e., the char-
acteristics of (X,Y )] as

(bX,Y , cX,Y ,FX,Y ,A) =
((

bX

bY

)
,

(
cX cXY

cYX cY

)
,FX,Y ,A

)
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and

c̃X,Y =
(

c̃X c̃XY

c̃YX c̃Y

)
, ĉX,Y =

(
ĉX ĉXY

ĉYX ĉY

)
.

In the whole paper, we write c−1 for the Moore–Penrose pseudoinverse of a ma-
trix or matrix-valued process c, which is a particular matrix satisfying cc−1c = c

(cf. [1]). From the construction it follows that the mapping c �→ c−1 is measurable.
Moreover, c−1 is nonnegative and symmetric if this holds for c.

Finally, we write X ∼ Y (resp. X ∼� Y ) if two semimartingales differ only
by some P -σ -martingale (or some P �-σ -martingale, resp.). Some facts on
σ -martingales are summarized in Appendix A.2.

2. Admissible strategies and quadratic hedging. We work on a filtered
probability space (�,F , (Ft )t∈[0,T ],P ), where T ∈ R+ denotes a fixed termi-
nal time. The R

d -valued process S = (S1
t , . . . , Sd

t )t∈[0,T ] represents the discounted
prices of d securities. We assume that

sup{E((Si
τ )

2) : τ stopping time , i = 1, . . . , d} < ∞,(2.1)

that is, S is a L2(P )-semimartingale in the sense of [15].
Moreover, we make the following standing:

ASSUMPTION 2.1. There exists some equivalent σ -martingale measure
with square-integrable density, that is, some probability measure Q ∼ P with
E((dQ

dP
)2) < ∞ and such that S is a Q-σ -martingale.

This can be interpreted as a natural no-free-lunch condition in the present
quadratic context. More specifically, Théorème 2 in [47] and standard arguments
show that Assumption 2.1 is equivalent to the absence of L2-free lunches in the
sense that

Ks
2(0) − L2+ ∩ L2+ = {0},

where Ks
2(0) denotes the set of payoffs of simple trading defined below, L2+ con-

tains the nonnegative square-integrable random variables, and the closure is to be
taken in L2(P ).

2.1. Admissible strategies. The choice of the set of admissible trading strate-
gies in continuous time is a delicate point. If it is too large, arbitrage opportunities
occur even in the Black–Scholes model, if it is too small, optimal strategies as, for
example, the replicating portfolio of a European call in the Black–Scholes model
fail to exist. Inspired by Delbaen and Schachermayer [15], we consider the closure
(in a proper L2-sense) of the set of simple strategies.

More specifically, an R
d -valued process ϑ is called simple if it is a linear com-

bination of processes of the form Y1�τ1,τ2�, where τ1 ≤ τ2 denote stopping times
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and Y a bounded Fτ1 -measurable random variable. We call a payoff attainable by
simple trading with initial endowment v ∈ L2(�,F0,P ) if it belongs to the set

Ks
2(v) := {v + ϑ • ST :ϑ simple}.

If the initial endowment v is not fixed beforehand, we consider instead the set

Ks
2(F0) := {v + ϑ • ST :v ∈ L2(�,F0,P ),ϑ simple}.

Since the hedging problems in this paper concern the approximation of arbitrary
payoffs H in L2(P ) by attainable outcomes, it makes perfect sense from an eco-
nomical point of view to call the elements of the L2(P )-closures K2(v) := Ks

2(v),
respectively, K2(F0) := Ks

2(F0) attainable as well. These outcomes can be writ-
ten as a stochastic integral v + ϑ • ST with some strategy ϑ ∈ L(S) that can be
approximated in the following sense by simple strategies (cf. Lemmas 2.4 and 2.6
below).

DEFINITION 2.2. We call ϑ ∈ L(S) admissible strategy if there exists some
sequence (ϑ(n))n∈N of simple strategies such that

ϑ(n) • St → ϑ • St in probability for any t ∈ [0, T ] and

ϑ(n) • ST → ϑ • ST in L2(P ).

Similarly, we call (v,ϑ) ∈ L0(�,F0,P ) × L(S) admissible endowment/strategy
pair if there exist some sequences (v(n))n∈N in L2(�,F0,P ) and (ϑ(n))n∈N of
simple strategies such that

v(n) + ϑ(n) • St → v + ϑ • St in probability for any t ∈ [0, T ] and

v(n) + ϑ(n) • ST → v + ϑ • ST in L2(P ).

We set

� := {ϑ ∈ L(S) :ϑ admissible},
L2(F0) × � := {(v,ϑ) ∈ L0(�,F0,P ) × L(S) : (v,ϑ) admissible}.

One easily verifies that L2(F0) × � = R × � if the initial σ -field F0 is trivial.
Admissible strategies are linked via duality to martingale measures of the follow-
ing kind:

DEFINITION 2.3. We call a signed measure Q � P with Q(�) = 1 ab-
solutely continuous signed σ -martingale measure (SσMM) if SZQ is a P -σ -mart-
ingale for the density process

Z
Q
t := E

(
dQ

dP

∣∣∣∣Ft

)
of Q.
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A probability measure Q ∼ P is a SσMM if and only if S is a Q-σ -martingale
(cf. Lemma A.8).

LEMMA 2.4. For H ∈ L2(P ) and v ∈ L2(�,F0,P ) the following statements
are equivalent:

1. H ∈ K2(v).
2. EQ(H − v) = 0 for any SσMM Q with dQ

dP
∈ L2(P ).

3. H = v + ϑ • ST with some ϑ ∈ �.
4. H = v + ϑ • ST with some ϑ ∈ L(S) such that (ϑ • S)ZQ is a martingale for

any SσMM Q with density process ZQ and dQ
dP

∈ L2(P ).

In particular, we have K2(v) = {v + ϑ • ST :ϑ ∈ �}.
PROOF. It suffices to consider the case v = 0.
1 ⇒ 3, 4: Step 1: We start by showing that statement 4 holds for H ∈ Ks

2(0),
that is, for H = ϑ • ST with some simple ϑ . Integration by parts yields

(ϑ • S)ZQ = (ϑ • S)− • ZQ + ϑ • (Z
Q
− • S + [ZQ,S])

(2.2)
= (ϑ • S− − ϑ�S−) • ZQ + ϑ • (SZQ),

which implies that (ϑ • S)ZQ is a σ -martingale. Since supt∈[0,T ] |ZQ
t | ∈ L2(P ) by

Doob’s inequality and ϑ • S is a L2-semimartingale in the sense of (2.1), we have
that (ϑ • S)ZQ is of class (D) and hence a martingale (cf. Lemma A.7).

Step 2: Let Hn = ϑ(n) • ST be an approximating sequence for H ∈ K2(0).
From [15], Theorem 1.2, it follows that H has a representation H = ϑ • ST for
some ϑ ∈ L(S). In the proof of this theorem it is actually shown that ϑ can be
chosen such that ϑ(n) • St converges in probability to ϑ • St for any t ∈ [0, T ].

Since HnZ
Q
T → HZ

Q
T in L1(P ), we have that

E
((

ϑ(n) • ST

)
Z

Q
T |Ft

) → E
(
(ϑ • ST )Z

Q
T |Ft

)
in L1(P ) and hence in probability. Step 1 yields E((ϑ(n) • ST )Z

Q
T |Ft ) = (ϑ(n) •

St )Z
Q
t . Together, it follows that E((ϑ • ST )Z

Q
T |Ft ) = (ϑ • St )Z

Q
t .

3 ⇒ 1: This is obvious.
4 ⇒ 2: This is obvious as well.
2 ⇒ 1: It suffices to show that K2(0)⊥ ⊂ (V ⊥)⊥ for

V :=
{
dQ

dP
:Q SσMM with

dQ

dP
∈ L2(P )

}
,

where the orthogonal complements refer to L2(P ). Let Y ∈ K2(0)⊥ and set Zt :=
E(Y |Ft ). For s ≤ t and F ∈ Fs we have

E
(
1F (StZt − SsZs)

)
= E

(
1F (St − Ss)Y

) − E
(
1F St (ZT − Zt)

) + E
(
1F Ss(ZT − Zs)

)
= 0
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because Z is a martingale and 1F×(s,t] • ST ∈ K2(0). If E(Y ) �= 0, then Y is a
multiple of a SσMM and hence in (V ⊥)⊥. If E(Y ) = 0, then Y + dQ

dP
∈ V ⊂ (V ⊥)⊥

for the SσMM Q from Assumption 2.1, which implies that Y ∈ (V ⊥)⊥ as well.
�

This leads to the following characterization of admissible strategies:

COROLLARY 2.5. We have equivalence between:

1. ϑ is an admissible strategy.
2. ϑ ∈ L(S), ϑ • ST ∈ L2(P ), and (ϑ • S)ZQ is a martingale for any SσMM Q

with density process ZQ and dQ
dP

∈ L2(P ).

PROOF. 1 ⇒ 2: This follows from the argument in step 2 of the proof of
Lemma 2.4.

2 ⇒ 1: We have ϑ • ST ∈ K2(0) by Lemma 2.4. Let Q be a σ -martingale mea-
sure as in Assumption 2.1. By the proof of Lemma 2.4 (1 ⇒ 3,4) there exists some
ϑ̃ ∈ � such that ϑ̃ • S is a Q-martingale with ϑ̃ • ST = ϑ • ST . Since ϑ • S is a
Q-martingale as well, we have ϑ̃ • S = ϑ • S and hence ϑ ∈ �. �

In the case without fixed initial endowment we have:

LEMMA 2.6. There exists

1. K2(F0) = {v + ϑ • ST : (v,ϑ) ∈ L2(F0) × �}.
2. If (v,ϑ) ∈ L2(F0) × �, then (v + ϑ • S)ZQ is a martingale for any SσMM Q

with density process ZQ and dQ
dP

∈ L2(P ).

PROOF. This follows by rather obvious extension of the proof of Lemma 2.4
(1 ⇒ 3, 4) and the underlying arguments in [15]. �

REMARK 2.7. An inspection of the proof reveals that statement 2 in Corol-
lary 2.5 and Lemma 2.6 holds for any square-integrable martingale ZQ such that
SZQ is a σ -martingale, that is, the property E(Z

Q
T ) = 1 is not needed.

If necessary the whole setup can be relaxed to slightly more general price
processes:

REMARK 2.8. Instead of (2.1), Delbaen and Schachermayer [15] assume only
that S is a local L2(P )-semimartingale, that is, that there is a localizing sequence
of stopping times (Un)n∈N such that:

sup{E((Si
τ )

2) : τ ≤ Un stopping time, i = 1, . . . , d} < ∞
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for any n ∈ N. Equivalently, S1, . . . , Sd are locally square-integrable semimartin-
gales (cf. Definition A.1 and Lemma A.2 in the Appendix). In this case Delbaen
and Schachermayer [15] call a linear combination of strategies Y1�τ1,τ2� simple if
the corresponding stopping times τ1 ≤ τ2 are dominated by some Un. One easily
verifies that all results in this paper extend to this slightly more general setup.

The corresponding admissible sets � and L2(F0) × � from Definition 2.2 do
not depend on the chosen sequence (Un)n∈N: For � this follows from the charac-
terization in Corollary 2.5. Moreover, K2(F0) = L2(�,F0,P ) + K2(0) does not
depend on (Un)n∈N by Lemma 2.4. Using Lemma 2.6 and arguing similarly as in
the proof of Corollary 2.5 (2 ⇒ 1), we have that the same is true for L2(F0) × �.

Many results in the subsequent sections could also be expressed in terms of the
generally different set of strategies considered in [42] and other papers on mean-
variance hedging, namely

� := {ϑ ∈ L(S) :ϑ • S ∈ S 2},
where S 2 denotes the set of square-integrable semimartingales (cf. Defini-
tion A.1). In contrast to {v + ϑ • ST :ϑ ∈ �}, the set {v + ϑ • ST :ϑ ∈ �} is not
necessarily closed. This issue is discussed in detail by Monat and Stricker [37],
Delbaen et al. [13] and Choulli, Krawczyk and Stricker [12]. By considering
L2-closures in the above sense, one avoids the problem that optimal hedging strate-
gies may fail to exist. In the context of continuous processes, our notion of admis-
sible strategies coincides with the one of Gourieroux, Laurent and Pham [20] and
Laurent and Pham [30]. Recently, the question of how to choose a reasonable set
of strategies in a quadratic context has been discussed by Xia and Yan [48]. Their
notion of admissibility differs from ours but their set of terminal payoffs coincides
with K2(0).

The relationship between � and � is clarified by the following result. The first
assertion is inspired by a similar statement in Grandits and Rheinläender [21],
Lemma 2.1 for continuous processes. Loosely speaking, it says that � is a kind of
L2-closure of �.

COROLLARY 2.9. We have

1. � ⊂ � and {ϑ • ST :ϑ ∈ �} = K2(0) = {ϑ • ST :ϑ ∈ �}.
2. L2(�,F0,P ) × � ⊂ L2(F0) × � and

{v + ϑ • ST :v ∈ L2(�,F0,P ),ϑ ∈ �}
= K2(F0) = {v + ϑ • ST : (v,ϑ) ∈ L2(F0) × �}.

