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ABSTRACT.

The time-averaged Navier-Stokes'  partial differential
equations have been used in the mathematical modelling of fluid flow
for steady,incompressible non-cavitating,high Reynolds number
turdbulence through an orifice plate. The model developed for orifice
plates was based on >a particular closed form turbulent model:the k-€
fwo equation mpdel developed at Imperial College,London and embodied in
the TEACH-T finite difference computer code. A basic model for
axisymmetric flow through an orifice meter was developed by appropriate
modification of the TEACH-T program to incorporate orifice plate
geometry,upstream/downstream distances,Reynolds number,inlet velocity
profile and the calculation of output quantities of interest such as
discharge and pressure 1loss coefficienfs.The model was tested for
convergence and general adequacy on an orifice of diameter ratio ﬁ -
.7 in a 4 inch pipe line and at a Reynolds number of 10".Quantitative
tests were then conducted on thin orifice plates in the range .3 & B8
+7.Results were compared with those from BSI 1042 for discharge
coefficients (flange,D-D/2 and corner tappings) and published results

for pressure loss coefficients.

The results show that the discharge coefficients predictions
are within +3 % of experiment with very close agreement in the
mid-range (P: .45). The pressure loss coefficients predictions are

within 15% of experiment.

Sensitivity tests were then conducted to see ahow these

coefficients varied with such quantities as inlet velocity



prcfile,turbulence levels and corifice plate thickness.These results
indicated that +the c¢rifice is relatively insensitive to veloccity
profiles (1/12 power law and uniform) and turbulence levels.Alsc below

a certain c¢rifice plate thickness ratic the discharge ccefficient is

almost constant.

It is concluded that such mcdelling can be a mest valuable
aid in wunderstanding the behavicur of the c¢rifice meter and similar
devices.In particular this would aid in the design of novel flow meters

based on the differential pressure principle.

Extensive mathematical and cocmputaicnal details includiing the
deriv%ﬁon of the k-& mcdel equaticns from first principles are

relegated to appendices. A source listing of the develcped mcdel is

alsc prcvided in appendix G.
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PREFACE

A large number of flowmeters are available on the market
employirz a variety of principles.In the past theoretical techniques
have been of limited use in the design of the gecometry of such meters
because of the complexity of the (usually turbulernt) flow.The modern
processing power of the digital computer is likely to change this state
of affairs.This work is concerned with exploring the feasibility of
developing such computer models for an important flowmeter,namely the

orifice meter.

The thin circular orifice plate is the most widely used flow
rate measuring element with applications in industry and elsewhere.In
operatior it is characterised by two parameters:the discharge
coefficient and the pressure loss irtroduced by its insertion.In the
past a vast amount of experimentation has been undertaken to determine

these parameters (particularly the discharge coefficient).

The objectives of this theoretical study were: (i) To
develop a valid computer model to incorporate the orifice geometry, the
inlet flow conditions and the output quantities of interest such the
various orifice discharge coefficients and the pressure loss
coefficient. (ii) To apply this model to a range of orifice geometries
and compare the results with those published in BSI1042 and elsewhere.
(iii) To investigate the sensitivity of the discharge and pressure loss
coefficients to some changes in orifice geometry and inlet flow

conditions.
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CHAPTER 1.

INTRODUCTION.

Orifice meters are extensively wused in engineering
applications in industry. The orifice plate is one of the oldest known
devices for measuring fluid flow (NEL,1960).Records show it was used by

the Romans for regulating water flow to householders.

About sixty to seventy years ago,the importance of the
orifice plate was realised.This was largely based on the extensive and
pioneering work of Judd (vho presented the original discharge
coefficients for concentric, eccentric and segmental type orifices in
1916,NEL(1960)) .The simplicity of manufacture of the orifice plate
gradually led to its very widespread use. So much so it is now the
most common flow rate measuring device being used for measuring large
volumes of gases and liquids for sale and for the control of flow rates

in continuous processes.

As the use of orifice meters became widespread a huge amount
of experimental work was carried out to investigate the properties of
orifice meters.This eventually led to the establishment of various
national (BSI,ANSI,DIN) and international (ISO) standards for flow

metering using thin orifice plates.

The working equations for orifice metering are derived from
Bernoulli's equation which describes inviscid high Reynolds number

turbulent flow (see Appendix B for their derivation).Por real fluids



Bernoulli's equation is only approximate and this is reflected in the
fact that the discharge ccefficient in the working equation needs to be
determined experimentally. The more fundamental equaticns are the
Navier-Stokes' (Appendix A) from which Bernculli's equatiocn can be

fermulated (see Appendix B).

Up to recent times the possibility c¢f sclving the general
Navier-Stokes' equations for turbulent flows was considered
impracticable because of the vast range c¢f 1length and time scales
encountered in such flows.Recently however,advances in the prccessing
power ¢f digital computers ccupled with the development[?pproxmate
‘closed' models of turbulence based on the time average Navier-Stokes'
equaticns enable cone tc soclve the Navier-Stokes equations for a class
cf flows of engineering interest.Amcng these are those where
recirculation occurs such as that encountered downstream o¢f an
crifice.A highly successful turbulent mocdel that has been tested
extensively is the so-called 'k-€ ' 'twe' -equation turbulent mcdel
develcped at Imperial College,London (Gosman,1979).Such a model has
been seccessfully tested against recirculating flcws similar to those
encountered downstream of an orifice plate.Infact the mcdel has been
applied successfully tc a sudden expansion flow (Gosman,1979) including
the prediction of reattachment lengths.This flow forms the example flow
in the program TEACH-T (for Teaching Elliptic Axisymmetrical
gparacteristics gpuristically for Turbulent flocw) available from

Imperial College.

The flow in an crifice meter 1is more complex because in

additicn to a downstream expansion region there is an upstream regicn



where the flcw is forced to contract by the presence of the orifice
plate.The importance o¢f the crifice in flowmetering led tc¢ author to
investigate the possibility of mcdifying the TEACH-T program to model
the thin orifice plate.This then formed the basis for the present
study.The main objectives were to develop a mcdel for orifice
metering,to test this model with available data for discharge and
pressure loss coefficients and to perform scme sensitivity tests using

the model for both geometric and flow parameters.,

The layout ¢f the thesis is such that in chapter 2 the
mathematical formulations and numerical procedures for the cocmputer
solution adopted in TEACH-T program are cutlined.Details are p;ovided
in Appendix E. Al@hough this 1is not original work it has been
presented here for the sake of completeness.The basic derivation of the
k- £ models are also mentioned. The derivation is from first

i

principles including that of the Navier-Stckes equations.

In chapter 3 the development of corifice plate mcdel is
described.This includes the mcdificaticns necessary t¢ the TEACH-T
computer program to incorporate gecmetry,boundary
conditions,upstream/downstream modelling regicns,choice of number of

grids and their distributions etc based on a B = 0.7 c¢rifice plate.

The bulk of the results are presented and discussed in more
detail in chapter 4 for such quantities as discharge and pressure loss
ccefficients and sensitivity ¢f the orifice plate tc¢ variations of
parameters such as velocity prcfile,turbulence levels,orifice thickness

and Reynclds number. Chapter 5 concludes the results and gives summary



and recommendations for future studies.

The thesis contains a large number of Appendices (A-G) where
much of the mathematical detail is described.Appendix A shcws the
derivation of the Navier-Stokes' equation for general flows.The
vorticity form of the equation is alsc presennted since this forms the

basis for deriving the € -equation (discussed in Appenndix D).

The reduction of the Navier-Stokes' equation to Bernoculli

equation which in turn applies to orifice plate is given in Appendix B.

The time-dependent and time-averaged Navier-Stokes' equations
were given in Appendix c under ‘Yathematical Formulations of
Turbulence.The basic concept of the k-€ effective viscocity model is
also mentioned.Appendix D gives the derivations of the k-8 turbulent

mathematical nmcdel from first principles.

The incorporation of wall boundary conditicns and  wall
functions under the title 'Near Wall Remedies' is discussed in Appendix
F.The formulaticns o¢f finite difference equations for the variables of
interest and the SIMPLE (for Semi-Implicit Method for Pressure Linked
Equaticn)and LBL (for Line By Line) soluticn procedures were presented
in Appendix E.Finally Appendix G gives the program flowchart,
subroutines and FORTRAN program listing fcr the mcdel developed in this

study.



5.

CHAPTER 2.

MATHEMATICAL FORMULATIONS AND SOLUTION PROCEDURES.

2.1: INTRODUCTION.

In attempting to model fluid flow processes,it is nescessary
to derive some mathematical formulations which adequately describe the

‘flow.

For Newtonian fluids(ie those fluids where shear stresses are
directly proportional to velocity gradients) such equations have been
formulated. These are the well known MNavier-Stokes' differential
equations which are derived on the assumption that the fluid may be

treated as continuum (for derivation of the equations see Appendix A).

In this chapter,the various differential equations describing
turbulent flow are stated beginning with the Navier-Stokes'
equations,leading to the time-averaged Reynolds equations and finally
the derived (k-& ) turbulent model for axi-symmetric pipe flow.Details

of the derivation of these equations are provided in the Appendices.

Section 2.4 deals with the problems of solving the transport
equations of the (k-€ ) model and includes the assessment of
difficulties and main features of numerical solutions.Brief outline of
the solution procedure will be given in section 2.5(for details see

Appendix E).



2.2:TIME-DEPZNDENT NAVIER-STOKES' EQUATIONS.

2.21:The Equations.

The basic conservation equations governing fluid flows are
those of mass and momentum which expresses the Navier-Stokes'
equations.For steady and compressible flow,they may bve expressed in

Cartesian tensor as,

Mass Conservation.

1
o

%’E + EaiJI(P'::i) | (2.1)

Momentum Conservation.

a%(Pai) + t:,'g%‘,(f’ai) = %Eg- + PBG: (2.2)

whereb'u =-Ph& o+ 2pdy - _3,,,.4L¢f~ (2.3)
QL’ instantaneous velocity in direction-i(i=1, 2,3),
5 = instantaneous local pressure,
B, = body force per unit mass in direction-i
A A
se i(%‘%‘ t %ui‘:) (2.4)
= instantaneous rate of strain tensor,
Sy = kronecker delta(=1 if i=j;=0 if iseJ)
/9 = fluid density,

M = fluid viscocity, and
A A 2:
28y, % )= dilation.
2 51&



Equations (2.2)(which is actually three equations for
i=1,2,3) is derived from Newton's Second law of motion and is commonly
called the Navier-Stokes' equations.Equation (2.1) is the continuity
equation which expresses the conservation of mass in a given control

volume.

2.3:THE TIME-AVERAGED NAVIER-STOXES' EQUATIONS.

These equations are formed basically by decomposing
instantaneous quantities (which depend on space and time) into their
means,denoted by capital letters (which depend only on space) and
fluctuating quantities,denoted by small letters.The time-mean of the

latter quantities are zero(see Appendix C).

By introducing these mean and fluctuating components into
equations (2.1) and (2.2),the following equations are obtained for

low
steady incompressiblqiwith body forces neglected),

Continuity.

o/
<
]
o

| (2.5)

Momentum.

4V = w5 {Zy - P e

where Z‘J S - ng' + 2[4 SgJ (2.7)



and GCJ. = -PS':] T 2u Sy (2.8)

are mean and fluctuating stress tensor,due +to pressure and viscous
forces,
Sy = (3% + %)
g = 2\ 3y

is mean strain rate tensor,
E&T = kronecker delta,
/° = fluid density,

F’ = fluid viscocity,

A ——
6y ":E:g‘*‘ﬂj 3 6{; =

——

A
u: = Ui *u 5
A

"

3

P

n

g

+
o
e
1]
o

8 = S., + 59 , Eb = 0,

Equations (2.6) are called the Reynolds equations.It 1is
interesting to note that this equation has the same form as equation
(2.2)(for a steady incompressible flow and body forces neglected) if

~

Gf\.s are replaced by U*'s and stresses 6y are replaced by

(Z¢y -puiy;).
Thus the equations of mean flow are the same as the ordinary

equations of motion except that there are additional virtual

stresses,called the Reynolds stresses given by,

Ly = -puwy (2.10)



which represent the mean rate of transfer of mean momentum across a
surface due to velocity fluctuations(Lin(ed),1959).The turbulence model
prescribes how these correlations and other correlations,-fcp_'t;' érise
from scalar convective non-linear terms,are to be found.This problem is

called the closure problem which is discussed in Appendix C.

2.4:The k- € Model.

2.41 Introduction.

In Appendix D the (k-€ ) model has been derived.Here the
transport equations for the mean velocities and for the turbulent
quantities k¥ and € are stated together with the continuity equation.As
we are interested in axi-symmetric pipe flow,these equations are
represented in cylindrical polar coordinates (X,r) where X and r are

the axial and radial directions respectively.

2.42:General Conservation Equations.

For steady turbulent flows,the governing equations of motion
with body forces neglected may be written as follows,(see Appendices A

and D for derivations).

(1) Yydrodynamic Equations.

Continuity.

n
o

;%;(PUT) + %CPV") (2.11)



U-Momentum(direction-X).

Hk( UfU)m%(PVfb)}= H{ROr iy 3L ) +2(ragp ) -3 + 5V .

V-Momentum({direction-r or -y).

%{%(,oUrV) -rg'(,ﬂ VrV)} = ‘.;'-‘{%(Tf”gg) +£(rm,g¥)}_ %F_m%* SV(Z.

(ii)¥on-hydrodynamic Rquations.

Turbulence Energy,k.

HE R (e Vrh) = R (k) + R (B} v 6 -ore

Turbulence Dissipation Rate, £ .

+{v&0) Ure) +i2(p Vre)} =¢{%(r%-%‘-) R (r{$2E) + GG - Ca ,a_%‘ (2.

where Su and Sv are source terms for U and V respectively and,
B 2
G = pel2l80)"+ BY+ &) + (3% 3Ly} .

61 and 6 appearing in equations (2.14) and (2.15) are

12)

13)

14)

15)

.16)

the

effective Prandtl/Schmidt numbers for turbulence energy and dissipation

rate respectively.

10.



Auxiliary.

v 4
S and S are given by (Gosman,1976),

sV= %((F‘f/«%'%) + 'z'FBar‘(r’l%g’)%) (2.17)

1

"t

&= () + +E (L) -yl o
where f-,t‘

and rlt = C’(Pg (2.20)

"

Bt W (2.19)

Equations (2.11) through (2.15) have been written for the

cylindrical polar coordinates'system(x,r).

It may be of interest to note that for cartesian coordinates
the transport equations are the same if r is taken to be identical
with y and r is set to 1 except the fﬁmfgﬁra term in the V-momentum
equation.This term is set to zero.Such equations would then apply to
plane two dimensional flows but they are not of interest to us in this
study.

equation (2-19)
qw given in the auxlllaryAis the effective viscocity which
represents the summation of both laminar and turbulent transport
effects.At high Reynolds number ie for a fully turbulent flow (to
which the (k-g ) model is restricted) the molecular transport effects

pris comparatively small,hence (2.19) gives,

1.



(2.21)

P = [

v
The source terms S and S cover additional terms associated

with non-uniform viscocity /ut in the flow domain.Their influence is

generally small except where changes in fluid property have

considerable effects,particularly near to a wall.These effects will be

discussed in Appendix F under wall treatment.

G repfesents the

generation or production of turbulence
energy,k from the mean flow by the action of turbulent shear stress and

€ is the rate of viscous

dissipation of k to heat by the smallest

turbulent eddies.

The 6's and C's are generally empirical functions,but for

high Reynolds number flows,they are assumed to be constants having
values given by the following table 2.1

Cu Cp ¢ C2 % 0 X E

-01 {0 "H 1092 1+0 IGQ .4,&7 q.793

Table 2.1:Constants of Computation.

where the value of @g was obtained from equation (D.75)(see Appendix

D) with 9C =.4187.

12.



It may be noted that equations (2.14) and (2.15) for
turbulent transport, have similar pattern as those of the mean flow

equations (see equations (2.12) and (2.13)) if the following

substitutions have been made,

S = q - GpPE (2.22)

S = C‘G'% - C’f% (2.23)

Here,S and S are respectively called the source terms for turbulence

energy,k and its dissipation rate, & .

It is therefore,in general the set of equations (2.11)
through (2.15) may be written into a single elliptic equation of the

forn,

+{'9;‘<(/’ Uré)+2(p V""’)} = ;‘{é;(rﬁﬁ%%) +B?‘-_(rg{g$)}.,.5¢ (é.24)

where r=! converts the equation from the c¢ylindrical to rectangular

cartesian form.

The description of turbulent flows as indicated by equation
(2.24) presumes that the mean values of the dependent variables may
be represented by this form of equation together with the appropriate

boundary conditions.

Equation(2.24)'represents a 2-D time-averaged form of the

Navier-Stokes' equations.This implies that the flow must be 2-D and the

13-



time-dependence of the flow may be characterised by a turbulence model
and the model assures isotropic diffusion with the effective exchange

coefficient, ré# is given by,

G’»«ﬁ = r«f,t t r¢,t (2.25)

which represents the summation of both the laminar r¢,¢ and the

turbulent q}t exchange coefficient effects.

The term S¢ in equation(2.24) is the source term of the
respective flow variables.The expressions of ’},,# and S depend on
physical meaning given to ¢ and on the contents of its governing

equations.The definitions of ¢ ’ r‘@,t and S¢ are given in the

following table 2.2(Gosman,1979).

G,M and pg are given in equations (2.16),(2.19) ana (2.20)
respectively. From table 2.2 it can be seen that the units of ’;’ﬁ are
those of viscocity; in fact Q’"ﬂ' is often obtained by dividing the

effective viscocity ,1% by the appropriate Prandtl/Schmidt number.

2.5:PROBLEMS OF SOLVING EQUATIONS.

2.51 Assessment of Difficulties.

The set of equations given by (2.24) seem to be complex in

the sense that they are interlinked, furthermore,

14.
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Conserved ¢
ﬁ
Pro perty. P, eff- S
Mass 0 o
Direction-X 2P 1 ..l?.g v+ ?.\a..m V
Momentum 3& ox T m .w
Direchon-r or-y _ WL (K v N ?-Ia v
Momentum T.h.@ Ta&\ T2 ﬁ‘wx & .mm v
Tur bulence Hei. G - CpE
Energy ok
Dissipation Pegy. ok & p e
Rate lqﬂ&l. % %

Table 22 Sefinchions off ¢ .1y, efy and S of Equatim (2.20),
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(i) they are non-linear,this may arise from convection and

source terms.

(ii) for each variable (U,V,k and € ) to be solved,its
transport equation contains velocity components which appear

simul taneously.

(1ii) complexity-second-order partial differential equations.,
All these features render the equations not suitable for
direct analytical calculations.It is therefore necessary to use

numerical methods of solutions.

2.52:1ain Features of Nunerical Solution.

The equations already stated use the ‘primitive' variables
namely the velocities and pressures.These are formulated aé finite
difference equations and solved iteratively using the SIMPLE(for
Semi-Implicit Method for Pressure Linked Equations)algorithms procedure
to obtain the pressure .All other transport equations are solved by
LBL(for Line By Line) method of TDMA(for g;i%g;agonal Matrix

Algorithms).

2.53:Brief Method of Deriving Algebraic Equations.

The main features of nunerical method is to reduce the
governing partial differential equations into an equivalent Set of

algebraic equations which involve approximation.



There are methods of tranforming the partial differential
equations into the finite difference form-this includes Taylor series
expansion and the micro-integration of Gosman{1976).In this study, the

latter method is used (for more detail see Appendix E).

(a):Finite Difference Equations for Scalar Variables.

When the partial differential equations of (2.24) is
integrated over the control volume (see fig.2.1) and by using Gauss
theorem to replace the volume integrals into surface ones,the following

expressions will be obtained(see Appendix E for details),

b -do v dh-b o= [sPav (227

v
where a's are combined convection and diffusion terms,S’ being the
source term for scalar variables, ¢ and V is the control volume over
which the integration was performed.e,w,n and s are points on the
boundaries of the control volume (cell) situated mid-way between nodes

E,W,N and S from point P as shown in fig.2.1.
IN

€

LK /L .//.':-....i.-.._.

S

1 [
Fig.2.1:A Typical Scalar Cell (Control Volume).

[N
|
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Each of the {'s are then related to the values of ¢ at node
points in the calculation domain,which has the form,for example,for the

west boundary,( See also frg. € -2, Appendix € )

ia 2 fw Uw ‘i"( ‘bp + ¢W)Aw - ’;,w Ay ¢ - éW) (2.28)
gxf

w

for small local Peclet number,(-2 <Peg <+2) where,

'/oanSXPﬁw (2.29)
f:’,w

ﬂw =

For large ‘Pe’ ie for Pe » +2 or Pe \<-2,iw has  the

following forms,

%w = quwAw¢w < &w» 2
(2.30)

o = L UwAwép i Fc‘" € -2

In equations (2.28) and (2.30),subscripts P and W refer to
the central and west nodes respectively and w denotes the intermediary

cell boundary mid-way between nodes P and W.

By employing the ‘'hybrid scheme’' (ie the combination of
central and upwind differencing),equations (2.28) and (2.30) may be

rewritten as,

18.
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XY ._'5{6-\- n%;')‘#w -l-(l—2Pe:')d)P, -2¢h <2 (2.31)

A

w foo 7 2

¢P Feu S -2

Similar treatments apply for other boundaries of the control

volume to obtain the fluxes Q‘,ah and c';s.By assemblying these flux

expressions and by linearising the source terms,3',the complete finite
difference equations for scalar variables has the form(see Appendix E

for its derivation),
¢ s.a.9 s?
(@p-Splbp = 2% * Iy (2.32)

where af = 20a, (2.33)

n

Zh' = summation over neighbours (¥,S,E,W),

a,, = Lo Us Aute e . (2.34)

. . o P
and f, etc. are given by equation (E.18)(see Appendix E).SP and S, nay
be deduced from S' for each scalar variables(k and € 5 and see table

2.2).

(b):Finite Difference Equations for Momentum Equations.

The finite difference momentum equations have similar form as

equation (2.32) for scalar variables,except with additional terms due
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to pressure gradients. The control volumes of velocity components are

displaced since their locations themselves are displaced as can be seen

in fig.2.2.

The finite difference equations for momentum have the form,

(ar- SFU)UP = ;%Un + AM(M‘fP) + 33 (2.35)

IN

o

Aow

..‘-.---J-
|
!
!
'
H
'

..... o e - - -

-—-r‘.--_- -

1

]
-..—-—-]----.. -—-—-—

(q) (b)

Fig.2.2:A Typical J- and V- cells(control volumes).

where aP,awetc. are similar to equations (2.33) and (2.34) but fey NOW

is a hybrid difference function of local Reynolds number,Reyy where,

g, = Ll §Xpw

o Fu (2.36)
Ao, * ’}gﬁ,g (2.37)

The remaining unknown pressures are obtained from pressure



correction(p')- equation which is obtained by combining continuity and

momentum equations( see Appendix E for p'-equation derivation).This

equation has the form,

apfé o Zn-anF", * MP

(2.38)
where  Op = E“_aﬂ
Zﬁ. = summation over neighbours
0, = foluBe, e (2.39)
D, = Awf@p | (2.40)
Pos = TP g (2.41)

Here 83 is now represents the local continuity imbalance in

the prevailing velocity fields and denoted by MP,and S: =0,

2.6:SOLUTION PROCEDURE OF FINITE DIFFERENCE SQUATIONS. .

2.61:Brief Outline of Procedure.

Having constructed algebraic equations for all nodes in the

calculation domain,next job will be to solve those set of equations

21.
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simul taneously with appropriate boundary conditions.

Since the equations are non-linear and inter-linked,to solve
the finite difference equations 1is by iterative method,which employs
inner and outer iteration sequences.The inner iteration sequence is
enployed to solve the finite difference equations for the individual
variables,while the outer iteration sequeance involves the cyclic

application of the following steps,

Assemble coefficients of momentum equations and estimated
values of axial and radial velocities (denoted by U* and V*) are

obtained from the momentum equations using the prevailing pressures,ﬂ‘ .

The coefficients of the p'-equation(for the pressure
correction) are next assembled and this equation is solved by the LBL

method(see Appendix E).

The velocities and pressures are then adjusted(corrected)

from the relations like,

0. CRy - Pp) (2.42)

U..', =

v = UF 4V (2.43)
¥ /

P =P t P | (2.44)

The equations for the remaining variables (k and € ) are then

solved in turn, first by assemblying the coefficients of the transport



finite difference equations to obtain k and € .

Regard the new values of the variables as improved estimates
and the whole process is repeated until satisfactory solution is
obtained-this will ©be discussed later in  Appendix B,under

'convergence'.

2. T:CONCLUDING REMARKKS.

Mathematical formulations and solution procedure of solving
the governing finite difference equations have been discussed
briefly(details will be obtained in Appendix E).The main points of the

chapter may be summarised as follows:

The basic conservation differential equations which govern
the transport of mass and momentum have been  presented for

time-depéndent and time-averaged form.

The general form of the closed k- g model equations for mean
flow variables and turbulence quantities (k and & ) have been stated
and their manner of solution using a finite difference formulation has

been discussed (details are discussed in Appendices D and E).

Much of the work presented in this chapter has been derived
by researchers at Imperial College,London.This work has been presented

here for the sake of completeness.

23.
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CHAPTRER 3.

DEVELOPMEAT OF A MODEL FOR THINY ORIFICE PLATES.

3.1: INTRODUCTION.

This chapter shows how a mathematical model is developed for
thin orifice plates.The model is tested on an orifice plate with
orifice to pipe diameter ratio of O.7.The model is based on the
solution of the set of coupled differential equations described in the
previous chapter.The variables to be solved for are
velocities:U(axial) ,V(radial) and turbulent quantities:k ( kinetic
energy) , E'(dissipation rate) .The pressure,p being a derived quantity
may be obtained from pressure correction equation (described in

Appendix E).

The development of a model for orifice metering requires:

(i) The modification of the TEACH-T program,developed at
Imperial College, London to incorporate the geometry of the orifice
meter and output quantities of interest.

(ii) Choice of upstream/downstream distances.

(iii) Selection of numbe; of finite difference grid points in

rezion of interest.

(iv) Determination of an adequate convergence criteria to the



iterative solution procedure for solving the equations.

Steps (ii),(iii) and (iv) are approached iteratively to

obtain the final model described in section 3.4.

3.2:MODIFICATIONS TO TEACH-T PROGRAM.

3.21 Geometry.

Figure 3.1 shows a cross-sectional diagram of location of a
thin orifice plate which 1is co-axial with the pipe axis denoted by
0X.The diameter of the pipe is 4 inches.The y-axis passes through the
orifice plate and perpendicular to OX.The orifice plate is assumed to
be very thin similar to the one shown in figure 3.2(b) which is an
jdealised form of the plate shown in fig.3.2(a).The practical reason
why orifice plates are always thin will become clear when plate
thickness dependence on discharge coefficients is discussed later in

section 3.45(iii).

There are three basic dimensions for orifice meter to be
considered namely the plate thickness t,the orifice diameter Dg and the

pipe diameter Dj.

Non-dimensional geometrical parameters which are so important
in orifice metering are the orifice to pipe diameter ratio, /3 and the
thickness to plate diameter ratio,%ﬁk.These two parameters may be
formed from the basic parameters quite easily.The square of the former

parameter mF‘ﬁ?'being the ratio of the total cross-sectional area,is a
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neasure of the extent to which the constriction obstructs the flow.The

latter parameter is a convenient specification of the orifice geometry.

t/"< « 02 when ﬁ-.%).z

@ ®

Dy = pipe diameter,

(=]
»
]

orifice diameter,

ot
]

plate thickness,

and T overall plate thickness.

Fig.3.2:{a) A Standard Orifice Plate,BSI1042 (1964).

(b) An Idealised Form of Orifice Plate,Ward Smith (1971).

The variable quantities that must be chosen in a model are
the distances of inlet and outlet boundaries from the y-axis denoted by
DXU and DXD respectively,the number of 3rids upstream and downstream
regions and orifice area ratio,m. The selection of the number of grids
in both regions and the distances of upstrean and downstream boundaries

will be discussed in section 3.4.

27.



3.22 Grid Distributions.

For the purpose of solution,the flow domain is overlaid with
a rectangular meshes(grids) when viewed in the y- or r-X plane.This

divides the domain of interest completely into a set of non-overlapping

subdomains as shown in fig.3.3.

The grid lines are shown in solid lines.The intersections of these grid
lines where spacing are in general arbitrary,are called the node
points.Control volumes are shown in dotted lines which are drawm
mid-way between those grid lines.The arrangement of the grid lines are
such that the bounding surfaces coincide with those control volumes.In
this figure also one can define the thickness of the orifice plate t by
the bounding faces of the orifice plate(which consists of front or
upstream face,rear or downstream face and bottom face of the orifice

plate) coincident with the control volumes.

In this p&rticular study,the author has chosen a uniform
spacing in the radial direction,while in the axial direction,the grids
are contracting and expanding following a geometrical progression(with
a constant factor EPSX which is defined as the expansion/%ompression
factor) between successive intervals.The grid lines are intended to be
crowded just upstream of the orifice plate as expected,because the flow
streamlines become crowded as the flow advances from left to right(see

figure 3.4).After leaving the orifice,the grids are expanded.

A typical cluster of U=-,V- and scalar-cells is shown in

28,
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fig.3.3 whereas fig. 3.5 shows the individiual control volumes of the
velocity components and scalar quantities (eg.k,the turbulence energy
and € the dissipation rate). Bach cells surround the point of
location of the relevant variables.The variables are stored in
different locations of the grids.The values of the flow variables are
represented by averages over the respective control volumes.Refering to
fig.3.5(c),all the scalar variables p,k,8 are stored at grid nodes.The
velocities are stored at locations mid-way between the nodes where
pressure which drives them are stored.The nodes of a typical grid

cluster are labelled as P,N,S,E and W (as shown in fig.3.5).

The location of the variables in the manner described above
forms a staggered grid system which has the advantage that the
variables U,V and p are stored in such a way that pressﬁre ‘gradients
are easy to evaluate.Furthermore,the velocities are located where they

' are needed for the calculation of convective fluxes.

Figure 3.6 shows the computational domain of calculation
which is actually the upper half of fig.3.3 (this is taken because of
the consequence of the symmetry situation).Again the grid 1lines are
arranged in such a way that the bounding surfaces(wall boundaries,which
include top walls of pipe, front face, bottom face and rear face of the
orifice plate,symmetry axis and inlet/outlet boundaries),coincide with
the boundaries of the control volumes(shown as dotted lines). This is
advantageous for ensuring conservation and for flux calculations.In the
finally chosen model the number of grid lines in axial direction,NI is

taken to be 32 with (16/16) grid disiributions upstream/downstrean
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regions.In radial-direction,the number of grids,NJ is taken to be
22.The reason for the choice of these parameters will be discussed in

section 3.4.0ther computational details will be found in section 3.3.

3.2%:Boundaries.

The boundaries of +the c¢omputational domain are shown in
fig.3.6.They congsist of  eight boundaries altogether;
inlet,outlet,symmetry axis and wall boundaries.The wall boundaries
themselves are made up of five solid boundaries(two of which are top
wall boundaries in regions 1 and 3,two boundaries being front face and
rear face of the orifice plate denoted by numbers 4 and 5 and the last
boundary is the bottom wall of the orifice plate in region 2).As has
been mentioned earlier,these boundaries as well as inlet and outlet
boundaries coincide with the control 'volumes.The inlet and outlet
boundaries are specified by distances DXU and DXD respectively from
0Y-axis.Top pipe walls and bottom face of the orifice plate are at
distances R(=RLARGE) and r (=RSMALL) respectively from the axis of

symmetry (r and r stand for pipe and orifice radius respectively).

3.24:Boundary Conditions.

Since the working equations of motion in this study is of an
elliptic type, it is necessary to supply conditions for each variables
at the boundaries of the flow domain.In +this particular study,the
variables for which Dboundary conditions to be supplied are those for
velocity components in axial and radial directions,U and V  and
turbulent quantities k and & .The pressures may not be nmodified on

boundary,since they are inter-dependent with velocity coaponents
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through momentum  transport equations-where velocities are

prescribed,pressures need not be.
(i)At Inlet.

At the inlet all velocity components and turbulent quantities
must be prescribed.The radial velocity V is set to zero.For the axial
velocity,U two velocity profiles were used, one is of uniform (or flat)

profile and the other is of power law which has the form,

: A
Ue) = Um,‘ (.‘—'&) P (3.1)

where R and r are respectively the pipe and orifice raiius,p is a

function of pipe Reynélds number Re given by(Blake (et al),1976)
' - 2 2
P = 74%t583xl0 ®x(Re) — 4-16x 107 (Re) © (3.2)
and qncx is given by,

Unew = £C1+$I(245) Ui (5.3)

where Uy 1is the averaged inlet axial velocity.Equation (3.3) was
obtained by integrating equation (3.1) +to obtain the average flow

velocity Ug, «

For uniform profile,the mean axial velocity U is set to,

U = UJ’L (3.4)
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where the average inlet axial velocity Ug, is given by,

. R

Uph = 7 (3.5)
Va4

which is a known value if fluid viscocity'/L,pipe Reynolds number Re,; ,

fluid density /0 and pipe diameter D, are given values.

!
While the mean axial velocity U has known inlet value,the
radial velocity V is assumed to be of 2zero value on the axis of

symmetry throughout the domain of calculation.

The inlet profiles of turbulence energy k and its dissipation
rate € are given by specifying turbulence intensity i and length scale

factor A through the following relationship,

2

R = %k, w Upn - (3.6)

,{,.-'3:
'7‘&" (3.7)

€ = E&un

Ll = AR
(3.8)

where t = length scale,
A= length scale factor,
R = pipe radius,
i = intensity of turbulence,
k = turbulence (kinetic) energy,

€ = dissipation rate
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and the subscript 'in' stands for 'inlet'.

The dissipation rate has been assumed to follow a mixing

length hypothesis.

Inially the values of i,j\.Ucn,and R are given from where the
inlet values of k. , and E&‘are obtained from relations (3.6) through

(3.8).

(ii) At Outlet.
the
The flow atfoutlet is assumed to be outwardly directed and
independent of x, (the axial direction). This would be the case far
downstrean of the orifice.This implies a zero gradient at the flow

outlet,i.e.
U - 0
o - (3.9)

Since overall mass balance is applied to the entire domain of flow this
automatically ensures mass balance(continuity) at the outlet.The
application of upwind difference (see Appendix E) demands that qﬂn‘t is
immaterial for all variables except for velocities which are needed for
mass conservation in the pressure-correction (p') = equation (see

Appendix E ,also for the derivation of p'-equation).

(iii) At the Symmetry Axis.

At the axis of symmetry r=0,the total normal flux is set to
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zero,ie

°¢

———

r (3.10)

{t
O

for all variables except radial velocity V since it has zero value at
the axis of symmetry.This may be achieved by setting to zero the

appropriate coefficients in the finite difference equations.
(iv) At Walls.

The division of wall boundaries into .five regions in
modelling the orifice plate has been mentioned earlier (see section
3.23).Here the insertion of wall boundary conditions are briefly

presented(more detail will be discussedi in Appendix F).

Basically the wall boundary conditions are introduced by
¢

modifying the source term S of the individual variables qb «By

expressing the source term as a linear relation,
¢ ¢
{S¢4V = S + Sy (3.11)

the terms 54, and SU may be deduced from integrated and linearised

P

form of the source.

(a) For Mean Tangential Velocities.

