
              

City, University of London Institutional Repository

Citation: Margraf, C. (2017). On the use of micro models for claims reversing based on 

aggregate data. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/17908/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


City, University of London

Doctoral Thesis

On the use of Micro Models for Claims
Reserving based on aggregate data

Author:

Carolin Margraf

Supervisors:

Prof. Jens P. Nielsen

Prof. Richard J. Verrall

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Faculty of Actuarial Science and Insurance

Cass Business School

June 2017







CITY UNIVERSITY LONDON

Abstract
Faculty of Actuarial Science and Insurance

Cass Business School

Doctor of Philosophy

On the use of Micro Models for Claims Reserving based on aggregate data

by Carolin Margraf

In most developed economies, the insurance sector earns premiums that amount to

around eight percent of their GNP. In order to protect both the financial market and the

real economy, this results in strict regulations, such as the Solvency II Directive, which

has monitored the EU insurance sector since early 2016. The largest item on general

insurers’ balance sheets is often liabilities, which consist of future costs for reported

claims that have not yet been settled, as well as incurred claims that have not yet been

reported. The best estimate of these liabilities, the so-called reserve, is given attention

to in Article 77 of the Solvency II Directive. However, the guidelines in this article are

quite vague, so it is not surprising that modern statistics has not been used to a great

extent in the reserving departments of insurance companies.

This thesis aims to combine some theoretical results with the practical world of claims

reserving. All results are motivated by the chain ladder method, and provide different

reserving methods that will be introduced thoughout four separate papers.

The first two papers show how claim estimates can be embedded into a full statistical

reserving model based on the double chain ladder method. The new methods introduced

incorporate available incurred data into the outstanding liability cash flow model. In the

third paper a new Bornhuetter-Ferguson method is suggested, that enables the actuary

to adjust the relative ultimates. Adjusted cash flow estimates are obtained as constrained

maximum likelihood estimates. The last paper addresses how to consider reserving issues

when there is excess-of-loss reinsurance. It provides a practical example as well as an

alternative approach using recent developments in stochastic claims reserving.
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1
Introduction

Insurance is a social good, since it allows individuals to pool and protect against financial

risks that they would otherwise be forced to bear on their own.

Even Winston Churchill recognised the importance of insurance to society, saying “In-

surance brought the miracle of averages to the rescue of the masses” when talking about

the creation of unemployment and health insurance by the Liberal government of 1906

to 1916. Recognising the importance of property insurance, he also said “Had I the

powers of a dictator I would cause the word ‘insure’ to be inscribed on the lintel of every

house in the land.”

The miracle of averages is known in mathematics as the law of large numbers on which

insurance is based. It states that the average of the results of an experiment will be

close to the expected value, if independent experiments are performed a large number

of times. In a more illustrative way, think of many cars driving on the streets and

accidents happening; it can’t be predicted who is going to have an accident. But based

on the data collected in the past years, it is possible to forecast the amount of accidents

that will happen in the next year. Based on this forecast the insurer charges premiums

enabling him to cover the cost in the event of an accident (insurance claim). Therefore,

the individuals will carry no risks of having to pay the whole cost in case of an accident.

This thesis is motivated by the claims reserving problem in general insurance, which

aims to provide a best estimate for outstanding loss liabilities, known as the reserve.

General insurance (as it is called in the U.K., also known as ‘non-life insurance’ in

Europe or ‘property and casualty insurance’ in the U.S.) includes all forms of insurance
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Chapter 1. Introduction

except for life insurance. Examples of general insurance include motor/car insurance,

health insurance, property insurance, travel insurance, liability insurance and marine

insurance.

In order to be able to settle the expected future and ongoing cost of claims arising from

policies written in the past, a general insurer will set aside sufficient assets, known as a

‘claims reserve’. Therefore, it is necessary to forecast the value of claims which have been

underwritten, but are yet to be settled. Usually, there is a delay between the occurrence

of a claim and its final settlement by the insurer, called development delay. These delays

may be caused by the time taken to establish the insurer’s liability, the size of the claim

amount and whether multiple payments or the reopening of previously closed claims is

required. This delay can be divided into the reporting delay (the time between the claim

occurrence and when it is reported to the insurer) and the settlement delay (the time

between the reporting date and the final settlement of the claim).

Claims are typically aggregated by date of the claim occurrence (the accident date)

in years, the development delay and sometimes the year the policy was written. It

is important that the data is fully understood, in terms of the nature of the business

being written and the profile of the policyholders, in order to be able to apply the most

appropriate reserving method.

Liabilities is usually the largest item on the balance sheet of a general insurance com-

pany. Therefore, it is very important to estimate it accurately, especially in order to

avoid either carrying excessive reserves and to avoid insolvency. Consequently, it is of

major importance to be able to validate existing models for calculating the claims re-

serve and to be able to extend and improve them to obtain more accurate estimates.

These considerations are even more important when considering the regularity require-

ments of the Solvency II regulations in the EU, in force for financial periods starting

after 1st January 2016. The EU Directive requires several statistical standards for the

quality of the models used to quantify the technical provisions. In particular, Article

77, ‘Calculations of technical provisions’, states that “the calculation of the best estimate

shall be based upon up-to-date and credible information and realistic assumptions and

be performed using adequate, applicable and relevant actuarial and statistical methods.”

However, those methods are not prescribed in detail, which gives insurers the flexibility

to adopt the most appropriate method for their specific liabilities.
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Chapter 1. Introduction

One of the most popular reserving methods used in practice is the chain ladder method

(CLM). It operates on a run-off payments triangle which uses the value of historic paid

claims, aggregated by accident year and development delay. Since the data is historic,

this forms a triangle when tabulated (see Figure 1.1).

Figure 1.1: Example payments triangle, aggregated by accident year and development
delay.

The CLM produces estimates for the value of those claims which have been incurred

but are not yet settled by extrapolating the data into the lower triangle. The method

was developed before the advent of widespread and inexpensive computers, when it

was important to have relatively simple procedures that could be implemented by hand.

Nevertheless, it is still one of the most commonly used methods today because it is a sim-

ple and robust technique that is intuitively appealing and which often gives reasonable

results.

Originally, the CLM devised merely as a clever algorithm for calculating outstanding

liabilities rather than a well-defined model based on sound mathematical statistics.

Over the course of time, developments in actuarial science helped to clarify the statisti-

cal foundations of the CLM (see Kremer (1982) or Mack (1993)). Having an underlying

statistical model enables the model user to include the uncertainties of predicting the

future liabilities. However, the intention of these developments was to keep the original

intuition and simplicity of the CLM, and to maintain the same reserve estimates. Refor-

mulating the CLM also allowed practitioners to make adjustments or add extensions to

the CLM, for example to incorporate claims inflation, that might be useful in different

contexts.

3



Chapter 1. Introduction

Mack (1991), Verrall (1991) and recently Kuang, Nielsen, and Nielsen (2009) have all

identified the CLM forecasts as classical maximum likelihood estimates under a Poisson

model for the claims. This framework plays an important role for the work in Chapter 4.

For comprehensive reviews of stochastic reserving extending the CLM see England and

Verrall (2002) and Wüthrich and Merz (2008). Furthermore, Mack (1993) introduced a

distribution free CLM, which was further developed in Gisler and Wüthrich (2008) and

Peters, Wüthrich, and Shevchenko (2010).

Unfortunately, all CLM based models have the drawback that there is considerable

uncertainty in the estimate of the total claims arising from the most recent accident

year, since this has the least data available, but accounts for a significant proportion of

the outstanding loss liability.

One intuitively appealing idea to solve this problem is to incorporate more data on the

nature of the claims, in order to refine our estimates of the outstanding claim amounts.

One common method is the incurred chain ladder (ICL) method, which is applied to the

triangle of incurred claims. This consists of case estimates of already reported claims

(which are provided by expert opinion) in addition to the value of already settled claims.

For this incurred triangle, the development parameter, unlike for the payments triangle,

denotes the reporting delay, which is the time between the accident date of a claim

and its report. Therefore, it is not possible to compare the incurred triangle and the

payments triangle directly, which is the main problem of this framework (see Figure

1.2).

Figure 1.2: Example incurred triangle, aggregated by accident year and reporting
delay.
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Chapter 1. Introduction

In practice the CLM and the ICL are often used independently and the resulting re-

serves can be substantially different between the two approaches. The ICL procedure is

criticised in Quarg and Mack (2004), where the authors propose a mixture of CLM and

ICL based on the dependence between the delays of the two triangles, but the paper

does not include a statistical model, i.e. the data generating process of the claims is

not considered. For more paid-incurred chain ladder (PIC) literature see for example

Merz and Wüthrich (2010), where the authors use a Bayesian method in a log-normal

PIC model to predict the outstanding liabilities (see also Happ and Wüthrich (2013)

and Peters, Dong, and Kohn (2014)).

An alternative is the Bornhuetter-Ferguson (BF) method (see Bornhuetter and Fergu-

son (1972)), which combines data in a run-off triangle with external knowledge on for

instance the total written premium value or estimates for the ultimate loss reserves

for each accident year. This external knowledge could for example be provided by the

incurred triangle.

In this thesis, we propose various different methods based on the classical chain ladder

method as well as the double chain ladder (DCL) framework introduced in Mart́ınez-

Miranda, Nielsen, and Verrall (2012), which may be suitable in different contexts. In

the DCL framework, the authors build on the CLM by incorporating information on

the reported number of claims as well as the claims amounts. With DCL, it is possible

to produce the same results as the CLM, but it also provides information about the

distribution of the outstanding liabilities. With the additional information provided by

the counts data the authors are able to achieve a complete statistical model framework,

which not only allows to replicate exactly the same results as the CLM but also all of

the previous methods of combining incurred and paid data discussed above.

By using more data, it is expected that the DCL method will be less volatile than

the CLM. Not only do the authors derive a surprisingly simple method for forecasting

the outstanding liabilities, but they are also able to estimate the value of reported but

not settled (RBNS) and incurred but not reported (IBNR) claims separately, which is

necessary for the clear attribution of reserves. This separation is made possible by the

connection between the counts and the payments triangles in the DCL, which enables

the estimation of the settlement delay (reporting delay+settlement delay=development

delay). This is of major importance since it is a requirement of Solvency II, which EU
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insurers must now comply with. Another advantage regarding Solvency II is that due

to the micro structure of all reserving methods introduced in this thesis, it is possible to

define a parametric bootstrap, which offers an alternative to the bootstrap of England

and Verrall (1999).

One big advantage of the DCL framework is that every method based on the incurred

triangle and the payments triangle can now be compared and validated, via the con-

nection with the settlement delay. The validation, introduced in Agbeko et al. (2014),

is based on backtesting data previously omitted while estimating the parameters for

each method. It is the first approach which enabled comparisons of results on paid data

versus incurred data. This is one reason why the research in Chapters 2 and 3 takes

advantage of the DCL framework and develops new methods that improve the reserving

techniques, which may be compared to each other for any specific dataset.

The aim of this thesis is to develop the connections between the reserving methods used

in practice to fundamental mathematical statistics, and therefore be able to explain

and extend the practical results more completely. The thesis itself is composed of four

self-contained chapters stemming from four separate research papers.

The purpose of each paper is to improve reserving for general insurance companies.

The papers are all either based on the DCL framework or are able to reproduce the

same results as given by a DCL-based reserving method. Therefore, the classical CLM

is re-invented via the DCL and its extensions in order to introduce statistically solid

approaches of combining paid and incurred data. Being self-contained, each chapter has

its own introduction, notation, conclusions and references. However, they form part of

a single, unified research project.

A brief description of the contributions of each chapter follows.

Chapter 2: The Link Between Classical Reserving and Granular Re-

serving Through Double Chain Ladder and its Extensions

Assuming the existence of additional knowledge, for instance in form of incurred data,

the paper introduces the RBNS-preserving double chain ladder (PDCL) method. In

PDCL, the aim is to preserve the RBNS values given by the case estimates included in

the incurred triangle in form of expert knowledge. As mentioned above, the incurred

6
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triangle is considered as expert knowledge since it consists of the paid data as well as the

RBNS case estimates estimated by the claims department of the insurance companies.

Also included in this paper is the validation, which enables us to compare all the reserving

methods in the DCL model and choose the best method for one particular dataset.

Chapter 3: Cash flow generalisations of non-life insurance expert sys-

tems estimating outstanding liabilities

This paper is based on the innovations of Chapter 2 and extends them by introducing

two new methods; the expert double chain ladder (EDCL) method as well as the RBNS-

preserving expert double chain ladder (PEDCL) method.

As in Chapter 2, we want to take advantage of the expert knowledge in form of the

RBNS case estimates given via the incurred claims data. The EDCL method uses that

expert knowledge in form of incurred data, RBNS case estimates included, as pseudo

data. It replicates the steps of the PDCL method, but iterates them until the process

converges to a homogeneous solution, which combines the data on both incurred and

paid claims to a single reserve.

Based on this iterative procedure, the PEDCL method uses the estimated EDCL pa-

rameters, but preserves the RBNS case estimates, as with the PDCL method.

Chapter 4: A likelihood approach to Bornhuetter-Ferguson analysis

In this paper we develop a likelihood approach to the BF analysis. Recent research has

analysed the case where the mean of the ultimate reserves is known, see Mack (2006),

Mack (2008) and Alai, Merz, and Wüthrich (2009), Alai, Merz, and Wüthrich (2010),

see also Verrall (2004).

This paper considers a similar approach to the previous studies, where we assume that

all relative increments of the ultimate reserves for each underwriting year are known.

We show that this situation lends itself to a simple maximum-likelihood analysis under

Poisson assumptions for the claims. Our analysed situation results in an analysis based

on distributions for the claim amounts from the exponential familiy, which has the

advantage of including a simple likelihood equation with a unique solution.

7
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The extended BF approach of this paper can also be used to improve on the recent

DCL approach that uses data for both claim counts and amounts in the analysis, as

in for example Mart́ınez-Miranda, Nielsen, and Verrall (2012) and Mart́ınez-Miranda,

Nielsen, and Verrall (2013). The difference between this paper and the DCL framework

is that this approach can be applied using only a single triangle, usually the payments

triangle, but therefore it is not able to predict the settlement delay, which is necessary

to distinguish between the RBNS and IBNR reserve.

Chapter 5: Micro models for reinsurance reserving based on aggregate

data

This paper considers a situation where an insurer has covered excess-of-losses of their of

individual claims via their reinsurer. The insurer now wants to split the reserve in two

parts; one net reserve of the insurance companies liabilities and the other part of the

gross reserve covered by the reinsurance company. While classical mean-linear reserving

techniques do not provide a solution to this type of problem, this paper will advocate

that a relatively simple extension of double chain ladder does.

The model based on this idea is introduced in Mart́ınez-Miranda et al. (2015), which

is the DCL model that includes a development inflation parameter representing the

relationship between the development of the claim and its mean severity. Furthermore,

we expand this model and include again the expert knowledge in form of the via incurred

data estimated severity inflation, just like in BDCL (see Mart́ınez-Miranda, Nielsen, and

Verrall (2013)).

The split is now done by simulating each claim individually with a Gamma distribu-

tion and comparing their values to a given retention. This method is compared to the

practical approach that is used in reserving departments of insurance companies.
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Abstract

The relationship of the chain ladder method to mathematical statistics has long been

debated in actuarial science. During the nineties, it became clear that the originally

deterministic chain ladder can be seen as an autoregressive time series or as a multi-

plicative Poisson model. This paper draws on recent research and concludes that chain

ladder can be seen as a structured histogram. This gives a direct link between classical

aggregate methods and continuous granular methods. When the histogram is replaced

by a smooth counter part, we have a continuous chain ladder model. Re-inventing clas-

sical chain ladder via double chain ladder and its extensions introduces statistically solid

approaches of combining paid and incurred data with direct link to granular data ap-

proaches. This paper goes through some of the extensions of double chain ladder and

introduces new approaches to incorporating and modelling incurred data.

Keywords: Stochastic Reserving; General Insurance; Solvency II; Chain Ladder; Reserve

Risk; Claims Inflation; Incurred Data; Model Validation; Granular Data.
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2.1 Introduction

Double chain ladder is a bridge between the chain ladder method (CLM) and mathemat-

ical statistics. Double chain ladder is modelling the full system of reported claims, their

delay and the resulting claims. Bootstrapping it with or without parameter uncertainty

is easy. Double chain ladder bootstrapping does not face the stability problems resulting

when bootstrapping the CLM. The full model structure is the key here: bootstrapping

a well defined statistical model is simple and straightforward.

The reason it is difficult to bootstrap the CLM is that only one part of the system is

modelled: the aggregated paid or incurred claims. The full data generation process is

not known in classical chain ladder, and approximations have to be introduced to come

up with some sort of bootstrapping. The typical assumption taken is that all adjusted

residuals arise from the same distribution. But adjusted residuals on the aggregated

paid data or incurred data models do not follow the same distribution. These residuals

can be very close to the normal distribution and very right skewed depending on the

underlying number of claims leading to this residual. Instability occurs if an unimportant

right skewed residual of little weight is reshuffled as a very important residual in the

bootstrap.

Double chain ladder is estimated from the exact same data structure as chain ladder. It

uses triangle type of data on frequencies, paid and incurred data. Communicating the

implementation and structure of double chain ladder to actuaries is therefore a simple

exercise. Furthermore, double chain ladder gives - almost - the exact same reserve as

chain ladder. One can therefore see double chain ladder as a more stable, better un-

derstood version of CLM with the clear advantage of being easy to generalize. When

generalizing or developing double chain ladder, the actuary can see any development as

moving away from chain ladder. The vast amount of experience and tacit knowledge ac-

tuaries have invested in the chain ladder model is therefore directly useful when working

with and interpreting double chain ladder and its extensions.

In this paper we will consider double chain ladder, double chain ladder and Bornhuetter-

Ferguson, incurred double chain ladder and RBNS-preserving double chain ladder and

we will give these four methods the acronyms DCL, BDCL, IDCL and PDCL. BDCL

was the first published extension of DCL. It was verified that the severity inflation
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(inflation in cost per claim) in the underwriting year direction is the key to many of the

hardest challenges of chain ladder and it was shown that this severity inflation could be

extracted from incurred data via a simple estimation trick. Replacing the paid data’s

severity inflation in DCL with the incurred data’s severity inflation is the definition of

BDCL. Incurred double chain ladder is simply defined as that severity inflation (cost

per claim in the underwriting year direction) resulting exactly in the same reserves for

every underwriting year as the reserve resulting from the chain ladder method applied

to incurred data. The advantage of having IDCL instead of the incurred chain ladder

is similar to the advantages of having DCL instead of chain ladder given above. Finally

PDCL is one version of double chain ladder that does not change the RBNS values.

DCL was published via the three Astin Bulletin papers, Verrall, Nielsen, and Jessen

(2010), Mart́ınez-Miranda et al. (2011), and Mart́ınez-Miranda, Nielsen, and Verrall

(2012). BDCL was published in North American Actuarial Journal in Mart́ınez-Miranda,

Nielsen, and Verrall (2013a), PDCL is introduced in this British Actuarial Journal paper

and IDCL was introduced in the Variance paper Agbeko et al. (2014). One could have

that point of view that developments of double chain ladder might become redundant,

when full granular reserving based on micro models enter actuarial practice. While this

might be true, then we believe that granular reserving should be developed in the exact

same way as double chain ladder was developed: one should be able to follow step by

step how an aggregate chain ladder is changed into a granular model and developed.

When progressing this way, one makes sure that the tacit knowledge and experience of

actuaries, built via the CLM, is carried over to the granular data approach. We call this

“the bathwater approach” to developing reserving techniques, because we do not want

to throw the baby out with the bathwater and develop new methods missing important

features and properties of classical methods.

In Section 2.6, a preliminary first approach to granular chain ladder called continu-

ous chain ladder is described. Continuous chain ladder is a smooth structured density

reflecting the fact that chain ladder could be viewed as a structured histogram. The

difference between a structured smooth density and a structured histogram is just which

nonparametric estimation procedure is applied. The histogram approach reproducing

chain ladder or a smooth version of it called continuous chain ladder. Since chain ladder

itself is a granular method based on a suboptimal histogram approach, everything we
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develop via double chain ladder and it’s extensions can indeed be viewed as granular

methods with smooth continuous counter parts waiting to be formally defined.

The rest of the paper is structured as follows. Section 2.2 describes the data and the

expert knowledge, introduces the notation and defines the model assumptions. Section

2.3 discusses the outstanding loss liabilities point estimates. Section 2.4 describes four

methods to estimate the parameters in the model: DCL, BDCL, PDCL and IDCL. The

validation of these four methods is considered in Section 2.5 through a back-testing pro-

cedure. Section 2.6 describes the link between classical reserving and granular reserving.

Section 2.7 provides some concluding remarks.

2.2 Data and first moment assumptions and some com-

ments on granular data

This section describes the classical aggregated data used in most general insurance com-

panies. However, in Section 2.6 below we make it clear that working with this kind of

aggregated data indeed is very closely connected to working with granular data. The

resulting estimators of aggregated data are piecewise constant or structured histograms,

while the resulting estimators of continuous data are continuous and easier to optimize.

Because the classical chain ladder method is closely related to the continuous chain

ladder method, every single extension of double chain ladder is also a contribution to

granular methodology. One can - so to speak - develop the practical ideas on aggregated

data and develop the continuous versions later.

This paper will work on aggregated data and contribute to the understanding and val-

idation of chain ladder, but it will in particular introduce new ways of considering

incurred data and expert opinion. We start by describing the data and expert knowl-

edge extracted from incurred data, that we are going to work with. Data are aggregated

incurred counts (data), aggregated payments (data) and aggregated incurred payments

(expert knowledge). All of those three objects have the same structural form, i.e. they

live on the upper triangle

I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m− 1; i+ j ≤ m},
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m > 0. Here, m is the number of underwriting years observed. It will be assumed that

the reporting delay, that is the time from underwriting of a claim until it is reported,

as well as the settlement delay, that is the delay between the report of a claim and its

settlement, are bounded by m. This, in contrast to the classical CLM, will make it

possible to also get estimates in the tail, that is when reporting delay plus settlement

delay is greater than m. Our data can now be described as follows.

The data:

Aggregated incurred counts: NI = {Nik : (i, k) ∈ I}, with Nik being the total number

of claims of insurance incurred in year i which have been reported in year i + k,

i.e. with k periods delay from year i.

Aggregated payments: XI = {Xij : (i, j) ∈ I}, with Xij being the total payments from

claims incurred in year i and paid with j periods delay from year i.

Note that the meaning of the second coordinate of triangle I varies between the two

different data. While in the counts triangle it represents the reporting delay, in the

payments triangle it represents the development delay, that is reporting delay plus set-

tlement delay.

To describe the aggregated incurred payments, we need some theoretical micro-structural

descriptions. These micro-structural descriptions follow the line of Mart́ınez-Miranda,

Nielsen, and Verrall (2012) and also build the base of the forthcoming DCL assumptions.

By Npaid
ikl , we will denote the number of the future payments originating from the Nik

reported claims, which were finally paid with a delay of k + l, where l = 0, . . . ,m− 1.

Also, let X(h)
ikl denote the individual settled payments which arise from Npaid

ikl , h =

1, . . . , Npaid
ikl . Finally, we define

Xikl =
Npaid

ikl∑
h=1

X
(h)
ikl , (i, k) ∈ I, l = 0, . . . ,m− 1,

i.e. those payments originating from underwriting year i, which are reported after a

delay of k and paid with an overall delay of k + l.

The aggregated incurred payments are then considered as unbiased estimators of
∑m−1
l=0 Xikl.

Technically, we model the expert knowledge as follows.
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Expert knowledge:

Aggregated incurred payments: II = {Iik : (i, k) ∈ I}, with Iik being

Iik =
k∑
s=0

m−1∑
l=0

E[Xisl| F(i+k)]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| F(i+k−1)],

where Fh is an increasing filtration illustrating the expert knowledge at time point

h.

In this manuscript, we will only consider best estimates (or pointwise estimates) and

for this we can define the DCL model just under first-order moment assumptions,

i.e. assumptions on the mean. We show that the classical chain ladder multiplica-

tive structure holds under very general underlying dependencies on the mean. For fixed

i = 0, . . . ,m; k, l = 0, . . . ,m− 1, and h = 1, . . . , Npaid
ikl , the first-order moment condi-

tions of the DCL model are formulated as follows.

A1. The counts, Nik, are random variables with mean having a multiplicative parametriza-

tion E[Nik] = αiβk, for given parameters αi, βj , under the identification
∑m−1
k=0 βk =

1.

A2. The number of payments, Npaid
ikl , representing the RBNS delay, are random vari-

ables with conditional mean E[Npaid
ikl |NI ] = Nikπ̃l, for given parameters π̃l.

A3. The individual payments sizes X(h)
ikl are random variables whose mean conditional

on the number of payments and the counts is given by E[X(h)
ikl |N

paid
ikl , NI ] = µ̃lγi,

for given parameters µ̃l, γi.

Assumption A1 is the classical chain ladder assumption applied on the counts triangle.