In both cases the closure {· · ·} refers to the L2(P )-norm.
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PROOF. 1. For ϑ ∈ � we have E(supt∈[0,T ] |ϑ • St |2) < ∞ by Protter [39],
Theorem IV.5. ϑ ∈ � now follows easily from Corollary 2.5 (2 ⇒ 1) together with
(2.2) and Lemma A.7. The second equality is shown in Lemma 2.4. In order to ver-
ify the first equality, it suffices to prove that any simple strategy is in �. This may
not be true in the first place. But if the sequence (Un)n∈N in Remark 2.8 is chosen
such that (Si)Un ∈ S 2 for n ∈ N, i = 1, . . . , d , then ϑ ∈ � for any simple ϑ . Since
� does not depend on the chosen sequence (Un)n∈N, the claim follows.

2. By statement 1 we have

L2(�,F0,P ) × � ⊂ L2(�,F0,P ) × � ⊂ L2(F0) × �.

The equalities follow similarly as in statement 1, this time using Lemma 2.6. �

2.2. Mean-variance hedging. The goal of this paper is to hedge a fixed con-
tingent claim with discounted payoff H ∈ L2(�,F ,P ). We consider two closely
related optimization problems.

DEFINITION 2.10. 1. We call an admissible endowment/strategy pair (v0, ϕ)

optimal if (v,ϑ) = (v0, ϕ) minimizes the expected squared hedging error

E
(
(v + ϑ • ST − H)2)

(2.3)

over all admissible endowment/strategy pairs (v,ϑ).
2. If the initial endowment v = v0 ∈ L2(�,F0,P ) is given beforehand, a min-

imizer ϑ = ϕ of (2.3) over all ϑ ∈ � is called optimal hedging strategy for given
initial endowment v0.

Due to the chosen notion of admissibility, optimal hedges always exist:

LEMMA 2.11. There exist optimal hedges in the sense of Definition 2.10(1)
and (2). In both cases, the value process v0 + ϕ • S of the optimal hedge is unique
up to a P -null set.

PROOF. The existence follows from Lemmas 2.4, 2.6 and the closedness of
K2(F0) and K2(v0), respectively.

Denote by v0 + ϕ • S and ṽ0 + ϕ̃ • S value processes of two optimal hedges
[which implies that v0 = ṽ0 in the situation of Definition 2.10(2)]. A simple con-
vexity argument yields v0 + ϕ • ST = ṽ0 + ϕ̃ • ST . It remains to be shown that this
implies v0 + ϕ • S = ṽ0 + ϕ̃ • S up to a P -null set. Otherwise, there exists some
n ∈ N such that P(τ < T ) > 0 for the stopping time

τ := inf
{
t ∈ [0, T ] :v0 + ϕ • St ≥ ṽ0 + ϕ̃ • St + 1

n

}
∧ T

(or possibly with exchanged roles of ϕ, ϕ̃). From Corollary 2.5 and Lemma 2.6
if follows that M := v0 − ṽ0 + (ϕ − ϕ̃) • S is a martingale with respect to
the σ -martingale measure Q from Assumption 2.1. Consequently, EQ(Mτ ) =
EQ(MT ) = 0, which is impossible if P(τ < T ) > 0. �



MEAN-VARIANCE HEDGING 1489

3. On the pure investment problem. In many papers the mean-variance
hedging problem is partially reduced to pure portfolio optimization with quadratic
utility. This is done here as well.

3.1. Opportunity process. In the spirit of Markowitz, we call an admissible
strategy λ(τ) efficient on a stochastic interval �τ, T � if it minimizes

E
(
(1 − ϑ • ST )2)

(3.1)

over all ϑ ∈ � vanishing on �0, τ�. Indeed, by standard arguments there exists no
strategy with at most the same variance yielding a higher expected return. Alter-
natively, one may view λ(τ) as optimal hedging strategy on �τ, T � for the constant
option H = 1. A crucial role will be played by the related opportunity process

Lt = E
((

1 − λ(t) • ST

)2|Ft

)
,

whose existence and properties are yet to be derived.

LEMMA 3.1. 1. For any stopping time τ there exists an efficient strategy λ(τ)

on �τ, T �. Its value process 1 − λ(τ) • S is uniquely determined.
2. 1−λ(�) • Sτ = (1−λ(�) • Sσ )(1−λ(σ) • Sτ ) for all stopping times � ≤ σ ≤ τ .
3. If 1 − λ(σ) • Sτ = 0, then 1 − λ(σ) • ST = 0 for all stopping times σ ≤ τ .
4. E((1−λ(τ) • ST )2|Fσ ) ≤ E((1−ϑ • ST )2|Fσ ) for all stopping times σ ≤ τ

and any strategy ϑ ∈ � with ϑ1�0,τ� = 0.
5. E(1 −λ(τ) • ST |Fσ ) = E((1 −λ(τ) • ST )2|Fσ ) ∈ (0,1] almost surely for all

stopping times σ ≤ τ .

PROOF. 1. If G denotes the orthogonal projection of 1 on

{ϑ • ST :ϑ ∈ � and ϑ1�0,τ� = 0} ⊂ K2(0),

then there is a sequence (ϑ(n))n∈N of strategies in � that vanish on �0, τ� and
satisfy ϑ(n) • ST → G in L2(P ). By Lemma 2.4 we have G = ϑ • ST for some
ϑ ∈ �. Moreover, ϑ(n) • ST → ϑ • ST in L1(Q) for the σ -martingale measure Q

from Assumption 2.1. This implies 0 = ϑ(n) • St → ϑ • St in L1(Q) because both
ϑ(n) • S and ϑ • St are Q-martingales by Corollary 2.5. Hence we have ϑ1�0,τ� = 0
without loss of generality. Uniqueness follows as in the proof of Lemma 2.11.

2. We start by showing that

E
((

1 − λ(�) • ST

)2|Fσ

)
(3.2)

≤ E
((

1 − (
λ(�)1�0,σ� + (

1 − λ(�) • Sσ

)
ϑ

)
• ST

)2|Fσ

)
holds almost surely for any ϑ ∈ � with ϑ1�0,σ� = 0. Otherwise, there exists some
ϑ ∈ � with ϑ1�0,σ� = 0 such that the reverse inequality holds on some set F ∈ Fσ

with P(F) > 0. Define the strategy

ψ :=
{

λ(�)1�0,σ� + (
1 − λ(�) • Sσ

)
ϑ, on F ,

λ(�), on FC .
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We have

E
(
(1 − ψ • ST )2)

= E
(
E

((
1 − λ(�) • ST

)2|Fσ

)
1FC

)
(3.3)

+ E
(
E

((
1 − (

λ(�)1�0,σ� + (
1 − λ(�) • Sσ

)
ϑ

)
• ST

)2|Fσ

)
1F

)
< E

((
1 − λ(�) • ST

)2)
.

This contradicts the optimality of λ(�) if ψ ∈ �.
In order to show ψ ∈ �, let Z be the density process of some SσMM

with square-integrable density. Integration by parts yields that (ψ • S)Z is a
σ -martingale [cf. (2.2)]. Since P(|λ(�) • Sσ | ≤ n) ↑ 1 and P(|ϑ • Sσ | ≤ n) ↑ 1
for n ↑ ∞, we may assume w.l.o.g. that |λ(�) • Sσ | and |ϑ • Sσ | are bounded on F ,
say by n ∈ N. On �σ,T � we have∣∣(ψ • S − λ(�) • S

)
Z

∣∣
≤ (∣∣λ(�) • S − λ(�) • Sσ

∣∣ + ∣∣1 − λ(�) • Sσ

∣∣|ϑ • S − ϑ • Sσ |)|Z|1F

≤ (∣∣(λ(�) • S
)
Z

∣∣ + n|Z| + (n + 1)
(|(ϑ • S)Z| + n

))
1F .

The processes in the last line are of class (D) by Corollary 2.5. This in turn implies
that (ψ • S)Z is of class (D) as well and hence a martingale. Another application
of Corollary 2.5 yields ψ ∈ �. Thus (3.3) yields a true contradiction, which means
that (3.2) holds.

Note that (3.2) implies

E

((
1 − λ(�)1�σ,T �

1 − λ(�) • Sσ

• ST

)2∣∣∣Fσ

)
≤ E

(
(1 − ϑ • ST )2|Fσ

)
(3.4)

almost surely on {1 − λ(�) • Sσ �= 0} for any ϑ ∈ � with ϑ1�0,σ� = 0. Moreover,
we have on the set {1 − λ(�) • Sσ = 0} that

E
((

1 − λ(�) • ST

)2|Fσ

) ≤ E
((

1 − (
λ(�)1�0,σ�

)
• ST

)2|Fσ

) = 0

and hence 1 − λ(�) • ST = 0.
Similarly as (3.2), one shows that

E
((

1 − λ(σ) • ST

)2∣∣Fσ

) ≤ E

((
1 −

(
α

λ(�)1�σ,T �

1 − λ(�) • Sσ

+ ϑ

)
• ST

)2∣∣∣Fσ

)
(3.5)

holds almost surely on {1 − λ(�) • Sσ �= 0} for any α ∈ R+ and any ϑ ∈ � with
ϑ1�0,σ� = 0. Using a convexity argument, (3.4) and (3.5) yield that

1 − λ(σ) • ST = 1 − λ(�)1�σ,T �

1 − λ(�) • Sσ

• ST
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on {1 − λ(�) • Sσ �= 0} and hence

λ(σ) • ST

(
1 − λ(�) • Sσ

) = (
λ(�)1�σ,T �

)
• ST .

By taking conditional expectation relative to the σ -martingale measure Q from
Assumption 2.1, it follows that

λ(σ) • Sτ

(
1 − λ(�) • Sσ

) = (
λ(�)1�σ,T �

)
• Sτ

for any τ ≥ σ (cf. Corollary 2.5), which yields the claim.
3. This is shown in the proof of statement 2.
4. This follows from (3.2) for � = σ .
5. If E((1 − λ(τ) • ST )2|Fσ ) = 0 on some set F ∈ Fσ with P(F) > 0, then

λ(τ) • ST − λ(τ) • Sσ = 1,

which contradicts the fact that λ(τ) • S is a Q-martingale for the σ -martingale
measure Q from Assumption 2.1 (cf. Corollary 2.5). Hence, E((1 − λ(τ) • ST )2|
Fσ ) > 0 almost surely. Moreover,

E
((

1 − (1 + ε)λ(τ) • ST

)2|Fσ

) = E
((

1 − λ(τ) • ST

)2|Fσ

)
− 2εE

(
λ(τ) • ST

(
1 − λ(τ) • ST

)|Fσ

)
+ ε2E

((
λ(τ) • ST

)2|Fσ

)
for any ε ∈ R. By statement 4 this implies E(λ(τ) • ST (1 − λ(τ) • ST )|Fσ ) = 0.
Together, the assertion follows. �

LEMMA 3.2. 1. There exists a unique semimartingale L with LT = 1 such
that the process M(τ) − (M(τ))τ is a martingale for any stopping time τ , where

M(τ) := (
1 − λ(τ) • S

)
L.(3.6)

2. The process 1�τ,T �
• (SM(τ)) is a martingale for any stopping time τ . (In the

slightly more general setup of Remark 2.8, the upper bound T is to be replaced by
Un for arbitrary n.)

3. The process ((v + ϑ • Ss)M
(t)
s )s∈[t,T ] is a martingale for any (v,ϑ) ∈

L2(F0) × � and any t ∈ [0, T ].
PROOF. 1. Our reasoning relies heavily on the proofs of Lemma 3.4 and The-

orem 1.3 in [16]. For any stopping time σ we introduce the process

σMt := E(1 − λ(σ) • ST |Ft )

E(1 − λ(σ) • ST |Fσ∧t )
.

Define stopping times (τn)n∈N recursively by τ0 := 0 and

τn+1 := inf
{
t ≥ τn :

∣∣∣∣ 1 − λ(τn) • St

E(1 − λ(τn) • ST |Fτn)

∣∣∣∣ ≤ 1

2

}
∧ T .
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Then

|τnMτn+1 | =
|1 − λ(τn) • Sτn+1 |

E(1 − λ(τn) • ST |Fτn)

∣∣E(
1 − λ(τn+1) • ST |Fτn+1

)∣∣ ≤ 1

2

on {τn+1 < T } by Lemma 3.1. Using Lemma 3.1(2) one easily verifies that
τnMt = τnMτn+1

τn+1Mt

for t ≥ τn+1. Consequently, limm→∞ τnMτm = 0 on D := {τn < T for all n ∈ N}.
Letting

M̃
(τn)
t := E

(
1 − λ(τn) • ST |Ft

)
we have

1 = lim
m→∞

E(M̃
(τn)
τm |Fτn)

M̃
(τn)
τn

= E

(
limm→∞ M̃

(τn)
τm

M̃
(τn)
τn

∣∣∣Fτn

)

= E

(
lim

m→∞
τnMτm

∣∣∣Fτn

)
= E(τnMT 1DC |Fτn)

≤
√

E((τnMT )2|Fτn)
√

E(1DC |Fτn).