A tangential velocity,saylﬁpfbr a node P nearest to a wall

boundary (see fig.F.2,Appendix F) is obtained from usual momentum
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balance.A boundary condiition on UF,can be introduced by modifying the

source term 5 for axial velocity U.

v
o Sp
The modification is made in such a way that the values‘ are
decreased to bring
v

the velocity zero on the walls.The modification on
P is to decrease its value to

S

U
S;,J = (SF)O&( -4 . SXPW (3.12)
v
and Su = 0 (3.13)
where SX?W is the distance of point W from ? and (Sf’u)ba is the

value of Sg at previous iteration.

If the point P falls in the inertial sublayer(ie. when y*

>11.63),t,, (see Appendix F) takes value given by,

4%
ty, = fq"*él’wﬁ} (3.14)
Inlegp)

' +
whereas when P is within viscous sublayer (y 11.63),

L, = -%P— (3.15)

where /o = fluid density,
fL = fluid viscocity,
HP = normal distance of point P from the wall,
R =Lk, + %y )
(W 2P W

- (3.16)
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and Cil., j( and E are empirical constants with
;( = Von Karman constant = .4187

3 = Integration constant =9.793

C’A= Constant of turbulence = .09.

Wall shear stress CW is given by,

w = 'LM‘UP A

or eqn.(345) depending on positien of P
where tmhas the value as in equation (3.14),(and UP is the tangential

axial velocity at the node point P(see aiso pg-216).
Similar treatments may be carried out for radial velocity V
having east/west walls of the control volume coincident with front face

or rear face of orifice plate (see Appendix F,fig F.2(b) or (c)).

(b) Turbulence Energy.

The source term for turbulence kinetic energy S consists of

two terms; the generationn term G and the dissipation term c,fe

according to,

¢
wore G = pf2 [P+ BT 6T+ QL 3} om

G- DPE (3.18)

40.



b ek o

k = turbulence energy,
E - dissipation rate,
/o = fluid density,

CO ,CP_are constants at high Reynolds number given by table 2.

By linearising the source term in the manner 1like equation
(3.11) with ¢ =k, the following expressions for S and S, may be

deduced as,

5% = —d,. 8V G.21)

S* = q.SV (3.22)

v

where 8V is the control volume which encloses the point P whare

turbulence energy is s'cored.d‘t (see Append ix F) can take either fron,

=
dp = Gp & k324n (E95) (3.23)
Xy,

or from d'k = Cp qu;i f;& 3P+ (3.24)

+

depending on whether y > or< 1'1.63,where

3; - _/_",%'ig ‘;’{Cf.«# (3.25)

%
kP is the value of the turbulence energy at the node point P and kp is
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the value of kPof previous iteration.

The modification of <the generation term G appearing in

equation (3.22) may be obtained as described in appendix F.

(¢) Energy Dissipation Rate, € .

The source term S as usual 1is incorporated through the

¢ £
source treatment,from where the expression SF’ and SU are obtained.

Since in the wall flows,unlike k which falls to‘zero at the
wall, € reaches its maximum value there.This makes E-balance for a cell
extending to the wall difficult.This difficulty is overcome by adopting
a fixed value for GP (irrespective of f+)based on ‘'equilibrium’
relation (see Appendix F for more detail). The value of € at node

point P is taken to be,
¥ 4%

€p =
P Y

(3.26)

In the program this fixed value of & is achieved by setting the

[ 2
linearisation constant SP ’SU to be
e .

Sy = EFY (3.29)

30
where a, is a large number of the order 10 .



(d) Corner Treatments.

The treatments at the cornmers of the orifice plate will be
discussed in Appendix PF.Here the essential points of the treatments are
given.The velocity cells(axial,U or radial,V cells) at the two corners
of the orifice plate are shown in figure 3.7(see also fig.F.3 of
Appendix F).Consider the V-cell at the corner A,it can be seen that
half of the east wall of the cell({control volume) coincides with front
face of the orifice plate and half of its face is 'exposed' to the flow

domain.

The contribution of flux from the east wall of the V-cell,qq

is then given by,

( e L%"éiﬂhhw’ (3.29)

%
"

where /oc = Jé. W+FP) (3.30)
Awor = Ty- z&ﬂps | (3.31)

and ¢ is a point mid-way between W and P enclosed by the U-cell(see

£fig.3.7).

By replacing equations (3.30) and (3.31) into equation
(3.29),and linearising the result in the same way as in equation
v U

(F.36)(see Appendix F),then the 'linearisation constants' S and Sy,

P

are given as,
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Sg = —#(’DF + Ay )+ Aewr (3.32)

h

v :
Sy e} (3.33)
where the negative sign has been introduced to promote stability.

The treatments at the corner B are similar to those at the

v

corner A.

3.25 Calculation of OQutput Quantities.

(A):Pressure Variations.

Figure 3.8 shows the variations of pressure along pipe wall

which may be illustrated as follows.,

As fluid flows from upstream side of the orifice plate
towards the device, (from left to right),the pressure on the pipe wall
decreases very slowly. This is because of the dissipation of energy as
heat due to frictions at the wall.In the absence of the orifice plate
device,the pressure would continue to fall down slowly as can be seen

in figure 3.8 indicated by a straight line ABC.

Immediately infront of the orifice plate,there is a small
increase in pressure on the pipe wall.This is because part of the
impact pressure on the front face of the plate is conveyed to the

wall.In the immediate neighbourhood of the contriction,there is a rapid
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variation of pressure because of the presence of the orifice
consriction in the metering.This pressure decreases to a minimum at the

vena contracta,where the corresponding velocity is a maximum.

Downstream of the vena contracta,the pressure increases.This
is because the flowing stream area increases\and the fluid velocity‘
falls to its initial value.At this zone,the pressure distribution
recovers although the level of vpressure 1is 1lower than that at the

upstream.The pressure does not reach quite the value that it would have

had in the- absence of the orifice plate.

The total pressure drop ( due to wall frictional forces and
constriction).(pl-pé) is known as the net pressure loss and is‘due to
thé dissipatioﬂ of energy és heat in the damping of turbulent eddies by
jnternal friction(both wall friction and friction induced by the

orifice plate).

Pressure drops across an orifice plate AP are usually
expressed in non- dimensional fbrm, leading to the discharge and

pressure loss coefficients which will be discussed now.

(a) The Discharge Coefficient,Cp.

The discharge coefficient,Cp is related to 'S-ratio,inlet
velocity Ug, and pressure difference AP across the orifice plate by

the following relationship,

Cp = Un lp(#‘ -1) (3.34)
2AP |
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For each values of /3 y,which is obtained from

B = - (3.35)

where j = the index of horizontal plane next to Dbottom wall of the
orifice plate (or JSTEP,see figure 3.6),

and N = maximum value of j-index(or NJ,see fig.3.6),

thérébrrésponding value of U;. is obtained from -

Uin = J;—ﬁlff‘-p (3.36')
where p = fluid viscocity,
/o = fluid Qensity,
Regy = orifice Reynolds number,
Dy = pipe diameter,and
p = orifice to pipe diameter ratio

are supposed to be given values.

Now,for each values of t/oz(which is obtainel from program
calculation) there are corresponding values of AP.I’herefore with a
given value of O and known quantities of ﬂ and U"ﬂ(from equations
(3.35) end (3.36)),the discharge coefficient Cb1can be computed from

equation (3.34).

In this particular study,the discharge coefficients for



flange,(D-D/2) and corner tappings will be considered.As defined in the
orifice metering literature flange pressure tappings are located at one
inch upstream and one inch downstream of the orifice plate,corner
tappings are located at the orifice plate and (D-D/2) tappings are
located one diameter upstream and half a diameter downstream of the
plate.Invariably the grid locations do not coincide exactly with these
positioné.In the program code was added to locate the position of a
particular tapping and the pressure at this particular tapping was
obtained by 1linear interpolation Dbetween the pressures at the

neighbouring grid nodes.

(b) Pressure Loss Coefficient,X.

The theoretical pressure loss coefficient,KI' is defined as

(Ward Smith,1971),

(pi- e
K = . (3.37)
.H“’ JQ-PU,;:;

where p, = static pressure upstream of orifice plate (where Uin 1is
prescribed),

34 = pressure downstream of of orifice plate (where pressure is
yecovered),

P = fluid density,and

U = inlet velocity.

The corrected pressure drop,p, (see fig.3.8) due %o

constriction is 1less than the overall total pressure drop(due to both
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the constriction and wall frictional forces),(p'-p ) .The corrections of

/3

pressure loss coefficient may be obtained as follows.

(¢) Corrected Pressure Loss coefficientféorrected!Cunét.

As remarked earlier,the static pressure increases downstreanm
of vena contracta region,but does not however quite reach the value
that it would have had in the absence of the orifice-the difference
being the pressure 1loss denoted by Rc.This pressure loss is thus the

extra resistence due to the orfice plate in the pipe line.

From figure 3.8 it can be seen that,

i = (pi-pr) - &p2 | (3.38)

From two similar triangles ABE and ACD, AP:. is related to

known values of x;,x 4 and AP by,

OGPy = &P [ ¢ %2 | (3.39)

[z}

where Xy = the distance of the point of smallest pressure just upstreanm
of orifice plate to a point on the wall on the second grid line of the
computational domain (see figure 3.8),

Xp = the distance from the point on the pipe wall of minimum pres
sure just upstream of the orifice plate to the point on the pipe wall
at the last grid of the computational domain (in the downstreaa region,

see figure 3.8),



Aﬁrl #® the pressure drop just upstream of the orifice plate.
By combining equations (3.38) and (3.32) will result,

Pc = C(p1-Ps) -AP:M (3.40)
1241

from where the corrected pressure loss coefficient is given by,

LN »
corrected ¥ = Pe (3.41)

e
EYL

where ,0 and Uu.n. are respectively fluid density and inlet velocity.

3.3 OTHER PROGRAMMING DETAILS.

The SIMPLE algorithm  (discussed in Appendix E) is
incorporated into the modified TEACH-T(for Teaching Elliptic
Axi-symmetrical C haracteristics Heuristically for Turbulent flow)
computer program. For the algorithms,the stability is secured by the
choice of appropriate relaxation factors defined by equation (%5.51)(ses
Appendix E) with values of .5 for velocity components,U and V, 1.0 for
pressure correction,p' and .7 for turbulent quantities k and € as well

as for turbulent viscocity F%.

In applying the LBL procedure without wupdating the
coefficients for any particular variable ¢ ,the nuuber of sweeps is
employed-as many 'sweeps' as necessary may be employed until the

desired solution is obtained. A number of sweeps of 3 is adequate for



velocity components and turbulent quantities.The value of 5 is needed

for p' in such a way that continuity will be satisfied.

In the computations,a converged solution is achieved when the
source (denoted by SORCE) which is the 1largest value of residual
sources for U,V and p' is less than a specified preset value 5 called
the maximum source (denoted by SORMAX)-the sensitivity of convergence

criteria is discussed later.

The p'-equation can be satisfied by several pressure
fields,so the pressure needs to be specified and it is specified at
location IPREF=2,JPREF=2(where IPREF and JPREF are the I-and J-indices
of location where pressure is fixed) and the value is kept fixed at

that position.All other pressures are measured relative to it.

For iteration monitoring,the cummulative number of iterations
performed is calculated and stored as NITER.The absolute sum of ths
residual sources is stored as RESOR¢ (¢EU,V,k and &€ ), for p'-equation
the absolute mass sources are stored as RESORM.The field values at each
jteration sequence is specified at location IMOYN=12,JYON=8.The variable
arrays are printed out before and after the iteration sequence values
during the sequence are printéd out at intervals of INDPRI=250.The
constants of turbulence necessary for the programming are given in
table 2.1(see Chapter 2).For more complete picture of the program,see

program listing provided at the end of Appendix G.
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3.4 TEST 01 A<13 = .7 THIN ORIFICE PLATE.

3.41 Introduction.

The following subsections discuss the actual model
development of the orifice plate.As a starting point the author used
upstream distance from orifice plate ,DXJ to be 2Dy (where D; is the
pipe diameter) and downstream distance,DXD is varied from 5 to 35 pipe
diameters.Power law velocity profile, (see equation 3.1) has been used
to run the program.Also as a starting point a convergence criteria

§=.01 (1%) was chosen.

As has been noted earlier that the distances DXU and DXD were
measured from inlet/outlet boundaries to the OY-axis and not to the
faces of the orifice plate at upstream/dowmstream region (see
fig.3.1).However;since the orifice plate used has been assumed %o be
very thin, qsi—? O(where t is the plate thickness and Dg being the

orifice diameter),this gives negligible error.

Basically a correct model can be said to have been obtained
when: (i)sufficiently high upstream and downstream distances have
been chosen,(ii)the grid distribution is sufficiently fine and (iii)the
convergence criteria 6 is sufficiently small. The criteria of
sufficiency being that quantities of interest such as discharge and
pressure loss coefficients becone asymptotically constant with respect
to changes in these variables.This will become clearer as model results

are presented later.



3.42 Choice of Upstream/Downstream Distances.

(1) Upstream Choice.

Computer tests have Dbeen made for different grid
distributions upstream and downstream of orifice plate for a given
value of 8 (= .7).The author has been using equal number of grid
distributionsi:::;ream and downstream regions. Initially (11/11) grid
distributions (meaning that 11 grid  1lines are used in
upstream/downstream regions,in such a way that the total number of
these grid lines give the total number,NI) have been used.The discharge
coefficients( for flange,(D-D/2) and the corner tappings) and pressure
loss coefficients are then noted on a table.Similar tests were car;ied
out for  (12/12),(13/13),(14/14),(15/15)  and  (16/16) grid
distributions.Graphs of discharge  and pressure loss coefficients are
then plotted against downstream distance DXD(measured in pipe

diameters) as shown in figures 3.9 and 3.10.In these results an initial

choice for the upstream distance was taken as DXJ=2 diameters.

From figure 3.9 it can be seen that (11/11),(12/12),(13/13)
and (14/14) grid distributions are all too coarse as the discharge
coefficient does not become asymptotically constant as the downstreanm
distance is 1increased.The other distributions (15/15 and 16/16) are
reasonably constant at large DXD with the (16/16) distribution being
the best.In this latter distribution the value of discharge coefficient
appears to level off at DXD=5 diameters and then rise very slowly and

slightly.
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Results for the pressure loss coefficients (figure 3.10) give
a similar though not so pronounced trend.Again the (16/16) distribution
is the best but here the gpproximately asymptotically constant region
begins from DXD=10.The asymptotic results for both discharge and
pressure loss coefficients are éncouragingly resonably close to
experiment with discharge coefficient (flange) in the range .59-.60(BSI
1042 result being .6122) and the pressure loss coefficient in the range

4.6-5.0(experimental result being 4.193-Ward Smith,1971).

To determine the wupstream distance  DXU,ths downstream
distance DXD was fixed at 25 diameters and DXU was varied for a (16/16)
distribution.Results for discharge and pressure loss coefficients are
presented graphically in figure 3.11.These indicate an asymptotic

region for DXU > 4.1t was there fore decided to fix DXU=5 diameters.
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(ii) Downstream Choice.

Having obtained the wupstream distance DXU to be 5
diameters,trials have been made to vary downstream distances in order
to obtain a suitable distance for the model.Computer tests have been
carried out as before with a (16/“6) grid distribution but with varying
DXD and keeping DXU=5 diameters fixed.Curves of discharge
coefficients(for flange tap) and pressure loss coefficients are then
plotted versus DXD(figure 3.12).It can be noted that when downstream
distance DXD is greater than 10 diameters,the curves of discharge
coefficients and pressure loss coefficient are both approximately

asynptotically constant.

A reasonable choice for DXD was then taken to be 15 1leading
to a final choice of DXU=5 and DXD=15.Interestingly,F.Durst and
A.K.Rastogi in analysing a plane turbulent flow problem with separation
used distances of 5.5 and 12.5.channel widths upstream and downstreanm
of an obstructing device (see Durst et al,f979).These choices are

similar to the ones arrived at in this study.

3,43 Grid Distribution Selection.

Having selected that 5 diameters upstream and 15 diameters
downstream are the best distances for the model,ths next stage is to
confirm that (16/16) grid distributions would be the best choice for
the model.For this,computer tests for
(11/11),(12/12),(13/13),(14/14),(15/15) and (16/16) grid distributions

have been carried out using same conditions as previous tests but now
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using 5 and 15 diameters for the upstrean and downstream distances from
the orifice plate.Curves of discharge coefficient{for flange tap) and
pressure loss coefficient were plotted versus those grid distributions
as shown in fig.3.13.Both curves begin to 1level up waen grid
distributions are increased until after the (15/15) grid
distribution,the result are essentially constant. Interestingly the
curve for discharge coefficient tends. to have a value approximately
.596 (compared with experimental data .6122),whereas the corresponding
pressure loss coefficient curve has a value about 4.76(compared with

experimental data 4.198).

From above arzuments it can be concluded that the best model
for orifice metering is chosen to be 5 diameters upstream and 15
diameters downstream for the distances from <the O0Y-axis and with
(16/16) grid distribution.The total number of grids NI= 32 in the axial
direction and NJ= 22 grids in the radial direction have been used.From
now onwards,this model will be used as basis for computer tests of

other parameter dependences that will be discussed later.

3,44 Sensitivity of Convergence Criteria.

The number of iterations to obtain a solution depend strongly
on the convergence criteria 6 chosen.The convergence criteria should
therefore not too stringent.The value chosen in the previous runs was
§ = .01 (1%). The value of § was varied and the results are
presented in table 3.1 for a f! = .7 orifice meter with fixed ievels of
turbulence intensity,i and length scale factor A .In obtaining those

values of pressure loss coefficient and disharge coefficient,a power

60.
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Theoretical DiScharje Coefficients |

5 C flangc. Cp (D-pA) |Cpcorner Ktheo. Con::;;f Kezp. NITER

L) +6297 s6l40 +0262 3.062 2.655 4.198 31

4 6286 ‘6198 *630% 2-9/6 2.9¢¢ 4198 32

3 ~-613] <6084 - 6335 3-310 3-550 4-198 33

2 - 604.0 -5311 - 6359 4-832 4-591 4-198 35

[ 5994 - 6102 - 5937 4476 4:069 4198 123

ol -5983 - 6104 -593¢ 5-lag 4-740 4193 123
~0| -5983 ‘6104 -5936 5.182 4-\774— 4+ 198 3¢0
.005 5983 <6104 -593¢ 5-180 4.722 4. 198 327
-00{ -5983 <6104 -5736 5182 4-775 4.198 370
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law velocity profile has been used.The table also includes the number

of iterations(NITER) required to obtain a solution.

From the table 3.1,it can be seen that the values of
discharge and pressure loss coefficients are constant when 8 changes

from .001 to .1 (see also figure 3.14).

It can be concluded therefore that the value of 172for 5 is

to be the right choice,since this value is in the range .001 < 5 <1,

3,45 Results for A = .7 Orifice Plate Tests.

In this section some results are presented for the p = .7
orifice plate with the developed model.These results are presented
again together with results for other xg ratio orifice plates in

Chapter 4 where also some conclusions are drawn.

(i) Velocity Profile Dependence.

Table 3{2 presents the dependence of velocity profile on the
discharge and pressure loss coefficients.Three commonly used pressure
tappings; namely the flange,(D-D/2) and corner tappings were
considered.The velocity profiles used were of power law titype(see
equation 3.1) and flat (or uniform) type (see equation 3.4).The
corresponding experimental values of discharge obtained from BSI 1042

are also preSented and should be compared with ths power law results.
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Theoretical leChargc Coefficients Ezpcr:’mcnt’at Theoretical

Discharge | Fressure Loss Corrected

Coefficients c‘gﬁ“"“s Keheo-
€0 .

Cp Co _ Co
flange (D-?4) | corner

© | Co Co
power| flat | power| flat |power| flat an,a‘ (0-05)| corner|POver flat | power| flat | K,

+5983|:5902].6104 |.6028|-593¢ |-5838 |- 6122|6182 |.6!33 | 5-182 | 4.3¢7 | 47741 4-929| 4-198

Table 3.2 Velocity Profile Dependence for a # = 0.7 Orifice Plate.

Theoretical Experimental
Discharge Discharge
Coefficients Coefficients
P
G <) G 1 <o Co Corrected

A.
>

Row Flange| (0-0,)| Corner|flange|(0-03) | COmer| “thes.| Kinyy. K'—!p-

(@) 203 |{.005 [.5983 |- Gloa |-593¢ |- 6122 |- 6182 |-6I133 |5-192 (4774 | 4.19%

(b) {©1 |-005 |-5991 |-6li2 5984|6122 |-6182 |-6133 |5 167 4749 | 4198

¢ |+03 |-0I5 |.5973 | -6099 |'5928 |-6122 |-6/02 |-6133 | 5194 | 4798 4-198

@ |-09 *0!5 |-59%6 |-6108 |-5941 | 6122 126182 |- 6I33 | 5.77 ) 4760 | 4198

© |02 |-64 |-5883|-6023)-5305|.6122 |-Gi82 |-6133 | 5.0 | 5-054| 2-198

Table 3.3 Effects of Changing Turbulence Intesity i and length Scale

Factor A for a B = 0.7 Orifice Plate.

Theoretical and corrected theoretical pressure loss

° . n
coefficients K_”\“ and corrected '(fhw ,the quantities of which were
defined by equations (3.3%7) and (3.41) are given also on the table.The
corresponding values of the experimental data,K obtained from Ward

exp

Smith's formula for -2 .7 were also given.
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(ii) Turbulence Intensity,i and Length Scale Factor A Dependence.

The variations of discharge coefficients CD and pressure loss
coefficients, K with turbulence intensity i and length scale factor A
may be found in table 3.3.Power law velocity profile has been used in

obtaining those coefficients.

(iii) Orifice Plate Thickness Dependence.

Table 3.4 shows the dependence of discharge and pressure loss
coefficients on the orifice plate thickness which is specified by
tﬁh.However the values of the reciprocal of qah are presented in the
table.The variation in orifice plate thickness is achieved 1in the
program by varying the grid expansion/contraction factor EPSX which is

also tabulated.Again, a power law velocity profile has been used.

These results indicate why thin orifice plates are generally
used in orifice metering.This is essentially because above some value
of Fhﬁﬁ the value of the discharge coefficient(flange) is practically

constant (see figure 3.15).

A thick orifice plate would be wundesirable in a practical
situation because as it wore(became thinner)the value of the discharge

coefficient would changs.
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Experimental
Theoretical Discharge Gosfficiests Discharge Coefficients.
<o Co Co Co [ cp Corrected
EPSX D2/t flange |(0-0/) | corner |flange | (D-0/2) | corner Kthco K theo. Kezf.
1-30 4.665 <6995 +7190 | -6894 - 6122 <6182 +6133 3:785 3.252 | 4.155
I-40 10- 66 - 6621 + 6803 *6540 - 6122 ‘6182 - 633 4.2058 3.707 4:/%
1-50 23.79 - 6323 -64383 <6270 $ 6122 ' 6l82 - 6133 4.636 4:177 4:19%
1-55 35.13 -6213 -6380 6169 <6122 *6132 - 6133 4-798 4348 | 4-19%
1-60 5148 +6/30 <6275 . 609¢ 6122 16182 + 6133 4-99¢ 49-514 4-199
1-65 74-81 <6075 6242 | - 6032 6122 »6(82 * 6133 5.017 4.587 4198
/.70 107-8 16045 6208 *59%¢2 16122 + 6182 «6I33 5 042 4. 603 4.19¢
1-75 154 - 60IS 6174 | -5963 -6122 6182 <6133 517 4-691 4199
1-80 2/%8-6 - 600% - 6158 +5%49 <6122 v 6182 «6133 5-149 4-730 4199
1.-85 307.6 +5994. . 5:3§ 5943 *6122 *6l82 6133 5.-167 4-754 4-198
1-90 429.5 | «5983 6104 .5936 <6122 *6182 ° 06133 §-182 4.774 4.198
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(iv) Pressure Distributions along Pipe Wall.

Figure 3.16 presents a computer result of pressure variations
along pipe wall for a # = .7 orifice meter.The velocity profile used
to get the result was again a power law type defined earlier.The curve

obtained is very similar to the one presented in BSI 1042 (pg.21).

3.5 CONCLUDING REMARKS.

The development of the model for orifice metering - has been
presented in this chapter.The essential features of the model

development may be summarised as follows,

The geometry of the orifice metering has been shown with the
locations of inlet and outlet boundaries from  the orifice
plate.Variable number of grid distributions upstream and downstream of 4he

orifice plate were also noted.

) In the interest of the computations and the modifications
required to the TEACH-T progranm,the domain of calculations has been
shown which includes the wall boundaries,inlet/outlet bouniaries and

also symmetry axis.Incorporation of Dboundary conditions and inlet

velocity profiles were also presented.

The calculation of discharge coefficients and pressure 1loss
coefficients have been presented briefly including the correction

required for computing the pressure loss coefficient.
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The developed computer program was then run extensively with
p = ,7 orifice plate to investigate upstream/dowmstream distances,grid
distributions and convergence criteria.This hal to be done in the
somewhat iterative fashion as explained.The finally chosen model was
one with a (16/16) grid distribution upstream/downstream of the orifice
plate and with upstream and downstream distances of 5 and 15 diameters
respectively.The resulting model was one with a (32x22) grid
distribution (22 in the radial direction) which gave a grid independent

converged solution.

Lastly,some detailed results for a @B = .7 orifice meter were
presented for the discharge and pressure losé coefficients.These
jndicated encouraging agreement with experiments.These -results are
presented again and discussed more fully in the next chapter where
additional results for other /3 ratio orifice plates are also

presented.

I+t is of interest to state the run times and storage
requirements for the developed model.The program was run on thé ULCC
CcDC7600 machine and the departmental PRIMES50 mini computer.For the CDC
machine the typical run time is 40 seconds and for the PRIME it was 150
minutes.®With regard to program size the program required 33 K Words of
60 bit memory on the CDC7600 machine.As may be realised the
development of the basic model required many  runs of the

program(approximately 250).



CHAPTER 4.

APPLICATIONS OF MODEL AND QUANTITATIVE VALIDATIONS.

4.1: INTRODUCTION.

Having discussed the developments of a model based ona B =
.7 diameter ratio thin orifice plate in the last chapter,it remains to

present more detailed validations for a range of /3 values.

In this chapter,such results are presented for .3§ B § .7

for orifice discharge and pressure loss coefficients.

First we present the results for direct comparison with those
from BSI1042 (1964) for discharge coefficients and Ward Smith (1971)
for pressure loss coefficient.For these results,the following was
assumed,
(i) a power law inlet velocity profile,
(ii) a low level of turbulence at the inlet,
(iii) a thin orifice plate,and

s
(iv) a Reynolds number of 1x10 .

We then proceed in section 4.3 onwards to present results for

variations in the abecve quantities.These results are not compared with

72.



experimental results as generally corresponding experimental data do
not exist.The results however do indicate the sensitivity of the

orifice meter coefficients to such changes.

4.2:DISCHARGE AND PRESSURE LOSS COTFFICIENTS FOR DIFFERENT 8 .

v

Table 4.1 presents the discharge and pressure 1loss
cecefficients for the different values of orifice to pipe diameter ratio
p . It can be seen that the values of the computed discharge
coefficients for flange and ccrner tappings are decreasing very slowly
as p ratio increases,while the corresponding experimental coefficients
show the reverse behaviour(ie increases with increasing /3). Fof D-D/2
tapping,the computed discharge coefficient decreases with increasing A3
in the range .3 & B & .5 and starts to rise again beyoni g8 =
.55.However the corresponding values of experimental discharge

ccefficient increases slowly with increasing values of 8.

Prom the table also,it can be seen that the computed values
of discharge cocefficients at the extreme ranges of /A are not as
reliable as those values which lie between the extremeties of /3 .This
is in agreement with the proposal of Stearn et al(1951).The computed
values at the 'central’ region c¢f the B range agree very well with the
data.As an example the predicted discharge coefficient for flange tap
for B = .45 was found to Dbe .6059 compared with data .6050 frem
BSI1042.1It is only about .135 in error.Sinilarly the predicted values
of the coefficients with D-D/2 and corner tappings are respectively

within about .4,Qand 1% (see fig.4.1).

3.
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Figure 4.1 shows the percentage variations of the computed
discharge coefficients for the whole range, .3 B & .7 for all three
pressure tappings considered.It can be said that the variations of the

‘coefficients for the tappings with the available data are within

£ 3.27

Table 4.1 also shows that the theoretical and corrected
theoretical pressure 1loss coefficients decrease with increasing /3
ratio,this is in accordance with the experimental data'Kikgo is the
theoretical value of pressure 1loss coefficient when the effects of
frictional resistances due to pipe wall and due to orifice plate are
jncluded,whereas 'corrected ‘&*u' is the pressure 1loss coefficient
corrected for the pipe wall loss and therefore represents the loss due
only to the orifice plate. Tnese latter values must be compared with
the experimental data,Kaz’.

Figure 4.2 presents the percentage variations of the
corrected pressure loss coefficients with the availabe data for .3 ..
g 7.1t can be seen that the variations increése with increasing‘p .The

error is minimal for & .35 but increases with A to a maximum of

14% at g = .7.

4.3:VELOCITY PROFILE DEPENDENCE.

Two types of velocity profiles have been used in the present
study,namely the power-law and flat velocity profiles.The 1latter
profile has been used to show a typical profile sensitivity for the

computed orifice coefficients.
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4.31:Power-law Profile.

The power-law velocity profile is defined by the curves which

obey a simple-law curve (Blake,1976) given by,
L
Y
ucr) = Un'\a:c(l E)P (4.1)

where qﬂu’.is the maximum fluid velocity at the central region of the
flow distributions,r is the radial distance from axis of symmétry where
fluid velocity is the highest,R is the pipe radius.The power-law index

p is given by

P = 7-48 +5-93% 10~ Re, = &-16x w0”™% (Rez)z (4.2)

where Re‘ is the pipe Reynolds number <which is related to orifice

Reynolds number Rea_by
= e
Re, P Rea (4.3)

where 13 is the orifice to pipe diameter ratio.It is clear that from
equations (4.2) and (4.3) the index p depends on both @ and the

orifice Reynolds number Rez.

It is this velocity profile +that has been used in the
developed model for orifice metering and the quantitative results

presented in Table 4.1.

8.



4.32:Flat Profile.

For a particular pipe cross-sectional area,if the fluid flow
across the section is always uniform(ie the flow does not depend on
radial distance,r from axis of symmetry),the flow profile is said to be

fiat(or uniform) and is given by

Ui = %%—'— | (4.4)

where ’l = fluid viscocity,

o
»

fluid density,
D; = pipe diameter

and Re’ = pipe Reynolds number.

The variations of discharge and pressure 1loss coefficients
with velocity profiles are obtained from table 4.2 for B in the range
3 ﬁ § 7. All the values of discharge coefficients with flat
profile are slightly lower than those values when power law profile has

been used for the model.

Figure 4.3 shows the variations of discharge coefficients
with all three pressure tappings.The curves were obtained by comparing
the coefficients for flat profile with those computed for the power-law
profile (the basic model results). It can be seen that the variations
are quite small for .3 & B .5 but then increase with 8 to a maxinum

error of -1.675 at g =.7.
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Table 4.2 also presents the variations of the theoretical
pressure loss coeffficients(corrected and uncorrected) with /3

ratio.These predicted variations increased with increasing /3 beyond /3

> 04.

The percentage variations of +the corrected pressure loss
coefficients from the model values are found in figure 4.4.It has been
noted that as g ratio is increased,the variations of the predicted

pressure loss correction coefficients increase to a maximum deviation

of 3.2/t B = .T.

4.4:TURBULENCE INTENSITIES AND LENGTH SCALE FACTOR DEPENDEYCE.

The level of turbulence intensity i used to obtain the moael
for orifice metering has been quite low (3??) whereas the length scale
factor A was even lower (O.S%)."‘hese values of i and A are varied to
assess their sensitivity on  the discharge and pressure loss

coefficients.,

There are essentially two methods that >author employed to
show the dependence of the orifice coefficients on i and
“\ .Firstly,either i or A are varied keeping the other fixed,or both of
them are increased simultaneously by the same factor.Secondly,the
values of i and A were obtained from previous computations downstream
of the orifice plate and these values are then used to simulate the
program.The reason for doing this is because just downstream of the

orifice plate the flow will be extremely turbulent and would
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Theoretical Discharge Coefficients.

Cp ftange Co (0-04) Cp corner Ktheo Ca?;ce?d
= _g_l: power | flat | power | flat | power | flat | power | flat | powes | flat Kex p.
3 <6187 «6!7t | -6178 | <6163 |.6192 6176 | 292.2 | 2937 | 298 | 293-2 | 297.¢6
-4 -6082 | -6o7o | -6073 | -6064 | -6087 | -6074 | 873¢c | 87-70 | 8690 | 87-20 | §5.07
5 16036 | .6012 | +6037 | -6016 | -6039 <601t 3/1r70 3/-99 3l-27 3/-51 29.87
1~ <606 | -5967 | -6048 | ‘6005 | -6007 | 5944 12-63 I2.9¢ /12:2] | 12°42 /-3¢
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realistically represent a highly turbulent field.

Table 4.3 shows the effects of changing the turbulence
intensities i and length scale factor A for p = -7 orifice plate.The
power-law profile has been used to simulate flow fields.The model

values of orifice coefficients appearing in row (a) are used for the

comparison.
Theore tical Discharge Coefficrens
Row 4 A flange | Co-0) corner K“"“ . kr::‘n .

@ |-o°3 .005 | .5983 *blog | 5936 ‘5402 4.774

b |01 |roos |-saqr | ena | .sms | 567 | 47eg

© 03 |+015 | +597%8 - 6029 + 5328 5194 4+738

@ ' 09 o015 | +5%%e <6108 594 5177 4.760

(@ |-02 |64 | +5833 | .6023 | -580s | S-412 | S.0854

Table 4.3:Effects of Changing Turbulence Intensity i and Length Scale

Factor A for a @ =0.7 Orifice Plate.

In the second,third and fourth rows of the table the orifice
coefficients have been obtained by +the use of the first method
described above.The values appearing in row (b) have been obtained by
tripling the turbulence intensity i while keeping the length scale
factor A fixed(.S?‘).Although the results of discharge coefficlents
are siightly greater than those of model values,the variations are very
emall .13% (for flange), .137% (for D-D/2) and .20 % (for corner)

respectively.This shows that changing i has a small affect on the
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discharge coeffiient for all tappings.

The correspending corrected pressure leoss ccefficient has
slightly lower value than the model value.This variation is also small,

within .5‘/0.

The orifice ccefficients appearing in row (c¢) of the table
was obtained by tripling the length scale factor ) and the turbulence
intensity i unchanged(374).It can be seen that the computed discharge
coefficients do not vary so much with the model values.They are within
.08% (flange), .08%(D-D/2) and .3%(corner) respectively.Similarly the
;ariation of corrected pressure loss coefficient is very small, within
.izplt therefore can be ccncluded that by tripling the length scale
factor and keeping turbulence intensity unchanged do not affect the
orifice ccefficients since their variaticns with model values are

neglizibly small.

Similarly very small variaticns occcur when both i and A are

increased by same factor of 3,(see row (d)).

It may be summarised therefore,by using the first nethcd
discussed earlier, that the orifice coefficients(ie discharge and
pressure loss coefficients)are not sensitive to turbulence intensity i

and length scale A that may typically be encountered.

In obtaining values of discharge and pressure 1lcss
coefficients in table 4.3 in row (e),an entirely different approach has

been adopted.The author found the average turbulence energy k across a
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radius downstream of the orifice plate at the last grid 1line of the
computational domain,where the variations of the energy across the pipe
are small.From there the turbulence intensity i may be computed

according to relation
- 2
= a" U'
4 / i (4.5)

where ka” is the average inlet turbulence kinetic energy and Uan_'being

the inlet velocity.

