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ABSTRACT 

This work is motivated by the need for low-order aerodynamic models to predict accurately the effect on 

profile drag of controlling attachment line transition. Head’s entrainment method, a rapid integral boundary 

layer technique used for design studies on swept wings, suffers from the governing swept-tapered turbulent 

integral boundary layer equations being ill-posed in the vicinity of the attachment line. This singularity has 

been treated using crude extrapolations of the attachment-line similarity solution for over half a century, but 

this approach is unlikely to deliver accurate predictions of the effect of changes in the attachment line flow on 

profile drag. An experimental study has been carried out to explore the nature of the turbulent flow in the 

vicinity of a highly-swept swept attachment line and has revealed a quite complex, non-monotonic 

development of the momentum thickness in this region. It has also revealed lower levels of twist in the 

boundary layer velocity profiles than anticipated from the highly-curved character of the inviscid flow 

streamlines. These observations have prompted an alternative approach to the modelling of the flow in this 

region which not only successfully eliminates the lack of robustness in the swept-tapered equations but which 

also matches the experimental results to within ±5%. 
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NOMENCLATURE 

β angle between the limiting and external streamline 

c chord along the line of flight 

cE entrainment coefficient used in Head’s method [1] 

δ boundary layer thickness 

δ1, δ2 boundary layer displacement thicknesses 

η spanwise co-ordinate (collinear with y direction) 

θ11, θ12, θ21, θ22 boundary layer momentum thicknesses 

f1, f2, f3, f4 scaling factors relating crossflow integral length scales, defined in the appendix 

H boundary layer shape factor, H =δ1 / θ11 

H1 entrainment shape factor, H1=(δ - δ1) / θ11 

k von Karman’s constant from universal log-law 

κT  curvature of conical arc normal to generators of a swept-tapered wing, κT =1/r 

Λ local sweep angle between line-of-flight co-ordinate ξ and spanwise co-ordinate η 

Rθ  Reynolds number based on momentum thickness 

r  radius of curvature of conical arc normal to generators of a swept-tapered wing 

σ shorthand for sinψ tanβ 

τ0 wall shear stress 

Ue velocity of the inviscid flow at the edge of boundary layer 

U1 component of Ue parallel to the x direction 

u component of boundary layer velocity parallel to external streamline 

u+ boundary layer velocity parallel to external streamline in wall units, u+ = u/(Ue √(cf /2)) 

V1 component of Ue parallel to the y direction 

v component of boundary layer velocity normal to external streamline 

x conical co-ordinate normal to the direction of the wing generators 

ξ line-of-flight co-ordinate 

y conical co-ordinate parallel to the direction of the wing generators 

z wall normal co-ordinate 

z+  normalized wall normal co-ordinate, z+= (Ue z / υ) √(cf /2) 

υ  kinematic viscosity 

ψ angle between inviscid streamline and x co-ordinate, ψ=tan-1 (V1 / U1) 

1.0 INTRODUCTION 

For transport aircraft wings operating at high Reynolds number, the flow along the attachment line (AL 

hereafter) is often turbulent and numerical methods, including low-order CFD codes, need to be able to predict 

the development of the wing boundary layer flow starting from a turbulent AL. An example of such an 
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application is the recent Airbus study undertaken by Alderman et al. [2] on the control of attachment line 

transition using a turbulent contamination avoidance device. In contrast to an unswept wing, the presence of a 

spanwise velocity component introduces large curvature in the inviscid streamline as the flow is turned from 

the spanwise direction at the AL towards the chordwise direction by the acceleration normal to the leading 

edge (LE) as shown schematically in Figure 1. Modelling the flow in the vicinity of the AL poses significant 

challenges due to the presence of highly curved streamlines and possibly large turbulence anisotropy arising 

from the rapidly changing shear strain.  

 

Figure 1: Schematic representation of the flow along a swept wing. 

Recent years have seen complex-topology RANS codes displace the lower-fidelity methods which formed 

the mainstay of the wing design process during the 1980s and 1990s. However there is renewed interest in 

low-order CFD as a replacement for simple data-sheet methods in the conceptual/preliminary design phases, 

particularly when flow control schemes are being considered. One such method is the Airbus Callisto code, a 

turbulent boundary layer method based on the von Karman momentum integral equations, incorporating the 

Lag-Entrainment model of Green et al. [3], and modelling three-dimensional turbulence using the streamline 

analogy. The coupling of boundary layer analysis with inviscid field analysis for attached and weakly separated 

flows is described in detail by Lock & Williams [4], and has the advantage of requiring considerably less 

computing resource than RANS, with comparable accuracy for attached flows, while simplifying the isolation 

of the profile drag component of a wing.  