Since the last term converges to 0 on D, it follows that

lim
n→∞E((τnMT )2|Fτn) = ∞ on D.(3.7)

Denote by Z the density process of the measure Q from Assumption 2.1. By
Corollary 2.5 we have

E

((
1 − λ(τn) • ST

) ZT

Zτn

∣∣∣Fτn

)
= 1.(3.8)

Observe that

E

((
ZT

Zτn

)2∣∣∣Fτn

)
= E((τnMT )2|Fτn) + 2E

(
τnMT

(
ZT

Zτn

− τnMT

)∣∣∣∣Fτn

)

+ E

((
ZT

Zτn

− τnMT

)2∣∣∣Fτn

)
for any n ≥ 1. Due to (3.8) and Lemma 3.1(5) the second term on the right-hand
side vanishes. It follows that

E((τnMT )2|Fτn) ≤ E

((
ZT

Zτn

)2∣∣∣Fτn

)
.(3.9)
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Together we have P(D) = 0: Indeed, otherwise (3.7) yields

P

(
sup

t∈[0,T ]
E(Z2

T |Ft )

Z2
t

< E((τnMT )2|Fτn)

)
> 0

for large n. Consequently,{
E(Z2

T |Fτn)

Z2
τn

< E((τnMT )2|Fτn)

}
∈ Fτn

has positive probability as well in contradiction to (3.9).
Now define the semimartingale L by

Lt := E(1 − λ(τn) • ST |Ft )

1 − λ(τn) • St

for τn ≤ t < τn+1.

The claimed martingale property follows from Lemma 3.1(2).
Uniqueness of L follows from

E
(
1 − λ(t) • ST |Ft

) − Lt = E
(
M

(t)
T |Ft

) − M
(t)
t = 0.

2. It suffices to verify that E(1�τ,T �
• (SM(τ))σ ) = 0 for any stopping time σ .

By substituting σ ∨ τ for σ , we may assume σ ≥ τ w.l.o.g. Since 1�τ,T �
• M(τ)

is a square-integrable martingale, we have E(Sσ (M
(τ)
T − M

(τ)
σ )) = 0 and similarly

E(Sτ (M
(τ)
T − M

(τ)
τ )) = 0. Consequently,

E
(
SσM(τ)

σ − SτM
(τ)
τ

) = E
(
(Sσ − Sτ )M

(τ)
T

) = E
(
(ψ • ST )M

(τ)
T

)
for ψ := 1�τ,σ�. The optimality of λ(τ) implies that

0 ≤ E
((

1 − (
λ(τ) + εψ

)
• ST

)2) − E
((

1 − λ(τ) • ST

)2)
= 2εE

(
(ψ • ST )M

(τ)
T

) + ε2E
(
(ψ • ST )2)

for any ε ∈ R and hence E((ψ • ST )M
(τ)
T ) = 0.

3. By statement 2 we have that 1�t,T �
• (SM(t)) and hence (SsM

(t)
s )s∈[t,T ]

is a martingale. Consequently, the signed measure with density process (M(t)/

E(Lt ))s∈[t,T ] is a SσMM in the sense of Definition 2.3 if the time set [0, T ] is re-
placed with [t, T ]. By Lemma 2.6 (also adapted to [t, T ] instead of [0, T ] as time
set), the assertion follows. �

DEFINITION 3.3. We call the process L from Lemma 3.2 opportunity process.

The terminology is inspired by the fact that L is linked to optimal investment
opportunities. Indeed, the following corollary states that L represents both first and
second moments of efficient strategies in the sense of (3.1).
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COROLLARY 3.4. For any t ∈ [0, T ] we have

Lt = E
(
1 − λ(t) • ST |Ft

)
= E

((
1 − λ(t) • ST

)2|Ft

)
(3.10)

= inf
{
E

(
(1 − ϑ • ST )2|Ft

)
:ϑ ∈ � with ϑ1�0,t� = 0

}
.

In particular, L is a submartingale.

PROOF. This follows from Lemmas 3.2 and 3.1. �

These equations can be interpreted in terms of dynamic Sharpe ratios (cf. also
[31], (5.16)):

DEFINITION 3.5. For t ∈ [0, T ] we call

�t := sup
{

E(ϑ • ST |Ft )√
Var(ϑ • ST |Ft )

:ϑ ∈ � with ϑ1�0,t� = 0
}

(3.11)

maximal Sharpe ratio on (t, T ], where we set Var(X|Ft ) := E(X2|Ft ) −
(E(X|Ft ))

2 and 0
0 := 0.

PROPOSITION 3.6. The relation between opportunity process L and maximal
Sharpe ratio � is given by

� =
√

1

L
− 1

and

L = 1

1 + �2 ,

respectively.

PROOF. On the set

D := {
ω ∈ � :E(ϑ • ST |Ft )(ω) = 0 for all ϑ ∈ � with ϑ1�0,t� = 0

}
we have �t = 0. Moreover, the infimum in (3.10) is attained in λ(t) = 0, which
implies that Lt = 1 on D.

For ω ∈ DC there exists some ϑ ∈ � with ϑ1�0,t�=0 and E(ϑ • ST |Ft )(ω) > 0.
For sufficiently small ε > 0 we have that E((1 − εϑ • ST )2|Ft )(ω) < 1, which
implies that Lt < 1 on DC (cf. Corollary 3.4). By scaling invariance it suffices to
consider ϑ with E(ϑ • ST |Ft ) = 1 − Lt in the supremum of (3.11). For these ϑ

we have
E(ϑ • ST |Ft )√
Var(ϑ • ST |Ft )

= 1 − Lt√
E((1 − ϑ • ST )2|Ft ) − L2

t

,
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which implies that the supremum is attained in ϑ = λ(t). The assertion follows
now from Corollary 3.4. �

3.2. Adjustment process. The optimal number of shares λ(τ) in (3.1) depends
on τ . However, the optimal number of shares per unit of wealth does not. It is
denoted by ã in the following lemma.

LEMMA 3.7. We use the notation from Lemma 3.1. There exists some ã ∈
L(S) such that

1 − λ(τ) • S = E
((−ã1�τ,T �

)
• S

) = 1 − (
ã1�τ,T �E

((−ã1�τ,T �

)
• S

)
−

)
• S

for any stopping time τ . Consequently, we may assume

λ(τ) = ã1�τ,T �E
((−ã1�τ,T �

)
• S

)
−.(3.12)

PROOF. Let

ã :=
∞∑

n=0

λ(τn)

1 − λ(τn) • S−
1�τn,τn+1�,

where (τn)n∈N denotes the sequence of stopping times from the proof of
Lemma 3.2. On �0, τn+1� we have

1 − λ(τn) • S = 1 − ((
1 − λ(τn) • S−

)
ã1�τn,T �

)
• S

and hence

1 − λ(τn) • S = E
((−ã1�τn,T �

)
• S

)
.(3.13)

From

1 − λ(τn) • St = (
1 − λ(τn) • Sτn+1

)(
1 − λ(τn+1) • St

)
and

E
((−ã1�τn,T �

)
• S

)
t = E

((−ã1�τn,T �
)

• S
)
τn+1

E
((−ã1�τn+1,T �

)
• S

)
t

for t ∈�τn+1, τn+2� it follows recursively that (3.13) holds on [0, T ]. Now let τ be
arbitrary. On {τn ≤ τ < τn+1} we have

1 − λ(τ) • S = 1 − λ(τn) • S

1 − λ(τn) • Sτ

= E ((−ã1�τn,T �) • S)

E ((−ã1�τn,T �) • S)τ
= E

((−ã1�τ,T �

)
• S

)
as claimed. �

DEFINITION 3.8. The (not necessarily unique) process ã from Lemma 3.7 is
called adjustment process. Moreover, we call

â := (1 + �AK)ã

extended adjustment process.
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The name adjustment process is taken from [44]:

COROLLARY 3.9. E(ϑ • ST E (−ã • S)T ) = 0 for any ϑ ∈ �, i.e., ã is an ad-
justment process in the sense of [44], Section 3 with � substituted for �.

PROOF. This follows from Lemma 3.2(3). �

LEMMA 3.10. L,L− are (0,1]-valued.

PROOF. Lemma 3.1(5) implies that Lt = E(1 − λ(t) • ST |Ft ) ∈ (0,1] almost
surely for fixed t , which yields by right-continuity that L is [0,1]-valued outside
some evanescent set.

Let τ := inf{t ∈ [0, T ] : Lt = 0} ∧ T . Again by Lemma 3.1(5), we have

0 = Lτ∧T = E
((

1 − λ(τ∧T ) • ST

)2|Fτ∧T

) ∈ (0,1]
on {Lt = 0 for some t ∈ [0, T ]}, which implies that

P(Lt = 0 for some t ∈ [0, T ]) = 0.(3.14)

Finally let τ := inf{t ∈ [0, T ] :Lt− = 0} ∧ T . Define an increasing sequence of
stopping times (τn)n∈N via τn := inf{t ∈ [0, T ] :Lt ≤ 1

n
} ∧ T . By (3.14) we have

τn ↑↑ τ on {Lτ− = 0}. Lemma 3.1(5) implies

E
((

1 − λ(τn) • ST

)21{τn<T }
) = E

(
Lτn1{τn<T }

)
.

By [39], Theorem V.13 we have that

1 − λ(τn) • ST = E
((−ã1�τn,T �

)
• S

)
T → E

((−ã1�τ,T �∩{Lτ−=0}
)

• S
)
T

in probability for n → ∞. In view of Fatou’s lemma and dominated convergence,
we obtain

0 ≤ E
((

E
((−ã1�τ,T �

)
• S

)
T

)21{Lτ−=0}
) ≤ E

(
Lτ−1{Lτ−=0}

) = 0.

Suppose that {L− = 0} is not evanescent. Then there is some n such that P(D) > 0
for

D := {Lτ− = 0 and 1 − λ(τn) • Sτ− > 0}
⊃ {Lτ− = 0 and �(−ã • S) > −1 on �τn, τ�}.

On D ∈ Fτ− we have

1 − λ(τn) • ST

1 − λ(τn) • Sτ−
= E ((−ã1�τn,T �) • S)T

E ((−ã1�τn,T �) • S)τ−
= E

((−ã1�τ,T �

)
• S

)
T = 0.

Consequently, the process λ(τn) • S cannot be a martingale under the σ -martingale
measure from Assumption 2.1, which yields a contradiction to Corollary 2.5. �

Since L− does not vanish, the stochastic logarithm of L is well defined:
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DEFINITION 3.11. We call

K := L (L) := 1

L−
• L

modified mean-variance tradeoff (MMVT) process.

The modified mean-variance tradeoff process is related to the mean-variance
tradeoff (MVT) process of [42] (cf. Section 3.6).

3.3. Variance-optimal signed martingale measure. With the help of the modi-
fied mean-variance tradeoff process K and the adjustment process ã we can define
a signed measure Q� which plays an important role in the context of quadratic
hedging. This variance-optimal signed martingale measure appears more or less
explicitly in many papers on the subject.

DEFINITION 3.12. We call

N := K − ã • S − [ã • S,K](3.15)

variance-optimal logarithm process and the signed measure Q� defined via

dQ�

dP
:= L0

E(L0)
E (N)T = E (−ã • S)T

E(L0)
= 1 − λ(0) • ST

E(1 − λ(0) • ST )
(3.16)

variance-optimal signed martingale measure (variance-optimal SσMM).

The following result explains the terminology.

PROPOSITION 3.13. 1. Q� is a SσMM (cf. Definition 2.3) with density
process

ZQ� := L0

E(L0)
E (N) = LE (−ã • S)

E(L0)
.

2. Q� minimizes Q �→ E((dQ
dP

)2) over all SσMM’s Q. Hence it is the variance-
optimal signed �-martingale measure in the sense of [44], Section 1, with � re-
placed by � in the definition.

PROOF. 1. Note that L0E (N) = M(0) is a martingale by Lemma 3.2.
Lemma 3.2(3) implies that Q� is a SσMM.

2. For any other SσMM Q with dQ
dP

∈ L2(P ) we have

E

((
dQ

dP

)2)
− E

((
dQ�

dP

)2)
≥ 2E

((
dQ

dP
− dQ�

dP

)
dQ�

dP

)

= 2E

(
dQ

dP

1 − λ(0) • ST

E(L0)

)
− 2E

(
dQ�

dP

1 − λ(0) • ST

E(L0)

)
= 0
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by Corollary 2.5. �

If Q ∼ P is a probability measure with density process Z = E (M), then the
density dQ

dP
, the density process Z, and its stochastic logarithm M uniquely de-

termine one another. This is not true for the variance-optimal SσMM Q� because
E (N) may vanish and hence N cannot be fully recovered from E (N) or dQ�

dP
.

Therefore the following result does not follow immediately from the fact that Q�

is a SσMM whose density process is a multiple of E (N).

LEMMA 3.14. The variance-optimal logarithm process N and also S+[S,N ]
are σ -martingales. Consequently, SE (N) is a σ -martingale as well.

PROOF. Denote by (τn)n∈N the sequence of stopping times from the proof
of Lemma 3.2. Since

⋃
n∈N�τn, τn+1� = � × (0, T ], it suffices to show that

1�τn,τn+1�
• N and 1�τn,τn+1�

• (S + [N,S]) are σ -martingales for any n ∈ N. Since

E (N − Nτn) = E
(
1�τn,T �

• (K − ã • S − [ã • S,K]))
= E

(
1�τn,T �

• K
)
E

((−ã1�τn,T �

)
• S

)
= L(1 − λ(τn) • S)

Lτn

= 1 + 1�τn,T �

Lτn

• M(τn)

is a σ -martingale, we have that

1�τn,τn+1�
• N = 1�τn,τn+1�

E (N − Nτn)−
• E (N − Nτn)

is a σ -martingale as well. Similarly,

1�τn,T �
•

(
E (N − Nτn)S

) = 1�τn,T �
•
L(1 − λ(τn) • S)S

Lτn

= 1�τn,T �

Lτn

•
(
1�τn,T �

•
(
M(τn)S

))
is a σ -martingale by Lemma 3.2(2). Integration by parts yields

1�τn,T �
•

(
E (N − Nτn)S

) − S− • E (N − Nτn)

= (
E (N − Nτn)−1�τn,T �

)
• (S + [N,S]),

which implies that

1�τn,τn+1�
• (S + [N,S])

= 1�τn,τn+1�

E (N − Nτn)−
•

((
E (N − Nτn)−1�τn,T �

)
• (S + [N,S]))
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is a σ -martingale as well. Finally,

SE (N) = S0 + E (N)− • (S− • N + S + [S,N ])
yields the last assertion. �

3.4. Opportunity-neutral measure. In this section we define a measure P � in
terms of its density process

ZP � := L

E(L0)E (AK)
.