See also Mack (1991). The main point hereby is the multiplicativity between underwrit-

ing year and reporting delay. Assumptions A2 and A3 are necessary to connect reporting

delay, settlement delay and development delay - the main idea of DCL. See also Ver-

rall, Nielsen, and Jessen (2010), Mart́ınez-Miranda et al. (2011) and Mart́ınez-Miranda,

Nielsen, and Verrall (2012).
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Note that the observed aggregated payments can be written as

Xij =
j∑
l=0

Xi,j−l,l =
j∑
l=0

Npaid
i,j−l,l∑
h=1

X
(h)
i,j−l,l.

And then, using assumptions A1 to A3, we can derive the mean of the aggregated

payments conditional to the counts as follows:

E[Xij |NI ] = E

 j∑
l=0

Npaid
i,j−l,l∑
h=1

X
(h)
i,j−l,l|NI



=
j∑
l=0

E

N
paid
i,j−l,l∑
h=1

E[X(h)
i,j−l,l|NI , N

paid
i,j−l,l]|NI


=

j∑
l=0

E[Npaid
i,j−l,lµ̃lγi|NI ]

= γi

j∑
l=0

Ni,j−lπ̃lµ̃l.

Thus, the unconditional mean is given by

E[Xij ] = αiγi

j∑
l=0

βj−lµ̃lπ̃l. (2.1)

Inspecting equation (2.1), we can reduce the amount of parameters by setting µ =∑j
l=0 π̃lµ̃l and πl = π̃lµ̃lµ

−1, so that µπl = µ̃lπ̃l and therefore the unconditional mean

of the payments becomes

E[Xij ] = αiγiµ
j∑
l=0

βj−lπl. (2.2)

Equation (2.2) is the key in deriving the outstanding loss liabilities. These are the values

of Xij in the lower triangle and the tail (that is for i = 1, . . . ,m; j = 0, . . . , 2m−1; i+j ≥

m+ 1). In the sequel we will write all the DCL parameters, i.e. the parameters involved

in the DCL model, as

(α, β, π, γ, µ) = (α1, . . . , αm, β0, . . . , βm−1, π0, . . . , πm−1, γ1, . . . , γm, µ).
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In the next section, we will see that in a very natural way, we are able to distinguish be-

tween RBNS and IBNR claims. This is possible due to the separation of the development

delay into the reporting delay, β, and the settlement delay, π.

2.3 Forecasting outstanding claims: the RBNS and IBNR

reserves

To produce outstanding claims forecasts under the DCL model we need to estimate the

DCL parameters. Section 2.4 below is devoted to this issue. In this section, we assume

that the DCL parameters (α, β, π, γ, µ) have been already estimated by (α̂, β̂, π̂, γ̂, µ̂),

and show how easily point forecasts of the RBNS and IBNR components of the re-

serve can be calculated. Using the notation of Verrall, Nielsen, and Jessen (2010) and

Mart́ınez-Miranda et al. (2011), we consider predictions over the triangles illustrated in

Figure 2.1.

J1 = {i = 2, . . . ,m; j = 0, . . . ,m− 1 with i+ j ≥ m+ 1},

J2 = {i = 1, . . . ,m; j = m, . . . , 2m− 1 with i+ j ≤ 2m− 1},

J3 = {i = 2, . . . ,m; j = m, . . . 2m− 1 with i+ j ≥ 2m}.

The classical CLM produces forecasts over only J1. So, if the CLM is being used,

it is necessary to construct tail factors in some way. For example, this is sometimes

done by assuming that the run-off will follow a set shape, thereby making it possible to

extrapolate the development factors. In contrast, under the DCL model it is possible to

provide also the tail over J2 ∪ J3, just by using the underlying assumptions about the

development.

Following Mart́ınez-Miranda, Nielsen, and Verrall (2012), we calculate the forecasts using

the expression for the mean of the aggregated payments derived in (2.2) and replacing

the unknown DCL parameters by their estimates. Note that the RBNS component arises

from claims reported in the past and therefore, as Mart́ınez-Miranda, Nielsen, and Verrall

(2012) discuss, it is possible to calculate the forecasts using the true observed value Nik

instead of their chain ladder estimates, α̂i, β̂k, which are involved in the formulae (2.2).
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Figure 2.1: Index sets for aggregate claims data, assuming a maximum delay m− 1.

However, for the IBNR reserves, this is not possible since those values arise from claims

reported in the future and then it is necessary to use all DCL parameters.

From these comments we define the RBNS component as follows, where we consider two

possibilities depending on whether the estimates of Nik are used or not.

X̂
rbns(1)
ij =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2, (2.3)

and

X̂
rbns(2)
ij =

j∑
l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2, (2.4)

where N̂ik = α̂iβ̂k. In most cases, to shorten the notation, we will simply write X̂rbns
ij

for the RBNS estimates. However, whenever it is necessary, we will state which version

is taken. The IBNR component always needs all DCL parameters and it is calculated

always as follows:

X̂ibnr
ij =

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2 ∪ J3. (2.5)
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By adding up the RBNS and IBNR components we have the outstanding loss liabilities

pointwise forecasts, which spread out on the forecasting sets J1 ∪ J2 ∪ J3 as follows.

X̂ij =

 X̂rbns
ij + X̂ibnr

ij if (i, j) ∈ J1 ∪ J2,

X̂ibnr
ij if (i, j) ∈ J3.

(2.6)

The outstanding liabilities per accident year are the row sums of forecasts X̂ij above.

For a fixed i, we write Ja(i) = {j : (i, j) ∈ Ja}, a = 1, 2, 3. Then the outstanding

liabilities per accident year i = 1, . . . ,m are

R̂i =
∑

j∈J1(i)∪J2(i)
X̂rbns
ij +

∑
j∈J1(i)∪J2(i)∪J3(i)

X̂ibnr
ij .

2.4 Estimation of the parameters in the double chain lad-

der model

In the previous section we have described how to estimate the outstanding claims and

thereby construct RBNS and IBNR reserves once the DCL parameters have been esti-

mated. Now we describe how to get suitable estimators for the DCL parameters. Specif-

ically we are going to explore four different estimations methods, all of them based on

the chain-ladder algorithm.

2.4.1 The DCL method

The DCL method is the most simple method to derive the parameters in the DCL

model. It is the original method proposed by Mart́ınez-Miranda, Nielsen, and Verrall

(2012) which makes the following additional assumption on the payments triangle XI :

B1 The payments Xij , with i = 1, . . . ,m, and j = 0, . . . ,m− 1, are random variables

with mean having a multiplicative parametrization:

E[Xij ] = α̃iβ̃j ,
m−1∑
j=0

β̃j = 1. (2.7)
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We use the identification of Mack (1991). Any other identification could be used here,

but this one allows the β̃j to have an interpretation as probabilities. Then, merging the

previously derived expression (2.2) and the above (2.7), we have that

αiγiµ
j∑
l=0

βj−lπl = α̃iβ̃k,

and then the DCL parameters can be identified from the chain ladder parameters, α̃i, β̃k,

using the following equations:

αiµγi = α̃i, (2.8)
j∑
l=0

βj−lπl = β̃j . (2.9)

Even though many other micro-structure formulations might exist, the above model

can be considered as a detailed specification of the classical chain ladder. Mart́ınez-

Miranda, Nielsen, and Verrall (2012) discuss that if the RBNS component is estimated

using (2.4), DCL completely replicates the results of CLM applied to the aggregated

payments triangle. Thus, from the above two equations we can see how the underwriting

and development chain ladder components are decomposed into separate components

which capture the separate sources of delay inherent in the way claims emerge and the

severity specification.

Now, the main idea to derive the DCL parameters is to estimate the chain ladder pa-

rameters (α̂, β̂) and (̂̃α, ̂̃β) ( cf. A1, B1) by applying the classical chain ladder algorithm

on the counts triangle NI and the payments triangle XI , respectively. Afterwards, the

remaining DCL parameters, this is (γ̂, µ̂, π̂), can be calculated by simple algebra using

(2.8) and (2.9).

For illustration of the chain ladder algorithm, we assume an incremental triangle (Cij)

(in our case this would be NI or XI), and that we want to estimate its chain ladder

parameters (α̂, β̂). To apply the chain ladder algorithm, one has to transform the triangle

(Cij) into a cumulative triangle (Dij):

Dij =
j∑

k=1
Cik.
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Then, the chain ladder algorithm can be applied on (Dij). It will produce estimates of

development factors, λj , j = 1, 2, . . . ,m− 1 which can be described by

λ̂j =
∑n−j+1
i=1 Dij∑n−j+1

i=1 Di,j−1
.

These development factors can be converted into estimates of (α, β) using the following

identities which were derived in Verrall (1991).

β̂0 = 1∏m−1
l=1 λ̂l

,

β̂j = λ̂j − 1∏m−1
l=j λ̂l

,

α̂i =
m−i∑
j=0

Cij

m−1∏
j=m−i+1

λ̂j .

Alternatively, analytical expressions for the estimators can also be derived directly

(rather than using the chain ladder algorithm), and further details can be found in

Kuang, Nielsen, and Nielsen (2009).

Once the chain ladder parameters (α̂, β̂) and (̂̃α, ̂̃β) are derived, the settlement delay

parameter, π, can be estimated just by solving the following linear system.



̂̃
β0
...
...̂̃

βm−1


=



β̂0 0 · · · 0

β̂1 β̂0
. . . 0

... . . . . . . 0

β̂m−1 · · · β̂1 β̂0





π0
...
...

πm−1


. (2.10)

Let π̂ denote the solution of (2.10).

Now we consider the estimation of the parameters involved in the means of individual

payments. The model is technically over-parametrised since there are too many inflation

parameters in (2.8). The simplest way to ensure identifiability is to set γ1 = 1, which

means that the inflation effect of all accident years are compared to the first year. Then

the estimate of µ, µ̂, can be obtained from

µ̂ =
̂̃α1
α̂1
.

23



Chapter 2. The Link Between Classical Reserving and Granular Reserving Through
Double Chain Ladder and its Extensions

Using µ̂, the remaining estimates for γi, i = 2, . . . ,m, are directly derived from (2.8).

The DCL estimation procedure described above has been implemented in the R-package

DCL created by Mart́ınez-Miranda, Nielsen, and Verrall (2013b). Using this software,

we have derived Table 2.1, which shows the values of α̂, β̂, π̂ and γ̂, calculated from

a real dataset included also in the DCL package. The data is real motor data from a

major insurer, containing information during m = 19 years.

i k,l α̂(i) β̂(k) π̂(l) γ̂(i)
1 0 1078 0.7599 0.0592 1.0000
2 1 1890 0.2097 0.3098 1.1173
3 2 2066 0.0189 0.2032 1.4947
4 3 2353 0.0064 0.1996 1.7461
5 4 3015 0.0016 0.1388 2.1075
6 5 3727 0.0010 0.0440 2.0936
7 6 5057 0.0009 0.0227 2.2495
8 7 6483 0.0007 0.0095 2.1250
9 8 7727 0.0003 0.0018 1.9028

10 9 7134 0.0001 0.0029 2.0197
11 10 7319 0.0001 0.0002 2.0704
12 11 6152 0.0000 0.0026 2.2666
13 12 5242 0.0001 0.0019 2.3157
14 13 6150 0.0000 0.0032 2.4747
15 14 7028 0.0001 -0.0002 2.3829
16 15 6725 0.0000 0.0013 2.8391
17 16 5260 0.0000 -0.0004 3.1815
18 17 5869 0.0000 0.0000 4.1747
19 18 5953 0.0000 0.0000 6.7501

µ̂ = 2579

Table 2.1: DCL parameter estimates derived by the DCL method

2.4.2 Bornhuetter-Ferguson and double chain ladder: the BDCL method

The chain ladder and Bornhuetter-Ferguson (BF) methods are among the easiest claim

reserving methods and due to their simplicity, they are two of the most commonly used

techniques in practice. Some recent papers on the BF method include Verrall (2004),

Mack (2008), Schmidt and Zocher (2008), Alai, Merz, and Wüthrich (2009) and Alai,

Merz, and Wüthrich (2010). The BF method introduced by Bornhuetter and Ferguson

(1972) aims to address one of the well known weaknesses of CLM, which is the effect

outliers can have on the estimates of outstanding claims. Especially the most recent

underwriting years are the years with nearly no data and thus very sensitive to outliers.
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However, these recent underwriting years build the very major part of the outstanding

claims. Hence, the CLM estimates of the outstanding liabilities might differ fatally from

the true (unknown) values.

Acknowledging this problem, the BF method incorporates prior knowledge from experts

and is therefore more robust than the CLM method, which relies completely on the data

contained in the run-off triangle XI .

In this section, we briefly summarize the Bornhuetter-Ferguson double chain ladder

(BDCL) method introduced in Mart́ınez-Miranda, Nielsen, and Verrall (2013a), which

mimics BF in the framework of DCL. The BDCL method starts with identical steps

as DCL but instead of using the estimate of the inflation parameters, γ and µ, from

the triangle of paid claims, XI , it deploys expert knowledge in the form of the incurred

triangle, II , to adjust the estimation of the sensitive inflation parameter, γ. This is done

as follows. From assumptions A2, A3 and equation (2.8), we easily deduce that

E[Iik] = αiµγiβk = α̃iβk. (2.11)

Hence, the incurred triangle, II , has multiplicative mean and its underwriting year

factor, α̃, is identical to the one of the payments triangle, XI (cf. (2.7)). However, its

estimation is less sensitive to outliers since it incorporates all incurred claims via expert

knowledge. We conclude that we can replace the payments triangle by the incurred

payments triangle when we calculate estimates of the inflation parameters, γ, µ, in (2.8).

Note that the severity mean, µ, is going to remain the same since the first rows of XI
and II are identical.

Summarised, the BDCL-method can be carried out as follows.

• Step 1: Parameter estimation.

Estimate the DCL parameters (α, β, π, γ, µ) using the DCL method of Section 2.4.1

with the data in the triangles NI and XI and denote the parameter estimates by

(α̂, β̂, π̂, γ̂, µ̂).

Repeat this estimation using the DCL method but replacing the triangle of paid

claims, XI , by the triangle of incurred data, II . Keep only the resulting estimated

inflation parameters, denoted by γ̂BDCL.
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• Step 2: BF adjustment.

Replace the inflation parameters γ̂ from the paid data by the estimate from the

incurred triangle, γ̂BDCL.

From these two steps, the final BDCL estimates of the DCL parameters are (α̂, β̂, π̂, γ̂BDCL, µ̂).
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BDCL

Figure 2.2: Plot of severity inflation estimates. DCL: γ̂i (red), BDCL: γ̂BDCL
i (green).

Again, using the R-package DCL, we can derive the Figure 2.2 that shows the severity

inflation estimates derived by DCL and BDCL. BDCL, with the incorporated expert

knowledge, seems to stabilize the severity inflation in the most recent underwriting

years while keeping the values in the other years. The result is a more realistic estimate

correcting the DCL parameter γ̂i exactly in its weakest point, that is in those years

where the payments triangle, XI , has nearly no data. Again, those recent underwriting

years contain the very major part of the outstanding liabilities.

2.4.3 The PDCL method

In the last section, we have described a method which incorporates expert knowledge in

form of the incurred triangle, II . The values in II arise from case estimates for RBNS

claims, developed in the case department of the insurance company, and claims which

are already paid. Thus, if one subtracts these already paid claims (which are given via

the payments triangle XI) from the incurred triangle, one can reconstruct the RBNS

case estimates. However, as soon as this is done, it is obvious that these RBNS case
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estimates do not match with the RBNS estimates (2.3) and (2.4), using any DCL method

(including BDCL).

We conclude that the reserve department, using double chain ladder (and also chain

ladder), calculates different RBNS estimates than those given by the case department. If

this difference is huge, consultation between the case department and reserve department

is necessary. The case department possesses expert knowledge on every single claim

that is reported and they can use that knowledge of the claims in conjunction with their

expertise to improve estimation. Below we introduce an alternative reserving method

preserving the RBNS estimates given by the case department. We call this method

RBNS-preserving double chain ladder (PDCL).

The first step is to construct a preliminary square (Sij), i = 1, . . . ,m, j = 0, . . . ,m−1,

which will yield new estimates for the DCL parameters. The upper triangle of the square

(i.e. (i, j) ∈ I) should have the same entries as the payments triangle (Xij). The lower

triangle (i.e. (i, j) ∈ J1) should consist of preliminary estimates of the outstanding

loss liabilities. The outstanding loss liabilites comprise an RBNS and an IBNR part (cf.

(2.6)). However, we only want to estimate the IBNR component of these outstanding loss

liabilities while taking the RBNS case estimates as the RBNS component. More precisely,

we do the following. We take the BDCL parameter estimates (α̂, β̂, π̂, γ̂BDCL, µ̂) and

use these parameters to estimate the RBNS component (X̂rbns
ij ) and IBNR component

(X̂ibnr
ij ) using (2.4) and (2.5). As mentioned above, we want the RBNS estimate to be

equal to the RBNS case estimates, which can only be reconstructed per accident year.

For i = 1, . . . ,m, they can be described as

Xrbns.case.estimate
i =

m−i∑
j=0

Iij −
∑

j∈J2(i)
X̂rbns
ij −

m−i∑
j=0

Xij .

Hence, we define the RBNS preserving components

X̂rbns.pres
ij =

∑m−i
j=0 Iij −

∑
j∈J2(i) X̂

rbns
ij −

∑m−i
j=0 Xij∑

j∈J1(i) X̂
rbns
ij

X̂rbns
ij .

Note that ∑
j∈J1(i)

X̂rbns.pres
ij = Xrbns.case.estimate

i .
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Thus we define the preliminary square (Sij) as

Sij =


Xij , if (i, j) ∈ I,

X̂rbns.pres
ij + X̂ibnr

ij , if (i, j) ∈ J1.

We easily see that payments square (Sij) has multiplicative mean E[Sij ] = α̃iβ̃j . There-

fore, we can use (Sij) to completely replace XI to estimate the DCL parameters (cf.

(2.7)).

Note that in the BDCL method we were only able to balance the estimator of the

inflation parameter γ̃i (cf. (2.11)). Again, while in the BDCL method, we use the expert

knowledge to only adjust the inflation parameters. Here, we can take full advantage of

the triangle II and also equalize the delay parameters.

Since (Sij) has a multiplicative structure, we use the CLM idea to estimate α̃i and β̃j .

We define ̂̃αPDCLi =
m−1∑
j=0

Sij ,
̂̃
β
PDCL

j =
∑m
i=1 Sij∑

(i,j)∈I∪J1 Sij
.

Exactly as in the previous sections, we can now apply (2.8) and (2.9) to derive the PDCL

parameters (α̂i, β̂j , π̂PDCL, γ̂PDCL
∗
, µ̂PDCL). Since this approach is still not RBNS pre-

serving, we balance γ̂PDCL∗ by defining a new scaled inflation factor estimate γ̂PDCL

such that

γ̂PDCL =
∑m−i
j=0 Iij −

∑
j∈J2(i) X̂

rbns
ij −

∑m−i
j=0 Xij

X̂rbns
ij

,

where X̂rbns
ij is calculated with the parameters (α̂i, β̂j , π̂PDCL, γ̂PDCL

∗
, µ̂PDCL) using

(2.4).

2.4.4 The IDCL method

One could look at the methods BDCL and PDCL as belonging to the tradition of

reserving literature using paid-incurred information, see Happ and Wüthrich (2013),

Merz and Wüthrich (2013) and Peters, Dong, and Kohn (2014). In the BDCL definition,

we incorporate an additional triangle of incurred claims in order to produce a more stable

estimate of the underwriting inflation parameter γi. The derived BDCL method becomes

a variant of the Bornhuetter-Ferguson technique using prior knowledge contained in the
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incurred triangle. In the PDCL method, we use the additional information to get better

IBNR estimates while preserving the RBNS estimates given by the claims department.

But now, one natural question is whether one of those derived reserve estimates is the

classical incurred chain ladder. However, this is not the case and neither the BDCL nor

the PDCL method is replicating the results obtained by applying the classical CLM to

the incurred triangle.

Among practitioners, the incurred reserve seems to be more realistic for many datasets

compared to the classical paid chain ladder reserve. From this motivation Agbeko et al.

(2014) have introduced a new method to estimate the DCL parameters which completely

replicates the chain ladder reserve from incurred data. The method is called incurred

double chain ladder (IDCL) and it is easily defined just by rescaling the underwriting

inflation parameter estimated from the DCL method. Specifically, a new scaled inflation

factor estimate γ̂IDCL is defined by

γ̂IDCLi = R̂∗i
R̂i
γ̂i,

where R∗i are the outstanding loss liabilities per underwriting year as predicted by ap-

plying the classical CLM on the incurred data, γ̂i are the inflation parameters estimated

using the DCL method and Ri are the outstanding loss liabilities per accident year

calculated using the parameters estimated by the DCL method (see Section 2.4.1).

The final IDCL estimates of the DCL parameters are then (α̂, β̂, π̂, γ̂IDCL, µ̂). With the

new inflation parameter estimate, γ̂IDCL, the outstanding liabilities derived by the IDCL

estimates of the parameters completely replicate the CLM forecasts on the incurred

triangle.

Figure 2.3 shows a plot of the four severity inflation parameters derived by DCL, BDCL,

PDCL and IDCL. The impression is that the rather rough adjustment of the PDCL and

IDCL method leads to fluctuations in the estimate. These fluctuations are stronger in the

less important and older underwriting years. It coincides with the following intuition.

CLM on incurred triangle relies on the RBNS case estimates which are too small in

earlier underwriting years. Thus, they lead to volatile estimates of the severity inflation

in those years. However, the important most recent underwriting year estimates match

the one from BDCL. In the most recent years one gets the impression that IDCL might

underestimate the severity inflation.
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Figure 2.3: Plot of severity inflation estimates. DCL: γ̂i (red), BDCL: γ̂BDCL
i (green),

PDCL: γ̂P DCL
i (yellow), IDCL: γ̂IDCL

i (blue).

Table 2.2 shows the reserve estimates per underwriting year derived with the four differ-

ent methods. In Figure 2.3, it is visualized that the underwriting inflation parameters

of PDCL and IDCL might be too volatile in the first five years. However, these first five

years have nearly no impact and account for far less than 0.1% of the total loss liabilities

estimates. The very most recent years on the other hand account for the very major part

of the outstanding liabilities. The unrealistic severity inflation of the DCL method in

the most recent underwriting year nearly doubles the ultimate estimates. More realistic

results are derived when incorporating the expert knowledge in form of the incurred

triangle, II , using BDCL, PDCL or IDCL.
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i CLM DCL BDCL IDCL PDCL
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0005 0.0003 0.0005 0.0003
3 0.0000 0.0001 -0.0003 0.0001 0.0037
4 0.0000 0.0007 -0.0014 0.0007 -0.0096
5 0.0173 0.0039 0.0151 0.0045 0.0365
6 0.0346 0.0309 0.0313 0.0122 0.0067
7 0.1381 0.1407 0.1408 0.0090 0.0039
8 0.2449 0.2485 0.2483 0.0927 0.0970
9 0.3522 0.3582 0.3563 0.0536 0.0642

10 0.3943 0.3818 0.3800 0.1507 0.2024
11 0.5524 0.5246 0.5206 0.1664 0.2597
12 0.6839 0.6309 0.6169 -0.1458 0.0299
13 1.0504 0.9764 0.9733 0.8648 1.2578
14 2.5361 2.5483 2.5164 2.0388 2.8155
15 5.7370 5.4483 5.2846 4.2095 6.2722
16 14.0889 15.4373 12.9824 6.8542 9.4736
17 21.0057 21.7407 17.0455 12.0924 13.5066
18 44.6877 44.4580 29.2840 23.0002 26.1823
19 98.9723 98.9722 41.8444 39.1522 42.6500

SUM 190.4957 191.9021 112.2385 88.5565 102.8528

Table 2.2: Outstanding loss liabilities per underwriting year in million
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2.5 Model validation

This section describes the validation process for the four methods DCL, BDCL, IDCL

and PDCL discussed in Section 2.4.

The validation process is based on back-testing data previously omitted while estimating

the parameters for each method. More precisely, we cut off the most recent diagonals

of the data triangles, which are the calendar years, in order to get smaller triangles to

which we can apply the different reserving methods. Then we compare the forecasts for

these diagonals to the original data. This validation technique is described in detail by

Agbeko et al. (2014).

Below, we have omitted the most recent calendar year and the four most recent calendar

years, respectively (in all three available triangles). Therefore, since our dataset consists

of m = 19 years, there are 18 and 60 cells, respectively, to be compared with the true

values.
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Figure 2.4: Box plot of the cell errors (CLM, DCL, BDCL, IDCL, PDCL from left
to right)

Figure 2.4 shows two box plots of the respectively 18 and 60 errors calculated by taking

the difference between estimated and true value. While we have also tried to omit

different amounts of calendar years, the results were all similar and quiet clear. The three

methods incorporating expert knowledge, that is BDCL, IDCL and PDCL, outperform

the CLM and DCL method which only work with real data.
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Figure 2.5: Bar plot for the sum of absolute cell errors and the relative errors.