The rationale behind the Callisto development was to develop a Lag-Entrainment code which could be 

coupled to many different inviscid solvers, and indeed to develop an object-oriented (OO) coupling framework 

which could be exploited by other boundary layer methods. Callisto has now been coupled to a wide range of 

codes: the BAE SYSTEMS code RANSMB (structured multi-block) and Flite3D (unstructured Euler); Fluent, 

via User-Defined Functions; and the DLR Tau code. The method is accessed by the inviscid solvers as a shared 

object library: this software architecture means that the same modelling, implemented via the same lines of 

code, is accessed by each solver. As well as meeting the re-usability objective for OO software, this approach 

Ue 
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simplifies the transfer of novel flow-physics models (for example, laminar flow control) from research-type to 

industrial methods with some confidence. In order to permit rapid conceptual flow control studies on transonic 

wing geometries, Callisto has also been coupled to the full potential aerofoil method of Garabedian & Korn 

[5], extended to handle infinite-swept and swept-tapered wing flows using Lock’s transformation [6]. Callisto 

Viscous Garabedian & Korn, or CVGK, is therefore a 2½D version of the BVGK method developed at the 

Royal Aircraft Establishment (RAE) [7]. A recent numerical study conducted by Atkin and Gowree [8] 

demonstrated that CVGK can predict the drag on swept wings in transonic flow with good accuracy.  

In the case of the turbulent AL, the streamline analogy leads to ill-posed governing equations in a very 

confined region downstream of the AL where the streamline direction is more or less perpendicular to the 

marching direction of the boundary layer solver. The singularity at the AL itself is resolved by invoking local 

similarity arguments, but immediately downstream of the AL there are lingering robustness issues which 

seemingly cannot be resolved. In Callisto this region has to date been approximated by simply extrapolating 

the results of the AL calculation over the first 0.5% or so of wing chord. 

Due to the lack of detailed measurements in this region it is difficult to benchmark this approximation or to 

derive a more reliable semi-empirical model for the turbulence. The lack of good data for a turbulent boundary 

layer at the LE of a swept wing may be explained by the topological complexity of the three-dimensional (3D) 

boundary layer, which also tends to be very thin at its origin and growing very slowly due to the presence of a 

favourable pressure gradient. An experimental campaign was therefore conducted to investigate the behaviour 

of the viscous flow in the vicinity of the AL generated on a wing model with very high LE sweep so as to 

validate and, if possible, improve the near-attachment flow modelling in Callisto and related boundary layer 

codes. 

The layout of this paper is as follows. Section 2 contains a description of the numerical modelling, 

comprising the governing equations and the approximation to these at the leading edge to overcome numerical 

issues. In section 3, a brief description of the experiment is presented; more detail of the hot wire and optical 

alignment system can be found in Gowree et al. [9], together with an analysis of the accuracy of the 

measurements.  The experimental results are presented in section 4 and, based on the new insight from these 

findings, the governing equations were modified for the region of the flow immediately downstream of the 

attachment line. These modifications are presented in section 5 along with a comparison of the old and new 

approached with the new experimental results. The paper concludes with a discussion of both experimental 

trends and numerical modelling and a summary of the contribution to the body of knowledge. 

2.0 NUMERICAL MODELLING IN CALLISTO 

2.1 Co-ordinate System 

The idealized geometry used by 2½D methods to model swept-tapered wings is illustrated in Figure 2. The 

wing is assumed to be of constant section and twist, with leading and trailing edges meeting at a point O. All 

radii r joining the origin O with a point on the wing surface are generators of that surface. This conical 
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symmetry is assumed to extend to the external inviscid flowfield such that isobars of surface pressure are 

coincident with the wing generators. 

 

Figure 2: schematic of a swept-tapered wing illustrating the line-of-flight section AB and the undeveloped 

computational arc AC for the boundary layer calculation. 

Both the magnitude and the direction of the inviscid flow at the boundary layer edge are assumed to be 

independent of span-wise position. This allows the variation of the viscous flowfield with span-wise position 

to be reduced to a simple length scale dependence: in laminar boundary layer theory the boundary layer 

thickness can be shown to vary with r½ [10] [11], while for turbulent boundary layers the integral length scale 

varies more or less as r [12]. To simplify reduction of the governing equations to infinite-yawed-wing form as 

the local taper radius r tends to infinity, a taper curvature κT is used. 

2.2 Governing Equations 

Although based upon a well-established theory, the integral boundary layer equations within Callisto have 

been developed and refined over a number of years, starting with the entrainment method of Head [1], which 

added to the classical von Karman equation a transport equation for the boundary layer shape factor, H. Green 

[13] extended Head’s method to compressible flows by means of a transformed shape factorH, defined in 

equation (6), and then introduced the effects of turbulence history by adding an equation to account for the lag 

in the response of the turbulence to changes in the strain field [3]. At the same time Smith [14] extended the 

basic approach to three-dimensional flows by employing the streamline analogy, whereby turbulence 

characteristics in a two-dimensional boundary layer are assumed to be replicated by the flow resolved the 

direction of the external streamline in a three-dimensional boundary layer: closure of the increasing number of 

momentum thicknesses is achieved by assuming functional dependence of those length scales upon the 

streamwise momentum thickness, θ11, the transformed shape factorH, and the twist β of the limiting 

streamline (at the wall) relative to the direction of the inviscid flow. Smith’s fully three-dimensional approach 

was adapted for the special case of swept-tapered wings described above by Ashill and Smith [12], to provide 

a low-cost approach to assessing the effect of sweep and taper on turbulent boundary layers on transonic wings. 
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The advantages of lower-cost, approximate methods are still evident today where they can be enablers for 

CPU-intensive optimization strategies. 

