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Abstract

This dissertation proposes and implements the inclusion of model structure in
combining forecasts. Empirical investigations are conducted with an emphasis on
neural networks and seasonal exponential smoothing models using synthetic data
and real time series, from the electricity sector. It starts with a literature review on
combining forecasts and ensembles of neural networks, and highlights their use in
forecasting within the energy sector. Research gaps are identified and the questions
to be addressed in this research are set, thus leading to three empirical studies.

The first study provides a detailed sensitivity analysis of the goodness-of-fit and
forecasting performance of feed-forward neural networks on time series with different
characteristics. It expands existing literature by increasing the number and variety
of time series and by using graphical and statistical diagnostics to objectively judge
the influence of model specification on forecasting performance. Having identified
conditions for achieving stable model performance, this study facilitated the iden-
tification of suitable models for different time series characteristics, which are then
useful in developing combinations (ensembles) of feed-forward neural networks.

The second study proposes structural combination methods based on clustering
(CB) and genetic algorithms (GA) for forecasting time series. Clustering of neural
networks using their parameter space is performed to identify a pool of forecasts
to be combined. Three synthetic time series and two real time series (electricity
demand and wind power production) were used to assess the performance of the
two proposals against several benchmarks in univariate and multivariate forecasting
problems. Structural combinations with GA were more competitive than those
with CB for non-seasonal time series and the multivariate wind power forecasting
application, whereas for the seasonal series, the CB tended to be more competitive.

The third study focused on forecasting univariate time series with seasonality,
by structurally combining, in separate applications, multiplicative Holt-Winters and
multiplicative Holt-Winters-Taylor models. Noise addition and block swapping were
applied to the original time series in order to generate structurally diverse individual
models. Applications were conducted using a seasonal daily peak electricity demand
time series, an hourly double-seasonal electricity demand series and a half-hourly
double-seasonal electricity demand series. Structural combinations worked better
for the peak electricity demand and half-hourly demand time series when model
variation was induced via noise addition. For the double-seasonal hourly electricity
demand, block swapping, as a means for diversity in models, resulted in better
forecasts.

Finally, in the last chapter of this dissertation, conclusions are drawn from this
research. The contribution to the literature is assessed and a future research agenda
is proposed.
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Nomenclature

%∆ wrt Avg.: Percentage difference of an error metric with respect to the forecast

average from all models in the ensemble.

AFTER: Aggregated Forecast Through Exponential Re-weighting.

AHWT: Double-seasonal Holt-Winters-Taylor model in its additive form.

ARMAX: ARIMA models with exogenous variables.

Avg. Net.: forecast average from all neural network models in an ensemble.

Best Net. isMAPE: Neural network with the lowest in-sample MAPE in an ensem-

ble.

Best Net. isMSE: Neural network with the lowest in-sample MSE in an ensemble.

DGP: Data Generating Process.

DOE: Design of Experiments.

GA: Genetic Algorithms.

IS MAE: MAE for the in-sample period.

IS MSE: MSE for the in-sample period.

IS NMAPE: NMAPE for the in-sample period.

IS RMSE: RMSE for the in-sample period.

J-T: Jonckheere-Terpstra test.

K-W: Kruskal Wallis test.
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LB TEST: Ljung-Box test for serial correlation.

MAE: Mean Absolute Error.

MAP: Maximum Absolute Percentage Error.

MAPE: Mean Absolute Percentage Error.

MHW: Single-seasonal Holt-Winters model in its multiplicative form.

MHWT: Double-seasonal Holt-Winters-Taylor model in its multiplicative form.

MIMO: Multiple-Input Multiple-Output approach for multi-step ahead forecasts

with NN.

MISMO: Multiple-Input Several Multiple-Outputs approach for multi-step ahead

forecasts with NN.

MM5: Fifth generation Mesoscale Model.

MSE: Mean Square Error.

MSPE Mean squared prediction error.

MVE: Mean-variance estimation. Method to estimate neural network-based predic-

tion intervals.

NMAPE: Normalised Mean Absolute Percentage Error.

NN: Neural Network.

OS MAE: MAE for the out-of-sample period.

OS MSE: MSE for the out-of-sample period.

OS NMAPE: NMAPE for the out-of-sample period.
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OS RMSE: RMSE for the out-of-sample period.

RBF: Radial Basis Function.

RMSE: Root Mean Square Error.

SMAPE: Symmetric mean absolute percentage error.

SOM: Self Organising Maps.

THEIL: Theil Inequality Coefficient.

WPPT: Wind Power Prediction Tool.
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Chapter 1

Introduction

There has been over forty years of research in forecast combinations. The interest

from academics and practitioners signals the recognition of limitations of individ-

ual forecasting models and the desire to exploit the advantages of multiple models.

Nowadays, people and organisations are confronted with complex problems, consid-

erable uncertainties as well as an abundance of data and forecasting approaches.

Efforts are easily discernible toward the exploitation of a wide choice of data, of

forecasting models and scenarios in order to seek better forecasting performance

and, if possible, to quantify the uncertainty in the forecasts (Taylor & Buizza, 2003;

Stephenson et al., 2005; Taylor et al., 2009; Lemke & Gabrys, 2010). However, most

of the research has focused on how to combine forecasts produced by models and

experts. Little attention has been given to the combination of models based on their

specification.

Variety in structure stems from differences in the functional form of models

or differences in their parameter values. Consider a model ARIMA(p, d, q) with

parameters Θ and Φ. This model would have structural differences (in terms of

functional form) when compared to a model ARIMA(p′, d′, q′) if p 6= p′, d 6= d′

or q 6= q′. On the other hand, when several ARIMA(p, d, r) models are produced

with different Θ and Φ coefficients, variety in structure results from differences in

parameters and not from their functional form. Analogously, a feed-forward neural

network, fitted to a time series, can have different specifications, depending on the

number of hidden units, the number of hidden layers, the transfer function, the

training algorithm, etc. Neural networks NN({w}) and NN({w′}) with hidden
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units sets {w} and {w′} would differ, all other factors constant, when the number

of hidden units in {w} and {w′} differ or the values are different, and thus they

be structurally different. The main goal of this research is to use this structural

information when combining forecasts.

In structural combinations, the generation of different forecasting models, pre-

vious to the calculation of the combination, arises naturally. The systematic gen-

eration and combination of forecasting models has been traditionally considered in

the Neural Network literature under the term ensembles. This term originated in

climate modelling, when it was observed that there are differences in forecasts when

models are initialised with different values (Parker, 2010). The building of ensem-

bles has evolved from the use of simple sets of models to the collective evolution

of them through sophisticated computational intelligence techniques. An ensemble

generally has three stages (Leith, 1974; Lorenz, 1965; Hansen & Salamon, 1990):

the generation of models, their selection or pruning and their combination. It is

within this framework that the present research is located and attempts to make a

contribution. In doing so, this dissertation aims at bringing models that have been

found to be robust in the forecasting literature to the context of ensemble building

and machine learning.

The first models considered are feed-forward neural networks, because of their

natural structural representation, which is related to their founding idea of imitating

the brain structure (see Haykin, 1999, p.24), and their use in ensembles. Further-

more, neural networks are widely applied in forecasting problems. IEEE archives

(with publications in Operations and Management starting from 1990 to 2015) reveal

that they have been widely applied, with publications in transport (10), education

(11), mail (5), telephone systems (14), gas (186), water (207) and specially in power

systems (886)1. The predominance of applications in the energy sector motivates

1Searches performed by using http://ieeexplore.ieee.org/search on the 15th of December
2015.
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the current research. Secondly, two statistical models are considered: the single-

seasonal multiplicative Holt-Winters model and the double-seasonal multiplicative

Holt-Winters-Taylor model. The former belongs to a family of models used to fore-

cast seasonal time series due to their robustness and simplicity (Hyndman et al.,

2008; Pan, 2010), and the latter is an extension that has been applied successfully

to electricity load forecasting (Taylor et al., 2006; Taylor, 2010).

Given the choice of models available in the literature, the general enquiry of this

dissertation is cast into the following research questions: How can the structure of

neural network forecasting models be combined? How can the structural combination

be extended from neural networks to other forecasting models?

These questions focus on the last stage of building ensembles, that is, the ag-

gregation of forecasts after the models were generated. However, the initial stage

(the specification of models) also requires attention, since one would like to combine

models that are robust. The study of the behaviour of models to be included in

the ensemble facilitates making decisions when building ensembles. The need for

such a study is acutely felt when using neural networks, given that they are uni-

versal approximators with a structure that can be modified depending on specific

needs and desired precision (Haykin, 1999). Additionally, the use of statistical tools

has been essential in understanding the behaviour of neural networks in order to

make a better use of them (Anders & Korn, 1999). The design of experiments is

here adopted, as it allows to systematically examine the effect of different design

factors in goodness-of-fit and accuracy of NNs. Although there have been studies

of NNs in this direction, as for example Zhang et al. (2001) and Balestrassi et al.

(2009), they were limited to one-step-ahead forecasting and have not considered the

double seasonal series that are common in short-term forecasting of electricity de-

mand. Therefore, an initial study is conducted, which focuses on sensitivity analysis,

through design of experiments, as a manner to aid the selection of neural network
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models to build ensembles.

The exploration of structural combination can inform the literature on forecast

combination, which in turn can open avenues to improve forecasting accuracy by

making use of more diverse sources of information than normally considered when

combining forecasts. Although most of the applications made here use data from

the energy sector, it would be expected that other complex forecasting problems

could benefit from structural combinations of models, specially in the context of big

data and business analytics.

This dissertation investigates combinations or ensembles of forecasts, neural net-

work sensitivity and structural model combination, in the following way:

Chapter 2 reviews relevant literature in the area of neural network ensembles

and forecast combination, with an emphasis on applications in the energy sector

and concludes with setting the research questions to be addressed by this research.

In Chapter 3, sensitivity analyses of neural networks are conducted, using synthetic

time series, and guidelines are suggested to aid model selection. In Chapter 4, a

structural combination approach for neural network is proposed and applications are

conducted with synthetic and real world time series (electricity demand data from

Rio de Janeiro and wind power production data from the global Energy Forecasting

Competition, 2012). The investigation concentrates on ensembles with structural

parameter variation, while keeping the same functional form. The selection of models

to include in the structural combination is conducted along the lines suggested by the

analysis developed in Chapter 3. Chapter 5 explores the behaviour of the proposed

structural combination focusing on the single-seasonal multiplicative Holt-Winters

and the double-seasonal multiplicative Holt-Winters-Taylor models. Applications

are conducted with a daily peak electricity demand time series, and two electricity

demand time series (hourly observations from Rio de Janeiro and half-hourly ob-

servations from England and Wales). Finally, Chapter 6 summarises and concludes
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this dissertation.
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Chapter 2

Literature Review

This chapter reviews the literature on forecast combination with an emphasis on the

energy sector and neural networks (NN) ensembles. The choice of these models is

motivated by their suitability for structural model combination, which is the main

aim of this dissertation, and also by the extensive use of such models in forecasting

electricity demand as highlighted in previous reviews of this literature (Hippert

et al., 2001; Crone et al., 2011). At the end of the chapter gaps in the literature are

highlighted and research questions are formulated.

2.1 Combination of Forecasts

2.1.1 The Motivation for Combining Forecasts

There are several reasons for combining forecasts (Clemen, 1989; Timmermann,

2006). If it is assumed that the information set underlying the individual forecasts is

often unobserved to the forecast user, then it is not possible to gather all information

and construct a “super” model. In this case, the combination of forecasts will be an

attempt to optimise the use of information that is available to the forecaster.

Some models may adapt quicker than others to changes in the data generating

process. As it is difficult to detect structural breaks in “real time” it is plausible

that, on average, combinations of forecasts from models with different degrees of

adaptability will outperform forecasts from individual models. Furthermore, indi-

vidual forecast models may be subject to misspecification bias of unknown form.

Combining forecasts from different models can be viewed as a way to make forecasts
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more robust.

In general, there is a growing consensus about the advantages of combining fore-

casts. Clemen (1989), while reviewing empirical evidence in forecast combination,

concluded that combining multiple forecasts leads to increased forecast accuracy.

Stock & Watson (2004) observed, after an empirical analysis that included data

adaptivity weighting mechanisms, that forecast combination performs well with

respect to autoregressive models. They also concluded that the best performing

combination schemes were simple ones, such as the average and models with the

most simple data adaptivity in their weighting schemes. Timmermann (2006) ar-

gued, from a theoretical perspective, that unless one can find ex ante a particular

forecasting model producing smaller forecast errors than its competitors, forecast

combination offers diversification gains that make it attractive to combine individ-

ual models rather than relying on a forecast from a single model.

2.1.2 The Most Common Methods for Combining Forecasts

Statistical approaches (such as linear combinations and clustering) and computa-

tional intelligence models (such as fuzzy logic and NN) have been used to combine

forecasts.

2.1.2.1 Statistical Based Approaches

Linear combination is one of the simplest forecast combination methods. The simple

average is difficult to defeat (Armstrong, 2001). Che (2015) suggest improvements

to the selection of models for linear combinations. The concept of entropy1 and

co-variance between forecasts are used to define the amount of common linear infor-

mation between a set of forecasts and the actual value. The relevance of a random

independent variable (a forecast) with respect to the dependent variable (the actual

1Entropy is a measure of the uncertainty of a random variable (Cover & Thomas, 2006, p. 13).
For a discrete random variable X, it is defined as H(X) = −

∑
x∈χ p(x)log(p(x))
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value) is defined in a similar way. The redundancy (when the common linear infor-

mation is maximum) and the relevance are then used to select forecasting models

for a combination; the approach minimises linear redundancy and maximises linear

relevance. This procedure allows for an algorithm to find the optimal subset of all

the individual models to combine without having to try all possible combinations of

the individual models.

Outperformance (Bunn, 1975) is a form of combination that has the form fc =

p′f , where f is a vector of forecasts and fc is the resulting forecast. It uses p, a

simplex of probabilities which can be assessed and revised in a Bayesian manner. In

practice, p is the historical proportion that the forecaster or model has outperformed

its competitors. Each individual weight is interpreted as the probability that its

respective forecast will be the best (in the smallest absolute error sense) on the next

occasion.

In the optimal approach (Bates & Granger, 1969), linear weights are calculated

to minimise the error variance of the combination (assuming unbiasedness for each

individual forecast). The vector of combining weights, w, is determined according

to the formula w = S−1e
e′S−1e

, where e is the (n × 1) unit vector and S is the (n × n)

covariance matrix of forecast errors. The authors also proposed variations to this

approach, namely, the optimal (adaptive) with independence assumption in which the

estimate of S is restricted to be diagonal, comprising just the individual forecast error

variances; optimal (adaptive) with restricted weights with the additional restriction

so that no individual weight can be outside the interval [0, 1].

Participant forecasts can be used as regressors in an ordinary least squares (OLS)

regression with the inclusion of a constant (Granger & Ramanathan, 1984). Regres-

sion with restricted weighs is a variant where the weighs are constrained to sum

one (Granger & Ramanathan, 1984; Timmermann, 2006). Time-varying regressions

could be applied when very large data sets are available. Diebold & Pauly (1987)
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and LeSage & Magura (1992) found such approach advantageous in dealing with

structural change. Terui & van Dijk (2002) also found competitive results, when

comparing with the constant weights approach, although findings are inconclusive

for some series.

Trimming is a combination approach focused on selection. Instead of combining

a set of forecasts, it can be advantageous to discard the models with the worst

performance. Suppose that a fraction α of the forecasting models contain valuable

information about the target variable while a fraction 1 − α is pure noise. Then,

once combination weights have to be estimated, forecasts that only add marginal

information should be dropped from the combination, since the cost of their inclusion

(increased parameter estimation error) is not expected to be matched by similar

benefits.

Clustering of forecasts (Timmermann, 2006) is inspired by the assumption of

commonalities underlying the forecasting models. It has been proposed, for exam-

ple, an approach to sort forecasting models into clusters using a K-means clustering

algorithm based on their past Mean Square Error (MSE) performance (see Tim-

mermann, 2006). Alternatively, according to the author, clustering can be based on

correlation patterns among the forecast errors.

Switching between different forecasts at different periods (Granger, 1993; Deutsch

et al., 1994; Taylor & Majithia, 2000) is a selection strategy that makes use of infor-

mation from different forecasts. It is dynamic and is based on the idea that available

forecasts might vary in relevance depending on the period to forecast.

One salient feature of the approaches just outlined is of special interest for the

present research: forecast combinations are based on individual point forecasts.

However, other model features, besides their outputs, could be taken into account

in the combination. The use of other sources of information for combination (such

as subjective judgements and context information) is present in expert forecast com-
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bination (e.g Maines, 1996; Webby & O’Connor, 1996), but when looking at model

combination, the use of information beyond individual model forecasts is less ex-

plored.

2.1.2.2 Computational Intelligence Approaches

Fuzzy inference systems have been tried as means to combine forecasts (Fiordaliso,

1998; Palit & Popovic, 2000; Xiong et al., 2001). Their ability to find non-linear

mappings between an input and an output space is attractive as combining mecha-

nisms.

Genetic algorithms (GA) can also be used as a combination mechanism (as in

Alvarez-Diaz & Alvarez, 2005, who forecasted weekely exchange rates of Japanese

Yen and Pound Sterling against the American Dollar). However, it is more common

to find them in hybrid approaches as part of the optimisation process or the model

specification mechanism (see for example Zhou et al., 2002; Pai & Hong, 2005).

Non-linear combinations of forecasts have tended to use NNs. As in the case of

fuzzy inference systems, evidence has been found of the advantage of these mod-

els over linear combination schemes (Donaldson & Kamstra, 1996). A NN can be

regarded, in isolation, as a combination device. For example, with regard to multi-

layer perceptrons with a single output, Crone & Kourentzes (2010) observe that

each hidden node computes a non-linear autoregressive model of order p, NAR(p),

on input nodes, which are combined to ŷ by a weighted sum of a single output

node. The importance of combination when forecasting with computational intel-

ligence models (NNs included) has been highlighted by Crone et al. (2011) in the

context of the NN3 competition. Several of the highly competitive models in their

review, contain a form of combination. In general, different degrees of complexity

can be found, from early research done by Donaldson & Kamstra (1996) to a more

recent study by Matijaš et al. (2013). In the first, the authors report the superiority
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of NNs to combine (two) forecasts, using daily data from stock market volatility.

In the second, the authors built a framework to combine forecasting models using

meta-learning algorithms and different types of NNs. Applications were conducted

by using hourly electricity demand from Europe.

However, the role of NNs is not limited to the combination of forecasts produced

by different models. They are frequently used in ensembles, where several NNs are

systematically generated and either pruned or selected so that their forecasts are

then combined using several mechanisms, which are not necessarily NNs. The test

of structural combinations in the present research rests on the production of several

models to be combined, thus leading to the creation of ensembles. The following

section introduces the concept of ensembles, which is adopted in this research, and

reviews key research in the topic. Specific applications in the energy sector are

reviewed in the subsequent section.

2.1.2.3 Ensembles of NN

The term ensemble originated in climate modelling. In that field scientists distin-

guish different types of uncertainty, as Parker (2010) described. Structural uncer-

tainty refers to uncertainty about the form that the modelling equations should take;

parametric uncertainty is uncertainty about the values that should be assigned to

parameters within a set of modelling equations and initial condition uncertainty,

which refers to the difficulty in measuring all the required variables needed in mod-

els.

“Uncertainty regarding the choice of initial conditions became a source

of concern in the context of weather forecasting several decades ago, when

Ed Lorenz famously discovered that even small differences in the condi-

tions used to initialise weather models can lead to quite large differences

in the forecasts produced [...] Indeed, it was the recognition of this sen-
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sitive dependence on initial conditions that first prompted atmospheric

scientists to consider ensemble approaches” (Parker, 2010, p. 264).

Ensembles were adopted in NNs by Hansen & Salamon (1990), and came to

mean the use of several models, constructed with differences in one or more of

their design parameters. They used ensembles of NNs for classification. In this

seminal research only synthetic data are used, and superiority of the ensemble is

reported in comparison to individual models. It is important to note that there is a

sensitivity analysis where the performance (probability of error in classification) is

measured against the number of hidden nodes. A neural network is selected when

the curve of performance against the number of hidden nodes begins to flatten.

‘Better performance yet can be achieved through careful planning for an ensemble

classification by using the best available parameters and training different copies on

different subsets of the available database.’ (Hansen & Salamon, 1990, p. 1000)

Jacobs & Jordan (1991) built an ensemble of neural networks for pattern match-

ing. The purpose was the determination of different tasks to be learnt and the

assignment of different networks to them. The networks were then learning from

different training patterns. The ensemble consisted of member networks and a gat-

ing network. The architecture of the gating networks was fixed and the architecture

of the member NNs was not clearly explained. A key element of this research is the

combining procedure, which is determined by a break down of the problem into tasks

of different complexity, an approach that will be later used in forecasting (Bakker

& Heskes, 2003).

Liu & Yao (1999) developed a procedure in which NNs were trained and com-

bined in the same learning process (dynamic and cooperative). Networks are trained

simultaneously, allowing for interactions between them and to specialise. The proce-

dure could create negatively correlated neural networks using a correlation penalty

term in the error function. Additionally, they analysed bias-variance-covariance
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trade-off, an extension of the bias-variance dilemma (Bishop, 1995). The Mackey-

Glass time series and the Australian credit card data were used. In the ensemble,

the architecture and the size of the ensemble were fixed and the input specification

was not taken into account. The authors claimed that the approach can produce

neural network ensembles with good generalisation ability. In this case, diversity

was achieved through a dynamic selection of models such that their outputs are

negatively correlated.

Liu et al. (2000) also proposed the design of an ensemble with negative correlation

learning, but used an evolutionary algorithm and clustering (k-means). The logic of

the approach was the following: start an ensemble, train with negative correlation,

evolve individuals for a number of generations and then use k-means to find “species”

and then combine them. Results were superior when compared to other algorithms.

However, the architecture was fixed, preliminary analysis of the models and data are

not reported and the research was limited to the classification area. The innovation

in this research was the creation of diversity at different levels of complexity. An

approach that could be extended to forecasting.The clustering of models is left to

the end of the process. However, it could be incorporated in the optimisation stage.

Zhou et al. (2002) argued that combining some networks in an ensemble is better

than combining all networks. An evolutionary algorithm was used to assign and

evolve the weights of the participating networks. Finally, with the obtained weights,

a subset of networks was selected. The genetic algorithm that was used worked as a

form of pruning. Comparisons with bagging (Breiman, 1996) and boosting (Freund

et al., 1996) showed that the approach could generate smaller ensembles with better

generalisation capabilities. However, the questions of how many models to produce

and how many to select for the types of problems being tackled (regression and

classification) were not addressed.

Islam et al. (2003) used a constructive algorithm (without pruning) to build an
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ensemble. Their approach tried to minimise the ensemble error by training, adding a

hidden unit to an existing NN, and, finally, by adding a new NN. The algorithm also

uses negative correlation learning. Encouraging results were obtained with bench-

mark problems in classification and forecasting, including the Australian credit card

assessment, breast cancer, diabetes, glass, heart disease, letter recognition, soybean,

and Mackey-Glass time series (the frequency of the time series is not specified).