In the top panels of Figure 2.5, we have plotted the sum of the absolute cell errors (`1
error). That is,

Sum of absolute cell errors =
∑

(i,j)∈B
|X̂ij −Xij |,

B = {(i, j)| i = 2, . . . ,m− c; j = 0, . . . ,m− c− 1; i+ j = m− c+ 1, . . . ,m},

where c is the number of recent calendar years omitted for back testing (here: 1 and 4).

The relative errors, that is

Sum of absolute cell errors
Sum of absolute true values =

∑
(i,j)∈B |X̂ij −Xij |∑

(i,j)∈B |Xij |
,

are shown in the bottom panels of Figure 2.5. The conclusion is the same as in the

box plots. The estimates of BDCL, IDCL, PDCL are more accurate, while no great

distinction can be made in between those winners.
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2.6 Continuous Chain Ladder

This section is a motivating section. The message of this section is: when double chain

ladder is extended, then it is also a contribution to granular reserving. This section

gives a very short introduction of recent research interpreting the chain ladder model as

a structured histogram. We do not provide theory here. We just give a taste of this new

interpretation of chain ladder and its potential.

Continuous chain ladder was first published in Mart́ınez-Miranda et al. (2013), where it

is verified that the classical reserving problem really is a multivariate density estimation

problem and that the classical chain ladder technique is a structured histogram version

of this density estimator. While histograms are a good choice, it is well known from

smoothing theory that one can do better by introducing more smoothing. Also, many

actuaries use the chain ladder method without realising that when they choose weekly,

monthly, quarterly or yearly data, they are really picking a smoothing parameter which

could be optimized via validation methodology.

Natural extension of classical chain ladder methodology would be to smooth it via kernel

smoother or some other smoothers. Hereby, one takes advantage on the vast literature of

mathematical statistics, when deciding the amount of smoothing (week, month, quarter,

year or something completely different) and perhaps allow one-self - in full consistency

with the literature - to vary the smoothing according the difference of information at

different underwriting years. Mart́ınez-Miranda et al. (2013) introduces these ideas and

call the approach continuous chain ladder. In its simplest version, continuous chain

ladder is based on simple kernel smoothers providing intuitive and natural improvement

to histograms.

Mart́ınez-Miranda et al. (2013) and Mammen, Mart́ınez-Miranda, and Nielsen (2015)

consider the multiplicative density model f(x, y) = f1(x)f2(y), where f1 is the density in

underwriting direction (corresponding to α) and f2 the density in development direction

(corresponding to β). This is analogue to the chain ladder method where the multiplica-

tive assumption E[Nik] = αiβk also implies independence of underwriting date effect

and reporting delay effect. They estimate these densities via a least-squares or maxi-

mum likelihood criterion. Notice that one hereby estimates one-dimensional functions,

not parameters. The aim is to estimate the density components f1(x) and f2(y) from
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observations of the two-dimensional density provided in the triangle I (see definition in

Section 2.2).

Classical CLM considers histogram smoothers (with bins corresponding to the accident

and delay periods) to estimate both f1 and f2. One can use a local linear kernel when

estimating the density on the triangle. This will automatically correct for the boundaries.

See also Fan and Gijbels (1996) for an explanation of local polynomial estimation in

the regression case. The density on the square can then be derived by projecting the

triangular density onto the multiplicative space, f(x, y) = f1(x)f2(y).

The natural context for continuous chain ladder is of course micro claims data or granular

data, however it can still be applied to aggregated data - the data traditionally used in

reserving. Now, we illustrate how the continuous chain ladder method can be applied

to the paid data described in the previous sections and compared with the classical

chain ladder histogram. The input data for both approaches are quarterly-aggregated

triangles for 76 quarters (this is 19 years).

Figure 2.6 shows a histogram of the observed payments considering bins of 4 quarters (a

year). Such a histogram is the first step in classical CLM which leads to the predicted

cash-flow plotted in Figure 2.7. Continuous chain ladder replaces this yearly histogram

with a more efficient local linear kernel density estimator shown in the left panel of Figure

2.8. A functional projection of this two-dimensional density down on a multiplicative

space derives the smooth cash-flow shown in the right panel of Figure 2.8. While the two

approaches are quite similar, however, the chain ladder histogram approach results in

piece-wise constant functions as the shown in Figure 2.9, while continuous chain ladder

indeed results in the continuous functions shown also in Figure 2.9.

2.7 Conclusions

This paper has developed a new method called PDCL, which combines classical chain

ladder methodology with expert knowledge via the double chain ladder methodology.

While the preceding IDCL method is able to replicate the incurred chain ladder reserves,

which are most commonly used in practice, the new PDCL method replicates the exact

expert knowledge of the claims handling department via the estimated RBNS reserves.
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Figure 2.6: Histogram of the paid data using yearly bins: the starting point for
classical CLM.

Chain Ladder cash−flow
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Figure 2.7: Classical chain ladder forecasts.

Among a number of advantages, both PDCL and IDCL methods inherit the good math-

ematical statistical properties of the double chain ladder methodology including a full

statistical model and a stochastic cash flow interpretation. This in turn allows for a val-

idation procedure cutting of recent payments and forecasting them. Such a validation

procedure between paid chain ladder (or DCL) and incurred chain ladder (or IDCL)

have hitherto not been available.
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Figure 2.8: The Continuous chain ladder approach. Left panel shows the local linear
kernel density estimator based on the observed data. Right panel shows the forecasts

calculated assuming a multiplicative structure.
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Figure 2.9: Estimated density components. Top panel shows the underwriting com-
ponent and bottom panel the development component. The smooth kernel estimates
derived by continuous chain ladder are compared with the histograms provided by

classical CLM.

We believe that our new results can upgrade the scientific quality of model selection in

the perhaps most important single modelling process of a general insurance company.

Now a scientifically based validation exist between DCL, BDCL, IDCL and PDCL,

where the three latter are various version of combining expert knowledge with observed

payment data. Finally, we have pointed out the close link between our methodology

and granular reserving indicating that the insights of this paper could be transferred

to granular reserving. Another recent trend is to use so called granular data or micro
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data for reserving, see Antonio and Plat (2014) for one of the most interesting recent

contributions in that area.
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Abstract

For as long as anyone remembers general insurance companies have used the so called

chain ladder method to reserve for outstanding liabilities. When historical payments of

claims are used as observations then chain ladder can be understood as estimating a

multiplicative model. In most general insurance companies a mixture of paid data and

expert knowledge, incurred data, is used as observations instead of just payments. This

paper considers recent statistical cash flow models for asset-liability hedging, capital

allocation and other management decision tools, and develops two new such methods

incorporating available incurred data expert knowledge into the outstanding liability

cash flow model. These two new methods unbundle the incurred data to aggregates of

estimates of the future cash flow. By a re-distribution to the right algorithm, the esti-

mated future cash flow is incorporated in the overall estimation process and considered

as data. A statistical validation technique is developed for these two new methods and

they are compared to the other recent cash flow methods. The two methods show to

have a very good performance on the real-life data set considered.

Keywords: Stochastic Reserving; General Insurance; Chain Ladder; Claims Inflation;

Incurred Data; Model Validation.
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3.1 Introduction

The general insurance business is an important part of the economy for most developed

countries with market revenues amounting to around five percent of GNP’s. The best

estimate of outstanding liabilities - often called the reserve - is perhaps the single most

important number on the balance sheet of most general insurance companies. Insufficient

reserves is one common reason for general insurance companies to go broke. A misman-

aged reserving process can also lead to spurious and volatile yearly results leading to

uninformed management decisions. Finally, a smoother and more transparent reserving

process leads to significant cost savings in almost any general insurance company.

Therefore, it is perhaps surprising that statistical models for the most often used data

set, the incurred run off triangle, are rarely considered in the literature. Incurred data

is a mixture of historical payments of already settled claims and predicted severities

of reported but not settled claims. The predicted severities are based on all available

expert opinion in the company and are called case estimates. In that spirit, incurred

data has added information about reported claims which are not available when only

historical payments are considered.

Actuaries often prefer the incurred triangle to the triangle of historical payments since its

predicted reserve seems in many cases more reliable. In practice, the chain ladder model

developed for historical paid data is hereby used directly on incurred data. Nonetheless

the maybe most used methodology for reserve estimation - the chain ladder method on

incurred data - has not been considered in the literature. While chain ladder probably

makes good sense in a deterministic framework, the stochastic nature of the expert

opinion type of incurred data is not been taken into account through such a practise.

There is a little literature acknowledging the added value of incurred data: the probably

most famous Munich chain ladder approach by Quarg and Mack (2004), regression

approaches by Halliwell (1997), Halliwell (2009), Venter (2008), and a paid-incurred

chain reserving method by Posthuma et al. (2008), Merz and Wüthrich (2010), Happ,

Merz, and Wüthrich (2012) and Happ and Wüthrich (2013). The aim in those papers is

to combine payment data and incurred data into one statistical model which then results

in one reserve estimate. The idea is that all available information, that is historical

payments and incurred data triangles, is used in a consistent and reproducible way
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which then also enables to asses prediction uncertainty. They all, however, do not

model the structural relationship between these both data sets even though both data

sets aggregate the same historical payments in one way or another. More precisely, the

difference between those two triangles is that they are aggregated in different time scales.

Incurred data counts the delay of every claim until the report is done while the paid

data is counting the time until the final payment.

To model this relationship one needs micro-structural assumptions about the underlying

claim process. Pigeon, Antonio, and Denuit (2014) does exactly this. It is based on a

recent trend to use so called granular data or micro data for reserving, see Antonio

and Plat (2014) for one of the most interesting recent contributions in that area. See

also Mart́ınez-Miranda et al. (2013) for a continuous interpretation of the classical chain

ladder methodology. While these approaches indeed seem to be favorable, they are not

well established yet and rely on data and granular information that is most often not

available at hand.

Double chain ladder, introduced in Mart́ınez-Miranda, Nielsen, and Verrall (2012), builds

on micro-structural assumptions but does not need granular data in the estimation pro-

cedure. It is based on the methods of Verrall, Nielsen, and Jessen (2010) and Mart́ınez-

Miranda et al. (2011) where the objective was to only rely on data that is already

available in most reserving departments. It uses additional information of claim counts

(or often called frequencies) which is another triangle most often available in the data

portfolio of a reserving department. The result is a full statistical model based on his-

torical payments and counts capable of incorporating the information of the incurred

data in a natural way.

Agbeko et al. (2014) recently introduced a model reproducing the deterministic results

of the earlier mentioned chain ladder method on incurred data by incorporating the

incurred data expert opinion into the well-defined full stochastic model of double chain

ladder. One direct advantage of this approach is that the chain ladder model based

on paid data can be validated against the chain ladder model based on incurred data.

While the paid chain ladder and incurred chain ladder methods have been available for

a long time as part of almost any general actuary’s tool kit, it has never before been

possible to compare them against each other when only the typical aggregated data were

available.
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Two other methods of incorporating expert knowledge of incurred data into these full

cash flow models have been introduced in Mart́ınez-Miranda, Nielsen, and Verrall (2013a)

and Hiabu et al. (2016). The first of these two methods is extracting the inflation of

the cost of a single claim from the incurred data and then incorporates that informa-

tion in the double chain ladder model of Mart́ınez-Miranda, Nielsen, and Verrall (2012).

The second of these two methods suggests to incorporate a RBNS-preserving property.

RBNS stands for Reported But Not yet Settled, and it can be estimated by the sum of

all case estimates. This estimate is the best the claims department of an insurance com-

pany (with all the expert knowledge on the nature and severity of each claim available

in such a department) is able to do. Hiabu et al. (2016) therefore produced a version

of double chain ladder reproducing exactly the expert judgement of the RBNS reserves.

Note that other non granular methods which do not exclusively rely on incurred data,

are not able to separate the RBNS part from the reserve.

All those mentioned double chain ladder extensions take advantage of the underlying

structure of the incurred data, extract the relevant information from it and plug it into

the original double chain ladder method. The advantage of this approach is that the

simplicity and intuition of the simple chain ladder method is preserved and that the full

statistical interpretation and stochastic cash flow formulation is inherited from double

chain ladder.

The two new stochastic cash flow methods developed in this paper both build on the

ideas and techniques of Hiabu et al. (2016). The first treats the expert knowledge of the

incurred data as real data and incorporates it in the model; the second builds a second

RBNS preserving cash flow model on top of this method. The idea is to unbundle the

incurred data to aggregates of estimates of the future cash flow, that is the so called

aggregated reported but not settled claims. These aggregated numbers are re-distributed

according to the estimated delay such that the resulting algorithm takes both historical

data and expert data into account in the final estimation. We therefore let the estimated

future cash flow be incorporated in the overall estimation process by considering it as

data. Note that both these two new methods are cash flow models of the same nature as

the models considered in Agbeko et al. (2014), and they can therefore be validated and

compared to the models considered there. In the applied data example, this validation

indicates, that the two new methods seem to take better advantage of the incurred

expert data than previous methods did.
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Recent years have seen a growing interest in expert systems related to general insurance,

see for example Belles-Sampera, Guillén, and Santolino (2014) and Abbasi and Guillén

(2013), who consider ways of understanding risk in general insurance. Guelman and

Guillén (2014) work with pricing of insurance claims and the customers sensitivity to

that price and Guillén et al. (2012) and Kaishev, Nielsen, and Thuring (2013) transfer

knowledge from one business line to another to optimize cross-selling. Human judgement

is important in all these insurance applications. When prices are set, there is a business

intelligence department evaluating how much weight to put on the model at hand and

how much weight to put on market prices as such. When risk is evaluated, human

judgement calibrates the entering parameters. And when RBNS claims reserves are set,

then there is an element of human judgement in the settlement of every single claim.

It is also a human judgement when it is decided to use model based claims reserves for

some subset of the claims, for example the smaller ones.

We conclude this introduction by noting that Mart́ınez-Miranda, Nielsen, and Verrall

(2012) has two versions of double chain ladder; one version where the delay is not ad-

justed and another where it is adjusted. In this paper only the unadjusted version

of double chain ladder is considered. One reason for the adjustment of the delay in

Mart́ınez-Miranda, Nielsen, and Verrall (2012) was to improve the performance of esti-

mating the out-of-sample tail reserve. While this is a very important issue, it is beyond

the scope of this paper to consider the out-of-sample tail reserve.

The rest of the paper is structured as follows. Section 3.2 describes the data and the

expert knowledge, introduces the notation and defines the model assumptions. Section

3.3 discusses the outstanding loss liabilities point estimates. Section 3.4 describes four

methods to estimate the parameters in the model: DCL, BDCL, PDCL, IDCL, EDCL

and PEDCL. An application is considered in Section 3.5 and the validation of the six

methods against each other is gone through in Section 3.6. Finally, Section 3.7 provides

some concluding remarks.

3.2 Data and first moment assumptions

This chapter introduces the data used in maybe every insurance reserving department to

calculate their outstanding liabilities. Also the methods described in this paper rely on
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these data sets. They are often shortly called run-off triangles. These run-off triangles

are the aggregated incurred counts (data), aggregated payments (data) and aggregated

incurred payments (mixture of data and expert knowledge). All of those three objects

have the same structural form, i.e., they live on the upper triangle

I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m− 1; i+ j ≤ m}, m > 0,

where m is the number of underwriting years observed. The parameter m also has

another crucial role. If no tail-factors are considered, which will be assumed throughout

this paper, then m− 1 is the maximum delay, that is the time from the underwriting of

the policy a claim is based on until its payment. This assumption is called being run-off,

hence the name run-off triangles.

Let us first introduce the two data triangles.

Aggregated incremental incurred counts: NI = {Nik : (i, k) ∈ I}, with Nik being the

total number of claims of insurance incurred in year i which have been reported

in year i+ k, i.e. with k periods delay from year i.

Aggregated incremental payments: XI = {Xij : (i, j) ∈ I}, with Xij being the total

payments from claims incurred in year i and paid with j periods delay from year

i.

A often confusing point is that the meaning of the second coordinate of the triangle

I varies between the two different data. While in the counts triangle it represents the

reporting delay, in the payments triangle it represents the development delay, that is

reporting delay plus settlement delay.

The definition of the incurred payments triangles is not that straight forward. To allow

for a exact description, we first introduce micro structural variables of the claims process.

We hereby follow the line of Mart́ınez-Miranda, Nielsen, and Verrall (2012), since those

variables will also play a key role in the underlying assumption of the double chain ladder

model.

By Npaid
ikl , we denote the number of the future payments originating from the Nik re-

ported claims, which were finally paid with a delay of k+ l, where l = 0, . . . ,m−1. Also,

let X(h)
ikl denote the individual settled payments which arise from Npaid

ikl , h = 1, . . . , Npaid
ikl .
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Finally, we define

Xikl =
Npaid

ikl∑
h=1

X
(h)
ikl , (i, k) ∈ I, l = 0, . . . ,m− 1,

i.e., those payments originating from underwriting year i, which are reported after a

delay of k and paid with an overall delay of k + l.

The aggregated incurred payments are then considered as unbiased estimators of
∑m−1
l=0 Xikl.

Technically, we model the expert knowledge as follows.

Aggregated incurred payments: II = {Iik : (i, k) ∈ I}, with Iik being

Iik =
k∑
s=0

m−1∑
l=0

E[Xisl| F(i+k)]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| F(i+k−1)],

where Fh is an increasing filtration illustrating the expert knowledge at time point

h.

In this manuscript, we will only consider best estimates and therefore only need assump-

tions on the mean. We show that the classical CLM multiplicative structure holds under

very general underlying dependencies on the mean. The first moment conditions of the

DCL model are formulated below.

For fixed i = 0, . . . ,m; k, l = 0, . . . ,m− 1, and h = 1, . . . , Npaid
ikl , it holds that

A1. The countsNik are random variables with mean having a multiplicative parametriza-

tion E[Nik] = αiβk, and identification
∑m−1
k=0 βk = 1.

A2. The mean of the RBNS delay variables is E[Npaid
ikl |NI ] = Nikπ̃l.

A3. The mean of the individual payments size conditional on the number of payments

and the counts is given by E[X(h)
ikl |N

paid
ikl , NI ] = µ̃lγi.

Assumption A1 is the classical chain ladder assumption applied on the counts triangle,

see also Mack (1991). The main point hereby is the multiplicativity between underwrit-

ing year and reporting delay. Assumptions A2 and A3 are necessary to connect reporting
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delay, settlement delay and development delay - the main idea of DCL. See also Ver-

rall, Nielsen, and Jessen (2010), Mart́ınez-Miranda et al. (2011) and Mart́ınez-Miranda,

Nielsen, and Verrall (2012).

Using A1 to A3, we have that

E

N
paid
i,j−l∑
h=1

X
(h)
i,j−l,l|NI

 = E

N
paid
i,j−l,l∑
h=1

E[X(h)
i,j−l,l|NI , N

paid
i,j−l,l]|NI


= E[Npaid

i,j−l,lµ̃lγi|NI ] = Ni,j−lπ̃lµ̃lγi.

Note that the observed aggregated payments can be written as

Xij =
j∑
l=0

Xi,j−l,l =
j∑
l=0

Npaid
i,j−l,l∑
h=1

X
(h)
i,j−l,l.

With the previous consideration, we derive

E[Xij |NI ] = γi

j∑
l=0

Ni,j−lπ̃lµ̃l,

and the unconditional mean is

E[Xij ] = αiγi

j∑
l=0

βj−lµ̃lπ̃l. (3.1)

Inspecting equation (3.1), we can reduce the amount of parameters by simply setting

µ =
∑j
l=0 π̃lµ̃l and πl = π̃lµ̃lµ

−1, so that µπl = µ̃lπ̃l and therefore the unconditional

mean of the payments becomes

E[Xij ] = αiγiµ
j∑
l=0

βj−lπl. (3.2)

Equation (3.2) is the key in deriving the outstanding loss liabilities. These are the values

of (Xij) in the lower triangle. Consequently in the sequel,

(α, β, π, γ, µ) = (α1, . . . , αm, β0, . . . , βm−1, π0, . . . , πm−1, γ1, . . . , γm, µ)
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are called the DCL parameters. In the next section, we will see that in a very natural

way, we are able to distinguish between RBNS and IBNR claims. This is possible due to

the separation of the development delay into the reporting delay β and the settlement

delay π.

3.3 Forecast outstanding claims: the RBNS and IBNR re-

serves and predictive distributions

In this section, we assume that the DCL parameters (α, β, π, γ, µ) are already derived

and show how easily point forecasts of the RBNS and IBNR components of the reserve

can be calculated. Note that when calculating the RBNS part, it is possible to replace

the parameter (αi, βk) by the true value Nik, since the claims are already reported and

thus Nik is observed. However, for the IBNR reserves, it is obviously necessary to use

all DCL parameters, including the estimates of future numbers of incurred claims αiβk.

Using the notation of Verrall et al. (2010) and Mart́ınez-Miranda et al. (2011), we

consider predictions over the triangle, J = J = {i = 2, . . . ,m; j = 0, . . . ,m−1 with i+

j ≥ m+ 1}, illustrated in Figure 3.1.

Figure 3.1: Index sets for aggregate claims data, assuming a maximum delay of m−1.
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We define the RBNS component as follows, where we consider two possibilities depending

on whether the estimates of Nik are used or not.

X̂
rbns(1)
ij =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i, (i, j) ∈ J . (3.3)

and

X̂
rbns(2)
ij =

j∑
l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J , (3.4)

where N̂ij = α̂iβ̂j . In most cases, to shorten the notation, we will simply write X̂rbns
ij

for the RBNS estimates. However, whenever it is necessary, we will state which version

is taken. The IBNR component always needs all DCL parameters:

X̂ibnr
ij =

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J . (3.5)

The outstanding loss liabilities point estimates are then,

X̂ij = X̂rbns
ij + X̂ibnr

ij (3.6)

The outstanding liabilities per accident year are the row sums of IBNR and RBNS

estimates. For a fixed i, we write J (i) = {j : (i, j) ∈ J }. Then the outstanding

liabilities per accident year i = 1, . . . ,m are

R̂i =
∑

j∈J (i)
X̂rbns
ij + X̂ibnr

ij .

In the next section, we describe several methods to derive the DCL parameters.

3.4 Estimation of the parameters in the Double Chain

Ladder model

To estimate the outstanding claims and thereby construct RBNS and IBNR reserves,

we need to estimate the parameters involved in (3.2). In this section, we explore six
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different estimators.

3.4.1 The DCL method

The DCL method is the original and maybe most simple method to derive the parameters

introduced in the previous section. It was introduced in Mart́ınez-Miranda, Nielsen, and

Verrall (2012). To estimate the DCL parameters in (3.2), assumptions on the payments

triangle XI are needed. DCL assumes the assumptions underlying the CLM method.

B1 The payments Xij , with i = 1, . . . ,m, and j = 0, . . . ,m− 1, are random variables

with mean having a multiplicative parametrization:

E[Xij ] = α̃iβ̃j ,
m−1∑
j=0

β̃j = 1. (3.7)

Finally, merging (3.2) and (3.7), we conclude

αiγiµ
j∑
l=0

βj−lπl = α̃iβ̃k,

and identify the parameters by

αiµγi = α̃i, (3.8)
j∑
l=0

βj−lπl = β̃j . (3.9)

Again, many other micro-structure formulations might exist, thus the one specified by

(3.8) and (3.9) is only one of several possible. However, the above model can be consid-

ered as a detailed specification of the CLM. In Mart́ınez-Miranda, Nielsen, and Verrall

(2013a) it is shown that if the RBNS component is calculated by (3.4), DCL completely

replicates the results of CLM.

Now, the main idea to derive the DCL parameters is to estimate the chain ladder pa-

rameters (α̂, β̂) and (̂̃α, ̂̃β) (cf. A1, B1) by applying the classical chain ladder algorithm

on the payments triangle XI and the counts triangle NI . Afterwards, the parameters

left in (3.2) (this is (γ̂, µ̂, π̂)) can be calculated by simple algebra using (3.8) and (3.9).

For illustration of the chain ladder algorithm, we assume an incremental triangle (Cij)
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(in our case this would be NI or XI), and that we want to estimate its chain ladder pa-

rameters (α̂, β̂). To apply the chain ladder algorithm, one has to transform the triangle

(Cij) into a cumulative triangle (Dij):

Dij =
j∑

k=1
Cik.

Then, the chain ladder algorithm can be applied on (Dij). It will produce estimates of

development factors, λj , j = 1, 2, . . . ,m− 1, which can be described by

λ̂j =
∑n−j+1
i=1 Dij∑n−j+1

i=1 Di,j−1
.

These development factors can be converted into estimates of (α, β) using the following

identities which were derived in Verrall (1991).

β̂0 = 1∏m−1
l=1 λ̂l

β̂j = λ̂j − 1∏m−1
l=j λ̂l

α̂i =
m−i∑
j=0

Cij

m−1∏
j=m−i+1

λ̂j

Alternatively, analytical expressions for the estimators can also be derived directly

(rather than using the chain ladder algorithm) and further details can be found in

Kuang, Nielsen, and Nielsen (2009).

Once the chain ladder parameters (α̂, β̂) and (̂̃α, ̂̃β) are derived, the settlement delay

parameter π can be estimated just by solving the following linear system.