The averaged inlet dissipation rate €ay has been obtained

from previous computational results in similar manner to that described

above.Since ka”,and ea, are related by

%
éw/f (4.6)

n

Earv

it

4 A R

where (4.7)
(R being the pipe radius)then the length scale factor A may be

computed from above relations as 840.,ka”,and R are known values.

It was unfortunate however to adopt +this type of approach
since the computed i is always less than 355(the model value) whereas
for length scale factor A always very much greater than .S,Q(the model
value for A ).For a particular values of i=0.02 and A = .64 which was
obtained by this method (see table 4.3 in row (e)),the computed results
for discharge and pressure loss coefficients were tabulated.It can be

seen that this type of approach has produced a significant variation on
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the orifice coefficients.

The variations of orifice coefficients with the model values
are within 1.7% (flange),1.3% (D-D/2) and 2.2 % (corner)

respectively,whereas for corrected pressure loss coefficient is about

5.9%-

All the results for the variations in i and A are summarised

in table 4.4.

Predicted | Theorehical Ddischarge and
Pressure Loss Coefficients
Row Cp flange | Cp (0-DMm) | Cpcorner |Greectd Ky,
) 413 v I3 4 20 - .5
© - .08 - -o3 -3 |+ 03
@ + .05 <+ *06 + +0¢ - +3
© - 1.7 - 13 -2.2 + 549

Table 4.4:Percentage Variations of Orifice Coefficients With Changes

of i and A .

4.5:0RIFICE PLATE THICKYESS DEPENDENCE,

The model developed in this study was for a +thin orifice
plate based on a @ = .7 and power-law velocity profile.In this
section,the above model will also be used to demonstrate how a thick

orifice plate would affect the orifice coefficients(ie the discharge



and pressure loss coefficients) .For this,a series of computer program‘
were run by using the model with different values of
compression/expansion factor EPSX from where the orifice plate
thickness has been defined.All results of the coefficients wexe
tabulated as can be seen in table 3.4.It can be noted the discharge
coefficients for all three commonly used pressure tappings decrease
with increasing EPSX until a certain value where the discharge
coefficients are essentially constant.This 1is the thin orifice plate

region.

For a more clear visualisation,the variations of discharge
coefficients (for each tappings) were plotted versus 179./1& (the
reciprocal of tl&ﬁz -the convenient  specification for plate
thickness).This can be seen in fig.4.5. Tﬁe curves show they tend to
level off at asymptotic values of ~~ 0.6(flange), ~- 0.61(D-D/2) and
~0.59(corner) respectively.For the sake  of comparison,the
experimental data for discharge coefficients for both tappingé are
however shown tabulated on the same figure 4.5.From these results thin
orifice plate region can be defined as that where the discharge
coefficients are asymptotically constant.For flange and corner tappinss
this would be for a value.of D2/t » 125 or t/Dz..4 .008.1t is
interesting to note that for the D-D/2 tappings the asymptotic region

occurs when D2/t 3 350 or t/D « .003.

It is of interest to note that BSI1042 recommend that the
orifice plate thickness should be such that ,

t/, < .02 when B8 > .2

(see figure 3.2 in chapter 3).In terms of t/Dy this inequality
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becones,

t/D’_ < .02 /g for 8> .2 .

So for /3 = .7

t/Da.  +03 or Daft 3 33

The results of this study indicate that the orifice plate
should be thinner to ensure that the discharge coefficients (and
pressure loss coefficients) are in an asymptotically constant region

(see figure 4.5).

The curves therefore have indicated that the discharge
coefficients does depend on the plate thickness markedly.The thicker
the orifice plate,the greater is the discharge coefficients.Thick
orifice plates are therefore not practically used for orificé metering

as discharge coefficient would vary as the orifice plate became thinner

(due perhaps to wear).

Figure 4.6 shows the variations of discharge coefficients
with plate thickness for different values of B in the range .4 & B8
.7.Bach curve however shown only for flange tap.It can be seen that the

curves are constant.

The variations of the corrected pressure 1loss coefficient
with orifice plate thickness (for 8 = .7 orifice) is shown in figure
4.7(results taken from table 3.4).This also shows an asymptotically

constant region for thin orifice plates(B/>150).
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4.6:REYNOLDS NUMBER DEPENDENCE.

The Reynolds number of 1x105 has been used for modelling a Y-
= ,7 orifice plate.The following will demonstrate how the change of
orifice Reynolds number affects the discharge and pressure 1loss
coefficients.As already mentioned previously the power-law velocity

profile has been used for the model.

Table 4.5 shows the variations of discharge and pressure loss
coefficients with orifice Reynolds number.From the table it can be seen
that the predicted discharge coefficients increase with the Reynolds
number.The corresponding experimental data show the opposite
behaviour(ie decreasing values with increasing orifice TReynolds
number) .The percentage variations of the coefficients with the data are

also shown in the table.

Orifice| Theoretcal ~ Experimental
Reyndds Dtscharge Discharge puc_m *’3‘
Number Coefficients Orefficients Variqttens

R Co Co ¢ cp 2 =7 C < e
2 | flange |(0-04 )| Corner Flange | (0-bn) | Corner | Flange (_p-p/,) Corner

18 lOs -5983 -6’b+ '“3‘ ’6‘12 "192 0‘133 -2'30 -"3% - 3'2’/0

0
25x10° | 6235 |- 6363 |- 6164 |-G0%2 | — | — |42 — | —

1x0°|. 6356|6509 |.6253 | 6037 | — |.coss +53) — |+2.8%

Table 4.5:Variations of Discharge Coefficients with Orifice Reynolds

Number.
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The variations of the corrected pressure loss coefficient may
be obtained from table 4.6.The table shows the coefficients decrease
with increasing Reynolds number.The percentage variations from the

experimental data are also shown in the table.

Orifice | Corrected Percentage
olds
5:?-.1-.' » Res Ku’“’ K theo. K txp Variativng

1% 10° 5.182 4. 774 4.198 |413.7%

2.5%x10° | 4-623 4.2%) 4199 +2.0%

1% 10° 4.318 4.05% 4198 -3:37%

Table 4.6:Variations of Corrected Pressure Loss Coefficients with

Orifice Reynolds Number.

It is interesting to note that althougzh the variations with
Reynolds number show marked changes in the computed results compared
with small changes in the experimental results.The computed results
have errors which fall either side of the experimental results as the
Reynolds number is increased.In fact for the corrected pressure loss
coefficients a much better comparison with experiment is achieved at

high Reynolds number.

Before concluding this chapter,it should be pointed out that
after the author had completed his study on orifice metering,a paper
entitled 'Numerical Modelling of Turbulent Flow Through Thin Orifice
Plates' by R.W.Davis and G.BE.Mattingly was discovered.This was

presented at a symposium, 'Proceedings of the Symposium on Flow in Open
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Channels and Closed Conduits' held at NBS, Gaitersburg,M.D{issued
October,1977).Their model was also based on the k-€ turbulent TEACH-T
computer model and therefore the following will show how the discharge
coefficients in their study compare with the results obtain=sd in the
present study.The comparison are howsver for D-D/2 and corner tappings
and with ﬁ ratic in the range 0.4 J< § 7.There is no data on
discharge ccefficient with flange tap and pressure loss coefficients to

compare with.

Table 4.7 shows the comparison of the computed discharge
"coefficients(for D-D/2 and ccrner tappings) with data of Davis and
Mattingly (1977) .They have used a power-law velocity profile with
1/9-th. power index p,whereas in the present study the power index of
~ 1/12 has been used.The results indicate quite similar values except
for the B = .7@-D/2) tapping result. Typically the variations for the
other results are,é tar2 Z.Bearing in mind that the results were

c¢btained completely independently the agreement is quite encouraging.

Cp (D-0/2) Cp (Corner)
o/ Present |Davis and | Present |Davis and|Percentqge Varlations
/3 )] Si-udy Mauinsly S"UJQ Ma*h'ng'y Cp(0-0) Cp(urncr)
-4 - 6073 . 615 6087 13 -13 -1-2
5 + 6037 + 609 + 6039 - 607 - <9 - 5
.6 <6048 . 616 + 6007 +602 - I8 - 2
7 - 6104 . 637 - 5936 - 59) -4.2 + 4

Table 4.7: A-ratio Dependence -Ccmpariscn With Data of Davis and

Mattingly (1977).
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4.7:CONCLUDING REMARKS.

The quantitative results presented in this chapter for 0.3

3‘0.7 orifice plate computer simulations lead to the following

conclusions.

(a) The discharge coefficients (flange D-D/2 and corner
tappings) can be predicted to within approximately <+ 3‘/0 of those
reported in BSI 1042.In the mid-range /3 = 0,45 +the agreement is
excellent whereas the maximum deviaticn occurs at the extremitiss @ =

0.3, B = 0.7.

(b) The pressure loss introduced by the orifice plate can be
calculated to within 15% of that cbtained experimentally.For 0.3 B
§ 0.5 the error is less than 5% whereas after 4 = 0.5 the error
increases rapidly to maximum (15%) at B = 0.7.A plausible explanation
for this is that at high & the pressure drop across the orifice is
small so any errors in the calculation procedure will be magnified and
also errors arising from calculating the ccrrection required to account
for the pipe wall lcss will be significant. At small & the pressure
loss due to the orifice is 1large compared tc¢ the wall 1lcss and

therefore such errcrs will not arise.

(e¢) Various sensitivity tests were done with the following

resul ts.

(i) The velocity profile affects the orifice ccefficients,the

difference between a power-law profile (approximately 1/12 index) and a
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flat or uniform profile being about 1/4 - 1.5% for discharge

coefficients and 1/2 - 336fbr pressure loss coefficients.

(ii) In general typical variations in turbulence intensities and length
scales have a very small effect on the orifice coefficients (both
pressure loss and discharge coefficients) .However hizh turbulence
levels such as those encﬁuntered 10-15 diameters downstream of an
orifice plate lead to significant changes (1 - 2 ,Gfbx'discharge

coefficients and 636 for pressure lcss coefficients).

(iii) The orifice plate thickness has a marked affect on both
coefficients when the thickness is above some particular value.This was
found ta Dbe Dz/t < 125 for flange and corner tappings and Dz/t < 350
for D-D/2 tappings ,where D, is the orifice diameter,t the
thickness.This insqualities define what 1is meant by a thin crifice
plate.They seem tc violate that from BSI 1042 implying that the orifice

plate should be thinner.

(iv) The results presented were for Rez ='1x105..Increas.;ing the Reynclds
nunmber led to changes in the ccefficients ccntrary to experiment (BSI
1042) where they are essentially constant.The reason for this is
unknown and need to be explored further.It was interesting to note that
although the theoretical results varied with Reynclds number they

straddled the experimental result.

(d) Independent results presented by Davis and Mattingly at
an NBS symposium were discovered after completicn of this

study.Ccmparison of their results with those presented here showed an
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encouragingly clcse agreement.

In conclusion it would appear *that the basic mcdel can be
used t¢ calculate quantities .of interest to the designer and user of
orifice plates.Althocugh the maximum errors of +3 % in calculaticn of
discharge ccefficients are tcc large for accurate metering the basic
trends found are correct.In contrast the pressure loss errors of 15 %

are sufficiently useful for practical design purposes.
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CHAPTER 5
CONCLUSIONS

The study presented in this thesis set cut to apply the k-§
turbulent mathemaical mcdel develocped at Imperial College London,to
orifice metering. Before embarking on this the author explored the
underlying theory behind the k-& mcdel and this has been presented in
this thesis together with programming details.Mcst of this work has

been relegated to the varicus mathematical appendices.

The careful development of the orifice meter model preserted
in Chapter 3 followed by detailed application results to thin orifice
plates presented in Chapter 4 (summarised in section 4.7) has clearly
shown the value of this type of modelling.The prediction of discharge
coefficients for a range of diameter ratio values (Ag) to within a few
percent(i}}%) and pressure loss coefficients to within 155% indicates
that such models will find increasing applications in future studies of
the orifice meter and other related differential préssure flow metering

devices such as venturi meters and various forms of nozzles.

It would appear that a combined experimental/thecretical
apprcach t¢ the understanding and design of flow mete;s in this class
would be useful and timely.Timely in the sense that the processing
power ¢f digital computers has reached the stage,as indicated in this
thesis,where extremely useful results for the previcusly initractable

prcblems ¢f turbulent recirculating flows can be sclved.
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To give some idea of the power of this approach it should be
realised that if the results presented in Chapter 4 were reproduced
experimentally,they would require (according to the author's estimate)

at least 120 separate experimental runs.Bach of these would be costly

and time consuming.

Although the present model developed applies to two
dimensional axisymmetric flow through a concentric orifice plate,in
theory turbulent models such as the k- € model presented here,can be
applied to three dimensional flows, for example those encountered at
bends upstream of an orifice meter.The limitations on such modelling

are still the 1large store and computing time requirements for a

solution.

More easily solved problems at present would ©be the
jncorporation of swirl into a two dimensional axisymmetric flow.This
would require the addition of another component of velocity W in the
azimuthal or out-of-the plane B-direction.The k- € model would have to

be modified and then solved for this additional variable.

Regarding the best form of man-machine (computer) dialogue it
would appear that future work should concentrate on the development of
interactive programs with extensive use of graphic facilities (such as
those available in our departmental PRIME 550 computers).With the
addition of extensive pre and post- processing facilities to basic
analaysis programs (such as the one developed here for orifice
meters) ,very effective interaction will be achieved.For example the

preprocessor could prompt the user regarding the orifice geometry and
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flow conditions required by the user,whereas a post processor could be
ugsed to interrcgate the resul ting solution to investigate
pressure,velocity and turbulence fields anywhere in  the flow
calculation domain as well as displaying the entire field graéhically
if required.For example flow streamlines could be displayed as could
pressure contours and velccity vectors.This area is an important area
for further investigations.General and extensive work on pre ani post
processors is being .done by variocus interested group within the

Interactive Computing Facility (ICF) of the Science Research Council.

Locking further into the future it would appear 1likely that
finite element Dbased equivalents of the TEACH-T finite difference ccde
will be develcped. These may have the advantage of greater flexibility
in describing complex boundaries and boundary conditions.In addition
muqh of the finite element software such as mesh generation

preprocessors and post processing 'viewers' will then be appropriate.
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APPENDIX A

A.1:DERIVATION OF VAVIER-STOKES' DIFFERENTIAL BUATIONS

An infinitesimal volume of fluid element which at time t has
the shape given by fig:A.t+ will be considered.Its velocity in svace
x; = (1.93) 1=1,2,3 #ill be denoted by @(%é, ¢) and moves following
the fluid so that 1its acceleration will be given by the substantial
derivative of the velocity.We also assume the body force per unit mass

will be denoted by,
B = By< + B44 + B3% (A1)

apd is not shown in the figure.

A
< > Oyx *+ 36y
PO IR % e o A -
™ ‘:..,:. PR \ h :-_{>%+%?udz

e Oy + 35y

- - --—-"-—-.- .
R
v ’

N

|

Fig:A.1 Shear and normal stresses in the x-direction




If the fundamental statement of Newton's second law in terms
of momentun for an 1nertial reference is applied to the volume

element,the following expression,

di = 5 (dma) (A.2)

will be obtained where dF is an infinitesinal force,B(& Gved) is
the substantial or total derivative(see Shames,1362),dm is the mass of

A A
the infinitesimal fluid and Y= u,-(x,,):c).

The force dg;may be resolved into its components,namely .the

surface force df and the body force Bdm to yield,

d& 4 Edm = dm

&>

-025 (a.3)

where dm is assumed to be constant.In the x-direction,equation (A.3)

becomes,

By + Bdm = b e QBB BELEE) )

From the fizure also,the following expression for the surface

force in x-direction,may be obtained,
a A A A .
df, = 5;‘5”4*-4943 *)@@x‘lﬂ'd“} + 23'9},,_{3 dxdy (A.5) -
P
which relates it with stresses 6‘,:-1' .

By replacement of equation (A.5) into (A.4),the following



113.

relations for the x-,-y and z-directions will be obtained,
(g%;;x.+ é%gzzv'*j%?géz)dh’ + lL‘fzd"‘\ e .
= ,ow(&‘,,,-};u» + “g%‘ux + ‘33%“:&-&:% ﬁ,,_)
A A A ’ .
(Fihy tRip +icSm) dv « Bypde
R ,. = /"d“"'(t'\g‘»?g“s +a3%u3 +a._7°:a3,%¢@) 5(A.6)
Gl 5P &lp v * Bedr
= ,"M(ﬁagja) + bty + L iy § 03)
/

where dv has replaced dxdydz(the volune element) and dm equals Y dv,

P is the fluid density.Above set of equations (A.6) may be

represented by a tensor notation,
A A
.’ - —d _2' . . hd

A A~
where 63; = O‘U is a 'diagonally symmetric’' tensor and reveated
indices implies summation-—i.e.Einstein notation.Muation  (A.7)

represents a general fluid flow when coupled with continuity equation,

.z%f + }&(fai) = 0 )4: '—'"2)3 (AoS)

which would be obtained from the consideration of mass conservation.

A
The sresses &gy cause deformations of fluid elements and

deformations are determined by ~
since these A deformation rates(or spatial variations 5% g of the
instantaneous velocities 2“ ) it'is possible £o relate t‘{wse sresses
with these deformation rates.The average normal sresses is related to
the instantaneous pressure /5 by,

A A

10y =2 - P _ (A.3)



The rates of deformation is split up 1into <two partse the

symmetric g..:, and antisymmetric parts 1:‘3 where, .

2.0 - Y .
e s Te) (A.10)
A - b& , 9:2’
with S = % (Szj N z;) (A.1%)
A - )A,; o
and Ty T "i('a";" = -?ﬁ-") (A.12)

The symmetrical part determines the deformation of fluid
elements and is called rate of strain(or deformation) tensor,while the
antisymmetric part determines a rotation of the fluid elements without

deformation.

If the fluid is considered Wewtonian, there must be a relation

~
between stresses 5.2_,' and the strain rate tensor &_-,- ,90,
~ s <4
Ok = ZPSYy fer 'y (a.13)
where Iu is the fluid viscocity.
For i = j, there is an additional contribution from pressure

fwhich causes either a compression or an expansion of the fluid

elements thus,
A . .
a’i‘)- = ausy - Py + Adbs Vi (A.14)

where SpJ :  the kronecker delta (or unit second order tensor)’
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d(= su= 23%) . the dilatron (A.15)

and Y is a constant to0 be deternined.This constant may be

obtained by the following contraction (summation) process:

?‘;,; = 2}.‘?&' "F T/ o 7\2‘84—'1:

(A.16)
2 1 =8
from where A =-FMtorif d(=5) # o (A.17)
after relations (A.9) and (A.15) have been used and the fact that,
Ses =3 (A.18)
By replacing equation (A.17) into (A.14) we obtain,
A /‘\” A NCoe (A.13)
Sy = AP W - P4 %ng‘tl

Equations (A.7) amd (A.8) now become,after slight

arrangenent,

Do) = 5%{ Pho + ap ) - 2R (p ey (8 (20
P + % lpi) = o (4.8)

which forms a general expression for the Navier-Stokes' differential
equations for compressible flow.However for a steady incompressible
flow with body forces neglected equations (A.20) and (A.8) now reduce

to,

Ta S A | 9 ét.
0w, U = 7 5.9 (A.21)
J%g r ox



A
and duc - O
—_
A Ag,, ~
where 6-4.:]‘ = —-P S“'J + 2pSy
A A
Al [ au' 30'
S¢y = 5 i g A
and Y 2(2':':; Z )

as the instantaneous rate of strain.

A.2:VORTICITY FORM OF THE NAVIER-STOXES' EQUATIONS OF MDTION

(A.22)

(A.23)

(A.24)

Refering back to equation (A.2%) now with body

included,we have,

J?L Qe = 7"5 3%"2;:, + B

forces

(A.25)

If relations(A.23) and(A.24) are used,then equation (A.25)

is equivalent to

z
A A - ,.‘..-L'A _LA. .
Ly'giklu' = /'az;f’ = ”Zbe%y“c + 04,

where ¥ = /llp" is the kinematic fluid viscocity.

(A.26)

A Ao
Now expression "‘J.Z%-‘“" on the left hand side of (A.26) can
J

be represented into other forms through,

A A

diy _ 0y 2
(5 -5 + YRY

P
g

A

= 2 {{\Jﬁ‘) ~+ 2%,_('2"%‘3‘)

"
.

2w (585 ) + & (244,
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A

. A. A-Ao
= - iAW (5 E) (.27)

¢

N
where GOk is the instantaneous vorticity associated with the

~
rotation tensor,ryf and is defined by,

A . A'
we = &4k %ic‘“«’ (A.28)

where 6‘,{]1& is the alternating tensor having values zero if any two
of i,j,k are equal; +1 if i,j,k forms a cyclic permutation of 1,2,3

and -1t if i,j,k forms an anticyclic permutation of +,2,3.

The secornd term on the right hand side of (A.26) may also be

written as,

¥ A a2 2 iy
vagyl = by ) ) e
which in turn reduces %9,
A . ~
¥ sgmghe = 7 Egkog h0)

after continuity is applied to the second term of equation(A.29) and

r{‘. - - 3!: Eﬂ‘i 3,( (A.31)

has been used.Now by replacing equations (A.27) and (A.%0) into (A.25)

we obtain

A A A a 2‘ A
- Ejk U + ';"z"ﬁz;‘(‘{)“.l) = "#ﬁ-i’fﬂ%bﬁ%ﬁk ¢ 8, (A32)
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which is the vorticity form of the Navier-Stokes' equations.



119.

APPENDIX B

B.1 REDUCTION OF NAVIER-STOKES' BQUATIONS 70 BERNOULLI TQUATION

If we assume that the viscous effects ¢f the fluid are
A
neglected and the fluid itself is irrotaticnal (i.e when Wjp = 0) then

equaticn (A.32) reduces to a simpler form,

%"G“?%) = -ﬁgfi‘ -+ BL. VA:’J. = 132/3 (B.‘)

For all i = 1,2,3 the follcowing expression will be cbtained,

~

2 (8) + 28 « Z(E) < <424 v & G

or in unit vector forms,(as can be seen in figure B.1),equaticn (B.2)

becames,
£ 5 (53) = ﬁa%,("i'a;) e B (8) <gp3 o
iR (k) + sRGE) rIEEY) < 55 Y
R (3 + 4B G + A LGE) - -44% O

where i,J and k are unit vectors alcng x,y and z respectively.
~ ~

By adding equations (B.3),(B.4) and (3.5) and ncting that

(see fig:B.1),
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3+ = YV x (8.6)
we cbtain,
A A
.v(i_vz) - .--'? Vf "‘2VZ: (B.7)
where . V = ) 7, + 3'2%‘_ t ﬁ}az"a (B.8)
A A Ay
and vie o= + 4 (3.9)
l:(’-)
?
4?.,(‘/ '1
, flow

, YTy

™Y

1216

> 2,(1)

Fig.B.1:A Bcdy Force(Gravitaticnal) Acting on An Elemental Displacement

Vector,_dj.-

On taking a scalar prcduct ¢f (3.7) with any displacement

vector dencted by,

ds = £dx 1t 3% + kdx (3.19)
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and assuming that,

X, 8 % (B.11)

a perpendicular distance from (xl-xa) plane,the following total

differentials will be obtained,

daoﬁ = —?df-—jdz (B.12)

and on integration,the Bernculli's equaticn will result,
1 i -
i wV ot s p t9F = &3 (3.13)

where c4 is a constant.Bquation (B.13) sometimes is written in the

fcllowing forn,

_Y__ + _L + Z = Cq. (B.‘14)
where Y = [oﬂ (B.15)

and ¢ 4 is ancther constant.The terms on the left hand side c¢f equaticn
(B.14) are respectively called velccity head,pressure head and

potential (or elevation) head.

The Bernoulli's equaticn which has been derived in equations
(B.13) or (B.14) used the assumpticns that the fluid flow is
steady,incompressible,irrotaticnal ,nc¢ energy 1locss due to viscous

effects,adiabatic(i.e. nc heat is added tc ,cr removed from the fluid)
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and the change in the internal energy is negligible.

B.2 APPLICATION OF BERNOULLI'S ®QUATION T9O ORIFICE PLATE

By applying the Bernculli's equaticn(B.14) for secticns ! and

3 of fig.B.2 w2 have,for hcorizontal pipe,

) |

P 4 T Pr o (B.16)
29 Y 29

where X = /A 3 (B.15)

and from continuity,we have,

Q = AU = AUy = A3 (3.17)

Assuming that there is n¢ energy 1lcss due tc¢ fricticnal

effects,equaticn (B8.16) becomes,by using continuity equaticn (B.17),

pi-pz = é%;lér[l - (%E)z} (B.18)

The flow'rate through secticn 3 is given by,

qQ = A, U, (3.19)
A3 2(
= — = - (B.29)
Z 4 p3)
- (A2\2
! (_A_i_)

where vq in equation (B.18) has been replaced intoc equaticn (B3.19) to

cbtain equation (B.20).The flow rate given by (B.20) has been cbtained
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by assuming that there is nc¢ energy loss due tc friction,so equation

(B.20) represent the flow rate of a perfect fluid in terms cf pressure

difference in the meter.This equation may be rewritten as,

A3 '

where Q—ﬂ\w stands for thecretical flow rate.In practice

Qiw, =

however,because of the frictional resistances ,the actual rate, qbnet is

less than the thecretical ones,i.e. Qu‘“ .These two quantities are

related by,

Ract

S Q theo. (B.22)

where a cocefficient , & , known as the coefficient c¢f

velocity,defined by

Actual velocty at vena coniach

c”— -
Theoretreal vedoc iy ot vena contractn

(3.23)

has been intrcduced.The actual rate of flow is now written as (by

replacing B.21 intc B.22),

As '
A2 | P
|- (13.)
i
The cross—secfional area A3 which is the smallest c¢rcss
secticn ¢f the flow (called the vena contracta) is unkncwn and less
than Ai the gecmetrical throcat form by the corifice.Define ancther

coefficient,Cqo as follows,
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Ce = .%; < (8.25)

in such a way that equaticn (B.25) is related to this lattest

ccefficient by,

Qua = Slehr |2 ap (8.26)
- |’
t
when relation (B.25) has been used and AF is a pressure drop across

the orifice,replacing (pl - pb).Since Cc as well as C¢r are functicns ¢f

/31 = m = i%? (where Ap and A are respectively the crifice and pipe
cross-secticnal areas),Ce in the dencminator of (B.26) is absorbed into

As and Cc and C,in the numerator of (B.26) are ccmbined to form a
AL

single coefficient Cg4,then the equation (B.26) may be writen as,

Ract = S Az %AF (B.27)

cd
where Cf = (B.28)

- G
1
is called the flow ccefficient (which is the ccefficient of discharge

1

with velocity-cf-approcach defined by the dimensicnless term 1 - (P/A)2
included);cf is alsc called discharge ccefficient ¢f crifice with

velocity ¢f apprcach factor included or called 'higher' ccefficient of

discharge( Buckingham,1956).

In our present study,the quantity Qa,ol' frem equation (B.27)

may be cbtained from the program,by

Qact = Us A, (3.29)
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where Ud;' and Al are the inlet velccity through the cross-secticnal
area Ay of the pipe.By combining equaticns (B.27),(B.28) and (B.29),the

following equation for the discharge ccefficient C4 ,

24p

is obtained.

It should be ncticed that equaticn (B.30) is the same as

equation (3.34) (see Chapter 3),wvhere A is the orifice tc pipe

diameter ratic (=%’=, where D2 is the corifice diameter and D; is the
]

pipe diameter), © 1is the fluid density,Uj, is the inlet velccity and

zq: is the pressure drop across the orifice plate.
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APPEADIX C.

MATHEMATICAL FORMULATIONS OF TURBULZNCE.

C.1:INTRODUCTION.

In modelling flow processes it is nesessary. to formulate some
mathematical equations which describe the flow.For Newtonian fluids
such equations have been formulated.These are the well-known
Navier-Stokes' differential equations(for the derivaticn of the
equations see appendix A).These equaticns apply to almcst all flows of

engineering interest including those encountered in flow metering.

To solve the Navier-Stckes' differential equaticns
numerically,wculd require an excessively fine finite difference meshes
in both space and time.Even with present day computers this is not
'feasible.The approcach adopted is to treat turbulent flcw ¢n a

statistical approach based on means and fluctuating correlations.In
| this Appendix the statistical descripticn of  turbulence is
intrcduced,Reynclds equaticn is derived by time averaging the
Navier-Stokes' equaticns,as well as  turbulent kinetic energy
equaticn.The problem ¢f clcsure in the Reynolds equation is discussed
in section C.4,and the particular clcsure leading tc the (k-€)
effective viscccity model is intrcduced. Derivation o¢f the (k-£) model

is discussed in Appendix D.



C.2 THR TIME-DEPENDENT NAVIER-STOKES' EQUATIONS.

C.21 The Equaticns:

For unsteady,compressible

equations are:

Mags Ccnservaticn.

£p 4 Q;J.O &)

Mementum Conservation.

2(pi) + ok (pie)

»
.

where g- = AS

-P

~ ~

flow, the conservation

i
o

0
}ijﬁa‘ + &

+ 3P§9 - g-,.«f&:,

;‘:J. - é(%*%ﬁ%) (strain tensor)

2 =5 " %ﬁi (dilaticn)

ug = velocity in direction-i (1 =1,2,3),

p = pressure,

B; = body force/unit mass in direction-i,

8g = kronecker delta,
L = fluid density,

M = fluid viscocity,

and A -sign indicates instantanecus quantities.

128.

transport

(c.1)

(c.2)

(c.3)

{C.4)

(c.5)
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Bquaticn (C.2) has been derived from Newtcn's second law of
motion(see Appendix A).It s called the Navier-Stokes'

equaticns.Equation (C.1) is a continuity equation which expresses the

conservation ¢f mass in a given ccntrcl volume.

C.22 Laminar and Turbulent Flcws.

The Navier-Stokes' equations apply both for laminar and

turbulent flows. They consist of four equaticns with six

A A
unkncwns,namely ui.(i-1,2,3),p,/a and fl.In addition to above equations
two other auxiliary relations are required tc completely describes the

flow;

(i) an equaticn ¢f state which may be expressed generally by,

P = /o(F,T) . (c.6)

A
where T is a local temperature and p is an instantaneous pressure.If

fluid is incompressible @ is a constant.
(ii) an equation expressing the conservation ¢f energy which is nct
stated here as it is not central toc cur later discussicns ¢n turbulent

mcdels.

¢.23 Difficulty of Solutions.

The Navier-Stokes' equations are non-linear and this one fact

that makes their solutions difficult.Although the set ¢f WNavier-Stckes'
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do not have a general solution, they may be solved under varicus
restrictive assumptions (eg.for a low Reynolds number laminar flew in
pipes or for plane boundary- layer turbulent flows).With the aid of

digital computers more complicated laminar flows can be considered.

On the other hand,for turbulent flcows,especially those with
recirculation (eg.the flow just downstream ¢f an orifice) this presents
considerable difficulties,since such flows are essentially 3-D and
unsteady.In addition, the time and length scales of the turbulent
mcticn vary over many orders o¢f magnitude-that is from those
characteristic of pipe size and flow velocity dcwn to microscales
approaching molecular dimensions.Thus although the Navier-Stckes'
equations are deterministic,tc solve them for turbulent flows by
computer would require an excessively fine finite difference meshes in

space.

Almcst all in engineering applicaticns,the flow properties
are time-averaged in order to reduce the excessive fine meshes for
their predictions.In this study the apprcach employed for turbulent

flows is based on the time-averaged equations.

C.3 STAISTICAL THEORY OF TURBULENCE.

C.31 Intrcduction:

The notion of fluctuations of velocity fields in study of

turbulence is fundamental.The fluctuaticns vary with time and space.In
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a steady laminar flow,the velccity dces nct depend on time,while in
turbulence it fluctuates in a fairly unpredictable way.The process ¢f
these fluctuations are perfectly compatible with the nction of
randomness.Consequently, turbulence may be described best Dby a

statistical apprcach characterised by means and correlaticns.

If a fluid flow is treated randomly,we may intrcduce a
concept of mean quantities.For example,the velccities G&(xt,t),i=1,2,3
at any position x;, may be measured as a function of time and then

averaged these measurements,as

(221

e,y = Ulw) = ',{'Tf iy (i, t)dt  (c.7)
' -1

This integral represents the limit ¢f averaging measurements taken at
successive moments of time and will itself fluctuate depending c¢n the
starting position and duration of the averaging processes.The time T
represents the interval cver which the averaging is to be carried cut
and it will have to be large compared tc any of the frequencies of the
fluctuations.Since‘ﬁi is a time dependence quantity,U; will then vary
slightly with time T ,but as T is made very large,the variation will be

negligible and Ug is consequently independent of time.

Méthematically this time-average is defined as,

14T
. !
8 (xt) = U() = .f_“:,, ;;thu,:(zc,t)au (c.8)

while experimentally,the averaging prccess is continued until the

A
fluctuaticns in ug are acceptably very small.
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If abcve definition depends c¢n the starting time of
integration,statisticians define the averaging process in a different
way.For example,if cne decides tc find the fluid velocity in pipe,one
would imagine making experiments on a large number ¢f pipes at the same
time.If there are N pipes with corresponding velocities ﬁg(x‘:,t),t
being the time at which the imaginary measurements are made,then define

an ensemble average by,

o
L

N
ity = bmo LS U700 (c.9)

N> J=!

Here,{ ) means a realisation average while is an

average with respect tc time.If <Q&(x£vt)> defined by (C.9) is

independent of time,ﬁk(xi,t) is also independent ¢f time,then the time

average equals ensemble average,ie

(i t) = Wil b > (c.10)

Condition given by (C.10) is known as the ergodic hypo thesis.

Since the fluid flow is fluctuating rapidly and randocmly,it
is convenient to assume that the instantanecus velccities Gi(xg,t) may
be split up into their ccmponents-the mean velccities U;(xi) and the

fluctuating parts géxi,t) in such a way that,

3::(?‘4@) = U(m) + %ilzapt) ,€=0623  (C.11)

where the mean quantities UgS(x.) given by,



Us(2) = Q‘:(Zl:: <) (c.12)

do not fluctuate,while ui(g;,t) are fluctuating quantities with zerc

mean,ie

up(zi,8) = 0 (c.13)

which would be cbtained by time-averaging (C.11) and then using (C.12).

A
The instantanecus pressure p is alsc deccmposed into its mean

and fluctuating parts ie,

P« P (c.14)

I P
0

C.32 Derivaticn ¢f Reynclds Equaticn.

Recalling equaticns (A.21) and (A.22) (see Appendix A) and by

assuming that the instantanecus quantities may be resclved into their

mean and fluctuating components,represented respectively by the capital

and small letters,in such away that,

A

w = Ui o+ w Uy 0. (c.15)

o)
1
o)
A
-
.,
o1
in
(o]

(C.16)

&

A . Y,
G = le + G;J 2 OL'J = o (C.17)
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Sy = Ss + Sy 84 = o0 (c.18)
with Zg = - PS.,:,' + 24 S":‘J' (c.19)
oy = —pdy 4+ apsy (c.20)
where 'Sa.j = 'é' (%'% N %%_) (c.21)

and Sg° = 'é'(g% T %‘i) > (c.22)

then we have the following expressions,

(U+4) 3%-("’-'*“") = 715"3% (Z-':j + 6) (c.23)
zhi.(ui"“t) = o0 (c.24)

On averaging with respect to time,the following equaticns

will be cbtained,

Uigh = 5% (Ty —ruy) (e.25)
ol a
d n—— = o (\"26)
an i -

Equation(C.26) is the continuity equaticn and equation (C.25) is called
the Reynolds equaticn which may be rewritten intc a mcre simpler form

by,

Uj%,U.: = -/-'5 %T{,' (c.27)
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where T;‘J‘ = 24;)' - PUYy (c.28)
and Ei;b-is given by equaation (C.19).