For ZP �
to be truly a density process, we need the following

LEMMA 3.15. The process ZP �
is a bounded positive martingale and satisfies

ZP � = L0

E(L0)
E

(
1

1 + �AK
• MK

)
.

PROOF. Since L is a submartingale by Corollary 3.4, we have bL ≥ 0
and hence bK = 1

L− bL ≥ 0 outside some P ⊗ A-null set. This implies that
AK = bK • A and hence also E (AK) are increasing processes. Thus we have
0 < ZP � ≤ 1

E(L0)
. The equality of the two expressions for ZP �

follows from Yor’s

formula. From the second representation we conclude that ZP �
is a local martin-

gale and hence a martingale because it is bounded. �

DEFINITION 3.16. We call the probability measure P � ∼ P with density
process ZP �

opportunity-neutral probability measure.

The opportunity-neutral probability measure is typically not a martingale mea-
sure. In some instances it actually equals P (cf. Section 3.6). For later use we
determine the P �-characteristics of S.

LEMMA 3.17. The components of S are locally P �-square integrable semi-
martingales. Moreover,

bS� = b̄

1 + �AK
,(3.17)

c̃S� = c̄

1 + �AK
,(3.18) (

1 + (bS�)�(ĉS�)−1bS��A
)(

1 − (bS�)�(c̃S�)−1bS��A
) = 1(3.19)

and

ĉS�(ĉS�)−1bS� = bS�,(3.20)

c̃S�(c̃S�)−1bS� = bS�,(3.21)

c̄c̄−1b̄ = b̄.(3.22)
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P ⊗ A-almost everywhere, where

b̄ := bS + cSL 1

L−
+

∫
x

y

L−
FS,L(

d(x, y)
)

(3.23)

= bS + cSK +
∫

xyFS,K(
d(x, y)

)
(3.24)

and

c̄ := cS +
∫

xx�
(

1 + y

L−

)
FS,L(

d(x, y)
)

(3.25)

= cS +
∫

xx�(1 + y)FS,K(
d(x, y)

)
.(3.26)

PROOF. The components of S are locally P �-square-integrable semimartin-
gales because dP �

dP
= ZP �

T is bounded (cf. Lemma A.2). Let

M := 1

ZP �

−
• ZP � = 1

1 + �AK
• MK.

Observe that

Kc − Mc = Kc − 1

1 + �AK
• Kc = �AK

1 + �AK
• Kc.

Since 〈
�AK

1 + �AK
• Kc,

�AK

1 + �AK
• Kc

〉
T

=
(

�AK

1 + �AK

)2
• 〈Kc,Kc〉T

= ∑
t≤T

(
�AK

t

1 + �AK
t

)2

�〈Kc,Kc〉t

= 0

by continuity of Kc, we have �AK

1+�AK
• Kc = 0 and hence Mc = Kc. Moreover,

M is a local martingale with �M = 1
1+�AK �K − �AK

1+�AK . Together, it follows

that bS,M = (bS,0)�, cS,M = cS,K ,

FS,M(G) =
∫

1G

(
x,

y − �AK

1 + �AK

)
FS,K(

d(x, y)
)

for G ∈ Bd+1 with G ∩ ({0}d × R) = ∅. By the Girsanov theorem as in
Lemma A.9, P �-characteristics (bS�, cS�,F S�,A) of S are given by

bS� = bS + cSM +
∫

xyFS,M(
d(x, y)

)
= bS + cSK +

∫
x

y − �AK

1 + �AK
FS,K(

d(x, y)
)

= 1

1 + �AK

(
bS + cSK +

∫
xyFS,K(

d(x, y)
))

,
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cS� = cS and

FS�(G) =
∫

1G(x)(1 + y)FS,M(
d(x, y)

)
= 1

1 + �AK

∫
1G(x)(1 + y)FS,K(

d(x, y)
)

for G ∈ Bd with 0 /∈ G. This yields (3.17), (3.18).
Using the same argument as in the proof of [14], Theorem 3.5, it follows that

bS�
t ∈ ĉS�

t R
d and also bS�

t ∈ c̃S�
t R

d (P ⊗A)-almost everywhere on �×[0, T ]. (Due
to Assumption 2.1 local boundedness is not needed in our setup.) This implies
(3.20), (3.21), and hence also (3.22) outside some P ⊗ A-null set. Consequently,(

1 + (bS�)�(ĉS�)−1bS��A
)(

1 − (bS�)�(c̃S�)−1bS��A
)

= 1 + (bS�)�
(
(ĉS�)−1 − (c̃S�)−1 − (ĉS�)−1bS�(bS�)�(c̃S�)−1�A

)
bS��A

= 1 + (bS�)�(ĉS�)−1(
c̃S� − ĉS� − bS�(bS�)��A

)
(c̃S�)−1bS��A

= 1. �

REMARK 3.18. An inspection of the proofs of Lemmas 3.15 and 3.17 yields
that L need not be the opportunity process for (3.22) to hold. We only used the fact
that L = L0E (K) is a bounded semimartingale with bL ≥ 0 and L,L− > 0.

3.5. Characterization of L and ã. The opportunity process L and the adjust-
ment process ã play a crucial role in quadratic hedging. For example, they yield the
density processes of the variance-optimal SσMM Q� and the opportunity-neutral
measure P �, which in turn lead to formulas for the optimal hedge in Section 4.
The characterizations of L and ã in this section help to determine these processes
in concrete models.

LEMMA 3.19. We have

bL = L−ã�b̄,(3.27)

b̄ = c̄ã,(3.28)

bK = b̄�c̄−1b̄ = (bS�)�(ĉS�)−1bS�(3.29)

outside some P ⊗ A-null set, where b̄, c̄ are defined in (3.23) and (3.25).

PROOF. We denote by τn the stopping times in the proof of Lemma 3.2. Fix
n ∈ N. Integration by parts and Lemma 3.2 yield that(

E
((−ã1�τn,T �

)
• S

)
−1�τn,T �

)
•

(
L − (L−ã) • S − ã • [L,S]) = 1�τn,T �

• M(τn)

is a martingale. Consequently, its compensator(
E

((−ã1�τn,T �

)
• S

)
−(bL − L−ã�bS − ã�c̃SL)1�τn,T �

)
• A
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vanishes. Since E ((−ã1�τn,T �) • S)− �= 0 on �τn, τn+1�, this implies that

bL − ã�L−bS − ã�c̃SL = 0

P ⊗ A-almost everywhere on �τn, τn+1�. This yields (3.27).
Fix n ∈ N. From Lemma 3.2(2) and integration by parts it follows that

0 ∼ 1�τn,T �
•

(
SM(τn))

= 1�τn,T �
•

(
S− • M(τn) + M

(τn)
− • S + [

S,M(τn)])
∼ 1�τn,T �

•
((

E
((−a1�τn,T �

)
• S

)
−L−

)
• S + [

S,E
((−a1�τn,T �

)
• S

)
L

])
= (

E
((−a1�τn,T �

)
• S

)
−1�τn,T �

)
•

(
L− • S + [S,L] − ã •

(
L− • [S,S] − [[L,S], S]))

∼
(
E

((−a1�τn,T �

)
• S

)
−1�τn,T �

×
(
L−bS + c̃SL −

(
L−c̃S +

∫
xx�yFS,L(

d(x, y)
))

ã

))
• A.

Since E ((−ã1�τn,T �) • S)− does not vanish on �τn, τn+1�, we have

L−bS + c̃SL −
(
L−c̃S +

∫
xx�yFS,L(

d(x, y)
))

ã = 0

and hence (3.28) outside some P ⊗ A-null set.
Finally, (3.27), (3.28), (3.22) yield

L−b̄�c̄−1b̄ = L−b̄�c̄−1c̄ã = L−b̄�ã = bL,

which in turn implies the first equality in (3.29).
On the set {�A = 0} ⊃ {�AK = 0}, the second equality follows from (3.17),

(3.18). On {�AK �= 0} the same equations yield

1 = (1 + �AK) − bK�A = (1 + �AK)
(
1 − (bS�)�(c̃S�)−1bS��A

)
.

In view of (3.19) we have

1 + bK�A = 1 + �AK = 1 + (bS�)�(ĉS�)−1bS��A,

which in turn implies bK = (bS�)�(ĉS�)−1bS� on the set {�AK �= 0}. �

COROLLARY 3.20. The adjustment process and the extended adjustment
process satisfy the equations

bS� = c̃S�ã = ĉS�â(3.30)

or, put differently,

AS� = ã • 〈S,S〉P � = â • 〈MS�,MS�〉P �

.
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In the univariate case, this can be written more intuitively in terms of pathwise
Radon–Nikodym derivatives:

ãt = dAS�
t

d〈S,S〉P �

t

, ât = dAS�
t

d〈MS�,MS�〉P �

t

.

PROOF. bS� = c̃S�ã follows from (3.28), (3.17), (3.18). Together with (3.21),
(3.19), (3.29) we have

ĉS�ã = (
c̃S� − bS�(bS�)��A

)
ã

= bS�(
1 − (bS�)�(c̃S�)−1c̃S�ã�A

)
= bS�(

1 − (bS�)�(c̃S�)−1bS��A
)

= bS�

1 + (bS�)�(ĉS�)−1bS��A

= bS�

1 + �AK,

which yields bS� = ĉS�â. �

LEMMA 3.21. We have â ∈ L(MS�).

PROOF. Equations (3.30), (3.17), (3.27) imply that

(â�ĉS�â) • AT = (
(1 + �AK)ã�bS�)

• AT = (ã�b̄) • AT = 1

L−
• AL

T < ∞

and hence â ∈ L2
loc(M

S�) ⊂ L(MS�) relative to P �. �

DEFINITION 3.22. We call

N� := −â • MS�

P �-minimal logarithm process.

The terminology is motivated by the fact that E (N�) is essentially the density
process of the so-called minimal signed martingale measure relative to P � instead
of P (in the sense of [44], (3.14)).

LEMMA 3.23. We have

L0

E(L0)
E (N) = ZP �

E (N�).

Consequently, E (N�) is the density process of Q� relative to P �.
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PROOF. Integration by parts yields

L0E (N)

E(L0)ZP � = E (−ã • S)LE (AK)

L
= E (−ã • S + AK − [ã • S,AK ]).

The term in parentheses on the right-hand side equals

x − ã • MS� − (ã�bS�) • A + bK • A
(3.31)

− (ã�AK) • MS� − (ã�bS��AK) • A

(cf. [28], I.4.49b). Since

bK = 1

L−
bL = ã�b̄ = ã�bS�(1 + �AK)

by (3.27), (3.17), the expression in (3.31) equals −â • MS� = N�. �

Roughly speaking, the next statement is another way of saying that S is a
Q�-σ -martingale.

LEMMA 3.24. N� and S +[S,N�] are P �-σ -martingales, which implies that
SE (N�) is a P �-σ -martingale as well.

PROOF. N� is a P �-σ -martingale by definition. Moreover,

S + [S,N�] = S − â • [S,MS�]
= S − â • [MS�,MS�] − â •

(
(�AS�) • MS�)

∼� (bS� − ĉS�â) • A = 0

by (3.30). The last statement follows as in Lemma 3.14. �

Corollary 3.20 expresses the adjustment process in terms of the P �-characteris-
tics of S. Of course this only helps if the opportunity-neutral measure is known
in the first place. The following important result characterizes L and ã directly in
terms of P -characteristics.

THEOREM 3.25. The opportunity process is the unique semimartingale L

such that:

1. L,L− are (0,1]-valued,
2. LT = 1,
3. The joint characteristics of (S,L) solve the equation

bL = L−b̄�c̄−1b̄(3.32)

outside some P ⊗ A-null set, where b̄, c̄ are defined as in (3.23), (3.25),
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4.

aE
((−a1�τ,T �

)
• S

)
−1�τ,T � ∈ �,(3.33)

E
((−a1�τ,T �

)
• S

)
L is of class (D)(3.34)

hold for a := c̄−1b̄ and any stopping time τ .

In this case a = c̄−1b̄ meets the requirement of an adjustment process ã in
Lemma 3.7.

PROOF. Suppose that L is the opportunity process. Properties 1 and 2 are
shown in Lemmas 3.2 and 3.10. Equation (3.29) and bL = L−bK yield (3.32).
By (3.17), (3.18), (3.21), (3.29) we have

(a�ĉS�a) • AT ≤ (a�c̃S�a) • AT = ((bS�)�(c̃S�)−1bS�) • AT

= 1

1 + �AK
• AK

T < ∞,

which implies a ∈ L2
loc(M

S�) relative to P � by [28], III.4.3. Similarly, we have
a ∈ L(AS�) because |a�bS�| • AT ≤ 1

1+�AK
• AK

T < ∞. Together, it follows that
a ∈ L(S).