̂̃
β0
...
...̂̃

βm−1


=



β̂0 0 · · · 0

β̂1 β̂0
. . . 0

... . . . . . . 0

β̂m−1 · · · β̂1 β̂0





π0
...
...

πm−1


. (3.10)

Let π̂ denote the solution of (3.10).
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Now we consider the estimation of the parameters involved in the means of individual

payments. Of course, the model is technically over-parametrised since there are too

many inflation parameters in (3.8). The simplest way to ensure identifiability is to set

γ1 = 1, and then the estimate of µ, µ̂, can be obtained from

µ̂ =
̂̃α1
α̂1
.

Using µ̂, the remaining estimates for γi, i = 2, . . . ,m, are directly derived from (3.8).

The estimation procedure of double chain ladder is already programmed with the lan-

guage R. We have used the R-package DCL Mart́ınez-Miranda, Nielsen, and Verrall

(2013b) to derive Table 3.1, which shows the values of α̂, β̂, π̂ and γ̂ calculated from

real data included in the DCL package.

i k,l α̂(i) β̂(k) π̂(l) γ̂(i)
1 0 1078 0.7599 0.0592 1.0000
2 1 1890 0.2097 0.3098 1.1173
3 2 2066 0.0189 0.2032 1.4947
4 3 2353 0.0064 0.1996 1.7461
5 4 3015 0.0016 0.1388 2.1075
6 5 3727 0.0010 0.0440 2.0936
7 6 5057 0.0009 0.0227 2.2495
8 7 6483 0.0007 0.0095 2.1250
9 8 7727 0.0003 0.0018 1.9028

10 9 7134 0.0001 0.0029 2.0197
11 10 7319 0.0001 0.0002 2.0704
12 11 6152 0.0000 0.0026 2.2666
13 12 5242 0.0001 0.0019 2.3157
14 13 6150 0.0000 0.0032 2.4747
15 14 7028 0.0001 -0.0002 2.3829
16 15 6725 0.0000 0.0013 2.8391
17 16 5260 0.0000 -0.0004 3.1815
18 17 5869 0.0000 0.0000 4.1747
19 18 5953 0.0000 0.0000 6.7501

µ̂ = 2579

Table 3.1: DCL parameter estimates derived by the DCL method

3.4.2 The BDCL method

The CLM and Bornhuetter-Ferguson (BF) methods are among the easiest claim re-

serving methods and, due to their simplicity, they are two of the most commonly used
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techniques in practice. Some recent papers on the BF method include Verrall (2004),

Mack (2008), Schmidt and Zocher (2008), Alai, Merz, and Wüthrich (2009) and Alai,

Merz, and Wüthrich (2010). The BF method introduced by Bornhuetter and Ferguson

(1972) aims to address one of the well known weaknesses of CLM, which is the effect

outliers can have on the estimates of outstanding claims. Especially the most recent

underwriting years are the years with nearly no data and thus very sensitive to outliers.

However, these recent underwriting years build the very major part of the outstanding

claims. Hence, the CLM estimates of the outstanding liabilities might differ fatally from

the true (unknown) values.

Acknowledging this problem, the BF method incorporates prior knowledge from experts

and is therefore more robust than the CLM method, which relies completely on the data

contained in the run-off triangle XI .

In this section, we briefly summarize the Bornhutter-Ferguson double chain ladder

(BDCL) method introduced in Mart́ınez-Miranda, Nielsen, and Verrall (2013a), which

mimics BF in the framework of DCL. The BDCL method starts with identical steps

as DCL but instead of using the estimate of the inflation parameters, γ and µ, from

the triangle of paid claims XI , it deploys expert knowledge in the form of the incurred

triangle II to adjust the estimation of the sensitive inflation parameter γ. This is done

as follows. From assumptions A2, A3 and equation (3.8), we easily deduce that

E[Iik] = αiµγiβk = α̃iβk. (3.11)

Hence, the incurred triangle II has multiplicative mean and its underwriting year factor,

α̃, is identical to the one of the payments triangle XI (cf. (3.7)). However, its estimation

is less sensitive to outliers since it incorporates all incurred claims via expert knowledge.

We conclude that we can replace the payments triangle by the incurred payments triangle

when we calculate estimates of the inflation parameters, γ, µ, in (3.8). Note that the

severity mean µ is going to remain the same since the first rows of XI and II are

identical.

Summarized, the BDCL-method can be carried out as follows.

• Step 1: Parameter estimation.

Estimate the DCL parameters (α, β, π, γ, µ) using the DCL method of Section 3.4.1

55



Chapter 3. Cash flow generalisations of non-life insurance expert systems estimating
outstanding liabilities

with the data in the triangles NI and XI and denote the parameter estimates by

(α̂, β̂, π̂, γ̂, µ̂).

Repeat this estimation using the DCL method but replacing the triangle of paid

claims XI by the triangle of incurred data II . Keep only the resulting estimated

inflation parameters, denoted by γ̂BDCL.

• Step 2: BF adjustment.

Replace the inflation parameters γ̂ from the paid data by the estimate from the

incurred triangle, γ̂BDCL.

From Step 1 and Step 2, the final BDCL estimates of the DCL parameters are (α̂, β̂, π̂, γ̂BDCL, µ̂).
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Figure 3.2: Plot of severity inflation estimates. DCL: γ̂i (green), BDCL: γ̂BDCL
i

(blue).

Using the R-package DCL Mart́ınez-Miranda, Nielsen, and Verrall (2013b), we derive

Figure 3.2 which shows the severity inflation estimates derived by DCL and BDCL.

BDCL, with the incorporated expert knowledge, seems to stabilize the severity inflation

in the most recent underwriting years while keeping the values in the other years. The

result is a more realistic estimate correcting the DCL parameter γ̂i exactly in its weakest

point, that is in those years where the payments triangle XI has nearly no data. Again,

those recent underwriting years contain the very major part of the outstanding liabilities.

3.4.3 The IDCL method

This section gives a brief theoretical introduction to the IDCL method of Agbeko et al.

(2014). In the BDCL definition, we incorporated an additional triangle of incurred claims
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in order to produce a more stable estimate of the underwriting inflation parameter γi.

The derived BDCL method becomes a variant of the Bornhuetter-Ferguson technique us-

ing prior knowledge contained in the incurred triangle. One natural question is whether

the derived reserve estimate is the classical incurred chain ladder. The answer is that

this not the case; the BDCL method does not replicate the results obtained by applying

the classical chain ladder method to the incurred triangle. Among practitioners, the

incurred reserve seems to be more realistic for many datasets compared to the classical

paid chain ladder reserve. IDCL mimics the reserve estimate of chain ladder on the in-

curred triangles in the DCL framework. It is defined just by rescaling the underwriting

inflation parameter estimate from the DCL method. Specifically, we define a new scaled

inflation factor estimate γ̂IDCL such that

γ̂IDCLi = R̂∗i
R̂i
γ̂i,

where R∗i is the outstanding loss liabilities per accident year as predicted by applying

the traditional CLM on incurred data, and (Ri,γ̂i) are the outstanding loss liabilities

per accident year and the inflation parameter respectively, using the DCL method (cf.

Section 3.4.1).

The final IDCL estimates of the DCL parameters are then (α̂, β̂, π̂, γ̂IDCL, µ̂). With the

new inflation parameter estimate γ̂IDCL, the outstanding liabilities derived by the DCL

parameters completely replicate the CLM estimates on the incurred triangle.

3.4.4 The PDCL method

This section gives a brief theoretical introduction to the PDCL method introduced in

Hiabu et al. (2016). See also Nielsen (2016). In the last section, we have described a

method which incorporates expert knowledge in form of the incurred triangle II . The

values in II arise from case estimates for RBNS claims, developed in the case department

of the insurance company, and claims which are already paid. Thus, if one subtracts

these already paid claims (which are given via the payments triangle XI) from the

incurred triangle, one can reconstruct the RBNS case estimates. However, as soon as

this is done, it is obvious that these RBNS case estimates do not match with the RBNS

estimates (3.3) and (3.4), using any DCL method (including BDCL). We conclude that
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the reserve department, using double chain ladder (and also chain ladder), calculates

different RBNS estimates than those given by the case department.

PDCL replaces the calculated RBNS estimates with the case estimates. The method,

however, does not only preserve the RBNS case estimates by adding the IBNR estimates

to conclude the reserve, it also takes the RBNS case estimates to correct the other DCL

parameters. Therefore, also the total IBNR size will change.

The first step is to construct a preliminary square (Sij), i = 1, . . . ,m, j = 0, . . . ,m−1,

which yields new estimators for the DCL parameters. The upper triangle of the square

(i.e., (i, j) ∈ I) should have the same entries as the payments triangle (Xij). The lower

triangle (i.e., (i, j) ∈ J ) should consist of preliminary estimates of the outstanding loss

liabilities. The outstanding loss liabilites comprise an RBNS and an IBNR part (cf.

(3.6)). However, only the IBNR part of these outstanding loss liabilities is estimated.

For the RBNS component, the RBNS case estimates are taken. More precisely, one

takes the DCL parameter estimates (α̂, β̂, π̂, γ̂, µ̂) and use these parameters to estimate

the RBNS component (X̂rbns
ij ) and IBNR component (X̂ibnr

ij ) using (3.4) and (3.5). As

mentioned above, the RBNS estimate should be be equal to the RBNS case estimates,

which can only be reconstructed per accident year. For i = 1, . . . ,m, they can be

described as

Xrbns.case.estimate
i =

m−i∑
j=0

Iij −
m−i∑
j=0

Xij . (3.12)

Hence, we define the RBNS preserving components

X̂rbns.pres
ij =

∑m−i
j=0 Iij −

∑m−i
j=0 Xij∑

j∈J (i) X̂
rbns
ij

X̂rbns
ij .

Note that ∑
j∈J (i)

X̂rbns.pres
ij = Xrbns.case.estimate

i .

Thus we define the preliminary square (Sij) as

Sij =


Xij , if (i, j) ∈ I,

X̂rbns.pres
ij + X̂ibnr

ij , if (i, j) ∈ J .
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One can easily see that payments square (Sij) has approximately multiplicative mean

E[Sij ] ≈ α̃iβ̃j . Therefore, we can use (Sij) to completely replace XI to estimate the DCL

parameters (cf. (3.7)). Note that in the BDCL method we were only able to balance the

estimator of the inflation parameter γ̃i (cf. (3.11)). Again, while in the BDCL method,

one uses the expert knowledge to only adjust the inflation parameters, here, one can

take full advantage of the triangle II and also correct the delay parameters.

Since (Sij) has a multiplicative structure, the CLM idea is used to estimate α̃i and β̃j .

We define ̂̃αPDCLi =
m−1∑
j=0

Sij ,
̂̃
β
PDCL

j =
∑m
i=1 Sij∑

(i,j)∈I∪J Sij
. (3.13)

Exactly as in the previous sections, one can now apply (3.8) and (3.9) to derive the PDCL

parameters (α̂i, β̂j , π̂PDCL, γ̂PDCL
∗
, µ̂PDCL). Since this approach is still not RBNS pre-

serving, γ̂PDCL∗ is balanced by defining a new scaled inflation factor estimate γ̂PDCL

such that

γ̂PDCL =
∑m−i
j=0 Iij −

∑m−i
j=0 Xij

X̂rbns
ij

, (3.14)

where X̂rbns
ij is calculated with the parameters (α̂, β̂, π̂PDCL, γ̂PDCL∗ , µ̂PDCL) using

(3.4).

3.4.5 The EDCL method

In this chapter, we introduce a new method called expert double chain ladder (EDCL),

indicating that expert knowledge in form of incurred data and RBNS’s are incorporated

into the system as pseudo data. The idea of the EDCL method is to replicate the

basic steps of the previously introduced PDCL method (3.12)-(3.13), but without the

adjustment of the severity inflation in (3.14). Instead those steps are iterated until con-

vergence. The iteration forces a homogeneous solution which incorporates the incurred

triangle, I, and the payment triangle, X, to one reserve. The discrepancy between esti-

mated RBNS and RBNS provided by the case estimates can be explained by variation

of the observations around their mean. Note that given the model assumptions, we are

estimating the mean of the RBNS.

The EDCL estimation can be described as follows. In the first step of the itera-

tion, we start with the DCL parameter estimates (α̂, β̂, π̂, γ̂, µ̂), which we denote by

(α̂, β̂, π̂EDCL,(0), γ̂EDCL,(0), µ̂EDCL,(0)).
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In the k−th step of the iteration, we take the EDCL parameter estimates we obtained in

the (k−1)−th step (α̂, β̂, π̂EDCL,(k−1), γ̂EDCL,(k−1), µ̂EDCL,(k−1)) and use these parame-

ters to estimate the RBNS component (X̂rbns,(k−1)
ij ), and IBNR component (X̂ibnr,(k−1)

ij ),

using (3.4) and (3.5).

Then, we calculate the k−th RBNS preserving components

X̂
rbns.pres,(k)
ij =

∑m−i
j=0 Iij −

∑m−i
j=0 Xij∑

j∈J (i) X̂
rbns,(k−1)
ij

X̂
rbns,(k−1)
ij .

Now, we are able to define the k−th preliminary square (S(k)
ij ) as

S
(k)
ij =


Xij , if (i, j) ∈ I,

X̂
rbns.pres,(k)
ij + X̂

ibnr,(k−1)
ij , if (i, j) ∈ J .

Since (S(k)
ij ) has an approximately multiplicative structure, we use the CLM idea to

estimate α̃i and β̃j . We define

̂̃αEDCL,(k)
i =

m−1∑
j=0

S
(k)
ij ,

̂̃
β
EDCL,(k)
j =

∑m
i=1 S

(k)
ij∑

(i,j)∈I∪J S
(k)
ij

.

Exactly as in the previous sections, we can now apply (3.8) and (3.9) to derive the EDCL

parameters (α̂, β̂, π̂EDCL,(k), γ̂EDCL,(k), µ̂EDCL,(k)).

After iterating until convergence, we derive the final EDCL parameters denoted by

(α̂, β̂, π̂EDCL, γ̂EDCL, µ̂EDCL).

3.4.6 The PEDCL method

In this section, we introduce the RBNS-preserving expert double chain ladder (PEDCL).

As the name suggests, this method builds on the PDCL method by using the EDCL

parameters (α̂, β̂, π̂EDCL, γ̂EDCL, µ̂EDCL). As mentioned in the previous section, EDCL

does not preserve the RBNS case estimates. The reason was mentioned in the beginning

of the previous section and has a parallelism to the two different RBNS estimates in

(3.3) and (3.4).
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If as in PDCL, one decides not to change the case estimates, one can thus replace

the RBNS part by the RBNS derived from the case estimates. As this information is

only available per underwriting year, it can be incorporated by changing the inflation

parameter accordingly. More precisely, we define a new scaled inflation factor estimate

as

γ̂PEDCL =
∑m−i
j=0 Iij −

∑m−i
j=0 Xij

X̂rbns
ij

,

where X̂rbns
ij is calculated with the parameters (α̂, β̂, π̂EDCL, γ̂EDCL, µ̂EDCL) using (3.4).

This new inflation parameter γ̂PEDCL is used to replace γ̂EDCL in the parameter set

(α̂, β̂, π̂EDCL, γ̂EDCL, µ̂EDCL) when calculating only the RBNS part which preserves the

case estimates.

Therefore, in contrast to the previous methods, PEDCL possesses two inflation param-

eters. Firstly, γ̂PEDCL for the RBNS part, that is when calculating (3.4) and secondly

γ̂EDCL for the IBNR part, that is when calculating (3.5). Note that since we are just

using the EDCL parameters to calculate the IBNR part, this is exactly the same as in

the EDCL method.

3.5 Real Data Application
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Figure 3.3: Plot of severity inflation estimates.

In this section, we apply the methods to a real data set obtained from a UK motor

business. The data is also available via the DCL R package Mart́ınez-Miranda, Nielsen,

and Verrall (2013b). Figure 3.3 shows a plot of the six severity inflation parameters
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derived by DCL, BDCL, IDCL, PDCL, EDCL and PEDCL. There were some rather

rough corrections going on for IDCL, PDCL and PEDCL in the first five years. These

five years represent less than 0.1% of the total loss liabilities estimates (cf. Table 3.2-3.4)

and they are not really important. We have therefore taken the first five years out for

these three estimation methods. Otherwise, these unimportant first five years would

have dominated the graph and perhaps have confused the reader.

Figure 3.3 shows that IDCL, PDCL and PEDCL still are quite volatile with a tendency

to have lower severity inflations than DCL, BDCL and EDCL. This is because IDCL,

PDCL and PEDCL adjust to high or low RBNS’s in certain years, while in particular

BDCL and EDCL take a more balanced point of view. From a modelling perspective

the severity inflations resulting from BDCL and EDCL seem more attractive, because

they are more stable and therefore seem more realistic. This graph illustrates very well

why the PEDCL method uses the EDCL parameters while estimating the IBNR reserve.

These parameters seem more realistic than the RBNS-preserving parameters. However,

the RBNS-preserving parameters might be more realistic when estimating the somewhat

realised RBNS reserve. If one believes the RBNS estimates are of good quality or are

of the best possible quality one can do with the data, then one should of course use a

method preserving these RBNS estimates such as PDCL and PEDCL.

However, for the IBNR’s it is another matter. There is no expert knowledge available

for the IBNR estimates and therefore, one should use the methodology with the most

credible parameters. We believe that EDCL is the method with the most credible

parameters and PEDCL is therefore - in our opinion - the optimal methodology if one

wishes to preserve the RBNS estimates. If one is looking for a more balanced view,

where the RBNS’s are allowed to impact the parameters, but where the observed data

also should play a role in some sort of validation of the RBNS as data, then one should

use the EDCL method. We believe that the DCL method, the EDCL method and the

PEDCL method are the three best methods to consider for practising actuaries.

To visualise these arguments, Table 3.2 shows the outstanding loss liabilities per under-

writing year for all six methods mentioned in chapter 4 as well as the classical chain

ladder method. Furthermore, the splitted values of RBNS and IBNR per underwriting

year are illustrated in Table 3.3 and Table 3.4.
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i CLM DCL BDCL IDCL PDCL EDCL PEDCL
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0005 0.0003 0.0005 0.0000 0.0000 0.0000
3 0.0000 0.0001 -0.0003 0.0001 0.0040 0.0001 0.0040
4 0.0000 0.0007 -0.0014 0.0007 -0.0095 0.0003 -0.0095
5 0.0173 0.0039 0.0151 0.0045 0.0365 0.0076 0.0365
6 0.0346 0.0309 0.0313 0.0122 0.0054 0.0135 0.0068
7 0.1381 0.1407 0.1408 0.0090 0.0014 0.0541 0.0040
8 0.2449 0.2485 0.2483 0.0927 0.0949 0.1102 0.0972
9 0.3522 0.3582 0.3563 0.0536 0.0591 0.1774 0.0643

10 0.3943 0.3818 0.3800 0.1507 0.1981 0.2148 0.2024
11 0.5524 0.5246 0.5206 0.1664 0.2515 0.3415 0.2595
12 0.6839 0.6309 0.6169 -0.1458 0.0015 0.3415 0.0300
13 1.0504 0.9764 0.9733 0.8648 1.2718 0.8896 1.2576
14 2.5361 2.5483 2.5164 2.0388 2.8302 2.3205 2.8153
15 5.7370 5.4483 5.2846 4.2095 6.2887 5.4225 6.2721
16 14.0889 15.4373 12.9824 6.8542 9.4207 11.9785 9.4735
17 21.0057 21.7407 17.0455 12.0924 13.4243 16.5608 13.5068
18 44.6877 44.4580 29.2840 23.0002 25.9634 30.6858 26.1851
19 98.9723 98.9722 41.8444 39.1522 42.1009 45.0575 42.8640

SUM 190.4957 191.9021 112.2385 88.5565 101.9427 114.3021 103.0696

Table 3.2: Outstanding loss liabilities per underwriting year in million

i CLM DCL BDCL IDCL PDCL EDCL PEDCL
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0005 0.0003 0.0005 0.0000 0.0000 0.0000
3 0.0000 0.0001 -0.0003 0.0001 0.0040 0.0001 0.0040
4 0.0000 0.0007 -0.0014 0.0007 -0.0095 0.0003 -0.0095
5 0.0173 0.0039 0.0151 0.0045 0.0365 0.0076 0.0365
6 0.0329 0.0291 0.0295 0.0115 0.0050 0.0118 0.0050
7 0.1355 0.1382 0.1382 0.0088 0.0014 0.0516 0.0014
8 0.2399 0.2436 0.2434 0.0909 0.0923 0.1053 0.0923
9 0.3455 0.3515 0.3496 0.0526 0.0576 0.1707 0.0576

10 0.3822 0.3697 0.3680 0.1459 0.1903 0.2027 0.1903
11 0.5339 0.5062 0.5023 0.1606 0.2411 0.3231 0.2411
12 0.6550 0.6020 0.5887 -0.1392 0.0014 0.4387 0.0014
13 1.0034 0.9294 0.9265 0.8231 1.2101 0.8420 1.2101
14 2.4415 2.4537 2.4229 1.9631 2.7197 2.2249 2.7197
15 5.5906 5.3020 5.1427 4.0964 6.1235 5.2739 6.1235
16 13.8419 15.1902 12.7746 6.7444 9.2492 11.7542 9.2492
17 20.5131 21.2482 16.6593 11.8184 13.0995 16.1534 13.0995
18 42.7693 42.5397 28.0204 22.0078 24.8281 29.3288 24.8281
19 74.0936 74.0942 31.3260 29.3108 31.4544 33.6479 31.4544

SUM 162.5956 164.0027 99.5059 77.1009 89.3045 100.5369 89.3045

Table 3.3: RBNS per underwriting year in million
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i CLM DCL BDCL IDCL PDCL EDCL PEDCL
1-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0018 0.0018 0.0018 0.0007 0.0004 0.0018 0.0018
7 0.0026 0.0026 0.0026 0.0002 0.0000 0.0026 0.0026
8 0.0049 0.0049 0.0049 0.0018 0.0026 0.0049 0.0049
9 0.0067 0.0067 0.0067 0.0010 0.0015 0.0067 0.0067

10 0.0121 0.0121 0.0120 0.0048 0.0078 0.0121 0.0121
11 0.0184 0.0184 0.0183 0.0058 0.0103 0.0184 0.0184
12 0.0289 0.0289 0.0282 -0.0067 0.0001 0.0285 0.0285
13 0.0471 0.0471 0.0469 0.0417 0.0617 0.0476 0.0476
14 0.0946 0.0946 0.0934 0.0757 0.1105 0.0957 0.0957
15 0.1464 0.1464 0.1419 0.1131 0.1652 0.1486 0.1486
16 0.2470 0.2471 0.2077 0.1097 0.1715 0.2243 0.2243
17 0.4926 0.4925 0.3862 0.2740 0.3248 0.4073 0.4073
18 1.9183 1.9183 1.2636 0.9924 1.1353 1.3570 1.3570
19 24.8787 24.8779 10.5185 9.8414 10.6465 11.4096 11.4096

SUM 27.9001 27.8993 99.5059 11.4556 12.6382 13.7651 13.7651

Table 3.4: IBNR per underwriting year in million
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3.6 Model validation

This section describes the validation process for the six methods DCL, BDCL, IDCL,

PDCL, EDCL and IPDCL discussed in Section 3.4.

The following validation was introduced in Agbeko et al. (2014) and builds on back-

testing. More precisely, we cut off the most recent diagonals of the data triangles, which

are the calendar years, in order to get smaller triangles to which we can apply the

different reserving methods. Then we compare the forecasts for these diagonals to the

original data. To our knowledge this is the only developed method which is able to

validate reserving estimates based on incurred data with estimates based on paid data.

That is to validate DCL against IDCL in our terminology. However, this validation

methodology is sufficiently general to allow all these six procedures to be validated

against each other.

The validation process is based on the fact that all introduced DCL methods provide

reserve estimates by predicting into the same paid triangle, X. Therefore, all methods

can be compared on the same scale so to speak. Below, we have omitted the most recent

calendar year and the four most recent calendar years, respectively (in all three available

triangles). Therefore, since our dataset consists of m = 19 years, there are 18 and 60

cells, respectively, to be compared with the true values.
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Figure 3.4: Box plot of the cell errors

Figure 3.4 shows two box plots of the respectively 18 and 60 errors calculated by taking

the difference between estimated and true values. One conclusion is that DCL and

CLM seem to be inferior to the five methods that take advantage of expert knowledge.
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Between these five methods, it seems that BDCL and EDCL have similar performance

with a slight advantage to the new EDCL method. Also PDCL and PEDCL have similar

performance, which was to be expected because they only differ in the IBNR reserves

while having identical RBNS reserves.

The omnipresent IDCL method does not provide convincing performance in this data

example. Earlier studies based on a number of data sets have shown that IDCL some-

times have very good performance, but equally often fails badly. Of the three methods

available at the time, DCL, BDCL and IDCL, only the BDCL method had a stable per-

formance. Sometimes DCL was winning convincingly, other times IDCL was the winner.

In the long run, the eternal runner-up was the BDCL method, and most of the time it

did almost as well - but not quite - as the best of the two other methods.