The governing equations in the Callisto code are derived from the system of three integral equations for 

momentum, resolved parallel and normal to the inviscid flow streamline, and for entrainment, as presented by 

Ashill and Smith [12]. The latter system of equations is presented in the Appendix, as are the principal 

modifications to the notation and to the choice of independent variables adopted for the Callisto method. The 

resulting system, expressed in the conical-surface (x,y) co-ordinate system illustrated in Figure 2, can be 

written: 
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The non-trivial coefficients Am and λ'n are defined in the appendix. The independent variables in the above 

equations relate to the three-dimensional boundary layer profiles as follows: 
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For completeness, we note that the system of equations above can be solved only for attached flows and 

that, for flows near to separation or mildly separated, the inviscid velocity gradient becomes an independent 

variable (rather than a constant factor in the coefficients λ1, λ2 and λ3) governed by an additional equation for 

the wall-normal velocity at the edge of the boundary layer. The principles of the approach are well described 

by Lock and Williams [4]; however for the purposes of this paper the basic, three-equation system is sufficient 

to calculate the development of a turbulent boundary layer near the AL. We also note here that the entrainment 

equation can be augmented by Green’s lag equation but again, as it is not central to the behaviour of the three-
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equation system at the AL, it will not be discussed in this paper. One further complication is that the governing 

equations in Callisto are transformed into a non-orthogonal co-ordinate system, (ξ,η) in Figure 2. However the 

additional terms do not alter the numerical challenge at the leading edge and so, again, are not introduced in 

this paper. Rearranging equation (1) above, and substituting the expressions listed in the appendix, we obtain 

the first-order, non-linear differential system: 
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where we have introduced the shorthand 

 βψσ tansin=   (8) 

This type of initial-value problem is well suited to solution by a Runge-Kutta scheme: the variant due to 

England [15], with a facility to reduce the marching step size if the estimated truncation error exceeds a pre-

defined threshold, is used in Callisto. 

2.3 Conditions for singularity of the viscous derivatives matrix 

There are two conditions where the system of equations (7) can clearly be seen to become singular. The first 

is most clearly evident in case of two-dimensional flow where tanβ ≡ 0, cosψ ≡ 1 and sinψ ≡ 0 for all x (so 

that σ ≡ 0), when the normal momentum equation can be de-coupled from the rest of the system, leaving the 

following equation: 
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The singularity occurs when the parameter 
Hd

dH1  in equation (9) becomes zero (at separation). This condition 

is well-known and is dealt with by introducing a transpiration equation to the system and by changing the 

dependent variables, as discussed above. 

The second singular case is AL flow, as illustrated in Figure 3 below: locally (at A-A) both cosψ = 0 and 

tanβ = 0 so that σ = 0, leaving all but two terms in the matrix (7) equal to zero. 
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Figure 3: The inviscid flow vectors in the vicinity of the AL. 

This AL singularity was tackled by Cumpsty and Head [16] and later by Smith [17] by differentiating the 

spanwise momentum equation with respect to the x co-ordinate to obtain the following non-linear simultaneous 

equations for the flow gradients at the AL: 
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Note that U1 and V1 (see appendix) are re-introduced in the above equations, rather than ψ, for clarity. These 

equations can be solved iteratively, but straightforwardly, to obtain the momentum thickness and rate-of-

change of limiting streamline angle at the AL (the rate of change of U1 is a boundary condition given by the 

inviscid flowfield). The AL solution provides the initial values for equation (7) which, in principle, can be 

solved at any point downstream of the AL, given the finite rate of change of both U1 (and therefore ψ) and β 

at the AL. It turns out that, depending upon the resolution of the computational domain very near the AL, 

equation (7) is ill-posed until a short distance downstream of the AL – the experience of the authors has been 

that the system of integral equations cannot be robustly tackled with a Runge-Kutta scheme until the angle ψ  

has decreased to about 80°. Similar difficulties were reported by Thompson and McDonald [18] and later by 

Smith [17], who adopted a numerical fix similar to the one employed by Callisto and described below. The 

issue may not have been encountered more widely because the problem region accounts for less than 1% of 

the chord length and would not impact upon less-finely resolved computations. However standards of 

resolution for the analysis of leading edge flows have tightened in recent years, owing to the need to resolve 

the development of crossflow instability on laminar leading edges: adoption of the same numerical domain for 

the analysis of swept wings with turbulent AL invariably throws up this numerical feature. 
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2.4 Leading Edge Approximation 

On the basis that the rates of change of both ψ  and β are small for some distance downstream of the AL, a 

numerical fix was devised, involving a simple extrapolation of the AL similarity solution, used by 

Cumpsty/Head/Smith [16] [17], over the region where the integral equations were ill-posed, as defined by the 

criterion ψ > 80°. Such a sacrifice of accuracy for robustness was justified on the basis of the very short region 

concerned and the strongly favourable pressure gradient over this region, leading to the belief that the 

downstream development of the boundary layer integral quantities would not be significantly affected, hence 

providing acceptable accuracy for the calculation of the profile drag. This assumption appears to have been 

justified, but a fuller discussion is left until later in the paper, along with the demonstration of the effect of this 

numerical fix on the solution of the boundary layer equations. At this point we simply observe that there were 

no experimental data available to validate, or otherwise, this approximation: hence the experimental study 

reported below. 