More specifically, we have

a • AS� = (a�bS�) • A = bL

(1 + �AK)L−
• A

and likewise for ã by (3.17), (3.27). Similarly, (3.27–3.29) yield

〈(a − ã) • MS�, (a − ã) • MS�〉P � ≤ (
(a − ã)�c̃S�(a − ã)

)
• A = 0,

which implies (a − ã) • MS� = 0. Together, we have a • S = ã • S. Hence one may
choose ã = a in Lemma 3.7.

Finally, (3.33) follows from (3.12) and (3.34) from Lemma 3.2.
Conversely, let L′ be a semimartingale satisfying properties 1–4 with b̄′, c̄′ as

in (3.23) and (3.25). Define K ′ := 1
L′−

• L′ and N ′ := K ′ − a • S − [a • S,K ′]. We

use the notation L′, b̄′, c̄′,K ′,N ′ in this part of the proof because L′ is yet to be
shown to coincide with the true opportunity process. From

[S,K ′] = 1

L′−
• [MS,ML′ ] + (�AS) • MK ′ + (�AK ′

) • S

and standard results (cf. [28], I.4.24, III.3.14) it follows that

[S,K ′] = [Sc,K ′c] +
∫
[0,·]×Rd×R

xyµ(S,K ′)(d(t, x, y)
)
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is an R
d -valued special semimartingale with compensator (cSK ′ + ∫

xyFS,K ′ ×
(d(x, y))) • A. For n ∈ N define the predictable set Dn := {|a| ≤ n}. Since 1Dn and
a1Dn are bounded, we have that

1Dn
• N ′ = 1Dn

• K ′ − (1Dna) • S − (1Dna) • [S,K ′]
is a special semimartingale as well with compensator(

1Dnb
K ′ − 1Dna

�
(
bS + cSK ′ +

∫
xyFS,K ′(

d(x, y)
)))

• A

=
((

bL′

L′−
− b̄′�c̄′−1b̄′

)
1Dn

)
• A = 0.

Consequently, 1Dn
• N ′ is actually a local martingale. Since Dn ↑ � × [0, T ] up to

an evanescent set, N ′ is a σ -martingale (cf. Remark A.5).
Similarly, we have that

1Dn
• (Si + [Si,N ′])
= 1Dn

• Si + 1Dn
• [Si,K ′]

−
n∑

j=1

(1Dna
j ) • [Si, Sj ] −

n∑
j=1

(1Dna
j ) •

[
Si, [Sj ,K ′]]

is a special semimartingale with compensator(
1Dn

(
bS + cSK ′ +

∫
xyFS,K ′(

d(x, y)
)

− cSa −
∫

x(x�a)(1 + y)FS,K ′(
d(x, y)

))i)
• A

= (
1Dn(b̄

′ − c̄′a)i
)

• A

for i = 1, . . . , d . Since b̄′ − c̄′a = b̄′ − c̄′c̄′−1b̄′ = 0 by Remark 3.18, it follows that
the process 1Dn

• (Si +[Si,N ′]) is a local martingale. This implies that S +[S,N ′]
is a σ -martingale as well.

Fix a stopping time τ . Let ϑ := aE (−a1�τ,T �
• S)−1�τ,T � and

Z := (1 − ϑ • S)L′ = E
((−a1�τ,T �

)
• S

)
L′.

[In (3.33) and (3.34) it is implicitly assumed that a ∈ L(S) for the integral to make
sense. By similar arguments as in the first part of the proof one can show that this
integrability condition is in fact implied by properties 1–3 of Theorem 3.25.]

Since N ′ and S + [S,N ′] are σ -martingales,

Z

Zτ
= E

(
1�τ,T �

• K ′)E ((−a1�τ,T �

)
• S

) = E (N ′ − N ′τ )
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and
Z

Zτ
(S − Sτ )

= E (N ′ − N ′τ )− •
(
(S − Sτ )− • (N ′ − N ′τ ) + 1�τ,T �

• (S + [S,N ′]))
are σ -martingales as well.

We show that ϑ is efficient on �τ, T �. Indeed, from (3.34) and Lemma A.7
it follows that Z − Zτ = (Zτ 1�τ,T �) • Z

Zτ is a martingale. It is even a square-
integrable martingale because ZT − Zτ ∈ L2(P ). Let ψ be a simple strategy with
ψ1�0,τ� = 0. The same arguments as in step 1 of the proof of Lemma 2.4 yield that

(ψ • S)Z = ((Zτψ) • (S − Sτ )) Z
Zτ is a martingale. Consequently,

E
((

1 − (ϑ + ψ) • ST

)2)
≥ E

(
(1 − ϑ • ST )2) − 2E

(
(1 − ϑ • ST )L′

T (ψ • ST )
)

= E
(
(1 − ϑ • ST )2)

,

which implies the optimality of ϑ . Since Z−Zτ is a martingale, Lemma 3.2 yields
that L′ is the opportunity process. �

Condition (3.33) looks somewhat unpleasant because of the involved definition
of �. The following example shows that uniqueness in Theorem 3.25 does not gen-
erally hold without this condition. For related considerations see also [44] and [10].

EXAMPLE 3.26. Let T = 1 and S be a standard Wiener process. By Theo-
rem 3.25 the opportunity and adjustment processes are L = 1 and ã = 0. Choose
some doubling-type strategy ψ ∈ L(S) with 1 − ψ • S ≥ 1

2 and 1 − ψ • ST = 1
2 .

Of course, ψ cannot be admissible. We write 1 − ψ • S = E (−ā • S) with
ā := ψ

1−ψ•S− . Define

�L := 1

2E (−ā • S)
= 1

2
E (ā • S + ā2 • [S,S]).

Straightforward calculations yield that �L satisfies conditions 1–3 in Theorem 3.25.
Moreover, ā is the corresponding process in condition 4. Since E ((−ā1�τ,T �) •

S)�L = �Lτ is bounded, (3.34) is satisfied as well.
It is interesting to note that the “variance-optimal logarithm process” �N corre-

sponding to this wrong choice of �L, ā satisfies E (�N) = �L
�L0

E (−ā • S) = 1, that is,
it coincides with the true variance-optimal logarithm process. In particular,

dQ�

dP
= 1 − ψ • ST

E(1 − ψ • ST )
,

which parallels the last expression in (3.16). Nevertheless, ψ is not an efficient
strategy on �0, T � because it is not admissible.
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In concrete models, it may be easier to verify the following sufficient condition
instead of (3.33), (3.34).

LEMMA 3.27. Let L be a special semimartingale satisfying conditions 1–3 in
Theorem 3.25 with b̄, c̄ defined as in (3.23), (3.25). If a := c̄−1b̄ satisfies

sup
{
E

(
E

((−a1�τ,T �

)
• S

)2
σ

)
:σ stopping time

}
< ∞

for any stopping time τ , then condition 4 holds as well, that is, L is the opportunity
process.

PROOF. Condition (3.34) is obvious because L is bounded. Let Q be an
SσMM with density process ZQ and dQ

dP
∈ L2(P ). Integration by parts yields that

(ϑ • S)ZQ is a σ -martingale for

ϑ := aE
((−a1�τ,T �

)
• S

)
−1�τ,T �

[cf. (2.2)]. Since supt∈[0,T ] |ZQ
t | ∈ L2(P ) by Doob’s inequality and 1 − ϑ • S is an

L2-semimartingale, we have that (ϑ • S)ZQ is of class (D) and hence a martingale
(cf. Lemma A.7). Using Corollary 2.5 we obtain (3.33). �

3.6. When does P � = P hold? The opportunity-neutral measure plays a key
role in quadratic hedging. Therefore we want to have a closer look at the question
when P � equals P . In line with [42], we call

K̂ := ((bS)�(ĉS)−1bS) • A

mean-variance tradeoff (MVT) process. Similarly, the MVT process relative to P �

is denoted by K̂�, that is,

K̂� := ((bS�)�(ĉS�)−1bS�) • A.

Observe that K̂� = AK by (3.29).

PROPOSITION 3.28. The following statements are equivalent:

1. P � = P .
2. K (or equivalently L) is a predictable process of finite variation and L0 is

deterministic.
3. K = K̂ and L0 is deterministic.
4. K = K̂� and L0 is deterministic.
5. E (K̂)T is finite and deterministic.
6. E (K̂�)T is deterministic.

In this case the opportunity process equals L = E (K̂)/E (K̂)T .
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PROOF. 1 ⇒ 2: Since 1 = ZP� = L/(E(L0)E (AK)), we have that L and
hence also K = L (L) are predictable processes of finite variation. L0 is deter-
ministic because ZP�

0 = 1.
2 ⇒ 4: This is obvious because K = AK = K̂�.
4 ⇒ 1: This follows from

ZP� = L

E(L0)E (AK)
= L0E (K)

E(L0)E (K̂�)
= 1.

1 ⇒ 6: This follows from ZP �

T = 1 and K̂� = AK .
6 ⇒ 1: This holds because ZP�

T = 1/(E(L0)E (K̂�)T ) is deterministic.
1 ⇒ 3: In view of (1 ⇒ 2), this follows from K = AK = K̂� = K̂ .
3 ⇒ 5: This follows from 1 = LT = L0E (K)T .
5 ⇒ 2: Let L := E (K̂)/E (K̂)T . Since K̂ is an increasing predictable process,

L is a (0,1]-valued increasing predictable process. The predictability of L im-
plies cSL = 0 and y = �Lt (F

S,L
t (d(x, y))A(dt))-almost everywhere. If b̄, c̄ are

defined as in (3.23), (3.25), we have b̄ = (1 +�K̂)bS , c̄ = (1 +�K̂)c̃S and hence

L−b̄�c̄−1b̄ = L−
(
1 + (bS)�(ĉS)−1bS�A

)
(bS)�(c̃S)−1bS.

Observe that (3.19–3.21) can be derived literally for P instead of P �. We obtain

L−b̄�c̄−1b̄ = L−(bS)�(ĉS)−1bS = bL,

which implies that L satisfies conditions 1–3 in Theorem 3.25. If we can show that
L is the true opportunity process, then P � = P follows from Lemma 3.15.

Fix any stopping time τ . For a := c̄−1b̄ = (c̃S)−1bS� and X := (−a1�τ,T �) • S

we have

〈MX,MX〉T = (
a�ĉSa1�τ,T �

)
• AT

≤ (
a�c̃Sa1�τ,T �

)
• AT

= (
(bS)�(c̃S)−1c̃S(c̃S)−1bS1�τ,T �

)
• AT

=
( 1�τ,T �

1 + �K̂
b̄�c̄−1b̄

)
• AT

≤ ((bS)�(ĉS)−1bS) • AT

= K̂T ≤ E (K̂)T .

Similarly, we have

var(AX)T = ∣∣a�bS1�τ,T �

∣∣ • AT =
( 1�τ,T �

1 + �K̂
b̄�c̄−1b̄

)
• AT ≤ E (K̂)T

for the variation process of AX . In view of Lemmas A.3 and 3.27, L is the oppor-
tunity process. �
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To relate the condition P � = P to earlier literature, we define (myopic) portfolio
weights

λ̃ := (c̃S)−1bS,
(3.35)

λ̂ := (1 + �K̂)λ̃

in accordance with [42]. Repeating the arguments leading to (3.30) under P rather
than P � yields ĉS λ̂ = bS [which implies that λ̂ = (ĉS)−1bS if ĉS is invertible]. By
Theorem 1 of [43] we have λ̂ ∈ L(MS).

DEFINITION 3.29. If E (−λ̂ • MS) is of class (D) and hence a martingale, then
it is the density process of some SσMM Q. Only slightly extending [44], (3.14)
we call Q the minimal signed martingale measure (minimal SσMM).

In view of Proposition 3.28, the following corollary can be interpreted as an
extension of Proposition 5.1 in [30]. It also extends sufficient conditions for Q� =
Q given in [44], Examples 1 and 2.

COROLLARY 3.30. Suppose E (−ã • S)T �= 0 almost surely. Then there is
equivalence between:

1. P � = P ,
2. K̂T is finite, the minimal SσMM Q exists, Q� = Q, and ã can be chosen

as λ̃.

The implication 1 ⇒ 2 still holds without the assumption on E (−ã • S).

PROOF. 1 ⇒ 2: This follows from Lemma 3.23, Theorem 3.25, and (3.17),
(3.18).

2 ⇒ 1: As in the proof of Lemma 3.17 it follows that bS = ĉS(ĉS)−1bS and
hence λ̂�bS = (bS)�(ĉS)−1bS . Hence, the density process of Q equals

E (−λ̂ • MS) = E
(
(λ̂�bS) • A − λ̂ • S

)
= E

(
((bS)�(ĉS)−1bS) • A − (

(1 + �K̂)λ̃
)

• S
)

= E
(
K̂ − λ̃ • S − (�K̂) • (λ̃ • S)

)
= E (K̂ − λ̃ • S − [K̂, λ̃ • S])
= E (K̂)E (−λ̃ • S),

where the fourth equality follows from [28], I.4.49b and the last from Yor’s
formula. This density process equals L

E(L0)
E (−ã • S) by Q� = Q and Proposi-

tion 3.13. Since ã = λ̃ and E (−ã • S) never vanishes (cf. [28], I.4.61), we have
that L = E(L0)E (K̂) is predictable with L0 = E(L0). The assertion follows now
from Proposition 3.28 (2 ⇒ 1). �
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Finally, we consider the situation of deterministic mean-variance tradeoff,
which is the focus of [42].