We do, however, find EDCL a more convincing method than BDCL. While they have

some similarities and while both have stable underwriting year severities as we saw in the

application, EDCL seems more theoretically correct in its way of exploring the expert

knowledge and we believe it will be replacing BDCL in the long run. Based on long-term

considerations, we think DCL, EDCL and PEDCL should be sufficient in the practical

actuaries tool box. BDCL, IDCL and PDCL are - in our view - less convincing methods.
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Figure 3.5: Bar plot for the sum of absolute cell errors
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Figure 3.6: Bar plot for the relative errors

In the top panels of Figure 3.5, we have plotted the sum of the absolute cell errors (`1
error). That is

Sum of absolute cell errors =
∑

(i,j)∈B
|X̂ij −Xij |,

B = {(i, j)| i = 2, . . . ,m− c; j = 0, . . . ,m− c− 1; i+ j = m− c+ 1, . . . ,m},

where c is the number of recent calendar years omitted for back testing (here: 1 and 4).

The relative errors, that is

Sum of absolute cell errors
Sum of absolute true values =

∑
(i,j)∈B |X̂ij −Xij |∑

(i,j)∈B |Xij |
,

is shown in the bottom panels of Figure 3.5. The conclusion Figure 5 is similar to the

conclusion of Figure 4.

3.7 Conclusions

This paper has developed two new methods combining classical chain ladder methodol-

ogy with expert knowledge via the double chain ladder methodology. The new EDCL

introduces RBNS’s as pseudo data and uses an iterative procedure to improve the orig-

inally estimated DCL parameters that did not take RBNS information into account.
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It shows to have very good performance. The new PEDCL method preserves RBNS

estimates also after the reserve has been estimated. Validation is introduced for these

two new methods and they are compared to the previous methods DCL, BDCL, IDCL

and PDCL.

Our conclusion is that while DCL always will be some kind of benchmark in the actuaries

tool box, then EDCL and PEDCL seem to have sufficient quality to replace BDCL, IDCL

and PDCL. That also means that EDCL and PEDCL seem to have sufficient quality to

replace incurred chain ladder as the actuaries preferred method of incorporating incurred

data expert knowledge. This is important, because most reserves in the actuarial practise

use incurred chain ladder as the basis of estimation. This incurred chain ladder might

be manually manipulated according to expert knowledge and the values of paid chain

ladder. However, it is the most common basis of estimation in actuarial practise.

Only the future will be able to show whether EDCL and PEDCL or other similar in-

novations will be able to replace actuaries habit of using the - in our view outdated -

incurred chain ladder approach.
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Happ, S. and M.V. Wüthrich (2013). “Paid-incurred chain reserving method with de-

pendence modeling”. In: ASTIN Bulletin 43(1), pp. 1–20.

Hiabu, M., C. Margraf, M. D. Mart́ınez-Miranda, and J. P. Nielsen (2016). “The Link

Between Classical Reserving and Granular Reserving Through Double Chain Ladder

and its Extensions”. In: British Actuarial Journal 21, pp. 97–116.

Kaishev, V.K., J.P. Nielsen, and F. Thuring (2013). “Optimal customer selection for

cross-selling of financial services products”. In: Expert Systems with Applications 40(5),

pp. 1748–1757.

Kuang, D., B. Nielsen, and J. P. Nielsen (2009). “Chain-ladder as maximum likelihood

revisited”. In: Ann. Actuar. Sci 4, pp. 105–121.

Mack, T. (1991). “A simple parametric model for rating automobile insurance or esti-

mating IBNR claims reserves”. In: Astin Bulletin 39, pp. 35–60.

– (2008). “The prediction error of Bornhuetter–Ferguson”. In: Casualty Actuarial Soci-

ety Forum fall, pp. 222–240.

Mart́ınez-Miranda, M. D., B. Nielsen, J. P. Nielsen, and R. Verrall (2011). “Cash flow

simulation for a model of outstanding liabilities based on claim amounts and claim

numbers”. In: Astin Bull. 41, pp. 107–129.

69



Chapter 3. Cash flow generalisations of non-life insurance expert systems estimating
outstanding liabilities

Mart́ınez-Miranda, M. D., J. P Nielsen, S. Sperlich, and R. Verrall (2013). “Continu-

ous Chain Ladder: Reformulating and generalising a classical insurance problem”. In:

Expert. Syst. Appl. 40, pp. 5588–5603.

Mart́ınez-Miranda, M. D, J. P. Nielsen, and R. Verrall (2012). “Double Chain Ladder”.

In: Astin Bull. 42, pp. 59–76.

– (2013a). “Double Chain Ladder and Bornhutter-Ferguson”. In: North American Ac-

tuarial Journal 17,2, pp. 101–113.

– (2013b). R-package “DCL”: Claims Reserving under the Double Chain Ladder Model

(v. 0.1.0, 25 October 2013). url: http://cran.r-project.org/web/packages/

DCL/index.html.
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Abstract

A new Bornhuetter-Ferguson method is suggested. This is a variant of the traditional

chain ladder method. The actuary can adjust the relative ultimates. These correspond

to linear constraints on the Poisson likelihood underpinning the chain ladder method.

Adjusted cash flow estimates are then obtained as constrained maximum likelihood

estimates.
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4.1 Introduction

The chain ladder method is the basic actuarial tool for reserving in general insurance.

This method is based on the paid run-off triangle and provides estimates for the ultimate

reserve along with development factors that are used for determining the cash flow. In

practice, the actuary usually adjusts the ultimates using additionally available informa-

tion. With the Bornhuetter and Ferguson (1972) method the ultimates are adjusted

while the adjusted cash flow is proportional to the original chain ladder cash flow. Mack

(2000) gave a credibility interpretation of the Bornhuetter-Ferguson method.

The adjustment of the ultimates can be done in two ways; either by correcting the levels

of the ultimates or the relative levels of the ultimates. By this, we distinguish between

the situation where the actuary has an estimate for the ultimate for a given policy year

and the situation where the actuary is more comfortable with the prediction that the

ultimate for a given policy year is 10% higher, say, than in the previous year. Such an

estimate could for instance come from chain ladder analysis of incurred data. Indeed,

we provide an empirical illustration where this is the case. The levels approach is most

common in the literature, see for instance Mack (2000), Mack (2006), Taylor (2000),

Verrall (2004), Wüthrich and Merz (2008). The relative levels approach is more recent,

see Mart́ınez-Miranda, Nielsen, and Verrall (2013) and Mart́ınez-Miranda et al. (2015).

There are potentially two concerns with the traditional Bornhuetter-Ferguson correction.

It may move the reserves too much and the cash flow distribution is not adjusted in light

of the external information. Verrall (2004) addressed this in a Bayesian setup while Mack

(2006) proposed an alternative approach where new weights are computed by combining

actual payments and the externally estimated reserves.

Our proposal is related to that of Mack (2006), but with weights derived from a likeli-

hood function. Adjusting relative ultimates as opposed to level ultimates is natural when

working with the likelihood function in the same way as traditional chain ladder devel-

opment factors are concerned with relative effects. A feature of our approach is therefore

that external information is linked directly to the parameters of the underlying Poisson

model and it is possible to express the Bornhuetter-Ferguson adjustment in terms of

adjustments to the development factors. Another feature of this approach is that we
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can evaluate how much the adjustment moves the reserves and establish inequalities

relating our approach and the traditional Bornhuetter-Ferguson adjustments.

A fundamental interpretation of the Bornhuetter-Ferguson method arises from the cred-

ibility formula derived by Mack (2000). This shows that an adjustment of the ultimates

yields a partial adjustment of the reserves. He then continues to show that the itera-

tions of the credibility formula leads to the Benktander (1976) approach. These ideas are

taken a step further by Gigante, Picech, and Sigalotti (2013), whereas Taylor (2000) and

Wüthrich and Merz (2008) give general overviews of the Bornhuetter-Ferguson method.

Our first contribution is to show that the credibility formula also applies when adjusting

the relative levels of the ultimates.

It is useful to recall that the chain ladder method has the nice interpretation as maximum

likelihood in Poisson model. This result was proved by Kremer (1985). In particular,

it is possible to show that the development factors have interpretation as maximum

likelihood estimators, see Kuang, Nielsen, and Nielsen (2009). The maximum likelihood

result mean that it is possible to compute the chain ladder estimates using generalized

linear model methods. In practice the Poisson assumption is not realistic as the paid

data typically have considerable over-dispersion, see for instance England and Verrall

(2002). Nonetheless, the chain ladder method provides good reserve estimates that

are, at least, anchored in a quasi-likelihood. An alternative approach would be to use

Poisson-Tweedie models, see Tweedie (1984), Smyth and Jørgensen (2002), Wüthrich

(2003) and Peters, Shevchenko, and Wüthrich (2009).

The main idea of our approach is to impose the externally estimated relative ultimates on

the Poisson likelihood. Initially, it is useful to work with the standard parametrization

of the generalized linear model as opposed to the development factors. We can then

formulate the relative ultimates constraint as a linear constraint on the parameters and

derive maximum likelihood estimators. Subsequently, we translate these estimators into

adjusted development factors.

The constrained maximum likelihood approach satisfies a monotonicity result. If, for

instance, all the relative ultimates are increased relative to the chain ladder ultimates,

then it follows that the reserves are increased. However, these new reserves are increasing

less that the traditional Bornhuetter-Ferguson reserves that would arise by combining

the adjusted relative ultimates with the chain ladder development factors.
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We apply the methods to a motor portfolio from a Greek insurer. These data include

both paid and incurred triangles. In addition, an external estimate of the reserve is

available so that this example nicely illustrates the practical issues that lead to the use

of the Bornhuetter-Ferguson method.

4.2 The Bornhuetter-Ferguson problem

We present two standard Bornhuetter-Ferguson approaches. For now we will not formu-

late a statistical model, but just use the standard chain ladder formulas.

4.2.1 Data

Consider a standard run-off triangle of paid amounts. The dimension is denoted k and

we use the incremental form of the triangle. Each entry is denoted Yij so that i is the

accident year index and j is the development year index. The indices vary in the upper

triangle with indices 1 ≤ i, j ≤ k and i + j − 1 ≤ k. This is the area I in Figure 4.1.

The objective is to forecast values of Yij in the lower triangle with indices 1 ≤ i, j ≤ k

and k + 1 ≤ i+ j − 1 ≤ 2k − 1. This is the area J in Figure 4.1.

1 2 k

k

2

1

development year, j

a
cc

id
en

t 
y
ea

r,
 i

I

J

Figure 4.1: Illustration of data layout
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4.2.2 The chain ladder method

The objective is to forecast values of Yij in the lower triangle with indices 1 ≤ i, j ≤ k

and k + 1 ≤ i + j − 1 ≤ 2k − 1. For this purpose we compute row sums or cumulative

payments Ri and development factors Fj defined as

Ri =
k+1−i∑
j=1

Yij , Fj =
∑k+1−j
i=1

∑j
`=1 Yi`∑k+1−j

i=1
∑j−1
`=1 Yi`

for j = 2, . . . , k. (4.1)

We can use this to predict amounts in the lower triangle by

Ỹij = Ri(Fj − 1)
j−1∏

`=k+2−i
F`. (4.2)

From this we compute the reserve for accident year i, for i = 2, . . . , k, as

Vi =
k∑

j=k+2−i
Ỹij = Ri(F prodi − 1) where F prodi =

k∏
`=k+2−i

F`, (4.3)

and the predicted ultimate payment as

Ui = Ri + Vi = RiF
prod
i for i = 2, . . . , k. (4.4)

If we use the convention that empty products are unity this matches with U1 = R1 and

V1 = 0, so that the in-sample prediction of the sum of the payments for accident year

one equals the observation.

It will be convenient to express the above formulas in terms of certain weights. Thus,

define weights, for i = 2, . . . , k, j = k + 2− i, . . . , k,

Wij = (Fj − 1)
∏j−1
`=k+2−i F`

F prodi

= Fj − 1∏k
`=j F`

(4.5)

Wi = F prodi − 1
F prodi

=
k∑

j=k+2−i
Wij . (4.6)

These are numbers between zero and unity. We have Wi = 0 if and only if one of the

development factors is zero, whereas Wi approaches unity if and only if the product of

the development factors approaches infinity. We can then write the predictions for each
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cell and each row in the lower triangle as

Ỹij = UiWij , Vi = UiWi. (4.7)

These formulas show how the reserve Vi can be found as a fraction of the predicted

ultimate Ui, while Yij indicates how the cashflow is distributed.

The Chain Ladder is maximum likelihood in a Poisson model that will be presented in

Chapter 4.3. A feature of the model equation (4.12) is that it is symmetric in the indices

for accident year i and development year j. This observation leads to a new expression

for the forecast of the reserve. Traditionally, we forecast by computing row sums Ri of

the data and multiply by the column wise forward factors Fj as in (4.2). Alternatively,

we can compute columns sums Cj and row-wise forward factors Gi

Cj =
k+1−j∑
i=1

Yij , Gi =
∑k+1−i
j=1

∑i
`=1 Y`j∑k+1−i

j=1
∑i−1
`=1 Y`j

for i = 2, . . . , k (4.8)

and combine these to get the forecasts

Ỹij = Ri(Fj − 1)
j−1∏

`=k+2−i
F` = Cj(Gi − 1)

i−1∏
`=k+2−j

G`. (4.9)

4.2.3 Bornhuetter-Ferguson using levels of ultimates

This follows the interpretation offered by Mack (2000) see also England and Verrall

(2002), Verrall (2004), Mack (2006) and Alai, Merz, and Wüthrich (2009).

England and Verrall present the Bornhuetter-Ferguson idea as follows. Suppose we

replace the chain ladder ultimate Ui by an externally estimated reserve U leveli in the

formula (4.7). Then we get the level-based Bornhuetter-Ferguson reserve

V BF,level
i = U leveli Wi for i = 2, . . . , k.

Thus, the Bornhuetter-Ferguson reserve is the proportion Wi of the externally estimated

level of the ultimate. In a similar fashion the Bornhuetter-Ferguson cash flow is given

by

Ỹ BF,level
ij = U leveli Wij for i = 2, . . . , k, j = k + 2− i, . . . , k.
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The predicted ultimate payout turns out to be a convex combination of the chain ladder

reserve Ui and the externally generated number U leveli . To see this use the formulas

(4.4), (4.6) to write the cumulated payments as Ri = Ui/F
prod
i = Ui(1 −Wi). It then

follows that

UBF,leveli = Ri + V BF,level
i = Ui(1−Wi) + U leveli Wi.

Mack (2000) refers to this a credibility formula and traces it back to Benktander (1976).

Mack points out that it can be iterated by replacing U leveli by UBF,leveli . Another con-

sequence is the following ordering, assuming 0 < Wi < 1,

Ui < U leveli ⇒ Ui < UBF,leveli < U leveli .

4.2.4 Bornhuetter-Ferguson using relative ultimates

This approach has been suggested by Mart́ınez-Miranda, Nielsen, and Verrall (2013).

The idea is now to replace the relative ultimates rather than levels of ultimates. We

then rewrite (4.7) as

Vi = R1
Ui
U1
Wi for i = 2, . . . , k, (4.10)

recalling that U1 = R1. We now replace Ui/U1 by some external measure U reli /U rel1 ,

which only provides information about the relative ultimates, such as the figure for

year i is 10% higher than that for year i − 1. This results in the relative level-based

Bornhuetter-Ferguson reserve

V BF,rel
i = R1

U reli

U rel1
Wi for i = 2, . . . , k.

The corresponding cashflow is then

Ỹ BF,rel
ij = R1

U reli

U rel1
Wij for i = 2, . . . , k, j = k + 2− i, . . . , k. (4.11)

The relative Bornhuetter-Ferguson reserve also satisfies an actuarial credibility formula.

To see this recall U1 = R1, write Ri = R1(Ri/U1) and combine with Ri = Ui(1−Wi) as

before, to get

UBF,reli = Ri + V BF,rel
i = R1

{
Ui
U1

(1−Wi) + U reli

U rel1
Wi

}
.
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Once again, we have the ordering assuming 0 < Wi < 1,

Ui
U1

<
U reli

U rel1
⇒ Ui < UBF,reli .

Mart́ınez-Miranda, Nielsen, and Verrall (2013) suggest that the relative external numbers

could be computed from an incurred triangle. They extend this further to allow for

reporting delays using a double chain ladder method. However, in the present paper

we focus on the consequences of a Bornhuetter-Ferguson correction rather than how the

external numbers are generated.

4.2.5 Proposed Bornhuetter-Ferguson reserves

With the above approaches the future cash flow is determined by the chain ladder

method through the weights Wij and not influenced by the external information. As

argued by Verrall (2004) and Mack (2006) it may be desirable that the cash flow is

also influenced by the external information. Our proposal allows the cash flow to be

determined by a Poisson likelihood, constrained by the external information. Before we

give the derivation it is useful to give a brief overview of the results.

The proposed Bornhuetter-Ferguson approach evolves around the chain ladder reserving

formula (4.9) involving column sums Cj and row-wise forward factors Gi. Suppose we

have externally given relative ultimates U reli /U rel1 for i = 2, . . . , k, with the convention

that U reli /U rel1 = 1 for i = 1. We then construct Bornhuetter-Ferguson row-wise forward

factors

Γreli =
∑i
`=1(U rel` /U rel1 )∑i−1
`=1(U rel` /U rel1 )

for i = 2, . . . , k.

The Bornhuetter-Ferguson forecasts of individual payments and of reserves are then

Ỹij = Cj(Γreli − 1)
i−1∏

`=k+2−j
Γrel` , V rel

i =
k∑

j=k+2−i
Ỹij .

In the following section we will derive these forecasts as restricted maximum likelihood

estimators. Since they are cast in terms of row-wise development factors we will also

derive an equivalent expression involving new column-wise development factors. These

development factors will be different for different accident years. For this reason we

refer to them as pseudo development factors. Finally, we will compare them with the
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traditional Bornhuetter-Ferguson reserves with chain ladder weights and show that the

proposed Bornhuetter-Ferguson reserves move the chain ladder reserves less than the

traditional Bornhuetter-Ferguson reserves. In that way they may give a better approxi-

mation to the adjustment desired by the actuary.

4.3 Generalized Linear Model framework

We present a Generalized Linear Model framework for Bornhuetter-Ferguson analysis.

The usual chain ladder estimators are maximum likelihood in a Poisson model, see Kre-

mer (1985). In practice, reserving data have considerable over-dispersion, see England

and Verrall (2002), so that Poisson likelihood becomes a quasi likelihood. In the present

paper this distinction is not so important as we will only be concerned with point fore-

casts. Now, if we maximise the likelihood while imposing constraints from external

relative levels of ultimates we get a closed form cash flow prediction that adapts to both

data and the imposed constraints.

4.3.1 Statistical model

We assume that the incremental observations Yij are independent Poisson with log ex-

pectation EYij = exp(µij), where the predictor is given by

µij = αi + βj + δ. (4.12)

Here αi is the level of the accident year effect, βj is the level of the development year

effect and δ is an overall level. The parametrisation presented in (4.12) does not identify

the distribution, so we switch to the invariant parametrisation of Kuang, Nielsen, and

Nielsen (2009), that is

µij = µ11 +
i∑

`=2
∆α` +

j∑
`=2

∆β`, (4.13)

with the convention that empty sums are zero. Here ∆αi = αi − αi−1 is the relative

accident year effect and ∆βj = βj − βj−1 is the relative development year effect, while

the overall level is determined by µ11. The Poisson log likelihood function is

`(µ11,∆αi,∆βj) =
∑

1≤i,j,i+j−1≤k
{µijYij − exp(µij)− log(Yij !)}. (4.14)
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This is a regular exponential family with canonical parameters µ11,∆αi,∆βj .

4.3.2 The chain ladder

The chain ladder arises by maximizing the unconstrained likelihood. Theorem 3;

Kuang, Nielsen, and Nielsen (2009) show that the maximum likelihood estimators are

∆α̂i = ∆ logRi + logFk+2−i for i = 2, . . . k,

∆β̂j = ∆ logCj + logGk+2−j for j = 2, . . . k,

µ̂11 = logR1 −
k∑
j=2

logFj .

while the relative ultimates are estimated by

Ui
U1

=
∑k
j=1 exp(µ̂ij)∑k
j=1 exp(µ̂1j)

= exp
(

i∑
`=2

∆α̂`

)
for i = 2, . . . k,

which are the relative ultimates entering in equation (4.10). Moreover, we get that

R1 = U1 is the maximum likelihood estimator for the expected ultimates ER1 for the

first accident year. Therefore the maximum likelihood estimators for the ultimates

satisfy

Ui = U1
Ui
U1

= U1 exp
(

i∑
`=2

∆α̂`

)
for i = 2, . . . k,

which are the ultimates in (4.7). Thus, in both cases the ultimate formulates are closely

linked to the estimated relative accident year effects ∆α̂i.

An additional result from Kuang, Nielsen and Nielsen (2009, Theorem 3) is that the

forward factors Fj and Gi can be viewed as maximum likelihood estimators for combi-

nations of the canonical parameters ∆βj and ∆αi, respectively. That is Fj = Φ̂j and

Gi = Γ̂i are maximum likelihood estimators for, for i, j = 2, . . . , k,

Φj =
∑j
`=1 exp(

∑`
h=2 ∆βh)∑j−1

`=1 exp(
∑`
h=2 ∆βh)

, Γi =
∑i
`=1 exp(

∑`
h=2 ∆αh)∑i−1

`=1 exp(
∑`
h=2 ∆αh)

, (4.18)

with the convention that empty sums are zero.
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4.3.3 Imposing external information on the relative ultimates

Suppose some external values are available for the relative ultimates, U reli /U rel1 . Equiv-

alently, we could have external values for the relative accident year effects ∆α†i . We

could impose these as a constraint on the likelihood (4.14). The constraint is linear and

the likelihood remains that of a regular exponential family.

The constrained maximum likelihood estimators have a simple analytic form. In line

with the parameters Γi defined in (4.18) define

Γ†i =
∑i
`=1 exp(

∑`
h=2 ∆α†h)∑i−1

`=1 exp(
∑`
h=2 ∆α†h)

.

We then have the following result, which is proved in the Appendix.

Theorem 4.1. Consider the Poisson likelihood (4.14) with known ∆αi = ∆α†i for

i = 2, . . . , k and define Γ†i as (4.18) computed using ∆α†i . The constrained maximum

likelihood estimator is unique if and only if Cj > 0 for all j = 1, . . . k and given by

∆β̂†j = ∆logCj + log Γ†k+2−j for j = 2, . . . , k, (4.19)

µ̂†11 = logC1 − log
{

1 +
k∑
i=2

exp
(

i∑
`=2

∆α†`

)}
= logC1 −

k∑
`=2

log Γ†`. (4.20)

As a consequence the out-of-sample forecast from the constrained chain ladder has a sim-

ple explicit form. This resembles the forecast in the unrestricted chain ladder computed

from column sums and row-wise development factors as described in (4.9).

Theorem 4.2. Consider the setup in Theorem 4.1. Point forecasts for the lower triangle

are given by

Ỹ †ij = Cj(Γ†i − 1)
i−1∏

`=k+2−j
Γ†`. (4.21)

We can now compute a Bornhuetter-Ferguson reserve based on Theorem 4.2. For each

accident year we get

V †i =
k∑

j=k+2−i
Ỹ †ij . (4.22)
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4.3.4 Implementation in GLM software

The constrained model can also be estimated using ready-made algorithms for General-

ized Linear Models. The analysis presented above shows that the constrained model is

a regular exponential family so the algorithms should perform well.

For the implementation we organise the triangle Y as a vector Y, say, of dimension

k(k + 1)/2. A design matrix X can be constructed from the formula (4.13). It has

dimension {k(k + 1)/2} × (2k − 1) and the row corresponding to entry i, j is given by

X ′ij = {1, 1(2≤i), . . . , 1(k≤i), 1(2≤j), . . . , 1(k≤j)},

where the indicator function 1(m≤i) takes the value unity if m ≤ i and zero otherwise.

The unrestricted model is then estimated through a Generalized Linear Model regression

of Y on X using the Poisson distribution with a log-link function.

In the constrained model the parameters θknown = (∆α2, . . . ,∆αk)′ are known. Deleting

the corresponding columns from X gives a design matrix Xreduced with k columns.

The deleted columns are collected as Xknown say. The model is then estimated as a

Generalized Linear Model regression of Y on Xreduced using the Poisson distribution

with a log-link function and offset given by Xknownθknown.

4.3.5 A mixed approach

Let us first summarise the results we obtained so far in terms of the log likelihood. In

the classical chain ladder approach, we maximize the unrestricted likelihood in (4.14),

which leads to the unrestricted estimator

ξ̂ = max
ξ
`(ξ) = (µ̂11,∆α̂i,∆β̂j)′.

The restricted likelihood from Chapter 4.3.3 with restriction ∆αi = ∆α†i has restricted

likelihood maximum likelihood estimator given by

ξ̂† = max
ξ:∆α=∆α†

`(ξ) = (µ̂†11,∆α
†
i ,∆β̂

†
j )
′.