It can be seen that equation (C.27) has the same form as
’
Al
equation (A.21) (see Appendix A) if the Uﬁs are replaced by uis and

A
T“:J' by o.L:J' .

Thus the equations ¢f mean flow are the same as the ordinary

equations of mction,except that there are additional virtual stresses

dencted by,
’U,,j = - Py (c.29)

appear in the mean equaticns (C.27).These stresses are called the
Reynolds stresses,which represent the mean rate of mcmentum transfer
across a fluid layer due to velocity fluctuations.The turbulence mcdel
then ascribes how this correlation (relation €.29) and other
correlation,7f£;€; (where ¢I and %f are scalar and velocity
fluctuaticns) arising from scalar convective non-linear terms,are to be

found.This inveclves the problem of closure which will be discussed in

gsection (C.4).

C.33 Kinetic Energy of Mean and Turbulent Flows.

By multiplying the Reynclds equaticn (C.27) by U i »we should
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get the following equation,

uﬁ%.(é V) = 4 Za% (U:Ty) -

Ty S¢r (c.30)

In obtaining equation (C.30) the follocwing facts have been used,that
since bcth T&j and Sﬂf are symmetric tensors,they are 'survive' in the

. 20 20¢
on Tp as ontai th .
expressi 52; -52} contains the symmetric Sq and antisymmetric

tensors R‘;" .

Wnen equaticn . (C.28) for Tg is replaced intc equation
(c.30),the result so-cbtained is called the equation for mean kinetic

energy,ie

. p) . R —
UJ&}(%U; UL) = 5;3,(" ;ZP l{j +2) A S‘J - u‘-uj U“)

- 20 Sk 84y + adgy S,,:,- (c.31)
In arriving equaticn (C.31) the assumption that the fluid density /a is

constant has been used.

The equation for the turbulent kinetic energy(or  just
turbulent energy), k = i—u‘-u‘- may be obtained as follows;
Multiplying equation (C.23) with (U + ug) and replacing
:E:ff and GEI by (C.19) and (C.20),the following expressicns,with

slight rearrangement,will be obtained,
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U+ Vg« ucl + wew)d (U o)
= 7';("5-*“»’)%.(-”9‘ 1 2pSs5)

+ F';(U,_- + u‘-)z—%_(-f&g +2pSg)  (c.32)

By time-averaging of equaticn (C.32) ,the fcllowing will be

obtained,after some slight manipulaticns, .

Snm————

—— —_— U 2
l{.'%‘.(éuvf/c) + é.(muJ'Uc) - ucuy g—z}" + UJ;;J ({aca.)

T v EE) < L (- 2+ 2 U) 2SSy

+ zé%('f_*ﬂ +2Ju7$§')-—2/$«?$§," (c.33)

On subtraction of equation (C.31) from equation (C.33) the

equation for the turbulence energy,k will be obtained as follows

Uk (4T) = 2 (B - 2 B - 445

(Convection) (Difjusive Transpert)

- u;uJS - 22}59-5‘-/‘ (c.34)

<

(Produchan) ( Drssipation)
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C.34 Statistical Description ¢f Turbulent Flows.

In a steady,hocmogenecus pure shear flow,in which all averaged
quantities except Qj are independent of position and in which Sﬁf is

constant,the prcducticn of turbulence energy and its dissipaticn rate

balance each other (Tennekes,1972) so,

—ugup Sep = 2V Sy'sy’ (c.35)
or symbclically is denoted by,
@ = €
(c.36)
where ® = = Moy S{, (c.37)

is the energy producticn of turbulence and

€ = 20 SgSy (c.33)

its dissipation rate.

By employing the scale relaticn,

54‘ ~ yZ (c.39)

and the Reynclds stresses estimate,

T v (c.40)



139.

where W and oeare respactively the velocity and 1length scales,then

the production term @ may be estimated by,

@ =. - a".u‘,. S"’:J‘ P 1-3‘:’.

= AULSySy -~ (c.41)

where A is an undetermined ccefficient which is ¢f order one for mcst

simple flows(Tennekes,1972).Equation (C.35) necw  becomes,by using

equation (C.41) as procducticn term,

ARLSQ,'S».J = 2 S¢Sy (c.42)
where Rl. = }%',4’ (c.43)

is the Reynclds number associated with length scale £ .

It can be seen from equation (C.42) that when Ry is large,the
tern S"':f S‘:.l. must be very much smaller than S¢j Sy for equality to be

mantained,so

S"’:f S{, << SCJ' 34.:,' (0.44)

stating that the mean strain rate S‘;" is very much smaller than that c¢f
the fluctuating strain rate s‘y- when Reynclds number is larze.
Since strain rates have the dimensicn ¢f frequency (sec-'),

inequality (C.44) alsc implies that the eddies which contribute mcst
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to the energy dissipation have very small convective time scales
compared to that of the mean flow, which in turn suggest that there

should be very little interactions between Sg‘ amdéag.

The energy exchange between mean flow and the turbulence is
governed by the dynamics of the large eddies since these eddies
contribute most to the turbulence production 69 which increases with
increasing eddy size (see eqn. C.41).The energy extracted by ths
turbulence from the mean flow mainly at scales comparable t¢ the length

scale £ .

The rate ¢f energy tranaferred by the large eddies is ¢f the

J4
order U* with time scale ‘of the order 72 -The dissipation rate is
thus estimated by the ratic c¢f energy transferred tc the time

scale,hence .

e’

= B8 'y? (c.45)

for some coefficient B of crder cne.

Since at high ngnolds number s@f and Sqf are not strongly
jnteracted,then small-scale structure ¢f turbulence tends tc be
independent ¢f any orientaticn effects intrcduced by the mean shear sc
all averages relating tc small eddies do nct change under rotaticns or
reflections of the ccordinate system. This small-scale structure is
called isotropic and so any length scale for the estimate of S¢ must
be very much smaller than the length scale 1,for 09 - € is always to

be maintained.Here the small scale A is intrcduced, called the Tayloer
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microscale.

C.4 THE CLOSURE PROBLZM.

In the Reynclds equation (C.27),there are six additional
variables have been introduced,(jp;;q;).These are due to the
contribution of the turbulent moticn tc the mean stress tensor.This
tensor is called the Reyncld stress tenscr ani is composed of one point

correlation and is designated by relaticn (C.29).

This Reynclds stress is a diagonally symmetric'iiy ='§}£ with
the diagonal ccmponents of"z&f are normal stresses(pressures)-their
valuas are ‘ZQM by putting i=j.In many flows these normal stresses
contribute little to the transport ¢f mean momentum(Tennekes,1972).The
off-diagonal  components of Tgy (i%kj) are shear (or tangential)
stresses-they play a dominent roﬁg in the theory o¢f mean mocmentun
transfer by turbulent motion this also play a decisive r¢lé in
determining the flow behaviour as the fine-scale effects are primarily

expressed through them.

The system of transport equaticns cannot be solved unless
t@j is specified in terms of other mean variables-the system of
equations must be closed.In pginciple it is possible tc derive
additional transpert for thcse unknown correlations by multiplying the
Navier-Stokes' equaticn by {‘1* and averaging with respect t¢ time,the
resul ting new equation however contains further unknown higher crder

correlations of the form uiqf%k generated by the convective non-linear
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inertia terms u_,'%% .Indeed the differential equations for the

n-th.crder velocity ccrrelations can be derived similarly from the
basic Navier-Stokes' equations,but it will always comprise the unkncwn
velccity correlaticns of the (n+1)-th. order,as a consequence of the
non-linear character of the turbulence.It happens that in  the
process,there are mcre unkncwns than equations.Therefore at one
stage,it will necessary to make attempts to guess a relation between
the unknown correlation Tqu and SQf in such a way that a closed set of

equations is obtained.

The problem of the development o¢f turbulence mathematical
mcdels then boils down to finding Qn adequate method c¢f clcsing the set
¢f equations.The problém in general is called the “clcsure problem’ and
its soluticns are called ~turbulence mcdel’ cr “closures’

(Bradshaw(ed),1976).

Lower or higher level closures may be emplcyed in clcsing the

set ¢f equations.However in this study,the lower . level (second crder -

correlations) closure is employed.They in principle,include
cne-equation models,two-equation mcdels and stress-equation
models.These three models are discussed in details in

Braishaw(ed) ,1976,but in the present study,the two-equation mcdels or
the (k-g) effective viscocity mcdels is employed,and this forms the
subject of ngxt gacticn.The higher level closures are outside the scope

of this thesis.
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C.5 TUE (k-€)EFFECTIVE VISCOCITY MODRSL.

C.51 Basic Concept.

The Transpcrt laws for laminar flows-Newton's law of

viscocity and Ficke's law of diffusicn are assumed to be valid for

turbulent flows as well.These relaticns are ecalled the Tconstitutive

relations'.

The turbulent diffusional fluxes are expressed in terms o¢f

“effective'  viscocities(or “exchange' ccefficients) multiplied by

gradients of mean flow properties.These fluxes may be expressed as,

‘C‘:’. = - Fu‘,'“J' — a-/lts‘:i (0'46)
‘. rn Bd»
-rou = ‘&t 35, (c.47)
where S“J‘ - é.(%%* + %%.) (c.48)
2 =0 +ugtu; 20,
3 <819 ;9 =0,
¢ = gcalar variables,

O
"

A
fluctuating components ¢f @,

5
L]

A
LS fluctuating components of ug,

oF
.

turbulent or eddy viscccity,

Q,f = turbulent diffusivity.
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Boussinesq in 1877 (Launder,1972), has suggested that the
Reynclds stresses may be represented by the product ¢f the gradient of
the mean velocity and turbulent viscocity,'th- The value ¢f +this
viscocity will vary from point to point in the flow domain and hence it

is not a property ¢f the fluid itself.

The introduction of Mt and P¢,t provide a framework for
constructing a turbulence mcdel.It is necessary tc seek a method in
determining these quantities in terms of knoewn or calculable

quantities.

C.52 An Algebraic Formula fcr‘!Jt.

Basically f4 is obtained from the assumption that near a
wall region,the production o¢f turbulence energy k and its dissipation

rate, € balance each cther.For a two dimensicnal flow,the cross-stream

derivative agr is very much greater then the dcwn-stream derivative 2%2

,then equation (C.35) beccmes,

-W%L;—

where u and v are respectively velocity fluctuations in axial and

U
m

(c.49)

radial directicns.

In a fully turbulent region,the shear stress near a wall Tw

is assumed tc be constant and,
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- U = Lo (c.50)

f

Assuming that the dissipation rate is always maintained by
energy extracticn frcm the mean flow,this dissipaticn rate € 1is
proportional to wall stress, 1;0 and the distance normal to the wall,y

(Reynolds,l974) ,ie

5 (c.51)
&7
Hence (2 = -g—' (%) (c.52)

for any ccastant A.

The chocice of relation (C.52) is because when equations

(c.50) and (C.52) are placed into equation (C.49),the following

relation is cbtained,

U Ay
where U, = 1%% being the velccity friction.Bquation (C.53) may

be rewritten as,

+
dut = A (%) (c.54)
whare - U* = %'—C (C.55)

s
X
i

e

v (c.56)
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y - £

is the kinematic viscocity.
P

On integration of equaticn(C.54) will lead t¢ a 1logarithmic

mean velccity variaticn,

ut = A%(EH"’)

(¢.57)
where E is some constant.Equation (C.57) is equivalent to those

cbtained by using Prandtl hypothesis of mcmentum transpert (Hinze,1959)

with mixing length,ém given by,

¢n = XYy (c.58)
)

for any constant k for wall layer with J( = ’z' ,in this case.

Again,from equation (C.50),
—uv = bw (c.50)
?U .
= Y (-a-y—) (Boussinesq) (c.59)

- [:‘ (%By-)z (Prandtl) (c.60)

where Vt and tm are respectively turbulent kinematic viscocity and

mixing length ¢f the turbulence,in such a way that,

Pe = /"K':I%%l | (c.61)
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where ){c = % (c.62)

Relation given by (C.61) is known as Prandtl mixing length

model(Launder, 1972).

By equating equations (C.59) and (C.60) it can be seen that,

){t = ‘Cm ((m%'%) (c.63)
e
= ,em '_-E/"_z’.’ 2 by (C.50) and (C.60) (c.64)

ke
Twl]2 U
It is clear that‘-—/a-' and (Cmfg) act as velocity scales
for they have same dimension of velccity.HYence equation (c.64) may be

rewritten (with the help of equatiocn C.62),

where U is the velccity scale.This velccity scale would be the square

rcot of the turbulence energy,k for k* has dimension of velocity as

well.
Hence F‘t may be expressed as,
P = rl ﬂ* | (C.66)
where f = length scale (similar tc mixing length,b)y) ,

k = turbulence energy(: i-uiu,;),

P = fluid density.’
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In attempting tc eliminate the need for .specifying the
turbulence length scale £ as a function of position throcughcut the flcw
domain,several workers have explored the use c¢f a second turbulence
partial differential equation which in effect gives £.The differential
equation is the dissipation rate ¢f energy equation & which coupled

with k to give the (k-€) two-equation mocdel of turbulence.

In effective-viscocity mocdels the  turbulence quantities
employed are the turbulence energy,k and its dissipation rate, £ .They
have their own transport equations (see appendix D for their
derivaticns) whereas there is no equatiocn for L provided here and
deriving a transport eqd;tion for L is cut of scope in the present

study (its derivation may be found in Taylcr(ed),1930).

However,by generalising equaticn (C.52) to include part of a
bcundary layer where the 'cascade’ process (the prccess which transfer
energy from larger to smaller eddies) may be supposed to depend c¢nly on

P »< and £ (Launder,1972) cne take,

3
(3 = o -%' (c.67)

Thus in terms of k and € , F% may be rewritten as (ie,by

combining equations (C.66) and (C.67)),

= * (c.68)
f‘t» Cl*f-é- c.68

where Cu = the fundamental coefficient of proportionality between

stresses and strain rates.
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C.53 Scalar Turbulent Diffusivity ,a,t for ¢

The turbulence exchange coefficient th is prcportional te
the lccal density /D ,mixing 1length -em’¢ for ¢and characteristic

velocity W of the fluctuation quantity.!llathematically it is written as
(Launder,1972),

o6 = plae (c.69)

This mixing length &

?

¢ for the scalar variable ¢ has been

assumed to be of the same crder of magnitude at every pcint in the flow
dcmain as ‘em ,the mixing length for mcmentum transfer.A new quantity

a-at has been intrcduced to represent these ratio (ie. c¢n division ¢f
vt

equation (C.65) by equaticn (C.69)),

- ————{m

Ty, ¢ den, ¢

T

6‘¢’t = (c.70)

and is called turbulent Prandtl/Schmidt number.This number has been
expected to be of order unity.For free shear flows without bouyant
effects,most workers used the values of Og 4 in the range of .5 to
.7.For near wall flows in a round pipe,an average value of .85 has been

used successfully in heat transfer calculation (Launder,1972).

The turbulent viscocity and diffusivity ccefficients /Q and
fe

r&’£ (=6_¢,t given by the relaticns (C.68) and (C.70) have been

defined using the two-equation mcdel of turbulence.The problem now

reduces tc obtaining k and € cn which they are based for given
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Prandtl/Schmidt number 6.4} #-The derivations of the (k-€) equations and

Prandtl/Schmidt number @g for € are cbtained in appendix D.
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APPENDIX D.

DERIVATION OF THE 'k-g' TURBULENT MATHRMATICAL MODTL.

D.1:ASSUIPTIONS IN THE TURBULENCE MODEL.

In the mcdelling of turbulent flows 1leading to the kx-§g
models,the following fundamental assumptions have been used.
(i) The lccal turbulence Reynclds number,Re defined by (Launder,1972),
see also equation F.1(Appendix F),

Re = b - ek

is assumed to bYe large enough to neglect viscous actions on the

transport of k and & .

(ii) At high Rey the dissipation of turbulence energy is assumed to be

isotropic.This follows from cenditicn (i).

D.2:THE k=-BQUATION.

Recall equation (C.34) (see Appendix C) for energy of

turbulence,
UJ%,(-&@T) = -%}{“j(’% +hti) — 2y ul:szj}
( Convectim) m"“?"’t )

(p.1)

2

: U duc
-E 3 - (% =)
(Production) (Drssipation)

Dquation (D.1) is fecr a steady incompressible fluid flcw

which expresses that the energy supply tc the turbulent flecw from the



152.

mean flow by the action ¢f the shear stress (i.e. the production
term)and by turbulent diffusion due toc velocity and pressure
fluctuaticns and viscous action (the transport term) and dissipation of

k=€[u£ui is equal to the convecticn ¢f turbulent energy by mean mction.

The producticn term; -ugujS(f has been put in the form of

that in equation (D.1) since uguy is a symmetric tensor,so the product

of uguySey is equal tc the prcduct of uguy and the deformation rate

E%Qi. (Tennekes,1972). This tera represents the producticn ¢f k by
%j

turbulent shear stress.

Similarly the dissipation term,which has been cobtained by
replacing sg; terms by i- (-g—::-"L + %ﬂt )(see also expression C.2é of
Appendix C),thus giving the last term of the equation (D.1) as the
dissipaticn of k due to viscous action .The term on the ieft hand side

of the equaticn (D.1) is the convecticn of k by the mean flow.

The unmcdelled equation for k given by eqn.(D.1) represents
the exact equaticn for k.In mocdelling this equation to obtain the form
of equation the way it is sclved in the (k- ) equaticns,the following
assunptions will be made.The transport by viscous stress term will be
neglected at high Reynolds number(this will be discussed in the next
paragraph)compared with the transport due +to pressure and velccity
fluctuations.The distruction of turbulence is assumed to be isctropic
at high Reynclds number.The constitutive relaticns(see App.C, section

C.5) will be employed to the transport ¢f k as well as € .
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The transport of energy by turbulent fluctuating velocities

and by viscous stress of equation (D.1) may be estimated respectively

as follows,

3 3

TILRY Y 2
2y sy ~ iU =D»_\§_ (5.3)

and

where M is the Taylor micrcscale smaller than 2 .The ratic ¢f

equations (D.2) and (D.3) gives,

M = E-u = ER) (D.4)
2y W d

which states that when the Reynclds number R7‘ (= 2}%) is large then
from equation (D.4) the viscous terms may be neglected compared to the
turbulent velccity fluctuation terms -;-u‘-_u‘-_uj-.Hence equation (p.1)

reduces to,

Uydg(4P75%) = -Qfilpe gpucid) - picay 35 - pE (0.5)

%(

The turbulent diffusion of energy is assuned tc obey the

Q]

e,

u

"

é’\

where €

+ U )‘ (D.6)
X

gradient transport law,as already implied by the eddy viscocity concept

for the transport of momentum, (Hrn;c,l‘?ﬂ)

y(p gowcws) = -G B {P+ievaut e -Gif () O-1



154.

where rk is the turbulent exchange coefficient assumed to be

proporticnal tc eddy viscocity,i.e,'

['k = .g‘:!’. (see equation C.70,Appendix C) (v.8)
&

where 6} is Prandtl/Schmidt number for <the turbulent energy,k.This
assunption implies that the diffusion 1length scales for both mean
momentun and turbulent energy are proportional to each other and

represented by € .Bquation (D.5) now becomes,

Uk leh = BV - FZGYE - pe 0

Lo u;

where ﬂ (p.10)

igs the turbulence kinetic energy,and,

€ = -g»(%‘;:i + qu)t (D.6)

is the dissipation rates, J is  the (laminar) kinematic

viscocity.Equation (D.9) is called the k-equation.

For large Reynolds number,viscous dissipation of the kinetic
energy occurs in the smallest eddies.These small-scale structure tend

to be isotropic (Tennekes,1972) so that relaticn (D.6) beccmes,

o oue
€ =V %3@ (D.11)

as local isotrcpy does not prefer direction from large-scale mcticns to
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smaller ones(Bradshaw(ed),1976) and there is no correlation between

U and duy for the smallest eddies (Ideriah,1977).
= 1977)

D.3:THE & -BQUATION.

This equation may be cbtained via the dynamics c¢f mean square
vorticity fluctuations M“ -‘4.3-" +Below is the derivation of the
vorticity equation from which the g -equation may be derived.This
approach for cbtaining the & -equation is an criginal cne derived by

the author,

We have from equation (A.32)(see Appendix A) with body forces

neglected,the following equation,after some slight rearrangement,
2 (F 4 L&h ) = sk (§ 6 %
+74%% ) = ik (u -y%ﬂk
E(,o 29 JR LYy Dp "J) (p.12)

~
is obtained,where as before @p is the instantanecus vorticity

A
associated with the rotaticn tenscr -r,;J- +They are defined by,

A
O = Cyk Y (p.13)
and %ﬂ' = = —é&.‘]k a)k (p.14)

By applying the operator 'curl’ E"P? '5% into equation
(D.12) we cbtain,

Y
iy wgya (£ + £%%)= Coiby S Sy, (- 45) 1)
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The term on the left hand side of equaticn (D.15) involves

the product ¢f an antisymmetric tensor Eﬁﬁﬁ and the symmetric operator
*

tensor s—== and so it should vanish and c¢n the right hand side,the
0%, 0%

following identity

Eipq Ejk = (SPJ 8?‘\ - 6”8”) | (D.16)

has been used.So equaticn (D.15) now reduces to
o = (i) -7 (43 - »(Z2 - 3%
A Yty T,

or 0 5%(“ ~1) --a_i;( ) _y}a}i%zf + y%(%%;) (M.17)

By definition,we have,

0 A
5,, = CQPTL‘,‘UJ (v.18)
then on differentiation,
DA _ 2 dg
LR ACTE IR 019

gince divergence of a vector prcduct is zerc,and equation (D.17)

reduces further to,

.3¢5~ - _g_?g + a“‘" When P 235 924 (p,20)
]& J'

ﬁ1

where continuity
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%%:. 0 (p.21)
3]

still applies.

Recall back equation {A.10 of Appendix A),

PY e A A
%ﬂl = sdJ' + rij (A.10)
J.

A
On multiplication of (A.10) throughout by Wj then we have,

: A A
@-ﬁ;a‘; = WSy <+ O (p.22)
A A ~ I ‘e ~
since wj rd}j' = wJ- (- ééuk w,_)

= =Lferd 0.0
GEGE Wy (D.23)

A
= -éf;@ﬁhwj(sinw 3 gnd k are dunmy indices),

or :o"a‘, = “'iﬂ}jﬁah‘;’h(by interchanging k and j) (D.24)

By adding equaticns (D.24) and (D.23),we get the result that,

"
(]

A AN
“?lf‘,:j' (Do 25)

By replacing equation (D.22) into equation (D.20) we get the

vorticity equaticn,
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A A 3" A (D.26)
G2 = W Se Y ay '
Y% T OWW T Tmay s

Bquation (D.26) may be regarded as a starting point for
obtaining the - £ - equation.The idea is similar to c¢btaining
turbulence energy by first splitting the instantanecus quantities into

mean and fluctuating parts,with

4 = U + uc (D.27)
e = Lit we @.28)
gc; = 54” + Sy (p.29)
where S¢ = +( 32J + %.g‘.:.) (D.30)
and ' S = t(ﬁ—g + .g_;!:.) (D.31)

By introducing quantities (D.27) through (D.29) inte

equation (D.26),we get

(el (D +4) = (B + 1) S+ 5g) + »}%’%(nqu (0.32)
J

and ocn time averaginz shall cbtain,

%‘fi;n** ;5%%_; 5 + Wy +y$a._:3..ﬂ.: ~ (D.33)
J
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The energy of mean vorticity may be cbtained by multiplying

L with equation (D.33),

UJ%(%‘Q-C-Q-A'.) + 4 19-%%- = .Q.,: .Q.j‘ S.,J + Q: Wy S¢y

Q. jQ; (D.34)
Yy .
3% oy

v gy (0:0) -
I§ equation (D.32) is multiplied by (2 + We) then we get,
(20 s iy + wely + wcu.,-)-z%.(.n..: -+ W)
= (-Q,{_Q.J- + Qo0+ weddj + w,;w_,-)(SQ. +5g)

4y (R wc)YSQLa,Q. (% + ex)

and on time-averaging the following expressions will be cbtained,

2.0 o P vy Pt T .
sziij('in"'g*) + L4y '5% + Ui w“é‘% *“"?"J‘%'%T -r‘-’.agg%

J

= Q.94 Sﬂ' + Qiwysy' + Ryacsy + wgw; S

Y
2
N crree . 2 £L0.0) _ a‘q".)-ac'
+  WowySy +y55——.ay(2.0412.) )}ag S

2 (LTI Dme , da (D.35)
-ws%-;y(z W) =¥ ox
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Subtracting equation (D.34) from (D.35) we get

Ujsa%.(é'tdiwf) = [" wg'lﬂ'%%‘:' + W¢ u_’jsg'j  d wd“js\%‘ - .QJ‘ U‘:Sﬂ.]

(Convechim) (Production)

[--—(—,—_-w.,axlﬁ) +y5%- ('6_“%”()] 4[ y g-‘ﬁ 3:.’;' (D.36)
(Transpert ) (Disscpation)

and is called the equaticn for mean square verticity flucituations.

Bach of the prcduction terms on the right hand side of

equation (D.36) are respectively, gradient prcducticn cf

wewe sproduction of WeW({ by stretching of turbulent verticity by

the action of the fluctuating rate ¢f strain 54,‘1' ,» producticn cf @WoWg
by stretching o¢f turbulent vorticity by the acticn ¢f the mean strain

rate O and mixed prcduction term(Tennekes,1972).

From definition ¢f Saj and ¥’ , we have

Sysy - Tgry = [ﬁ % ‘"?S%ﬁ")]=L B [Ji(%; ) %%)]I

= (30532~ 5683 |4 +3) -1
fa-e - (A+B)(6-B)}

R Y
(565")

Loup . ouy
70 3)- e (34)
= qé:—‘b% u;’.};‘c(%—u‘é‘)
= % - 0

u

"



!
- o * o— a \d
or S‘J'Sz" -~ f‘,J ft,', — ﬂx‘j A,

since %ﬂL = 0 by continuity.
X.J’

Now,

sy o~
t L ] 1
Apj Uy o~ g’ A R
and 3 '31J' <Y y R,

so that their ratic is ¢of the crder A~ =

But with estimates of

v o~ MU
SpJ . T
: u
and Say Sy ~ =

aquation (C.35,see Appendix C) becomes,

3 :
w RT3
CST - 2»C‘ A
| g 4 - uwl - R
or 2% z" z l
or RL ”~ _‘i_:

-
[«
Za
.

(p.37)

(D.38)

(p.39)

(D.40)

(D.41)

(.42)

(p.38)

(D.43)

(D.44)

(D.45)



162.

for some coefficients Cg and Cg ¢f order one.Hence for large Reynclds
&

number R (which is of the crder "2 (from D.45)),then from relation

(D.40) it shows that the term,

aﬁ.
UL Yy
'bx.-bzg (D.45)
may be neglected.Consequently,from equaticn (p.37),the following is
cbtained,
SqySef B Vtxj (for high Reynclds number) (D.47)
Alsc

W = [sGE-3)]

[(bu. ‘f; b;] (.48)

for isotropic turbulence, and

oo = 5 = (Bgk 8%)(Eqe%s)
= (Sirs.ﬂ - Sqip) '?5%}%

WU Uy
0% 2 %% %‘;
Hence .w‘ = (%;—3.3)2

BTN L2 ]

&g

= 27y%y (by D.48)
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or -(5—”' £ ')_Sﬁ-s.a»(by E.47,see Appendix E) (p.49)

or by multiplying equaticn (D.49) throughout dy ¥

v'ZJa = 21’5..35‘43 = € (by C.38,see Appendix C)

where € = 2y S‘J"’".

2

255 3))

=57 (Mz_z, ! 5"""‘ )
X (2.50)
which is the same as the earlier defined £ (see equation D.6).
Now by multiplying 2 (M 2pe¥) and replacing
wWewl (D.50a)

YWE = yWw, B £

into equation (D.36) we cbtain the exact{unmcdelled)equaticn for € .

[ M‘ﬁow‘“ - Fy's'b-r LW

G_C.‘..

'311(? €)

(a)

L) xJ

@ @ @ Q

« [— apy %‘—;Zj %f";;-] (v-51)
®

——:-—' -Q.\ &
4 [.. W + 3}‘““?; Y + ﬁ-,“"’t"’ +=7u-anh$9]
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where the terms (a),....,(h) are respectively given by,
(a)=convecticn ¢f € by mean mcticn,

(b)=transpert of € due to velocity fluctuation,

(c)=transpert of € due to molecular action,

(d)=prcduction of € by mean moticn

(e)=prcducticn ¢f € by turbulent stretching of turbulent vorticity,

(f)=producticn of £ by stretcing of verticity fluctuations by mean

strain rate Sg,
(g)=mixed prcducticn term(Tennekes,1972), and

(h)=dissipaticn ¢f € by viscous action.

Modelled € -equation.

For a  twe-dimensional turbulence flow, there is ne
vortex-stretching(Tennekes,1972).so the second,third and fourth of the
producticn terms on the right hand side of equation(D.51) vanish.The
estimates of the viscous and transport terms at high Reynclds number

will be given as follcws.

The transport term due to velccity fluctuaticn of equation

(p.51) is,

%wcwcud = uJ'B%-,wcwc
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d homear W
or 3—1; w-dwt'ty = G ﬁz ' (p.52)
and the viscous term is estimated as,
y__a._.wcw,: Nl‘ﬁ = HY 0™ ( )
'375311 2 ZT_'; D.53

for scme coefficients G and H of order cne.The ratic ¢f those two terms
given by (D.52) and (D.53) is of the order 3%% = Rp -This implies that
for high Reynolds number,Rg the viscous transport term ys%-%zm in
equaticn (D.51) may be neglected; finally,this equaticn reduce;’ tc a

simpler forn,

G = - (pa) - o p g

(p.54)

- o py %ﬂ- . %Qs
J °%
As already implied previocusly, the diffusicn term

.g}(fywcwc(g) (since [A=f)') for € is assumed to cbey the gradient

transport law,ie.

pYwiwiy; = ~lg 5%.(1’“"‘ E“) (D.55)
in a similar manner as equaticn (D.7) for turbulence energy k.Here I},

is the turbulent exchange ccefficient and is assumed to be propcrtional

to eddy viscocity,ie,

fe = _%_ (D.56)
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where GE is the Prandtl/Schmidt number for the dissipation rate

€ .Hence equation (D.54) becomes,

yEee = (e 8y) - 2pymi Y

Que (D.57)
- apry Ui 2a

If equation (D.57) for &€ may be expressed in the form of

equation (D.9) for k,ie in the form,
2 - 28 [ —— .
Ukiee) = A% 3 - plvEmR]
(@

ENDL bcdt.}
- 2V
P ¥ alJ DX.J‘

H (p.58)

The terms (a) and (b) may be treated as follows. By definition,the

term (a) beccnes,

—
vty = ek a'(g‘f‘lg%)
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. ¢ . ou 2V :
or yuwoy %‘%- = Yy 2, . 5‘7";5:" + © (p.59)

where the second term on the right hand side ¢f equaticn (p.59)
vanishes by continuity.Now the first term of equation(D.59) which
represents the generaticn ¢f B from the mean flow,is simulated in the

form proposed by‘Hanjalic and Launder,1972,as (See Iieriah,1977).

: e =~ c £ U
vy T TR T — Cig Wik -5;} (D.60)
Hence : .
VW% = af _75%% (k) (D.61)

The term (b) of equation (D.58) may be approximated by,

vl (B 55) - 55 Eimy 53

N
>
T

it

[

7 (Siply = Sighi )5 (38) -5 G22)
= wlig5) 5 G - 504) % CE)]
DRG]« o

é__&] (p.62)

8’9”‘5

where again continuity equaticn has been used tc remove the second term

\

i
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on the right hand side of equation (D.62).

Py .
The tem[y%j] may be treated in the manner prcpcsed by

Luniley, 1974, which is also used by Ideriah,1977, a4

{yﬁfﬁ: - C"'i: (D.63)

It is therefore because of the relations (D.59) and

(D.6%),equation (D.57) may be rewritten as fcllcws,

L{l%(fe) = ﬁa") C'i-,uuug-‘—)" o,.i: (D.64)

for some constants C; and Cg at high Reynclds number.The values cf

these constants are given as in table 2.1(see chapter 2).

Equation (D.64) is called the &-equaticn.

As can be seen that the transition from Navier-Stokes'
equaticn t¢ Reynolds equation (eqn.C.ZS)for steady,incompressible
flow,creates new terms.-fbﬁzqr called the Reynclds stresses.It is these
stresses that one faces difficulties to ‘'clcse' thcse systems of

transport equations (see Appendix C for clecsure problem).

The prcblem now is tc find relaticnships between these
stresses with known mean quantities.However if the Reynolds stresses
are expressed in term of 'effective' viscocities multiplied by

gradients of mean flow properties,the folleowing relaticnship is adopted,
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for cartesian coordinates,

_/,;‘J'..‘J—, - f‘t(%% .‘.%_4.) , 1,§ = 1,2,3 (D.65)

where ui‘ dencte velocity fluctuations,lﬁt the turbulent viscocity and
Ui the mean velocities independent o¢f time.If equation (D.65) is
accepted as basis of calculations,a formula is then needed for the

calculation.of‘f& (see Appendix C,section C.52 for obtaining formula of

He )
When the Reynolds stresses given by equaticn (D.65) is

replaced intc equaticns(D.9) and (D.64) the final (k- € )equaticns have

the following form,

k-eguation.

Re%) = Z(FER)+a - ore (0.66)

E -equaticn.

n

_D%(ps) Jg(‘& LA C‘C"ﬁ - c,_p-i- (D.67)

U 'y ol
where G = P{_ Ti.f‘ < %%.'JS;LJL (p.68)
0 = l{,-a?-% (D.69)

‘{( = é: U 4 (turbulence kinetic energy)  {D.70)
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our u'\2
£ = -;ll.-p (-5—1.1— + z") ) (dissipaticn rate) (D.71)
2
with KB = CfA P (D.72)

where 6; and 6g are turbulent Prandtl/Schmidt number for k and e
respectively-usually they are taken tc be constants at high Reynclds
nunber; Cj and Ci are some constants.The values of these O 's and

C's are found in table 2.1(see chapter 2).

The follcwing is shcwn how Prandtl/Schmidt number Og for €

in terms of constants éﬁf,c, yCq and C,L is c¢btained.

Derivation ¢f Prandtl/Schmidt number O for € .

By neglecting convective transport ¢f € in the inertial
sublayer ¢f the mcdelled € -equation(cne-dimensicnal Ccuette flow still

apply) then equaticn (D.64) reduces to,
— | 2 .
le('f“”'%%) = c,,_p.i." - %(—6%-7?) (0.73)

By using equations (F.12) and (F.30)(see Appendix F) to

eliminate :GV%g% andggcgg) respectively,equation (D.73) reduces to,

2 2 3 (D.74)
C,f% = sz’i- —%.% 0. 74

from where,
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- ﬂt
TG (G-a)

ion (c.68)(see
btained.In arriving equaticn (D.75) equat
will be obta .