COROLLARY 3.31. If the MVT process K̂ is finite and deterministic, then
L := E (K̂)/E (K̂)T is the opportunity process, K := K̂ is the modified mean-
variance tradeoff process, and P � = P .

PROOF. This follows from Proposition 3.28 (5 ⇒ 1, 3) and from 1 = LT =
L0E (K)T . �

3.7. Determination of the opportunity process. Unless we are in the fortunate
situation of Corollary 3.31 or at least Proposition 3.28, the crucial step in concrete
applications is to determine the opportunity process L. This is relatively easy in
discrete time.

EXAMPLE 3.32. Suppose that we are actually considering a discrete-time
model, that is, At = [t] := max{n ∈ N :n ≤ t} and Ft = F[t] for t ∈ [0, T ] with
T ∈ N. In this case all processes in this paper are (or can be chosen) piece-
wise constant between integer times. For ease of notation suppose that d = 1
(only one tradable asset). By [28], II.3.11 we have bL

t = E(�Lt |Ft−1), b̄t =
E(�StLt/Lt−1|Ft−1), and c̄t = E((�St )

2Lt/Lt−1|Ft−1) for t ∈ {1,2, . . . , T }.
Consequently, (3.32) can be rewritten as

Lt−1 = E(Lt |Ft−1) − (E(�StLt |Ft−1))
2

E((�St)2Lt |Ft−1)
,(3.36)

that is, the opportunity process is determined by a simple backward recursion start-
ing in LT = 1. For the adjustment process we have

ãt = b̄t

c̄t

= E(�StLt |Ft−1)

E((�St )2Lt |Ft−1)
.

The previous example indicates that the characteristic equation (3.32) may
be interpreted as the continuous-time analogue of a backward recursion. True
continuous-time models are typically Markovian in St or at least (St , Yt ) with some
additional process Y as, for example, stochastic volatility. If one makes the natural
assumption Lt = f (t, St , Yt ) with some C2-function f , then (3.32) can be rewrit-
ten as an integro-differential equation for f by means of Itô’s formula. But as it
is not obvious whether the smoothness assumption is justified, it may require sub-
stantial effort to make this statement precise. In [11] and ongoing research, L is
determined explicitly by an ansatz of the above type in specific stochastic volatility
models.
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Alternatively, the process L can be interpreted as the solution to some back-
ward stochastic differential equation (BSDE). To this end, we use the martingale
representation theorem (cf. [28], III.4.24) to write the martingale part of L as

ML = J • Sc + W ∗ (µS − νS) + U

with some J ∈ L2
loc(S

c), W ∈ Gloc(µ
S) and some local martingale U ∈ H 2

loc such
that 〈Uc,Sc〉 = 0 and MP

µS (�U |P̃) = 0 in the sense of [28], III.3c. Using the
notation

Ŵt := E
(
W(t,�St)|Ft−

)
,

the quadruple (J,W,L,U) solves the BSDE

L = J • Sc + W ∗ (µS − νS) + U

+
((

bS + cS J

L−
+

∫
W(x) − Ŵ

L−
xFS(dx)

)�

×
(
cS +

∫
xx�

(
1 + W(x) − Ŵ

L−

)
FS(dx)

)−1

(3.37)

×
(
bS + cS J

L−
+

∫
W(x) − Ŵ

L−
xFS(dx)

)
L−

)
• A,

LT = 1.

However, it is not obvious whether this representation is of any use.
One should note that (3.37) is not related to the BSDEs (3.6) and (4.10) in [44],

which characterize the adjustment process and the optimal hedge. The latter are
hard to use in practice because their terminal values involve the L2-projection of 1,
respectively, H on K2(0), which is generally unknown. If at all, one may rather
observe a certain similarity between (3.36) and the recursive expression (2.1) in
[44] for the adjustment process in discrete time. Mania and Tevzadze [34, 36]
derive BSDE’s for 1/L in the case of a continuous asset price process S. These
equations are quite different from both (3.37) and (3.32).

4. On the quadratic hedging problem. We now come back to the hedging
problem from Definition 2.10. The processes and measures λ(τ), M(τ), L, ã, â, K ,
N , Q�, ZP �

, P �, b̄, c̄ are defined as in the previous section. Recall that P is the
default probability measure for expectations, martingales and so forth.

4.1. Mean value process and pure hedge coefficient. If S is a martingale, the
mean value process Vt = E(H |Ft ) leads to the optimal hedge via (1.1). If S fails
to be a martingale, a similar role is played by the conditional expectation of H

relative to the variance-optimal SσMM Q�. By the generalized Bayes formula we
have

EQ�(H |Ft ) = E
(
HE (N − Nt)T |Ft

)
(4.1)
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if Q� is a true probability measure. In the general case we use the right-hand side
of (4.1) as a substitute for the possibly undefined conditional expectation.

LEMMA 4.1. There is a unique semimartingale V satisfying

Vt = E
(
HE (N − Nt)T |Ft

)
(4.2)

= EP �

(
HE

(
N� − (N�)t

)
T |Ft

)
(4.3)

for t ∈ [0, T ]. Moreover, (VsM
(t)
s )s∈[t,T ] is a martingale for any t ∈ [0, T ].

PROOF. In this proof ϕ denotes an optimal hedging strategy for arbitrary ini-
tial endowment v0 ∈ L2(�,F0,P ) or, alternatively, (v0, ϕ) denotes an optimal
endowment/strategy pair. Moreover, let G := v0 + ϕ • S and define a square-
integrable martingale Z by its terminal value ZT := GT − H . Finally, we set
V := G − Z

L
. The optimality of ϕ implies that

0 ≤ E
(
(GT + εϑ • ST − H)2) − E

(
(GT − H)2)

= 2εE
(
(ϑ • ST )ZT

) + ε2E
(
(ϑ • ST )2)

for any simple strategy ϑ and any ε ∈ R. Therefore

E
(
(ϑ • ST )ZT

) = 0(4.4)

for any simple ϑ , which implies that SZ is a σ -martingale. By Remark 2.7 we have
that (ϑ • S)Z is a martingale for any ϑ ∈ �. In particular, (G−V )M(t) = (1−λ(t) •

S)Z is a martingale for any fixed t ∈ [0, T ]. By Lemma 3.2(3), (GsM
(t)
s ))s∈[t,T ]

and hence also (VsM
(t)
s ))s∈[t,T ] is a martingale. Using Lemma 3.7, we have

E
(
HE (N − Nt)T |Ft

)
Lt = E

(
VT LT

(
1 − λ(t) • ST

)|Ft

)
= VtLt

(
1 − λ(t) • St

)
= VtLt ,

which shows (4.2).
Along the same lines as Lemma 3.23 it follows that

E (N − Nt) = E
(
N� − (N�)t

) ZP �

(ZP �
)t

.(4.5)

Consequently,

EP �

(
HE

(
N� − (N�)t

)
T |Ft

) = E

(
HE

(
N� − (N�)t

)
T

ZP �

T

ZP �

t

∣∣∣Ft

)
= E

(
HE (N − Nt)T |Ft

)
,

which yields (4.3). The uniqueness (up to indistinguishability) of V is obvious.
�
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DEFINITION 4.2. We call V from Lemma 4.1 mean value process of the op-
tion.

The following technical statements mean essentially that V is a Q�-σ -mar-
tingale.

LEMMA 4.3. We have 1. V + [V,N] and hence V E (N) are σ -martingales.
2. V + [V,N�] and hence V E (N�) are P �-σ -martingales.

PROOF. 1. Fix n ∈ N. If (τn)n∈N denotes the sequence of stopping times from
the proof of Lemma 3.2, then

E (N − Nτn)− = L−
L

τn−
(
1 − λ(τn) • S−

) �= 0

on �τn, τn+1�. For t ∈�τn, T � we have

E (N − Nt)E (N − Nτn)t = E (N − Nτn),

which implies that (Lτn1�τn,T �) • (V E (N − Nτn)) is a martingale by (4.2). Inte-
gration by parts and Lemma 3.14 yield that

1�τn,τn+1�
• (V + [V,N])

= 1�τn,τn+1�

E (N − Nτn)−
•

(
V E (N − Nτn)

) − (
1�τn,τn+1�V−

)
• N

is a σ -martingale, which implies the first claim. The second follows as in
Lemma 3.14.

2. By Lemma A.8 we must show that (V + [V,N�])ZP �
is a P -σ -martingale.

Integration by parts yields

(V + [V,N�])ZP � ∼ ZP �

− •
(
V + [V,N�] +

[
V + [V,N�], 1

1 + �AK
• MK

])
.

Hence we must show that the integrator is a σ -martingale. It equals

V +
[
V,N� + 1

1 + �AK
• MK +

[
N�,

1

1 + �AK
• MK

]]
= V + [V,N] +

[
V, ã • S − K + [ã • S,K] − (

ã(1 + �AK)
)

• MS�

+ 1

1 + �AK
• MK − [ã • MS�,MK ]

]
.

Since V + [V,N] is a σ -martingale by statement 1, it suffices to show that the
right-hand side of the long covariation term vanishes. To this end, observe that
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using (3.27), (3.17) we get

ã • S = ã • MS� + (ã�bS�) • A

= ã • MS� + bK

1 + �AK
• A

= ã • MS� + 1

1 + �AK
• AK

and hence

[ã • S,K] = [ã • MS�,MK ] + [ã • MS�,AK ] +
[

1

1 + �AK
• AK,K

]

= [ã • MS�,MK ] + (ã�AK) • MS� + �AK

1 + �AK
• K.

This yields the first claim. The second follows again as in Lemma 3.14. �

In general we do not know whether V is locally square integrable, or even spe-
cial, under P . Crucially, this integrability holds under P �, which is important for
evaluation of the expected squared hedging error in Section 4.

LEMMA 4.4. We have 1. V 2L, (v + ϑ • S)2L, and (v + ϑ • S − V )2L are
submartingales for any admissible endowment/strategy pair (v,ϑ).

2. V is a locally square-integrable semimartingale relative to P �.

PROOF. 1. Let G := v + ϑ • S and fix s ≤ t . From Lemmas 3.2(3), 4.1 and
Hölder’s inequality it follows that

(Gs − Vs)
2L2

s = (
(Gs − Vs)M

(s)
s

)2

= (
E

(
(Gt − Vt)M

(s)
t |Fs

))2

≤ E
(
(Gt − Vt)

2Lt |Fs

)
E

((
1 − λ(s) • St

)
M

(s)
t |Fs

)
= E

(
(Gt − Vt)

2Lt |Fs

)
Ls.

Integrability follows by setting t = T . The claim for V 2L and G2L follows analo-
gously.

2. For any stopping time τ we have

EP �(V 2
τ ) = E(ZP�

τ V 2
τ ) ≤ E(LτV

2
τ )

E(L0)
≤ E(H 2)

E(L0)

by statement 1, which implies the claim (cf. Lemma A.2). �
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LEMMA 4.5. Outside some P ⊗ A-null set we have

bV � = c̃V S�ã,(4.6)

c̃S�(c̃S�)−1c̃SV � = c̃SV �.(4.7)

PROOF. By Lemma 4.3 and (3.27), (3.17) we have

0 ∼� V + [V,N�]
= V − â • [V,MS�]
= V − â • [V,S] + â • [V,AS�]
∼� AV � − â • 〈V,S〉P � + (â��AS�) • V

∼� (bV � − c̃V S�â) • A + (
(1 + �AK)ã�bS��A

)
• AV �

= (
bV � − (1 + �AK)c̃V S�ã + �AKbV �)

• A

= (
(1 + �AK)(bV � − c̃V S�ã)

)
• A,

which yields the first assertion.
Fix (ω, t) ∈ � × [0, T ]. Since

c̃
S,V �
t (ω) =

(
c̃S�
t c̃SV �

t

(c̃SV �
t )� c̃V �

t

)
(ω)

is a symmetric, nonnegative matrix, we have (4.7) by Albert [1], Theorem 9.1.6.
�

The next definition constitutes a first step toward optimal hedging.

DEFINITION 4.6. We call the process

ξ := (c̃S�)−1c̃SV �

pure hedge coefficient.

The following representations of ξ establish the link to (1.1).

PROPOSITION 4.7. The pure hedge coefficient ξ satisfies

ξ • 〈S,S〉P � = 〈S,V 〉P �

(4.8)

and

ξ • 〈MS�,MS�〉P � = 〈MS�,MV �〉P �

.(4.9)

In the univariate case, (4.8) and (4.9) can be written more plainly as

ξt = d〈S,V 〉P �

t

d〈S,S〉P �

t

= d〈MS�,MV �〉P �

t

d〈MS�,MS�〉P �

t

.(4.10)
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PROOF. Lemma 4.5 yields

〈S,V 〉P � = c̃SV � • A = (c̃S�(c̃S�)−1c̃SV �) • A = ξ • 〈S,S〉P �

.

By (3.30) and (4.6) we have

〈MS�,MS�〉P � = (
c̃S� − bS�(bS�)��A

)
• A

(4.11)
= (

(1d − c̃S�ãã��A)c̃S�)
• A

and

〈MS�,MV �〉P � = (
c̃SV �
t − bS�

t bV �
t �A

)
• A

(4.12)
= (

(1d − c̃S�ãã��A)c̃SV �)
• A,

where 1d denotes the identity matrix. Equations (4.11), (4.12), (4.7) yield (4.9).
�

The pure hedge coefficient appears in the following decomposition:

LEMMA 4.8. There exists a P �-local martingale M with M0 = 0 that is
P �-orthogonal to MS� (in the sense that MS�M is a P �-local martingale) and
such that

V = V0 + ξ • S + M(4.13)

holds.