Bakker & Heskes (2003) generated many different NNs (on the order of 50) and

then summarised them via a clustering procedure. Diversity was introduced by

bootstrapping the training data. The authors claimed that it is not necessary to

use all the models in the ensemble: those found through this summarising technique

can perform equally well or better than the whole set. The authors considered

both clustering of output forecasts and clustering in the parameter space of models,

but implemented only the first one because they judged it had a more immediate

meaning for clustering and was less computationally demanding. Their suggestion of

including the models parameters in the clustering, however, is important: it hints at

a possible transition from the consideration of point forecasts as inputs for combining

procedures to the consideration of more complex sets of information, and is a source

of inspiration for the present research.

Chen & Yao (2007) incorporated an evolutionary algorithm and negative cor-

relation learning to automatically design and train neural network ensembles: re-

sampling of input space, randomisation of the number of neurons in the architecture

(although the number of layers is fixed) and random selection of features together

with negative correlation and an evolutionary component (Gauss mutation). Excel-

lent results were reported in comparison to random forests (Breiman, 2001), bagging

(Breiman, 1996) and adaboosting (Freund et al., 1996) in different benchmark prob-

lems. Their focus was on classification and did not inform time series forecasting.

Krasnopolsky (2007) used ensembles built with fixed architecture but different
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initial conditions. The approach was used to produce a mapping with smooth deriva-

tives with respect to the inputs, which might be useful in avoiding extreme outliers

in forecasting models.

Adeodato et al. (2011) proposed an approach where the number of hidden units

and the number of inputs in NNs are explored in specified ranges and applied it to

a set of 111 monthly data sets. Two different training algorithms were used and

only one architecture-training algorithm combination was selected. The resulting

parameters were used to produce 15 replicas of the network. The training scheme

included two stages where the validation set in stage 1 is used as part of the training

set in stage 2. The median of the 15 replicas was used as the final forecast. They

claimed an increased forecasting accuracy in comparison to a single MLP for multiple

step-ahead forecasting (with recurrent approach). In their explorations of ranges of

models an attempt was made to make a better informed decision about the models

to include in the combination scheme.

In summary, NN ensembles have evolved from the use of simple sets of models

to the collective evolution of them through sophisticated computational intelligence

techniques. It is noticeable the relevance of the use of synthetic time series in the

studies. The next section focuses on the energy sector.

2.2 Examples of Applications of Combinations in

the Energy Sector

We now review studies devoted to forecast combination in the energy sector, with

emphasis in ensembles and applications in load and wind power forecasting, where

the later are significantly more volatile time series when compared to the former.

NNs will be considered, because they are universal approximators (Kasabov, 1996,

p. 13) and are suitable for the structural combinations, as proposed in this research.
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2.2.1 Applications in Load Forecasting

Khotanzad et al. (1998) forecasted electricity load in the next 24 hours by using

hourly data: a feed-forward NN was intended to forecast load for each hour (one

output of the model mapped to one step ahead) and another NN was used to forecast

the change in load, for each hour as well. Forecasts were combined through a

regression with recursive least squares.

Drezga (1999) considered hourly and peak load for the next 24 and 120 hours

with a small ensemble of NNs. K-nearest neighbour was used to select training sets

(instead of using correlograms). The ensemble was tested using two years of hourly

data from two US utilities with different weather and consumption patterns. The

same set of inputs was identified for both applications. Networks were trained in

parallel with an iterative approach, feeding back averaged forecasts as inputs for

subsequent forecast horizons. Results in terms of MAPE were competitive, when

compared with data from similar utilities and publications. The models were found

to be robust when faced with sudden changes in temperature, but were limited to

one-step-ahead forecasting.

By contrast, Taylor & Buizza (2002) focused on NNs and daily data to produce

load forecasts from 1 to 10 days ahead based on ensembles of weather forecasts.

Comparisons were made with univariate benchmarks and point forecasts produced

without the ensembles. For ten lead-times, the mean of the load scenarios built

with weather variables was a more accurate load forecast than that produced by the

non-ensemble based procedure. This research combines the use of ensemble weather

forecasts with an ensemble of rather low complexity NNs and suggests benefits from

multivariate models.

Abdel-Aal (2005) used hourly load and temperature data to forecast the next day

peak load for a utility in USA via ensembles of feed-forward NNs and abductive NNs.

The latter have the advantage of including automatic selection of significant model
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inputs (Montgomery & Drake, 1991). Each network in the ensemble specialises in

historical data from certain year. Comparisons were made against individual models

for each year and an individual model trained with all historic data. The ensembles

improved over the benchmarks, but the advantage was clearer with abductive net-

works. The correlation among input data for different years was acknowledged as a

source of homogeneity in models that was tackled by using different structure in the

networks. This study illustrates the importance of promoting model diversity when

building an ensemble.

Daneshi & Daneshi (2008), by using data obtained at 5-minutes intervals, fore-

casted electricity load for the next 30 minutes (with steps of 5 minutes) using a

scheme where data was divided into several categories depending on the time of the

day, from morning to night. For each category a set of 3 NNs was trained and the

output was combined using recursive least squares. The peculiarity of this research

is that data variation (intended to generate model variation) was well coupled with

a categorisation of data (early morning, mid-morning, noon to early night and late

night), which is useful in the case of seasonal data.

Fan et al. (2009) forecasted hourly electricity load using different weather fore-

casts (hourly data) combined with a method called Aggregated Forecast Through

Exponential Re-weighting (AFTER). Then, an ensemble with bagging2 of NN was

used to forecast the load. Comparisons were made against individual models with

different input data (different combinations of weather data from different meteoro-

logical services) and the approach appeared to consistently improve accuracy.

Siwek et al. (2009) forecasted load for the next 24 hours with hourly data from

the Polish power system, using different ensembles of feed-forward, self organising

maps (SOM), and fuzzy SOM. The forecasts combination was made separately with

simple and weighted average, Blind Source Separation (BSS) and Principal Com-

2A method based on subsampling that uses randomly generated training sets to obtain an
ensemble of predictors (see Breiman, 1996).
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ponent Analysis (PCA) decomposition. It is assumed that each participating NN

generates forecasts for the following 24 hours, although it is not explicit which spe-

cific forecasting scheme was used by them. The BSS system decomposed the original

stream of signals derived from NNs into components. These components were re-

constructed to produce the final forecast, by analysing all possible combination of

components. This was the approach that delivered better results (when comparing

with the best individual predictors). Instead of seeking variety in models or data,

signal decomposition and re-composition were conducted and produced promising

results.

Fay & Ringwood (2010) forecasted load for the next 24 hours based partly in

weather variables (with hourly frequency). Feed-forward NNs were trained taking

into account the error in weather forecasts, so that both error and weather variables

were included in the inputs. Every participating NN produced forecasts for different

hours, but the specific multi-step-ahead forecasting approach was not mentioned

in the article.Parameter estimation was split into two phases: independent and

dependent of weather forecast error. The models were successful in adjusting the

weighting of the sub-models to reflect the deterioration of forecasting accuracy when

using weather data.

Alamaniotis et al. (2012) used 5-minutes data to forecasted load for the next 30

minutes at intervals of 5. Kernel-based Gaussian processes are ensembled. The fore-

casts were arranged into a linear (multi-objective) problem for which a solution was

sought with GA. Performance was favourably compared against individual partici-

pating models and an ARMA model. The major innovation consisted in the use of

multi objective optimisation to combine the models. Different metrics comprised the

vector of objectives: MSE, Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), Maximum Absolute Percentage

Error (MAP) and Theil Inequality Coefficient (THEIL).
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Matijaš et al. (2013) forecasted hourly load with a meta-learning framework and

using hourly load data sets. They exploited the interpretation of the learning process

as a link between a problem space and a solution space (Kasabov, 1996, p. 332).

For different problems (data) there were different mappings (forecasting algorithms)

that lead to a solution. The following models were included: Random Walk, Auto-

regressive Moving Average (ARMA), Similar Days, Layer Recurrent Neural Network

(LRNN), Multilayer Perceptron (MLP), m-Support Vector Regression (m-SVR) and

Robust LS-SVM (RobLSSVM). They were ranked with a meta-learning algorithm

with rich features, based on data and the best model was used to issue forecasts.

In contrast to most studies, the authors tried to expand the problems and solutions

(models) representations in order to explore combination of forecasts in a wider

sense.

Kaur et al. (2014) used hour-ahead market and day-ahead market load for Cal-

ifornia Independent System Operator (CAISO) and Electric Reliability Council of

Texas (ERCOT). Starting with a base forecast the residuals were modelled with

generalised linear and ARIMA models with exogenous variables (ARMAX). Fore-

casts were combined through least squares optimisation. Ensembles were configured

depending on the day of the week or the hour of the day. The approach significantly

improved the forecast in super off-peak and off-peak times. The general outline of

the procedure is innovative and well thought, as it uses regularities in data for the

configurations of the ensembles.

Qiu et al. (2014) proposed an ensemble with deep belief networks and support

vector regressions. Deep belief networks are probabilistic generative models that are

composed of multiple layers of hidden units (Hinton, 2011). The main idea of support

vector regression is based on the computation of a linear regression function in a high

dimensional feature space where the input data are mapped via a nonlinear function

(Basak et al., 2007). The NN were trained with different number of epochs and
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combined with support vector regression in order to produce 1-step-ahead forecasts.

There was a clear division between a stage where knowledge is extracted and another

where the remaining dynamics of the problem is used to issue a final forecast. The

ensemble was applied to load (with half-hourly data) and synthetic series forecasting.

It outperformed feed-forward NNs, support vector regression, deep belief networks

and an ensemble of feed-forward NNs. Despite the complexity of the models, the

research was limited to one-step-ahead point forecasts.

Burger & Moura (2015) forecasted electricity demand using building level con-

sumption hourly series. Six hours ahead forecasts were predicted, with a combi-

nation of different models (OLS with regularisation, support vector regression with

radial basis function (RBF), decision tree regression and K-nearest neighbours). Af-

ter the models were trained, the validation period was used to select the model to

perform the final forecast (only one model from the set). Performance was reported

to be better than with the use of individual models. The way this model was se-

lected is innovative: a mechanism was developed to predict the performance of each

forecasting model. Their strategy illustrates how the process of model selection can

be enriched. However, it is more likely to work with heterogeneous models. With

pools of models of the same type, their probabilities of having similar performance is

higher and selection is likely to be less clear. Their other selection mechanism were

based on cross-validation, taking into account the RMSE during validation period,

and could be applied more easily to homogeneous pools of forecasting models.

Hassan et al. (2015) used a simple ensemble of NNs with 5 different architectures.

Monthly demand data from Australian Energy Market Operator (AEMO) and the

New York Independent System Operator’s website (NYISO) were used to derive half-

hourly forecasts and test the approach. Three methods were adopted to combine

the forecasts in ensembles: average, trimming and Bayesian averaging. The latter

was reported to be the best performing scheme, and used the posterior probability
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for each model as the respective forecast combination weight.

2.2.2 Applications in Wind Power Forecasting

Giebel et al. (2003) reported how WPPT, a wind power forecasting system mainly

developed with mathematical and statistical models, performed combinations of

forecasts:

“For both model branches the power prediction for the total region is

calculated as a sum of the predictions for the sub-areas. The final predic-

tion of the wind power production for the total region is then calculated

as a weighted average of the predictions from the two model branches.

A central part of this system is statistical models”.

Also in describing ARMINES, another system that uses statistical tools:

“The wind forecasting system of ARMINES integrates [...] combined

forecasts: such forecasts are produced from intelligent weighting of short-

term and long term forecasts for an optimal performance over the whole

forecast horizon.”

In general, forecast combinations are a common practice in the wind power industry

since they have become a building block in forecasting systems (Mart́ı et al., 2006).

Sanchez (2006) combined different autoregresssion models to forecast wind power,

based on hourly data, for the next 48 hours. Each model had different components

(choosing between wind speed, wind direction and wind power). A subset of models

was chosen to perform the final combination, in the form of a linear expression,

with the weight assigned to them changing through time and the number of models

combined varying as well. Different sets of parameters were used for different steps

ahead. This work emphasised the statistical treatment of forecast combinations, and
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can be seen as a source of a general framework to analyse computing intelligence

models.

Sanchez (2008) expanded on the previous research and used two ways of com-

bining forecasts: combination for improvement, in which the objective is to find

the best (constrained) linear combination of a set of forecasts, and combination for

adaptation which aims to perform as well as the best individual procedure, trying

to track the best available predictor. The author proposed the following:

1. Do combination for improvement with various methods. Do combination for

adaptation with various methods.

2. Do combination for adaptation to further combine the combinations produced

in the previous step. The recombination seems to give good results according

to some authors (e.g. Gunter & Aksu, 1989; Yang, 2004).

The procedure above described was tested with mean hourly power generated

in two wind farms. For each case, a set of four forecasts were available (for various

hours ahead), which were provided by an independent professional forecaster. The

investigation aimed at forecasting up to 18 hours ahead. The authors reported

promising results, which were based on Mean Squared Prediction Error (MSPE).

Salcedo-Sanz et al. (2009) forecasted wind speed, which was used in forecast-

ing wind power. Using coarse information from weather data, a down-scaling was

performed to obtain forecasts at an hourly resolution to find the speed of wind

at specific locations. They used information from global prediction systems which

give predictions of weather variables at certain altitudes and spacial resolutions.

A combination of global models with different parameterizations gave a pool of

data sources to feed the different structures of neural networks. The global model-

parameterizations were taken into account when setting up the NN models. Their

approaches, including combinations, were the following:
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1. Set up a NN for each global model-parameterization combination. Select the

best from the set.

2. Set up a NN for each global model-parameterization combination, and aggre-

gate the outputs from all combinations in a single output unit.

3. Set up a NN for each global model-parameterization combination, and then

aggregate all outputs using a hidden followed by a single output unit.

Two hourly series of wind speed at two points in a wind park were used. Other

predictors used included wind direction and a measure of temperature in one of

the points. These values were based on results a fifth generation Mesoscale Model

(MM5) at a given height, equal for all the wind turbines3. Other input variables

were two time series measuring the solar cycle. The authors claimed that the bank

of neural networks obtained better results than the best of the models with a sin-

gle neural network, for the specific site in question (located in Spain). Statistical

diagnoses were not reported, though the authors highlighted how combinations are

useful to cope with the uncertainty in weather data.

Li et al. (2011) used a hybrid approach to combine 1-step-ahead forecasts with

NNs in a first stage and a Bayesian combination in a second stage. The models were

applied to forecast hourly wind speed. Their results suggested that the inconsisten-

cies in performance between different kinds of NNs can be overcome with the use of

Bayesian averaging.

Wang & Hu (2015) forecasted wind speed from two wind farms in China by using

15-minutes and 30-minutes data. Signal processing was used at the beginning and

several forecasting models of different nature were used afterwards (ARIMA, support

3According to Salcedo-Sanz et al. (2009), the MM5 “is a limited area model, which solves
the Navier-Stokes equations which modeled the behavior of the atmosphere (similar to the global
models), but without including ocean-land interactions and other important variables of the global
forecasting models.”
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vector, least square support vector machine and extreme learning machine4). The

final combination was made with a Gaussian process regression model. Comparisons,

were made between the combining mechanism proposed and individual models. The

contribution was in the manner of arranging models in a process.

Ren et al. (2015) reviewed recent literature on ensembles for wind power and

solar power forecasting. Their classification of methods distinguished two types of

approaches. Cooperative ensemble forecast divides prediction into several sub-tasks

and selects appropriate predictors for each sub-task based on their characteristics.

The final forecast is a sum of all the outputs of the base predictors. Compet-

itive ensembles train different predictors individually, with different data sets or

different parameters, and the prediction is obtained by summarising forecasts of all

base predictors. The authors evaluated three ensemble forecasting methods, with

real wind speed and solar irradiance data sets, and concluded that the competitive

ensemble forecasting method (Bagging-Back-Propagation) had better performance

on longer forecasting horizons and the cooperative ensemble forecasting method

(Wavelet Transform-Back-Propagation) had better performance on shorter forecast

horizons. Their findings are difficult to generalise due to the limited number of ap-

proaches evaluated. However, they might have implications for ensemble approaches,

since switching between types of ensembles depending on the forecast horizon could

be a sound strategy. In general, their review focuses on point forecasts combination.

2.2.3 Other Applications

Khotanzad et al. (2000) forecasted daily gas consumption. Two NNs (a simple

4Extreme learning machine (ELM) is a new formulation for training single hidden layer feed-
forward neural networks. ELM is formulated as a linear-in-the-parameter model which transform
the training into solving a linear system. Compared to traditional feed-forward learning methods,
ELM is very efficient and has desirable properties in convergence (Huang et al., 2015).
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feed-forward and a functional link network5) were used in different combinations

to forecast consumption in the next day: average, recursive least squares, fuzzy

logic, feed-forward NN, functional link NN, a partition of the temperature space (an

external variable)6, a linear programming algorithm and a mixture of local experts7.

The best performance was obtained with a NN as a combination mechanism. The

forecasting task was limited to the total daily gas consumption one step ahead by

using daily data. Perhaps the conditions for this experiment were comfortable for

NN models with the smoothing of the data. Investigations of multiple steps ahead

would have rendered the study more complete.

Yu et al. (2008) explored time series decomposition in conjunction with a NN

combination (the networks having 3 layers with an unspecified number of units) in

forecasting crude oil spot price. Empirical mode decomposition (EMD) was adopted,

where, by using daily data, the components are modelled with independent networks

(one for each sub-series). The individual forecasts were aggregated through a linear

NN. The number of NNs in the ensemble varied with the number of sub-series derived

from the original data. The model showed good results when compared to ARIMA

models and other variants of their proposal.

Alessandrini et al. (2015) forecasted hourly power data from three solar farms

located in Italy by using ensembles in conjunction with hourly data. They incor-

porated techniques that have been used in weather and wind power forecasting.

Their main idea was to compare the predictions for a given time horizon with the

corresponding past observations and establish a measure of similarity (through dis-

tance). By using a ranking procedure a set of past observations were selected (based

on calculated distances) and constituted an ensemble for the given horizon. The pro-

5See Pao & Takefuji (1992).
6A scheme where a space of the estimated and actual temperature was divided and a regression

was done with the models falling into each area.
7The approach used a third module, called gating network, to learn to assign different parts of

the input space to different local experts.
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posed approach compared well against other ensemble methods and point forecasts

(including NN8). The research is relevant because it incorporates the concept of sim-

ilarity (based on distance calculations), which can be applied to forecasting models

in general, and not just point forecasts or ensembles of point forecasts. In this way,

it highlights potential ways to enrich forecast combinations.

From the variety of approaches described above, some similarities and differences

can be identified in the way ensembles have been devised. The following section

addresses key aspects in ensembles and highlights limitations that lead to the focus

of this dissertation.

2.3 The Current State of the Literature on En-

sembles for Time Series Forecasting

It is noticeable that ensembles involve three main tasks, as depicted in Figure 2.1:

generation, pruning and combination. Generation involves the creation of differ-

ent instances of models. Pruning comprises a selection of them, which is optional

(Mendes-Moreira et al., 2012). The final stage performs the combination of fore-

casts. Other factors to be considered, besides these three, are: the type of model

to ensemble, the way the individual models are produced, the level of automation

of the process and the way combinations are made. Therefore the construction of

ensembles is far more complex than the construction of a single model.

Generate. Prune. Combine.

Figure 2.1: General steps in ensemble generation.

There are sequential approaches where the generation of models is followed by a

pruning stage and finished with a combination stage (see for example Zhou et al.,

8In their approach, the authors included the forecasting horizon into the input patterns and
therefore every network produced forecasts for each horizon.
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2002). But in other approaches this sequence is not entirely observed: the evolu-

tion (or generation) of the individual models can be done in parallel, so that the

information of the training stage can be shared and used to modify the collective

estimation of parameters (see Liu et al., 2000; Chen & Yao, 2007).

The type of model used and the generation process are interrelated. The most

common types of models in the literature are feed-forward NNs (for example Hansen

& Salamon, 1990; Fan et al., 2009), although RBF (Yu et al., 2008; Maqsood et al.,

2004), Elman recurrent network and Hopfield (Maqsood et al., 2004), Deep belief

network (Qiu et al., 2014) and Abductive networks (Abdel-Aal, 2005) can also be

found.

Once the type of model is chosen, a question arises about how to specify the

individual models. In the case of feed-forward NN, which is the most used in the

literature, the creation of a single model for forecasting implies the specification of

several parameters. They can be determined by trial and error, heuristic rules or by

systematic approaches. For example, Anders & Korn (1999) conduct model selection

with strategies based on sequential statistical tests, information criteria and cross

validation. Zhang et al. (2001) and Balestrassi et al. (2009) use design of experi-

ments to identify an appropriate network configuration. Crone & Kourentzes (2010)

emphasise input selection as part of model specification and propose a methodology

for seasonal components. Nevertheless, no universal guidelines exist on how to select

the most appropriate model (Kourentzes et al., 2014).

For ensembles of NNs, the selection of participant models tends to be simple.

Sometimes the structure of the models is determined automatically (for example

through randomisation of structural parameters, as in Chen & Yao, 2007) without

an initial analysis of the potential choices of models. In some cases, there is a

hint of a preliminary sensitivity analysis (e.g. Hansen & Salamon, 1990; Adeodato

et al., 2011). Different networks are evaluated, with architectures varying in a
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given range and in combination with two different training algorithms. The best

are selected from that step to then generate different networks to later combine.

However, preliminary analysis can be carried out in order to support the ensemble

generation in a more direct way. Kourentzes et al. (2014) use a systematic approach

with step-wise regression for inputs and minimisation of the validation MSE for the

number of hidden units. Their focus is in the selection of optimal design parameters

(inputs and hidden units), but the variation in performance is not studied in detail

for different specifications, which could reveal instabilities or error patterns that

could inform model selection.

A sensitivity analysis of the relationship between specified parameters and model

forecasting performance as conducted by Zhang et al. (2001) and Balestrassi et al.

(2009), using design of experiments, and as suggested by Hansen & Salamon (1990),

would be useful in the construction of ensembles. Even if the selection of mod-

els is done automatically in the ensemble algorithms, such a preliminary analysis

could help to screen regions of the input space from which models have particular

difficulties in learning or regions of the parameter space that show special instability.

In a subject area that relies on the availability of diverse models it is important

to understand variation in models, in order to make informed decisions about the

base components to use in the model generation stage. Other methodologies, includ-

ing those which help in the selection of inputs to the forecasting system, could be

explored in conjunction with a sensitivity analysis. Additionally, model specification

and the building of model ensembles interact: the decisions about the structure of

individual models affect the ensemble performance. Hence, there is need for detailed

study of both topics and their interactions.

In ensemble construction, once the characteristics of the models are established,

variety is usually introduced by modifying initial random weights (Adeodato et al.,

2011), or by randomising training samples (Zhou et al., 2002; Bakker & Heskes,

53



2003). The randomisation of the feature space (Chen & Yao, 2007) could count

both as a strategy for model variation and as a strategy for model specification.

In the final block in Figure 2.1, models are combined to produce the output

of the ensemble. The methods that have been proposed in the literature (focusing

on forecasting rather than on classification) include: a gating network (Jacobs &

Jordan, 1991), a simple or weighted average (Krasnopolsky, 2007; Liu et al., 2000;

Islam et al., 2003; Maqsood et al., 2004), a nonlinear average through another NN

(Krasnopolsky, 2007), a feed-forward NN (Yu et al., 2005, 2008), a RBF (Yu et al.,

2008), the median of forecasts (Adeodato et al., 2011; Fan et al., 2009) and the mode

(Kourentzes et al., 2014). It can be seen that the complexity and effectiveness of

the ensemble approaches are only partially related to the combining procedure at

the end of the process, because there are other steps involved.