Oc

(p.75)

is called the

) £ F%, has been used.Equaticn (D.75)

i r

" o ts of turbulence
Prandtl/Schmidt number for & .The constan

turbulent Pran

2.1(see Chapter
ticn (D.75) have values given in table

i in equa .

appearing in

2).
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APPEYIDIX E.

DERIVATIOW AND SOLUTION PROCEDURE JOF FINITW DIFFERENCE EQUATION3.

E.1 INTRODUCTION.

The follcowing appendix will discuss the derivaticn of the
transport finite difference equations(fdes) for scalar quantities (k
and € ) and mcmentum. There are methcds of transforming partial
differential equations(pdes) into finite difference form.This includes
the Taylor series expansion method and micro-integraticn method.In this

study, the latter method of Gosman (1976) is employed.

E.2 TRANSPORT FDES FOR SCALAR VARIABLES.

The procedure ¢f deriving the fdes for scalar properties is

to integrate the pdes(see equation 2.24 of Chapter 2) cver shaded

contrcl vclume represented by fig.E.1,ie,

[ [{(oUre-rtB) eVttt -4V = o
v

where dV is the ccntrcl veclume over which the integraticn is performed,

and dV = rdrdx (s.2)

By using Gauss' thecrem to replace the volume integrals to

surface ones, the convection and diffusion terms give rise to surface
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integrals over the faces of the control volume(c.v.)giving,

N
Z

()

- ey ey P GP W D av
P o avan

Fig.E.1:A Typical Scalar Cell(Control Volume), & with Fluxes on the

Boundaries,q?'s.

[{tpurs-rteit), = (eUre - 38 }

N j{(fo¢’fQ%$)n-(fo‘4>-r’}%$)s}Jx [V oo G
w v

o A A R E A
Vv

[ ]
Bach of the terms qifs (ime.w,e,n and s where each o¢f these

small letters are lccated mnid-way between the point P ani 1its
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neighbcurs,E,W,N and S,see fig.E.1) represent the combined convective
and diffusive fluxes 1located at the bcoundaries ¢f the c.v denoted by

each subscripts,3' is the source term for each individual scalar

variable, .

To express those fluxes in terms of values of ¢ at the node
points in the neighbourhoocd of P,we need to assume the variation of ¢
between those pcints.In chocsing this variation,we should ensure the
compatibility of surface integrals between ad jacent control vclumes for
example the expression for the flux across the face between the node
points W and P,y as in fig.E.1 should be the same irrespective of
whether the contrcl volume surrcunding W or thse one which surrounds P

is being considered.

B.21 Cenvective and Diffusive Flux Sxpression.

The basic formulation of the convection and diffusion terms

may be explained by considering the transport acrcss cne face of the

contrcl vclume.

Fig.E.2 shows a face ¢f area Agy(for the west boundary cf the
control volume) nocrmal to the X-direction this lies mid-way between the
ncdes W and P which is at a distance erw apart.The variable ¢ is
assumed to vary linearly between tﬁose nodes.The contributicn by this
face to the integral represented by equaticn (8.1) over thse contrcl

volume is given by,
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‘1.) = fo Uw ¢wAw - Pq,w Aw(‘pe_‘ ¢W) (3.5)
SXoy

The discrete values of the flow variables ¢ are generally
represented by averages over the respective control vclumes hence the

values ¢w mid-way between W and P may be expressed as,

. Qrea Aw
L/ ﬂ\
'
|
l
w R P
A ;?%! o s a
E
- ¥ e
¢ SXpw >

Fig.B.2:A Flux ge Across a Boundary cf the Contrcl Volume.

¢ (4 ~+ d’P) (E.6)

By replacing equation (E.6) intc (B.5) for ¢w will

result,after slight rearrangement,

,-‘;%’_:A_w = t{(l+2ﬁ:)¢w-t(l-a.ﬁw")¢e} (E.??

where Pg,, = ﬂi’g"’ SXPN is called a lccal Peclet number at boundary

ﬁ:w
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Expression (%.7) gives the ccmbined convective and diffusive
flux in terms ¢f ncde values and this has been cbtained by employing a
central-difference scheme for low lPe | ie for -2<{Pqy(+2.For large
(Pew' ie for Pe~)+2 cr Pew(-e,upwind difference scheme is used.The
upwind formula may be cbiained by setting the local Peclet nwnber,Pew
tc be,
-+ oo

R — - (2.8)

frem the 'exact' solution formula for iw which is derived with the aid
of a 1-D analaysis .This ‘exact' solution formula is given by

(Gosman,1976),

IS Au{fu¢w + (I-fu) ‘bp} 2.9)

-0
&
"

where &w 2 Io“u" SXPW (z.10)
Qaw

B = .k((w...,op) (3.11)

(R.12)

e
1
"

+ (Tow * Ta,p)

Tp- gfus (E.13)

>
€
i

&xp (&ul_ (B.14)
exp(Pe,,)- |

Qo
13
!



177.

Consider equations (B.14) and (Z.9),

A B2 i fo—1, %o

— ¢,
AUA, W

} (2.15)

> -, fw >0 =» iu
R | f —-/?»Uw“w—) ¢P'J

Again frem equation (B.7),

When P¢w="’?§(2—Aw = éww

) (8.16)

Therefore by combining equaticn (%.7) for low ‘Peu' and
equaticns (B.15) and (E.16) for high IP%A| y7e ge% the representaticn
cof the ccmbined convecticn and diffusion flux for the whole range of
Peyy .Consequently we use a 'hybrid scheme',ie a combination of the
sc-called the ceniral- and the upwind-difference schemes.This c¢ffers
good compromise Dbetween accuracy and eccnomy and is nunerically
stable(Gosman,1976).Its raticnale is explained by Spalding(1972). The

scheme may therefore be summarised as follows,



178.

(1[0 +283) &, + (-2R5) 4]y -2 < Bu<a2

zhem 1 Pu ) fou 702

L dp , fo, -2

(2.17)

From equation (E.9) for the exact solution formula to be
jdentical with the set of equations (E.17),the weighting factor (for

example the west boundary) fuy must have the values,
, -
s(1+2R7), -2<R,<+2

_fw = $ { , P, » +2 (2.18)

L (o) ) ﬁL‘ £ - 2

The remaining total flux expressions &g’\an and 5-8 for the
east,north and south boundaries of the contrcl vclume may be cbtained

in exactly the same manner.

B.22 The Scurce Term,S¢ .

The total source over the contrcl vclume cannct exactly be
integrated without the kncwledge cof the particular expressicn of the

term S¢ ¢f the variable ¢

However,whatever the form ¢f the particular expreasicns may

be,it can be anticipated that the result may bve forced intc a
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linearised form,thus

¢
js"av = S,fcbp + Sy (.19)
v

wheresP and SU are deduced from the integrated and linearised form

¢f the source and they are in general a function of ¢ .

For variables U,V,k and & we have respectively,

{Sudv = S;UP + S?, (2.20)

v .
S:VP + 9y (z.21)
J(a - apeav

= S:fep + S: (3.22)
J(QG% -G {oi-) dv

v (3
$ 4§, (2.23)

where the superscripts U,V,k and € are related tc each individual

[s'av

j:s"av

j’s%v

dependent variables} UP,VP,kP and §p are values of U,V,k and € at the
point P nearest to a wall.The mcdifications of the linearised source

treatment near a wall will be discussed in Appendix F.

E.23 The Ccnplete Difference Squaticns.

When the finite-difference representations ¢f all the terns

¢f equation (E.1) have been worked cut,then we can assemble the flux
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terms (like equation (E.17)) and source terms (equation (E.19)) 1into
equation (B.4).With the aid of continuity,the following finite

difference equaticns for scalar quantities are obtained,

(ap-58)¢p = T and, + s?

(E.24)
where O.P = ;an (8.25)
%; = gsummation over neighbours (N,S,E,V),
O = pulwAvfu et (.26)
= T°8f
A P ns (8.27)

and f, etc. are defined by equation (2.18) etc.

Although equation (©.24) has the appearence of a linear
equaticn,it is actually nct since the coefficients (av,etc. which
represent ccmbined convecticn and diffusicn coefficients) themselves‘
depend on values of ¢ 's.This non-linearity will be handled by an
jteration scheme,in which the coefficients of the finite difference

equaticns are recalculated in every iteration cycle (described later) .

Similar equations are derivable for other scalar variables to
be solved namely for k and £ since transport -equaticns exist for
them.No transport equaticn exists for pressure,p.A later section shall

discuss the measure in cbtaining the pressure fields.
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5,3 FINITES DIFFERENCE MOMENTUM EQUATIONS.

While the foregoing derivation of the finite difference
equations is based on general dependent scalar variable,4,the finite
difference mcmentum equations are derived in a similar pattern except
that the contrcl vclumes are displaced because the velocities

themselves are displaced the conventions are ctherwise the same.

The finite difference equation for U-mcmentum (the contrcl

volume of which is shown shaded in fig.E.3) is,

IN

T

v

K,
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v owy oww el
- - ool o

'
'
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'
1
1
'
'
|
|
!
1
—>

4E S‘l‘m A

—-—--

To

s > - -

L -----'--- &-- -

S

sevee

Fig.E.3:A Typical J-Cell (Contrcl Veclume).

U
(QP- S:)Up = %—anun *+ Au("w"?P) + Su (1.28)

where a? _-_-‘Zri\an . 2; 2 summing cver neighbours

Qy = Lo loAw fu <.  (2.29)
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AQM’_ 2 P Oans

P (E.30)

fy is a hybrid difference of local Reynclds number Re,, defined by,

Ry = fio U O%pyy

(8.31)
Pw
LUy = -',:(f’wa 'I'I?Up) (E.32)
and q” etc are defined by equaticn (%B.18) etc.

E.4 HANDLING OF PRESSURE LINKAGE.

The finite difference equations for non-hydrodynamic
variables (in this study only k and € ) can be solved directly by the
use of TDHMA (for Tri-Diagonal Matrix Algorithm).An additicnal prccedure

is employed along with the TDMA to solve the hydrcdynamic variables (ie

U,V and p),called the STHPLE prccedure (discribed later).

Before discussing the STMPLE algorithms,it is useful to note
briefly the suitability of velocity-pressure equation set for numerical

solution.

(i) Requirement.

To solve for a particular variable ¢ ,an equation where ¢

appear as dominant of its own differential equation must be needed.
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(ii) Assessment.

All the ncn-hydrcdynamic variables satisfy above requirement
since they have their own equations (the k- ¢ équations).Velocity
components U and V also satisfy the requirement via momentun
equations.However the pressure has no equation of its cwn.The remaining

mass-conservation (continuity) equation dces not contain pressure,p.

A special measure is therefore seems to be needed to o¢btain
the pressure fields.The measure employed here is first by estimating
the pressure fields at all nodes,then obtaining estimates of U and V by
solving the mcmentum equations. Finally correcting the pressure fields
through a pressure-correction equaticn in such a way that to bring the
velocity fields to satisfy cocntinuity equatiocn.The values of U,V and p
are now used as new guesses and the process repeated unfil desired
solution is obtained.This procedure 4is thus known as SIMPLE (for

Semi-Implicit Methocd for Pressure Linked-Equaticns).

E.41 Pressure Scluticn

The process in obtaining the pressure fields involve the

following steps.

(i) The initial estimated values of pressure (dencted by ﬁ* ) is

specified at all grid ncdes of the computation domain.

(i1) The momentum equations are solved by L-B-L (for Line-3y-Line)

method (discussed later) to yield corresponding values of U and V.These
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values (denoted by U‘r'and V‘b ) will prcbably nct satisfy the

®
continuity,but satisfy the follcowing equaticn for U -velceity,

v
(O,P-S:)U; = ;an‘): + Aw(rvz‘f’;) + Sp (2.33)

¥

where J* and V* are based on the estimated pressure field p".

Those 'inccrrect' values ¢f U,V and p require the

imposition of scme correction (denoted by primes) U' ,V' and p' defined

by,
U = U -Ub ]
V' « V -V ) (5.34)
F =P -F ]
From continuity equation,we have
L6t FGy = Sem (£.35)
where 6 = P U (2.36)
Gy = fV (2.37)
and a: (ideally zero) is mass source (cr generaticn per unit volume).
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On integration of equation (E.35) similar to equation (%.1)

for a typical control vcolume as indicated in fig.E.4 to yield,

' : (B.39)
quL - qqu + GnAn - GSAS = S:SV

where qb,q”,cn and Gg are fluxes acrcss boundaries denoted by e,w,n and
s respectively and SV is the contrcl vclume enclosing point P as

indicated by fig.E.4.

4
. .
|
|
|

Gole AoV !

—— e av e

£
g
&

-D------01

SP amem an an

Fig.E.4:Definitions of Fluxes at w,e,n and s Vall Boundaries.

If the velccities are correct,the continuity equation will be
o &y
satisfied and the mass source S, will be zerc.However the estimated
. * E
velccities U" and V and hence ¢ (where G=density x velocity) will not

satisfy continuity but instead produce a net mass source rIP defined by,
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»*
Mo = GEAL- G A+ Gt A= GrAn  (5.39)

E.42 Derivaticn of Pressure-Correction Tquaticn.

As has been menticned earlier that when the velccities
satisfy the continuity equation,the right hand side of equation (E.38)
will be zerc and since the true values of the variables are related to

their ccrrections by the follcwing relaticns,

vV = u¥ + o'
vV = V& « V' |
P o=t + ¢
* 14
¢ = G *+ 46 ) (E.40)

then we have (from equaticn (%.38)with %: =0) the following relation

result, .

AAW = AUl + fAdVe - RASVE = Mp (8.41)

where ?-IP is given by (8.39).%For nearly inccmpressible flow,
’ ® .7 7
q adle f U (0-42)
One of the staggered grid system advantagecus is used here to

derive the correcticns for velccities or fluxes G'.

Refering to fig.E.5,G, the flux correcticn on the west wall

of the control volume may be expressed as follows,
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Fig.B.5:Derivaticn ¢f Flux Ccrrections.

t ‘b - P
6. < -2, (fo- tw) (2.43)
Spw

!
where permeability coefficient -n-w may be c¢btained from the

linearisation of resistence law abcut p:xr., ie,

%
20 (2.44)
- - 8y z(?;:ﬁ,)

By replacing equaticn (%.44) to (2.43) will result,

(B.45)
- Gy e
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New the expression,

%
Wer) @) S (349
may be obtained from

equation (®.33) so that equaticn (%.45) now

reduces to a mcre simpler expressicn for GLQ ie,

{

G, = /’*Dw(f’;q - f;’?) (2.47)

By combining equations like (E.42) and (E.47) the velocity

cocrrections Uyy has the expressicn,

¢ ¢ U
Uo = DulPy- Pp) (.43)

The remaining velocity corrections Ui ,Ué and UA at

boundaries e,s, and n respectively may be obtained by similar analysis

as sbove.

Hence by replacing equation like (E.43) into equation (%.41)

will lead to a pressure-correction equaticn which has the following

form,
/ - !
QePp = 2,.:\4"""" + Mp (1.49)
where Q.P e JQn
n
' 1; 2 summatiocn cver n2ighbours,

Q= AsUwdo ek. (8.50)
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andiip is given by equation (2.39) is called the residual mass source

/
associated with estimated é‘ 3.

Above finite difference equation is solved for p' (the

pressure correction) by L-B-L prccedure of TDIA.

E.5 MISCELLANEQUS MATTERS.

E.51 Numerical Stability and Convergence ¢f Sclution.

The finite difference equations mentioned earlier,when
considered linear, are so constructed as to guarantee convergence ¢f
the LBL sclution procedure. Often,because of the non-linearities
present in the system of differential equaticns,or because ¢f the large
nunber of algebraic equaticns resulting from the use o¢f finite

difference schemes,divergence may sometimes result.

To suppress any such tendency,it is cften necessary to employ
underrelaxation.All methcds of underrelaxation try to reduce the change
in the value of a variable during one iteraticn.In additicn tc the
depenient variables,auxiliary quantities 1like viscccity, can be

underrelaxed with advantage.

A relaxation factor f is defined by,

& = $dp 1 (1-f) g

3.51)
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R
where 4% = value of CPP at present iteration with underrelaxation.
@P = value of d?at present iteraticn without underrelaxation.

dd .
¢‘, = value of d)P at previous iteration.

and 0<i1.

When f>1 it implies overrelaxation which is +the counterpart
of underrelaxation.Since in the problem of interest,the interlinkages
between various equations are so strong,it is usually necessary to slow
down the changes rather than tc encourage them.For f=1 <the values of

¢ 's are not relaxed.

The underrelaxation factors for each of +the variables are

presented in the program calculation (see section 3.3,Chapter 3).

Besides underrelaxation,to remedy numerical instability is to
jincrease the number of sweeps cf the TDMA this will give more complete
solution of the equations during each iteraticns.The
pressure-correction equation is the most sensitive in this respect so

that it has highest nuaber c¢f sweeps compafed to cther dependent

variables (see Chapter 3,secticn 3.3.).

Convergence.

Recall equation (R.24),

(af‘sr¢)¢p = Zn-an‘pn + 5}:p (E.24)



191.

In general,ccnvergence is guaranteed when following criterion

is satisfied, called the Scarbcrough criterion(Gosman,1976) ie,

]qp-sfﬂ < Sﬁ.la,l (£.52)

All equations satisfy above condition,since

i a,s > © )
K) aQp = Zn.an 4 (2.53)
;) St? € o J

In the procesé of solution procedure,convergence is assessed
how nearly the current soclution approximates to the exact solution of
the finite difference equations for each dependent variables at the end

of each iteration.

The main convergence test is based c¢cn  the ''residual

sources,R¢ s'' of the difference equaticns defined by,

¢ _ ¢
RQ = (Qf‘ Sf )¢p zna"@n -5, 7.54)
where ¢ is any quantity (velocities or scalar quantities).

A convergence test is made by ccmparinz the accumulaticn of
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the change of R¢ cver all the grid points to some reference

value.Calculation is continued until

max ( [Rol, ZIRI T [R]) < 8

(E.55)

where Ru,Rv,and RPcare residual sources for velocities U,V and pressure

correction p' and $ isa preset value which needs to be selected by

computer experimental(see Chapter 3,section 3.44).

If the current soluticn exactly satisfies the difference

equation,%p'will eventually be zero.

E.52 Accuracy ¢f Sclution.

0f course,once a convergence solution is obtained,we are
faced with the problem of accuracy,ie how close the finite difference
solution soc obtained to the true solution c¢f the differential
equaticns.The accuracy of the solution procedure will in general be a
function of the number of grid nodes employed. For each flow
configuration,a grid independent solution is sought by increasing the
number of grid lines until no further changes are observed in the final

gsoluticn.

The lccation ¢f inlet and cutlet boundaries may be assessed

by adjusting the upstream and downstream distances from the orifice

plate.

Furthermcre,for predictions to reflect reality,it 1is
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necessary to know the adequacy of the use ¢f the turbulence mecdel in

the presen%t study.This can be assessed by coﬁparison with experimental

data.

B.53.Allcwance ¢f Mass-flow Imbalance.

During iteration cycles sometimes may ‘cecur that the mass
flows do not satisfy continuity.This situation may be repreasented in

fig.E.6.

Fig.E.6:Pcssibility ¢f Mass-Flcws do nct Satisfy Continuity.

The situation now is that all the a';s of equatiocn (%.24) are
zero,implying that the finite difference equations then  beccme

singular,since
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a,P = 2 Qan (E.56)
[ )

To ocvercome that situation,is to add ‘'false' source .Sf
through the linearised treatment,
] . old
- m -
S__f- sv = | Mi-l (‘bp d’r) (2.57)
where SV is the control volume of the cell in fig.E.6.
(5.58)
mM = ann
. (£.59)

¢P = value cf Cp at P at present iteration,

value of dP at previous iteraticn.

g
)
[ |

By linearising the source term in the manner ¢f equaticn

(2.19),
S‘f.SV » b:be + Cf (2.60)

and by comparing equations (E.57) and (E.60),following expressions will

be cbtained,
by = - | aul (5.61)

oA
e = Imgyl & (£.62)
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The final form of finite difference equaticns solved beccne,
(a Sé-b)ﬁp =Za¢+s¢+c (£.63)
P=>p  f/¥p T S nIntou T 63

where bf and cj,have values given by equations (E.61) and (E.62).These

additional constants has no effect on the final solution,for when

- old (2.64)
6 = %, .
then f}\w = (0] (308man,1976) (=.65)

E.6 SOLUTION PROCEDURE OF THE DIFFERENCE EQUATIONS.

E.61 Introcducticn.

Having constructed algebraic equations for all nodes in tﬁe
calculation domain,the next jcb will be tc solve this set of equations
simul taneously. Since the equaticns are non-linear and interlinked,the
use of iterative methods beccme important.The main members of these
methods are point iteration and line iteration.The first one includes
direct solution by the Gauss elimination method.But this method seems
to require tco large computer storage and time(launder{ed),1975).The
Gauss-Seidel method of successive substitution converges rather
slowly,especially when the number of equation is large.The latter

methcd is the 1line iteraticn,which includes Line-By-Line(L-B-L).At
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present,the LBL methcd aeems tc be of best choice and therefore in this

study we employ the LBL solution procedure which will be described

below.

E.62 The LBL Prccedure.

Figure E.7 shows the illustration of the procedure.For the
soluticn for points on each line (eg.North-3cuth line) the values of the
individual variables ¢ on the neighbouring lines are assumed tc be
temporarily known.The equaticn for each point on the N-S 1line then
reduce to one where only three values(ie ¢P , (PN and ¢S ) are

unknown.Refer to equation (E.24) we have,

o Unknown

|
B PR S "
#P

_Line

Selved

l
Fig.BE.7:The LBL Procedures.

af' ¢P = ayPy t Asqs + ¢ (8.66)
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where d e awdw + aiéE' * Sf (/tnwn) (2.67)
y ¢
and a—p = ap - Sr (2.68)

With respect to the figure E3

<

w
-
,

(2.69)
¢y = %4 |

For each grid node on the (¥-S) 1line (the 1line solved

considered) say node J the finite difference equations may be expressed

as,
¢ = QUdie t K (2.70)

where coefficients Qj ,Rj and .'5 take the fornm,

4

2 = o« " = \ =C. .

QJ-—D-:L’QJ—-gL , =g (E.71)
J J J

4= ay * B 26, D=0 (8.72)

where aP' and C' are given by equations (%.68) and (B.67)

respectively.ZJ' contains values of ¢'s ¢f points on the neighbouring
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lines which are assumed to be temporarily known and Qj and 35 are kncwn

coefficients.

Equaticn (B.70) may be written as set of equaticns,(for

j=2toj=n),

¢, = @ud; + R4 + 24 (1)
¢, = 9 ¢, + Ry t 2, (11)
4’4 z Q*‘b + R,htbz, * if.,, (111)
4’,; = Q,té““'l' anb“_' + 2!.\

(bl is assumed to be knowm,thsn by eliminating ¢2. from
(ii), 43 frem (iii) etc.,a general formula for ¢5 weuld  be

obtained(kncwn as the recurrence relation).

n
éj - Ajdfi*l *+ G y 3= 2,000,n (B.73)

"
with 4"*' a known value too.The ccefficients Ay and Cj are given by,

%o

A. -
Y (Ql - FiA;.)
& e (BGi+g) (£.74)

T (D 8 A)
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Note: A =0 and Clu = ¢, (a known value).

By straight forward algebraic manipulation,the set of
equations is coaverted intc one expressible by a general recurrence
‘relation for 43 as indicated above (equation E.73),with the
cecefficients Aj and Cg cbtained from the recurrence formulae

(equaticn (B.74)).

It is from this general recurrence relation for ‘& that all
values for ¢' frem j=2 to j=n are calculated,and the process is quite

easy as one only needs to evaluate the A's and C"s in order to c¢btain

¢'s.

To apply the TDIA to entire field,the process is started from
the extreme left of the (¥-3) line and traverse along this line,next it
is repeated alcng successive neighbouring (N=8) 1lines with mcst

recently calculated ¢'s and then the entire grid is swept through

until the desired soluticn is cbtained.

E.7:CONCLUDING REMARKS.

This appendix ccmpletes the derivation o¢f the finite
difference equations both for scalar and velccity variables.The main

points of the appendix may consist of the follcwing;
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The governing partial differential equations are transformed
to their algebraic equivalence by finite difference formulations.The
partial differentiai equaticns are descretised in space to obtain their
finite difference counterpart,by the uge ¢f 'micro-integration'
method,together with the 'hybrid' difference scheme for the coavective
and diffusive fluxes.These difference equaticns are solved by LBL

iteration method which employs the TDMYA.

A consequence of using the 'primitive' variables (U,V and p)
is the need to obtain the pressure field by some special measure.The
procedure emplcyed here is the SIMPLE algorithms which involves guess
and correct method.The pressures are obtained by sclving the
pressure-correction equation,whose basis are the continuity and

momentum equations,together with linearised resistance law.

Other special features of solution proccedure (under
miscellanecus matters) such as numerical stability and convergence are
given.General remedies in overcoming such instabilities has also been
indicated together with the method in which accurate solution is

obtained.

Finally the solution procedure of sclving the finite
difference equations(ie the LBL procedure) has been discussed in quite

detail in section E.6.
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APPENDIX F.

NEAR WALL REMSDIES.

F.1 INTRODUCTION.

In wall regions there are essentially three major

characteristics which distinguish them from central flow regiocn.

(i) Steep non-linear variations in mean-axial velocity
U, turbulent viscocity ,At ytemperature and so o¢n.In addition,local

Reynolds number changes considerably in that region.

(ii) Laminar and turbulent effects are of the same crder of
magnitude; levels of local turbulence Reynolds number Ret defined by

(Launder and Spalding,1972)

Re_t = .f;.i‘_ = %L‘é_{f (F.1) .

is sufficiently low for molecular viscocity to influence the
prcduction, diffusicnal transport and dissipaticn of  turbulence

energy.In this region alsc eddy structure is influenced by the presence

¢f the wall.

(iii) Generally as the wall is apprcached the flcw is
essentially 1-D Couette.The layer in this region is assumed to be cf

constant stress ( T2 Tw),
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The turbulence mcdel has been designed for high Reynolds
number,whereas near walls this number becomes very small so the mcdel
is inadequate in this region.Both this fact and steep variations of

flow prcperties near walls necessitate special attenticn for grid ncdes

close to walls.

F.2 WALL FUNCTIONS.

In order to minimise excessive computer storage and run times
near a wall region,the wall function method is employed.As already
mentioned,near a wall region,the lccal Reynolds number,y+ changes
rapidly.This number varies, depending on the normal distance y from the
wall,which makes the flow properties are often expressed in terms of

j*,defined by,

Y] (r.2)

where y = normal distance from the wall,

l).c - Jtﬂ[f (= friction velocity),

'Cw = wall shear stress.

The wall regiocn is made up of three zones (Hinze,1959) based
+
ony .
(1) The viscous sublayer(0<§+<5) where the viscous effects dominates.
(2) The inertial sublayer (30<f+<400) where the flow is assumed toc be
completely turbulent but sufficiently clcse tc the wall so that the

shear stre‘ss is approximately constant, TL W,
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(3) Between layers (1) and (2) is the transition ( or 'buffer')layer
(5<j+<30) of vigecrcus turblence dynamics where the flow is neither

ccnpletely dominated by viscous effect nor turbulent.

In many engineering caiculations,the buffer layer is disposed
off,so0 that the result only have two layers-the viscous and inertial
sublayers.This is achieved by defining a point y*'= 11.63 where the
linear velocity profile in the visccus sublayer meets +the 1logarithaic
velocity profile in the inertial sublayer.This apprcocach has extended
the viscous sublayer‘to ccver the range O<y*k11.63.The flow within this
region is assumed to be purely viscous and above which point (§’>11.63)

it is purely turbulent.

The characteristic ¢f these regions are well established
experimentally and theoretically and a rough sketch cof velocity
profiles near a wall region is given in fig.F.1.

:ﬁi:;i E:fj:: + ~Znerhal Sublayer

. u‘fs y+
o ,/"/’

[ " » lolEy)

S

ettt

<
e
&
L

s*::‘%gf-i

Fig.F.1 The Law ¢f the Wall.
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F.21 Squaticn cf Mean Mction.

In this study,the assumption has been mnade that the thin
layer clcse to the wall is a region of local equilibrium.The shear

stress in the layer is approximately uniform and a 1-D Couette flow

analysis is made.

The total shear stress may be written as,

A

p(t -l-';,%) %% (F.3)

+
or T -tk grg, (5.4)
where Tw = p U-: (wall shear stress) (F.5)
U
U"' = - (F.6)
(Jt

U* y Ug (local Reynolds number) (F.7)

3ituaticn 1-

+
When y 11.63 (in the viscous sublayer) the turbulent viscocity F‘t is

very much smaller than laminar viscccity H ie,

P 4

a—

’L

and the shear stress is apprcximately censtant,ie,
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Ib

Tw

I

then equaticn (F.4) reduces tc a simple relation,given by,
+ = +
v = Jd (F.8) -

Situaticn 2.

when y‘*>11.63 (in the inertial sublayer) Ft is very nuch larger than
F‘ and the constancy of shear stress still applies.One dimensional
Couette flow analysis has been used for turbulent kinematic viscocity
Yy in the region, and it is assumed to be proportional to the product
of the normal distance y from the wall and friction velocity

U-; .Therefore in inertial sublayer region,we have the following,

Be 5y i

T == Tw

v, = KYyUp  (Hinee,1959)  (7.9)
and thus reducing equation (F.4) to

Y, du?t (F.10)
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By combining equations (F.9) and (F.10) and on

integration,the following equation for §f>11.63 is cbtained.

+ _ | +
U*s = k*lm CE"j ) (F.11)
where ék = Von Karman constant = .4187

E = an integration constant =9.793.
Bquations (F.8) and (F.11) are commenly called the law of the wall

which may be represented by curves shown in fig.F.1.

F.22 Turbulence Energy,k.

The approach adopted is valid for the inertial sublayer vwhere
the flow is assumed completely turbulent,but sufficiently clos2 to the
wall so that the shear stiress ?emains aporcximately constant.In this
region the local vrate of turbulence energy product:’.cm,-—tf\-r-as-:’l is
balanced by the viscous dissipation € .Furthermcre,in this layer both

convection and diffusicn of k are negligible, thus giving,

- & %;L’- = € (r.12)

where u and v are velocity fluctuations in axial and radial directions.

By multiplying both sides of equation (F.12) by P My (wnere
P is the fluid density and ,"t is the turbulent viscocity ani is given
by equation C.68 c¢f Appendix C) and using +the graiient transport

hypcthesis (for a 1-D flow)i.s.
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../0473' = /lt%-yll (F.13)

the following expressicns will be cbtained,

P ¥

"

s 2 %"

"t
\0»
A~
»
.Q

or C’fﬁr ) (Ht.%%)

2 2
or (}‘t%%) = Yt k Cf* (by f.la)
c;r .Lal = ‘ k“ CP‘ (F.14)
where --CI = Et%% = ‘fr‘r (F.15)

. has been used to obtain equation (F.14).

From equation (F.14) the follcwing expressien of shear stress in the

jnertial sublayer '61 is cbtained,

L
ty = F k Cp> (F.16)

The wall shear stress tw may be derived basically from the

definition of U i:

:U-ﬁ

= V
vt = [ Tu (F.17)
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because the fricticn velocity UT. = /% (F.18)

As the shear stress near wall regicn is nearly constant,U+

may then be approximated as,

Tw
U “ 5
or -Cw = (-6-;.). 'D ‘ -CI
i 4,4 4
™ UT) . Io e ID . kﬂ. . CP
,.%
z U-L - P {zch (F.19)
where U'U s -DL—,:’ (F.20)
- +
and U't = 3+ for y§ 11.63 for viscous sublayer

+
J““(ES’) for y > 11.63 for inertial sublayer

K

By equating equations (F.16) and (F.19) in the inertial
sublayer (since T= Tw still applies) ,k is related to Cf"‘ and U’t by

the following relaticn,

-+ ,,2 (F.21)
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Local Reynolds Number,y*:

To obtain the lccal Reynclds number,it is best to start with

the definition cf j+ i.e.

Tz
yt . .é} %%e 2 2 = (F.22)

get,
L
L a®
':,-t = }kcf" ©(F.23)

where Y = fllfqis the (laminar) kinematic viscocity.

F.23 Rate of Eneray Dissipaticn € .

By multiplying equation (F.12) right through by P then we

have,

| (7.24)
—U
..f:uu%%B = p&

Also since the shear streas in the wall region is given by,

__P'Iu'— : Tr 2 o (see equation F.15) (r.25)
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then we have,

-Ew%% s /°€ (F.26)

The shear stress at the wall is given by,

-Cw._& -CI 2 Ff%% (see equation F.15) (F.27)

By eliminating %‘-;— frem equations (F.26) and (F.27) the

following result for )ft in terms Cw, P and € will be obtained,

kN
y = 1w (F.28)

I 3

By using relatien (F.5) for Cw and equation (F.9) for )/t
intc equation (F.28),the dissipation rate &€  relates to friction

velocity 'J.‘ and distance y from the wall as follows,

3

¢ . Y (¥.29)
Xy

In the inertial sublayer, (when equation (F.21) for Ug is
replaced intc eqution (F.29)) the dissipation rate may be rewritten as,
4% ¢ "

£ = G (r.30)
Xy
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For extension to ‘'buffer' and viscous sublayer in  the
k-balance, € must be modified as follcws,-for a regicn clcse to a wall

equation (F.15) may be apprcximated by,

Uy - Un)
T, 2 f‘t( 2 (F.31)
I BP

where UP and UN are respectively velccity at a point P nearest to the
wall and at the wall itself.yp is the normal distance of the point P to

the wall.For a non-slip condition,U~= 0.

By equating equations (F.16) and (F.31) the folowing relation

is obtained for F-t ie,

B = Pér G 9 (F.32)
| Y%
where k. is the value of turbulence ensrgy at the pcint P.

P

By solving equations (C.68)(see Appendix C€) and (F.32)
together,the dissipation rate 5p at the point P is related tec Yp and

Up as follows,

'
o
o
<

(F.33)

&

ot = %% (F.34)
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and by eliminating Up in equations (F.33) and (F.34) and by using
relation (F.21) for Uy,the dissipation rate €p at P in the viscous

sublaysr may be re written as,
% %
+
€ = —é%@—- . U (F.35)
P

vt yt for y"’ < 11.63

n

where

32-%(53*) for Yyt > .63

F.3 INCORPORATION OF WALL BOUNDARY CONDITIONS.

F.31 Introducticn.

As has been noted in section (3.23,see Chapter 3) that wall
boundaries in modelling crifice plate have been divided into five
regions,namely the two wall regions(upstream(in region 1) and
downstream{region 3) ¢f orifice plate),two boundaries(front face and
rear face of crifice plate) and one region at ths bottom of orifice

plate(region 2).Here the wall boundary cocnditicns will be discussed.

At the wall bcundaries ¢f calculaticn decmain,the general
finite difference equations (see Appendix E) are not applicable.Hence
special measures are then required for the cells(contrcl volumes) next
to the wall bcundaries.As has also been mentioned,ths grid arrangement
is such that the boundaries ccincide with the contrcl volumes-this is

advantagecus focr ensuring cconservaticn and for flux calculaticns.The
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following lines will show how the wall boundary conditions are

incorporated.