PROOF. By (4.7), (4.6), (3.30) we have

0 = (
ã�c̃SV � − ã�c̃S�(c̃S�)−1c̃SV �)

• A = (
bV � − (bS�)�ξ

)
• A,

which implies that M := V − V0 − ξ • S is a P �-σ -martingale. By bilinearity and
(4.7) the modified second P �-characteristics of M in the sense of (1.2) equals

c̃M� = c̃V � − 2ξ�c̃SV � + ξ�c̃S�ξ

= c̃V � − 2(c̃SV �)�(c̃S�)−1c̃SV � + (c̃SV �)�(c̃S�)−1c̃S�(c̃S�)−1c̃SV �

= c̃V � − (c̃SV �)�(c̃S�)−1c̃SV � ≤ c̃V �.

Since V is a locally square-integrable semimartingale relative to P �, it follows that
M is a locally square-integrable martingale relative to P � (cf. [28], II.2.29). Since

〈MS�,M〉P � = 〈S,V − ξ • S〉P � = (
c̃SV � − c̃S�(c̃S�)−1c̃SV �)

• A = 0

by (4.7), we have that MS�M is a P �-local martingale. �

Equation (4.13) can be interpreted as a process version of the P �-Föllmer–
Schweizer decomposition of H . The integrand in the latter yields the locally risk-
minimizing hedging strategy in the sense of [41] or [18] relative to P �.
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4.2. Main results.

LEMMA 4.9. For any F0-measurable random variable v, the feedback equa-
tion

ϕt = ξt − (v + ϕ • St− − Vt−)ãt(4.14)

has a unique solution ϕ(v) := ϕ ∈ L(S).

PROOF. In the proof of Theorem 4.10 below it is shown that ξ ∈ L(S). The
stochastic differential equation

G = (
ξ − (v − V−)ã

)
• S − G− • (ã • S)(4.15)

has a unique solution G by Jacod [27], (6.8). If we set ϕt := ξt −(v+Gt−−Vt−)ãt ,
then ϕ ∈ L(S) solves (4.14).

If, on the other hand, some ϕ̃ ∈ L(S) solves (4.14) as well, then G̃ := ϕ̃ • S is a
solution to (4.15). This implies G̃ = G and hence ϕ̃ = ϕ. �

We are now ready to state our first main result.

THEOREM 4.10. 1. The process ϕ := ϕ(v0) given by the feedback expression
(4.14) is an optimal hedging strategy for initial endowment v0 ∈ L2(�,F0,P ).

2. (v0, ϕ) := (V0, ϕ(V0)) is an optimal endowment/strategy pair.

PROOF. 1. Denote by bS

bV

bK

 ,

 cS cSV cSK

cV S cV cV K

cKS cKV cK

 ,F S,V,K,A


P -differential characteristics of (S,V,K) relative to the “truncation” function
h(x, z, y) := (x, z1{|z|≤1}, y) on R

d × R × R. [Should V be a P -special semi-
martingale, we could also choose the identity h(x, z, y) = (x, z, y) as usual in this
paper.] Along the same lines as in the proof of Lemma 3.17 it follows that

c̃SV � = 1

1 + �AK

(
cSV +

∫
xz(1 + y)FS,V,K(

d(x, z, y)
))

,(4.16)

c̃V � = 1

1 + �AK

(
cV +

∫
z2(1 + y)FS,V,K(

d(x, z, y)
))

.(4.17)

Let ϕ̄ be an optimal hedging strategy for initial endowment v0, denote by G :=
v0 + ϕ̄ • S its value process, and set ξ̄ := ϕ̄ + (G− − V−)ã. Moreover, let ϑ ∈ �

and G̃ := ϑ • S. In the proof of Lemma 4.1 it is shown that ZG̃ is a martingale for
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Z := (G − V )L. Integration by parts yields ZG̃ = L0E (K)(G − V )G̃ = L− • U

with

U = (G − V )G̃ + (
(G − V )G̃

)
− • K + [(G − V )G̃,K]

= (G − V )− • G̃ + G̃− • (G − V ) + [G − V, G̃] + (
(G − V )G̃

)
− • K

+ (G − V )− • [G̃,K] + G̃− • [G − V,K] + [
G − V, [G̃,K]]

= (G − V )− •
(
G̃− • N + ϑ • (S + [S,N ]))

+ ξ̄ •
(
G̃− • (S + [S,K]) + [

G̃, S + [S,K]])
− G̃− • (V + [V,K]) − [

G̃,V + [V,K]].
The first term on the right-hand side is a σ -martingale by Lemma 3.14. By (3.15),
the remaining two terms equal

G− •
(
ξ̄ • (S + [S,N ]) − (V + [V,N]))
+ (ãG− + ϑ) •

(
ξ̄ •

[
S,S + [S,K]] − [

V,S + [S,K]]).
The first line is a σ -martingale by Lemmas 3.14 and 4.3. By (3.26), (3.18) we have[

S,S + [S,K]] = [Sc, Sc] +
∫

xx�(1 + y)µS,K(
d(x, y)

)
∼

(
cS +

∫
xx�(1 + y)FS,K(

d(x, y)
))

• A

(4.18)
= c̄ • A

= (
(1 + �AK)c̃S�)

• A.

Similarly, (4.16) yields

[
S + [S,K],V ] ∼

(
cSV +

∫
xz(1 + y)FS,V,K(

d(x, z, y)
))

• A

(4.19)
= (

(1 + �AK)c̃SV �)
• A.

For later use, we observe that[
V + [V,K],V ] ∼ (

(1 + �AK)c̃V �)
• A1(4.20)

by (4.17). Altogether, we have that ((ãG− + ϑ)(1 + �AK)(c̃S�ξ̄ − c̃SV �)) • A is a
σ -martingale. This being true for any ϑ , we have

c̃S�ξ̄ − c̃SV � = 0(4.21)

P ⊗ A-almost everywhere.
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For n ∈ N define the predictable set Dn := {|ξ | ∨ |ξ̄ | ≤ n}. Corollary 3.20 and
(4.21), (4.7) yield(

(ξ̄ − ξ)1Dn

)
• AS� = ((

ξ̄ − (c̃S�)−1c̃SV �)�
c̃S�ã1Dn

)
• A = 0

as well as 〈(
(ξ̄ − ξ)1Dn

)
• MS�,

(
(ξ̄ − ξ)1Dn

)
• MS�〉P�

= (
(ξ̄ − ξ)�ĉS�(ξ̄ − ξ)1Dn

)
• A

≤ (
(ξ̄ − ξ)�c̃S�(ξ̄ − ξ)1Dn

)
• A = 0.

Consequently, ((ξ̄ − ξ)1Dn)
• S = 0 for any n, which in turn implies ξ̄ − ξ ∈ L(S)

and (ξ̄ − ξ) • S = 0 by Lemma A.11. In particular, we have ξ = ξ̄ − (ξ̄ − ξ) ∈
L(S). The proof of Lemma 4.9 yields that ϕ • S = ϕ̄ • S as well. In particular, ϕ is
admissible and an optimal hedging strategy for initial endowment v0.

2. This follows essentially as statement 1. We only have to determine the optimal
initial endowment. Denote by (v0, ϕ̄) an optimal endowment/strategy pair and let
Z be as in the first part of the proof. Parallel to (4.4), we conclude that E(vZT ) = 0
for any v ∈ L2(�,F0,P ), which implies 0 = E(ZT |F0) = Z0 = L0(v0 − V0).
Consequently, v0 = V0 as claimed. �

As is well known, the gains process ϕ • S can be expressed more explicitly.

COROLLARY 4.11. The gains process of the optimal hedge in Theorem 4.10
equals

ϕ • S = E (−ã • S)

(
ξ + (V− − v0)ã

E (−ã • S)−
•

(
S + ã

1 − ã��S
• [S,S]

))
unless E (−ã • S) jumps to 0.

PROOF. By [27], (6.8) the stochastic differential equation X = Y + X− • Z

with two semimartingales Y,Z such that Y0 = 0 is uniquely solved by

X = E (Z)

(
1

E (Z)−
• Y − 1

E (Z)
• [Y,Z]

)
unless E (Z) jumps to 0. Since

ϕ • S = (
ξ − (v0 − V−)ã

)
• S + (ϕ • S)− • (−ã • S),

the assertion follows. �

Finally, we state formulas for the hedging error.
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THEOREM 4.12. The expected squared hedging error of the optimal hedge in
Theorem 4.10 equals

E
(
(v0 + ϕ • ST − H)2)

= E
(
(v0 − V0)

2L0 + ((
c̃V � − (c̃SV �)�(c̃S�)−1c̃SV �)

L
)

• AT

)
= E

(
(v0 − V0)

2L0 + L • (〈V,V 〉P � − ξ • 〈V,S〉P �

)T
)

= E
(
(v0 − V0)

2L0 + L • 〈V − ξ • S,V − ξ • S〉P �

T

)
(4.22)

= EP �

(
(v0 − V0)

2

+ ((
c̃V � − (c̃SV �)�(c̃S�)−1c̃SV �)

E (AK)
)

• AT

)
E(L0)

= EP �

(
(v0 − V0)

2 + E (AK) • 〈V − ξ • S,V − ξ • S〉P �

T

)
E(L0).(4.23)

PROOF. In view of Proposition 1.2, the second equality is obvious. The third
and the last follow from

〈S,V − ξ • S〉P � = (
c̃SV � − c̃S�(c̃S�)−1c̃SV �)

• A = 0.

Define G := v0 + ϕ • S and Z := (G − V )L as in the proof of Theorem 4.10.
Since (G − V )2L is a submartingale by Lemma 4.4, there exists a unique increas-
ing predictable process B with B0 = 0 and such that (G − V )2L − B is a martin-
gale. Since

E
(
(v0 + ϕ • ST − H)2) = E

(
(GT − VT )2LT

) = E
(
(G0 − V0)

2L0
) + E(BT ),

the first equality in the theorem holds if

B = (
(c̃V � − ξ�c̃SV �)L

)
• A.(4.24)

Since GZ and Z are martingales, we have

−(G − V )2L ∼ V Z

∼ Z− • V + [V,Z]
(4.25)

= (
(G − V )−L−

)
• V

+ [
V, (G − V )− • L + L− • (G − V ) + [G − V,L]].

In view of

G − V = v0 + ξ • S − (
(G − V )−ã

)
• S − V

(4.25) equals (
(G − V )−L−

)
•

(
V + [

V,K − ã • S − [ã • S,K]])
+ L− •

[
V + [V,K], ξ • S − V

]
.
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By Lemma 4.3 the first term is a σ -martingale and hence

(G − V )2L ∼ −L− •
(
ξ •

[
V + [V,K], S] − [

V + [V,K],V ])
= −L− •

(
ξ •

[
V,S + [S,K]] − [

V + [V,K],V ])
∼ (

L−(1 + �AK)(c̃V � − ξ�c̃SV �)
)

• A

= (
(L − L−�MK)(c̃V � − ξ�c̃SV �)

)
• A

by (4.19) and (4.20). Since �MK • U = [MK,U ] = �U • MK is a σ -martingale
for any predictable process U of finite variation (cf. [28], I.4.49), we obtain

(G − V )2L ∼ (
L(c̃V � − ξ�c̃SV �)

)
• A.

Therefore the difference of both sides of (4.24) is a predictable σ -martingale of
finite variation and hence 0.

It remains to be shown that (4.23) equals (4.22). Integration by parts yields

ZP �(
E(L0)E (AK) • 〈V − ξ • S,V − ξ • S〉P �)
= (

ZP �

E(L0)E (AK)
)

• 〈V − ξ • S,V − ξ • S〉P �

+ (
E(L0)E (AK) • 〈V − ξ • S,V − ξ • S〉P �)

− • ZP �

= L • 〈V − ξ • S,V − ξ • S〉P � + M

with some P -local martingale M . Hence

EP �

(
E (AK) • 〈V − ξ • S,V − ξ • S〉P �

Tn

)
E(L0)

= E
(
ZP �

Tn

(
E(L0)E (AK) • 〈V − ξ • S,V − ξ • S〉P �

Tn

))
= E(L • 〈V − ξ • S,V − ξ • S〉P �

Tn
),

where (Tn)n∈N denotes a localizing sequence for M . Monotone convergence yields
that (4.23) equals (4.22). �

If the results in this paper are to be applied to concrete models, it is not nec-
essary to determine all the processes that have been introduced. Instead, one may
proceed as follows: first one determines the opportunity process L and the adjust-
ment process ã using the characterization in Theorem 3.25. These processes yield
the modified mean-variance tradeoff process K , the opportunity-neutral measure
P � and the variance-optimal logarithm process N . Finally, the mean-value process
V leads to the pure hedge coefficient ξ and hence to the optimal hedge ϕ.

4.3. Connections to the literature. In this section we clarify the link of our
results to the literature. If S is a martingale, we are in the setup of Föllmer and
Sondermann [19]. In our notation, they show that the optimal hedge ϕ satisfies

ϕt = d〈S,V 〉t
d〈S,S〉t ,(4.26)
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where

Vt = E(H |Ft ).(4.27)

Applying our results to the martingale case, one immediately verifies that L = 1,
ã = 0, K = 0, N = 0, Q� = P � = P . Consequently, equation (4.2) for the mean-
value process of the option reduces to (4.27). Moreover, the optimal hedge ϕ co-
incides with the pure hedge ξ , which satisfies ξ • 〈S,S〉 = 〈S,V 〉 in accordance
with (4.26).