3.0 EXPERIMENTAL INVESTIGATION 

3.1 Experimental Set-up and Procedures  

The experimental AL was generated on NACA0050 aerofoil profile, at zero angle of incidence, swept back by 

60º. The model was made of wood with a normal-to-LE chord length of 466 mm and a LE radius of curvature 

of 114 mm. It was mounted between the floor and ceiling of the test section of the T2 wind tunnel in the 

Handley Page Laboratory at City, University of London, as shown in Figure 4. 

 

Figure 4: schematic of the swept wing model mounted in the T2 wind tunnel. 

The T2 tunnel has a speed range of 4 to 55 m/s. The test section measures 1120mm wide by 800mm high 

by 1.2m long: the model extended into the tunnel diffuser by 150mm. The blockage ratio introduced by such 

a large model is mitigated to an extent by the high sweep angle. Because the present investigation is focussed 

on the flow very near the swept leading edge, the necessary numerical adjustments to the accompanying 

calculations can be achieved by an ‘effective sweep’ correction which infers the true magnitude of the velocity 

component parallel to the attachment line based upon the measured value of the pressure coefficient at the 
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attachment line. The reader is referred to reference [9] for a comparison of the chordwise pressure distributions 

obtained from parallel rows of pressure taps around the model near the root (bottom), mid-span and tip sections. 

These pressure distributions and subsequent flow visualisations suggest that the flow separated at about 80% 

chord over most of the span of the model. 

A surface-mounted boundary layer traverse probe with micro-displacement capability was employed to 

capture the velocity profile, with a resolution of 2.5µm per step achievable within an accuracy of ±0.09µm. 

This traverse, and the optical system used to calibrate probe displacement from the surface, is described in 

detail by Gowree et al. [9] for measurements on the attachment line (almost exactly on the model centreline). 

The right-hand image in Figure 5 shows the additions made to the traverse, still fixed to the centreline line of 

the model, to allow the hot-wire probe to survey the flow away from the attachment line. The left-hand image 

illustrates how the axis of the optical alignment system was inclined to enable the same technique as described 

in reference [9] to be used for determining distance between probe and model surface. 

 

 

Figure 5: Arrangement used to apply the techniques used by Gowree et al. [9] to probe the flow away from 

the leading edge of the model. 

A single normal (SN) hot wire probe, Dantec 55P15, was used to capture the single velocity component at 

the AL and a single yawed (SY) probe, 55P12, for the measurement of the two in-plane velocity components 

downstream of the AL. The constant temperature anemometry (CTA) technique was used and the hot wire 

probes were connected to the DISA-55M10 CTA Standard Bridge (M-Unit) module. The M-Unit was in turn 

interfaced with a National Instruments (NI)-DAQ card with built-in A/D converter and installed in a PC for 

data acquisition using NI LabVIEW. The hot wire output signal, sampled for 10 seconds at 10 kHz, was pre-

filtered through a low-pass filter rated at 4.8 kHz prior to recording. King’s law was applied for the reduction 

of hot wire output voltage. The calibration of the SN probe and measurement of a single velocity component 
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at the AL was straight forward, but more challenging for the SY probe used to measure the two velocity 

components immediately downstream of the AL. In this case Bradshaw’s method described in reference [19] 

was employed and a yaw calibration was required due to the directional sensitivity of the SY probe. The 

estimated error for the hot wire measurements was less than 5% [19] but the excellent agreement between the 

measured velocity profiles along a laminar attachment line and the theoretical solution for swept Hiemenz flow 

(Fig 17 of reference [9]) suggests that the actual error, including probe interference, was marginal. 

Preston’s [20] technique was employed for the measurement of local surface shear stress. At the AL, the 

flow resolves into a single, spanwise velocity component, similar to the streamwise flow along a flat plate, 

thus the method was expected to yield reasonable accuracy. This technique has thus far been restricted to 2D 

flows where the skin friction acts in the same direction as the velocity component; however, for the flow 

downstream of the AL, an attempt was made to extend this technique to the 3D boundary layer under the highly 

curved streamline at the LE of a swept wing. The surface shear stress measurement was made by aligning the 

Pitot-tube in the direction of the local external streamline, obtained from the velocity components measured 

using the CTA technique at the edge of the boundary layer. The angle between the external and the surface 

streamlines was small, ranging between approximately ±5 degrees as discussed in section 4.2, and therefore 

this approach was felt to add negligible additional error: the uncertainty analysis conducted by Gowree [19] 

yielded the same confidence level as for the 2D case of purely spanwise flow along the attachment line.  