Notice, that if ∆α†i = ∆α̂i, then µ̂†11 = µ̂11 and ∆β̂†j = ∆β̂j .
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A third estimator is achieved by mixing the above estimators. This combines the unre-

stricted estimators for µ11 and βj with the given ∆α†i , such that

ξ̂‡ = (µ̂11,∆α†i ,∆β̂j)
′.

In the following, parameters resulting from this mixed approach will be marked with

the index ”‡”, just as parameters resulting from the constrained method will be marked

with ”†”. The reserve computed from ξ̂‡ is

Ỹ ‡ij = exp

µ̂11 +
i∑

h=2
∆α†h +

j∑
h=2

∆β̂h

 (4.23)

In the appendix we prove the identities

Ỹ ‡ij = Ỹij
exp(

∑i
h=2 ∆α†h)

exp(
∑i
h=2 ∆α̂h)

= Ỹ †ij

∑k+1−j
`=2 exp(

∑`
h=2 ∆α†h)∑k+1−j

`=2 exp(
∑`
h=2 ∆α̂h)

(4.24)

In the case when the known accident parameters are derived by applying chain ladder on

the incurred data, such that ∆α†i = ∆α̂inci , this method gives exactly the same results as

the Bornhuetter-Ferguson double chain ladder (BDCL) method in Mart́ınez-Miranda,

Nielsen, and Verrall (2013).

The log likelihood function evaluated in the three points satisfies

`(ξ̂) ≥ `(ξ̂†) ≥ `(ξ̂‡).

The first inequality holds since ξ̂ is maximum likelihood, while ξ̂† is restricted maximum

likelihood. The second inequality holds since ξ̂‡ satisfies the restriction, but it is not

maximum likelihood.

4.3.6 Pseudo development factors

It is common practice to think about the classical chain ladder method in terms of row

sums Ri and column wise development factors Fj given in (4.1). The forecasts for the

lower triangle are then computed using the formula (4.9) by forwarding the row sums Ri
using the factors Fj . However, in this classical setting the predicted value for the row

sum equals the row sum. In the likelihood analysis this stems from a likelihood equation
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of the type Ri = E(Ri), see equation 20 in Kuang, Nielsen, and Nielsen (2009). Thus,

we can also interpret the chain ladder forecast as forwarding the predicted row sums.

Once we have imposed external information on the relative ultimates then the forecast

changes and we break the link to the original row sums and development factors. We

can, however, construct pseudo predictions of the row sums and pseudo forward factors

that satisfy a relationship like (4.9) but with the new forecasts.

Under the constraint that ∆α = ∆α† we compute estimates µ̂†11 and ∆β̂†j using (4.19),

(4.20) in Theorem 4.1. From these we compute pseudo forward factors from (4.18), that

is

F †j =
∑j
`=1 exp(

∑`
h=2 ∆β̂†h)∑j−1

`=1 exp(
∑`
h=2 ∆β̂†h)

, (4.25)

and a pseudo first row sum from (4.17) as

logR†1 = µ̂†11 +
k∑
j=2

logF †j , (4.26)

and then the remaining pseudo row sums from (4.15) as

∆ logR†i = ∆α†i − logF †k+2−i. (4.27)

We show in the appendix that the forecast from (4.21) can be computed as

Ỹ †ij = R†i (F
†
j − 1)

j−1∏
`=k+2−i

F †` . (4.28)

The above formulas for predicted reserve and the cash flow can also be written in the

credibility format we saw in (4.11). To see this introduce the weights

W †ij = (F †j − 1)
∏j−1
`=k+2−i F

†
`

F prod†i − 1
, W †i = F prod†i − 1

F prod†i

,

where, as before, F prod†i =
∏k
`=k+2−i F

†
` . Introducing the ultimates and relative ultimates

U †i = R†iF
prod†
i ,

U †i

U †i−1
= R†i

R†i−1
F †k+2−i = exp(∆α†i )
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we can then write the predicted reserve and cash flow as

Ỹ †ij = U †iW
†
ij , V †i = U †iW

†
i .

4.3.7 Chain ladder prediction with the mixed approach

In the mixed approach we follow a similar procedure to satisfy a relationship like (4.9) in

order to obtain the new forecasts. The difference to the constrained method is that we

can keep the forward factors from the unconstrained chain ladder model, Fj . However,

we need to construct pseudo row sums R‡i as follows.

We fix the pseudo first row sum as

logR‡1 = logR1, (4.29)

and then compute the remaining pseudo row sums from (4.15) as

∆ logR‡i = ∆α†i − logFk+2−i. (4.30)

We show in the appendix that the forecast from (4.23) can be computed as

Ỹ ‡ij = R‡i (Fj − 1)
j−1∏

`=k+2−i
F`. (4.31)

The forecast can be written in terms of weights as before. Since the cash flow is derived

from the chain ladder development factors the weights are as defined in (4.5), (4.6). In

particular we have the ultimates and relative ultimates

U ‡i = R‡iF
prod
i ,

U ‡i

U ‡i−1
= R‡i

R‡i−1
Fk+2−i = exp(∆α†i )

we can then write the predicted reserve and cashflow as

Ỹ ‡ij = U ‡iWij , V ‡i = U ‡iWi. (4.32)
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4.3.8 Monotonicity

Let us consider the case when the known accident parameters, ∆α†i , are bigger than the

accident parameters we obtain from the chain ladder method on paid data, ∆α̂i. The

following theorem shows monotonicity results regarding the remaining parameters given

in Theorem 4.1 and the resulting predictions we obtain from the constrained approach

in Chapter 4.3.3, Ỹ †ij , as well as the mixed approach in Chapter 4.3.5, Ỹ ‡ij .

Theorem 4.3. Suppose ∆α†i > ∆α̂i for all 2 ≤ i ≤ k. Then

(a) Γ†i > Gi for all 2 ≤ i ≤ k;

(b) ∆β̂†j > ∆β̂j for all 2 ≤ j ≤ k;

(c) µ̂†11 < µ̂11;

(d) Ỹ ‡ij > Ỹ †ij > Ỹij for all i, j so that k < i+ j − 1 < 2k;

(e) F †j > Fj for all 2 ≤ j ≤ k.

(f) R‡i > R†i for all 2 ≤ i ≤ k.

(g) R‡i > Ri for all 2 ≤ i ≤ k.

4.4 Empirical illustration

We illustrate the new methods by an example where the external knowledge comes from

incurred payments. In practice the external knowledge may also come from incurred

counts, from other business lines or from other sources.

We use data from a Greek non-life insurer for motor third party liability, aggregated

over bodily injury and property damage. The data are presented as cumulative run-off

triangles for accident years from 2005 to 2013. Table 4.1 shows payments, while Table

4.2 shows incurred amounts.

2005 34492471 47124007 55244404 59817460 62550940 66042036 69311560 70992659 72265079
2006 39467733 54003286 61349336 69986825 76412887 81768759 86684598 90726054
2007 38928855 57087550 65905902 77128507 84158380 92436441 97838371
2008 34202332 50932726 60560484 68566905 76409739 82082804
2009 35657409 52397264 59849582 66698806 72724524
2010 25404394 37040589 42371049 50709319
2011 21268516 31311410 35973015
2012 17404447 27786399
2013 17676374

Table 4.1: Payments in Euro.
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2005 54018141 56699807 60273204 61112600 63729660 67142341 69733859 71980196 72738376
2006 68706483 70534436 70254136 75919965 77900147 83401774 88690144 92171660
2007 64613205 72600950 76163387 82388057 87424383 96246891 102854340
2008 58071632 66701421 69420629 75280537 81978240 89923269
2009 60368719 67868349 72528239 80726223 85339588
2010 47282519 56488940 60896832 65900623
2011 49905225 54801141 60026903
2012 48425940 52652928
2013 47449977

Table 4.2: Incurred amounts in Euro.

∆α̂i ∆α†i ∆β̂j ∆β̂†j
0.24526809 0.247261682 -0.80044252 -0.76965582
0.11149938 0.145178053 -0.68857388 -0.65777806

-0.12057425 -0.077312634 0.02370846 0.06137844
-0.04769497 0.027019249 -0.32208939 -0.29855013
-0.27637689 -0.204202408 -0.05908884 -0.03399479
-0.21412347 -0.018592530 -0.22363447 -0.20684905
-0.11353717 -0.078902778 -0.37786842 -0.36440835
-0.08135422 -0.005083078 -0.68021278 -0.67909386
µ̂11 = 17.18463300 µ̂†11 = 17.00538277

Table 4.3: Estimates

Table 4.3 shows parameter estimates computed by applying the chain ladder and the

Bornhuetter-Ferguson constrained method to the paid data. For the moment we focus

on the canonical parameters ∆αi for the relative accident year effect, ∆βj for the relative

development year effect and µ11 for the overall level. First, the chain ladder estimates

are reported as ∆α̂i, ∆β̂j , ∆µ̂11. Second, for the constrained model we first apply

chain ladder to the incurred data. The estimates for the relative accident year effect

are reported as ∆α†i . The estimates ∆β̂†j , ∆µ̂†11 are then computed from the paid data

using Theorem 4.1. We note that the ordering ∆α†i > ∆α̂i applies for these data for all

i = 2, ..., k = 9. Thus, the monotonicity results from Theorem 4.3 apply. In particular

we see that ∆β̂†j > ∆β̂j for all j = 2, ..., k = 9 and µ̂†11 < µ̂11 in Table 4.3.

A third approach is to use the mixed approach outlined in Chapter 4.3.5. Here we use the

external estimate ∆α†i for the relative accident year effects along with the chain ladder

estimates ∆β̂j , ∆µ̂11. When the external estimate is based on the incurred data, as here,

this is the same as the Bornhuetter-Ferguson Double chain ladder (BDCL) approach of

Mart́ınez-Miranda, Nielsen, and Verrall (2013).

Table 4.4 presents the estimated (pseudo) forward factors and the (pseudo) row sums.

For the chain ladder we have the observed row sums Ri and the traditional forward

factors Fj computed by (4.1). For the Bornhuetter-Ferguson constrained model we have
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i,j Ri R†i R‡i Fj F †j
1 72265079 63989145 72265079
2 90726054 80309654 90907105 1.449130 1.463172
3 97838371 80309654 101391484 1.155676 1.163975
4 82082804 77559430 88824492 1.137937 1.149793
5 72724524 73428364 84802647 1.087838 1.096652
6 50709319 54589726 63556691 1.076112 1.085188
7 35973015 46603309 54823701 1.056555 1.063832
8 27786399 37000367 43839471 1.036684 1.041678
9 17676374 25159556 30098881 1.017923 1.020288

Table 4.4: Row sums and forward factors

the pseudo row sums R†i and the pseudo forward factors F †j computed by (4.25)-(4.27).

For the mixed approach we have the pseudo row sums R‡i computed by (4.29),(4.30)

and the traditional forward factors Fj . Once again we see that the monotonicity results

from Theorem 4.3 apply so that R‡i > R†i and F †j > Fj .∑k
i=1 Vi external

∑k
i=1 V

†
i

∑k
i=1 V

‡
i

valuation
110.1 137 149.1 156.6

Table 4.5: Reserves in million Euro

Table 4.5 shows the reserves resulting from the classical chain ladder method,
∑k
i=2 Vi

from (4.3), the constrained approach,
∑k
i=2 V

†
i from (4.22), as well as the mixed ap-

proach,
∑k
i=2 V

‡
i from (4.32). We see that the ordering from Theorem 4.3 applies. For

comparison we note that this portfolio was evaluated at 137M by an external actuary,

with the comment that this figure may be slightly too low. This valuation is based on

the information that since 2009 the incurred case reserves have been gradually increased,

but the gap between incurred and paid reserves has not been fully closed by 2014. In

light of this, the Bornhuetter-Ferguson constrained method appears to apply rather well

in this situation.

4.5 Conclusions

The paper introduced a Bornhuetter-Ferguson approach that replaces the relative ulti-

mates rather than levels of ultimates. This approach has been suggested in the BDCL

method in Mart́ınez-Miranda, Nielsen, and Verrall (2013). The traditional Bornhuetter-

Ferguson method uses Chain Ladder weights, whereas we have estimated weights.
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We make use of the fact that the Chain Ladder method has the nice interpretation

as maximum likelihood in a Poisson model and we formulate the relative ultimates

constraint as a linear constraint on the parameters and derive maximum likelihood

estimators. Furthermore, we follow this approach to reproduce the results of the BDCL

method in a mixed approach, combining the constrained method with the classical Chain

Ladder.

Monotonicity results compare the constrained method, the mixed approach and the

original Chain Ladder results. Finally, an example illustrates the mentioned results

with data from a Greek general insurer. The example shows that, when comparing all

methods mentioned above, including Chain Ladder, the reserve given by the constrained

method is in fact the closest estimate to the number given by an external expert.

The advantage of this approach is that it can, unlike the BDCL method, be applied

using only one triangle, usually the payments triangle. However, while the model is able

to produce satisfying reserves, it is not able to distinguish between IBNR and RBNS.
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4.A Appendix: Proofs of Theorems

Proof of Theorem 4.1. The likelihood When the ∆αis are known the likelihood is

`(µ11,∆β) = µ11

k∑
j=1

Cj +
k∑
j=2

∆βj
k∑
`=j

Cj + g(µ11,∆β) + h(data),

where g is a function of the unknown parameters, not depending on the data and h is a

function of the data, not depending on the unknown parameters.

Uniqueness of the estimator. For a full exponential family the maximum likelihood

estimator is unique if and only if the natural statistic is interior to its convex support

(Theorem 9.13; Barndorff-Nielsen (1978).

The natural statistic T †k =
∑
i,j∈I(Yij , C2, . . . , Ck)′ arises through a bijective, linear

mapping of (C1, . . . , Ck)′. Since Yij ≥ 0 by the Poisson assumption then Cj ≥ 0, with

Cj = 0 as a possible outcome. Since C1, . . . , Ck are based on unrelated observations

then the interior of the convex support is given by the condition that Cj > 0 for all

j = 1, . . . , k.

Likelihood equations. Since the exponential family is regular the k likelihood equations

are T †k = ET †k Corollary 9.6; Barndorff-Nielsen (1978).

Since
∑k
i=1

∑k+1−i
j=1 Yij =

∑k
j=1Cj this in turn implies the equations

Cj = ECj , for j = 1, . . . k.

Estimating the level. The expression for µ̂†11 arises from the first likelihood equation

C1 = EC1 = exp(µ11)
k∑
i=1

exp(αi − α1),

since the parameters αi − α1 =
∑i
`=2 ∆α` are known.

Estimating the development parameters. The expression for ∆β̂†j arises by combining

the (j − 1)th and jth likelihood equations

Cj
Cj−1

= ECj
ECj−1

= exp(µ11 + βj − β1)
∑k+1−j
i=1 exp(αi − α1)

exp(µ11 + βj−1 − β1)
∑k+2−j
i=1 exp(αi − α1)

.
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Recalling the expression for Γi in (4.8) this reduces to

Cj
Cj−1

= exp (∆βj)
Γk+2−j

,

which has the desired solution. �

Proof of Theorem 4.2. Use the expressions from Theorem 4.1 to get

Ỹ †ij = exp(µ̂†11 + α†i − α
†
1 + β̂†j − β̂

†
1)

= C1∏k
`=2 Γ†`

(Γ†i − 1)
(
i−1∏
`=2

Γ†`

)
Cj
C1

j∏
`=2

Γ†k+2−`

= Cj(Γ†i − 1)
∏k
`=k+2−j Γ†`∏k

`=i Γ†`
.

We get the desired result by simplifying the last fraction using that i > k + 2− j. �

Proof of equation (4.24). First identity. Combine the forecasts, see (4.23),

Ỹ ‡ij = exp(µ̂11 +
i∑

h=2
∆α†h +

j∑
h=2

∆β̂h), Ỹij = exp(µ̂11 +
i∑

h=2
∆α̂h +

j∑
h=2

∆β̂h).

Second identity. From (4.9) we have Ỹij = Cj(Gi−1)
∏i−1
`=k+2−j G`. Write Gi = N̂i/N̂i−1

where N̂i =
∑i
`=1 exp(

∑`
h=2 ∆α̂h) and N̂i − N̂i−1 = exp(

∑i
h=2 ∆α̂h). Then, we get

Ỹij = Cj
N̂i − N̂i−1

N̂i−1

i−1∏
`=k+2−j

N̂`

N̂`−1
= Cj

N̂i − N̂i−1

N̂k+1−j
= Cj

exp(
∑i
h=2 ∆α̂h)∑k+1−j

`=1 exp(
∑`
h=2 ∆α̂h)

.

Correspondingly, we get from (4.21) that

Ỹ †ij = Cj
exp(

∑i
h=2 ∆α†h)∑k+1−j

`=1 exp(
∑`
h=2 ∆α†h)

.

Now, combine the expressions for Ỹ †ij and Ỹ †ij . �

Proof of equation (4.28). The point forecast is given by

Ỹ †ij = exp(µ̂†11 +
∑i
h=2 ∆α†h +

∑j
h=2 ∆β̂†h). Insert the expression for µ̂†11 from (4.26) and

for ∆α†i from (4.27), as well as exp(
∑j
h=2 ∆β̂†h) = (F †j − 1)

∏j−1
`=2 F

†
` , which follows from
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(4.25), to get

Ỹ †ij = R†1∏k
`=2 F

†
`

(
R†i

R†1

i∏
`=2

F †k+2−`

)
(F †j − 1)

j−1∏
`=2

F †` .

Equation (4.28) follows by reducing common factors and noting that j > k + 2− i. �

Proof of equation (4.31). The point forecast is Ỹ ‡ij = exp(µ̂11+
∑i
h=2 ∆α†h+

∑j
h=2 ∆β̂h)

as given in (4.23). Insert the expression for µ̂11 from (4.17), the expression for ∆α†i from

(4.30), as well as exp(
∑j
h=2 ∆β̂h) = (Fj − 1)

∏j−1
`=2 F`, which follows from (4.18) noting

that Fj = Φ̂j , to get

Ỹ ‡ij = R1∏k
`=2 F`

(
R‡i
R1

i∏
`=2

Fk+2−`

)
(Fj − 1)

j−1∏
`=2

F`.

Equation (4.31) follows by reducing common factors and noting that j > k + 2− i. �

Proof of Theorem 4.3. (a) We show that Γi defined in (4.18) is increasing in the

∆αi’s. Write Γi = Ni/Ni−1 where Ni =
∑i
`=1 exp(

∑`
h=2 ∆αh). Thus, we must show

that the derivative of Γi with respect to ∆αn is positive for all n ≤ i and zero otherwise.

It suffices to consider the numerator of that derivative, which is ṄiNi−1−NiṄi−1. Now,

Ṅi = ∂Ni

∂∆αn
=

i∑
`=n

exp(
∑̀
h=2

∆αh) = Ni −Nn−1,

for n ≤ i and zero otherwise. This implies ṄiNi−1−NiṄi−1 = Nn−1(Ni−Ni−1), noting

that the cases where n < i and n = i have to be checked separately. The desired result

now follows by noting that Nn−1 and Ni −Ni−1 are both positive.

(b) Using (4.19) and (a) we get

∆β̂†j = ∆ logCj + log Γ†k+2−j > ∆ logCj + logGk+2−j = ∆β̂j ,

where the last equality is of a similar type as (4.19) and comes from Theorem 3; Kuang,

Nielsen, and Nielsen (2009).
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(c) Using (4.20) and (a) we get

µ̂†11 = logC1 −
k∑
`=2

log Γ†` < logC1 −
k∑
`=2

logG` = µ̂11,

where the last equality comes from Theorem 3; Kuang, Nielsen, and Nielsen (2009).

(d) First, we compare the new reserve Ỹ †ij with ∆α†i known to the old reserve Ỹij from

CL. Since 1 ≤ Gi < Γ†i for 2 ≤ i ≤ k then, by (4.9), (a), (4.21),

Ỹij = Cj(Gi − 1)
i−1∏

`=k+2−j
G` < Cj(Γ†i − 1)

i−1∏
`=k+2−j

Γ†` = Ỹ †ij .

Second, we compare the new reserve Ỹ †ij , using ∆α†i , µ̂
†
11, ∆β̂†j , to the mixed reserve Ỹ ‡ij ,

using ∆α†i , µ̂11, ∆β̂j . From (4.24) we have

Ỹ ‡ij = Ỹ †ij

∑k+1−j
`=2 exp(

∑`
h=2 ∆α†h)∑k+1−j

`=2 exp(
∑`
h=2 ∆α̂h)

Since ∆α†i > ∆α̂i for all 2 ≤ i ≤ k it follows that Ỹ ‡ij > Ỹ †ij .

(e) Similar to the argument in (a), but using the ordering for ∆β̂ derived in (b).

(f) Equations (4.28), (4.31) applied for any k + 2− i ≤ j ≤ k show that

R‡i

R†i
=
Y ‡ij

Y †ij

(F †j − 1)
∏j−1
`=k+2−i F

†
`

(Fj − 1)
∏j−1
`=k+2−i F`

Then apply the orderings Ỹ ‡ij > Ỹ †ij and F †j > Fj from (d), (e).

(g) Use (4.18), (4.31) to get R‡i/Rij = Ỹ ‡i /Ỹij for all k + 2− i ≤ j ≤ k. Apply (f). �
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Micro models for reinsurance reserving based on aggregate data

Carolin Margraf, Richard Verrall

Cass Business School, City, University of London, United Kingdom

Valandis Elpidorou

Arch Underwriters Europe Ltd

Abstract

This paper addresses a new problem in the literature, which is how to consider reserving

issues for a portfolio of general insurance policies when there is excess-of-loss reinsur-

ance. This is very important for pricing considerations and for decision making regarding

capital issues. The paper sets out how this is currently often tackled in practice and

provides an alternative approach using recent developments in stochastic claims reserv-

ing. These alternative approaches are illustrated and compared in an example using real

data. The stochastic modelling framework used in this paper is double chain ladder, but

other approaches would also be possible. The paper sets out an approach which could

be explored further and built on in future research.
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5.1 Introduction

The subject of this paper is the distribution of outstanding claims for a portfolio of

general insurance policies in the presence of excess-of-loss reinsurance protection. This is

a subject area which, to the best knowledge of the authors, has not previously appeared

in the actuarial literature. It is a very important subject from a practical point of

view, and there have been many papers on the estimation of outstanding claims and

reinsurance separately to develop both the theory and practical tools for actuaries. To

date, they have not been considered together.

This is perhaps surprising because the estimation of outstanding claims net of rein-

surance for such a portfolio is very commonly needed, for example when a reinsurance

underwriter is pricing either a retrospective loss portfolio transfer treaty or a prospective

proportional quota share on the retention. These are both actively used for solvency

capital management and it would therefore be desirable to have estimates of both the

expected net outstanding claims and the uncertainty around these. Better still would

be estimates of the distribution of net outstanding claims. This paper develops methods

to address all of these issues and compares the results with what is often done in the

practical context using existing reserving methods.

With the advances in stochastic reserving methodology, it is now possible to develop co-

herent theoretical frameworks for the estimation of the distribution of outstanding claims

net of excess-of-loss reinsurance. It is important to note that the most commonly used

stochastic claims reserving methods, such as bootstrapping the over-dispersed Poisson

model (England and Verrall (1999), and England and Verrall (2002)), will be of lim-

ited value in this context. The fundamental issue that needs to be addressed is how to

consider the net outstanding claims such that the effect of the excess-of-loss reinsurance

contract can be accurately taken into account. The only way to do this is to use a

model which considers individual claims, or at least one which simulates future claims

individually rather than aggregated.

Individual claims reserving, or reserving based on granular data, has been the subject

of increased attention in actuarial literature. See for example Antonio and Plat (2014).

The majority of the methods which have been developed operate entirely at the level

of individual claims and this can perhaps make them appear to be overly complex to
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implement and use in a practical context. In contrast, a series of papers beginning with

Verrall, Nielsen, and Jessen (2010) and continuing with Mart́ınez-Miranda et al. (2011)

and Mart́ınez-Miranda, Nielsen, and Verrall (2012) has developed a hybrid approach

which uses data aggregated in the standard way into triangles in order to estimate

models for claims at the individual level. We believe that this makes it easier to apply

the fundamental advantages of stochastic reserving for individual claims using the theory

which has recently been developed to more complex practical issues such as excess-of-loss

reinsurance. Of course, it would be possible to investigate these practical issues using

other individual claims reserving methods, and we anticipate that this may be done in

the future by other authors.

In this paper, we use the methodology of the double chain ladder (DCL) method in-

troduced in Mart́ınez-Miranda, Nielsen, and Verrall (2012). Building on the experience

of these papers, it is clear that it is very important to have stable estimates of all

parameters if practically useful simulations of future claims are to be generated. In

particular, the parameters which measure the results can be particularly sensitive to the

way claims increase with development period. For this reason we propose in this paper

a new modification to the existing methodology which is likely to improve the stability

of the results.