In order to summarise key ensemble characteristics from this body of literature,

Table 2.1 shows the main aspects in NN ensemble creation: the type of ensemble

approach (column Ensemble approach), the type of model (column Network type)

and the way the individual models are constructed (column Architecture selection).

Additionally, the area of application is given. In the case of ensembles characterised

by fixed NN architectures, sequential approaches and the existence of clusters of

models, there are key elements to take into account: the number of NN generated,

the number of clusters used, the number of networks selected (per cluster or in

general if no clustering is done) and the final model combination. These aspects are

summarised in the last columns of the same table.
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In the combining stage, the literature tends to focus on alternative ways to aggre-

gate point forecasts. However, one could argue that combinations, or consensus, in

a broader sense, is a fundamental feature of reality and science, which suggests po-

tential avenues for research. Perhaps, by considering forecasting models as objects,

with different components and outcomes, a forecast combination can be extended

from the standard aggregation of point forecasts to take into account differences

in model specifications, and, in particular cases of neural networks, their internal

components, i.e, their structure.

The exploration of such extensions in forecast combination can have an impact

in related concepts, as for example, forecast encompassing. This concept helps in

assessing whether one forecast, or set of forecasts, includes all information present

in another forecast or set. Encompassing tests are relevant in situations where no

dominant model can be identified, and, therefore, combination is preferred over a

single forecast (Timmermann, 2006; Makridakis & Winkler, 1983). The tests can be

done between pairs of forecasts or between sets of more than two (Harvey & New-

bold, 2000). Some encompassing tests are based on regression analysis (Fisher &

Wallis, 1990; Fair & Shiller, 1990; Cooper & Nelson, 1975). Other studies focused on

the conditions under which encompassing tests can be applied, the implications of

having multi-step ahead forecasts and the presence of non-normality or heterokedas-

ticity in forecast errors (see Newbold & Harvey, 2007).

In summary, two gaps are identified. The first is related to the study conducted

prior to the selection of models for an ensemble. The second is related to the way

in which the combination of NN models in ensembles is done. The following section

formulates the related research questions.
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2.4 Research Questions

As discussed above, a preliminary analysis of how sensitive are forecasts to design

parameters would be useful in the construction of ensembles. Research conducted

with design of experiments is limited and can be expanded to aid the selection of

models for an ensemble. The first question to be addressed in this dissertation is

thus,

– How can a sensitivity analysis, based on design of experiments, be used to aid

the selection of NN models for a forecasting ensemble?

From the literature review on forecast combination and NN ensembles, it is

also clear that very sophisticated ways of performing combination of forecasts have

emerged. However, there is limited research on combination approaches which con-

sider the internal characteristics of the models. Bakker & Heskes (2003) considered

a research direction that would consist in using clustering of structural parameters

and summarising models based on such clusters. Matijaš et al. (2013) exploited

the interpretation of a learning process as a link between a problem and a solution

space and tried to use such representations to explore combination of forecasts in

a wider sense. The general idea of expanding the model information used in com-

bining forecasts can be further explored. The specific case of using clustering and

structural parameters can be explored with different clustering techniques and time

series. As NNs have a clear structural representation, which is intended to store

some knowledge about the problem at hand (pattern matching), it is important to

investigate the extent to which the inclusion of the structure of the models into the

forecast combinations improves the accuracy of predictions. Additionally, we lack

knowledge concerning the use of model structure when combining statistical models

as well. Therefore the following questions emerge:

– How can the structure of neural networks be combined?
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– How do the proposed models perform in forecasting?

– How can the structural combination approach be extended from NN to other

forecasting models?

2.4.1 Research Objectives

Given the research questions outlined above, the objectives of this dissertation are

the following:

– To gain further insights into the choice of models, when developing ensembles,

in terms of the types of time series and forecast horizons, over existing research

on the performance of NNs in order to better understand their behaviour given

different data generating processes.

– To use the knowledge gained through the sensitivity analysis of NN perfor-

mance in the construction of ensembles.

– To implement a NN forecasting model combination that incorporates model

structural information.

– To assess the forecasting performance of such combination scheme.

– To propose a form of model structural combination for statistical forecasting

models and assess their performance.

In order to fulfil these objectives, first a thorough exploration of NN structures

with synthetic time series that cover a wide range of processes is undertaken in

Chapter 3. Subsequently, two chapters are devoted to the development of a struc-

tural combination approach, first with NNs (Chapter 4) and then with a statistical

model (Chapter 5) that has been found to outperform a range of models when pre-

dicting electricity demand (Taylor et al., 2006). Chapter 6 will summarise, assess
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the implications of the research and conclude this dissertation. Overall, the main

contributions of this dissertation are concerned with the first and last stages depicted

in Figure 2.1, which are the generation and combination of forecasting models.
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Chapter 3

A Sensitivity Analysis of the Performance
of Feed-Forward Neural Networks

3.1 Abstract

As highlighted in the previous chapter, forecasting time series with ensembles of

models is a promising research avenue (Crone et al., 2011). Neural networks (NN)

ensembles comprise 3 stages: the generation of the models, the pruning or selection

of models and the integration, as described in section section 2.1.2.3. During the first

stage, it is important that the modeller understands which NN models are worth

combining. Given that literature suggests that NN can be very volatile (e.g. Geman

et al., 1992; Breimanet al. , 1996; Dietterich, 1997; Teräsvirta et al., 2005; Medeiros

et al., 2006), the present study examines individual NN model behaviour in order to

aid the selection of models for ensembles. Simple feed-forward neural networks are

explored, for which different configurations of key parameters (sample size, number

of inputs and number of neurons) are used to model simulated time series data

of different complexity and assess the sensitivity of forecasting performance to the

chosen parameters.

The design of experiments (Montgomery, 2008) is used to evaluate the influence

of different factors on the performance of NNs. Results show that there are signifi-

cant effects of different factors on forecasting performance. Graphic and statistical

databases that were created in the study have also facilitated a more objective as-

sessment of models to be combined.
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3.2 Introduction

In forecasting with NN ensembles, sometimes the structure of the models is de-

termined automatically, for example through re-sampling (see Chen & Yao, 2007),

cooperative training (Islam et al., 2003), negative correlation training (Liu & Yao,

1999; Chen & Yao, 2009) and evolutionary algorithms (Chandra & Yao, 2006; Yao &

Islam, 2008). When using automated or partly automated schemes, the absence of

an initial analysis seems to be justifiable. However, in most studies, no preliminary

analysis is reported. As shown in Table 2.1, several design factors in ensembles tend

to be set constant, whereas others vary without clear justifications concerning the

modeller’s choice. Understanding how the choice of parameters may impact perfor-

mance is helpful in order to assess the limitations of individual models and different

architectures. Even if models were to be automatically selected, it would be helpful

to identify regions in the input space where models have difficulties in learning, or

regions of the parameter space that show greater volatility. Consequently, an as-

sessment of how model fit and performance are sensitive to the specification of NN

is critical for the development of ensembles.

This chapter develops a sensitivity analysis, based on design of experiments

(DOE), which is a standard methodology in industrial assessments of new products.

DOE provides guidelines for planning and conducting experiments and analysing

the results so that objective conclusions are obtained (Montgomery, 2008, p. 1).

DOE has been less used in simulation studies, despite the potential benefits it can

offer (Balestrassi et al., 2009).

The analysis presented here will aid the selection of NN models for a forecasting

ensemble. It uses graphical summaries and statistical tests, which allow the modeller

to identify better behaved models. The modeller might want to limit the volatility

of NN in the ensemble for different tuning tasks. She might consider ensembles with
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different network architectures. A detailed study, as presented here, can be a basis

upon which to make decisions concerning the specification of ensembles.

Sequential approach for model generation is adopted, where each NN is trained

independently. Figure 3.1 shows a general process with DOE. The goal is to use

knowledge gained through DOE to choose individual models for an ensemble.

DOE.

Model selec-
tion strategy.

Generate. Prune. Combine.

Figure 3.1: General steps in ensemble generation with DOE.

Previous research on NN specification and DOE have focused on the most appro-

priate models for a given forecasting problem. Zhang et al. (2001) and Balestrassi

et al. (2009) conducted experimental studies to evaluate the effect of several con-

figuration parameters of feed-forward networks on performance metrics. The first

study considered non-seasonal series and examined three factors: number of in-

puts, number of neurons and sample size. For each combination of factor levels,

30 different experiments were conducted. Each experiment corresponded to a time

series replication (obtained through its generating process), which was fitted with

a network specified according to the given combination of factor levels. The sec-

ond study included a seasonal component in some series and expanded the factors

considered. However, given the quick growth in the number of experiments needed

(and the corresponding increase in computing time), a strategy of screening, the

Taguchi approach (Taguchi & Yokoyama, 1993), was adopted in order to have fewer

experiments per factor combination. Khadem & Dillon (2012) also resorted to an

abbreviated procedure: instead of using a full factorial design, they used an orthog-
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onal design. The full factorial design requires Lf experiments1, with f being the

number of factors and L the number of levels per factor, while the orthogonal design

requires only L ∗ f experiments. Such approach was used to define neural network

(NN) parameters for a single forecasting problem (traffic flow). The main outcome

was the visualisation of main effects of different factors over a single error metric2.

Crone & Dhawan (2007) also used design of experiments to analyse different lengths

of seasonality. They concluded that the results of their sensitivity analysis may

serve only as a guidance for future modelling of seasonal time series. In order to

establish NNs as an alternative to statistical methods, they considered as important

the extension of the sensitivity analysis to a full factorial design, including the use

of statistical tests such as ANOVA and multiple performance metrics.

The studies cited above show that the number of combinations of parameters in

the specification of networks is considerably high and at some point the computing

time needed goes beyond practical means. Consequently, there is a trade-off be-

tween scope and detail. That is, either the study considers a reduced number of

factors (parameters or design decisions in networks) with a modest number of levels

and keeps a reasonable number of replications per combination, or the number of

factors is increased at the expense of reducing the number of replications. Overall,

previous studies show that such experiments allow for the simultaneous visualisation

of different factors that affect the forecast error.

Simple seasonality was considered by Balestrassi et al. (2009) in their synthetic

series and was generated through the addition of a time lag of 24 to the generating

processes. Their idea was to use data with characteristics present in electricity

load, daily electricity prices or water consumption time series. In the present study,

seasonality is analysed, and is also extended to double seasonal series, which are

1Assuming the same number of levels for all factors.
2A main effect is the effect of one factor on the outcome variable, normally displayed in a graph

(Montgomery, 2008, p. 5)

68



characteristic of short-term electricity demand (daily: peak and low demand; weekly,

as consumption during weekdays differs from weekends). Its inclusion expands the

studies by Zhang et al. (2001) and Balestrassi et al. (2009) and Crone & Dhawan

(2007).

In the present study, a trade-off was made between the number of factors and the

number of experiments per factor combination. The factors considered by Zhang

et al. (2001) were kept, and summary graphs displaying the effect of a factor on

a forecast error metric were adopted, that also included 95% confidence bands.

Additionally, a version of summary graphs was constructed using cross-validation

(Bishop, 1995). With such procedure, the training is conducted with a time series

divided in n segments. For a given experiment, the network is trained n times,

each time omitting one segment, which is used for testing. A summary statistic of

performance metric obtained from the n-fold cross-validation is used to construct

the graphs, instead of the single value obtained without cross-validation. The graphs

obtained without cross-validation highlight the variance in forecasting performance

of the actual networks, whereas the graphs based on cross-validation highlight the

more general tendency. In contrast to previous studies, which focused on one-step-

ahead forecasts, multiple step-ahead forecasts are here considered. Additionally, the

number of experiments per factor combination was increased to 100 (30 were used by

Zhang et al., 2001). The aim is to observe the sensitivity of forecast accuracy with

respect to some structural parameters. Feed-forward neural networks were selected

due to the simplicity of their architectures, popularity, and the greater likelihood of

obtaining manageable training times for the ensembles.

In Section 3.3, the time series used in the present study are described. Section 3.4

describes the design used for the sensitivity analysis. Section 3.5 presents numerical

and graphical results. Section 3.6 discusses the results and, finally, Section 3.7 states

the main conclusions.
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3.3 The Synthetic Time Series

The models used to generate synthetic time series are listed below. For each group

(non-seasonal and seasonal), the level of non-linear complexity is in ascending order.

Non-seasonal time series

The generating processes for these series are the same used by Zhang et al. (2001).

• Sign autoregressive (SAR) model:

yt = sign(yt−1) + εt, (3.1)

sign(x) = 1 if x > 0,

= 0 if x = 0 and

= −1 if x < 0

• Bilinear model 1 (BL1) :

yt = 0.7yt−1εt−2 + εt (3.2)

• Bilinear model 2 (BL2) :

yt = 0.4yt−1 − 0.3yt−2 + 0.5yt−1εt−1 + εt (3.3)

• Threshold autoregressive (TAR) model :

yt = 0.9yt−1 + εt for |yt−1| ≤ 1 and

= −0.3yt−1 − εt for |yt−1| > 1 (3.4)

• Nonlinear autoregressive (NAR1) model :

yt =
0.7|yt−1|

(|yt−1|+ 2)
+ εt (3.5)
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• Nonlinear moving average (NMA) model :

yt = εt − 0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2
t−2 (3.6)

• Smooth transition autoregressive (STAR1) model :

yt = 0.8yt−1 − 0.8yt−1(1 + e−10yt−1)−1 + εt (3.7)

• Smooth transition autoregressive (STAR2) model :

yt = 0.3yt−1 + 0.6yt−2 + (0.1− 0.9yt−1 + 0.8yt−2)(1 + e−10yt−1)−1 + εt (3.8)

For all these processes εt ∼ NID(0, 1).

Single seasonal and double seasonal time series

• Single seasonal synthetic (Synthetic-1S) :

yt(k) = lt + wt−s2+k + φk(yt − (lt−1 + wt−s2)) + εt (3.9)

lt = λ(yt − wt−s2) + (1− λ)lt−1

wt = ω(yt − lt−1) + (1− ω)wt−s2

yt(k) is the simulated series value at time t+ k, lt denotes the smoothed level

and wt denotes the seasonal index. εt ∼ NID(0, σ2), with σ2 being a constant

variance. Parameters are λ = 0.2; ω = 0.01; φ = 0.943; s2 = 12.

This single-seasonal series was simulated through the following steps:

1. Generate an initial pattern for the seasonal cycle, thus covering values

for t = 1, . . . , s2 of equation
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yt(k) = lt + wt−s2+k + φk(yt − (lt−1 + wt−s2)) + εt (3.10)

lt = λ(yt − wt−s2) + (1− λ)lt−1

wt = ω(yt − lt−1) + (1− ω)wt−s2

2. Use the expression to generate the values starting from the last point

generated previously. This implies that information in one cycle is used

to generate the next, as illustrated in Figure 3.2.

Figure 3.2: Illustration of single-seasonal synthetic time series generation.

3. Repeat step 2 until a length of 10000 is reached.

4. Take a subset of the series according to the length needed to fit and test

the forecasting models.

• Double seasonal synthetic (Synthetic-2S) exponential smoothing:

yt = lt−1 + dt−s1 + wt−s2 + φ(yt−1 − (lt−2 + dt−s1−1 + wt−s2−1)) + εt (3.11)

lt = λ(yt − dt−s1 − wt−s2) + (1− λ)lt−1

dt = δ(yt − lt−1 − wt−s2) + (1− δ)dt−s1

wt = ω(yt − lt−1 − dt−s1) + (1− ω)wt−s2

Here lt denotes the smoothed level, wt denotes the long cycle seasonal index

and dt denotes the short cycle seasonal index. Parameters are λ = 0.2; δ =
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0.13; ω = 0.3; φ = 0.5; s1 = 3; s2 = 12. After generating a series of length

10000, a subset is taken, according to the length needed to fit and test the

forecasting models.

Initial values for the time series were not based on an actual load curve. This

selection had the purpose of testing the forecasting model combinations in different

conditions. This choice of having quarterly cycle within an yearly cycle allowed us to

preserve the factor combination in the design of experiments (and the corresponding

number of simulations) within feasible computing cost boundaries at the time of this

research.

Figures 3.3 and 3.4 show different replications of the series and illustrate the

range (with the set of series in grey) and the shape of each time series. STAR2 series

is particular because it is more predictable than the other series (clearer patterns

are visible in the time series when the noise is smaller). Although this regularity is

not appreciated in the series generated with σ2 = 1 (adopted here following Zhang

et al., 2001), it is, nevertheless, more predictable than all other non-seasonal series.
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SAR. BL1.

BL2. TAR.

Figure 3.3: Simulated series (non-seasonal). From 100 replications, in grey colour,
one is plotted in blue.
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NAR1. NMA.

STAR1. STAR2.

(Continued) Simulated series (non-seasonal). From 100 replications, in grey colour,
one is plotted in blue.
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Synthetic-1S. Short period. Synthetic-1S. Longer period.

Synthetic-2S. Short period. Synthetic-2S. Longer period.

Figure 3.4: Simulated series (seasonal). From 100 replications, in grey colour, one
is plotted in blue.

76



3.4 Design

The study is focused on assessing the influence of key design parameters in the

forecasting accuracy of neural networks. The type of network and the multi-step-

ahead forecasts approach influence the way the problem is treated. The networks

are restricted to the feed-forward type and the multi-step ahead forecast approach

is direct (a review of approaches is provided in Appendix A). That is, a separate NN

is used for each forecast horizon. This approach allows for networks to specialise in

a specific forecast horizon (Gouriveau & Zerhouni, 2012) and, consequently, for a

division of the training task between multiple machines. In sum, the aim of the study

focuses on forecasting synthetic time series with feed-forward NNs and the results

are expected to show the influence of several design parameters (number of lagged

inputs, number of hidden units and sample size) on the forecasting performance of

such models for every time series considered.

The use of design of experiments has an impact in the use of some forms of en-

semble generation. Negative correlation, an approach mentioned in the introduction,

creates pools of NNs with negatively correlated errors during the training period. It

has two forms: simultaneous training and separate training. Simultaneous training

would imply a relation between NNs during training because the algorithm is global

and takes into account the correlation of models errors during the optimisations (see

for example Liu & Yao, 1999). However, the sensitivity analysis presupposes inde-

pendence (independent experiments, that is, independent training). The approach

followed here was to generate the NNs independently to facilitate the statistical

analysis.

3.4.1 Choice of Factors, Levels, and Ranges

The factors selected here are the number of inputs for the network (NI), which

correspond to lagged values of the series; the number of hidden units, or neurons
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(NU); the sample size (SS) and the presence or absence of pruning (PU) in the

weights of hidden units. The levels were chosen to achieve a good granularity. Table

3.1 provides a list of the factors considered and specifies which varied and their

respective ranges. Further details are summarised as follows:

– Number of inputs: this factor has been found to impact the structure of the

models (Zhang et al., 2001; Crone & Kourentzes, 2010). Given that the under-

lying processes for the non-seasonal series do not use information beyond the

previous two lags, a maximum of 6 lags was chosen for these types of series.

– Number of hidden layers: following previous literature (Zhang et al., 2001;

Crone & Dhawan, 2007) single layered networks were used.

– Number of hidden units: following Zhang et al. (2001),it was set as twice the

maximum number of inputs.

– Activation functions: following Zhang et al. (2001) it was kept constant.

– Initial values for the weights: are in the range [−2, 2], according to the Nguyen-

Widrow algorithm (Nguyen & Widrow, 1990), which generates them randomly

within several constraints in order to speed up the training process.

– Combination coefficient (µ): The Levenberg-Marquardt algorithm is a com-

bination of the steepest descent algorithm and the Gauss-Newton algorithm,

switching between the two during the training process (Yu & Wilamowski,

2010). The default initial value of the combination coefficient in the Matlab R©

toolbox is set to 0.001, which starts the training closer to the Gauss-Newton

algorithm (Haykin, 1999, p. 148).

– Training algorithm: The Levenberg-Marquardt algorithm was chosen due to

speed. One of the main features is its combination coefficient, µ, which can be
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interpreted (if it is very big) as the learning coefficient in the steepest descent

method α = 1/µ (Yu & Wilamowski, 2010).

– Stopping criteria: The training algorithm stopping criteria (a standard routine

in Matlab R© NN implementation) takes into account several conditions: the

maximum number of epochs, the maximum amount of time for training, the

performance goal, the performance gradient, the upper limit for µ and the

number of times the performance in the validation period has increased since

the last time it decreased.

– Input scaling: linear scaling of inputs in the interval [−1, 1] is performed (ad-

ditional common configurations can be found in Zhang et al., 1998).

– Sample size: sample sizes of 340, 580, 1060 observations were used.

– Data configuration for training, testing and validation: 100 observations were

used for out-of-sample testing leaving 240, 480 and 960 for in-sample (training

+ validation) in each sample size. The number of observations for validation

was 10% of the training size, that is 24, 48 and 96 observations. Data division

is sequential, following Adeodato et al. (2011) and Adya & Collopy (1998).

– Data usage: a rolling window was used to train the NNs for different forecast

horizons. Figure 3.5 exemplifies the partition with a small data set.

– Treatment of extreme values: In the non-seasonal series the outliers were re-

placed by the average of the series. The identification of outliers was done

using an algorithm proposed by Janczura et al. (2013). For the single-seasonal

and double-seasonal series no treatment of extreme values was applied as the

realisations of the processes were very regular. This was achieved by selecting

a level of noise in the generating process that preserved the characteristics of

the time series.
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Table 3.1: Factors.

Factor Symbol Levels
Number of inputs NI 1, . . . ,6 (non-seasonal)

Number of hidden layers NL 1
Number of hidden units NU 1, . . . ,2N, where N is the number of in-

puts

Activation function for hidden
nodes

AF1 Tangent Sigmoid

Activation function for the
output node

AF2 Linear

Initial values for the weights W0 Values in the range [-2 2] established by
the Nguyen-Widrow algorithm (there is a
degree of randomness)

Training algorithm TA Back-propagation with Levenberg-
Marquardt optimisation.

Stopping criteria SC * The maximum number of epochs (repe-
titions) is reached: 4000.

* The maximum amount of time is ex-
ceeded: ∞
* Performance is minimised to the goal: 0

* The performance gradient falls below
mingrad : 10−10

* µ exceeds µmax = 103

* Validation performance has increased
more than maxfail times since the last
time it decreased (when using validation):
6

Data normalisation DN Yes
Combination coefficient (µ) MU 0.001
Prune units PU Yes, No

Prune input variables PI No

Sample size SS 240, 480, 960. SS = 240 corresponds to
setting with training and validation sizes
totalling 240 plus a testing size of 100 for
a total of 340. The same applies for the
other two configurations.

Data configuration for train-
ing, validation and testing
(training+validation=in-
sample period; testing=out-
of-sample period)

DC Conf. 1: Ntr = 216(63.53%), Nva =
24(7.06%) Nte = 100(29.41%); conf. 2:
Ntr = 432(74.48%), Nva = 48(8.28%),
Nte = 100(17.24%); conf. 3: Ntr =
864(81.51%), Nva = 96(9.06%), Nte =
100(9.43%)

Extreme values treated EV In some of the series.
Sampling method SM block, cross-validated

Forecast approach FA Direct: a separate model for each step
ahead

In bold are the factors which vary in the study.
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– Sampling method: block and cross-validated sampling were used. The first

corresponds to sequential data division as mentioned above and the second is

conducted with a 10-fold cross-validation procedure (Bishop, 1995).