1t has to be mentioned that in this
study,we(Gosman,1976)adopt the method of 'false' source treatment where
flux through boundary of a particular control volume has the form,say

for the west boudary of the control volume (see also Appendix E),

i,,,_:*sf; ¢p + s | (7.36)

¢

where SP and SU are in general function of a variable 4) and ¢P is

the value of 47 at a point P nearest to the wall boundary.
This type of treatment will become clear when dealing with
control volumes of velbcity components at corners of the orifice

plate.This is discussed later under 'corner treatments’'.

.32 Momentum Equations.

(i) Tangential Velocity.

Fig.F.2 shows typical velocify cells with one of their
boundaries coincide with walls.The wall in fig.F.2(a) may either be top
walls of the ' pipe(in regions 1 or 3), or bottom face of orifice
plate(in region 2) of the flow domain.The walls in fig.F.é(b) and (c)

being front face and rear face of orifice plate respectively.
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Fig.F.2:(a):A Typical J-Cell with North Wall Coincides with a Wall

Boundary.
(b) and (c):A Typical V-Cell with Rast/West Wall Coincide

with Front Face and Rear Face of Orifice Respectively.
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A tangential velocity UP or ij(depending on which boundaries

are refered to, parallel or normal to flow direction) for a point node

P nearest to the wall boundary is obtained from usual momentum balance.

Refering to fig.F.2 the general fdes is not applicable-the
usual 1inks(¢P~ ¢Nrelation in fig.F.2(a), ¢P~ ¢E relation in (b) and

¢P~ ¢ relation in (c)) are suppressed.This can be achieved by setting

appropriate coefficients to be zero separately,ie

(F.37)

N
m
]
C

2w

it
C

where 2,12

N

,and a,, are difined similar to equation (E.29)(sece
Appendix BE), and N,E and W stand for the North,East and West boundaries

of the cells considered.

The shear force Fg (say in fig.F.2(a)) may be expressed as,

F = - Cs SXPW (F.23)

wherets (‘.‘.‘:uo) and Swa are respectively wall shear stress and
distance of point P from W.

For the point P nearest to

the wall in the turbulence
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region(i.e y'* > 11.63) the wall shear stress (w takes the expression

given by,

j('oq‘#ﬁ"i(urun) (F.39)

'Cu) =
Wey))
where k%w = t(kP* ﬁw) © (r.40)
4 AL
9; = .’a__y_ﬁ. . 4;' CP* (F.41)
M
!cP is the value of'k at the point P.

Equation (F.39) was obtained by combining equations (F.19)

+

and (F.20) and using equation (F.11) for y' > 11.63.Again for non-slip

condition Uy = O.Equation (F.39) may be rewritten as,

m

T e t,.Up (r.42)

Fh2 5
where tm = P& PW (F.43)
h(sy;)

If P falls within the viscous sublayer (ie y+ < 11.63) the

wall shear stress is also expressible as equation (F.42) but now with,

tm = Yp (F.44)
where UP = axial velocity at the point P,

yp = normal distance of the point P from the wall,

f = fluid density,
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and M = fluid viscocity.

Cr_, $<and E are constants values given by table 2.1(see

Chapter 2) together with other C's and 6 's constants.

By replacing equation (F.42) into equation (F.38) and by
incorporating the result of the shear stress through source treatment

in the manner as equation{F.36),we shall get,

S = -t $Xpw C(ra5)

0

W
C
"

(F.45)

where value of t, can take either from equations (F.43) or (7.44)

depending on y* whether it is > or  11.63.

Similar treatments may be carried out for V-velocity
components having east/ west walls of the control volumes coincide

front face(in fig.F.2(b)) or rear face(in fig.F.2{(c)) of the orifice

plate.

Above treatments of shear stress Fg ('-f-" F'-m.!) was for
tangential velocities. However there is no special treatment necessary

for nornal velocities.

(ii):Corner Treatments.

The following aiditional treatments are for two corners of
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.4he prifice plate in the flow domain.At the corners of the plate there
are positioﬁs where half face of the velocity cells(control volumes)
are 'exposed' to the calculation domain(flow domain) and half of them
coincide with boundaries of the orifice plate(ie front face,bottom face
and rear face of orifice plate boundaries). These situations may be

shown -in fig.F.3.
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Fig.F.3:Corner Treatments.
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U-!lomentum.

At corner (A) (see fig F.3) the contribution of flux from
east wall of V-cell ie {(in the front face of the orifice plate) is

given by,

(1]

i& fs + Uf' « +Awwr (F.47)

'i‘(fw + /’f’) (F.48)

where Ipc

Awr J Syps (F.49)
and C is a point mid-way between W and P enclosed by the U-cell

The expression of (F.47) is then incorporated through the

source treatment similar to equation (F.36) to give,

v
S = -—L(fpt fu): Awr (7.50)
Sg = 0 (7.51)

where negative sign has been introduced to promote stability.

The treatments at corner (B) of fiz.F.3 is similar to those

at corner (A). Above treatments are applicable only for the bottom

face of the orifice plate(in region 2).
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V-Momentun.

The treatment for V-momentum at corners (A) and (B) follow
the same pattern as for U-momentum except the contribution of flux is
rom the north wall of U-cell(again consiler corner (A)) a" instead of
5‘ in previous calculation.Above treatments are applicable for front

face (in region 1) and rear face (in region 3) of the orifice plate.

F.33 Turbulence Quantities.

The boundary values for the turbulent quantities ( k and € )

at the grid points nearest to the wall are specified in accordance with

the law of the wall.

(i) Turbulence Energy k.

Fig.F.4 shows typical k or € scalar-cells with north,east
and west walls of cells (control volumes) coincide with the top
w#all{including bottom face of the orifice plate) front face and rear

face of the orifice plate as indicated by small letters (a),(b) and (c¢)

respectively.

Tne turbulence energy k at the node point P,kP is obtained by
solving the governing transport equation.3ince the energy falls to zero

at the wall,the contributions of flux from the wall vanish,ie,

3‘ = o | (r.52)
(),



where n being normal to the wall.This can be achieved by setting gw,a

and a

W

to zero similar to relations (F.37).
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The generation G (see equation 2.16 of Chapter 2) reduces to
a simpler form,as a result of using the assumptions that %—% ’ %—x—

and V components of velocity near wall region

vanish(Bradshaw,1971),then,

G = F*(%g- + %—)‘92 (P.53)

Since at the wall,V-velocity does not change with

direction-x,ie,

2V

wam—

X | (F.54)

fl
C

and by using equation (F.15) the generation term G is modified to,

G = Ts(Up- Un)
Yp

Gc say (F.55)

where Es ,UP and yP are respectively wall shear stress,mean axial
velocity at the point P and the distance of P from the wall.Gc; is
called part of the generation term modified in terms of wall shear

stress(Gosman,1976).Again in this study UN is assumed to be zero.

It is also noted that from equations(F.53) and (F.54) the

modified generation term may also be written as,

& = m(3) (v.56)
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If this modified generation of equation (F.56) is subtracted
from the unmodified generation of k,then the final expression for the

total generation of turbulence energy can be written in the form,

Gr + Gc (F.57)

q

2
where Gy is the total unmodified generation of k less Ft(%%) and GC is

given by equation (F.55)(Gosman,1976).

The dissipation term c.,,os is also modified to reflect
equation (F.30) and when it is integrated over the control volume,it

takes the value (see eqn.F.35 for E-expression),

GPE = Gpled

- LG b 5y
P

where Sb’ is the control vclume encloses the point P where k is
stored.kP is the value of k at the node point P and the superscript (*)
appearing in the equation (F.58) stands for the value of k of the
previous iteration, kN is the turbulence energy at the wall whiich has
zero value, ;yP is the normal distance of nearest node P.from the

wall, @ is the fluid demnsity CD and CP'are constants given in table

2.1 (see Chapter 2).

+
Yhen the point P falls within the turbulence region (i.e.y >

11.63) equation (F.58) may be written as,
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GpE = 4 8V-%p (F.59)

where d—t = %F;(é; '*é tﬁ(Eg;) (F.60)
P

If P lies within the viscous sublayer (y*§ 11.63) equation

(F.53) has the same equation as equation (F.59) but now with,

dy e Op 9“34’&:* 5-!- (F.61)
Yp P

where t [,.‘ZE éf*i Cf‘* (r.62)

¥

If equation (2.22)(see Chapter 2) is integrated over the
control volume and linearising the result in the manner described by

equation (3.19)(see App. E) with ¢ sk,the following expressions for

SP and Sﬁ may be deduced

SN - d, .8V (F.63)

G.6v | (F.64)

él'

where 8V is the control volume which encloses P where k is stored.dt
can take values either from equations (F.60) or (F.61) depending on y 7+
whether it is > or { 1.63.The generation term G appearing in equation

(F.64) is the same as G in equation (F.57).
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(ii) Energy Dissipation Rate € .

€

€
Basically the 1linearisation 'constants' SP and Sy are
[
deducible from the integrated source term S~ for & (ie by integrating

equation 2.23 of Chapter 2 over the control volume) giving,

' *
S: = =GPE gy (7.65)
ke
S, = S&G gy (v.66)

*
where 5V is the control volume for € and kr and EP are values of
k and £€at the point P and superscript (*) indicates the values of

individual variables at previous iterations.

However,since in the wall flows,unlike k which fal'ls to =zero
at the wall, & reaches its maximum value there.This makes € -balance
for a cell extendinz right up to the wall difficult.It is due to this
difficulty that we(Gosman, 1976) adopt a fixed value for €p in the
jnertial sublayer(irrespective of the local Reynclds number,y?) based
on 'equilibriun' relations(see eqn.F.30). To achieve & = Ep(where Ep
is the value of § at P) the following changes are made to S; and o8

n)u .

€
Sp = -3 (r.67)

3
and Sy ¥-& (r.68)

30
where X is a large number of the order 10 and EF is given by

(see equation (F.30) for value of € at P),
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Y
g = % l”g_P" (7.69)

3y

where + = ._SE—— (r.70)
Ye

This will ensure that € = ,EP in the computer solution.
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APPENDIX G.

PROGRA!! FLOWCHART , SUBRQUTIWES AND PROGRAM LISTING.

Figure G.1 shows the flow chart of +the modified TEACH-T
computer program,that will help t¢ increase clarity of the program
layout that will be discussed in the following lines.A program 1listing

is provided at the end of this Appendix.

The program was run on both the CDC 7600 machine at the ULCC
and also on the departmental PRIME 550.The listing provided is for the

ULCC CDC7600 machine. The PRIME version has some minor medifications.

There are six general subroutines relevant to any particular
variable solvéd. They are the CONTRO,INIT,PROPS,PROMOD,LISOLV and
PRINT.In addition,there are major set of CALCU,CALCV,CALCP,CALCTE and
CALCED subrcutines for velocities U and V,pressure ccrrecticn

p' ,kinetic energy k and dissipation rate € where the variables of

interest are solved for.

Overall control is exerted by the main subroutine COYTR)

which performs the initial and final cperaticns and alsc controls the
iteraticn.The functicn ¢f this subroutine inclules setting the number

of sweeps (NS‘JP¢ ,for each variable ¢ ) throughout domain cof

calculation.It contains four chapters,



START ——

DATA
CARDS

INIT
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PRINT

INITIAL—
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DISCHARG &)
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Fig.G.1:The Program Plcwchart.
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Chagter 1.

In this chapter includes (i) specifying the grid spacing and
grid distributions upstrean/downstrean of crifice plate,(ii) selection
of dependent variable to be solved,(iii) reference values for fluid
pr0pertiés,(iv) turbulence constants and  boundary values,(v)

underrelaxation factors for each variables.

Chapter 2.

This chapter gives the initial variable fields and initial
outputs.

Chapter 3.

Chapter 3 gives how the fluid properties are updated and

prints out intermediate output for each variables,and

Chapter 4.

The discharge and pressure lcss ccefficients and also shear
stress coefficient along pipe wall when convergnce is achieved,were
calculated in this final chapter of the routine.

¥

Subroutine INIT performs initialisation jcbs,vhich consists

of two chapters,chapter 1 is to establish geometrical configurations

and chapter 2 initialises all variables to be solved.

Subrcutine PROPS,takes care of calculating fluid properties

like ILL , ID etc.
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e.g P.% = F’ + F’i (6.1)
_ 2
where ke = Cf‘ P'a"" (¢.2)

is the turbulence viscocity and /.L is for the laminar ones.

Subroutines CALC? make the main calculations of the finite

difference equations fer each ¢(¢ s U,V,kx,&) consisting of,

Chagter 1.

All the convective and diffusive coefficients a‘? (i=¥,s,E,¥)
of the difference equaticns (of the form E.74 ¢f appendix E) and Sﬁ

and 53 (see equation E.19 appendix E) for each ¢ variables are

assenbled.

Chapter 2.

Wall modifications are made by calling 10D for the

individual ¢ frem subroutine PROMOD.

Chapter 3.

Final coefficients aP(see equation E.25)are assembled here

and residual sources are calculated.

Chapter 4.

Recurrence relation (see equaticn (E.73) of Appendix E) are

solved by TDYA for new values of each variables by first assemblying
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TDMA coefficients(see Appendix E,equation (E.74)).
cALE.
In additiocn to four chapters described abcve,this CALCP

subrcutine contains,

Chapter 5.

The correct velocities (see equation E.40)are made here by

first correcting pressures according tc expression,

P = P* + fl (3.3)

Subroutine PROMOD.

All modifications on so0lid bcundaries are made in this
subroutine.Corrections due to wall and boundary effects are made
here,eg.for a specific ceall (centrol volume)near top wall of pipe,the
nornmal ¢P~ @, relation breaks down.This is achieved by sstting
AN(I,J) = O (where AN(I,J) is the coefficient of cocmbined convective
and diffusive flux through. north wall of the conntrcl volume ani is
given by relation E.26,see Appendix E).This rcutine consists of
chapters,each chapter corresponds to a specified variable
mcdifications.It is nct necessary to mcdify fluid properties,pressure

and internal energy.These correspond tc chapters 1,4 and 5

respectively,in the program listing provided.
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The shear stress on the pipe wall Cs is calculated and
¢ ¢

ot <0 ¢
modificaticns to SP and Sy (where SF' and Su are defined by equaticn

(2.19)(see Appendix E) at the wall are made in this routine.

Subrcutine LISOLV.

This subroutine performs the LBL iteraticn,which has been
discussed in Appendix E.The coefficients correspond to each variables
are called in,from individual CALC¢ subroutines.This is used %o solve
for the flow field variables in the recurrence formulae of the TDHMA

(see equation E.73 of Appendix E).

Subroutine PRINT.

This routine provides output ¢f variable arrays together with

headings for each individual variable,c’..
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c SUBROUTINE CONTRO HATN
c
C* 3 % J 0 6 Fe 20k 36 2 3006 3 I 2 2 26 0K 36 I T 2 36 206 IO 3696 2 226 e 30 606N I 06 D I I 0 JE 006 06 065 2 I 00 NN

C

C-.--o...oo.o-o..-..coocoooo-ooooTEACH'To-cococo-c-oo.-o...-.o-no-a..oo-o

C ¥ A COMPUTER PROGRAM FOR THE CALCULATICN OF *%
C * 770 -DIMENSIONAL (PLANE OR AXISYMMETRICAL) %
c * TURBULENT RECIRCULATING FLOWS. *%
C *%% SIMULATION OF ORIFICE METER MODEL ' R
C **% DEVELOPED BY M.HAFIZ HRRRRR
C *¥%* SYSTEMNS SCIENCE DEPARTMENT RRRERER
C %% PHE CITY UNIVERSITY,LONDON EC1V OHB, 1981 badaddied

et R T e s e e a2 2
CHAPTER O ©0 O O O O O O PRELIMINARIES O O O 0 O O O O MAIN

c ‘ MAIN
DIMENSION HEDU(6),HEDV(6),HEDP(6),HEN?(6),HEDK(6),HEDD(S),HZDM(6) MODA
1 ,HEDA(6 ) ,HEDB(6) "{ODA
COMMON MAIN

1 /UVEL/RESORU, NSWPU, URFU, DXEPU(40),DXPU(40),SEWU(40)
1 /VVEL/RESORYV, NSWPV, URFV, DYNPV(40),DYPSV(40),SNSV(40),RCV(40)
1/PCOR/RESORW,NSWPP,URFP,DU(32,32),DV(32,32),IPREF,JPREF
{1 /TEN /RESORX, NSWPK , URFK MODA
1/TDIS/RESGRE, NSWPD, URFE
1/VAR/U(32,32),V(32,32),P(32,32),PP(32,32),TE(32,32),ED(32,32)
1/ALL/IT,J7,NI,NJ,NIM1, NJM1,GREAT
1/GEOM/INDCOS, X(40),Y(40),DXEP(40),DXP¥(40),DYNP(40),DYPS(40),
1 SNS(40),SEW(40),Xu(40),YV(40),R(40),RV(40) '
1 /FLUPR/URFVIS, VISCOS,DENSIT, PRANDT, DEN (32, 32),VIS(32,32)
1 /KASE T1/UIN,TEIN,EDIN,FLOVIN, ALAMDA,
2 RSMALL, RLARGE, ALS, AL6, JSTEP, ISTREP, JSTP1, JSTM1, ISTP1 ISTM1,
3 ISTP2, ISTP3, ISTM2
1 /TURB/GEN(32,32),CD, CMU, C1, C2, CAPPA, ELOG, PRED, PRTE
1/WALLF/YPLUSN(32) XPLUSE(32) XPLUSﬂ(32) TAuw(sz) PAUR(32), TAUW(32)
1/COEF/AP(32,32), AN(32 32), As(32 32), AE(32 32), AW(32 32), su(32 32),
1 SP(32,32)
LOGICAL INCALU,INCALV,INCALP,INPRO, INCALK, INCALD, INCALM,INCALA,
1 INCALB
c*#e*%% DOYNSTREAM OF ORIFICE PLATE(IN REGIONS)
GREAT=1.E30 MODA
NITER=0 ‘ ‘ . MAIN
IT=32 ‘
JT=32
NSWPU=3
NSWPV=3
NSiPP =5
SWPK =3
NswPD =3
READ(S,010)HEDU, HEDV, HEDP, HEDT, HEDK, HEDD, HEDY , HEDA , HEDB
010 FORMAT(6A6) MAIN
c MAIN
CHAPTER 1 1 1 1 1 PARAMETERS AND CONTROL INDICES 1 1 1 1 1 1 MAIN
C ( MAIN
Cemmmn GRID MAIN

NIM1=NI-1 MODA
NJA1=NJI-1 HODA
INDCOS=2 : MODA
ISTEP=16 '

JSTEP=15

KSTEP=16

IL=KSTEP-1 -



C*****

C*****

100

IM=IL-1
DXJ=5,

DXD=15.

ISTP1=ISTEP+1
I3TM1=ISTEP~1
ISTP2=1STEP+2
ISTP3=ISTEP+3
ISTH2=ISTEP-2
J3TP1=JSTEP+
JST41=JSTEP-1
RSDRL=JSTH1/FLOAT(NJ-2)

AR=RSDRL¥*2

RLARGZ=.0508

DIAM=2.0"RLARGCE

* DOWNSTREAM OF ORIFICE PLAT® (IN REZION 3)

ALTOT2=DXD*DIAM

EPQX 109 )
SUMX2= (EP“X**IL-VPSX)/(F‘PDX 1. )+o 5¥LPIX**IV+0, 5
DX2=ALTOT2/SUMX2

DX20=DX2

* IN REGION2 AND DOWNSTREAM REGION (IN REGION 3)
X (ISTEP)=-0.5%DX2 .

X(ISTP1)=-X (ISTEP)

DO 100 I=ISTP2,NIH1

X(1)=x(I-1)+EPSX¥*DX2

DX2=EPSX*DX2

X(F1)=X(NIM1)-X(NI-2)+X(NIM1)

C**¥*%% UPSTREAM OF ORIFICE PLATE (IN REGION 1)

900

ALTOT1=DXU*DIAM

SUMX1 =(EPSX**ISTH1-EPSX)/(EPSX~1.)+0. S¥TPSX**ISTM2
HDX2=0. 5*DX20

DX1=(ALTOT1-4DX2)/SUMX1

DX10=DX1

DO 900 I=1,ISTH2

NN=ISTEP-I

NNP1=NN+

X(NN)=X (NNP1)-EPSX*DX1

DX1=EPSX*DX1

X(1)=x(2)-(x(3)-x(2))

ALTOT3=ALTOT1+ALTOT2 - .
AL5=0.5%(X(2)+x(1))

AL6=ALTOT3-ALS

T=0.5*EPSX*( ABS(DX10)+ABS(DX20))+ABS(DX20)

c**************************

101

DY=RLARGW/FLOAT(NJ-2)
Y(1)=-0.5%DY

DO 101 J=2,NJ
Y(J)aY(J-1)+DY

RSMALL=0.5*(Y (JSTEP)+Y (JSTP1))
D1=2.0*RLARGE

D2=2.0"RSMALL

TOD1=7/D1

T0D2=T/D2

D20T=D2/T

DSPENDENT VARIABLE SELECTION
INCALU=. TRUE.

INCALV=. TRUE.

INCALP=. TRUE.

INCALK=. TRUE.

INCALD=. TRUE.

INPRO=. TRUE.

Comm—- FLUID PROPERTIES

DENSIT =1000.0

o JRp— TURBULENCE CONSTANTS ‘

CHU=0.09
CD=1.00

MODA
ODA

MODA
MODA

MODA

MODA
MODA
MODA
MODA
MODA

MAIN
MAIN
MAIN
MAIN

MAIN

MAIN
MAIN
MAIN

23%4.



C1=1.44
c2=1.92
CAPPA=. 4187
ELOG=9.793
PRED=CAPPA*CAPPA/(C2-C1)/(CiU**.5)
PRTE=1.0
o R BOUNDARY VALUES
PURBIN=.03
ALAMDA=. 005
VISCOS=.8E-3
RE2=1.0E+5
RE1=RE2*RSDRL
DTD=DENSIT*DIAN
BUIN1=RE1™VISCOS/DTD
A=5.83E-5%(RE1)
B=4.16%-12*(RE1 )**2
D=A-B )
XP=7.48+D
S=(Xp+1,)*(2.%XP+1.)
RECXP=1./XP
UMAX=, 5*3*RECXP**2 *BUIN1
C¥**#%%¥% JDSTREAM OF ORIFICE PLATE
UIN=BUIN1
UIN2=BUIN1/AR
TEIN=TURBIN*BUIN{%*¥*2 A
EDIN=TEIN**1.5/( ALAMDA*RLARGE)
CH*#¥%%¥% DOYNSTREAM OF ORIFICE PLATE
UOUT=UIN2¥*AR
Cummmmm PRESSURE CALCULATION
IPREF=2
JPREF=2
Commmm PROGRAM CONTROL AND MONITOR
MAXIT=2500 .
IMON=12
JMON=8
URFU=0.5
URFV=0.5
URFP=1.0
URFE=0.7
" URFK=0.7
URFVIS=0,7
INDPRI=250
SORMAX=0. 01

C . ’
CHAPTER 2 2 2 2 2 2 INITIAL OPERATIONS 2 2 2 2 2 2 2 2 2

p— CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO
CALL INIT

VI INITIALISE VARIABLE FIELDS
FLOWIN=0.0
ARDEN=0.0

DO 200 J=2,NJi1
U(2,J3)=UMAX*(1.-Y (J)/RLARGS )**RECXP
TE(1, J)=TEIN
ED(1, J)=EDIN
ARDEN=0.5*(DEN (1, J)+DEN(2
200 FLOWIN=FLOWIN+ARDEN*y (2, J)
JFIN=JSTP1
DO 202 1I=3,NI
IF(I.LE.ISTM1)JFIN=NJ
IF(I.GE.ISTP2)JFIN=NJ
FACTOR=(YV(JSTP1)*RV(JSTP1))/(YV(IFIN)*RV(JFIN))
JEND=JFIN-1
DO 202 J=2,JEND
TE(I, J)=TEIN
ED(I, J)=EDIN

J))*R(J)*sNs(J)

AIN

AIN
MODA
MODA
H0ODA
MAIN
MAIN

MAIN
MAIN
MAIN
MAIN

MAIN
MAIN
MAIN

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MODA
MODA

MODA
MODA

MODA
MODA
MODA

MODA
MODA
MODA

235,



c

C

c

202

203

657

300

me(2,Jd)=Tn(1,J)
ED(2,J3)=ED(1,J)
J(I,J)=UT2*FACTOR
YPLU3N(1 )=0.0

DO 203 1I=2,NIl1
YPLUSN(I)=11.0

DO 204 J=JSTEP,NJ
XPLUSE(J)=11.0

IF(J.EQ. JSTEP)XPLUSE(J )=0.0

DO 902 J=JSTEP,NJ
XPLU3W(J)=11.0

IF(J.EQ. JSTEP)XPLU3W(J )=0.0

CALL PROPS -
INITIAL OUTPUT
WRITE(6,210)
WRITE(6,211)
WRITE(6,220) UIN
WRITE(6, 1034 )UIN2
WRITE(6, 1035 )RE1
WRITE(6,1036)T
WRITE(6,1037)D2
WRITE(6, 1038)T0D2
WRITE(6, 1060 )D2007T
WRITE(6, 1043 )TOD1
WRITE(6, 1039)SUMX2
WRITE(6, 1040)DX20
WRITE(6, 1041 )SUMX1
WRITE(6,1042)DX10
WRITE(6, 1044 NI
WRITE(6,1045)NJ
WRITE(6, 1046 )ISTEP
WRITE(6, 1047 )JSTEP
WRITE(6, 1061 )XSTEP
WRITE(6, 1062 )EPSX
WRITE(6,1048)DX!
WRITE(6, 1049 )DXD
WRITE(6, 1057 )SORMAX
WRITE(6, 1058 )TURBIN
WRITE(6, 1059 )A LAMDA
WRITE(6, 230)RE2
WRITE26,240) RSDRL
WRITE(6,260) DENSIT
WRITE(6,250) VISCOS

IF(INCALU) CALL PRINT(2,2,NI,NJ,IT,JT
IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT
IF(INCALP) CALL PRINT(2,2,NI,NJ,IT,JT
IF(INCALK) CALL PRINT(2,2,NI,NJ,IT,JT
IF(INCALD) CALL PRINT(2,2,NI,NJ,IT,JT
« +CALCULATE RESIDUAL SOURCES NORMALIZ

FLOWIN =0.0
XMONIN =0.0
DO 657 J=2,NM1

XU, Y, U, HEDU)
X,YV,V,HEDV)
X,Y,P,HEDP)
X,Y,TE, HEDK)
X,Y,ED, HEDD)
T10

?
?
’
A

ARDEN =0.5*(DEN(1,J)+DEN(2,J))*R(J)*SNS(J)

FLOWIN =FLOWIN+ARDEN*U(2,J)

XMONIN =XMONIN+ARDEN*U(2,J)*u(2,J)

CONTINUE
RESORT =0.0

WRITE(6,310) IMON, JMON
NITER=NITER+1

IF(INCALU) CALL CALCU
IF(INCALV) CALL CALCV
IF(INCALP) CALL CALCP
IF(INCADZK) CALL CALCTE

N FACTORS.......".....O.

1ODA
"ODA
MODA

AAIN
MAIN

MODA
MODA
MAIN
MAIN
MAIN

' . MAIN .
CHAPTER 3 3 3 3 3 3 3 ITERATION LOOP 3 3 3 3 3 3 3 3 T wMAIN

MAIN
MAIN

JAIN
MAIN
MAIN
MAIN

2%h.



c .
CHAPTER 4 4 4 4 4 4 FINAL OPERATIONS AND QUTPUT 4 4 4 4 4 4

c

301

IF(INCALD) CALL CALZHD

JPDATZ FLUID PROPIRITIES

IF(IPRO) CALL PROP3

INTERMEDIATE OUTPUT

RESORM =RESORY/FLOJIN

RESORU =RESORU/XONIN

RESORV  =RESORV/XMONIN

DUMMY=0.0

WRITE(6,311) NITER, RESORU, RESORV, RESORY,RESORT, RESORK, RESORE
,U(IMON, JMON),V(ION, J11ON) ,P(IMON, JYON) , DUMMY,

PE(IMON, NJM1),ED(IMON, NJ11)

IF(MOD(NITZR, INDPRI).NE. o) 30 TO 301

IF(INCALY) CALL PRINT(2,2,NI,NJ,IT,JT,XJ,Y,U,HZDU)

IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V,HEDYV)

IF(INZALP) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,P, H2DP)

IF(INCALK) CALL PRINT(2,2,NI,NJ,I?,J7,X,Y,TE,HEDK)

IF(INCALD) CALL PRINT(Z,Z,NI,NJ,I JT,X,Y, ED, HSDD)

WRITE(6,310) IMON, JMON

CONTINJE

----- TER4INATION TESTS

302

----- CALCULATION OF NON DIMEHSIONAL TURBULENCE ENERGY AND LENGTH SCALE

401

SORCE =AMAX1 (RESORY,RESORU, RESORV)

IF(NITER. EQ. 40. AND. SORCE. GT. 1. 0E4*SOR¥AX)GO TO 302
IF(JITER. EQ.MAXIT) GO TO 302

IF(SORCE.GT.SORMAX) GO TO 300

CONTINUE

IFgINCALU) CALL PRINT(2,2,NI,NJ,IT,JT,XJ,Y,U,HEDU)
IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V,HSDV)
IF(INCALP) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,P,HEDP)

IF(INCALK) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,TE,HEDK)
IF(INCALD) CALL PRINT(2,2,NI,NJ,IT,JT, x Y, ED, HEDD)
1F(INPRO ) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,VIS,HED1)

DO 400 I=2,NIM1

DO 400 J=2,NJM1

su(1, J)-TE(I J)*DEN (T, J)/ABS(TAUN(T))

IF(I.EQ. ISTEP.AND.J. Gm.JSTP1)TE(I J)=0.0

IF(I.EQ. ISTP1.AND.J.GE.JSTP1)TE(I,J)=0.0

sp(1,J)=TE(I, J)**.5/ED(I, J)/RLARGE

CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SU,HEDA)

CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SP,HEDS) S
CALCULATION OF SHEAR-STRESS COEFFICIENT ALONG LARGE DUCT WALL
WRITE(6,402)

DO 401 I=2,NIM1

SSC*TAUN(I)/(1.0*DENSIT*UOUT*UOUT)

XUH =XU (1) /(RLARGE-RSMALL)

WRITE(6,403) I,XUH,SSC

CONTINUE

c#%%%¥ CATCULATION OF DISCHARGE AND PRESSURE LOSS COEFFICIENTS¥*#arx%x

P1=P(2,NJM1)

P3=P (3, NJ11)

PISTM1=P (ISTM1,NJ11)

PISTP2=P (ISTP2, NJM1)

P4=P (NIM1,NJY1)

DPCT=(P1-24)-DP13*ABS(X (NTM1)-X(2))/A3S(X (3)-X (2))
DCCT=UIN*SQRT (DENSIT*(1./RSDRL**4-1.)/2./DPCT)
HDUIN=.S*DENSIT*UIN¥*2

XKTHEO=(P1-P4)/HDUIN

XKTCTD=PC/HDUIN ‘
XKBXP1=(1./(.603%AR™*(1.-AR**2,6)* (1, +T0D2**3,5)+AR*¥*3,6)-1, ) *¥2
XFD=.0254

XFU=-XFD

XD2D=RLARGE

XDU=-DIAM

MAIN
MAIN
MATH
MAIN

110DA

MAIN
MODA
M0DA
MAIN
MAIN

 MAIN

MAIN
MAIN
MATH

MAIN

MAIN
YAIN
MAIN
MAIN
¥oDA
1MODA
MAIN
MAIN
HAIN
MO41

MODA



1=13TP2
1 IF(X(1).C8.XFD)3) T0 2
I=I+1
GO TO 1 239,
2 IFD=I
IFDA1=IFD-1
PIFD=P(IFD, NJ11)
PIFDM1=P(IFDM1,NJ11)
XIFD=X (IFD)
XIFD11=X (IFD11)
PFD=PIFD41+(PIFD-PIFDM1 )*(XFD-XIFD11)/(XIFD-XIFD11)
I=ISTH1
3 IF(X(1).LE.XFU)GO TO 4
I=I-1
GO TO 3
4 IFU=I
IFUP1=IFU+
PIFU=P(IFU,NJ11)
PIFUP1=P (IFUP1,NJ11)
XIFU=X (IFU)
XIFUP1=X (IFUP1)
~ PFU=PIFUP1+(PIFU-PIFUP1 )*(XFU-XIFUP1)/(XIFU-XIFUP1)
I1=ISTP2
5 IF(X(I).G2.XD2D)GO TO 6
I=1+
GO TO 5
6 ID2D=I
ID2DM1=ID2D-1
PID2D=P(ID2D, NJA1)
PID2D1=P (ID2DM1, NJ¥1)
XID2D=X (ID2D)
XID2D1=X (ID2D11)
PD2D=PID2D1+(PID2D-PID2D1 )*(XD2D-XID2D1)/(XID2D-XID2D1)
I=ISTM1
7 IF(X(1).LE.XDU)GO TO 8
I=I-%
GO T0 7
8 IDU=I
IDUP1=IDU+1
PIDU=P (IDU,NJM1)
PIDUP1=P (IDUP1,NJA11)
XIDU=X (IDU)
XIDUP1=X (IDUP1)
PDU=PIDUP1+(PIDU-PIDUP1)*(XDU~XIDUP1)/(XIDU-XIDUP1)
DPFT=PFU-PFD
DPDD2T=PDU~PD2D
DCFT=UIN*SQRT (DENSIT*(1./RSDRL**4-1,)/2./DPFT)
DCDD2T=UIN*3QRT (DENSIT*(1./RSDRL**4-1.,) /2. /DPDD2T)
WRITE(6, 1051 )DCFT
WRITE(6, 1052 )DCDD2T
WRITE(6, 1053 )DCCT
WRITE(6, 1054 )XXTHEO
WRITE(6, 1055 )XKTCTD
WRITE(6, 1056 )XKEXP1 ,
STOP MAIN
_____ FORMAT STATEMENTS MAIN
210 F2§393§1H0,47X,*KASE T1 TURBULENT FLOW THROU3Y A SUDDEN RNLARGRMREN
1T
211 FORMAT(1HO, 50X, 29 BACK AND ROSCHKE EXPRRIMENTS,////)

220 FORMAT(//140, 15X, *INLET FLUID VELOCITY UIN*,T60,1H=,3X, 1P511.3)
1034 FORMAT(1HO, 15X, *ORIFICE FLUID VELOCITY UIN2*,T60, 14=,3X, 1PE11.3)
1035 FORMAT(1HO, 15X, *REYNOLDS NUMBER! RE1%*,760, 14=, 3X, 1P811.3)

1036 FORMAT(1HO, 15X, *ORIFICE PLATE THICKVESS T*,760, 14=,3X, 1PE11.3)
1037 FORMATE1HO,1SX,*ORIFICE PLATE DIAMETER D2*,T60, 1H=, 3X, 1PE11.3)
1038 FORMAT(1HO, 15X, *PLATE THICKNESS OVER O METE *

1038 ook, 1915} ORIFICE DIAMETER T/D2%*,T60,




1950 FOR®AT(1HO, 15K, *IRIFICE DIAM.AND PLATE THIZKVES RATIO N2/T*,T60,
114=,3X,17811.3)

1059 FORIAT(110, 15X, *3U4X2*, 760, 1H=, 3X, 1P711 . 3)

1040 FOR4AT(1HO, 15X, *DX20*, P60, 14=, 3X, 1P211. 3)

1041 FORAAT(1HO, 15X, *3U1X1 %, 760, 1H=, 3X, 1PE11.3)

1042 FORMAT(1HO, 15X, *DX10%, 760, 1H=, 3X, 1PE11. 3)

1043 FORMAT(1H0, 15X, *PLATE THICKNESS OVER PIPE DIAMETER T/D1%*,T60,
11H=, 3X, 1PE11.3)

1044 FORMAT(1HO, 15X, *DIRECTION-X GRID NO.NI*, T60, 1=, 3X, 1PE11.3)

1045 FORMAT(1HO, 15X, *DIRECTION-Y GRID NO.NJ*,T60, 1H=,3X, 1PE11.3)

1046 FORMAT(1HO, 15X, *ISTEP*, 160, 1H=, 3X, 1PE11.3)

1047 FORMAT(1HO, 15X, *JSTEP* 760, 14=, 3X, 1PE11. 3)

1061 FORMAT(1HO, 15X, *KSTEP*, 760, 14=, 3X, 1P311.3)

1062 FORIAT(1HO, 15X, *EPSX*, T60, 14=, 3X, 1PE11.3)

1048 FORMAT (140, 15X, *INLET DISTANCE(IN DIAM.)DXU*,T60, 1li=, 3X, 1PR11.3)

1049 FORMAT(1X0, 15X, *OUTLET DIST.(IN DIAM.)DXD*,T60, 1=, 3X, 1PE11.3)

1057 FORMAT(1HO, 15X, *MAXTAUM SOURCE SORMAX*,T50, 1H=, 3X, 1PR11.3)

1058 FORAAT(1HO, 15X, *PURBULENCE INTENSITY TURBIN*,T60, 14=, 3X, 1PR11.3)

1059 FORMAT(1HO, 15X, *LENGTH SCALE FACTOR ALAMDA* [ T60, 1li=, 3X, 1PE11.3)

230 FORMAT(1HO, 15X, *REYNOLDS NUMBER2 RE2*,T60, 1H=, 3X, 1PR11.3)

240 FORMAT(1HO, 15X, *DIAMETER RATIO D2/D1*,T60, 1=, 3X, 1PE11.3)

250 FORMAT(1HO, 15X,* LAMINAR VISCOSITY *,T60,14=,3X, 1P211,3)

260 FORMAT(1HO, 15X, *FLUID DENSITY *,T60,1H=,3X, 1PE11.3)

310  PORMAT(1HO,*ITER % *[——eo—o o _____ ABSOLUTE RESIDUAL SOURCE SUM MAIN
1S mmmmmcmee I I--eeea- FIELD VALUES AT MONITORING LOCATION* * MODA
2(®,12,% * o #)% *________ I* / 2X,*NO.*,3X, *UMOU* ,6X, ¥V M0M* 6K, *MA MATN
333*,6x,*ENER*,6X,*TKIN*,6X,*DISP*,1OX,*U*,9X,*V*,9X,*P*,9X,*T*,9X, MODA
4%(*, 9X,*D*/) : MODA

311 FORMAT(1H ,I3,4X,1P6E10.3,3X,1P6210.3) MODA

402 FORMAT(///5K, 1HI, 7X,5HXU(I),6X,104S. S.COEFF. )

403 FORMAT(/5X,15,2(1PE11.3))

1051 FORMAT(//1HO,15X,*DIS.COEF.(FLANGETAP)DCFT*,TGO,1H=,3X,1PE11.3)

1052 FORMAT(1HO, 15X, *DIS.COEF.D-D/2TAP DCDD2T*,T60, 1=, 3X, 1P211.3)

1053 FORAAT (1HO, 15X, *DIS. COEF.(CORNER TAP)DCCT, T60, 1H=,3X, 1PE11.3)

1054 FORMAT(1HO, 15X, *THTCAL PRES. LOS. COEF . XKTHEO*, T60, 1H=, 3X, 1PE11.3)

1055 FORMAT(1HO,15X,*CTDTCALPRES.LOS.COEF.XKTCTD*,T60,1H-,3X,1PE11.3)

1056 FORMAT(1HO, 15X, *EXPTAL PRES. LOS. COZF . XKEXP1*,T60, 1=, 3X, 1PE11.3)
END . MAIN
SUBROUTINE INIT INIT

c - INIT

CHAPTER 0 0 0 O O O O O PRELIMINARIES O O O O O O O O INIT

c INIT

COMMON INIT
1 /UVEL/RESORU, NSWPU, URFU, DXEPU (40) , DXPYU(40) , SENU(40)
1/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40),

1 /PCOR/RESORH , NSWPP, URFP, DU(32, 32),DV(32,32) , IPREF, JPREF

1/VAR/U(32,32),V(32, 32),P(32, 32),PP(32,32),TE(32, 32) , ED(32, 32)

1/ALL/IT, JT,NI,NJ, NIM1,NJM1, GREAT _ ’

1/GEOM/INDCOS,X(4O).Y(40).DXEP(4O),DXPW(4O),DYNP(40),DYPS(40).