The paper is set out as follows. Section 5.2 outlines the approach which is commonly

used in practice when considering reserves with reinsurance. Section 5.3 summarises the

theoretical model which we will use in this paper, DCL. This section also includes the

new modification to DCL, which we call Bornhuetter-Ferguson double chain ladder prior

(BDCL prior). In section 5.4, we describe how the data are usually prepared in practice

in order to analyse the claims net of reinsurance (and the reinsurers claims). In section

5.5, we show how this can be done in a more coherent way within the framework of DCL

and BDCL prior. Sections 5.4 and 5.5 also continue illustrations and comparison of the

practical approach and the new approach. Section 5.6 contains the conclusions.
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5.2 The practical approach

In general insurance or casualty portfolios (including general third party liability, mo-

tor third party liability, employer’s liability, medical malpractice) insurance companies

commonly seek excess-of-loss reinsurance protection on an occurrence year basis. This

means that the insurer’s exposure to any individual loss occurring in any given year is

limited to a predefined amount called the retention or priority. The retention is usually

chosen taking into account the volatility of claims which are likely to arise from the port-

folio, the insurer’s risk appetite and solvency position. And in practice it is also driven

by past experience of claims from the portfolio and the available price in the market.

Typically, these reinsurance treaties have a one year duration and are renegotiated every

year so that the retention level may change from year to year. There may be clauses

in the treaties which affect the actual retention on claims each year: for example, an

indexation clause. Thus, whenever data are considered over a period of years for such

portfolios, the insurer’s retained amounts for any individual loss will be dependent on

the year in which the loss occurred.

The estimation of the ultimate net incurred claims in order to set the net total unpaid

reserve for such a portfolio is a common actuarial task for reinsurance underwriters when

asked to price either a retrospective loss portfolio transfer (LPT) treaty or a prospective

proportional quota share (QS) on the retention. In the case of a LPT, the cession to

the LPT reinsurer can be either on a gross basis, in which case the cedant will transfer

the right of recoveries from excess-of-loss reinsurers to the LPT reinsurer, or a net basis,

which means that only the retained loss portfolio is ceded. However, irrespective of the

cession basis (assuming an acceptable counterparty rating of the excess-of-loss reinsurers)

the evaluation of the reserves is to be done on the loss portfolio net of historical inuring

excess-of-loss recoveries. In the case of the prospective QS, the actual historical excess-

of-loss retentions are ignored as the estimation of the net outstanding claims is carried

out on an ‘as-if’ basis using a common historical retention equal to that of the prospective

excess-of-loss treaty. From a theoretical point of view, QS is a simpler subcase of what

would be the more generalized case of the LPT where instead of one common excess-

of-loss retention for all years there can be different historical retentions depending on

the conditions of each year’s excess-of-loss treaty. In this paper, we will consider the QS

case, thereby assuming one common retention for all occurrence years.
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Typically, the kind of data the reinsurer receives for the purpose of pricing these treaties

may come in various formats. If the systems of the insurer are set to account for

the existence of excess-of-loss reinsurance, it is possible to receive triangular data with

incurred losses already capped at the historical retention. In short, these are known as

net triangles. In addition to this, most insurers should be able to query their databases to

produce net triangles at a given common retention. In practice, however, the insurance

company will either submit gross triangles plus the recoveries triangles, or in the case

of QS, gross triangles plus the triangulations of large individual claims, for example

with incurred amount at 50% of the prospective retention or above. This is the typical

threshold that an excess-of-loss reinsurer sets for the claims data requirement. Receiving

triangles of large individual claims means that the QS reinsurer will be able construct the

recoveries triangles and price the treaty at different levels of prospective excess-of-loss

retention.

In practice, the reinsurance underwriter or actuary will estimate the net outstanding

claims (in the case of an LPT) or the ultimate claims (in the case of QS) for each

accident year by applying traditional actuarial reserving methods on the net triangles

which result from subtracting the reinsurance recovery triangle from the gross triangle.

The problem with this approach is that although actuarial reserving methods can be

applied on the resulting net triangle in the same way as they are applied gross triangles,

reinsurance recoveries for potential future development of individual claims or newly

reported claims are not taken into account because the recoveries triangle construction

is limited to the development period already observed. In other words, the recoveries

triangle is constructed on the basis of the incurred value at the given valuation date and

not on the basis of the ultimate cost of each claim. This presents many issues for the

reinsurer to consider. Not only is the ultimate incurred value of a claim unknown, just

the incurred value at the particular development point in time, but also the observation

period for each of these claims depends on when they were reported. This typically

results in there being no recoveries observed in recent accident years. In addition to

this, different accident years may have different reporting lags. Ultimately this is a

problem of incorrect sampling of the recoveries triangle and this leads to problems with

the net triangle to which actuarial reserving methods are applied. As a result of this, it

is not clear whether estimating the net reserve using the net triangles constructed this
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way leads to reasonable point estimates. It may also give a biased distribution of net

reserves. The investigation of these issues is the contral purpose of this paper.

As reinsurance is a very competitive business, price is the principal factor for an insurer in

deciding whether to cede the portfolio to one particular reinsurer or another. In the case

of capital motivated reinsurance transactions, reinsurance competes with other forms of

capital such as subordinated debt, and the pricing implications of the estimation of net

outstanding claims can also lead to a decision not to cede at all if the cost of reinsurance

is directly compared to the cost of the capital relief such a transaction achieves. For

these reasons, having more information about the accuracy of the estimation would be

very desirable.

The ideal solution to this problem would be to estimate the ultimate incurred for each

individual claim. This could be done by modelling the individual aspects of each claim,

which could include (for example) loss of income, dependants, future inflation, medical

expenses etc. This is the aim of claims adjusters, and it has to be recognised that their

estimates can be quite volatile. An actuarial approach would be to simulate from the

individual claims so that to estimate the ultimate recoveries per accident year. While

there have been considerable advances in the consideration of individual claims data in

recent years, the application of the methods would probably still present challenges in

practical settings. For this reason, the approach in this paper is to use methods which

use aggregated data for the estimation but which are designed in order to allow inferences

and simulation to be carried out at the level of individual claims. The framework we

use is Double Chain Ladder and its extensions, which are set out in the next section.

5.3 Double Chain Ladder

This section summarises the double chain ladder method (DCL) developed in Verrall,

Nielsen, and Jessen (2010) and Mart́ınez-Miranda et al. (2011) and Mart́ınez-Miranda,

Nielsen, and Verrall (2012). The formulation of DCL and related models in Mart́ınez-

Miranda et al. (2011) and Mart́ınez-Miranda, Nielsen, and Verrall (2012) allows us to

estimate the settlement delay and therefore to predict Reported But Not Settled (RBNS)

and Incurred But Not Reported (IBNR) reserves separately. In contrast with other

approaches (for example Antonio and Plat (2014)) which are also based on individual
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claims (micro models), our aim is not to perform the estimation using the individual

claims data. It would be possible to use such an approach, but we believe that DCL

offers a simpler procedure which should be easier to use in the practical context described

in Section 5.2 since DCL and the related models are estimated using only data in the

aggregated triangles which are usually available in practice. We begin by summarising

DCL in Subsections 5.3.1 and 5.3.2 and then define the new modification in Subsection

5.3.3.

5.3.1 Model formulation

The approach of DCL is based on a model defined at the level of individual claims (a

micro model) but estimated using data in aggregated triangles. We first describe the

micro model, and then show how this can be estimated using conventional triangles of

data. The micro model is constructed from three components: the settlement delay, the

individual payments and the reported counts.

This section sets out the model assumptions from Mart́ınez-Miranda, Nielsen, and Ver-

rall (2012). If we were just interested in the mean or the best estimate, the model

assumptions could be much more general than those below. However, since we are in-

terested in the distributional properties, we generalize below the original assumptions

of DCL so that in the following section it is possible to add prior knowledge.

DCL makes use of both the data and expert knowledge extracted from incurred data.

The information required to apply DCL are the aggregated incurred counts (data),

aggregated payments (data) and aggregated incurred payments (expert knowledge). All

of these three objects will have the same structural form, and without loss of generality

they are assumed to consist of usual triangles defined on I, where

I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m− 1; i+ j ≤ m}.

Here, m > 0 is the number of underwriting or accident years observed. It will be assumed

that the reporting delay (the time from the occurance of a claim until it is reported),

and the settlement delay (the time between the report of a claim and its settlement)

are both bounded by m. This, in contrast to the classical CLM, will make it possible
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to also get estimates in the “tail” where the reporting delay plus the settlement delay is

greater than m. The information required is as follows.

Aggregated incurred counts: NI = {Nik : (i, k) ∈ I}, with Nik being the total number

of claims which were incurred in year i and reported in year i+ k (i.e. a reporting

delay of k). Note that each of these Nik reported claims is assumed to generate a

number of payments, i.e. a claims payment cash flow.

Aggregated payments: XI = {Xij : (i, j) ∈ I}, with Xij being the total payments from

claims incurred in year i and paid with j periods delay from year i.

Note that the meaning of the second suffix of triangle I varies between the two different

sets of data. In the counts triangle it represents the reporting delay and in the payments

triangle it represents the development delay, which is reporting delay plus settlement

delay.

For the aggregated incurred payments, some theory at the level of individual claims is

required.

Let Npaid
ikl denote the number of the future payments originating from the Nik reported

claims, which are paid with a delay of k + l, where l = 0, . . . ,m− 1.

Also, let Y
(h)
ikl denote the individual settled payments which arise from Npaid

ikl , h =

1, . . . , Npaid
ikl .

Finally, define Xikl to be the aggregate claims originating from underwriting year i,

which are reported after a delay of k and paid with an overall delay of k + l. Then

Xikl =
Npaid

ikl∑
h=0

Y
(h)
ikl , (i, k) ∈ I, l = 0, . . . ,m− 1,

The observed aggregated payments can be written as

Xij =
j∑
l=0

Xi,j−l,l =
j∑
l=0

Npaid
i,j−l,l∑
h=1

Y
(h)
i,j−l,l.

The aggregated incurred payments are then considered as unbiased estimators of
∑m−1
l=0 Xikl.
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With these definitions, we make the following distributional assumptions.

A1. The numbers of reported claims, Nik, are independent random variables for all

(i, k) and have a Poisson distribution with cross-classified mean E[Nik] = αiβk

and identification
∑m−1
k=0 βk = 1.

A2. Given Nik, the numbers of paid claims follow a multinomial distribution, so that

the random vector (Npaid
i,k,0 , . . . , N

paid
i,k,m−1) ∼ Multi(Nik; p0, . . . , pm−1), for each (i, k),

where m− 1 is the assumed maximum delay and (p0, . . . , pm−1) denote the delay

probabilities such that
∑m−1
l=0 pl = 1 and 0 ≤ pl ≤ 1,∀l = 0, . . . ,m− 1.

A3. The individual payments Y (h)
i,j−l,l are independent and have a mixed type distribu-

tion with Qi being the probability of a “zero-claim” i.e. P
{
Y

(h)
i,j−l,l = 0

}
= Qi.

We assume that Y (h)
i,j−l,l|Y

(h)
i,j−l,l > 0 has a distribution with conditional mean µij

and conditional variance σ2
ij , for each i = 1, . . . ,m, j = 0, . . . ,m − 1. We also

assume that the mean depends on the accident year and payment year such that

µij = µγiδj . Here, µ a common mean factor and δj and γi can be interpreted as

being the inflation in the payment year and the accident year, respectively. The

variance follows a similar structure, with σ2
ij = σ2γ2

i δ
2
j , where σ2 is a common

variance factor.

A4. Independence: We assume that settled payments, Y (h)
ikl are independent of the

numbers of reported claims, Nik, and also the RBNS and IBNR delays.

Assumption A1 is, apart from the distribution, the classical chain ladder assumption

applied to the counts triangle, with the main point being the multiplicativity between

underwriting year and reporting delay. Assumptions A2-A4 are necessary to connect

reporting delay, settlement delay and development delay - the main idea of DCL. A3

also acknowledges the fact that reported claims can be closed with a payment being

made - the so-called zero-claims.

This is a more general situation than Mart́ınez-Miranda, Nielsen, and Verrall (2012)

since it assumes that the distribution depends on the accident year and the development

year and also allows for zero-claims. Under these assumptions, the first two moments of

the unconditional distribution of Y (h)
i,j−l,l are given by:
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E[Y (h)
i,j−l,l] = γiδj(1−Qi)µ

V(Y (h)
i,j−l,l) = γ2

i δ
2
j (1−Qi)

(
σ2 +Qiµ

2
)

Following the similar calculations as Mart́ınez-Miranda, Nielsen, and Verrall (2012), it

can be shown that under the above assumptions the unconditional mean of Xij can be

written as

E[Xij ] = γi(1−Qi)µαiδj
j∑
l=0

βj−lpl = α̃iβ̃j , (5.3)

where

α̃i = γi(1−Qi)µαi

and

β̃j = δj

j∑
l=0

βj−lpl.

Equation (5.3) is the key in deriving the outstanding loss liabilities.

Note that when Qi = 0 ∀i = 1, ...,m and δj = 1 ∀j = 0, . . . ,m− 1, the situation reverts

back to the DCL model as set out in Mart́ınez-Miranda, Nielsen, and Verrall (2012).

5.3.2 Parameter estimation for the DCL method

In this section we first set δj = 1 ∀j and Qi = 0 ∀i and show how to estimate the

remaining parameters in DCL. The approach to incorporating the development inflation

and the zero-claims probability will be described in the next section.

The case when δj = 1 ∀j and Qi = 0 ∀i was proposed in Mart́ınez-Miranda, Nielsen,

and Verrall (2012) which developed the DCL method to estimate the parameters and a

summary of this is provided in this section. The DCL method considers the simple chain-

ladder algorithm applied to the triangles of paid claims, XI , and incurred counts, NI .

Therefore, as implied by the name Double Chain Ladder, the classical chain-ladder model

(CLM) is applied twice and from this everything needed to estimate the outstanding

claims is available. It was also shown that this estimation procedure can give identical

results as the CLM for paid data when the observed counts are replaced by their fitted

values.
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An appealing feature of the DCL estimation method is that it uses the estimates of the

chain ladder parameters from the triangle of counts and the triangle of payments. As-

sumption A2 in Section 5.3.1 defined a standard chain-ladder model for the counts data,

Nij . A similar model can be defined for the triangle of paid data, Xij , with parameters

α̃i and β̃j . We denote the estimates of the parameters, using the chain-ladder model on

each triangle, by (α̂i, β̂j) and (̂̃αi, ̂̃βj), respectively, for i = 1, . . . ,m, j = 0, . . . ,m − 1.

Note that it is straightforward to obtain these estimates using the development factors

provided by the chain ladder algorithm, as follows.

Consider the counts triangle (a similar approach can be used for the parameters of

the paid triangle) and denote by λ̂j , j = 1, 2, . . . ,m − 1, the corresponding estimated

development factors, where

Dij =
j∑

k=1
Nik.

and

λ̂j =
∑n−j+1
i=1 Dij∑n−j+1

i=1 Di,j−1
.

Then the estimates of βj for j = 0, . . . ,m− 1 can be calculated by

β̂0 = 1∏m−1
l=1 λ̂l

and

β̂j = λ̂j − 1∏m−1
l=j λ̂l

for j = 1, . . . ,m − 1 . The estimates of the parameters for the accident years can be

derived from the latest cumulative entry in each row through the formula:

α̂i =
m−i∑
j=0

Nij

m−1∏
j=m−i+1

λ̂j .

The same procedure can be used to produce (̂̃αi, ̂̃βj) from the triangle of paid data,

and the DCL method estimates the rest of the parameters in the model formulated in

A1-A4 using just the above estimates. Specifically, the reporting delay probabilities

{p0, . . . , pm−1} can be estimated by solving the linear system given below to obtain

estimates of {π0, . . . , πm−1}.
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

β̃0
...
...

β̃m−1


=



β0 0 · · · 0

β1 β0
. . . 0

... . . . . . . 0

βm−1 · · · β1 β0





π0
...
...

πm−1


.

Once the solution {π̂0, . . . , π̂m−1} is obtained, these preliminary delay parameters are

adjusted to have the desired real probability vector, (p̂0, . . . , p̂m−1) which satisfies the

restrictions that 0 ≤ p̂l < 1 and
∑m−1
l=0 p̂l = 1. For more details of this estimation

procedure, see Mart́ınez-Miranda, Nielsen, and Verrall (2012).

For the mean and variance of the distribution of individual payments DCL estimates

the inflation parameters, γ = {γi : i = 1, . . . ,m}, and the mean factor, µ, through the

expression:

γ̂i =
̂̃αi
α̂iµ̂

i = 1, . . . ,m. (5.4)

To ensure identifiability DCL sets γ1 = 1, so that µ can be estimated by

µ̂ =
̂̃α1
α̂1
.

The inflation parameters, γ̂i, are estimated by substituting µ̂ into (5.4). It only remains

to adjust the final µ̂ according to the estimates p̂l and in order to ensure that
∑m−1
k=0 βk =

1. This is done by dividing µ̂ by κ, where κ =
∑m−1
j=0

∑j
l=0 β̂j−lp̂l. Hereafter, in a slight

abuse of notation, we will retain the notation µ̂ for the corrected estimator of µ.

The estimate of outstanding claims is obtained by substituting the above estimates into

the expression for the unconditional mean. In doing this, it is useful to split it into the

Reported But Not Settled (RBNS) and Incurred But Not Reported (IBNR) components

by considering payments on already reported claims and claims which will be reported

in the future. For i+ j > m, we define

X̂rbns
ij =

j∑
l=i−m+j

N̂i,j−lp̂lµ̂γ̂i (5.5)
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and

X̂ibnr
ij =

i−m+j−1∑
l=max(0,j−m+1)

N̂i,j−lp̂lµ̂γ̂i, (5.6)

respectively, where N̂ij = α̂iβ̂j .

The estimate of total outstanding claims is calculated by adding the RBNS and IBNR

components i.e. X̂DCL
ij = X̂rbns

ij + X̂ibnr
ij . This is equivalent to the aim of the standard

CLM in just the lower triangle (ignoring any tail effects), i.e. for (i, j) ∈ J1 = {i =

2, . . . ,m; j = 0, . . . ,m− 1 so i+ j = m+ 1, . . . , 2m− 1}. For the DCL, the estimates of

outstanding claims extend further to provide tail estimates by considering i = 1, . . . ,m

and j = m, . . . , 2m− 1.

Finally to provide the full cash flow the predictive distribution can be approximated

using parametric bootstrap methods as Mart́ınez-Miranda et al. (2011) described. In

order to do this, it is necessary to estimate the variances, σ2
i (i = 1, . . . ,m). Verrall,

Nielsen, and Jessen (2010) showed that assumptions similar to A1–A4 can be used to

show that the conditional variance of Xij is approximately proportional to its mean.

Using this result, it is straightforward to estimate the variance using over-dispersed

Poisson distributions.

More specifically, the over-dispersion parameter ϕ (defined in Section 5.3.1) can be

estimated by

ϕ̂ = 1
n−m

∑
i,j∈I

(Xij − X̂DCL
ij )2

X̂DCL
ij γ̂i

,

where n = m(m + 1)/2 and X̂DCL
ij =

∑m−1
l=0 Ni,j−lp̂lµ̂γ̂i. Then the variance factor of

individual payment can be estimated by

σ̂2
i = σ̂2γ̂2

i

for each i = 1, . . . ,m, where σ̂2 = µ̂ϕ̂− µ̂2.

110



Chapter 5.

5.3.3 The BDCL prior method

In this section, we take the DCL method as set out in Section 5.3.2 and show how

to incorporate information about inflation in the severity of individual claims and the

number of zero claims. We first assume that the parameters for this are known, and

note that they cannot be estimated using the triangles XI and NI . The estimation of

these parameters requires some extra data, which is described at the end of this section.

As in Mart́ınez-Miranda et al. (2015), the payments triangle Xij is first adjusted by

dividing by the development inflation δj and the zero-claims probability Qi. This gives

a triangle of adjusted payments:

X̃ij = Xij

δj(1−Qi)
.

It is easy to verify that the triangle {X̃ij ; (i, j) ∈ I} together with the counts triangle NI
follow model assumptions A1-A4 with Qi = 0 ∀i and δj = 1 ∀j. The DCL method

is applied to the adjusted payments triangle and the reported counts triangle as usual

and all the DCL parameters are estimated.

Since estimating the underwriting year inflation, γi, in DCL is a weak point because

it might be estimated with significant uncertainty (see Mart́ınez-Miranda, Nielsen, and

Verrall (2013a)), we estimate the underwriting year inflation from the less volatile in-

curred data.

The model for the incurred triangle, which is technically based on expert knowledge and

not actual data is as follows.

Aggregated incurred payments: II = {Iik : (i, k) ∈ I}, where

Iik =
k∑
s=0

m−1∑
l=0

E[Xisl| F(i+k)]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| F(i+k−1)],

and Fh is an increasing filtration illustrating the expert knowledge at time point

h.
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The incurred data are also adjusted in the following way

Ĩik = Iik
(1−Qi)

.

so that the adjusted payments triangle X̃ij and the adjusted incurred triangle Ĩik have

the same underwriting year inflation.

The next step is based on the so called BDCL method in Mart́ınez-Miranda, Nielsen,

and Verrall (2013a), which allows us to use the underwriting year inflation of the in-

curred data. We apply DCL to the triangles of reported counts, Nik, and the adjusted

aggregated incurred claims, Ĩik. Through the adjustment of the incurred triangle it

fulfills the model assumptions A1-A4 with Qi = 0. The parameters {γi : i = 1, . . . ,m}

are estimated exactly as described in Section 5.3.2, except that the triangle of aggregate

paid claims is replaced by the triangle of adjusted aggregated incurred claims. Then we

can replace the DCL underwriting year inflation estimates by those obtained from the

adjusted incurred data.

The last step is now to multiply the estimates of the outstanding liabilities we obtained

in this procedure by the development inflation δj and the zero-claims probability (1−Qi)

again. Let X̃BDCL
ij be the predicted value of X̃ij by using the above described BDCL

method. This is obtained exactly as described in the DCL method above by adding the

RBNS and IBNR, but with the replaced underwriting year inflation using the adjusted

incurred triangle. Then the predicted value of Xij including the prior information will

be given by X̃new
ij =δj(1−Qi)X̃BDCL

ij , for (i, j) ∈ J1. This way it is possible to generate

the distribution of future values incorporating the prior information.

The new method then consists of the following six-step procedure:

• Step 1: Payments triangle adjustment.

Devide the payments triangle by the development inflation δj and the zero-claims

probability (1−Qi) to get the adjusted payments triangle X̃ij = Xij

δj(1−Qi) to attain

to the DCL framework.

• Step 2: Incurred data adjustment.

Devide the aggregated incurred data by the zero-claims probability (1−Qi) to get

the adjusted incurred triangle Ĩik = Iik
(1−Qi) so that the estimate of the underwriting
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year inflation doesn’t change. Note that Iik are incurred claims for accident year

i and development period k.

• Step 3: Parameter estimation.

Estimate the model parameters using DCL for the data in the triangles NI and

X̃I and denote the parameter estimates by (p̂0, . . . , p̂m−1), µ̂, σ̂2 and {γ̂i : i =

1, . . . ,m}.

Repeat this estimation using DCL but replacing the adjusted triangle of paid

claims by the adjusted triangle of incurred data: ĨI = {Ĩik : (i, k) ∈ I}. Keep only

the resulting estimated inflation parameters, denoted by {γ̂Ii : i = 1, . . . ,m}.

• Step 4: Bornhuetter-Ferguson adjustment.

Replace the inflation parameters {γ̂i : i = 1, . . . ,m} from the adjusted paid data

by the estimates from the adjusted incurred triangle, {γ̂Ii : i = 1, . . . ,m}.

• Step 5: DCL prediction.

Get the prediction of the outstanding liabilities using DCL, more precisely the

RBNS and IBNR estimates as in (5.5) and (5.6).

• Step 6: Prediction readjustment.

Readjust the RBNS and IBNR estimates by multiplying them with the develop-

ment inflation δj and the zero-claims probability (1−Qi) and sum them up to get

the final estimate of the total outstanding claims in our original framework.

While Mart́ınez-Miranda et al. (2015) did assume prior knowledge on severity develop-

ment inflation and zero-claims, it did not take advantage of prior knowledge of accident

year inflation that often could be extracted from incurred data, see Mart́ınez-Miranda,

Nielsen, and Verrall (2013a). We provide a theoretical proof in the appendix for that

one can indeed extract the incurred accident inflation and stabilise estimation of the

model considered in this paper. The appendix shows that

E
[
Ĩik
]

= E

[
Iik

(1−Qi)

]
= αiγiµβkδk, (5.7)

which shows that X̃ij and Ĩik have the same underwriting parameters. This justifies that

we replace γ̂i which we obtained by applying DCL on X̃ij by the accident year inflation

γ̂i
I we got by applying DCL on the adjusted incurred triangle Ĩik.
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Finally, we give an example showing how additional data can be used to provide prior

information in practice. As in Mart́ınez-Miranda et al. (2015), the development infla-

tion and the zero-claims probability can be estimated by using a new run-off triangle.