– Prune units: Pruning was conducted in the hidden layer weights of the net-

works. A threshold of tr=0.05 was used (following Balestrassi et al., 2009).

Figure 3.5: Rolling window for training (fitting with in-sample data) and testing
with out-of-sample data.

3.4.2 Selection of the Response Variable

Given the purpose of the study, the in-sample and out-of-sample mean squared error

(MSE) and mean absolute error (MAE) were chosen as the response variables. The

first metric was used in the sensitivity analysis by Zhang et al. (2001) and the latter

is included as an alternative metric. Percentage-based metrics were omitted as they

were noticed to be unstable for the time series whose values are close to zero.
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3.4.3 Choice of Experimental Design

A full factorial design was chosen for the number of inputs, number of neurons, and

sample size.

3.4.4 Methodology to Perform the Experiments

For a given time series, 100 experiments are conducted per factor combination. For

each experiment (corresponding to a realisation of the generating process), there

are several results: the in-sample MSE and MAE and the out-of-sample MSE and

MAE. These measures are used to conduct statistical tests (ANOVA, Kruskal Wallis,

and Jonckheere-Terpstra, explained in the following section) and generate graphs of

factor effects.

For a given combination of factors, the set of time series replications (n = 100)

is used for training (fitting) 100 NNs. The in-sample MSE is examined and the

training is repeated for synthetic series that lead to extreme MSE values, that is

when MSE > q2 + 3 ∗ Iqr, where q2 is the upper quartile and Iqr is the inter-

quartile range for the set of 100 MSEs during training. The procedure is conducted

while extreme MSEs persist, or until 10 iterations are reached. The size of the

problem for this routine is determined by Nh (the number of forecast horizons),

NNI (the number of values used for factor NI), NNU (the number of values used

for factor NU) and NSS (the number of values used for factor SS). Factor PU

is treated in a reprocessing algorithm excluding training iterations. For this study,

NNU = 2NNI and NNI ≈ Nh. Therefore the order of the routine is O(NSS ·N3
h). The

computational cost is therefore very high, but the algorithm can be run in parallel

in different machines.
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3.4.5 Statistical Analysis of Design Factors

A factorial design can produce many results, depending on the number of factors

and levels. In our case, there are 4 varying factors (NI, UN, SS, PU) comprising 1728

combinations of levels. For each case there are 12 models, one for each step ahead,

that are iterated 100 times, totalling 2073600 trials. A succinct visualisation of

the multidimensional data produced is unfeasible. Therefore, the analysis, although

based on the full set of results, will focus on sub-samples.

The first step of the analysis uses graphic information to study sensitivity and

variability of the metrics to the factors NI and NU under conditions determined by

factors PU, SS, and SM. That is, the behaviour of the metrics is assessed for NI

and NU, separately, for cases (PU = 0, PU = 1) × (SS = 240, SS = 480, SS =

960) × (SM = block, SM = cross − validated). This space comprises the com-

bination of pruned and non-pruned models, different sample sizes and non-cross

validated vs. cross-validated conditions. A graph depicts the behaviour of a perfor-

mance metric against one of the factors. Confidence bands are added in order to

examine variability. Another graph assesses serial correlation in forecast errors. It

is comprised of cells that display the number of times (out of 100) the Ljung-Box

test finds evidence of serial correlation, for a given combination NI ∗ NU . Colour

arrangement in the cells helps in identifying regions of the NI ∗ NU combinations

with specific patterns regarding a test. The second step is a non-parametric analysis

of variance (ANOVA) with main effects graphs to study the influence of factors NI,

NU, PU and SS on the error metrics.

ANOVA requires homogeneous variance in the groups (defined by factors). In

our case, a comparison between two groups can be made if, for example, the mean in-

sample MSE (IS MSE) is compared between a group of NNs trained with 2 inputs

and a group trained with 3 inputs. It was found that the variance was different

in many cases. Consequently, two non-parametric tests were considered: Kruskal
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Wallis (K-W) and Jonckheere-Terpstra (J-T). The first helps to assess the influence

of the factors on the metrics and the second gives additional information about the

direction of the influence: absolute values of the standard J-T statistic greater than

1.65 indicate a significant difference in the medians of the groups (formed with the

factor under study). If the value is positive, then it indicates a trend of ascending

medians; if it is negative, it indicates a trend of descending medians (see Field, 2009).

Having a test based on medians is convenient in the case of data distributions with

extreme values (significant kurtosis), as obtained in the present investigation.

The first step in the analysis helps to identify the conditions under which changes

in the error metric happen, whereas the second step helps to numerically assess the

observed patterns found in the first one: the influence of a factor over an error

metric might not be graphically discernible in some occasions, but the statistical

tests help in better judging such cases. This is done by looking into the differences

in mean and median values for the error metrics, under different conditions (levels

of factors).

In the second step, the number of inputs (NI), the number of hidden units (NU)

and the sample size (SS) were considered with the full set of replications, whereas

the pruning (PU) factor was examined only on those models where pruning was

conducted: as mentioned above, a threshold was applied to the hidden layer of NNs

(a model’s weight was pruned if WeightV alue < 0.05). That is, only the models

which resulted in their weights being pruned were considered for the statistical tests.

Comparisons were made between the performance of such models before and after

pruning.

An additional step can be applied to identify models with promising forecasting

capacity, which can then be combined. It is a simple heuristic, which is the following.

Base procedure to aid model selection
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1. Screen for serially correlated residuals and forecast errors: look for regions

in the NI*NU space where models have better behaved residuals and errors

according to Ljung-Box test.

2. Screen for performance: consider the plots of OS MSE (MSE for out-of-sample

period) vs. NI, OSMSE vs. NU, main effects graphs and tests (ANOVA, K-W

and J-T). Look for instabilities and inflection points (where the metric begins

to deteriorate). Together with findings from 1, select the most parsimonious

models with better behaved residuals and forecast errors and lower error met-

ric.

3. Compare results based on different sample sizes in order to determine which

size provides stability.

In this context, for the selection of models, the out-of-sample period would func-

tion as the cross-validation part of the in-sample period. If pruning reduces the

error metric in the selected models, it can be taken into account and the models

with pruned weights are preferred.

The use of the experimental design described is subject to the ensemble design. If

small networks are needed, the study would indicate which are the preferred models

with such constraints. If a specific number of inputs is needed, this restriction can

be used to examine the graphs and statistical results in order to make the selection.

3.5 Results

The analysis of a process is reported in detail, and illustrates the way in which

results were analysed. Findings concerning the remaining processes are summarised

in Table 3.2. Additional information can be requested from the author.

The generating process for SAR series, in Equation 3.1, has a simple non-linearity

with a change in level (structural shift) between -1 and 1. The process works in
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such a way that there are sequences of either positive or negative numbers (auto-

regression in sign). A set of 100 replications of the process revealed that the length

of the sequence of positive or negative values is on average 6 to 7. The nature of this

dependency is reflected in the plot of median MSE vs. forecast horizon produced

with data from the fitted NNs (Figure 3.6), where it can be seen how performance

erodes up until h = 6. For longer forecast horizons, the graph is flat.

Figure 3.6 also includes the plot of average MSE for the best performing NN

architectures in each forecast horizon (with 95% confidence bands). The models with

lowest average MSE have up to 3 neurons. The number of inputs (lags required)

is usually one or two for the first horizon and higher for some of the subsequent

horizons.

Average MSE vs. forecast horizon. Median MSE.
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Figure 3.6: SAR series summary.

A sample of graphs depicting the average MSE for the in-sample and out-of-

sample periods (with 95% confidence bands) is included in Figure 3.73. It was

observed that the in-sample fit, in terms of MSE, is less sensitive to the addition

of past lags of the time series and neurons, when compared to the out-of-sample

period. In-sample error tends to decrease whereas the out-of-sample worsens with

3The complete data-set includes other forecast horizons and the cross-validated version of such
graphs.
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h = 1 h = 6
Ljung-Box test.

Average MSE vs. NI.
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Figure 3.7: SAR series summary.
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increased model complexity, thus implying over-fitting. The behaviour is similar for

all sample sizes (240, 480 and 960), and extreme values in the error metric are more

frequent in the smaller samples.

The forecast errors were assessed for serial correlation through the Ljung-Box

test. A sample graph is shown in the summary below (Figure 3.7, top). The hori-

zontal axis represents the number of inputs (NI) while the vertical axis represents

the number of neurons (NU). Each cell contains the number of times (out of 100) the

tests found evidence of serially correlated errors (with a significance level of 0.05)

for the corresponding NI*NU combination.

These tests show that the NNs are incapable of capturing the full dynamics

of the time series, as there is consistent evidence of correlation in forecast errors

for horizons h ≥ 2. A further investigation of the models was conducted, by also

considering previous literature.

In their study with synthetic time series for ensembles, Barrow et al. (2010) found

that the size of the random error added to the time series affected the performance of

the NNs. The authors used a generating process for seasonal data which produced

series with noise at three levels: low, medium and high. In the low noise level

a standard deviation of 1 was used, (corresponding to approximately 4% of the

interquartile range of the series); in the medium level the standard deviation was 5

(corresponding to 21% of the interquartile range) and for the high level of noise a

standard deviation of 10 was used (corresponding to 39% of the interquartile range).

The SAR series used by Zhang et al. (2001) is produced by a generating process

that adds a noise with a standard deviation of 1, but in this case, it corresponds to

approximately 47% of the interquartile range. This level of noise probably affects the

capacity of NNs to capture the dynamics of the series, in line with observations made

by Barrow et al. (2010) of a negative influence of the noise level on the performance

of NNs.
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Additional experiments for this and other time series were performed in order

to assess the effect of the level of noise added to the process. Although the effect of

the level of noise is not the same as in more regular series (like those used in Barrow

et al., 2010), there is an improvement of the forecast accuracy for lower levels of

noise, within a range that preserves the general structure of the series (when the

standard deviation of the noise added to the time series falls to 0.3 the sign AR

process structure is no longer clear).

The main effect summary graphs (a sub-sample of which is provided in Figure

3.8, for MSE ander factors NI and NU) indicates insensitivity of the MSE metric

to the number of inputs (NI), number of hidden units (NU), sample size (SS), and

pruning (PU) in the in-sample period, whereas in the out-of-sample period there

is a tendency for the metric to deteriorate as model complexity increases (higher

NI and NU), and a tendency of the metric to improve with higher SS. Apparent

insensitivity to PU persists in this period.

In general, ANOVA, Kruskal Wallis (K-W) and Jonckheere-Terpstra (J-T) tests

show that there is sensitivity of the fit and forecasting accuracy to the factors, with

the exception of pruning (PU) in some cases. A deterioration of the forecasting

accuracy (out-of-sample metrics) for complex models is present in the first horizons,

although for subsequent horizons there appear to be improvements in accuracy when

models are more complex.

For SAR and the rest of the series, results are summarised in Table 3.9. It con-

tains the characteristics of the generating processes and the main findings, obtained

through the graphs of average MSE vs. NI and NU (a sub-sample of graphs of

the average MSE vs. NI is provided in Figure 3.9), the correlation maps, the main

effects graphs and the statistical tests.
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h = 1 IS

OS

h = 6 IS
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Figure 3.8: Main effects. Series: SAR. Estimated marginal means vs. NI (first
column of graphs) and NU (second column). IS stands for in-sample; OS stands for
out-of-sample. h refers to the forecast horizon.
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Table 3.2: Summary of findings for the sensitivity analysis.

Series Characteristics Results
SAR The generating process for this series, in

Equation 3.1, has a simple non-linearity with
a change in level (structural shift) between
-1 and 1. There are sequences of positive
or negative numbers (autoregressiveness in
sign). With a set of 100 replications of the
process it can be seen that the length of the
sequence of positive or negative values is on
average 6 to 7.

There is sensitivity of the fit and forecasting
accuracy to the factors, with the exception of
pruning (PU) in some cases. A deterioration
of the forecasting accuracy for complex mod-
els is present in the first horizons, although
for subsequent horizons there appear to be
improvements in accuracy when models are
more complex.

BL1 The process (equation 3.2) has a multiplica-
tive term that differentiates it from the SAR
series. The direct relationship between yt
and yt+h is yt+h = (0.7h)ytet+h−2et+h−3et+h−4

and can make it considerably more volatile
and, consequently, more difficult to forecast.
Simulating this dependency for h = 1, ..., 12
using 100 replications for each horizon, h, it
is observed that it significantly drops in mag-
nitude when h = 5 and stays on values of the
same order of magnitude or lower afterwards.

In general, the behaviour of the error met-
rics for the first horizons (up to 4) is differ-
ent to the behaviour for subsequent steps.
This roughly coincides with the dynamics ob-
served on the process and also the serial cor-
relation in the residuals and forecast errors
(they are better behaved for h = 1 to h = 3).
The models are more adequate to forecast
this series than the previous (SAR), but the
dynamics of the series are still not entirely
captured.

BL2 The BL2 series is slightly more complex than
BL1 in terms of lags and non-linear be-
haviour. The direct dependency of yt+h on
yt has the form yt+h = (0.4h)yt + P , where
P comprises interaction terms, random noise
and other lags (yt−1, yt−2 . . .). The depen-
dency is considerably weaker for h >= 5 than
for previous horizons, which tallies with the
change in the average error pattern.

The behaviour of MSE error metric for BL2
series is similar to the behaviour of the same
error metric for BL1. In terms of the auto-
correlation maps, the in-sample and out-of-
sample Ljung-box tests for BL2 series high-
light the need of more than one input in or-
der to have well behaved residuals and fore-
cast errors for horizon 1. For other forecast
horizons (in the in-sample period) it is no-
ticed how the behaviour of residuals changes
drastically depending on the sample size. In
the out-of-sample period it is noticed how
for most forecast horizons and sample sizes,
the area where the Ljung-Box test shows
better behaved errors is roughly defined by
NU > NI.
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(Continued) Summary of findings for the sensitivity analysis.

Series Characteristics Results
TAR This series is characterised by the existence

of a threshold: yt has different behaviour for
|yt−1| ≤ 1 and |yt−1| > 1. Performing 100
simulations, yt stays within |yt| ≤ 1 for 2.68
consecutive steps on average. And stays in
|yt| > 1 for 1.6 consecutive steps on average.
The strong dependency on the previous value
of the series holds for 1 step ahead only (at
most 2 for the case |yt| ≤ 1). Consequently,
for an autoregressive model, capturing the
time series dynamics beyond step 2 becomes
more difficult.

The MSE is sensitive to the addition of neu-
rons for the first forecast horizon only. The
strong dependency between yt and yt−1 al-
lows the NNs to take advantage of model
complexity to better capture the dynamics
of the time series at this horizon, whereas for
other horizons the limitations of the NNs in
capturing the temporal dependency appears
to be manifested in a deterioration of the per-
formance.
The analysis of main effects implies a signif-
icant influence of the different factors on the
error metrics. Forecast accuracy does not im-
prove with the addition of inputs for the first
forecast horizon, but improves with the addi-
tion of neurons, corroborating findings based
on the average MSE. Adding more lags of the
time series to models for h > 1 was beneficial
in the serial correlation tests.

NAR1 Considering the dependency pattern of the
process for several steps, it can be seen that

yt+h ≈
0.7h|yt|+ f(|yt|, et+1, ..., et+h−1)

0.7h−1|yt|+ g(|yt|, et+1, ..., et+h−1)

The influence of yt on yt+h tends to be simi-
lar for different horizons, as f() and g() have
the same order of complexity. This is con-
firmed by the tendency of the performance
to be very homogeneous in all horizons.

Different factors have significant influence on
the error metrics with a very similar be-
haviour across forecast horizons.

NMA The generating process has complex relations
between yt and yt+h (interaction terms are
observed when developing the temporal de-
pendency of the series and solving for yt).
For h = 6 the coefficient of yt would be
0.2∗0.3∗0.2∗0.3∗0.2 = 0.00072. At this hori-
zon the direct dependency between yt and
yt+h becomes very weak. By analysing the
behaviour of the MSE error metric it is no-
ticed that after h = 6 the NNs are unable to
improve performance markedly.

The sensitivity of the error metrics for h = 1
is different when compared to other horizons.
There is a marked improvement of forecast
accuracy from NI=1 to NI=2 (i.e, with the
inclusion of the second lag). This is expected
as the generating process is based on infor-
mation from the previous two lags. The sen-
sitivity of error metrics for the rest of hori-
zons has a pattern of marginal deterioration
in forecast accuracy measured by MSE and
MAE. Correlation maps also suggest the in-
adequacy of NNs to forecast this series, spe-
cially for h > 1.
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(Continued) Summary of findings for the sensitivity analysis.

Series Characteristics Results
STAR1 The series involves a logistic function that

produces oscillations in the dependency be-
tween yt and yt+h, thus adding complexity to
the forecasting problem.

The series is insensitive to structural param-
eters and forecast accuracy deteriorates be-
yond the first horizon. The statistical tests
and main effects graphs confirm this obser-
vation for both MSE and MAE.

STAR2 This series also involves a logistic function
that produces oscillations in the dependency
between yt and yt+h.

This series presents a clear sensitivity in fore-
cast accuracy with respect to structural pa-
rameters (NI and NU) for h = 1 and h = 3.
A preferred number of lagged inputs can be
identified in the main effects graphs for MSE
and MAE, when the average error metric
reaches a minimum. For other horizons, the
structural parameters, along with SS, are in-
fluential, but no remarkable patterns nor im-
provement are found regarding forecast ac-
curacy. The complex NNs tend to perform
poorly for longer horizons.

Synthetic-
1S

A single-seasonal time series. Forecast accuracy improves with model com-
plexity. When the number of inputs is low,
there is volatility in the error metric due to
misspecification. For most forecast horizons,
models with better behaved forecast errors
are structurally complex. In some cases, spe-
cially for h ≥ 8, there is stronger influence
of the number of inputs in producing better
behaved forecast errors. Other factors also
influence the error metrics: pruning deteri-
orates the accuracy of the forecasts, while
the greater the sample size the better are the
models.

Synthetic-
2S

A double-seasonal time series. Abrupt changes in the error metrics were
found, with greater volatility when the num-
ber of inputs or neurons is small. The num-
ber of neurons, when increased, tends to im-
prove the accuracy, as measured by both
MSE and MAE. The limit where the num-
ber of inputs (NI) stops improving accuracy
is clearly visible in the graphs (NI = 3),
which tallies with the length of the shorter
cycle in the simulated series. For this series,
the benefit in added complexity is noticed
in improved forecast error behaviour (lower
serial correlation), when compared with sim-
pler models.
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Series Average MSE vs. NI for selected forecast horizons.
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Figure 3.9: Summary of Average MSE vs. NI (number of lagged inputs).

A medium number of neurons (6 for non-seasonal and 12 for seasonal time series) and two forecast hori-
zons (h) are reported (the first and a subsequent one, where the dynamics of the series notably changes). For each
series a selected number of hidden units (NU) is displayed in parenthesis.
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Series Average MSE vs. NI for selected forecast horizons.
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(Continued) Summary of Average MSE vs. NI (number of lagged inputs).

A medium number of neurons (6 for non-seasonal and 12 for seasonal time series) and two forecast hori-
zons (h) are reported (the first and a subsequent one, where the dynamics of the series notably changes). For each
series a selected number of hidden units (NU) is displayed in parenthesis.
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3.6 Discussion

The present study is conducted in line with previous literature (Zhang et al., 2001;

Balestrassi et al., 2009; Crone & Dhawan, 2007). The time series processes used,

however, are based on the first study.

Zhang et al. (2001) used linear regressions to asses the influence of factors in NN

performance. An attempt to conduct a similar study was done here, but coefficients

were extremely small and the model assumptions were not well respected. Therefore

ANOVA and non-parametric tests were preferred, as for example, the Jonckheere-

Terpstra test. It assesses the existence of a trend of ascending or descending medians

with respect to a factor, and therefore is useful in identifying the general direction

of the contribution of a factor.

A summary of the direction in which factors affect the error metrics for the first

forecast horizon is given in Table 3.3. Considering model fit and forecast accuracy,

the effect on MSE and MAE is very similar for all factors. The single and double

seasonal synthetic time series were better captured by complex NNs, which is shown

in increased forecast accuracy.

Considering all forecast horizons, there is homogeneity in most factors with re-

spect to fit (in-sample) and mixed results in terms of forecast accuracy (out-of-

sample). Table 3.4 provides the number of times a factor is significant out of the

12 forecast horizons, along with an indication of the predominant direction of the

trend in medians (+ indicates that for 50% or more horizons the factor appears to

produce an ascending trend of medians).

Mixed results are observed in the case of SAR, BL1, TAR, NAR1, and NMA.

Results are more homogeneous for the series that resulted in better behaved NNs.

For example, STAR2 series has dynamics that are better captured by the NNs, even

when the series are very volatile (for lower levels of volatility, the forecast accuracy
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Table 3.3: Direction of contribution of a factor.

MSE
NI NU SS PU

Series IS OS IS OS IS OS IS OS

SAR - + Non-sig + - - + +

BL1 - - - - + - + +

BL2 - Non-sig - + + - + +

TAR + + - Non-sig - - + +

NAR1 - + - + + - + +

NMA - + - + + - + +

STAR1 - + - + + - + +

STAR2 - - - + + - + +

Synthetic-1S - - - - + - + +

Synthetic-2S - - - - + - + +

MAE
NI NU SS PU

Series IS OS IS OS IS OS IS OS

SAR - + - + - - + +

BL1 - Non-sig - - + - + +

BL2 - Non-sig - + + - + +

TAR + + - - - - + +

NAR1 - + - + + - + +

NMA - + - + + - + +

STAR1 - + - + + - - -

STAR2 - - - + + - + +

Synthetic-1S - - - - + - + +

Synthetic-2S - - - - + - + +

Direction of factor influence according to J-T test for forecast horizon 1.

IS: in-sample; OS: out-of-sample.
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Table 3.4: Summary of factor influence.