4.0 EXPERIMENTAL RESULTS 

4.1 Streamwise Velocity Profiles 

 

Figure 6: The turbulent velocity profile at the AL. 
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Due to contamination by the turbulent boundary layer on the floor of the wind tunnel, the flow along the AL 

was found to be intermittently turbulent for Rθ > 100. This threshold is in agreement with the results of 

Pfenninger [21] and Gaster [22]. The turbulent mean velocity profiles were captured at various AL Reynolds 

numbers and, using the surface shear stress measurements, these profiles were represented in wall units, Figure 

6. For the fully turbulent velocity profiles, some measurements were acquired in the laminar sub-layer despite 

a boundary layer thickness of the order of 3mm, owing to the digital optical system [9] which enabled the hot 

wire probe to be positioned accurately very close to the wall. Figure 6 shows that the logarithmic region of the 

velocity profiles deviates from the universal log-law used by Cumpsty and Head [16], although significant 

scatter was observed in the latter’s experimental results. Spalart [23] suggested, on the basis of DNS analysis, 

that on a flat plate, for Rθ < 620, the log-law was best defined using the von Karman constant, k = 0.41. In the 

present work on the attachment line, the best fit to the experimental data was obtained using k = 0.39. 

The mean streamwise velocity profiles captured just downstream of the AL are presented in Figure 7 for 

an AL Reynolds number, Rθ = 590. The good agreement between the port and starboard side measurements 

demonstrates that the AL was coincident with the leading edge of the model. 

 

Figure 7: Streamwise velocity profiles at the LE for an AL Rθ = 590. 

Using the surface shear stress measurements the velocity profiles were represented in wall units, as shown 

in Figure 8.  The inner region of these velocity profiles matches the ‘universal log-law’ with reasonable 

agreement, but the measurements in the viscous sub-layer vary irregularly with chordwise position. However, 
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the agreement with the universal log-law suggests that the profiles were captured with reasonable accuracy 

outside the sub-layer and can be useful for further analysis. 

 

Figure 8: Streamwise velocity profiles in wall units, downstream of the AL at Rθ = 590. 

4.2 Crossflow Velocity Profiles 

 

Figure 9:  Crossflow velocity profiles downstream of the AL at Rθ = 590. 

Figure 9 shows the crossflow profiles (velocity perpendicular to the external streamline, as opposed to the 

spanwise direction) at different chordwise positions downstream of the AL. Good agreement can be observed 

between the port and starboard measurements except at x/c = 0.03. This is probably due to the limitation in the 

yaw sensitivity of the SY probe which was, in anticipation, restricted to ±70° during the yaw calibration. More 

detail of the crossflow was revealed when they were plotted on the triangular hodograph model proposed by 

Johnston [24], as shown in Figure 10, where the normalized crossflow velocity can be represented as a function 
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of streamwise velocity. From Figure 10 it is easier to detect the development of the ‘S-type’ or ‘cross-over’ 

crossflow profiles which are present for x/c > 0.0025. Normally, the cross-over point occurs very close to the 

wall and shifts upwards further downstream, as observed in Figure 10. Due to limited resolution in the near 

wall measurements it is difficult to capture the chordwise location where the cross-over first develops. The 

main issue with the triangular representation is the difficulty in applying a linear fit to the profiles, especially 

around the maxima of the crossflow velocity. 

 

 

Figure 10: Triangular representation of crossflow profiles using Johnston’s model. 

According to Johnston the angle between the limiting and the external streamline, �, can be approximated 

as the gradient of the line of best fit connecting the origin and the apex of the triangle defined by the stationary 

points (maxima or minima) of the velocity profiles, which is assumed to be the region where the surface shear 

stress is dominant.  Using this approach, on the port side of the model, at x/c = 0.0025, the angle between the 

limiting and external streamline, β, is -3.1°. The same method can be applied to the cross-over profile but, due 

to insufficient data in the near wall region for the measurement between 0.01 ≤ x/c ≤ 0.02, it was not possible 

to determine β until x/c = 0.03, where the apex of the triangle could be resolved. At this position, linear 

extrapolation of the velocity components suggests a limiting value of β = 18°. It appears unlikely from Figure 

10 that β attains large negative values before the appearance of the cross-over in the crossflow profiles: 

therefore, it seems fair to assume that, within the current experimental domain, the limiting streamline angle 

ranged between -3° < β < 18° and, nearer the attachment line,  x/c ≤ 0.01, it appears that β < 3°. Given that 

one might have expected the near-wall flow to respond more rapidly than the inviscid flow to the very strong 

pressure gradient, acting nearly perpendicular to the direction of flow in this region, the limiting streamline 

angles are perhaps surprisingly small in value. 

4.3 Topology of the Flow at the Leading Edge 

The external inviscid streamline can be resolved in terms of the chordwise and spanwise velocity components 

measured at the edge of the boundary layer using the SY probe. The variation in the streamline angle, ψ, 
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relative to the normal-to-LE direction is plotted in Figure 11. At x/c = 0.0, ψ ≈ 90° as the flow along the AL is 

purely spanwise and at x/c > 0.03 the external streamline is nearly aligned with the free stream. 

 

Figure 11: The orientation of the external streamline with respect to the 

chord normal to the LE at an AL of Rθ = 590. 