1 SNS(40),sEW(40),XU(40),YV(40),R(40),RV(40)
,1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(BZ,32),VIS(32,32)

1 /KASE T1/UIN,TEIN,EDIN, FLOWIN, ALAMDA,

2 RSAALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JST41, ISTP1, ISTMT,

3 ISTP2, ISTP3, ISTH2

1/TURB/GEN(32,32),CD,CMU,C1,C2,CAPPA,ELOG,PRED,PRTE

1/COEF/AP(32,32),AN(32,32),AS(32,32),AE(32,32),AW(32,32),SU(32,32),

1 SP(32,32)

¢ INIT

CHAPTER 1 -1 1 1 1 CALCULATE GEOMETRICAL QUANTITIES 1 1 1 1 1 INIT

C CINIT

DO 100 J=t ,NJ INIT
R(I)=Y(J) INIT

100 IF(INDCOS.EQ.1)R(J)=1.0 INIT

CH¥¥X%X TN REGION!

DXPW(1)=0.0 INIT

DO 943 I=1,ISTH1 .



943

102

948

104

955

954

955

108

109

110

DXSP(I)=X(1+1)-X(1)
DXPA(I+1 )=DXEP(I)
DYP3(1)=0.0
DYNP(:1J)=J.0

DO 102 J=1,NJM1
DYNP(J)=Y (J+1)-Y(J)
DYPS(J+1 )=DYNP(J)
SE#(1)=0.0

DO 948 I=2,ISTil1
SEN(I)=0.5*(DXEP(I)+DXPW(I))
SNS(1)=0.0

SNS(34J)=0.0

DO 104 J=2,NJ11
3K3(J3)=0.5%(DYNP(J)+DYPS(J))
Xu(1)=0.0

DO 953 I=2,ISTEP
XU(1)=0.5*(X(1)+X(1-1))
DXPWU(1)=0.0
DXPWU(2)=0.0

DXEPU(1 )=0.0

DO 954 I=2,ISTM1
DXEPU(I )=XU(I+1 )-Xu(1)
DXPYU(I+1 )=DXEPU(I)
SEVU(1)=0.0
SEJU(2)=0.0

DO 955 I=3,ISTV1
SEJU(I)=0.5%(DXEPU(T )+DXPWU(I))
YV{1)=0.0

RV(1)=0.0

DO 108 J=2,NJ
RV(J)=0.5*(R(J)+R(J-1))
RCV(J)=0.5%(RV(J)+RV(J-1))
YV(I)=0.5%(Y (3 )+Y(J-1))
DYPSV(1)=0.0"-
DYPSV(2)=0.0
DYNFPV(1)=0.0
DYNPV(NJ)=0.0

DO 109 J=2,NJA1
DYNPV(J)=YV(J+1 )-YV(J)
DYPSV(J+1 )=DYNPV(J)
SNSV(1)=0.0

SNSV(2)=0.0
SNSV(NJ)=0.0

DO 110 J=3,NJM1

3NSV(J)=0.5*(DYNPV(J)+DYPSV(J))

CH¥#XX% TN REGION2

944

945

949

950

956

DO 944 I=ISTEP, ISTP1
DXEP(I )=X(I+1)-X(I)

DXPW(I+1 )=DXEP(I)
DYPS(1)=0.0 ‘
DYNP(JSTP1)=0.0

DO 945 J=1,JSTEP

DYNP(J)=Y (J+1)-Y(J)

DYPS (J+1 )=DYNP(J)
SEA(1)=0.0

DO 949 I=ISTEP, ISTP1
SEJ(I)=0.5*(DXEP(I )+DXPW(I))
SNS(1)=0.0

SNS(JSTP1)=0.0

DO 950 J=2,JSTEP

SNS(J )=0.5*(DYNP(J)+DYPS(J))
Xxu(1)=0.0

DO 956 I=ISTP1,ISTP2
XU(I)=0.5%(X(1)+X(1-1))
DXPWU(1 )=0.0

DXPWU(2)=0.0

INIT

INIT
IJIT
INIT
INIT
INIT
INIT

INIT
INIT
INIT
INIT
INIT

INIT
INIT
INIT

INIT

INIT
INIT

INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT

“ODA
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
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957

958

962

963

964

DX2PU(1)=).0

DO 957 I=ISTEP, ISTP1
DXEPU(I )=XJ(1+1)-XxU(1)
DXPAU(I+1 )=DX=PU(I)
SEJU(1)=0.0

SEJU(2)=0.0

DO 958 I=ISTEP, ISTP1
SEAU(I)=0.5%(DXEPU (1 )+DXPWU(1))
YV(1)=0.0

RV(1)=0.0

DO 962 J=2,JSTP1
RV(J)=0.5*(R(J)+R(J-1))
RCV(J)=0.5*(RV(J )+RV(J-1))
YV(J)=0.5*(Y (J)+Y(J-1))
DYP3V(1)=0.0

DYP3V(2)=0.0
DYNPV(JSTP1)=0.0

DO 963 J=2,JSTEP
DYNPV(J)=YV{J+1)-Yv(J)
DYPSV(J+1 )=DYNPV(J)
SNSvV{(1)=0.0

SNSV(2)=0.0
SNSV(JSTP1)=0.0

DO 964 J=3,JSTEP

SNSV(J )=0.5*(DYNPV(J)+DYPSV(J))

C¥**%%%* TN REGION3

946

9417

951

952

959

DXEP(NI)=0.0

DO 946 I=ISTP2,NIM1
DXEP(I)=X(I+1)-x(1)
DXPW(I+1 )=DXEP(I)
DYPS(1)=0.0
DYNP(NJ)=0.0

DO 947 J=1,NJM1
DYNP(J)=Y (J+1)-Y(J)
DYPS (J+1 )=DYNP(J)
SEW(1)=0.0

DO 951 I=ISTP2,NIM{
SEV(I)=0.5*(DXEP(1 )+DXPW (1))

SNs(1)=0.0

SNS(NJ)=0.0

DO 952 J=2,NJM1
SNS(J)=0.5*(DYNP(J )+DYPS(J))
Xu(1)=0.0

DO 959 I=ISTP3,NI

X0 (1)=0. 5%(X (I }+X(I=1))
DXPWU(1)=0.0

DXPWU(2)=0,0

DXEPU(1)=0.0

DXEPU(NI)=0.0

- DO 960 I=ISTP2,NIM1

960

DXEPU(I )=XU(I+1)-Xu (1)
DXPWU(I+1 )=DXEPU(I)
SEWU(1)=0.0

- SEWU(2)=0.0

961

965

DO 961 I=ISTP2,NIM1

SEWU(I )=0.5%(DXEPU (I )+DXPWU(I))
YV(1)=0.0

RV(1)=0.0

DO 965 J=2,NJ
RV(J)=0.5%(R(J)+R(J-1))
RCV(J)=0.5*(RV(J )+RV(JI~1))
YV(J)=0.5%(Y (I )+Y (J-1))
DYPSV(1 )=0.0

DYP3V(2)=0.0

DO 966 J=2,NJU1
DYNPV(J)=YV(J+1)-YV(J)

241.



966 DYP3V(J+1 )=DYNPV(J)
sasv(1)=0.0
sn3v(2)=0.0
SN3V(iJ)=0.0
DO 957 J=3,NJIM1
967 SHSV(JI)=0.5*(DYAPV(J)+DYPSV(J))
C
CHAPPER 2 2 2 2 2 2 SET VARIABLES 70 ZERO 2 2 2 2 2 2
c
DO 200 I=1 NI
DO 200 J=1,NJ
U(1,J)=0.0
v(1,J)=0.0
P(1,J)=0.0
PP(1,J)=0.0
TE(1,J)=0.0
ED(I,J)=0.0
BN (I,J)=DENSIT
VIs(I, J)=VISCOS
pu(1,J)=0.0
pv(1,J)=0.0
su(1,J)=0.0
SpP(1,J)=0.0
200  CONTINJUE
RETURN
END
SUBROUTINE PROPS
C
CHAPTER O O O O O O O O PRELIMINARIES O O 0 O O O O O
C
coMMON
1 /FLUPR/JRFVIS, VISCOS, DENSIT, PRANDT, DEN(32,32),VIS(32, 32)
1 NAR/U(32,32),V(32,32),P(32,32),PP(32,32),TE(32, 32) ,ED(32, 32)
1 /ALL/IT, JT,NI,NJ,NIM1,NJM1, GREAT
1 /TURB/GEN(32,32),CD,CMU, C1,C2, CAPPA, ELOG, PRED, PRTE
1 /<ASE T1/UIN,TEIN, EDIN,FLOWIN,ALAMDA,

2 RSMALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JST1, ISTP1, ISTM1,
3 - ISTP2,ISTP3, ISTM2
c
CHAPTER 1 1 1 VISCOSITY 1 1 1
c
DO 100 I=2,NIM1
vis(1,1)=vis(1,2)
DO 100 J=2, NJM1
VISOLD=VIS(I,J)

IF(ED(I,J).EQ.0.) GO TO 102 ‘
VIS(I, J)=DEN(I,J)*TE(T, J)**2*CMU/ED(I, J)+VISCOS
GO TO 101
102 vIs(1,J)=vVISCOS
‘ IF&I.EQ.ISTEP.AND.J.GE.JSTP1)VIS(I.J)*0.0
IF(I.EQ. ISTP1.AND.J.GE.JSTP1)VIS(I,J)=0.0
101 VIS(I,J)=URFVIS™WIS(I,J)+(1.-URFVIS)*VISOLD
Cum-o= UNDER~-RELAX VISCOSITY
100 CONTINUE

RETURN
EXD
SUBROUTINE CAILCU
c
CHAPTER O O O O O O O O PRELIMINARIES 0 O 0.0 0 O O O
c
COAMON
1 /UVEL/RESORU, NSWPU, URFU, DXEPU(40),DXPHU(40), SENU(40)
1 /PCOR/RESORH , NSW PP, URFP, DU(32,32),DV(32,32), IPREF, JPREF
1 /NAR/U (32,32),V(32,32),P(32,32),PP(32,32),TE(32,32) ,ED(32,32)
1/ALL/IT,JT,NI,NJ,NIi{1,NJ11,GREAT
1/GEOM/INDCOS, X(40),Y(40),DX2P(40),DXPW(40),DYNP(40),DYPS (40),

INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT

MODA -
MODA
INIT
INIT
INIT
INIT

INIT

INIT

PROPS
PROPS
PROPS
PROPS
PROP3

PROPS

PROPS

PROPS
PROPS

PROPS
PROPS

PROPS
PROPS

PROPS
PROPS
CALCU
CALCU
CALCU
CALCU
CALCU
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c

1
1
1
1
1
2
3

5:15(40),8%4(40), X3 (40),YV(40),R(40) ,RV{40)

/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(32,32),VIS(32,52)
/COEF/AP(32,32),AN(32,32),A5(32,32) ,AE(32, 32) , AW (32, 32) ,50(32, 32)

SP(32,32)
/KASE T1/UIN,TEIN,EDIN,FLOWIN,ALAMDA,

RSMALL,RLARGE,ALS,ALG,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,

ISTP2, ISTP3, ISTH2

CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1

- -

DO 100 I=3,NIM1

DO 101 J=2,NJu1

COAPUTE AREAS AND VOLUME

AREAN=RV(J+1 )*3EJU(T)

AREAS=RV(J )*SE4U(I)

AREAEW=R (J )*SNS(J)

VOL=R (J )*SEWU(I)*SN3(J)

CALCULATE CONVECTION COEFFICIENTS
GN=0.5*(DEN(I, J+1 )+DEN(I, J))*V (T, J+t)
GNW=0.5*(DEN(I-1,J)+DEN(I-1,J+ ))*V(I-1,J+1)
GS=0. 5*(DEN(T, J-1 *DEN(I, J))*V(1,J)
GSA=0.5%(DEN(I-1, J)+DEN(I-1,J-1))*V(I-1,J)
GE=D.5%(DEN(I+,J)+DEN(I,J))*u(I+1,J)
GP=0.5*(DEN (I, J)+DEN(I-1,J))*u(1,J)
Gi=0.5*(DEN(I-1,J)+DEN(I-2, J))*u(1-1,J)
CN=0.5%(GN+GNW ) * AREAN
CS=0.5%(GS+GSW ) * AREAS
CE=0.5%(GE+GP )* AREAEY
CW=0.5%(GP+5W ) * AREAEW

----- CALCULATE DIFFUSION COEFFICIENTS

VISH=0.25*(VIS(I, J)+VIS(T, J+1 }+VIS(I-1, I)+VIS(I-1,J+1))
VISS=0.25*(VIS(I, J)+VIS(I, J-1)+VIS(I-1,J)+VIS(I-1, 1))
DN=VISN*AREAN/DYNP(J) _

D3=VISS*AREAS/DYPS(J)

 DE=VIS(I,J)*AREAEW/DXEPU(I)

DA=VIS(I-1,J)*AREAEN/DXPWU(I)

C-----CALCULATE COEFFICIENTS OF SOURCE TERMS

c

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2

c

c

c

SUP=CN-CS+CE-CW

CP=AMAX1 (0.0, SMP)

CPO=CP

ASSEMBLE MAIN COEFFICIENTS
AN(I, J)=AMAX1 (ABS(O.5%CN),DN)-0. 5*CN

AS(I, J)=AMAX1 (ABS(0.5%CS),D3)+0. 5%CS

AB(I, J)=AMAX1 (ABS(O.5"CE),DE)-0.5*CE

AW(I, J)=AMAX1 (ABS(O.5%CW) ,Di)+0. S5*Cy

DU(I,J )=AREAEW

SU(x, J)=cPo*y(1,J)+dU(1, J)*(P(1-1,J)-P(1,J))
SP(1,J)=-CP

DUDXP =(u(I+1,3)-U(I,J))/SEN(T)

pubxt =(u(1,J)-U(I-1,3))/SEW(1-1)

su(1,J) =(vis(r, J)*DUDXP-VIS(I

DVDXP =RV(J+1 )*(V(I,J+1)-V(I-1,J+1))/pxzP(1)

GAMM =0, 25*%(VIS(I,J)+VIS(I-1,I)+VIS(I, J-1 )+VIS(I-1, J=1))

DVDXM =RV(J)*(V(I,J)-v(1-1,3))/pDX=P(1)

SU(1,J) =SU(T, J)+(GAMP*DVDXP-GAMM*DVDXY) /sNS(J)/R(J )*OL

101 CONTINUE
100 CONTINUE

CALL MODU

RESORU=0. 0

1

1

1

-1,J)*DUDXM) /SEYU(I )*VOL+SU(I, J) .
GAMP -O.25*(VIS(I,J)+VIS(I—1,J)+VIS(I,J+1)+VIS(I-1,J+1))

CHAPTER 3 FINAL COEFF. ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 3

1

CALCU
CALCU
CAICU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CAICU
CALCU
CALCU
CALCU
CALCU
CAICU
CAICU
CALCU
CALCU
CALCU
CALCU
CALCU
CAICU
CAICU
CAICU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CAICU
CAICU
CALCU

CALCU
CAICU
CAICU
CAlLCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
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DO 300 I=3,NIM1
DO 301 J=2,NJ11

AP(T, J)=AN(T, 3)*aS(L, J)+AS(1, J)+Ad(T, J)-SP(L, J)
pu(1, J)=pu(1, J)/ar(1, J)

1

SORVOL=GREAT*VOL

RESOR*AH(I,J)*J(I.J+1)+AS(I,J)*U(I,J—1)+AE(I,J)*U(I+1,J)

+Aw(I,J)*U(I-1,J)—AP(I,J)*U(I,J)+SU(I,J)
VOL=3(J )*SEN(1)*SNS(J)

IF(-SP(I,J).CGT.0.5*30RVOL) RESOR=RESOR/SORVOL
RESORU=RESORU+ABS(RESOR)

o J— UNDER-RELA XATION
AP(1,J)=AP(I,J)/URFU

SU(I, J)=su(I,3)+(1.-URFU)*AP(I, J)*J (1, J)

DU (1, J)=pu(I, J)*URFU

301 CONTINUE
300 CONTINUE

c

C

DO 400 N=i,NSWPU

CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4

400 CALL LISOLV(3,2,NI,NJ,IT,JT,U)
RETURN

END

SUBROUTINE CALCV

C

CHAPTER O O O O O

- C

COIMON
1/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),snsv(4o),Rcv(4o)
1 /PCOR/RESORM, NSWPP, URFP, DU(32,32),DV(32,32) , IPREF, JPREF
1/VAR/U(32,32),V(32,32) ,P(32,32) ,PP(32, 32),TE(32, 32),ED(32, 32)
1 /ALL/IT, JT,NI,NJ, NIM1,NJM1,GREAT -

1

1 /FLUPR/URFVIS, VISCOS,
1/COEF/AP(32,32),AN(32
SP(32,32)

1.

O O O PRELIMINARIES O O 0 0 0 0O O 0

1/3E0M/INDCOS, X(40),Y(40),DXEP(40) , DXPW(40) , DYNP(40), DYPS (40),

SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40)

DENSIT, PRANDT, DEN(32,32),VIS(32,32)
.32).AS(32.32).AE(32,32).Aw(32.32).SU(32.32).

1/KASEvT1/UIN,TEIN,EDIN,FLOWIN,ALAMDA,

RSHMALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JSTi1, ISTP1, ISTH1,
ISTP2, ISTP3, ISTH2

2
3

C
CHAPTER

DO 100 I=2,NIM1
DO 101 J=3, NJM1

1

1

1

1

1

1

ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 1

Commmm COAPUTE AREAS AND VOLUME

AREAN=RCV(J +1 )*SEI(I)
AREAS=RCV(J )*SEW(I)
AREAEA=RV(J )*SNSV(J)

VOL>RV(J )*SEW(I)*SNSV(J)

 Cmm--- CALCULATE CONVECTION COEFFICIENTS
GN=0.5*(DEN (I, J+1 )+DEN(I, J))*V (I, J+1)
GP=0.5*(DEN (I, J)+DEN(T, J-1))*V (1, )
GS=0.5*(DEN (I, J-1)+DEN(T, J-2))*V (I, J-1)
GE=0. 5*(DEN(I+1,J)+DEN(T, J))*U(1+1,J)

GSE=0. 5*(DEN (I, J-1 )+DEN (I +1 53-1 N*I(I+1,3-1)

G¥=0.5%(DEN(I, J)+DEN(I-1,J)

*(1,3)

GS¥=0.5*(DEN (I, J-1 )+DEN(I-1, J-1 N*(1,J-1)

CN=0.5%(GN+GP )*AREAN
CS=].5*(GP+3S )*AREAS

CE=0.5*(GE+GSE )* AREARY
CW=).5*(GW+GSW)* AREARY
Co~m~mm CALCULATE DIFFUSION COEFFICIENTS

VISE=0.25%(VIS(I,J)+VIS(I+ » IHVIS(T, J-f PVIS(I+1,J-1)
VIS#=0.25%(VIS(I,J)+VIS(I-1 » IIVIS(T, J-1 )+VIS (I~ ,J-1)
DN=VIS(I,J)*AREAN/DYNPV(J) .

)
)

CALZU
CALCU
CALCU
CALCU
CALCU
CALCU

CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CALCU
CAICU
CAlCU
CAICU
CALZU
CAICU
CALCU
CALCV
CALCV
CAICV
CAICV
CALCV

CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALCV
CALGV

CALCV
CALCY
CALCV
CALCV
CAICV
CAICYV
CAICV

CALCV
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CALCV
DE=VISE*AREAEJ/DXEP€I) CALCV
DV=VIS{*AREARN/DXPY(1) CALCYV

[oJ—— CALCULATE COEFFICIENTS OF SOURCE TERMS CALCV
SAP=CH-C3+CE-C; CALCV
CP=AMAX1(0.0, SMP) CALCV

- CPO=CP CALDY
C-----ASSEABLE MAIN COEFFICIENTS CALCV
AN(T, J)=AMAX1 (ABS(O.5%*CN),DN)-0.5%cN CALCV
AS(T, J)=AMAX1 (ABS(0.5%CS),DS)+0. 5%CS CALCV
AE(I, J)=AMAX1 (ABS(O.5%CE),DE)-0. 5*CE CALCV
AW(T, J)=AMAX1 (ABS(O.5%CW) ,Di)+0. 5*Cy CALCV
DV(I, J)=0.5%( AREAN+AREAS) CALCV
SU(1, 3)=cPO* (I, J)+DV (I, J)*(P (1, J-1)-P(1, J)) CALCV
SP(1,J)=-CP CAICV
IF(INDCOS.EQ.2) SP(I,J)=SP(I,J)-VIS(I, J)*VOL/RV(J )**2 CALCV
IF(INDCOS.EQ.2) SP(I,J)=3P(I J)-VIS(I, J)*VOL/RV(J)**2
DUDYP  =(U(I#1,3)-U(I+1,3-1))/DYPS(3) ,
GAMP  =0.25*(VIS(I, J)+VIS(I#+1,3)+VIS(I, J-1 )+VIS(I+1,J-1))
GAMA =O.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1))
pupy =(u(1,J)-u(r,J-1))/oYps(J) o
Su(1,J) =sU(1, J)+(GAMP*DUDYP-GAMM*DUDYM) /SEY(I )*VOL
pVDYP =(V(I,J+1)-V(I,J))/sNs(J)
RGAMP =VIS(I,J)*R(J)
DVDYM =(V(I,J)-V(I,J-1))/sSNS(J-1)
RGAMM =VIS(I,J-1)*R(J-1) .
su(1,J) =su(1, J)+(RGAMP*DVDYP-RGAMM*DVDY:) /(R (J)*SNS(J ))*VoL
101 CONTINUE CALCV
100 CONTINUE CALCV
C CALCV
CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 CALCV
c CALCY
CALL }IODV CALCV
C CALCV
CHAPTER 3 FINAL COEFF. ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 3 CAILCYV
c . CALCV
RESORV=0.0 CALCV
DO 300 I=2,NIM1 CALCV
DO 30t J=3,NJM1 . ' CALCV
AP(T, 3)=AN(1, J)+AS(T, I)+AR(T, I)+AW(T, J)-SP(T, J) CALCV
- DV(1,J)=DV(I,J)/AP(I,J) CALCV
RESOR=AN(I, J)*V (I, J+1 )+AS(T, J)*V (T, J-1 +AE(T, 3)*V (1 +1,J) CAICV
1 +AW(I,J)*V(1-1,3)-AP(I,3)* (T, J)+SU(T, J) CALCV
VOL=R (J )*SEW(I )*SNS(J)

SORVOL=GREAT*OL ‘

IF(-SP(I, J).GT.0.5%SORVOL) RESOR=RESOR/SORVOL

RESORV=RESORV+ABS(RESOR ) ' CALCV

C--~--UNDER-RELAXATION CALCVY
AP(1,J)=AP(1,J)/URFV CAICV
SU(1,J)=su(1, J)+(1.-URFV)*AP(I, J)* (I, J) CALCV
DV(I,J)=DV(I, J)*URFV . CAICV

301 CONTINUT CALCV
300 CONTINUE , CALCV

c . CALZV

CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4 CALOV

c ) CAICV
DO 400 N=1,NSWPV CALCV

400 CALL LISOLV(2,3,NI,NJ,IT,JT,V) CALCV
RETURN CALCV
END CAICV
SUBROUTINE CALCP CALCP

c CAILCP

CHAPTER 0 O O 0 O O O O PRELIMINARIES O O O O O O O O CALCP

c ‘ ' CALCP
COM1ON CALCP

D3=VI3(I,J-1)*AREAS/DYP5V(J)

1 /PCOR/RESORH , NSAPP, URFP, DU (32, 32) ,DV(32,32), IPREF, JPREF
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1/1AR/3(52,32),V(32,32),P(32,32),PP(32, 52),TE(52, 32) , ED(32, 52)

1 /ALL/IT,JT,NI,NJ, NI:11, NJ41, GREAT

1/G204/INDCOS, X(40),Y(40)

,DXEP(40),DXP4(40),DYNP(40),DYP3(40),

1 sNs(40),sE4(40),X5(40),YV(40),R(40),RV(40)

1 /FLUPR/URFVIS, VI3COS, DENSIT, PRANDT
1/COEF/AP(32,32),AN(32,32),A5(32, 32

1 SP(32,32)

)

DEN(32,32),Vis(32, 32)
,AE(32,32),44(32,32),s0(32, 32),

1 /KASE T1/UIN, TEIN, EDIN, FLOWIN, ALAYDA,
2 RSHMALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JSTH1, ISTP1 » ISTI,

3 ISTP2, ISTP3, ISTM2
RESOR!1=0.0

CHAPPER 1 1 1 1 1 1

DO 100 I=2,NIu1
DO 101 J=2,NJ11

C~=---COAPUTE AREAS AND VOLUME
AREAN=RV(J+1 )*SEV(I)
AREAS=RV(J )*sSEW(I)
AREAEY=R(J)*3N3(J)

VOL=R (J )*sSNS (J )*SEW(I)

Commmnm CAICULATE COEFFICIENTS
DENN=0.5%(DEN(I, J)+DEN(I, J+1)
DENS=0.5*(DEN(I, J)+DEN(I,J-1)
DENE=0.5*(DEN(I, J)+DEN(I+,J)
DENW=0.5*(DEN(I, J)+DEN(I-1,J)
AN(I, J)=DENN*AREAN*DV(I, J+1 )
AS(I, J)=DENS*AREAS*DV(I,J)
AE(I,J)=DENE*AREAEV*DU(I+1,J)
AW(1, J)=DEN¥*AREAEW*DU(I,J)

o J— CALCULATE SOURCE YERMS
CN=DINN* (I, J+1 )*AREAN
CS=DENS™ (I, J)*AREAS
CE=DENE*J (I+1,J)*AREAEY
CW=DENW®U (I, J)*AREAEW
SMP=CN~CS+CE-CW
SP(1,J)=0.0
su(1, J)=-sup

)
)
)
)

ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 1

C-----CO4APUTE SUM OF ABSOLUTE MASS SOURCES

RESORM=RESORM+ABS(SMP)
101 CONTINUE
100 CONTINUE
C 1]

c
CALL MODP
c

c

DO 300 I=2,NIM1
DO 301 J=2,NJ11

301 AP(I,J)=AN(I,J)+AS(I,d)+AE(T, J)+a%(

300 CONTINUE
C
CHAPTER 4 4
c
c

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2

CHAPTER 3 3 3 3 3 FINAL COEFFICIENT ASSEABLY 3 3 3 3 3 3 3

1,3)-8(1, )

4 4 4 SOLUTION OF DIFFERENCE RQUATIONS 4 4 4 4 4

CHAPTER 5 5 5 5 CORRECT VELOCITIES AND PRESSURE 5 5 5 § 5 5

DO 400 N=1,NSYPP
400 CALL LIsSOLV(2,2,NI,NJ,IT,JT,PP)

Commmm VELOC ITIES
DO 500 I=2,NIM1
DO 501 J=2,NJ¥1

IF(I.NE.2) u(r,J)=u(x, 3)+bU(I, 3)*(PP(1-1, J)-PP(I, J))
IF(J.NE. 2) v(1,3)=v(1, 3)+DV(1, 3)*(PP(1, J-1 )-PP(1, J))

CALCP
CALCP
CAICP
CAICP
CAICP
CAICP
CAICP
CALCP
CALCP
CAICP
CALCP
CALCP
CAICP
CALCP

CALCP

CALCP
CAICP
CAICP
CALCP
CALCP
CALCP
CAICP
CAICP
CAICP
CALCP
CAICP
CAICP
CAICP
CAICP
CALCP
CAICP
CAICP
CAICP
CAICP
CALCP
CALCP
CAICP
CALCP
CAICP
CAICP

CALCP
CAICP

CALCP
CAICP
CAICP
CALCP
CAICP
3+C1G -
CALCP
CAICP
CAICP
CALCP
CAICP
CAICP
CAICP
CAICP
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C

CHAPTER O O O O O O O PRELIMINARIES 0 O O O 0 O O

C

C

CHAPTER 1 1t 1t 1 1t 1

>N
500

533
502

CONTINIE
CONTINUK

-PREGSYRES (WITH PROVISION FOR UNDER-RELAXATION)

PPREF=PP(IPREF, JPREF)
DO 502 I=2, NId1
DO 503 J=2, NJ41

IF{I.EQ. ISTEP. AND.J.G3.JSTP1)PP(I,J)=0.0
- IF{I.EQ. ISTEP. AND.J.GZ.JSTP1)P(I,J)=0.0
IF(I.EQ.ISTP1.AND. J.GE.JSTP1)PP(I, J)=0.0
IF(1.EQ. ISTP1.AND.J.GE. JSTP1)P(I, J)=0.0

P(1,J)=P(I,J)+URFP*(PP(I,J)-PPREF)
PP(1,J)=0.0

CONTINUE

CONTINJE

RETURN

END

SUBROUTINE CALCTE

COUMON
1 /TEN/RESORK, NSWPK, URFK

1/VAR/U(32,32),V(32,32),P(32,32),PP(32,32),TE(32, 32) ,ED(32, 32)

1/ALL/IT,JT,NI,NJ,NIM1,NJM1, GREAT

1/3E0H/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40),

1 SNs(40),SEW(40),XU (40),Yv(40),R(40),RV(40)

1 /FLUPR/URFVIS, VISCOS, DENSIT, PRANDT, DEN (32, 32),VIS(32, 32)
1/COEF/AP(32,32),AN(32,32),A5(32,32),AE(32,32),A4(32,32),5U(32, 32),

1 SP(32,32)

1/TURB/GEN(32,32),CD,CMU, C1, C2, CAPPA, ELOG, PRED, PRTE
1 /WALLF/YPLUSN(32),XPLUSW(32),TAUN(32), TAUW(32)

1 /XASE T1/UIN,TEIN, EDIN, FLOWIN, ALAMDA,

2 RSMALL,RLARGE,AL5,AL6,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,IST§1,

3  ISTP2,ISTP3,ISTHi2
1/SUSP/SUKD(32,32),SPKD (32, 32)

PRTE=1.0

DO 100 I=2,NIM1

DO 101 J=2, NJM1

-COMPUTE AREAS AND VOLUME
AREAN=RV(J+1 )*SEN(T)
AREAS=RV(J )*3SEW(I)
AREAEW=R(J )*sNS(J)

VOL=R (J )*SNS(J )*sEW(I)

----- CAICULATE CONVECTION COEFFICIENTS

GN=0.5%(DEN(I, J)+DEN(I,J#1 ))*V (T, J+1)
GS=0.5*(DEN (I, J)+DEN(I,J-1))*v (T, J)
GE=0.5*(DEN (I, J)+DEN(I+1,J))*y(I+1,J)
GW=0.5*(DEN (1, J)+DEN(I-1,J))*u (I, J)
CH=GN¥®AREAN