Specifically we observe the total number of non-zero payments in accounting year i+ j

from claims with accident year i and denote this by Rij . The corresponding triangle is

denoted by RI = {Rij : (i, j) ∈ I}. Note that the variables Rij have cross-classified

mean E[Rij ] = αRi β
R
j for all (i, j). Therefore, we can use the three triangles (NI ,RI , XI)

simultaneously and simply apply the chain ladder algorithm three times:

NI provides the chain ladder estimators α̂i and β̂j for αi and βj ,

RI provides the chain ladder estimators α̂Ri and β̂Rj for αRi and βRj ,

XI provides the chain ladder estimators ̂̃αi and ̂̃βj for α̃i and β̃j .

Now the probability of zero-claims in the underwriting year, Qi, can be estimated from

the expression

Q̂i = 1− α̂Ri
α̂i
.

Furthermore, the development inflation parameters can be estimated by

δ̂j =
̂̃
βj∑j

l=0 β̂j−lπ̂l
=
̂̃
βj

β̂Rj
.

5.4 Classical chain ladder split

This section explains how the reinsurance split is done in practice. For the purposes

of this paper we have used motor third party liability bodily injury loss portfolio data

from a medium-sized Greek insurer. The triangular data provided were on an accident

year basis with yearly development periods for accident periods from 2000 to 2014 and

included all gross bodily injury claims incurred during the period and reported by 31

December 2014, which is the valuation date.

The total portfolio exposure measured as earned vehicle years was by 2014 around

400,000 in comparison to around 100,000 in 2000. In addition to the incurred and paid
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triangles, we also received the corresponding reported (non-zero) counts triangle and the

open claims counts triangles.

Individual claim triangulations were received for claims above EUR 200,000. For this

illustration, we have applied a common priority of EUR 500,000 to every individual

claim. In order to create the recoveries triangles, we first identify all individual claims for

which the excess-of-loss reinsurer has a participation, i.e. for losses whose incurred value

based on cumulative payments and the case reserve as at the valuation date exceeds the

priority threshold of EUR 500,000. Then the reinsurance recoveries triangles for those

individual claims is constructed and aggregated on an accident year basis to match

the gross triangles. Finally to construct the net triangles we subtracted the recoveries

triangles from the gross triangles.

Tables 5.1, 5.2 and 5.3 in Section 5.B in the appendix show the gross payments triangle

as well as the net payments triangle and the recoveries triangle after the split.

We can now apply different reserving methods to all three of these triangles and compare

the results. First, for the gross payments triangle, the classical CLM as well as DCL

with the appropriate adjustments give a reserve of EUR 138,952,059. We think this

is an appropriate estimate and are therefore trying to get a similar result. While the

original BDCL method (EUR 168,124,495) as well as the DCL prior method (EUR

160,468,905) give a much higher reserve, the new BDCL prior method has a reserve

of EUR 139,434,204, which is very close to the CLM result and may provide some

justification for the new modification.

Applied to the net payments triangle, the CLM and DCL provide a reserve of EUR

133,200,160. Similar to the results for the gross payments, the BDCL (EUR 161,432,377)

and the DCL prior method (EUR 153,728,832) have a much higher reserve, whereas the

new BDCL prior method comes to a reserve of EUR 133,724,859, which is again very

close to the CLM reserve.

The results for the recoveries triangle are a bit different. As predicted in section 2, the

CLM and DCL reserves are slightly overestimated at EUR 3,667,605. While the BDCL

method gives an even bigger reserve of EUR 4,010,271, the DCL prior reserve is appears

better estimated with a value of EUR 2,437,866. Again, the new BDCL prior method

calculates a reserve which appears to be more appropriate at EUR 2,502,285.
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Given these results, the conclusion for this practical approach is that we should apply a

bootstrap method based on the new BDCL prior method introduced in Chapter 5.3.3.

The bootstrap method is based on the method of Mart́ınez-Miranda et al. (2011), which

can be found in the DCL R-package of Mart́ınez-Miranda, Nielsen, and Verrall (2013b).

The authors simulate the counts from a Poisson distribution, the individual claims from

a gamma distribution and the delay from a Multinomial distribution. This is followed by

a Monte Carlo approximation. In addition to this, we include the development inflation

and the severity inflation of the incurred triangle, as defined in Chapter 5.3.3.

For simplicity we did not include the option for zero-claims probability in the bootstrap

results. Figure 5.1 shows the results of the BDCL prior bootstrap method applied to

the gross payments triangle. This shows the cash flow on the left hand side, and the

reserve on the right hand side, split into IBNR and RBNS as well as the total reserve, all

in Euros. The corresponding estimates, such as the mean for the total reserve of EUR

135,826,096, can be found in Table 5.4 in the appendix.

Figure 5.1: BDCL prior bootstrap applied on the gross payments triangle, 10,000
times. The cash flow as well as the reserves in Euros. The results are given for the

IBNR, RBNS and the total.

116



Chapter 5.

The more interesting results for this bootstrap can be found in Figure 5.2, which shows

the reserves for the net triangle on the left side together with the recoveries triangle on

the right side. These results will be compared to the split done using the new method

and simulation of individual claims in the following section. The corresponding estimates

can be found in Table 5.5 for the net triangle (mean total reserve = EUR 130,115,416)

as well as Table 5.6 for the recoveries triangle (mean total reserve = EUR 2,346,690).

Figure 5.2: BDCL prior bootstrap results for the reserves given in Euros, separated
into IBNR and RBNS together with the Total reserves. On the left hand side the
bootstrap method was applied on the net payments triangle and on the right hand side

on the recoveries triangle. The bootstrap was done 10,000 times.
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5.5 The prior knowledge double chain ladder split

In this section we consider an alternative method for the split into net payments triangle

and recoveries triangle as it is done in practice. This method will simulate individual

claims using the method in Section 5.3 which requires just the aggregated data and then

split the simulated individual claims using a given retention. When these individual

claims are split into a net and a recoveries part, they will be aggregated again and

a bootstrap method will be applied. In the following, this simulation method will be

explained in detail.

First, the development inflation needs to be extracted using the approach of Mart́ınez-

Miranda et al. (2015). Then, following the approach of this paper, the development

inflation is divided out of the payments, so that we are in the original DCL model. The

BDCL method is applied and we obtain the corresponding parameters, which are used to

calculate the mean and variance which we need for the simulation of individual claims.

The individual claims are simulated with a Gamma distribution, using the counts which

are simulated with a Poisson distribution in line with the DCL framework.

In contrast with the practical approach outlined in the previous section, the split between

insurance and reinsurance can be done for each individual claim, where it is simply

decided whether the value of the claim is smaller than a predetermined value given by

the reinsurance assumptions. If the claim is smaller, it is added to the insurance triangle.

If it is bigger, the predetermined value is added to the insurance triangle and the excess

is added to the reinsurance triangle.

This process is done separately for IBNR and RBNS claims. Then, the individual claims

can be added up to the usual aggregated IBNR and RBNS triangles. This procedure

is repeated multiple times. Finally, we multiply the development inflation back to the

results and calculate any required statistics such as the mean, quantiles etc.

The new simulation method then consists of the following procedure, following along

the steps of Section 5.3.3:

• Step 1: Payments triangle adjustment.

Devide the payments triangle by the development inflation δj and the zero-claims
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probability (1−Qi) to get the adjusted payments triangle X̃ij = Xij

δj(1−Qi) to attain

to the DCL framework.

• Step 2: Incurred data adjustment.

Devide the aggregated incurred data by the zero-claims probability (1−Qi) to get

the adjusted incurred triangle Ĩik = Iik
(1−Qi) so that the estimate of the underwriting

year inflation doesn’t change. Note that Iik are incurred claims for accident year

i and development period k.

• Step 3: Parameter estimation.

Estimate the model parameters using DCL for the data in the triangles NI and

X̃I and denote the parameter estimates by (p̂0, . . . , p̂m−1), µ̂, σ̂2 and {γ̂i : i =

1, . . . ,m}.

Repeat this estimation using DCL but replacing the adjusted triangle of paid

claims by the adjusted triangle of incurred data: ĨI = {Ĩik : (i, k) ∈ I}. Keep only

the resulting estimated inflation parameters, denoted by {γ̂Ii : i = 1, . . . ,m}.

• Step 4: Bornhuetter-Ferguson adjustment.

Replace the inflation parameters {γ̂i : i = 1, . . . ,m} from the adjusted paid data

by the estimates from the adjusted incurred triangle, {γ̂Ii : i = 1, . . . ,m}.

• Step 5: Mean and variance.

Calculate E[Yij ] = γiδjµ and Var[Yij ] = γ2
i δ

2
jσ

2.

• Step 6: Simulate counts.

Simulate IBNR counts, NIBNR, and RBNS counts, NRBNS , separately using

pois(αiβj).

• Step 7: Simulate individual payments.

Simulate individual payments (IBNR and RBNS separately) using gamma(E2/V ar, V ar/E)

NIBNR-times and NRBNS-times, respectively.

• Step 8: Split.

The individual claims are split into a net part for the insurance company as well as

a recoveries part for the reinsurance company. The split is done by comparing the

values of the individual claims to a given retention value for each accident year.

• Step 9: Aggregate data.

The split claims are aggregated into triangles.
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• Step 10: Repeat multiple times.

The process is repeated multiple times.

• Step 11: Prediction readjustment.

Readjust the RBNS and IBNR estimates by multiplying them with the develop-

ment inflation δj and the zero-claims probability (1−Qi) and sum them up to get

the final estimate of the total outstanding claims in our original framework.

• Step 12: Calculate mean, quantiles etc.

Finally, statistical values such as the mean and variance can be calculated.

Figure 5.3 shows this simulation applied on the gross payments data triangle given in

Table 5.1 with 10,000 repetitions. This gives the reserves in Euros, split into IBNR and

RBNs together with the total reserves. On the left hand side we have the plots for the

net triangle resulting from the simulated split, and on the right hand side the results for

the recoveries triangle.

Figure 5.3: Results of the simulations for the reserves given in Euros and seperated
into IBNR and RBNS, together with the Total reserves. On the left hand side the net
payments triangle is shown, where the split was done for the individually simulated
claims. On the right hand side the recoveries triangle is presented. The simulation was

done 10,000 times.
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The results of the new method can be applied to those of the practical approach in the

previous section. This is summarised in Figure 5.4.

Figure 5.4: Total reserves for the BDCL prior bootstrap, applied on the split data
from Chapter 5.4, in comparison to the Total reserves from the bootstrap simulation

from Chapter 5.5

The left side shows the Total reserves for the net triangles. While the graph for the

BDCL prior bootstrap in clearly higher, the tail for the simulation method is clearly

bigger on both sides. The results for the Total reserves for the recoveries triangles are

similar. The graph for the BDCL prior bootstrap starts lower around zero, but the

rest of the two graphs is very similar. However, the distributions of the two different

approaches have some similarities but need to have greater consideration in a practial

context.

5.6 Conclusions

As presented in Figure 5.4, the results of our new simulation split method can be com-

pared to the results given by the method used in practice. For the new method, the split

via simulation presented in Chapter 5.5 is carried out by estimating individual claims
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from aggregate data and applying a bootstrap method afterwards. This gives a more

credible, coherent and flexible framework and it would be very interesting to test this in

a practical context where the retention level varies by year. It would also be useful to

assess the usefulness of this approach by considering a range of different types of data

and to compare with other individual reserving methods. We believe that the framework

of DCL is probably easier to use in practice and yet still has enough flexibility for a more

coherent consideration of the effects of reinsurance on reserves.
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“Double chain ladder, claims development inflation and zero-claims”. In: Scandinavian

Actuarial Journal 5, pp. 383–405.

Verrall, R., J. P. Nielsen, and A. Jessen (2010). “Including Count Data in Claims Re-

serving”. In: Astin Bulletin 40, pp. 871–887.

122

http://cran.r-project.org/web/packages/DCL/index.html
http://cran.r-project.org/web/packages/DCL/index.html


Chapter 5.

5.A Appendix: Proof of (5.7)

To justify our new method introduced in Chapter 5.3.3, we need to calculate the expec-

tation of the adjusted incurred triangle.

First, we use the definition of Iik, the tower property and the definition of Xikl to get

E[Iik] = E

[
k∑
s=0

m−1∑
l=0

E[Xisl| F(i+k)]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| F(i+k−1)]
]

=
k∑
s=0

m−1∑
l=0

E[Xisl]−
k−1∑
s=0

m−1∑
l=0

E[Xisl]

=
m−1∑
l=0

E[Xikl]

=
m−1∑
l=0

E

N
paid
ikl∑
h=0

Y
(h)
ikl

 .
Now, using (A4), we can apply Wald’s equation and use the tower property again. Hence,

we obtain

E[Iik] =
m−1∑
l=0

E
[
Npaid
ikl

]
E
[
Y

(h)
ikl

]

=
m−1∑
l=0

E
[
E
[
Npaid
ikl |Nik

]]
E
[
Y

(h)
ikl

]
.

Therefore, using (A2), (A1), (A3), and (5.1), we conclude the following unconditional

mean for the incurred claims

E[Iik] =
m−1∑
l=0

E[Nikpl]E
[
Y

(h)
ikl

]

=
m−1∑
l=0

αiβkplγiδk(1−Qi)µ

= αiγi(1−Qi)µβkδk
m−1∑
l=0

pl

= αiγi(1−Qi)µβkδk.
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Finally, we consider the expectation of Ĩik, which is the incurred claims triangle where

we devided out the zero-claims probability

E
[
Ĩik
]

= E

[
Iik

(1−Qi)

]
= αiγiµβkδk,

which proves (5.7). This means that X̃ij and Ĩik have the same underwriting parameters.

Therefore, using either one of these triangles, we estimate the same DCL parameters,

including the accident year inflation parameter γi. That justifies that we replace γ̂i

which we obtained by applying DCL on X̃ij by the accident year inflation γ̂iI we got by

applying DCL on the adjusted incurred triangle Ĩik.

5.B Appendix: Data
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C
hapter

5.

345115 550155 1165973 1703483 1890192 1165754 1112124 1172613 424153 401842 147602 171353 79772 281345 266548
350771 1307179 1843726 2746214 2587467 1844121 768873 307287 600012 37169 955466 209065 273838 25515
495836 1698146 2426735 4139259 3010904 3245849 2424486 2040852 722079 1836805 885848 226836 619320
618012 1711657 2560425 3288447 2973974 2834974 1397271 766589 1327613 692792 525813 159328
948012 2809693 3788681 3993582 2964559 3255971 812468 1953830 810337 624285 128553
953333 2325650 4075835 5574008 5441890 4169716 2838634 2334831 1134118 542453

1266559 3436062 3840499 5820558 5346293 5101668 1912277 2327070 1806402
1590238 3794768 4470900 4917158 5652933 4753303 3542325 2247495
1484722 2726065 3958068 4602047 4100856 3243477 1490074
1832755 2174965 4105838 3803571 3609703 4316400
1829793 2603989 3768836 4089502 2826510
1569902 2820043 4116023 2578524
1391136 3576140 1997271
2260336 3695117
981728

Table 5.1: Gross payments in Euro.125



C
hapter

5.

345115 550155 1165973 1703483 1890192 1165754 1112124 1172613 269840 397567 142807 161728 79772 281345 266548
350771 1307179 1843726 2746214 2566190 1844121 768873 307287 600012 37170 917356 209065 273838 25515
495836 1698146 2425159 4051087 3010904 3131364 2212115 1751729 717586 1558083 612638 217397 499180
618012 1711657 2560425 3258378 2903194 2741042 1392506 761189 1125816 607190 523861 158426
948012 2744998 3782286 3954751 2872013 3096314 805336 1945795 789209 604091 96978
953333 2325650 4075835 5444170 5235030 3869351 2793398 2224029 1040856 516568

1266559 3436062 3840500 5669342 5345112 4861694 1807798 2244928 1802414
1590238 3794768 4470899 4917158 5613373 4488985 3438274 2246031
1484722 2726066 3958068 4590839 4100856 3243477 1490074
1832755 2174965 4105838 3785096 3605612 4314345
1829793 2603989 3768836 4037457 2416537
1569902 2820044 4116022 2578524
1391136 3576141 1997270
2260336 3695117
981728

Table 5.2: Net payments in Euro.

0 0 0 0 0 0 0 0 154313 4275 4795 9625 0 0 0
0 0 0 0 21277 0 0 0 0 0 38110 0 0 0
0 0 1576 88172 0 114485 212371 289123 4493 278722 273209 9440 120140
0 0 0 30069 70780 93931 4765 5400 201797 85601 1953 902
0 64695 6396 38830 92545 159658 7132 8035 21128 20196 31574
0 0 0 129838 206860 300365 45235 110803 93262 25886
0 0 0 151216 1180 239975 104479 82142 3988
0 0 0 0 39561 264317 104051 1465
0 0 0 11209 0 0 0
0 0 0 18475 4091 2055
0 0 0 52045 409973
0 0 0 0.00
0 0 0
0 0
0

Table 5.3: Recoveries in Euro.
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5.C Appendix: Results

mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total
1 26097618.95 2392931.78 20886771.49 22324140.69 26032394.84 30174384.25 32079872.39
2 24158342.00 2521628.99 18748036.29 20192400.26 24091427.19 28492022.04 30484948.59
3 21139107.92 2530340.00 15801701.38 17228688.02 21014715.81 25525694.20 27528586.39
4 17091987.23 2379023.40 12055839.23 13347033.36 16983395.41 21181064.02 23252390.09
5 13372286.22 2323742.40 8653948.82 9808879.04 13216264.91 17435683.34 19528445.78
6 9353233.12 1938764.78 5505334.88 6405189.05 9234879.15 12725025.87 14589337.48
7 7270948.52 1782991.56 3830245.99 4640998.13 7126495.58 10452121.69 12142565.81
8 5092876.23 1565939.62 2152866.47 2815683.11 4930607.05 7959667.88 9439412.66
9 3962208.40 1526824.45 1300943.34 1856061.17 3763333.34 6731605.89 8528455.08

10 2834724.63 1403185.60 604038.64 986673.29 2617255.21 5409836.47 7127125.04
11 1966353.27 1273631.19 183392.94 412683.67 1713562.13 4430254.95 6110966.12
12 1665933.68 1263099.74 55024.65 211665.11 1369893.70 4069701.90 5879908.19
13 1081440.15 1211645.98 0.00 3929.37 693181.94 3515330.99 5457305.15
14 739036.15 1258684.81 0.00 0.00 197604.85 3293106.90 5580981.11
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 135826096.47 6838341.10 120590726.18 124742962.72 135733838.59 147245419.76 152650623.32

Table 5.4: Results from the BDCL prior bootstrap of Chapter 5.4 for the gross
payments triangle in Euro. These are the total reserves, so the sum of the IBNR and

RBNS. The bootstrap was done 10,000 times.
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mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total
1 25375456.64 2309316.00 20410202.99 21812817.43 25272033.15 29356647.09 31145553.62
2 23367871.35 2391471.13 18264214.15 19600152.45 23304682.05 27451256.58 29394697.61
3 20374818.94 2435560.18 15175869.33 16509581.78 20282202.40 24608492.86 26523551.82
4 16413241.22 2287170.69 11487626.17 12906855.53 16295219.87 20434716.77 22162714.95
5 12717529.98 2223454.61 8145667.34 9350835.16 12539153.03 16613696.28 18518427.48
6 8838253.04 1808325.93 5274691.37 6130174.30 8692292.16 12008506.92 13727742.86
7 6778492.54 1711673.76 3445007.42 4273133.05 6610866.19 9837135.77 11560686.36
8 4737099.84 1455547.35 2077801.13 2629966.98 4581030.90 7373478.63 8819808.31
9 3615560.12 1405362.20 1198578.44 1685708.15 3406266.55 6214069.17 7716290.78

10 2627966.69 1307648.92 552692.38 926132.07 2411894.66 5038921.62 6740394.75
11 1895212.46 1236013.10 154656.55 378060.29 1651657.82 4237719.26 5827700.68
12 1580611.59 1196904.29 51467.78 211778.91 1291175.73 3880311.90 5580858.46
13 1074318.33 1203949.11 0.00 4932.29 679491.51 3577721.41 5309385.83
14 718983.45 1174810.48 0.00 0.00 197268.01 3101279.38 5554770.14
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 130115416.19 6562266.35 115379290.79 119627422.38 129969539.83 141239104.59 145533609.00

Table 5.5: Results from the BDCL prior bootstrap of Chapter 5.4 for the net payments
triangle in Euro. These are the total reserves, so the sum of the IBNR and RBNS. The

bootstrap was done 10,000 times.
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mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total
1 585872.24 941073.48 3137.43 9692.16 234273.07 2324506.56 4640738.44
2 293379.56 516258.50 282.59 1565.84 99755.80 1255333.65 2582023.85
3 327232.59 652097.26 325.07 3114.14 108482.10 1371200.64 3107224.35
4 295013.89 623676.31 52.34 903.10 82677.89 1370850.44 3250473.11
5 285731.58 693697.94 0.09 22.14 50689.04 1307049.38 3516983.09
6 143036.48 593527.17 0.00 0.09 6699.26 590149.50 2798207.32
7 82530.96 242632.80 0.00 0.00 3369.64 437610.08 1128328.50
8 216566.46 976588.86 0.00 0.00 539.53 996581.57 4397546.27
9 35267.81 188761.48 0.00 0.00 0.00 144058.40 948118.52

10 33907.97 239799.97 0.00 0.00 0.00 86469.40 1014379.78
11 6000.67 47366.28 0.00 0.00 0.00 6537.46 168103.36
12 42150.26 277582.67 0.00 0.00 0.00 135258.32 1185302.35
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 2346690.46 1988645.51 243455.77 447488.14 1791080.87 6151492.72 9678591.63

Table 5.6: Results from the BDCL prior bootstrap of Chapter 5.4 for the recoveries
triangle in Euro. These are the total reserves, so the sum of the IBNR and RBNS. The

bootstrap was done 10,000 times.
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mean.total net sd.total net Q1.total net Q5.total net Q50.total net Q95.total net Q99.total net
1 25905055.39 3727872.86 18100170.70 20132476.50 25711255.14 32201375.33 35508312.24
2 23932228.36 3965650.38 15820465.78 17946494.20 23679016.53 30885342.55 34376799.12
3 20917492.41 3926735.56 12793883.25 14877169.70 20690675.61 27788991.01 31208214.31
4 17049799.96 3786929.48 9634375.59 11338190.75 16765247.54 23598688.19 27331568.40
5 13240383.34 3585513.43 6547856.46 8031280.04 12866692.70 19726623.28 23318292.49
6 9248605.85 2926938.34 3933173.83 5117001.41 8882062.82 14567816.43 17615450.70
7 7219015.05 2807373.23 2490929.63 3427338.94 6835029.89 12397890.85 15656106.74
8 5114767.79 2446660.80 1175107.61 1911161.06 4723691.15 9712334.84 12595022.88
9 3928749.50 2327558.23 561106.50 1058269.55 3510452.03 8218138.60 11571565.67

10 2908164.48 2210888.76 179192.80 463185.85 2362591.36 7073530.70 10415142.51
11 1947509.09 1916662.98 12757.13 95797.52 1397202.77 5713283.57 9201440.39
12 1665008.85 1940642.31 1420.44 22588.46 1015936.26 5613686.03 9156401.85
13 1098807.18 1928443.07 0.00 0.81 294000.20 4877308.49 9461457.99
14 758933.18 1923947.33 0.00 0.00 13448.57 4233172.23 9580323.43
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 134934520.44 10884256.09 111265162.53 117982934.21 134411921.90 153765855.98 162619948.01

Table 5.7: Results for split via the simulation of Chapter 5.5. Presented are the
resulting net payments in Euro. These are the total reserves, so the sum of the IBNR

and RBNS. The simulation was done 10,000 times.
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mean.total Ex sd.total Ex Q1.total Ex Q5.total Ex Q50.total Ex Q95.total Ex Q99.total Ex
1 263869.44 490083.99 0.00 0.00 0.00 1262238.30 2279729.73
2 305291.26 572326.32 0.00 0.00 12446.89 1395779.60 2519679.49
3 316386.93 602782.84 0.00 0.00 0.00 1519499.66 2759573.25
4 301615.74 621647.67 0.00 0.00 0.00 1527947.84 2883860.62
5 283558.21 643016.92 0.00 0.00 0.00 1479181.86 2963271.38
6 198625.05 516634.95 0.00 0.00 0.00 1183692.09 2368634.91
7 161994.67 495942.87 0.00 0.00 0.00 1034987.24 2399881.13
8 124559.56 443331.70 0.00 0.00 0.00 855657.13 2190795.45
9 121863.37 519594.03 0.00 0.00 0.00 793234.00 2456611.84

10 92518.12 436308.94 0.00 0.00 0.00 582338.07 2281324.28
11 78236.23 493011.67 0.00 0.00 0.00 222062.24 2175314.15
12 50266.04 412240.24 0.00 0.00 0.00 0.00 1572289.27
13 43666.00 414266.48 0.00 0.00 0.00 0.00 1526001.39
14 33882.15 460701.52 0.00 0.00 0.00 0.00 164083.49
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 2376332.76 1933288.21 0.00 213633.08 1947229.02 5954247.89 8892712.70

Table 5.8: Results for split via the simulation of Chapter 5.5. Presented are the
resulting recoveries in Euro. These are the total reserves, so the sum of the IBNR and

RBNS. The simulation was done 10,000 times.
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