MSE
NI NU SS PU

Series IS OS IS OS IS OS IS OS

SAR 12 (-) 11 (+) 12 (-) 11 (+) 12 (+) 12 (-) 12 (+) 9 (+)

BL1 12 (-) 11 (+) 12 (-) 11 (+) 12 (+) 12 (-) 12 (+) 9 (+)

BL2 12 (-) 11 (+) 12 (-) 12 (+) 12 (+) 12 (-) 12 (+) 12 (+)

TAR 11 (-) 12 (+) 12 (-) 11 (+) 11 (+) 12 (-) 12 (+) 12 (-)

NAR1 12 (-) 12 (+) 12 (-) 12 (+) 12 (+) 12 (-) 12 (+) 12 (+)

NMA 12 (-) 12 (+) 12 (-) 12 (+) 12 (+) 12 (-) 12 (+) 12 (+)

STAR1 12 (-) 12 (+) 12 (-) 12 (+) 12 (+) 12 (-) 12 (+) 7 (+)

STAR2 12 (-) 10 (+) 12 (-) 12 (+) 11 (+) 12 (-) 12 (+) 12 (+)

Synthetic-1S 12 (-) 12 (-) 12 (-) 8 (-) 12 (+) 12 (-) 12 (+) 12 (+)

Synthetic-2S 12 (-) 11 (-) 12 (-) 12 (-) 12 (+) 12 (-) 12 (+) 12 (+)

MAE
NI NU SS PU

Series IS OS IS OS IS OS IS OS

SAR 10(-) 12(+) 12(-) 12(+) 10(+) 12(-) 12(+) 9(+)

BL1 12(-) 11(+) 12(-) 11(+) 12(+) 12(-) 12(+) 12(+)

BL2 12(-) 11(+) 12(-) 12(+) 12(+) 12(-) 12(+) 12(+)

TAR 11(-) 12(+) 12(-) 11(+) 11(+) 12(-) 12(+) 12(+)

NAR1 12(-) 12(+) 12(-) 12(+) 12(+) 12(-) 12(+) 12(+)

NMA 12(-) 12(+) 12(-) 12(+) 12(+) 12(-) 12(+) 12(+)

STAR1 12(-) 12(+) 12(-) 12(+) 12(+) 12(-) 9(+) 10(+)

STAR2 12(-) 10(+) 12(-) 12(+) 12(+) 12(-) 12(+) 12(+)

Synthetic-1S 12(-) 11(-) 12(-) 9(-) 12(+) 12(-) 12(+) 12(+)

Synthetic-2S 12(-) 6(-) 12(-) 12(-) 12(+) 12(-) 12(+) 12(+)

Number of horizons for which a factor is significant and predominant influence,

according to J-T test. IS: in-sample; OS: out-of-sample.

improves). As the single-seasonal and the double-seasonal series are more regular,

NNs appear to be capable of producing better forecasts.

In general, it was observed that the time series that were better captured by

the feed-forward NNs used in this study are characterised by a regular pattern, a

generating process with a strong dependence of yt on the previous values and a mild

effect of the level of noise (the regular pattern is discernible in the series even with

the addition of noise).

This was manifested in two clear patterns in the effect of the number of inputs

and the number of neurons over the fit and forecasting error. It was found that

single-seasonal and double-seasonal time series produced decreasing patterns for the

fit error and decreasing or approximately U-shaped patterns for the forecasting error.

On the other hand, non-seasonal time series showed decreasing fit error but a rapidly

growing forecasting error. Therefore, for seasonal time series the over-fitting is less

apparent, complexity in terms of lagged-inputs and neurons is beneficial and the
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limit of this benefit can be observed. Apart from these, no other patterns are clear

enough to be generalisable.

Zhang et al. (2001) reported a significant impact of input nodes (NI in this study)

on MSE and MdAPE (median absolute percentage error) for both training and test

sets across different sample sizes for one-step-ahead forecasts. The experiments

conducted in the present study confirm these findings for the in-sample period and

almost all series. Additionally, the trend in contribution that was observed is almost

always negative for the first horizon (except SAR and TAR series which have positive

influence of NI, as seen in Table 3.3, meaning that the number of inputs appears

to increase the error metric). For other forecast horizons the findings are mixed,

but generally an increased number of lagged inputs (NI) improves the model fit (see

Table 3.4). For the out-of-sample period it was found a significant effect of NI in

most cases, but the direction of the influence is mixed.

Zhang et al. (2001) also reported that while the number of hidden nodes is

significant on training (in-sample) MSE, it is not significant judging from training

and test MdAPE. In the present study, the factor NU was found significant in all

the forecast horizons and series, for both MSE and MAE during the training (in-

sample) period, having a negative effect (improving fit as the metric is lowered). In

the out-of-sample period the influence of factors on the error metrics is significant

for most of forecast horizons and series. However, the direction of the effect for non-

seasonal time (increased error) series might signalls problems of over-fitting while

for the single-seasonal and double-seasonal there is evidence of improvement when

the number of neurons is increased.

Balestrassi et al. (2009) reported NU as significant for all the series considered

in their study (SAR, BL1, BL2, TAR, NAR1, NMA, STAR1 and STAR2). Factor

NI was fixed in their univariate time series approach (an additional approach with

dummy variables is not comparable with the present study). SS was also found
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significant, which coincides with findings obtained in the present study (Table 3.4).

On the other hand, the simple pruning of NNs weights conducted here led to mixed

results, with a common tendency to worsen the forecast accuracy.

It is evident how the best models in this study tend to be rather simple for non-

seasonal series. Results obtained by Zhang et al. (2001) suggest this is expected, as

the generating processes rely on a few lagged values and NNs are generally capable

of identifying a number of inputs related to such lags. For the single-seasonal and

double-seasonal series, which are generated by using several lagged values, the added

complexity (in terms of inputs and neurons) clearly has an impact on model fit and

forecast accuracy.

Model selection for single NNs has been studied by Anders & Korn (1999),

Balkin & Ord (2000), Crone & Kourentzes (2010) and model selection for ensembles

has been studied by, for example, Chen & Yao (2007), through re-sampling; Islam

et al. (2003), through cooperative training; Liu & Yao (1999) and Chen & Yao

(2009), via negative correlation training and Chandra & Yao (2006) and Yao &

Islam (2008), through evolutionary algorithms. Differing from these authors, the

approach followed here is an application of DOE to the selection of models for

ensembles. Its immediate benefit is in visualising the behaviour of error metrics and

their assessment through statistical tests. Given that the ensembles are generally

summarised through averages, and DOE as applied here looks into the behaviour of

average metrics, this approach gives an approximate view of the potential behaviour

of ensembled models. Here an attempt has been made to explore the benefit in using

DOE when building ensembles of NNs rather than comparing it with established

model selection mechanisms. A study performing a comparison of strategies for

NN model selection, including DOE-based approaches, would be desirable and is

included in the research agenda.

The combination of models with modest accuracy and negatively correlated er-
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rors can be more productive than the combination of models with high accuracy.

The study of this issue is rare in the context of sensitivity analysis of NN perfor-

mance, but it has been studied in the context of ensembles of NN (see Liu & Yao,

1999; Liu et al., 2000).

Regarding a sensitivity analysis, as performed here, the models for every factor

combination (including number of lagged inputs and hidden units) share a similarity

in specification that can lead to positively correlated forecasting errors. Negative

correlation could be studied by performing a filtering of the models in the simula-

tions depending on a correlation threshold. That is, for a combination of factors

NI, NU , SS and PU , negative correlation training would be repeated until the cor-

relation between errors (for the set of 100 models) reaches a given level (which could

be another factor under study). This poses challenges in the statistical analysis of

data, given that the generation of one NN with a given configuration is related to

the generation of the previous ones, as the correlation was taken into account. This

would imply that the independence between experiments does not hold. However,

with a proper analysis, results would be helpful in indicating the effect of the level

of correlation allowed in the forecasting performance. This would be a way to sys-

tematically study the idea of having negatively correlated errors in order to improve

accuracy. This could also inform later stages that depend on the sensitivity analysis,

such as the production and combination of NNs.

3.7 Conclusions and Further Research

Sensitivity analysis of some sort was suggested as a useful practice since the inception

of NN ensembles (Hansen & Salamon, 1990). The practicality of conducting such

an analysis depends on the objective of the study, the design of the experiments

(related to the objective), the theoretical computing time needed to explore the

combinations of factors and the availability of time and computing power.

101



Here the focus has been on design of experiments. The aim was to study the in-

fluence of key parameters in forecasting accuracy of neural networks and to use such

information to aid the selection of models to include in an ensemble. Different views

of the metrics are given, based on extensive simulations. The main contributions of

this study to the literature are the inclusion of more trials per factor combination

than other studies, the use of a wide range of plots and tests, the extension of types

of synthetic series to include double-seasonal time series and, most importantly, the

assessment of multi-step-ahead forecasts.

Results show a significant sensitivity of performance metrics to the number of

inputs (past lags), number of neurons and sample size. Pruning is less significant.

The sensitivity patterns observed by Zhang et al. (2001) for the series reported by

them (STAR2) coincides with findings in the present study. For other non-seasonal

series, results are mixed. Such differences might be due to interacting factors. One

is the presence of a high level of noise in the generating processes (Zhang et al.,

2001, added a noise equivalent to a high proportion of the interquartile range).

Performing experiments with configurations used by Barrow et al. (2010) suggests

that high volatility impacts the forecast accuracy of NNs. Other factors affecting

the performance of NNs are the non-linearity of the processes and the inherent

limitations of feed-forward NNs.

In general, two clear patterns were observed in the effect of the number of inputs

and the number of neurons over the fit and forecasting error. It was found that long

memory processes produced decreasing patterns for the fit error and decreasing or

approximately U-shaped patterns for the forecasting error. On the other hand, short

memory processes showed decreasing fit error but a rapidly growing forecasting error.

Therefore, when the generating process has long memory, complexity in terms of

lagged-inputs and neurons is beneficial and the limit of this benefit can be observed.

Apart from these, no other patterns are clear enough to be generalisable.
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Design of experiments can be used to aid model selection in ensembles by identify-

ing the effect of design factors on forecast performance. If the ensemble is to be built

with models that have the same structure, this means that the sensitivity analysis

allows the making of informed decisions about the base model. Subsequent stages of

the development of ensembles involve the generation and, optionally, pruning of the

models thus generated to finally combine forecasts. If the ensemble includes models

with different structures, the analysis can also help in assessing these structures, by

allowing the modeller to see their particular behaviour. In summary, the selection

of models in ensemble development should include the following steps: establish the

characteristics of the ensemble (big or small models, same or different structure,

etc.), design the experiments, create a model performance data-base and use this

data-base to select base models for the ensembles.

Additionally, a sensitivity analysis with a full factorial design should be con-

ducted in an incremental way, starting with a modest number of factors and levels

and gradually augmenting them, depending on findings and needs. In this way, the

cost in time of the experiments can be controlled.

More complex networks, such as recursive, and more sophisticated approaches

for NN specification can be examined in a similar procedure. This appears to be a

natural extension of the research, but the quick growth of factor combination has

to be taken into account, probably through more sophisticated designs, so that the

analysis is computationally feasible.

The comparison of DOE, for ensemble design, with established model selection

strategies (intended to be used in ensembles or not) can be explored. Such study

would shed light into interactions and combinations of DOE and model selection

strategies.
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Chapter 4

Structural Combination of Neural Network
Forecasting Models 1

4.1 Abstract

Forecasts combinations normally use point forecasts that were obtained from dif-

ferent models or sources (Newbold & Granger, 1974; Clemen, 1989; Timmermann,

2006). This chapter explores the incorporation of internal structure parameters of

NN models as an approach to combine their forecasts via ensembles. This is done,

first, by developing a clustering-based approach, such that the generated NN mod-

els that could be part of the ensembles are subject to a clustering algorithm that

uses the structure parameters and, from each of the clusters obtained, a small set of

models is selected and combined. Secondly, in an alternative and simpler implemen-

tation, a subset of the generated NN models is selected by using several reference

points in the model structure parameter space. The choice of the reference points is

optimised through a genetic algorithm and the models selected are averaged. Syn-

thetic time series, hourly multivariate time series data from wind power production

and electricity demand time series are used to assess multi-step ahead forecasting

performance for up to 12 hours ahead. Results are compared against several sta-

tistical benchmarks, the average of the individual forecasts and the best models in

the ensembles. Results show that structural combination with genetic algorithms

(GA) outperforms the average more easily than cluster-based (CB) combination for

non-seasonal time series, whereas for the double-seasonal series the CB do better in

1Initial proposal for this research was presented at the ISF (2012), 24-27 June 2012, Boston,
USA. First results were presented at WIPFOR (2013), 5-7 June 2013, Paris, France.
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outperforming such benchmark.

4.2 Introduction

In Chapter 2, it was highlighted how there is limited research on forecast combina-

tion approaches which consider the internal characteristics of the models involved.

Therefore this chapter addresses the question: how can the structure of neural net-

works be combined?

The most common types of NN models in the literature of ensemble development

are feed-forward NNs (for example Hansen & Salamon, 1990; Fan et al., 2009). Such

NNs are common in forecasting (Crone & Dhawan, 2007; Crone & Kourentzes, 2010)

and, specifically, in the electricity sector (i.e. Khotanzad et al., 1998; Drezga, 1999;

Abdel-Aal, 2005). Multi-layer perceptrons are the most frequently applied (Crone

& Dhawan, 2007) and, therefore, constitute the starting point in answering the

question formulated above. Figure 4.1 depicts a multi-layer perceptron.

Its algebraic representation is

ŷt+1 = β0 +
H∑
k=1

βkϕ

(
γk0 +

I∑
i=1

γkixi

)
(4.1)

where ŷt+1 is the one-step-ahead forecast produced from input variables xi (lagged

series values, for example); β = [β1, . . . , βH ] and γ = [γ11, . . . , γHI ] denote the net-

work weights for the output and hidden layers, respectively. The β0 and γk0 are the

biases of each neuron and ϕ(·) is the activation function.

In the context of the above models, there are two forms in which the structure

can be used in a forecast combination. One possibility is the exploration of rela-

tionships between components of the model and the forecast produced by it. The

identified relationships can then be used to combine the outputs of several models.

For example, Garson (1991) and Goh (1995) propose an approach for the identifi-

cation of the importance of an input variable by studying the weighted connections
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Figure 4.1: Multi-layer perceptron with I inputs and H hidden nodes. The bias
node is displayed only for the detail of the neuron.

between nodes of interest from the input to the output. In this way mappings of

importance can be constructed, which can be extended and used to produce forecast

combinations.

Another possibility is to identify patterns in the internal components of a set

of models and use these identified patterns to develop forecast combinations. A

neural network can be represented as a vector containing different model parame-

ters, such as the weights of the synaptic connections and training parameters, as

well as descriptions of the activation functions, measurements of error and other

features that are needed in specifying a NN. With this vector and maintaining the

architecture of the NNs fixed, different models can be represented as points in a N -

dimensional space, where N is the total number of parameters. Different clustering

algorithms can be adopted, such as K-means, nearest-neighbour, fuzzy C-means or

Gustafson Kessel (see Jang et al., 1997). For example, in K-means, a set of vectors
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x1,x2, . . . ,xn, each containing parameters of a model, is organised in c (c ≤ n)

clusters, Gi i = 1, . . . , c, such that a measure of dissimilarity between a vector xk in

group j and the corresponding cluster centre ci is minimised:

J =
c∑
i=1

( ∑
k,xk∈Gi

‖xk − ci‖2

)
(4.2)

Clustering would provide a set of points that minimise the distance between

objects within groups, thus yielding, in a way, simplified versions of the models in

every group or cluster. Bakker & Heskes (2003) follows an approach, based in K-

means clustering and deterministic annealing 2, that is a source of inspiration for

this study, whose methodology is described in the next section.

The forecasting approach comprises different stages: data pre-processing, model

generation, model combination, forecasting, and assessment of uncertainty in fore-

casts. In subsequent sections, studies with synthetic and real world time series

are summarised, followed by a discussion. Finally, conclusions and implications for

future studies are drawn in the last section.

4.3 Methodology

Figure 4.2 describes the modelling process. A base NN model, which has been

selected through a preliminary process (such as a sensitivity analysis), is used to fit

the data using different models with the same structure. Model parameter diversity

is introduced through the randomisation of input-output patterns for the neural

networks. That is, if xi is a set of input lagged variables of the series and yi is the

next h-th corresponding observation in the series (with h = 1, 2, . . . , H, being the

forecast horizon), the patterns Pi = (xi, yi), i = 1, . . . , n comprise the training (in-

sample) set, which can be shuffled so that sets of Pi are presented in a different order

2Concepts of physics and fuzzy logic are incorporated into in a clustering technique aimed to
avoid local minima.
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to each NN, e.g. {P5, P3, P1, . . . , Pn, . . . , Pk} instead of {P1, P2, P3, . . . , Pk, . . . , Pn}.

Once the ensemble is generated, the models are combined taking their structure into

consideration and, finally, forecasts are produced and their uncertainty assessed.

Data.

Randomised
input-output

data patterns.

Randomised
input-output

data patterns.

...
Randomised
input-output

data patterns.

NN1

NN2

...

NNk

Structural

combination Forecast.

Assessment of
uncertainty
in forecast.

Figure 4.2: Modelling process.

In general in this study several time series are forecasted with feed-forward NNs

and forecast combination are calculated through the structural proposed approach.

Results are classified according to the maximum number of clusters allowed in the

process of combining the models (which will be explained in sub-section 4.3.2).

Results are compared against the näıve benchmark, the simple average of forecasts

produced by NN and standard benchmarks from other studies (see sub-section 4.4.1).

It is expected to have different results given the different nature of the time series

and to have a picture of the benefit of structurally combining forecasting models for

these specific time series.

This section focuses on the implementation of the structural combination based

on clustering. A simplified genetic algorithm implementation will be described in a

subsequent subsection.

4.3.1 Randomisation of Input-Output Patterns

As described above randomisation of input-output patterns in the training period

enables the creation of diverse NN models (with different parameter sets), thus
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leading to different clusters in the parameter space. Hence, it is an initial stage in

the combination procedure.

4.3.2 Structural Combination Based on Clustering (CB)

In the structural combination stage in Figure 4.2 is implemented through clustering,

the combination is a mechanism that considers the structure of models and finds

groups in the space defined by such structure. The idea is to widen the sources

of model diversity, by using model structural representation in the combining pro-

cess. Clustering algorithms facilitate this form of combination, but in general any

method capable of representing and aggregating objects through their features has

the potential to be useful.

Differing from Bakker & Heskes (2003), a fuzzy C-means algorithm was chosen,

because, as models forecast the same process, they should be similar. Fuzzy C-

means is thus attractive, because it allows for models to have different likelihoods

of belonging to distinct clusters. The basic building block is the fuzzy set, which

follows the definition of Jang et al. (1997, p.14):

If X is a collection of objects denoted by x, then a fuzzy set A in X is defined as

a set of ordered pairs

A = {(x, µA(x)) | x ∈ X} (4.3)

where µA(x) is called membership function for fuzzy set A. This function makes

a mapping between each element in X and a degree of membership in [0, 1].

The fuzzy set is used to express vagueness as, for example in the context of

economics, when asserting that demand is high. There can be different values for a

variable demand that can vaguely be classified as high. Here, the concept of high

would be called a linguistic label and would be described by a fuzzy set. Such fuzzy

sets are used to form inference systems that consist of rules of the type If Demand

is high then y=f(x), where y can be a value used to take decisions, depending on the
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level of demand3. The nonlinear mappings between an input and an output space

that can be achieved using such inference systems have been applied in different

areas, including engineering, control and forecasting (see for example, Kasabov,

1996; Jang et al., 1997).

Fuzzy C-Means is an algorithm that partitions a collection of vectors into c fuzzy

groups and finds a cluster centre in each group so a cost function of dissimilarity

is minimised (see Jang et al., 1997). The algorithm has interesting features. One

is its ability to produce centres that do not necessarily correspond to data points

in the set. Centres are m-dimensional vectors that are not necessarily close to the

m-dimensional data points used in the algorithm. A second feature, originated from

fuzzy systems, is its use of a degree of membership to clusters (between 0 and 1),

instead of a binary membership (0 or 1, equivalent to non-member or member).

Therefore, a given data point may belong to several groups with different degrees of

belongingness defined by grades between 0 and 1. Normalisation can be imposed,

such that the summation of degrees of belongingness of a data set always equals

unity (as described by Jang et al., 1997, p. 426):

c∑
i=1

uij = 1,∀j = 1, . . . , n (4.4)

Where uij is the degree of belongingness of jth data point to the ith cluster. The

cost function is:

J(U, c1, . . . , cc) =
c∑
i=1

n∑
j

umijd
2
ij (4.5)

Where U is the matrix of all uij, ci is the cluster centre of fuzzy group i, dij =

‖ci − xj‖ is the Euclidean distance between ith cluster centre and jth data point.

The parameter m ∈ [1,∞) is a weighting exponent.

3The example refers to a specific kind of inference system: the Takagi-Sugeno.
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The necessary conditions for Equation 4.5 to reach a minimum are:

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(4.6)

and

uij =
1∑c

k=1

( dij
dkj

)2/(m−1)
(4.7)

The fuzzy C-means algorithm is an iterative procedure satisfying the necessary

conditions described above. In a batch mode, the steps are the following:

Step 1: Initialise the membership matrix U with random values between 0 and 1 such

that the constraints in Equation 4.4 are satisfied.

Step 2: Calculate c fuzzy cluster centres ci, i = 1, . . . , c, using Equation 4.6.

Step 3: Compute the cost function according to Equation 4.5. Stop if either it is below

a certain tolerance value or its improvement over previous iteration is below a

certain threshold.

Step 4: Compute a new U using Equation 4.7. Go to step 2.

As highlighted above, the attraction of a fuzzy C-means approach to the present

study is its use of a degree of membership of elements to clusters (between 0 and

1), instead of a binary membership (0 or 1, equivalent to non-member and member

in K-means). Therefore, a given element (a NN model in this case) can belong to

several groups with different degrees of belongingness in the interval [0, 1] (Jang

et al., 1997, p. 426).

However, C-means produces non-deterministic partitions or clusters. A variant

of the algorithm is used here, based on Friedman (1991), which uses a recursive

partitioning of elements space that helps in producing a deterministic partition.

The next subsection describes the model in detail.
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4.3.2.1 The Forecasting Model

The clustering-based algorithm uses structure information of models, that is, their

collection of synaptic weights (β and γ in Figure 4.1) and produces forecasts based

on the data and this information. The one-step-ahead forecast output for time

t+ 1 obtained from a set of inputs (e.g lagged values of the series to be forecasted),

xt = {yt, yt−1, . . . , yt−p}, is:

ŷt+1 =
n∑
i=1

φiŷCi
(xt) (4.8)

Where ŷCi
is the output from cluster i:

ŷCi
(xt) = αi,0 + αi,1ŷi,1(xt) + αi,2ŷi,2(xt) + . . .+ αi,Lŷi,L(xt) (4.9)

ŷi,1, ŷi,2, . . . are the forecasts produced by models selected within cluster i, and

αi,1, αi,2, . . . are the coefficients obtained via OLS using ŷi,1, ŷi,2, . . . as regressors and

the yi as the independent variable. L models are selected, with L varying between

1 and 5. For each model, its structural representation is a vector comprising β and

γ (highlighted in blue in Figure 4.1).

In several types of fuzzy systems, fuzzy sets are used to form inference systems

that consist of rules of the type If Demand is high then y = f(x), where Demand is a

variable, high is a fuzzy set and y can be a value used to take decisions, depending on

the level ofDemand. This rule has a firing strength, depending on how highDemand

is. In the case implemented here, the fuzzy set included in the rule is comprised by

models in a cluster and their Euclidean distances (in the structural space) to the

cluster centroid are used to calculate the equivalent of the firing strength of the rule

in the example above. Such rule has the form If Ai(x) then y = f(ŷCi
;φi), where Ai

is a fuzzy set formed with models from cluster i. Calculations are made by adapting

the concept from Jang et al. (1997), p. 85, to take into account elements around
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the centroid rather than the centroid itself:

ui(v) = e
− D2

i (v)∑n
j=1

D2
j
(v) (4.10)

wi(v) =
ui(v)∑n
j=1 uj(v)

(4.11)

φk =

∑
m∈Ck

wm(vCk
)

Nk

(4.12)

Ck denotes cluster k, vCk
is the centre of such cluster and Nk is the number

of models in it. ui(v) is the membership of v to cluster i (being v again a model

represented in the form of a vector with its synaptic weights). The squared distance

between v and the i-th centre is divided by the sum of squared distances from v to

all centres. Subsequently, an exponential transformation is taken in order to allow

for the membership of a vector (or model) to a cluster to decrease, as long as the

distance from the centre increases. wi(v) is the normalised membership degree of v

to cluster i. φk are calculated as an average of the normalised membership degree

of models selected within cluster k.