In addition to the streamwise momentum thickness defined in equation (4) above, the following streamwise 

and crossflow boundary layer integral quantities were derived from the experimentally measured streamwise 

and crossflow velocity profiles (under incompressible conditions, ρ = ρe) which were captured within an 

accuracy of ±5%; the development of these length scales in the vicinity of the AL is presented in Figure 12. 
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Figure 12: The port side streamwise and crossflow integral quantities in the vicinity of the AL at Rθ = 590. 

The streamwise momentum thickness, ���, increases by approximately 15% immediately downstream of 

the AL and so does the streamwise displacement thickness, ��. A slightly non-monotonic trend can be observed 

in the development of ��� and ��, which was initially thought to be due to experimental uncertainty. But error 

analysis suggested that these differences were significantly larger than ±5% and therefore could potentially be 

due to an unexpected physical behaviour of the turbulent boundary layer. The crossflow momentum 

thicknesses, ��� and ��� are almost negligible at the AL (as expected from the very small magnitudes of the 

crossflow velocity) and do not vary significantly downstream. However ��� grows to about one-third of the 

value of ���; �� to roughly one-eighth of the value of ��. This growth in the integral quantities is significant 

and is not captured by the LE approximation in Callisto, prompting the numerical modelling to be revisited. 

5.0 MODIFICATIONS TO THE GOVERNING EQUATIONS IN CALLISTO 

5.1 Modification to Leading Edge Model 

As discussed previously, in Callisto a numerical approximation to the governing equations is imposed near the 

AL, specifically while ψ > 80°. For the current experiment this zone ends somewhere in the region 0.005 < 

x/c < 0.01, as shown in Figure 11. As discussed at the end of section 4.2, in this region the limiting streamline 

angle appears to be small in magnitude, β < 3°. This experimental observation suggests that the governing 

equations might remain ill-posed immediately downstream of the AL not simply because cos ψ ≈ 0, but because 

tan β is also small in the same region: the slow development of cos ψ and tan β means that the system of 

equations (7) remains dominated by just two terms out of nine close to the attachment line (see discussion in 

section 2.3). This results in numerical error and poor robustness when marching the boundary layer equations 

using a Runge-Kutta scheme. A new, more subtle numerical approximation to the governing equations was 

therefore developed: to extend the assumption – by Cumpsty/Head/Smith [16] [17] – of constant, finite ∂β/∂x 

at the AL to the flow immediately downstream. This allows the normal momentum equation to be de-coupled, 

allowing the remaining two equations to be solved as a coupled system, as shown below: 
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The experimental results actually show that ∂β/∂x does vary downstream of the attachment line, so equation 

(20) can be thought of as the first term of an expansion for ∂β/∂x. In this respect we are primarily looking for 

a more robust numerical treatment rather than for a model of the highest accuracy. Moreover no attempt has 

been made (nor could be, given the sparseness of the crossflow profile data obtained) to improve the Mager 

[25] crossflow profile modelling (see Appendix) which – as is well-known – cannot cater for the type of cross-

over profiles seen in the experimental results. 

The revised solution process is then as follows: the first task is to solve the simultaneous system described 

by equations (10) through (12) for θ11, H (and thereforeH) and ∂β/∂x at the AL; immediately downstream of 

the AL, equations (18) and (19) are used to march the solution until tan β recovers to a threshold value, 

whereupon the full 3D system of equations (7) can be restored. This threshold value is determined by numerical 

robustness and is so small that the switch from equation (18) to the full 3D form – equation (7) – is not 

detectable in the results. 

5.2 Results obtained using the modification governing equations 

The development of the streamwise momentum thickness obtained from the computation with the improved 

LE modelling (new) can be compared with those from the previous version of Callisto (old) in Figure 13, 

where s/c represents the normalized coordinate along the surface of wing profile in the direction normal to the 

leading edge. Computations with the modified code were conducted for both the geometrical sweep condition, 

60°, and the effective sweep which was calculated to be approximately 62° using the experimental static 

pressure at x/c = 0 (see Section 5.4.1 in ref. [19] for more details). These results are presented in Figure 13 

which shows a slight asymmetry in the computed results near the leading edge: Callisto-VGK captures the 

significant trailing edge separation present over the aft 10% chord of the model, but the resulting solution is 

mildly oscillatory (residual convergence to 10-4 rather than the usual 10-6 employed for aerofoil analyses) and 

any given ‘snapshot’ of the solution will feature some small circulation around the model, which results in the 

asymmetry visible in the figure. 
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Figure 13: Comparison of θ values captured experimentally against those computed using the original and 

the modified versions of Callisto. 

 

Figure 14: β andH values computed using the original and the modified versions of Callisto. 

In Figure 13, looking at the prediction from the original version of Callisto, ��� remains constant 

immediately downstream of the AL – due to the extrapolation of the attachment line solution – and then starts 

to increase again once a solution of the full governing equations is obtained, for ψ < 80°. In the modified 

version, the reduced set of governing equations can be solved immediately downstream of the AL: a 

comparison between the computed results and experimental results in Figure 13 shows a significant 

improvement, as the momentum thickness is now predicted to be within ±5% of the experimental results. The 

non-monotonic behaviour in the experimental momentum thickness is also now replicated by the numerical 

results, providing confidence in the experimental observation. 
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Figure 14 shows the computed development of the limiting streamline angle and the transformed shape 

factor before and after the modifications to Callisto; these results all include the effective sweep correction. 