Schweizer [42] goes beyond the martingale case. He shows that if the MVT
process K̂ is deterministic, then the optimal hedging strategy for initial endowment
v0 contains a feedback element and is of the form

ϕt = ξt − (v0 + ϕ • St− − Vt−)λ̃t(4.28)

with λ̃ from (3.35). Here, the pure hedge coefficient ξ is the integrand in the
Föllmer–Schweizer decomposition of the claim, that is,

H = V0 + ξ • ST + RT ,

where V0 is a F0-measurable random variable and R denotes a martingale which
is orthogonal to MS (in the sense that MSR is a local martingale). In order to
express the pure hedge coefficient similarly as in (4.26), recall that the minimal
signed martingale measure Q is given by

dQ

dP
:= E (−λ̂ • MS)T .

If we define V as “Q-conditional expectation” of H in the sense of

Vt := E
(
HE

((−λ̂1�t,T �

)
• MS)

T |Ft

)
,(4.29)

then the pure hedge coefficient can be written as

ξt = d〈S,V 〉t
d〈S,S〉t = d〈MS,MV 〉t

d〈MS,MS〉t .(4.30)

The hedging error satisfies the equation

E
(
(v0 + ϕ • ST − H)2)

(4.31)

= E
(
(v0 − V0)

2 + E (K̂) • 〈V − ξ • S,V − ξ • S〉T ) 1

E (K̂)T
.

In these formulas, all predictable covariation processes refer to the original proba-
bility measure P .

It is easy to see that (4.28)–(4.31) are special cases of our general results. To this
end, recall that L = E (K̂)/E (K̂)T , P � = P , and ã = λ̃ in the case of deterministic
MVT (cf. Corollaries 3.31 and 3.30). Hence

N� = −(
(1 + �AK)ã

)
• MS� = −(

(1 + �K̂)λ̃
)

• MS = −λ̂ • MS.
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Consequently, (4.28), (4.29), (4.30), (4.31) correspond to (4.14), (4.3), (4.10),
(4.23), respectively.

If the MVT process fails to be deterministic, the above formulas do not lead to
the optimal hedge any more. Following Hipp [22], [44] observes that a key role
in the general case is played by the variance optimal signed martingale measure
Q� and the adjustment process ã. Schweizer characterizes both the adjustment
process and the optimal hedging strategy in terms of backward stochastic differen-
tial equations. The use of these BSDEs in practice is complicated by their involved
boundary conditions, which themselves depend on the unknown solution.

Rheinländer and Schweizer [40] show that the optimal hedging strategy ϕ satis-
fies similar equations as in the case of deterministic MVT if S is continuous. More
specifically, it is of feedback form

ϕt = ξt − (v0 + ϕ • St− − Vt−)ãt ,

where Vt := EQ�(H |Ft ) is the martingale generated by H relative to the variance-
optimal SσMM Q� and the pure hedge coefficient ξ is the integrand in the
Galtchouk–Kunita–Watanabe decomposition of H relative to Q� rather than P ,
that is,

ξt = d〈S,V 〉Q�

t

d〈S,S〉Q�

t

.

This equation corresponds to our expression (4.10) because the predictable covari-
ation does not depend on the probability measure for continuous processes.

An alternative approach in the continuous case is pursued by Gourieroux,
Laurent and Pham [20] who use a new numeraire E (−ã • S) combined with a
change of measure to transform the original semimartingale problem to a martin-
gale problem à la Föllmer and Sondermann [19]. The task of computing ã has
become a separate issue in the literature. It is tackled in a number of diffusion
or jump-diffusion settings, for example, by Laurent and Pham [30], Biagini, Gua-
soni and Pratelli [6], Biagini and Guasoni [5], Hobson [24]. Our characterization
of the adjustment process in Theorem 3.25 appears to be more suitable for direct
computations than the methods available to date (cf. [11]).

The literature on discontinuous processes is more limited. Two partial results are
reported by Arai [3] and Lim [33]. Arai extends the numeraire method of Gourier-
oux, Laurent and Pham [20] to discontinuous semimartingales assuming that Q�

is equivalent to P and shows that V in (4.3) is a Q�-martingale. However, Arai’s
results are hard to use for explicit computations since he does not provide a method
for obtaining ã.

Lim [33] uses BSDEs to compute the optimal hedge in a jump diffusion setting
where asset price characteristics are adapted to a Brownian filtration. In addition
he requires a certain martingale invariance property. He characterizes the optimal
hedge explicitly at the cost of a somewhat restrictive model setup.
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Finally, we want to explain another close link of our results to the formulas
(4.28–4.31) of [42]. We already observed in Lemma 3.23 that the variance-optimal
SσMM Q� is the minimal SσMM relative to P �. Moreover, ã and â coincide with
the processes λ̃ and λ̂ in [42] or Section 3.6 relative to P � instead of P . Con-
sequently, equations (4.14), (4.3), (4.10) are P �-versions of the formulas (4.28),
(4.29), (4.30). The change of measure P → P � neutralizes the effect of stochas-
tic mean-variance tradeoff which makes the results in [42] break down. With the
hedging error one has to be slightly more careful. Since K̂� = AK , we can view
(4.23) essentially as a P �-version of (4.31). We only have to replace the determin-
istic second factor 1/E (K̂)T by

E

(
1

E (K̂�)T

)
= E

(
1

E (AK)T

)
= EP �

(
E(L0)

LT

)
= E(L0).

APPENDIX

A.1. Locally square-integrable semimartingales.

DEFINITION A.1. For any special semimartingale X we define

‖X‖S 2 := ‖X0‖2 + ‖
√

[MX,MX]T ‖2 + ‖var(AX)T ‖2,

where var(AX) denotes the variation process of AX and ‖ · ‖2 the L2-norm. X is
said to belong to the set S 2 of square-integrable semimartingales if ‖X‖S 2 < ∞.
The elements of the corresponding localized class S 2

loc are called locally square-
integrable semimartingales.

LEMMA A.2. For any semimartingale X, we have equivalence between:

1. X ∈ S 2
loc.

2. X0 ∈ L2(P ) and X is a locally square-integrable semimartingale in the
sense of [28], II.2.27, that is, it is a special semimartingale whose local martingale
part is locally square-integrable.

3. X is locally in L2 in the sense of [15], that is, it belongs locally to the class
of processes Y with

sup{E(Y 2
τ ) : τ finite stopping time} < ∞.

4. X belongs locally to the class of processes Y satisfying E(Y 2
τ ) < ∞ for any

finite stopping time τ .

PROOF. We refer to the time set R+ rather than [0, T ] in this proof.

1 ⇒ 2: This follows from [28], II.2.28 and from the inequality

E

(
sup
t∈R+

(Yt − Y0)
2
)

≤ 8‖Y‖2
S 2,

which holds for any semimartingale Y (cf. [39], Theorem IV.5).
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2 ⇒ 3: This follows immediately from [28], II.2.28.
3 ⇒ 4: This is trivial.
4 ⇒ 1: Define a sequence of stopping times τn := inf{t ∈ R+ : |Xt | > n} ∧ n.

Since supt∈R+ |Xτn
t | ≤ n + |Xτn | is integrable, X is a special semimartingale

(cf. [28], I.4.23). Choose a localizing sequence (σn)n∈N for the locally bounded
process var(AX). Then

sup
t∈R+

|(MX)
σn∧τn
t |2 ≤ 3 sup

t∈R+
|Xτn

t |2 + 3 sup
t∈R+

|(AX)
σn
t |2 + 3|X0|2

≤ 6n2 + 6|Xτn |2 + 3 sup
t∈R+

(var(AX)
σn
t )2 + 3|X0|2

is integrable for any n ∈ N, which yields X ∈ S 2
loc (cf. [28], I.4.50c). �

The following result on square integrability of exponential semimartingales is
needed in the proof of Proposition 3.28. It extends a parallel statement for local
martingales in [27], (8.27).

LEMMA A.3. Let X be a locally square-integrable semimartingale such that
〈MX,MX〉 and the variation process var(AX) are bounded. Then

E

(
sup

t
E (X)2

t

)
< ∞.

PROOF. For ease of notation we prove the assertion for the time set R+ rather
than [0, T ]. Denote by m ∈ R+ an upper bound of V := 〈MX,MX〉 + var(AX).
We write Z := E (X) and Y ∗

t := sups∈[0,t] |Ys | for any process Y . For n ∈ N define
stopping times

σn := inf{t ∈ R+ : |Zt | ≥ n}.
Fix n and set Z̃ := Zσn .

Step 1: We show that

E((Z̃∗
τ−)2) ≤ 3 + (12 + 3m)E

(
(Z̃2− ∧ n2) • Vτ−

)
for any predictable stopping time τ .

In view of Z̃ = 1 + (Z̃−1�0,σn�)
• MX + (Z̃−1�0,σn�)

• AX , we have

E((Z̃∗
τ−)2) ≤ 3 + 3E

((((
Z̃−1�0,σn�

)
• MX)∗

τ−
)2) + 3E

((((
Z̃−1�0,σn�

)
• AX)∗

τ−
)2)

.

Since τ is predictable, Doob’s inequality yields

E
((((

Z̃−1�0,σn�

)
• MX)∗

τ−
)2) ≤ 4E

((
Z̃2−1�0,σn�

)
• 〈MX,MX〉τ−

)
≤ 4E

(
(Z̃2− ∧ n2) • Vτ−

)
.
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For the part of finite variation we have(((
Z̃−1�0,σn�

)
• AX)∗

τ−
)2 ≤ (

(|Z̃−| ∧ n) • var(AX)τ−
)2

≤ (Z̃2− ∧ n2) • var(AX)τ−var(AX)∞
and hence

E
((((

Z̃−1�0,σn�

)
• AX)∗

τ−
)2) ≤ mE

(
(Z̃2− ∧ n2) • Vτ−

)
.

Step 2: For ϑ ∈ R+ define the predictable stopping time Tϑ := inf{t ∈ R+ :Vt ≥
ϑ} (cf. [28], I.2.13). Step 1 yields that

f (ϑ) := E
(
(Z̃∗

Tϑ− ∧ n)2) ≤ 3 + (12 + 3m)E
(
(Z̃2− ∧ n2) • VTϑ−

)
.

Since ϑ �→ Tϑ is the pathwise generalized inverse of V , we have

(Z̃2− ∧ n2) • VTϑ− =
∫ VTϑ−

0
(Z̃2

T�− ∧ n2) d� ≤
∫ ϑ

0
(Z̃∗

T�− ∧ n)2 d�

and hence

f (ϑ) ≤ 3 + (12 + 3m)

∫ ϑ

0
f (�)d�

for any ϑ ∈ R+. By Gronwall’s inequality this implies f (ϑ) ≤ 3e(12+3m)ϑ . Since
Tm+1 = ∞, we have

E

(
n2 ∧ sup

t≤σn

Z2
t

)
= E

(
(Z̃∗∞− ∧ n)2) ≤ 3e(12+3m)(m+1).

The assertion follows now from monotone convergence. �

A.2. σ -martingales. The following facts on σ -martingales and integrability
can be found, for example, in [29]. We summarize them here for the convenience
of the reader.

DEFINITION A.4. A semimartingale X is called σ -martingale if there exists
an increasing sequence (Dn)n∈N of predictable sets such that Dn ↑ � × R+ up to
an evanescent set and 1Dn

• X is a uniformly integrable martingale for any n ∈ N.

REMARK A.5. Uniformly integrable martingale can be replaced by local
martingale in the previous definition.

LEMMA A.6. Let X be a semimartingale with differential characteristics
(b, c,F,A) relative to some truncation function h. Then X is a σ -martingale if
and only if

∫
{|x|>1} |x|F(dx) < ∞ and

b +
∫ (

x − h(x)
)
F(dx) = 0

hold outside some P ⊗ A-null set.
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LEMMA A.7. X is a uniformly integrable martingale if and only if it is a
σ -martingale of class (D).

LEMMA A.8. Let P � ∼ P be a probability measure with density process Z.
A real-valued semimartingale X is a P �-σ -martingale if and only if XZ is
a P -σ -martingale.

LEMMA A.9. Let X be a R
d -valued semimartingale and let P � ∼ P be a

probability measure with density process Z = Z0E (N). Denote by

(bX,N, cX,N,FX,N,A) =
((

bX

bN

)
,

(
cX cXN

cNX cN

)
,FX,N,A

)
differential characteristics of the R

d+1-valued seminartingale (X,N) relative to
some truncation function h. Then a version of the P �-differential characteristics
of (X,N) is given by (bX,N�, cX,N�,FX,N�

,A), where

bX,N� = bX,N + cXN +
∫

h(x, y)yFX,N (
d(x, y)

)
,

cX,N� = cX,N ,

dFX,N�

dFX,N
(x, y) = 1 + y.

LEMMA A.10. If X is a σ -martingale and ϑ ∈ L(X), then ϑ • X is
a σ -martingale as well.

LEMMA A.11. Let X be a R
d -valued semimartingale and ϑ an R

d -valued
predictable process. Then ϑ ∈ L(X) if and only if there exists a semimartingale
Z with Z0 = 0 and an increasing sequence (Dn)n∈N of predictable sets such that
Dn ↑ �×R+ up to an evanescent set, ϑ1Dn is bounded, and 1Dn

• Z = (ϑ1Dn)
• X

for any n ∈ N. In this case Z = ϑ • X.
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