The clustering algorithm partitions the parameter space of models and in each

iteration of this partitioning, it performs the following tasks:

1. Calculates an OLS regression of the forecasts produced by models selected in

each cluster, according to Equation 4.9, in order to obtain α coefficients.

2. Calculates coefficients φ as an average of the degree of belongingness of models

in each cluster, according to Equations 4.12, 4.11 and 4.10.

Therefore, the models in each cluster are summarised in a single forecast and

then are further combined. Figure 4.3 illustrates the case when the number of models

per cluster is 5 and the models are in a two-dimensional space.
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The partitioning, through a forward step, grows partitions in the form of a tree

and prunes, in a backwards step, those regions that do not improve fit function

(MSE). When the growing and pruning steps have stopped, an optimisation is made

to carry out steps 1 and 2 above, using a non-linear optimisation routine (fmincon

in Matlab).

Model structure space

Partition

PartitionCluster 1

Cluster 2

Cluster 3

ŷC1 = α1,0 + α1,1ŷ1,1 + α1,2ŷ1,2 + . . . + α1,5ŷ1,5

ŷC2 = α2,0 + α2,1ŷ2,1 + α2,2ŷ2,2 + . . . + α2,5ŷ2,5

ŷC3 = α3,0 + α31ŷ3,1 + α3,2ŷ3,2 + . . . + α3,5ŷ3,5

ŷ = φ1ŷC1 + φ2ŷC2 + φ3ŷC3

Figure 4.3: Structural combination based on clustering.
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The regions used by the partitioning routines are defined as base functions:

Bm (Z) =
Km∏
k=1

H
(
skm ·

(
zv(k,m) − tkm

))
(4.13)

H(η) =

{
1 if η ≥ 0

0 otherwise
(4.14)

For a vector z, the function Bm(z) establishes if z belongs to the m-th region. If

so, the function takes the value 1. If z does not belong to the region, the function

would have the value 0. Km is the number of partitions in the space that define the

region. skm is a constant that takes the values 1 or -1, signalling if the partition is

to the right or to the left of the value tkm. The variable zv is the dimension, in the

space of parameters, in which a partition is made.

4.3.2.2 Assessment of Uncertainty in the Forecast

Forecast intervals can be calculated via different techniques (for a comprehensive

review see Khosravi et al., 2011). Some have been mainly applied to individual

models (for example the Delta and MVE4 methods) and some to ensembles (the

bootstrap method).

The Delta method calculates forecast intervals for a single model by interpreting

a NN as a non-linear regression model. It relies on the difference between the esti-

mated weights of the network ŵ and the optimal ones w∗ (Khosravi et al., 2011).

The MVE method estimates the mean and variance of the dependent variable by

using separate NNs. The bootstrap method relies on generating forecasts by dif-

ferent models obtained through the re-sampling of training (in-sample) data. The

empirical distribution of forecasts thus produced are used to estimate the mean and

variance, needed to estimate (normal) confidence intervals, its main drawback is

that it is more complex than other methods to implement (Khosravi et al., 2011).

4Mean-variance estimation.
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The empirical method proposed by Lee & Scholtes (2014) is simpler and has lower

computing demands, and is applied to the whole system (ensemble) as a unit. It

has a parametric and a non-parametric version. The latter makes use of quantiles

and therefore does not assume normally distributed forecast errors. This version is

used here, in order to allow for the non-normality in forecasting errors that has been

observed in Chapter 3.

The series of out-of-sample forecast errors êt,τ = yt+τ − ŷt,τ for a horizon τ , are

used as a proxy for the true post-sample forecast errors and are generated through

a rolling window over the out-of-sample period. If ô(r)k,τ denotes the rth order

statistic of the k empirical forecast errors for a given lead time τ , the non-parametric

empirical forecast error quantile is then Q̂τ (p) = ô(r)k,τ , where r = bkpc + 1, and

bsc is the largest integer m such that m ≤ s. The empirical prediction interval is

given by

[
L̂n,τ , Ûn,τ

]
= [ŷn,τ + ô(rL)k,τ , ŷn,τ + ô(rU)k,τ ] (4.15)

where rL = bk(1− α)/2c+ 1 and rU = bk(1 + α)/2c+ 1

4.3.3 Structural Combination Based on Genetic Algorithms
(GA)

A genetic algorithm based structural combination (GA) is proposed and is illustrated

in Figure 4.4. A series of reference points in the NN parameter space is generated,

which work in a similar way to cluster centres. From each point, Pi, five NN models

are selected, as those having the smallest euclidean distance to it. The forecasts from

these models are averaged, thus producing forecasts for each reference point. The

final forecast combination (ŷAvg) is the average of these reference points forecasts.

Genetic algorithms routines are used to select the reference points such that the

MSE of the ŷAvg in-sample one-step-ahead forecasts is minimised.
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A GA combination can be viewed as a structurally informed average: it selects

models based on their closeness to different points in the parameter space and then

performs an average. The algorithm is run over the same NN pool that is used to

perform the cluster-based structural combination. It was implemented in Matlab R©

2010 using ga routine, with a maximum number of generations equal to 3000.

Model structure space

Models around
reference point 1

Models around
reference point 2

Models around
reference point 3

ŷ1 =
ŷ1,1+ŷ1,2+...+ŷ1,5

5

ŷ2 =
ŷ2,1+ŷ2,2+...+ŷ2,5

5

ŷ3 =
ŷ3,1+ŷ3,2+...+ŷ3,5

5

ŷAvg =
ŷ1+ŷ2+ŷ3

3

Figure 4.4: Structural combination based on genetic algorithms.
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4.4 The Empirical Studies

Three series from Chapter 3 were selected, and present different levels of complex-

ity. STAR2 (Equation 3.8) is a relatively complex non-seasonal time series. The

single-seasonal (Synthetic-1S) and double-seasonal (Synthetic-2S) series allow for

the assessment of the proposed models with seasonal data and different degrees of

complexity (see Equations 3.9 and 3.11). Secondly, two real time series are used:

hourly observations for electricity demand in Rio de Janeiro and wind generation

multivariate data from one of the wind farms included in the global Energy Fore-

casting Competition 2012 - Wind Forecasting (Kaggle, 2012). In all cases, synthetic

and real data, models were subject to a preliminary sensitivity analysis by using 100

replications of the time series. When performing the forecast combination, 50 NNs

were newly fitted to the original series, with randomised input-output patterns.

Table 4.1 shows the configuration of the experiments for all three synthetic series.

The number of models in the ensemble was chosen in accordance with Bakker &

Heskes (2003). For each time series, an ensemble was built and used in a structural

combination with three levels of MaxC, the maximum number of clusters allowed.

In all cases, MperC, the number of models per cluster, was set to 5. In this way,

the maximum number of models selected from the ensemble would be at least 20%

of the total and at most 80%, thus following findings by Zhou et al. (2002) which

suggest that it is better to ensemble many available NNs but not all. The feed-

forward NN models included in the ensembles have the same architecture, which

was determined based on the sensitivity analysis that was described in Chapter 3

(for more information on this selection, see Appendix B).

The decomposition of error into bias and variance components (Geman et al.,

1992; Bishop, 1995) gives insight into how to decrease the generalisation error in

NNs. Bias appears when the model is far too simple to represent the underlying
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generating function. Variance appears in a model when it fits very well the data (due

to high model complexity, for example), but still misses the true model. As pointed

out by Bishop (1995), there is a trade-off between the two components. A model

which closely fits the data will tend to have high variance, which can be lowered

by reducing complexity to allow for a smoother approximation to the underlying

function, but if taken too far, it can generate large bias and errors.

Due to averaging (see Equation 4.8) and to training using randomised data sets,

which by promoting parameter diversity decreases deviations from the true model,

the resulting forecast is expected to have less variation than that from a single

model based on the fit of a static data set. The reduction of bias, on the other

hand, depends on model complexity at both the individual level (single NN) and

the global level (structural combination method).

Individual configuration parameters of networks are listed in Table 4.2. The

ensembles are all implemented in Matlab R© 2010 and ran using two PCs, each with

two 2.2 GHz cores and 2 GB of RAM.

The proposed clustering combination approach relies on an algorithm that ex-

haustively explores all dimensions that describe the objects to be clustered. In the

case of NNs, the number of dimensions grows with the size of the individual models

involved and, consequently, the computing time increases at a rapid rate5. In light

of this, the use of small models was favoured in the selection scheme, as suggested

by the findings in Chapter 3.

The clustering algorithm works with a maximum number of clusters as its start-

ing point and performs a pruning in a later stage. This means that, for example,

if it starts with 4 as a maximum number of clusters, it could finish with 2. When

the number of final clusters is increased, the degree of belongingness of a model to

them tends to be similar: it is more likely that a model is close to several clusters

5The partitioning routine used to build the clusters has an order of F ×O(MaxC × V ), where
F is a factor depending on the density of models in the parameter space.
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Table 4.1: Configuration of the clustering combination algorithm.

Factor Symbol Levels
Number of models NM 50

Num. Max. clusters MaxC 2, 4, 8

Models per cluster MperC 5

Final combination FC Linear Combination

Randomised Yes

input-output patterns

Structural content All synaptic weights in each NN.

to represent individual models

Table 4.2: Configuration of individual networks.

Parameter Value
Number of hidden layers 1

Number of Inputs Determined by sensitivity analysis

Number of hidden units Determined by sensitivity analysis

Activation function for hidden nodes Tangent Sigmoid

Activation function for the output node Linear
Initial values for the weights Values in the range [-2 2] established by the

Nguyen-Widrow algorithm (there is a degree of
randomness)

Training algorithm Back-propagation with Levenberg-Marquardt
optimisation.

Stopping criteria * The maximum number of epochs (repetitions)
is reached: 4000.

* The maximum amount of time is exceeded: ∞
* Performance is minimised to the goal: 0

* The performance gradient falls below
mingrad : 10−10

* µ exceeds µmax = 103

* Validation performance has increased more
than maxfail times since the last time it de-
creased (when using validation): 6

Data normalisation Yes
Initial combination coefficient (µ) 0.001
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at the same time. Therefore the experiments conducted here limited the maximum

number of clusters to 2, 4 and 8. After the CB models are fitted, a selection can be

made based on comparative performance and the selection can be further supported

by cluster validity measures. These measures are intended to evaluate the quality of

the clusters found by an algorithm. Several have been developed for fuzzy-clustering

(two reviews can be found in Wu & Yang, 2005; Zhang et al., 2014). The modified

partition coefficient (MPC) is a simple measure that varies in the interval [0, 1] and

implies a well-performing partition when it approaches 1. Additionally, Abdallatif

et al. (2016) proposed a measure focused on separation of clusters, called MDO

(membership degree optimum). A proportion of elements with a degree of belong-

ingness to some cluster superior to a threshold (55%) measures how well-partitioned

are the elements into the clusters. These measures are here provided to supplement

the analysis of results.

The MPC index is calculated as follows:

PC =
1

n

n∑
j=1

C∑
i=1

w2
i,j (4.16)

MPC = 1− C

1− C
(1− PC)

The MDO measure is defined as follows:

MDO =
Numer of elements for which max(wi,j) > 0.55

N
(4.17)

1 ≤ i ≤ C

, where wi,j is the degree of belongingness of element j to cluster i, C is the

number of clusters and N the number of elements clustered. The quantity max(wi,j),

for 1 ≤ i ≤ C, refers to the maximum membership degree for an element j across

all clusters.
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4.4.1 Analysis Procedure

The main error metrics used to evaluate the forecast performance of the proposed

combination model are Mean Squared Error (MSE) and Mean Absolute Percentage

Error (MAPE) metrics. For the time horizon h they are calculated as follows:

MSEh =
1

N − h− IS + 1

N−h∑
Fo=IS

(xFo+h − x̂Fo+h)2 (4.18)

MAPEh =
1

N − h− IS + 1

N−h∑
Fo=IS

∣∣∣∣xFo+h − x̂Fo+hxFo+h

∣∣∣∣ (4.19)

Where N is the length of the time series, IS is the index of the last in-sample

observation, Fo is the forecast origin, xi is the observed value and x̂i is the forecasted

value. Other error metrics (MdAPE, SMAPE, MAE, NMAPE or RMSE) are added

to the analysis, when significant differences are observed between MAPE and MSE,

when MAPE becomes unestable due to a time series having values close to zero or

when a different metric facilitates comparisons with existing literature6.

During the performance evaluation, comparisons are made against the following

models:

• For non-seasonal series:

– Näıve benchmark: the current observation is used to issue a forecast for

h steps ahead.

– NN with the lowest in-sample MSE: a NN model is selected from the

ensemble constructed for forecast horizon h, having the lowest in-sample

MSE from all the models.

6MdAPE = median({|(Xi − Fi)/Xi|}ni=1), SMAPE = 100(1/n)
∑n
t=1

|Xt−Ft|
(|Xt|+|Ft|)/2 ,

NMAPE = 1
n

∑n
i=1|Xi−Fi|

(1/n)
∑n

i=1Xi
, where Xt and Ft are the actual and forecasted values, respectively.
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– NN with the lowest in-sample MAE or MAPE: a NN model is selected

from the same ensemble, having the lowest in-sample MAE (when the

time series had values close to zero) or MAPE (in all other cases) from

all the models.

– Average of point forecasts of all NN in the ensemble.

– ARIMA: benchmarks from this family of models were obtained though

the automatic identification routine provided in forecast R package (see

Hyndman & Khandakar, 2008; Hyndman, 2015).

• For seasonal series:

All benchmarks described above are used, with the Näıve, seasonal and double-

seasonal statistical models being the following:

– Näıve benchmark: the forecast for time period t and lead time k is ŷt(k) =

yt+k−S, where S is the longest seasonal cycle.

– Seasonal ARIMA and seasonal Holt-Winters model.

– Double-Seasonal Holt-Winters-Taylor model based on Taylor (2010).

The best fit (minimum MSE) models and the average are based on the NN pool

from which the structural combination is performed. The use of a single model as

benchmark is well established (Yu et al., 2008; Fan et al., 2009), but its selection

criterion is generally subjective. In our case, the MSE is adopted, as this is the most

common fit measure that is found in the literature. The use of the simple average

of forecasts as a benchmark is common and justified by its robustness (De Menezes

et al., 2000).

Serial correlation in forecast errors is assessed via the Ljung-Box test and nor-

mality of the forecast error distribution by using Lilliefors and Jarque-Bera tests,
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which are available in different software packages and are commonly found in text

books7. In the following sections results and analysis are presented.

4.5 Studies with Synthetic Series

4.5.1 STAR2 Series

The generating process of this series, is the following:

yt = 0.3yt−1 + 0.6yt−2 + (0.1− 0.9yt−1 + 0.8yt−2)(1 + e−10yt−1)−1 + εt (4.20)

The simulated series is depicted in Figure 4.5. By using the screening procedure

proposed in section 3.4.5 a series of suitable models was obtained and the selected

structures are listed in Table 4.3.

Figure 4.5: STAR2 series. The dashed line separates the in-sample from the out-of-
sample period.

7Models (and ensembles) are used to forecast separately for each horizon. Forecasts are produced
in a rolling window fashion: (yt−k, . . . yt) are used to obtain ŷt+h, then (yt−k+1, . . . yt+1) are used
to obtain ŷt+h+1. Therefore the Ljung-box test was used to assess the serial correlation of errors
(yt+h − ŷt+h), (yt+h+1 − ŷt+h+1), . . .
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Table 4.3: Selected NN models for STAR2 series.

h NI NU

1 2 3

2 2 1

3 3 5

4 2 5

5 2 1

6 2 3

From the three sample sizes used during the sensitivity analysis conducted in

Chapter 3, 480 was chosen for the assessment of the ensemble approach, since middle

and upper sizes (960) were found to be appropriate. From this sample, 10% of

observations were used for validation, corresponding to 48 observations, leaving

432 observations for training. Out-of-sample evaluation was conducted using 100

observations.

Figure 4.6 shows the out-of-sample MSE and MAE for models estimated using

the proposed clustering algorithm and the selected benchmarks, when the maximum

number of cluster was 4 (the full set of graphs, comprising all levels of clusters can

be found in Section C.1 from Appendix C). Additionally, Figure 4.7 provides detail

for a subset of models. Table 4.4 provides a ranking of models for every forecast

horizon, with the first position corresponding to the lowest error metric, and a

percentage of error difference with respect to the forecast average of all the NNs in

the ensemble. Considering benchmarks for this series, the following ARIMA model

was obtained though the automatic specification routine auto.arima available in R

forecast package (Hyndman & Khandakar, 2008; Hyndman, 2015):

yt = −1.8277− 0.6631yt−1 + 0.5983yt−2 + 0.4449yt−3 + et + 0.7827et−1 + 0.2217et−2

(4.21)

The error metrics for this series (MSE and MAE) behave similarly. GA structural

combinations (simpler than CB) perform similarly to CB, and their forecast accuracy
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(a) MaxC = 4 clusters. MSE.

(b) MaxC = 4 clusters. MAE.

Figure 4.6: Out-of-sample MSE and MAE for STAR2 series.
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Figure 4.7: Out-of-sample MSE for STAR2 series.

Figure 4.8: Out-of-sample MSE vs. number of clusters. STAR2 series.
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tend to be more stable throughout forecast horizons.

There is relative insensitivity of the MSE to the number of clusters, as seen in

Figure 4.8. Further analysis indicated a similar behaviour for MAE. Among CB

combinations, CB4 (with a maximum of 4 clusters) has a more stable MSE and

MAE throughout forecast horizons. Parameters for this model are detailed in Table

4.5. Diversity in the contribution of different clusters to the forecasts is observed in

the different weighting of cluster outputs (Φ parameter). Variability is noticed in the

αj parameters, probably due to differences in performance among individual models

in specific clusters, which in turn might come from the volatility in the time series.

Similar characteristics are observed in CB2 and CB8 models (details available from

the author upon request).

Table 4.6 indicates serially independent forecast errors for horizons 1 and 2, while

subsequently, there is evidence of serial correlation. This is in line with findings from

Chapter 3, where a better behaviour of individual NN models was observed for short

horizons8. Additionally, the generating process for this series is based on two previ-

ous values, which are inputs in the NNs for all ensembles. A better ability to capture

the dynamics of the series is then expected for these horizons. Lilliefors and Jarque-

Bera normality tests confirm normally distributed forecast errors. Uncertainty in

forecasts for CB combinations with different number of clusters is comparable, as

seen in Figure 4.9, and is consistent with the high volatility of the time series.

8Correlation maps like those provided in summary Figure 3.7 were used in this assessment.
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Table 4.4: Forecasting performance. STAR2 series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAE %∆ wrt Avg.

h=1 CB2 0.81853 1 -6.32% 0.71167 1 -4.66%

CB4 0.84685 4 -3.08% 0.72675 2 -2.64%

CB8 0.88707 7 1.52% 0.74157 6 -0.65%

Avg. Net. 0.87378 6 0.00% 0.74643 8 0.00%

Best Net. IsMAE 0.93347 8 6.83% 0.77682 10 4.07%

Best Net. isMSE 0.93347 9 6.83% 0.77682 9 4.07%

GA2 0.84198 3 -3.64% 0.73425 4 -1.63%

GA4 0.84947 5 -2.78% 0.73923 5 -0.96%

GA8 0.83923 2 -3.95% 0.73356 3 -1.72%

Naive 2.24582 11 157.02% 1.23528 11 65.49%

ARIMA(3,0,2) 0.93897 10 7.46% 0.74633 7 -0.01%

h=2 CB2 0.99557 4 -6.30% 0.77460 2 -4.45%

CB4 1.01240 8 -4.72% 0.78334 6 -3.37%

CB8 1.00860 5 -5.07% 0.78191 5 -3.55%

Avg. Net. 1.06250 11 0.00% 0.81067 11 0.00%

Best Net. IsMAE 0.97734 1 -8.02% 0.77483 4 -4.42%

Best Net. isMSE 0.97734 2 -8.02% 0.77483 3 -4.42%

GA2 1.01845 9 -4.15% 0.79083 9 -2.45%

GA4 1.01200 7 -4.75% 0.78882 8 -2.70%

GA8 1.01021 6 -4.92% 0.78860 7 -2.72%

Naive 1.03055 10 -3.01% 0.80059 10 -1.24%

ARIMA(3,0,2) 0.98545 3 -7.25% 0.76837 1 -5.22%

h=3 CB2 1.83800 5 10.50% 1.05640 6 3.80%

CB4 1.87720 9 12.86% 1.05900 8 4.06%

CB8 1.87060 7 12.46% 1.04780 5 2.96%

Avg. Net. 1.66330 1 0.00% 1.01770 1 0.00%

Best Net. IsMAE 1.87623 8 12.80% 1.05666 7 3.83%

Best Net. isMSE 2.20830 10 32.77% 1.18570 10 16.51%

GA2 1.74767 4 5.07% 1.04716 4 2.89%

GA4 1.74426 2 4.87% 1.04260 2 2.45%

GA8 1.74454 3 4.88% 1.04266 3 2.45%

Naive 2.52912 11 52.05% 1.31771 11 29.48%

ARIMA(3,0,2) 1.84573 6 10.97% 1.08851 9 6.96%

%∆ = 100(Mmodel −MAvg)/MAvg with Mi being the metric for model i. Negative %

values indicate improvement over the average. CB and GA refer to clustering based

and genetic algorithm based structural combinations with the corresponding number

of clusters. Bst. isMAE and Bst. isMSE denote the NNs with the lowest in-sample

MAE and MSE respectively.
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Forecasting performance (continued). STAR2 series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAE %∆ wrt Avg.

h=4 CB2 1.86860 9 4.94% 1.08820 9 1.44%

CB4 1.60620 1 -9.79% 1.01170 2 -5.70%

CB8 1.63030 2 -8.44% 1.00400 1 -6.41%

Avg. Net. 1.78060 7 0.00% 1.07280 7 0.00%

Best Net. IsMAE 1.76128 4 -1.09% 1.07604 8 0.30%

Best Net. isMSE 1.88170 10 5.68% 1.06270 3 -0.94%

GA2 1.76397 5 -0.93% 1.06658 5 -0.58%

GA4 1.77568 6 -0.28% 1.07005 6 -0.26%

GA8 1.75204 3 -1.60% 1.06466 4 -0.76%

Naive 2.21601 11 24.45% 1.22139 11 13.85%

ARIMA(3,0,2) 1.86225 8 4.59% 1.08993 10 1.60%

h=5 CB2 1.99900 4 -0.28% 1.16170 5 0.19%

CB4 2.15420 9 7.46% 1.17940 9 1.72%

CB8 2.17360 10 8.43% 1.17220 8 1.10%

Avg. Net. 2.00460 6 0.00% 1.15950 4 0.00%

Best Net. IsMAE 1.87812 2 -6.31% 1.11278 1 -4.03%

Best Net. isMSE 1.87810 1 -6.31% 1.11280 2 -4.03%

GA2 1.98273 3 -1.09% 1.15316 3 -0.55%

GA4 2.00338 5 -0.06% 1.16968 6 0.88%

GA8 2.00817 7 0.18% 1.16977 7 0.89%

Naive 2.81245 11 40.30% 1.28869 11 11.14%

ARIMA(3,0,2) 2.14999 8 7.25% 1.19797 10 3.32%

h=6 CB2 2.26110 8 11.15% 1.21930 6 4.06%

CB4 2.30370 9 13.24% 1.23640 9 5.52%

CB8 2.35710 10 15.87% 1.24270 10 6.06%

Avg. Net. 2.03430 3 0.00% 1.17170 4 0.00%

Best Net. IsMAE 2.20135 6 8.21% 1.22391 8 4.46%

Best Net. isMSE 2.20140 7 8.21% 1.22390 7 4.46%

GA2 1.99902 1 -1.73% 1.15856 1 -1.12%

GA4 2.03467 4 0.02% 1.16724 3 -0.38%

GA8 2.01675 2 -0.86% 1.16299 2 -0.74%

Naive 2.76895 11 36.11% 1.33940 11 14.31%

ARIMA(3,0,2) 2.19070 5 7.69% 1.21249 5 3.48%
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Table 4.5: Coefficients for structural combination of NNs. STAR2 series.

h

1 α1 0.0024 0.5177 -0.1897 0.4398 0.3582 0.6047

α2 -0.0386 -0.1514 -0.8881 0.6099 1.2979 -0.6475

α3 -0.1054 -0.2808 0.5041 -0.8643 0.5226 0.7118

Φ 0.4209 0.1694 0.4171

2 α1 -0.4498 6.6383 9.5711 -3.7736 -3.5243 -8.1883

α2 1.8857 3.1845 -1.2678 -0.5329 2.6914 -2.1761

α3 1.1315 3.2374 3.7720 -2.0936 -4.2302 0.7674

Φ 0.3700 0.2733 0.3511

3 α1 -0.0905 0.9923 1.1698 0.2526 0.7650 -0.9240

α2 -0.0859 -0.6742 0.7467 0.0395 0.4493 0.3494

α3 0.2564 -0.7611 0.5774 0.1967 -0.2842 -0.0286

α4 -0.0808 -1.0623 0.1789 0.7821 -0.1564 1.2046

Φ 0.2628 0.2747 0.2543

4 α1 -0.0708 -0.1028 0.1286 -0.6521 -0.8088 0.2282

α2 -0.1797 -0.7864 -1.1721 -0.3896 1.6441 1.4353

α3 -0.5508 -0.2370 -0.2068 0.7653 0.5905 2.4214

α4 -0.3565 1.5184 -2.6119 0.5516 0.9769 0.0943

Φ 0.2877 0.2426 0.2689

5 α1 -1.3582 1.8220 0.1425 -2.5384 -0.0434 3.0505

α2 3.9163 0.3606 -2.2459 5.1728 -4.5140 5.4884

α3 0.9281 2.7350 -0.1212 -7.0898 1.4585 2.1944

Φ 0.2216 0.4327 0.3909

6 α1 -0.2165 -1.1697 -1.5304 0.5813 -0.3042 0.8755

α2 0.0909 -2.5596 1.1675 0.4293 1.4063 -0.4797

α3 0.0609 0.9739 0.2828 1.1587 1.1072 1.1011

Φ 0.3841 0.3129 0.3797

MaxC = 4 is the maximum number of clusters. h denotes the forecast

horizon, αi are the coefficients applied to point-forecasts from models

in cluster i and Φ are the weights applied to the outputs from clusters.