Callisto employs a continuous co-ordinate system s' (the developed surface distance around the model, normal 

to the leading edge) so that the sign convention for β differs on one side of the model, compared to the 

experiment. The method predicts a maximum value of β of around 13° at s' ≈ 0.13, (corresponding to x/c ≈ 

0.03) as compared with the 18° estimated at this location from the experimental velocity profiles. This 

discrepancy is attributed to the relative simplicity of the Mager model used to capture the crossflow (as 

discussed in section 5.1). The new treatment of the governing equations has a relatively small impact on the 

development of β: a slight discontinuity in ∂β/∂x , where the method switches from a constant AL value to 

direct calculation of the derivative using the marching scheme in equation (7), is visible in both cases. This 

suggests that the third derivative ∂3β/∂x3, which is not resolved by either approach, is of significant magnitude 

of at the AL. Interestingly the relative magnitudes of β predicted by the old and new schemes are then reversed 

by the marching scheme, before converging much further downstream (off the ends of the plot). The shape 

factorH is also seen to be fixed at a constant AL value by the old scheme, whereas the new scheme again 

allows a more rapid return to the trends predicted by the marching scheme. Overall the figure illustrates the 

advantage of the new approach in allowing Callisto to switch to the full system of equations at an earlier point 

in the analysis, owing to the more precise diagnosis of the robustness problems in the governing equations; 

however there is little evidence that the flow development a long way downstream of the AL would be sensitive 

to the change in leading edge modelling – at least for this particular case.  

6.0 DISCUSSION 

Figure 6 shows that, for Rθ ≥ 315, the logarithmic regions of the velocity profiles collapse onto a single 

(modified) log-law. This finding is in agreement with Preston’s [25] criterion for minimum Reynolds number 

for the existence of a fully turbulent boundary layer on a flat plate for Rθ ≈ 320. Similar behaviour was also 

reported during the DNS study of Spalart [26], where the inner layer of the velocity profiles tended towards 

the universal log-law at Rθ > 300. Based on this result a new regime where the AL is intermittent can be defined 

for 100 < Rθ < 315. It is our belief that the AL has been previously misinterpreted to be fully turbulent in this 

regime, which is misleading in the context of flow control applications on swept wings. In addition, on the 

mid-span and outboard section of the wings of short-haul airliners, and the outboard section of long-haul 

airliners, Rθ < 300; therefore numerical analysis which assumes fully turbulent flow right from the AL is likely 

to be incorrect. 

The marked growth in the boundary layer momentum thickness observed experimentally immediately 

downstream of the AL underlines the need for improved modelling in Callisto. The modification to the 

governing equations in the vicinity of the AL can be considered satisfactory due to the much improved 

agreement between the calculated and the experimental results. 
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Despite the significant change in the AL modelling, the profile drag prediction was not significantly 

affected: the predicted momentum thickness in the far wake was almost the same from both the old and the 

new versions of Callisto. The revised computational results in Figure 13 show a rapid growth in momentum 

thickness downstream of the AL followed by an equally rapid decay, presumably due to the interplay between 

streamline curvature and favourable pressure gradient at the LE. From the mean flow measurements it is 

difficult to understand and describe the physical mechanism responsible for the non-monotonic growth in θ11 

in the vicinity of the AL, but as similar trend was predicted by Callisto a simple diagnosis was conducted by 

analysing the individual terms of the streamwise momentum integral equation. The local maximum in θ11 

appears when the magnitude of the favourable pressure gradient exceeds the skin friction immediately 

downstream of the AL, hence reversing the growth in θ11. The minimum is associated with the relaxation of 

the favourable pressure gradient to a point where the skin friction once again dominates, so that θ11 grows 

again. This interesting trend reversal is partly a consequence of the streamline analogy implicit in the treatment 

of turbulence by Head’s entrainment model, but it is clearly reproduced to an extent by the flowfield 

measurements. From the experimental perspective, the question is whether or not these streamwise-resolved 

integral properties provide the most insight into the physics of the flowfield at the AL.  

By x/c = 0.25, θ11 estimated by the modified Callisto is very similar with that obtained from the original 

version, any residual differences being smaller than the effect of correcting for effective sweep. Similar 

behaviour has also been observed during the analysis of the leading edge flow over a transonic wing at cruise 

condition. Based on these observations, the overall profile drag predictions obtained from earlier versions of 

Callisto can still be considered robust. 

The formation of cross-over crossflow profiles in laminar boundary layers is usually associated with a 

change in sign of the chord-wise pressure gradient (which, from the perspective of the streamlines very close 

to the AL, acts in the crossflow direction) accompanied by an inflection point in the external streamline; 

however the monotonic trend in streamline direction seen in Figure 11 rules out that explanation for the cross-

over in the turbulent crossflow velocity profiles observed in the present experiment for x/c > 0.0025. Following 

analysis of the transverse momentum equation in curvilinear coordinates, Gowree [19] suggested that, along a 

fully turbulent, highly curved streamline, this effect might occur due to the rapid growth in transverse Reynolds 

stresses, compared to the gradually-decaying crossflow component of pressure gradient, producing in a change 

of sign of the resultant transverse force acting on the boundary layer flow and the consequent appearance of 

cross-over profiles. 