CS=GS*AREAS

CE=CE¥*AREAEW

CW=CW* AREAEY

----- CALCULATE DIFFUSION COEFFICIENTS

GAMN=0.5*(VIS(1,J)+VIS(I,J+1))/PRTE
GAMS=0.5%(vIs(1,J)+vIS(I,J-1))/PRTE
GAME=0. 5*(v1s(1,J)+VIS(I+1,J))/oRTR
GAMW=0.5*(VIS(I, J)+VIS(I-1,J))/PRT®
DN=GAMN*AREAN/DYNP(J)
DS=GAMS®AREAS/DYPS(J)
DE=GAME*AREAEW/DXEP(I)

DA=GAMW* AREAEW/DXPA(I)

----- SOURCE TERMS

SAP=CN-CS+CE-CH

ASSE4BLY OF COETFICIENTS

1

1

1

1

1

1

CALCP

CALCP
CAICP
CAICP
CALCP
CALCP

CAICP
CAICP
CAICP
CAICP
CAICP
CAICP
KINE
KINE
KINE
KINE
KINE
KINE

KINE
KINE
KINE

KINE
KINE
KINE
KINE
KINE
KINE

KINE -

KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
KINE
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CP=AlAX1 (0.0, S1P) , KINE

CPO=CP ’ KING
DUDX=(U(1+1,J)-3(1,J))/s84(1) KINF
DVDY=(V (L, J+1)-v(1,J))/sus(J) KINR 248,
DUDY=((U (T, 3)+U (141, J)+U(1,3+1)+u (141,341 )) /4. -(u(r, 3)+J(1+1,J)+  MODA
19(1,J-1)+U(1+1,J-1))/4.)/sns(J) : KINE
DVDX=((V (T, 3)+V (L, J+1 )+ (T+1,3)+V(1+1,3+1)) /4. =(V (1, J)+V (T, J+1 )+V( MODA
11-1,3)+V(I-1,J+1))/4.) /SEN(1) . KINE

GEN(I, J)=(2.*(DUDX*¥*2 +DVDY **2 )+ (DUDY +DVDX )**2 )*V15(1, J)
IF(J.EQ. 2)RV(J )=GREAT

VDR=V(I,J)/RV(J) MODA
IF(INDCOS.EQ.2) GEN(I, J)=GEN(I, J)+VIS(I, J)*0.5%(VDR+V (I, J+1)/
1 RV(J+1))%**2
Commmm ASSEABLE MAIN COEFFICIENTS KINE
AN(I, J)=AMAX1 (ABS{O.5%CN),DN)-0.5%CN {INE
AS(I, J)=AMAX1 (ABS(0.5%CS), DS )+0. 5%CS KINE
AE(I, J)=AMAX1 (ABS(0.5%CE),DE)-0.5%CE KINE
AW(T, J)=AMAX1(ABS(0.5%Cd),Di)+0. 5*Cy KINE.
su(1,J)=CPO*rE(I,J) KINE
SUKD(I,J)=su(1,J) - MODA
su(1,3)=3u(1, I}+GEN(T, J)*voL KINE
sp(1,J)=-CP KINE
SPKD(I, J)=sP(1,J) - . MODA
SP(1,J)=SP(I,J)-CD*CMU*DEN(I, J)**2*TE(T, J)*VOL/VIS(I, J) KINE
101 CONTINUE KINE
100 CONTINUE KINE
c KINE
CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 KINE
c KINE
' CALL MODTE KINE
c KINE
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 KINE
c KINE
RESORK=0.0 KINE
DO 300 I=2,NIi? ' KINE
DO 301 J=2,NJM1 KINE
AP(I,J)=AN(I,J)+AS(I,J)+AE(T, J)+AW(I,J)-SP(I,J) KINE
RESOR=AN(I, J)*TE(I, J+1 )+AS(L, J)*TE(I, J-1 )+AE(T, J)*TE(I+1,J) KINE
1 +AW (T, J)*PE(I-1,J)-AP(T, J)*TE(I, J)+SU(T, J) . KINE
VOL=R (J )*SEW(I )*SNS(J)
SORVOL=GREAT*VOL
IF(-SP(I,J).GT.0.5%SORVOL) RESOR*RESOR/SORVOL
RESORK=RESORK+ABS(RESOR ) MODA
Commmm UNDER-RELAXATION KINE
AP(1,J)=AP(I,J)/URFK KINE
su(1,J)=su(1,J)+(1.-URFK)*AP(T, J)*TR(I, J) MODA
301 CONTINUE KINE
300 CONTINUE KINE
c KINE
CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 KINE
o KINE
DO 400 N=t{, NSWPK ~ MODA
400 CALL LIisoLv(2,2,NI,NJ,IT,JT,TE): KINE
RETURN KINE
END KINE
SUBROUTINE CALCED DISP
c 'DISP
CHAPTER O O O O O O O PRELIMINARIES O 0,0 O 0 O O DISP
c DISP
COAMON

1 /TDIS/RESORE, NSYPD, URFE

1 /ALL/IT, JT, NI, NJ, NIM1, NJM1, GREAT

1/GEOM/INDCOS, X(40),Y(40),DXEP(40),DXPi(40),DYNP(40),DYPS (40),
1 SNS(40),SE¥(40),X3(40),YV(40),R(40),RV(40)

1 /FLUPR/URFVIS, VISCOS, DENSIT, PRANDT, DEV (32, 32), VIS (32, 32)

. 1/COEF/AP(BZ.32).AN(32.32),AS(32.325,AE(32,32),Aw(32,32),30(32,32),



1 sp(s52,32)

1/TURB/3EN (32, 32) Cp, Ci1U, C1,C2, CAPPA, ELOG, PRED, PRT3
1/WALLF/YPLUSN(325,xpLusw(sz),TAun(sz),TAuw(32)
1/SU3P/SUKD (52, 32),SPKD (32, 32)
1/VAR/U(32,32),V(32,32),P(52,32),PP(32,32),TR(32,32) ,ED(32, 32)
1/KASE T1/UIN,TEIN, EDIN, FLOVIN, ALA!DA,

2 RSMALL,RLARGE,AL5,ALG,JSTSP,ISTEP,J%TP1,J3T%1,ISTP1,IST11,

7 ISTP2, ISTP3, ISTA2
C
CHAPFER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1
c ,
DO 100 I=2,NIM1
DO 101 J=2, NJM1
Commmn COMPUTE AREAS AND VOLUME
AREAN=RV (J+1 )*SEi(I)
AREAS=RV(J )*3EY(I)
AREAEW=R (J )*SN3(J)
. VOL=R(J)*3NS(J )*SEN(1)
oJ—— CALCULATE CONVECTION CORFFICIENTS
GN=0.5*(DEN (I, J)+DEN(I, J+1 ))* (I, J+1)
GS=0.5*(D2EN(1, J)+DEN(I, J-1))*v (I, J)
GE=0,5*(DEN(I,J)+DEN(I+1,J))*J(I1+1,J)
GW=0.5%(D2N (I, J)+DEN(I-1,J))*u(T,J)
CN=GN*AREAN
CS=GS*AREAS
 CE=GE*AREAEW
CW=Cd* AREAEW
Commenm CALCULATE DIFFUSION COEFFICIENTS
GAMN=0.5*%(VIS(I, J)+VIS(I, J+1 ))/PRED
GAMS=0.5*(VIS(I, J)+VIS(I, J-1))/PRED
GAME=0.5%(VIS(I,J)+VIS(I+1,J))/°RED
GAMW=0.5%(VIS(I,J)+VIS(I-1,J))/PRED
DN=GAMN*AREAN/DYNP(J) '
DS=GAMS*AREAS/DYPS(J) '
DE=GAME*AREAEW/DXEP(I )
Di=CAMW* AREAEW/DXPW (1)
Commem SOURCE TERMS
SAP=CN-CS+CE-CW
CP=ANAX1 (0.0, S4P)
CPO=CP
[y J— ASSEMBLE MAIN COEFFICIENTS
AN(I, J)=AMAX1 (ABS(O.5%CN),DN)-0.5%CN
AS(T,J)=AMAX1 (ABS(0.5%CS),DS )+0. 5%CS
AEéI,J)'AMAX1(ABS(O.S*CE),DE)-O.B*CE
A¥(I, J)=AMAX1 (ABS(O.5%*CW) , D) +0. S*cy
Su(I, J)=cPo*ED(1,J)
suxp(1, J)=su(r, J) :
SU(I,J)-SU(I,J)+C1*CMU*GEN(I,J)*VOL*DEN(I,J)*TE(I,J)/VIS(I,J)
SP(1,J)=-CP
SPkp(1,J)=sP(1,J)
SP(T, 3)=5P(T, J)-C2*DEN (I, 3)*ED(T, J)*VOL/TE(T, J)
101 CONTINUE :
100 CONTINUE

C N
CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2
c

CALL MODZD
C .
CHAPTER 3 FINAL COEFFICIENT ASSEYBLY AND RESIDUAL SOURCE CALCULATION 3
c

RESORE=0, 0

DO 300 I=2,NIH1

DO 301 J=2,NJM1

AP(I, J)=AN(T, J)*AS(I, J)+AR(T, J)+AW(T, J)-SP(T, J)

RESOR=AN(I, J)*ED(I, J+1 )+AS(I, J)*aD(T, J=1 )+AR(T, J)*ED(I+1, J)

1 #Ad(1,3)*ED(I-1,J)-AP(T, J)*ED(I, J)+SU(T, J)
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c

C
c
c

C
C
C

c

c

VOL=R(J)*3K3(J3 )*38w (1)
SORVOL=3REAT*VOL

IF(-3P(I,J).GP.0.5%30RVOL) RESOR=RESOR/SORVOL
RE;ORF=RESO?°+ABD(REQOR)

----- JNDZR-IELAXATION
AP(1,J)=AP(I,J)/JRFE
su(r,J)=3u(r,J)+(1.-URFE)*AP(I, J)*=D(1,J)
301 CONTINUE
300 CONTINUE

HAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4

DO 400 N=1,NSWPD

400 CALL LISOLV(2,2,NI,NJ,IT,JT,ED)
RETURN ’
END

SUBROUTINE LISOLV(ISTART, JSTART,NI,NJ, IT,JT,PHI)
HAPTER O O O O O O O O PRELIMINARIES O O 0 O O O O O

DIAENSION PHI(IT,JT),A(40),B(40),c(40),D(40)
COAMON

1/COEF/AP(Bz,32),AN(32.32),AS(32,32),AE(32,32),Aw(32,32),su(32,32),

1 5P(32,32)
NIf1=yI-1
NIM1 =4 J-1
J3THM1=JSTART -1
A(JSTH1)=0.0

----- COAMENCE W-E SWEEP
DO 100 I=ISTART,NIM1
c(JSTH1)=PHI (I, JSTM1)

----- COAMENCE S-N TRAVERSE
DO 101 J=JSTART,NJ11

----- ASSEMBLE TDMA COEFFICIENTS
A(J)=AN(1,J)

B(J)=as(1,J)
C(J)=AE(I, J)*PHI(I+1,J)+AW(I,J)*PHI(I-1,J)+SU(I,J)
D(J)=aP(1,J)

----- CALCULATE COEFFICIENTS OF RECURRENCE FORAULA
TERM=1./(D{(J)-B(J)*A(J-1))
A(J)=A(J )*TERA

101 ¢(J)=(c(J)+B(J)*c(J-1))*TERY
----- OBTAIN NEW PHI"S
DO 102 JJ=JSTART,NIM1
J=NJ+JSTH1-JJ
102 PHI(I,J)=A(J)*PHI(I, J+1)+C(J)
100 CONTINUE

RETURN

END

SUBROUTINE PROMOD

CHAPTER 0 O 0 0 O O O PRELIMINARIES O O O O 0 O O0 O O

COMMON

1 /UVEL/RESORU, NSWPU, URFU, DXEPU(40),DXP¥U(40),SEWU(40)

1 NVEL/RESORV, NSWPV, URFV, DYNPV (40),DYPSV(40),SNSV(40),RCV(40)
1 /PCOR/RESORY , NSWPP, URFP, DU(32,32),DV(32, 32), IPREF, JPREF

1 NAR/U (32, 32),V(32,32),P(32,32) ,PP(32,32) ,TE(32, 32) ,ED(32, 32)
1 /ALL/IT,JT,NI,NJ,NIM1,NJM1, GREAT

1 /3E0M/INDCOS, X(40),Y(40), DXEP(40), DXPW(40),DYNP(40),DYPS(40),
1 svs(4o) SE4(40), XU(40) YV(40) R(40), RV(40)

1 /FLUPR/URFVIS, VISCOS, DENSIT, PRANDT, Dvw(32 32),VIs(32,32)

1 /KASE T1/UIN, TEIN, EDIN, FLOWIN ALAMDA,

2 RSMALL, RLARGE ALS AL6, JaTvP ISTEP, JSTP1, JSTH1, ISTP1, IST1,
3 ISTP2, ISTP3, ISTH2

1/susp/suxn(32 32), spxn(32 32) .
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1/C087/AP(52, 32),AR(52,32),A5(52,22) ,43(52,32) ,Ad(32, 32),50(32, 32),

1 SP(32, 32)

1/TU?B/GEW(32 32),CD,CidU, C1,C2, CAPPA, ELOG, PRED, PRT®

1/JALLF/YPLUoN(3°) XPLU:P(jZ) XPLU:V(32) TAU«()z) TAU“(}Z) TAUV(32)
c

CHAPTER 1 1 1 1 1 1 1 1 PROPERTIES 1 1 1 {1 1 1 1 1 1
c
ENTRY MODPRO
Commm-m NO MODIFICATIONS FOR THIS PROBLEM
RETURN
c

CHAPPER 2 2 2 2 2 2 2 2 UMOMENTUM 2 2 2 2 2 2 2 2 2
C
ENTRY MODU
g¥*%¥%% TNSIDE ORIFICE PLATE
DO 1030 I=ISTEP, ISTP2
DO 1030 J=JSTP1,NJ11
1030 SP(I,J)=-GREAT
Cmmemm TOP WALL
c#**%x% 7oP WALL1(IN REGIOW1)
CDTERI=CAU**0. 25
YP=YV(NJ)-Y (NJM1)
J=NJ11
DO 210 I=3,ISTM1
SQRTK=SQRT (0. 5*(TE(I, J)+TE(I-1,J)))
DENU=0. 5%(DEN(I, J)+DPV(I -1,J))
YPLUSA=O. 5*(YPLUoV(I)+YPLUSN(I 1))

IF(YPLUSA.LE.11.63) G0 TO 211
TMULT=DENU*CDTERA*SQRTK*CAPPA/ALOG (SLOG*YPLUSA)
G0 TO 212

211 THULT=VISCOS/YP
212 TAUN(I )=-TMULT*U(I,J)
SP(I,J)=sP(I, J)-THULT*SEJU(T )*V(NJ)
210 AN(I1,J)=0.0
TAUW(2)=TAUV(5)
C*##¥%% BOTTOM FACE OF ORIFICE PLA"E(TOP WALL2(IN REGION2))
ISTP2=ISTEP+2
CDTERM=CMU¥*0. 25
YP=YV(JSTP1)-Y (JSTEP)
J=JSTEP
DO 907 I=ISTEP,ISTP2 °
SQRTK=SQRT(0.5*(TE(I, J)+TE(I-1,J)))
DENU=O, 5*(DEN(I, J)+DEN(I-1,J))
ARENV=RV (J+1 )*SNSV(J+1)
DENAR1=0.25*(DEN(I, J)+DEN(I-1, J) ) *ARENV
DENAR2=DENAR!1
YPLUSA=0. S*(YPLUSN (I )+YPLUSN(I-1))
IF(YPLUSA.LE. 11.63)THULT=VISCOS/YP
TMULT=DENU*CDTERM*SQRTK*CAPPA/ALOG (ELOG*YPLUSA) .
TAUN(I )=-TMULT*U(1,J)
IF(I.EQ.ISTEP)SP(I, J)=SP(I,J)-DENAR!
IF(I.EQ.ISTP2)SP(I,J)=SP(1,J)-DENAR2
SP(1,J)=sP(1,J)- TKULT*SEWU(I)*RV(JSTP1)
IF(I.EQ.ISTEP)TAUN(I)’.S*TAUN(I)
IF(I.EQ. ISTP2)TAUN(I )=. 5%PAUN(I)
TAUN(I )=TAUN(I)
907 AN(I,J)=0.0
gewuxr® OP YALL3(IN REGION3)
CIDTERM=CMU¥*0. 25
YP=YV(NJ)-Y (NJM1)
J=NJM1
DO 910 I=ISTP3, NI
. SQRTK=SQRT(O. 5*(TE(I J)+TE(TI-1,J)))
DENU=0. 5*(DEN (I, J)+Dvw(1 1 J))
YPLUSA=O. 5*(YPLUSN(I)+YPLUSN(I 1))
IF(YPLUSA.LE.11.63)G0 TO 911
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TAULT=DENU¥CDTERY*3QRTK*CAPPA/ ALOG (ELOG*Y PLUSA )
GD TO 912
911 TAULT=VI3COS/YP
912 TAUN(I)=-TIULT*J(I,J) 252,
sP(1,J)=3P(1,J)- TIULT*SEiU(I)*RV(NJ)
910 AN(I,J)=0.0
TAUV(NI)*TAUN(NIM1)
N SIDE VWALL MODA
C¥¥¥¥** FRONT FACE OF ORIFICE PLATE(SIDE WALL1)
DO 913 J=JSTPt,NJi1
913 AE(ISTEP,J)=0.0
CH#¥%¥* DRAR FACE OF ORIFICE PLAmE(SIDE WALL3)
ISTP2=ISTEP+2
DO 914 J=JSTP1, HIM1
914 AW(ISTP2,J)=0.0

Cmmmmm SYAMETRY AXIS MODA
DO 203 I=f,NI MODA
U(T,1)=U(1,2)
203 As(1,2)=0.0 , MODA
Commm- OUTLET MODA
ARDENT=D.0 . MODA
FLOW=0.0 MODA
DO 204 J=2,NJM1 MODA
ARDEN= 0.5*(DEN(NIM1, I)+DEN(NIM1-1,J))*R(J)*sNS(J) MODA
ARDENT=ARDENT+ARDEN MODA
204 FLOW=FLOW+ARDEN*U (NTM1,J) . : MODA
UINC=(FLOYIN-FLOW) /ARDENT ‘ MODA
DO 205 J=2,NJM1 MODA
205 U(NI,J)-U(NIM1,J)+UINC MODA
RETURN ‘ PROMOD
C PROMOD
CHAPTER 3 3 3 3 3 3 3 3 VMOMENTUA 3 3 3 3 3 3 3 3 3 PROMOD
c PROMOD
ENTRY MODV ' PROMOD

CH##%%% TNSIDE ORIFICE PLATE
DO 1031 I=ISTEP, ISTP1
DO 1031 J=JSTP1,NJA1
1031 SP(I,J)=-GREAT : ‘ '
C---4—S IDE V’ALL MODA

CHE#%#% FRONT FACE OF ORIFICE PLATE(SIDE WALLt)
CDTERM=CMU**0. 25 ~ MODA
XP=XU (ISTEP)- X(ISTM1) -
I=ISTH1
DO 915 J=JSTP1,NJM1 .
SQRTK=SQRT (0. 5*(TE(I, J)+TE(I, J-1))) - MODA
DENV=0.5*%(DEN(I, J)+DEN(I,J-1)) - MODA

AREANU=RV(J )*SEWU(I+1 )
DENAR3=0. 25*(DEN(I, J)+DEN(I, J-1 ) )*AREANU
DENAR4=DENAR?
XPLUSA=0. 5*(XPLUSE(J )+XPLUSE(J-1))
IF(XPLUSA.LZ. 11.63)TAULT=VISCOS/XP :
TMULT-DENV*CDI‘ERH*SQRTK*CAPPA/ALOG(ELOG*‘(PLUSA) MODA
TAUE(J )=-THULT™ (I, J)
IF(J.EQ.JSTP1)SP(I, J)=3P(I, J)-DENARS : '
SP(1,J)=spP(1,J)- TMULT*SVSV(J)*RV(J) . MODA
IF(J.EQ.JSTP1)TAUE (J )=.5*TAUE(J)
TAUE(J )=TAUE(J)
915 AE(I,J)=0.0

TAUE(JSTEP)-TAUE(JSTP1)
TAUE(NJ)=TAUB(NJM1)

C¥##*%* REAR FACE OF ORIFICE PLATE(SIDE WALL3)
CDTERM=CMU**Q, 25
XP=X (ISTEP)-XU (ISTEP)
ISTP2=ISTEP+2
I=ISTP2
DO 918 J=JSTP1,NJM1 .



SQRTK=3QRT (0. 5*(TE(T, J)+TE(I, J-1)))
DENV=0. 5*(DE(I, J)+DEN (I, J-1))
XPLU3A=0. 5*(XPLUSW(J )+XPLU34(J-1))
IF{XPLUSA.LE. 11.63)TAULT=VISCOS/XP
TIULT=DENV*CDTER*3 QITK*CAPPA/ALOG (3LOG*XPLU3A)
TAUN(J )=-TAULT*/ (I, J)
17(J.EQ. JSTP1)SP(I, J)=SP(I, J)-DENARA
SP(I,J)=SP(I,J)-TUULT*343V(J)*3V(J)
IF(J.EQ.JSTP1)PAUN(J )=, 5*PAUN(J)
TAUN(J )=TAUI(J)
918 AW(I,J)=0.0
TAUN(JSTEP)=TAUY(JISTP1)
TAUN(NJ)=TAUW(NJA1) ‘
S — TOP WALL | MODA
cH*&%%% T0P YALL1(IN REGION1)
DO 313 I=2,ISTA1
313 AN(I,NJ¥1)=0.0
CH*¥%%%* BOTTOM FACE OF ORIFICE PLATE(TOP WALL2(IN REGION2))
DO 1006 I=ISTEP, ISTP1
1006 AN(I,JSTP1)=0.0
gH#xk®® 70P YALL3(IN REGION3)
DO 1007 I=ISTP2,NIM1
1007 AN(I,NJ11)=0.0

o SYAMETRY AXIS MODA
DO 302 I=2,NIMA MODA
302 AS(I,3)=0.0 : MODA
RETURN PROMOD
c | PROMOD
CHAPTER 4 4 4 4 4 4 PIESSURE CORRECTION 4 4 4 4 4 4 4 4 PROMOD
c ) PROMOD
ENTRY MQDP . . PROMOD
RETURN . _ PROMOD
c PROMOD
CHAPTER 5 5 5 5 5 5 5 THERMALENERGY 5 5 5 5 5 5 5 5 5 PROMOD
c . PROMOD
ENTRY MODT PROMOD
o J NO MODIFICATIONS FOR THIS PROBLEM
RETURN
c PROMOD
CHAPTER 6 6 6 6 6 6 6 TURBULENT KINETIC ENERGY PROMOD
c . : PROMOD
ENTRY MODTE PROMOD

CH***%%% INSIDE ORIFICE PLATE
DO 1032 I=ISTEP, ISTP1
DO 1032 J=JSTP1,NJi1
1032 SP(I1,J)=-GREAT

C-—-=- TOP WALL MODA
CH#*#¥% 70P WALL1(IN REGION1)
CDTERM=CMU*¥0, 25 . MODA
YP=YV(NJ)-Y (NJ11) MODA
J=4J11 MODA
DO 924 I=2,ISTMI
DENU=DEN (I, J) MODA
SQRTK=SQRT (TE(I, J)) MODA
VOL=R (J )*SNS (J )*SEV(I) MODA
GENCOU=O, 5S*( ABS(TAUN(I+1 )*U(I+1,J))+ABS(TAUN(I)*J(1,J)))/¥YP MODA

YPLUSN (I )=DENU*SQRTK*CDTERM*YP/VISCOS MODA
DUDY-((U(I,J)+U(I+1,J)+U(I,J+1)+U(I+1,J+1))/4.—(U(I,J)+U(I+1,J)+ MODA

1U(1,J-1)+U(x+1,J-1))/4.)/s8s(J) MODA
GENRES=GEN(I, J)-VIS(I, J)*DUDY™*2
GEN(I,J)=GENRES+GENCOU MODA

IF(YPLUSN(I).LE.11.63)G0 TO 925

DITERM;ggN(I.J)*(CMU**.?S)*SQRTK*ALOG(ELOG*YPLUSN(I))/(CAPPA*YP) MODA
GO TO

925 CONTINUE ‘
DITERM=DEN (I, J)*(CUU**. 75 )¥SQRTK*Y PLUSN(I ) /YP MODA



Y26 CONTINIE

su(r, J)=5=3(1, I)*VOL+3UXn (1, J) 10DA
SP(1, J)==-DITERI*VOL+3PKD (I, J) "10D4
924 AN(I,J)=2.0 254,

C***%%% BOTTOA FACE OF ORIFICE PLATE(TOP WALL2(IN REGION2))
CDTERA=CAU**]. 25
YP>YV (JSTP1)-Y (JSTEP)
J=JSTEP
DO 927 I-ISTEP ISTP1
DENU=DEN(I, J)
SQRTK=SQRT (TE(I 7))
VOL-R(J)*SNS(J)* E¥(1)
GENCOU=0, 5*(ABS(TAUN(I+1 )*J(I+1,J))+ABS(TAUN(I)*J(L,J)))/¥P -
YPLUSN(I)=DENU*SQRTK*CDTERH*YP/VISCOS
DUDY=((U (L, I)+U(T+1,3)+u(T, I+ )+U(I+1,341)) /4. -(U(T,T)+U(T+1,J)+
1U(1, J-1)+0(T+1,J-1))/4.)/SNs(3)
GLVRES=uEV(I J) VIS(I, J)*DUDY**2
GEN(I, J)=GENRES+GENCOU
IF(YPLUSN(I).LE.11.63)GO TO 928
DITERM=DEN (I, J)*(CMU** 75 )*SQRTK*ALOG (SLOG*YPLUSN(I )) /( CAPPA*YD)
CO TO 929
928 CONTINUE
DITERA=DEN (I, J)*(CdU**.75)*SQRTK*YPLUDN(I)/YP
929 CONTINJE
su(z, J)=GEN(I, J)*VOL+sSUKD (I, J)
SP(I, J)=-DITFRM*VOL+SPKD(I J)
927 AN(I,J)=0.0
cr*xer® 1Op YALL3(IN REGION3)
CDTERM=CHU**), 25
YP=YV (NJ)-Y (NJu1)
J=N J1 1
DO 930 I=ISTP2,NIM1
DENU=DEN(I,J)
SQRTK=SQRT(TE(I,J))
VOL=R (J )*sNS(J )*sEW(I)
GENCOU=0. 5*( ABS(TAUN(I+1 )*U (I+1,J))+ABS(TAUN(I)*U(1,J))) /AP
YPLUSN(I )=DENU*SQRTK*CDTERM*YP /VISCOS
DUDY=((U(x, I)+U(T+1,3)+U (T, I+ )+U(I+1,I41)) /4. -(U (T, 3)+u(1+1,J)+
10(1, J-1)+u(T+, 3-1))/a. )/sNs(3)
GEVRES’”BN(I J)-VIS(I J)*DUDY **2
GEN(I, J)=3ENRES+GENCOU
IF(YPLUSN(I).LE.11.63)G0-TO 931
DITERM=DEN (I, J)*(CMU**,75)*SQRTK*ALOG (ELOG*YPLUSN(I )) /{ CAPPA*YP)
931 CONTINUE
DITER¥=DEN (I, J)*(CMU**.?S)*SQRTK*YPLUSN(I)/YD
~ GO TO 932 .
932 CONTINUE
SU(I, J)=GEN(I, J)*VOL+SUKD(I, J)
SP(I,J)=-DITERM*VOL+SPXD(I, J)
930 AN(I,J)=0.0 :
C-—=== SIDE WALL ' , MODA
CH###% FRONT FACE OF ORIFICE PLATE(SIDE WALL1)
CDTERM=CMU**0), 25
XP=XU (ISTEP)-X (IST41)
I=ISTAY -
DO 933 J=JSTP1, NJM1
DENV=DEN(I,J) MODA
SQRTK-SQRT(TE(I J)) MODA
VOL=R (J )*sNS(J )*sEW(I) MODA
XPLUSE(J )=DENV*SQRTK*CDIERM*XP /VISCOS
csvco%zo(s*(gnsgrAUE(§+1z*v(r » J*+1))+ABS(TAUE(J)*V (1, J)))/XP
DVDX=((V(T,J)+Vv(I,J+1 )+v(I+ J)+V(I+1 J+ V- + + '
11-1, )+ (T-1,3+)) /4. ) /sEa(1) /A= (T, )V (T, 391 )0 ﬁggi
GENRES=GEN (T, J)-VIs(I1, J)*DVDX**2
GEN(I, J)=GENRES+GENCOU

1F(XPLUSE(J).1E. 11.63)30 TO 934 MODA



c

c

934

935

DITSR1=DEN(T, J)*(CLU**.75 ) *3QRTK*ALOG (BLOG*KPLU3S(JI )) /{ CAPPA*XP)
5O TO 935

CONTINUR

DITERA=DEN (I, J)*(CMU**.75)*3QRTK*XPLYSE(J ) /XP

CONTINUD

SU(T, J)=SUKD(I,J)+3EN(I, J)*VOL

SP(I, J)=3PKD(I, J)-DITERI*VOL

933 AE(I,J)=3.0
C*#*%¥%* REAR FACE OF ORIFICE PLATE(SIDEZ WALL3)

936

CDTERV=CHMU**Q, 25

XP={ (ISTEP)-XU (ISTEP)

ISTP2=ISTEP+2

I=ISTP2

DO 997 J=JSTP1,NJV1

DENV=DZN (I, J)

SQRTK=3QRT(TE(I, J))

VOL=R(J )*s NS(J)* EY(1)

XPLUSH(J )=DENV*3QRTK*CDTERA*XP /NISCOS
GPNCO%zO(S*(?BSETAUV(J+I)*V(I , J41 ) )+ABS(TAUW(J )*V (T, J)))/XP
DVDX=((V (I, J)+V(I,J+1 )+V(I+1,J)+V(I+1, I+ - + +1 )+
R T SO )/SEN(Ig ( N/4.-(V(T,3)+v(T,I+1)
G?VRES=GEV(I J)—VIS(I J)*DVDX¥**2 -

GaN (I, J)=3 ENRES+uEV”OU

IF(XPLUSJ(J) .11.63)G0 TO 936

DITERM=DEN(I, J)*(CAU**.75)*SQRTK*ALOG(ELOG*XPLUSW(J))/(CAPPA*XP)
GO TO 937

CONTINUE

DITERM=DEN (T, J)*(CMU**, 75 )*SQRTK*XPLUSY (J ) /XP

937 CONTINUE

SU(I,J)=SUKD(I, J)+GEN(I, J)*VOL
SP(1,J)=SPKD(I, J)-DITERM*VOL

997 AW(1,J)=0.0

----- SYMMETRY AXIS

J=2

DO 630 1I=2,NIM1

TE(I, 1)=TE(I,2)

DUDY-((U(I 30 (14, ) (T, JH )+u(1+1, J+1))/4 -(U(1,3)+u(T+1, )+
1u(z, J- 1)+u(1+1 J-1))/4 )/oNS(J)

voL=a (J Y*sws (3 Y*sEa (1)

GEN(I, J)=GEN(I,J)=-VIS(I,J)*DUDY**2>

su(I, J)'SUKD(I J)+GEN(I, J)*VOL

630 AS(I,Z)‘0.0

RETURN

CHAPTER 77 7 7 7 7 7 7 DISSIPATION

" ENTRY MODED
CH#%2%% INSTDE ORIFICE PLATE

NJ2=NJ-2
DO 1033 I=ISTEP, ISTP1
DO 1033 J=JSTP1,NJHU2

1033 SP(I,J)=-GREAT

C-=-=~=TOP WALL
CH¥%®&® TOP WALL1(IN REGION1)

YP=YV(NJ)-Y (NJu1)

J=y M1
TERM=(CHMU**,75) /( CAPPA*YP)

DO 938 I=2,ISTH1

su(I,J)=3 REAT*TERW*TE(I J)** 5

938 SP(I,J)=-GREAT
C¥#wke® BOTTOM FACE OF ORIFICE PLATE(TOP WALL2(IN valovz))

YP=YV(JSTP1)-Y (JSTEP)

J=JSTEP

TERM=(CMU**,75)/( CAPPA*YP)

DO 939 I=ISTEP, ISTP

su(r, J)-GRhAT*TERM*TE(I J)**% g
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959 3P(I,J)=-GREAT
grexxx® pop yALL3(IN REGION3)
YP=yVv(NJ)-Y(NJ11)
J=1Ja1
' BR1=(CHU**.75)/( CAPPA*YP)
DO 940 I=ISTP2,NIA1 :
SU(I, J)=GREAT*TERI*TE(L, J)**1 .5
940 SP(I,J)=-GREAT
. SIDE WALL
g#*#%#% FRONT FACE OF ORIFICE PLATE(SID? WALL1)
XP=XU (ISTEP)-X(ISTH1)
I=ISTH1
TERM=(CMU**,75)/( CAPPA*XP)
NJM2=NJ-2
DO 941 J=JSTP1,NJM2
SU(I, J)=GREAT*TERM*TE(I, J)**1 .5
941 SP(I,J)=-GREAT '
cH#*x%% pEAR FACE OF ORIFICE PLATE(SIDE WALL3)
XP=X (ISTEP)-XU (ISTEP)
ISTP2=ISTEP+2
I=ISTP2
TER:{=(CMU**.75)/( CAPPA*XP)
NJ12=yJ-2
DO 942 J=JSTP1,NJ12
SU(I, J)=GREAT*TERA*TE(I, J)**1.5
942 SP(I,J)=-GREAT
Commmm SYIMETRY AXIS
DO 730 I=2,NINMt
730 A3(I,2)=0.0 .
RETUIN
END

SUBROUTINE PRINT(ISTART, JSTART, NI, NJ,IT,JT,X,Y, PHI, HSAD)
DIAENSION PHI(IT,JT),X(IT),Y(JT),HEAD(sY,ST0RE(50)

DIMENSION F(7), F4(11)
DATA F/4H(1H ,4H,A6,,4HI3, 41111 ,4H10, ,4HTX,
14HAG6) /
DATA FA/4H 11 44 21 ,4H 31 ,4H 41 ,4H 5I ,44 61
1 A4H TI ,4H 8I ,44 91 ,4H10I ,4H11I /
DATA HI,HY/6H I =, 6H Y =
ISKIP= .
JSKIP=1
WRITE(6, 110 )HEAD
ISTA=ISTART-12
100 CONTINUE
- ISTA=ISTA+12
IEND=ISTA+ 1
" IEND=1INO(NI, IEND)
(4 )=F4 (IEND-ISTA)
WRITE(6,112)
DO 101 JJ=JSTART,NJ, JSKIP
J=JSTART+NJ-JJ
DO 120 I=ISTA, IEND
A=PHI(I,J)
: IF(ABS(A) LT.1.E-20) A=0.0
120  STORE(I)=A
101  WRITE(6,113) J,(STORE(I),I=ISTA,IEND, ISKIP),Y(J)
WRITE(6,114) (X(1),I=ISTA, IEND, ISKIP)

IF(IEND.LT.NI)30 TO 100

RETURN
110 FORMAT(1HO, 20(2H*-),7X,6A6,7%,20(24-*))
111 FORAAT(1HO,6H I = ,I3,11I10,7K,* Y = #)
112 FORYAT(3H J)
113 FORAAT(IH ,I3,1P12810. 2,0PF7.3)
114 FORMAT(64OX= ,F7.3,11F10.3)

END
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