Table 4.6: Ljung-Box test. Series: STAR2.

h 1 2 3 4 5 6

2C CB * * * *

GA * * * *

4C CB * * * *

GA * * * *

8C CB * * * *

GA * * * *

Avg. Net. * * * *

Best Net. isMAE * * * *

Best Net. isMSE * * * *

Ljung-Box test for serial correlation

(with 95% confidence level) for STAR2

series. The rejection of the hypothesis of

independent forecast errors is indicated with *.
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(a) MaxC = 2 clusters. (b) MaxC = 4 clusters.

(c) MaxC = 8 clusters.

Figure 4.9: Forecast intervals for STAR2 time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observa-
tion of the in-sample period and H = 6 is the number of forecast horizons. The shades,
from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and 0.60.
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Table 4.7: Cluster validity indexes. Series: STAR2.

Maximum number of clusters: 2

h PC MPC MDO Final num.

clusters

1 1.0000 NA 1.0000 1

2 1.0000 NA 1.0000 1

3 1.0000 NA 1.0000 1

4 0.5036 0.0072 0.3000 2

5 0.5961 0.1923 1.0000 2

6 1.0000 NA 1.0000 1

Maximum number of clusters: 4

1 0.3757 0.0635 0.0000 3

2 0.3399 0.0099 0.0000 3

3 0.2508 0.0010 0.0000 4

4 0.2522 0.0029 0.0000 4

5 0.3591 0.0386 0.0000 3

6 0.3379 0.0068 0.0000 3

Maximum number of clusters: 8

1 0.2136 0.0170 0.0000 5

2 0.2009 0.0011 0.0000 5

3 0.1671 0.0005 0.0000 6

4 0.1687 0.0025 0.0000 6

5 0.2135 0.0169 0.0000 5

6 0.1679 0.0015 0.0000 6

h denotes the forecast horizon, PC denotes

the Partition Coefficient, MPC denotes

the Modified Partition Coefficient and MDO

denotes the Membership Degree Optimum.

Values closer to 1 are preferable.
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4.5.2 Synthetic-1S Series

The generating process of this series, as in Chapter 3, is

yt(k) = lt + wt−s2+k + φk(yt − (lt−1 + wt−s2)) + εt (4.22)

lt = λ(yt − wt−s2) + (1− λ)lt−1

wt = ω(yt − lt−1) + (1− ω)wt−s2

yt(k) is the simulated series value at time t+k, lt denotes the smoothed level and

wt denotes the seasonal index. εt ∼ NID(0, σ2), with σ2 constant. The simulated

series was generated with parameters λ = 0.2; ω = 0.01; φ = 0.943 and s2 = 12

and is depicted in Figure 4.10. Table 4.8 lists the NN model specifications for the

ensemble, selected though the sensitivity analysis and guidelines from Chapter 3.

(a) Series. (b) Subset.

Figure 4.10: Synthetic-1S series.

Data partitioning is the same as above: 432 observations for training, 48 for

validation and 100 for testing. Training and validation data comprise the in-sample

set and testing data comprise the out-of-sample set.

For this series, the following SARIMA benchmark was obtained with the auto.arima
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Table 4.8: Selected NN models for Synthetic-1S series.

h NI NU

1 7 9

2 7 9

3 6 10

4 7 9

5 6 9

6 7 8

h NI NU

7 6 9

8 4 7

9 3 8

10 3 8

11 2 7

12 1 8

routines available in the forecast R package:

(1− φ1B − φ2B
2 − φ3B

3 − φ4B
4)(1− Φ1B

12)(yt − µ) = (1 + θ1B + θ2B
2 + θ3B

3)et

where φ1 = 0.8057, φ2 = −0.4618, φ3 = −0.3330, φ4 = 0.3485,Φ1 = 0.9872,

θ1 = −0.4685, θ2 = 0.5563, θ3 = 0.4718 and µ = 7.2677

A single seasonal benchmark model was also built, following Equation 4.22, which

resulted in parameters λ = 0.0418, ω = 0.5221 and φ = 0.5218. Although the

parameters of the fitted model and the generating process are different, the forecasts

are equivalent as judged by plots and RMSE.

Figure 4.11 depicts the out-of-sample MSE and MAPE of benchmarks and CB

models with a maximum of 4 clusters (additional graphs can be found in Figure C.3

from Appendix C). Further detail is available in Figure 4.12, which compares the

cluster-based combinations with the average and statistical benchmarks. Addition-

ally, Table 4.9 summarises performance according to the error metrics, the ranking

of models and the percentage of improvement with respect to the average forecast.

In the ranking of models (Table 4.9) it is noticed how in every forecast horizon,

at least one of the CB combinations ranks among the first three, and the set of

CB models is generally followed by GA combinations. Despite the slightly better

forecast performance for CB combinations compared to GA combinations, the later

seem to be more stable throughout forecast horizons (Figures 4.11 and 4.12). The

ARIMA benchmark is outperformed comfortably in most horizons by both structural
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(a) MaxC = 4 clusters. MSE.

(b) MaxC = 4 clusters. MAPE.

Figure 4.11: Out-of-sample MSE and MAPE for Synthetic-1S series.
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Figure 4.12: Out-of-sample MSE for Synthetic-1S series.

combinations, but the Single seasonal model is outperformed in only 4 horizons. The

superiority of such benchmark is not surprising as it belongs to the family of models

from which the synthetic series was simulated. Forecast accuracy in terms of MSE

and MAPE is comparable.

No pattern is evident regarding the sensitivity of CB error metric to the number

of clusters (Figure 4.13). The assessment of serial correlation revealed the presence

of independent forecast errors for the first forecast horizon in all the cluster based

models. Lilliefors and Jarque-Bera normality tests confirmed normality of errors for

most horizons.

CB8, a cluster-based combination with a maximum of 8 clusters, outperforms

more consistently the average of forecasts from the ensemble than other CB com-

binations. Parameters for that model are listed in Table 4.10 (details of other CB

models and forecast horizons are omitted).
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(a) Steps 1 to 6.

(b) Steps 7 to 12.

Figure 4.13: Out-of-sample MSE vs. number of clusters. Synthetic-1S series.

139



Table 4.9: Forecasting performance. Synthetic-1S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=1 CB2 0.000553 7 14.66% 0.2609% 7 8.55%

CB4 0.000480 1 -0.62% 0.2482% 2 3.30%

CB8 0.000581 8 20.39% 0.2684% 8 11.71%

Avg. Net. 0.000483 2 0.00% 0.2403% 1 0.00%

Best Net. isMAPE 0.000707 9 46.42% 0.3020% 10 25.67%

Best Net. isMSE 0.000707 9 46.42% 0.3020% 10 25.67%

GA2 0.000503 4 4.24% 0.2518% 4 4.79%

GA4 0.000496 3 2.79% 0.2503% 3 4.16%

GA8 0.000511 5 5.90% 0.2528% 5 5.20%

Naive 0.001467 12 204.04% 0.4256% 12 77.11%

SARIMA 0.000732 11 51.70% 0.2937% 9 22.22%

Single seasonal 0.000542 6 12.32% 0.2582% 6 7.47%

h=2 CB2 0.000735 6 0.87% 0.2909% 6 2.89%

CB4 0.000849 8 16.48% 0.3154% 8 11.57%

CB8 0.000649 1 -10.88% 0.2639% 2 -6.65%

Avg. Net. 0.000729 5 0.00% 0.2827% 5 0.00%

Best Net. isMAPE 0.001225 10 68.17% 0.3535% 10 25.05%

Best Net. isMSE 0.001225 10 68.17% 0.3535% 10 25.05%

GA2 0.000717 4 -1.59% 0.2747% 4 -2.83%

GA4 0.000657 2 -9.82% 0.2623% 1 -7.22%

GA8 0.000694 3 -4.74% 0.2696% 3 -4.64%

Naive 0.001482 12 103.40% 0.4297% 12 52.00%

SARIMA 0.000908 9 24.63% 0.3213% 9 13.65%

Single seasonal 0.000768 7 5.41% 0.3004% 7 6.26%

h=3 CB2 0.000959 2 -15.74% 0.3243% 1 -8.07%

CB4 0.001122 7 -1.39% 0.3520% 5 -0.19%

CB8 0.001170 9 2.80% 0.3588% 9 1.74%

Avg. Net. 0.001138 8 0.00% 0.3527% 6 0.00%

Best Net. isMAPE 0.002127 11 86.93% 0.4569% 11 29.54%

Best Net. isMSE 0.002127 11 86.93% 0.4569% 11 29.54%

GA2 0.000977 3 -14.13% 0.3335% 3 -5.45%

GA4 0.001062 4 -6.66% 0.3489% 4 -1.08%

GA8 0.001088 6 -4.38% 0.3545% 7 0.51%

Naive 0.001488 10 30.79% 0.4298% 10 21.87%

SARIMA 0.001078 5 -5.26% 0.3546% 8 0.54%

Single seasonal 0.000907 1 -20.28% 0.3251% 2 -7.84%

h=4 CB2 0.001229 9 40.16% 0.3922% 9 16.18%

CB4 0.000807 1 -8.05% 0.3154% 1 -6.58%

CB8 0.000883 3 0.70% 0.3382% 5 0.16%

Avg. Net. 0.000877 2 0.00% 0.3376% 4 0.00%

Best Net. isMAPE 0.003604 12 310.94% 0.5059% 12 49.85%

Best Net. isMSE 0.001097 8 25.03% 0.3603% 8 6.72%

GA2 0.000971 6 10.71% 0.3471% 6 2.81%

GA4 0.000893 5 1.81% 0.3287% 2 -2.64%

GA8 0.000885 4 0.90% 0.3342% 3 -1.01%

Naive 0.001501 11 71.14% 0.4320% 11 27.97%

SARIMA 0.001269 10 44.68% 0.3939% 10 16.68%

Single seasonal 0.001029 7 17.32% 0.3512% 7 4.03%

%∆ = 100(Mmodel −MAvg)/MAvg with Mi being the metric for model i.

Negative % values indicate improvement over the average.
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(Continued) Forecasting performance. Synthetic-1S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=5 CB2 0.001251 9 -0.11% 0.3874% 9 -1.66%

CB4 0.001233 8 -1.52% 0.3863% 8 -1.93%

CB8 0.001103 3 -11.92% 0.3634% 3 -7.73%

Avg. Net. 0.001252 10 0.00% 0.3939% 10 0.00%

Best Net. isMAPE 0.001157 5 -7.56% 0.3703% 4 -6.00%

Best Net. isMSE 0.001057 1 -15.62% 0.3528% 1 -10.44%

GA2 0.001156 4 -7.68% 0.3738% 5 -5.10%

GA4 0.001181 6 -5.68% 0.3821% 6 -2.99%

GA8 0.001209 7 -3.44% 0.3830% 7 -2.76%

Naive 0.001510 12 20.63% 0.4331% 12 9.96%

SARIMA 0.001413 11 12.85% 0.4135% 11 4.98%

Single seasonal 0.001098 2 -12.31% 0.3618% 2 -8.14%

h=6 CB2 0.001115 4 -0.40% 0.3724% 6 0.83%

CB4 0.001168 8 4.36% 0.3814% 8 3.27%

CB8 0.001071 1 -4.33% 0.3601% 1 -2.50%

Avg. Net. 0.001119 5 0.00% 0.3693% 3 0.00%

Best Net. isMAPE 0.001551 11 38.59% 0.4342% 10 17.58%

Best Net. isMSE 0.001551 11 38.59% 0.4342% 10 17.58%

GA2 0.001127 6 0.71% 0.3726% 7 0.89%

GA4 0.001097 2 -1.97% 0.3653% 2 -1.09%

GA8 0.001107 3 -1.07% 0.3695% 4 0.05%

Naive 0.001526 10 36.34% 0.4365% 12 18.20%

SARIMA 0.001480 9 32.26% 0.4272% 9 15.68%

Single seasonal 0.001157 7 3.40% 0.3716% 5 0.61%

h=7 CB2 0.001173 2 -0.69% 0.3846% 5 1.48%

CB4 0.001186 4 0.41% 0.3839% 4 1.29%

CB8 0.001150 1 -2.64% 0.3745% 1 -1.18%

Avg. Net. 0.001181 3 0.00% 0.3790% 2 0.00%

Best Net. isMAPE 0.001275 9 7.96% 0.4016% 9 5.96%

Best Net. isMSE 0.001275 9 7.96% 0.4016% 9 5.96%

GA2 0.001230 6 4.11% 0.3928% 7 3.65%

GA4 0.001231 7 4.20% 0.3921% 6 3.46%

GA8 0.001245 8 5.38% 0.3956% 8 4.39%

Naive 0.001539 12 30.29% 0.4390% 12 15.83%

SARIMA 0.001486 11 25.78% 0.4284% 11 13.04%

Single seasonal 0.001207 5 2.17% 0.3796% 3 0.17%

h=8 CB2 0.001469 7 11.16% 0.4424% 8 5.87%

CB4 0.001469 7 11.16% 0.4424% 8 5.87%

CB8 0.001307 2 -1.07% 0.4130% 2 -1.15%

Avg. Net. 0.001321 3 0.00% 0.4178% 3 0.00%

Best Net. isMAPE 0.001457 5 10.31% 0.4269% 4 2.16%

Best Net. isMSE 0.001457 5 10.31% 0.4269% 4 2.16%

GA2 0.001499 11 13.46% 0.4457% 12 6.67%

GA4 0.001480 9 12.02% 0.4440% 11 6.26%

GA8 0.001441 4 9.07% 0.4379% 7 4.80%

Naive 0.001556 12 17.75% 0.4436% 10 6.18%

SARIMA 0.001487 10 12.55% 0.4320% 6 3.39%

Single seasonal 0.001246 1 -5.69% 0.3875% 1 -7.26%

141



(Continued) Forecasting performance. Synthetic-1S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=9 CB2 0.001559 6 1.00% 0.4442% 4 -1.00%

CB4 0.001598 10 3.53% 0.4534% 10 1.06%

CB8 0.001479 2 -4.14% 0.4419% 3 -1.52%

Avg. Net. 0.001543 4 0.00% 0.4487% 7 0.00%

Best Net. isMAPE 0.001866 11 20.94% 0.4812% 11 7.24%

Best Net. isMSE 0.001866 11 20.94% 0.4812% 11 7.24%

GA2 0.001551 5 0.51% 0.4468% 6 -0.42%

GA4 0.001591 9 3.10% 0.4505% 8 0.41%

GA8 0.001580 8 2.39% 0.4511% 9 0.54%

Naive 0.001566 7 1.48% 0.4448% 5 -0.86%

SARIMA 0.001501 3 -2.73% 0.4339% 2 -3.29%

Single seasonal 0.001271 1 -17.63% 0.3918% 1 -12.67%

h=10 CB2 0.001401 8 4.89% 0.4123% 5 1.32%

CB4 0.001261 1 -5.62% 0.3978% 1 -2.25%

CB8 0.001311 3 -1.88% 0.4086% 4 0.42%

Avg. Net. 0.001336 4 0.00% 0.4069% 3 0.00%

Best Net. isMAPE 0.001613 12 20.75% 0.4638% 12 13.98%

Best Net. isMSE 0.001486 9 11.24% 0.4394% 9 7.99%

GA2 0.001386 6 3.77% 0.4146% 8 1.88%

GA4 0.001388 7 3.92% 0.4142% 7 1.79%

GA8 0.001385 5 3.70% 0.4136% 6 1.64%

Naive 0.001580 11 18.31% 0.4472% 11 9.90%

SARIMA 0.001531 10 14.63% 0.4412% 10 8.42%

Single seasonal 0.001302 2 -2.52% 0.3984% 2 -2.11%

h=11 CB2 0.001341 2 -4.26% 0.4128% 2 -2.12%

CB4 0.001465 8 4.58% 0.4326% 8 2.57%

CB8 0.001408 4 0.54% 0.4231% 6 0.32%

Avg. Net. 0.001400 3 0.00% 0.4218% 3 0.00%

Best Net. isMAPE 0.001502 9 7.23% 0.4456% 9 5.65%

Best Net. isMSE 0.001668 12 19.14% 0.4631% 12 9.79%

GA2 0.001424 6 1.69% 0.4227% 5 0.22%

GA4 0.001416 5 1.11% 0.4226% 4 0.20%

GA8 0.001428 7 1.97% 0.4262% 7 1.05%

Naive 0.001587 11 13.32% 0.4474% 11 6.07%

SARIMA 0.001560 10 11.40% 0.4467% 10 5.91%

Single seasonal 0.001326 1 -5.31% 0.4039% 1 -4.24%

h=12 CB2 0.001455 3 -0.96% 0.4361% 3 -0.56%

CB4 0.001582 11 7.75% 0.4549% 12 3.71%

CB8 0.001459 4 -0.64% 0.4366% 4 -0.46%

Avg. Net. 0.001469 6 0.00% 0.4386% 7 0.00%

Best Net. isMAPE 0.001543 8 5.06% 0.4549% 10 3.70%

Best Net. isMSE 0.001543 8 5.06% 0.4549% 10 3.70%

GA2 0.001473 7 0.30% 0.4382% 6 -0.09%

GA4 0.001467 5 -0.11% 0.4375% 5 -0.25%

GA8 0.001452 2 -1.13% 0.4355% 2 -0.71%

Naive 0.001602 12 9.08% 0.4500% 9 2.59%

SARIMA 0.001573 10 7.11% 0.4490% 8 2.37%

Single seasonal 0.001348 1 -8.21% 0.4080% 1 -6.99%
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The Φ coefficients reveal a generally homogeneous contribution of clusters to the

final forecast and, in general, model parameters seem to be stable. Cluster validity

indexes (Table 4.11) suggest that clusters are not very different and, consequently,

diversity cannot be exploited.

Finally, the assessment of uncertainty in forecasts (Figure 4.14) reveals an homo-

geneous behaviour between the three CB configurations, which reflects the stability

of the models and their similar performance (although GA combinations are even

more stable). These results could be explained by the use of separate models for

every horizon and the regularity in the time series. Such conditions facilitate the

specialisation of an ensemble in a specific horizon and potentially produces lower

uncertainty than in the case of a single model used for all horizons.

Table 4.10: Coefficients for structural combination of NN for Synthetic-1S series.

h Φ 0.2514 0.2362 0.2621 0.2625

1 α1 -0.0132 0.3187 -0.0081 0.2678 0.0086 0.4021

α2 0.0070 -0.0492 0.2900 0.3174 0.2973 0.1317

α3 -0.0341 0.0488 0.1399 0.2044 0.3155 0.2828

α4 0.0013 0.0683 0.2181 0.1440 0.3027 0.2535

Φ 0.2514 0.2362 0.2621 0.2625

2 α1 -0.0235 0.1917 0.1881 0.3554 0.1976 0.0643

α2 0.0108 0.3497 0.0244 0.1033 0.2751 0.2405

α3 -0.0575 0.0396 0.4646 0.0748 0.3498 0.0737

α4 -0.0295 0.2402 0.0319 0.3258 0.4015

Φ 0.2734 0.2414 0.2273 0.2633

6 α1 -0.0010 0.0201 0.1802 0.1719 0.2595 0.3531

α2 0.1080 -0.1279 0.1691 0.2198 0.4353 0.2731

α3 -0.0737 0.1359 0.3192 0.2606 0.3130 -0.0337

α4 -0.0037 0.0081 0.0804 0.2320 0.4401 0.2239

α5 -0.0015 -0.0664 0.0929 0.2691 0.2574 0.4318

α6 -0.0850 0.0817 0.1470 0.3135 0.1832 0.2703

Φ 0.1635 0.1732 0.1661 0.1729 0.1683 0.1720

12 α1 0.0713 0.4002 0.0513 0.3758 0.2505 -0.1017

α2 0.0629 -0.0002 0.1829 0.6662 -0.0441 0.1728

α3 -0.0459 0.0152 0.8243 0.1587

α4 0.0354 0.1537 -0.1368 0.0287 0.5972 0.3384

α5 -0.1302 0.7279 -0.2851 0.0700 0.4688 0.0224

α6 0.0140 0.2526 0.3597 0.3771

Φ 0.1693 0.1691 0.1623 0.1693 0.1697 0.1726

MaxC = 8 is the maximum number of clusters. h denotes the forecast

horizon, αi are the coefficients applied to point-forecasts from models

in cluster i and Φ are the weights applied to the outputs from clusters.
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(a) MaxC = 2 clusters.