7.0 CONCLUSIONS 

Measurements at the leading edge of a swept wing model have helped to shed some light on the 

development of the turbulent flow along a swept AL and have yielded a threshold Reynolds number for a fully-

developed turbulent AL which is consistent with Preston’s criterion for the turbulent flow on a flat plate. 

Based on the observed small values of limiting streamline angle, β, near the AL, a new approach to solving 

the 3D momentum integral equations near the AL has been implemented in the Airbus Callisto method, solving 
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a fifty-year old numerical problem. The results from the revised method show good agreement with the 

experimental measurements, correctly capturing the observed non-monotonic behaviour of θ11 in this region. 

Although significant improvement in computing power has allowed the modelling of such flows using DNS 

and LES, which have enriched our understanding of the mechanics of fluids, there is still value in developing 

low-order integral boundary layer methods to be able to capture relevant physical phenomena such as those 

explored in this paper, as the benefits of flow control and similar technologies will need to be captured as early 

as possible in the design process. 

The present experimental results can also be of use for the validation of higher-order turbulence models 

which are aimed at capturing the effect of lateral strain from highly diverging or converging streamlines. 
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APPENDIX – GOVERNING EQUATIONS 

We start with the work of Ashill and Smith [12] who derived a system of three integral equations for 

momentum, resolved parallel and normal to the inviscid flow streamline, and entrainment expressed in the 

conical-surface (x,y) co-ordinate system illustrated in Figure 2: 
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The various coefficients in this equation are defined as follows: 
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The notation above differs slightly to that used by Ashill and Smith [12] in that the symbols U1 and V1 are used 

for the normal-to-generator and parallel-to-generator components of the inviscid velocity field outside the 

boundary layer, rather than the symbols U χ and VR respectively. Moreover V1 is positive towards the wing tip 

whereas VR is positive towards the wing root. 

The factor f2 above captures the relationship between the crossflow momentum thickness θ12, equation (15), 

and the streamwise momentum thickness θ11, equation (4), as follows 

 ( )
11

12
2 cot

θ
θ

β≡Hf   (A-3) 

This and the other closure relationships ( )Hfn
 are determined by assuming the form of the velocity profiles 

within the boundary layer, as is typical for integral methods: it simplifies the analysis considerably to assume 

that these profiles are a function only of transformed shape factorH, equation (6). The closures popular with 

the RAE Lag-Entrainment codes, of which Callisto is one family member, are based on the crossflow velocity 

profiles proposed by Mager [27] and are detailed in Smith [17]. How representative these profiles are of three-

dimensional boundary layers in adverse pressure gradients has been the subject of much debate, but is beyond 
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the scope of this paper. Suffice to say that expressions of the form of equation (A-3) are key to the closure of 

the system of three-dimensional, integral equations. The transformed shape factorH is usually related to the 

classical shape factor for compressible boundary layer flow by the following expression [13] 
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where δ1 is defined in equation (13) and where r is the recovery factor. Also appearing in equation (A-2) above 

is the entrainment shape factor H1 defined as 
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As with the closure relationships ( )Hfn
, the functional dependence ( )HH

1
 has been the subject of much 

discussion [4]. Suffice to say that the observed singularity in the boundary layer equations at separation is 

captured by entrainment-based integral methods only if the derivative HddH 1
 changes sign at separation. 

As with the rank of the boundary layer equations, the problem of separating flows is not within the scope of 

this paper. 

The remaining coefficients of the streamwise momentum equation are as follows: 
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Again there is a slight difference in notation in equation (A-8) compared to the equivalent equation quoted by 

Ashill and Smith [12], the taper curvature term κT above appearing as φ / l, where φ is the angle AOC in Figure 

2 and l is the arc length AC. f4 in equation (A-8) above is given by 
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The coefficients of the crossflow momentum integral equation are as follows: 
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The coefficients of the entrainment integral equation are as follows: 
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None of the equations above include the higher-order terms presented by Ashill et al [7] which appear in 

the Callisto governing equations. These are mainly concerned with improved modelling in regions of adverse 

pressure gradient and not included here as they have little impact upon the prediction of the flow near the AL. 

One feature of the governing equations employed by Callisto which needs to be detailed is the different 

dependent variable used for the entrainment equation, the transformed shape factorH rather than H1θ11, so 

that the governing equations appear as: 
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The left-hand side of equation (A-1) can be written as 
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This expansion can be repeated for the remaining normal-momentum and entrainment equations, so by 

inspection of equation (A-20) the transformations from the variables used by Ashill and Smith to those used 

in Callisto can be written 
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We also introduce the angle ψ  between the direction of the inviscid streamline and the arc AC in Figure 2. 
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Following the change in independent variables, we obtain: 
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