(b) MaxC = 4 clusters.

(c) MaxC = 8 clusters.

Figure 4.14: Forecast intervals for Synthetic-1S time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observa-
tion of the in-sample period and H = 12 is the number of forecast horizons. The shades,
from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and 0.60.
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Table 4.11: Cluster validity indexes. Series: Synthetic-1S.

Maximum number of clusters: 2

h PC MPC MDO Final num.

clusters

1 1.0000 NA 1.0000 1

2 1.0000 NA 1.0000 1

3 1.0000 NA 1.0000 1

4 1.0000 NA 1.0000 1

5 0.5026 0.0052 0.1000 2

6 1.0000 NA 1.0000 1

7 1.0000 NA 1.0000 1

8 1.0000 NA 1.0000 1

9 0.5013 0.0027 0.1000 2

10 1.0000 NA 1.0000 1

11 0.5016 0.0032 0.1000 2

12 1.0000 NA 1.0000 1

Maximum number of clusters: 4

h PC MPC MDO Final num.

clusters

1 0.3360 0.0040 0.0000 3

2 0.2511 0.0015 0.0000 4

3 0.3345 0.0018 0.0000 3

4 0.3593 0.0390 0.0000 3

5 1.0000 NA 1.0000 1

6 0.5012 0.0024 0.1000 2

7 0.3342 0.0012 0.0000 3

8 1.0000 NA 1.0000 1

9 0.3349 0.0023 0.0000 3

10 0.2657 0.0209 0.0000 4

11 0.2502 0.0003 0.0000 4

12 0.5021 0.0042 0.1000 2

Maximum number of clusters: 8

h PC MPC MDO Final num.

clusters

1 0.2505 0.0007 0.0000 4

2 0.2515 0.0020 0.0000 4

3 0.1254 0.0004 0.0000 8

4 0.1736 0.0083 0.0000 6

5 0.2546 0.0061 0.0000 4

6 0.1668 0.0002 0.0000 6

7 0.1668 0.0002 0.0000 6

8 0.2013 0.0017 0.0000 5

9 0.2010 0.0013 0.0000 5

10 0.1465 0.0043 0.0000 7

11 0.1668 0.0001 0.0000 6

12 0.1669 0.0003 0.0000 6

h denotes the forecast horizon, PC denotes the Partition Coefficient, MPC denotes the Modified Partition Coefficient,

and MDO denotes the Membership Degree Optimum. Values closer to 1 are preferable.
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4.5.3 Synthetic-2S Series

The generating process for this series is:

yt = lt−1 + dt−s1 + wt−s2 + φ(yt−1 − (lt−2 + dt−s1−1 + wt−s2−1)) + εt (4.23)

lt = λ(yt − dt−s1 − wt−s2) + (1− λ)lt−1

dt = δ(yt − lt−1 − wt−s2) + (1− δ)dt−s1

wt = ω(yt − lt−1 − dt−s1) + (1− ω)wt−s2

where yt is the simulated series, lt denotes the smoothed level, wt denotes the

long cycle seasonal index and dt denotes the short cycle seasonal index. Parameters

are λ = 0.2; δ = 0.13; ω = 0.3; φ = 0.5; s1 = 3; s2 = 12. It is displayed in Figure

4.15.

(a) Series. (b) Subset.

Figure 4.15: Synthetic-2S series.

The selected models for the NN ensemble, based on the corresponding sensitivity

analysis made in Chapter 3 are listed in Table 4.12. Data partitioning is the same

as for the previous series.

The double seasonal benchmark model (denoted as AddDblSeasonal) follows the

model in Equation 4.23 with parameters λ = 0.0084; δ = 0.0037; ω = 0.0706;

φ = 0.0771;
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Table 4.12: Selected NN models for Synthetic-2S series.

h NI NU

1 2 8

2 3 6

3 3 6

4 3 7

5 3 7

6 3 6

h NI NU

7 3 7

8 3 6

9 4 6

10 4 6

11 3 8

12 2 7

Figure 4.16 shows the MSE and MAPE error metrics for the out-of-sample period

(only CB models with a maximum of 4 clusters are included and the full set of

graphs are provided in Figure C.5 from Appendix C). Performance has a similar

order of magnitude over the different forecasts horizons which might be due to the

the regularity of the time series.

The AddDblSeasonal benchmark outperforms all models and combinations in

all forecast horizons, which tallies with the fact that it comes from the family of

models from which the time series was generated. Additionally, the detail provided

in Figure 4.17 reveals that CB combinations generally have a better and more stable

performance than GA. This suggests that GA combination approach might not be

suitable for more complex regular time series behaviour, in this case, seasonality.

Table 4.13 summarises forecasting performance. At least one of the three cluster

based models outperforms the average of NN in almost all forecast horizons, with

CB8 being the model that most consistently improves over such benchmark. In

general, the performance of structural combinations is irregular.

Figure 4.18 illustrates how the MSE has a mixed pattern with respect to the

number of clusters, as it can be observed that performance curves have different

shapes: convex, concave or almost straight. A similar patter was observed for

MAPE metric (graphs are omitted). This could be due to the regularity of the

series and the use of the direct forecast approach, which uses different NNs (and
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(a) MaxC = 4 clusters. MSE.

(b) MaxC = 4 clusters. MAPE.

Figure 4.16: Out-of-sample MSE and MAPE for Synthetic-2S series.
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(a) Comparison with Avg. and additive Dbl. seasonal.

(b) Comparison with GA.

Figure 4.17: Out-of-sample MSE for Synthetic-2S series.
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(a) Steps 1 to 6.

(b) Steps 7 to 12.

Figure 4.18: Out-of-sample MSE vs. number of clusters. Synthetic-2S series.
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different ensembles) for each horizon.

Details of the best performing CB model configuration for some forecast horizons

are given in Table 4.14. The weights applied to the forecasts given by different clus-

ters, Φ, are very similar for most model configurations and forecast horizons. This

suggests homogeneity in forecasts obtained from clusters. However, the moderate

percentage differences in performance observed with respect to the average in Table

4.13, for most horizons, do not suggest that the combination can be assimilated

to an average. The αj coefficients signal a generally stable, but diverse weighting

of forecasts within clusters. In terms of cluster configuration (Table 4.15) there are

CB4 models for horizons 1, 2 and 9 that have a clearer separation when compared to

other models, but in general, the validity indexes do not suggest a strong separation

between clusters.

The Ljung-Box tests showed that for most forecast horizons (h ≥ 3) almost all

models exhibit forecast errors that are serially correlated. However, Jarque-Bera

tests and Lilliefors tests revealed that most models, including CB combinations,

exhibit normally distributed errors for almost all forecast horizons. Finally, the as-

sessment of uncertainty in forecast exhibit very narrow bands (Figure 4.19) which

stems from the relatively good performance of NN ensembles fitted to specific fore-

cast horizons for a very regular time series.
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Table 4.13: Forecasting performance. Synthetic-2S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=1 CB2 0.002783 6 -29.21% 1.0241% 5 -12.49%

CB4 0.002762 5 -29.74% 1.0775% 6 -7.92%

CB8 0.002579 4 -34.41% 1.0131% 4 -13.43%

Avg. Net. 0.003931 8 0.00% 1.1702% 7 0.00%

Best Net. isMAPE 0.002149 2 -45.34% 0.8948% 2 -23.54%

Best Net. isMSE 0.002149 2 -45.34% 0.8948% 2 -23.54%

GA2 0.009340 9 137.57% 1.7058% 9 45.77%

GA4 0.010450 11 165.81% 1.7613% 11 50.51%

GA8 0.009833 10 150.11% 1.7088% 10 46.03%

Naive 0.003890 7 -1.05% 1.2456% 8 6.44%

AddDblSeasonal 0.001876 1 -52.28% 0.8408% 1 -28.15%

h=2 CB2 0.002374 6 1.80% 1.0110% 7 1.13%

CB4 0.002137 4 -8.36% 0.9650% 4 -3.47%

CB8 0.002099 3 -10.01% 0.9355% 3 -6.42%

Avg. Net. 0.002332 5 0.00% 0.9997% 6 0.00%

Best Net. isMAPE 0.002421 7 3.83% 0.9741% 5 -2.56%

Best Net. isMSE 0.002002 2 -14.14% 0.8825% 2 -11.72%

GA2 0.002466 8 5.75% 1.0410% 9 4.14%

GA4 0.002544 10 9.09% 1.0585% 10 5.89%

GA8 0.002489 9 6.73% 1.0407% 8 4.11%

Naive 0.003809 11 63.32% 1.2242% 11 22.46%

AddDblSeasonal 0.001912 1 -18.01% 0.8530% 1 -14.67%

h=3 CB2 0.002329 6 -0.61% 0.9306% 4 -4.94%

CB4 0.002251 4 -3.95% 0.9124% 3 -6.80%

CB8 0.002335 7 -0.37% 0.9680% 9 -1.12%

Avg. Net. 0.002343 9 0.00% 0.9790% 10 0.00%

Best Net. isMAPE 0.002215 3 -5.47% 0.8791% 2 -10.20%

Best Net. isMSE 0.002158 2 -7.89% 0.9367% 6 -4.32%

GA2 0.002292 5 -2.19% 0.9360% 5 -4.39%

GA4 0.002393 10 2.12% 0.9527% 7 -2.68%

GA8 0.002343 8 -0.01% 0.9660% 8 -1.32%

Naive 0.003843 11 64.01% 1.2321% 11 25.86%

AddDblSeasonal 0.001920 1 -18.06% 0.8537% 1 -12.80%

h=4 CB2 0.002456 4 2.50% 0.9658% 5 2.66%

CB4 0.002537 6 5.84% 0.9923% 9 5.48%

CB8 0.002194 2 -8.43% 0.9048% 2 -3.83%

Avg. Net. 0.002397 3 0.00% 0.9408% 3 0.00%

Best Net. isMAPE 0.003080 10 28.50% 1.0789% 10 14.68%

Best Net. isMSE 0.002501 5 4.37% 0.9876% 8 4.97%

GA2 0.002600 7 8.49% 0.9522% 4 1.21%

GA4 0.002660 9 11.00% 0.9812% 7 4.30%

GA8 0.002633 8 9.87% 0.9733% 6 3.46%

Naive 0.003883 11 62.02% 1.2447% 11 32.30%

AddDblSeasonal 0.001937 1 -19.17% 0.8587% 1 -8.72%

%∆ = 100(Mmodel −MAvg)/MAvg with Mi being the metric for model i.

Negative % values indicate improvement over the average.
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(Continued) Forecasting performance. Synthetic-2S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=5 CB2 0.002414 7 9.49% 0.9519% 6 3.58%

CB4 0.002276 4 3.22% 0.9366% 4 1.92%

CB8 0.002129 2 -3.45% 0.9177% 2 -0.13%

Avg. Net. 0.002205 3 0.00% 0.9189% 3 0.00%

Best Net. isMAPE 0.002362 5 7.13% 0.9603% 9 4.50%

Best Net. isMSE 0.002362 5 7.13% 0.9603% 9 4.50%

GA2 0.002531 10 14.80% 0.9546% 7 3.88%

GA4 0.002511 9 13.89% 0.9549% 8 3.91%

GA8 0.002450 8 11.13% 0.9463% 5 2.98%

Naive 0.003901 11 76.92% 1.2467% 11 35.67%

AddDblSeasonal 0.001923 1 -12.78% 0.8550% 1 -6.96%

h=6 CB2 0.002436 5 1.84% 0.9619% 4 -1.75%

CB4 0.002507 9 4.82% 1.0182% 8 4.01%

CB8 0.002207 2 -7.75% 0.9438% 3 -3.59%

Avg. Net. 0.002392 4 0.00% 0.9790% 5 0.00%

Best Net. isMAPE 0.002274 3 -4.94% 0.9163% 2 -6.40%

Best Net. isMSE 0.002791 10 16.70% 1.0636% 10 8.64%

GA2 0.002467 6 3.14% 1.0172% 6 3.90%

GA4 0.002500 8 4.52% 1.0238% 9 4.58%

GA8 0.002479 7 3.65% 1.0179% 7 3.98%

Naive 0.003913 11 63.59% 1.2503% 11 27.72%

AddDblSeasonal 0.001941 1 -18.85% 0.8633% 1 -11.81%

h=7 CB2 0.002561 10 11.60% 1.0107% 10 4.71%

CB4 0.002275 5 -0.85% 0.9741% 6 0.92%

CB8 0.002181 2 -4.94% 0.9473% 4 -1.86%

Avg. Net. 0.002295 6 0.00% 0.9652% 5 0.00%

Best Net. isMAPE 0.002207 3 -3.82% 0.9291% 2 -3.75%

Best Net. isMSE 0.002207 3 -3.82% 0.9291% 2 -3.75%

GA2 0.002420 7 5.47% 0.9819% 7 1.73%

GA4 0.002449 8 6.73% 0.9918% 8 2.75%

GA8 0.002460 9 7.21% 0.9990% 9 3.50%

Naive 0.003861 11 68.27% 1.2455% 11 29.04%

AddDblSeasonal 0.001913 1 -16.63% 0.8601% 1 -10.89%

h=8 CB2 0.002851 7 5.32% 1.0386% 6 -1.62%

CB4 0.002636 5 -2.63% 1.0224% 5 -3.15%

CB8 0.002355 4 -13.00% 0.9960% 4 -5.66%

Avg. Net. 0.002707 6 0.00% 1.0557% 7 0.00%

Best Net. isMAPE 0.002352 2 -13.09% 0.9837% 2 -6.82%

Best Net. isMSE 0.002352 2 -13.09% 0.9837% 2 -6.82%

GA2 0.003427 10 26.61% 1.1917% 10 12.88%

GA4 0.003319 9 22.62% 1.1801% 9 11.78%

GA8 0.003183 8 17.60% 1.1456% 8 8.52%

Naive 0.003819 11 41.09% 1.2419% 11 17.63%

AddDblSeasonal 0.001900 1 -29.80% 0.8587% 1 -18.66%
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(Continued) Forecasting performance. Synthetic-2S series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

h=9 CB2 0.003141 10 28.41% 1.1281% 10 13.29%

CB4 0.002606 6 6.57% 1.0136% 6 1.79%

CB8 0.002242 4 -8.32% 0.9630% 4 -3.29%

Avg. Net. 0.002446 5 0.00% 0.9958% 5 0.00%

Best Net. isMAPE 0.002226 2 -8.97% 0.9262% 2 -6.99%

Best Net. isMSE 0.002226 2 -8.97% 0.9262% 2 -6.99%

GA2 0.002684 7 9.75% 1.0502% 7 5.47%

GA4 0.002767 8 13.14% 1.0607% 9 6.52%

GA8 0.002780 9 13.67% 1.0564% 8 6.09%

Naive 0.003857 11 57.71% 1.2526% 11 25.80%

AddDblSeasonal 0.001907 1 -22.02% 0.8616% 1 -13.47%

h=10 CB2 0.002927 7 14.71% 1.0604% 5 7.13%

CB4 0.002925 6 14.66% 1.1051% 7 11.65%

CB8 0.002233 2 -12.49% 0.9292% 2 -6.12%

Avg. Net. 0.002551 4 0.00% 0.9898% 4 0.00%

Best Net. isMAPE 0.002344 3 -8.11% 0.9358% 3 -5.46%

Best Net. isMSE 0.002914 5 14.21% 1.1441% 10 15.59%

GA2 0.003166 10 24.10% 1.1065% 8 11.79%

GA4 0.003140 9 23.08% 1.1167% 9 12.82%

GA8 0.003066 8 20.18% 1.0940% 6 10.53%

Naive 0.003857 11 51.18% 1.2561% 11 26.91%

AddDblSeasonal 0.001917 1 -24.86% 0.8666% 1 -12.45%

h=11 CB2 0.002461 6 -4.28% 0.9573% 6 -2.23%

CB4 0.002113 3 -17.80% 0.9106% 3 -7.01%

CB8 0.002261 4 -12.05% 0.9275% 4 -5.28%

Avg. Net. 0.002571 8 0.00% 0.9792% 7 0.00%

Best Net. isMAPE 0.002552 7 -0.74% 1.0010% 9 2.23%

Best Net. isMSE 0.002007 2 -21.94% 0.8799% 2 -10.14%

GA2 0.002441 5 -5.05% 0.9533% 5 -2.64%

GA4 0.002621 9 1.96% 0.9943% 8 1.54%

GA8 0.002705 10 5.22% 1.0077% 10 2.91%

Naive 0.003895 11 51.53% 1.2593% 11 28.60%

AddDblSeasonal 0.001935 1 -24.73% 0.8643% 1 -11.73%

h=12 CB2 0.002329 4 -14.87% 0.9251% 4 -6.61%

CB4 0.002472 6 -9.65% 0.9332% 6 -5.79%

CB8 0.002354 5 -13.97% 0.9303% 5 -6.08%

Avg. Net. 0.002736 7 0.00% 0.9906% 7 0.00%

Best Net. isMAPE 0.002246 2 -17.91% 0.9028% 2 -8.86%

Best Net. isMSE 0.002246 2 -17.91% 0.9028% 2 -8.86%

GA2 0.003151 9 15.18% 1.0434% 9 5.33%

GA4 0.003117 8 13.94% 1.0428% 8 5.27%

GA8 0.003169 10 15.84% 1.0539% 10 6.39%

Naive 0.003924 11 43.42% 1.2610% 11 27.29%

AddDblSeasonal 0.001934 1 -29.31% 0.8585% 1 -13.34%
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(a) MaxC = 2 clusters. (b) MaxC = 2 clusters (zoom).

(c) MaxC = 4 clusters. (d) MaxC = 4 clusters (zoom).

(e) MaxC = 8 clusters. (f) MaxC = 8 clusters (zoom).

Figure 4.19: Forecast intervals for Synthetic-2S time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observa-
tion of the in-sample period and H = 12 is the number of forecast horizons. The shades,
from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and 0.60.
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Table 4.14: Coefficients for structural combination of NN for Synthetic-2S series.

h

1 α1 0.0018 0.0580 -0.0608 0.0313 0.0549 0.9100

α2 -0.0038 0.2494 0.0662 0.0575 0.6996 -0.0788

α3 -0.0024 -0.2469 0.2834 0.2910 0.1293 0.5361

α4 -0.0182 0.0701 -0.0011 0.0608 -0.2369 1.1035

α5 0.0246 -0.0460 0.1941 -0.1541 0.1910 0.8026

α6 0.0035 -0.0660 0.0221 -0.0749 0.0982 1.0139

α7 0.0003 -0.0259 -0.0752 0.0842 0.0855 0.9247

Φ 0.1393 0.1420 0.1462 0.1447 0.1423 0.1447 0.1469

2 α1 -0.0045 0.0142 0.4543 0.2349 0.2906

α2 0.0028 0.7876 -0.2586 0.0158 -0.0250 0.4712

α3 0.0031 0.0151 0.2054 -0.1964 0.6569 0.3096

α4 0.0030 0.3746 -0.1562 -0.0093 0.1326 0.6489

α5 -0.0025 -0.0856 0.8669 0.0851 0.1283

Φ 0.2056 0.1973 0.1983 0.2121 0.1945

6 α1 -0.0188 0.0031 -0.5853 0.7243 -0.1585 1.0087

α2 -0.0011 0.1214 0.0871 0.0260 -0.0788 0.8334

α3 -0.0051 -0.1999 0.5205 0.0710 0.0668 0.5308

α4 -0.0063 -0.1643 0.2516 0.9033 0.0341 -0.0355

α5 -0.0023 0.1968 0.3278 0.6160 -0.1424 -0.0096

Φ 0.1942 0.2006 0.2036 0.2050 0.2080

MaxC = 8 is the maximum number of clusters. h denotes the forecast horizon,
αi are the coefficients applied to point-forecasts from models in cluster i and Φ
are the weights applied to the outputs from clusters.
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Table 4.15: Cluster validity indexes. Series: Synthetic-2S.

Maximum number of clusters: 2

h PC MPC MDO Final num.

clusters

1 1.0000 NA 1.0000 1

2 1.0000 NA 1.0000 1

3 1.0000 NA 1.0000 1

4 1.0000 NA 1.0000 1

5 0.5004 0.0008 0.0000 2

6 1.0000 NA 1.0000 1

7 1.0000 NA 1.0000 1

8 0.5007 0.0014 0.0000 2

9 1.0000 NA 1.0000 1

10 1.0000 NA 1.0000 1

11 1.0000 NA 1.0000 1

12 1.0000 NA 1.0000 1

Maximum number of clusters: 4

h PC MPC MDO Final num.

clusters

1 0.5050 0.0100 0.3000 2

2 0.5041 0.0082 0.4000 2

3 0.2520 0.0027 0.0000 4

4 0.3340 0.0010 0.0000 3

5 0.3337 0.0005 0.0000 3

6 0.3344 0.0017 0.0000 3

7 0.3343 0.0015 0.0000 3

8 0.2502 0.0003 0.0000 4

9 0.5026 0.0052 0.2000 2

10 0.5015 0.0030 0.1000 2

11 0.5008 0.0017 0.0000 2

12 0.2506 0.0008 0.0000 4

Maximum number of clusters: 8

h PC MPC MDO Final num.

clusters

1 0.1430 0.0001 0.0000 7

2 0.2004 0.0004 0.0000 5

3 0.2006 0.0007 0.0000 5

4 0.2507 0.0009 0.0000 4

5 0.3343 0.0015 0.0000 3

6 0.2002 0.0003 0.0000 5

7 0.1669 0.0003 0.0000 6

8 0.1429 0.0001 0.0000 7

9 0.1251 0.0001 0.0000 8

10 0.1251 0.0001 0.0000 8

11 0.1250 0.0000 0.0000 8

12 0.2505 0.0007 0.0000 4

h denotes the forecast horizon, PC denotes the Partition Coefficient, MPC denotes the Modified Partition Coefficient,

and MDO denotes the Membership Degree Optimum. Values closer to 1 are preferable.
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4.6 Discussion of Findings from Synthetic Series

It was observed that for STAR2 and Synthetic-1S series, GA combinations have a

more stable performance for different forecast horizons. This relative stability is

relevant, because the architecture of models used in ensembles for different fore-

cast horizons differ. Hence, there seems to be support for using GAs in structural

combinations of NNs when the serial dependency involves a limited number of past

lags.

For Synthetic-1S and Synthetic-2S time series, it is clear that CB models with

more clusters forecast better. The more complex task of forecasting at longer hori-

zons is reflected in the influence of more clusters (more models) and more parameters

(for combination). In some cases, a preferable number of clusters is identified, as in

steps 3 and 11 for Synthetic-2S, when the error metric curve (in Figure 4.18) shows

a convex shape and a minimum. In other horizons (4 and 6), the performance curve

is concave, but also shows a minimum.

When comparing the ability of CB and GA combinations to outperform the NN-

based benchmarks, the following is observed: for the non-seasonal STAR2 series,

GA combinations outperform the simple average in more occasions than CB com-

binations (see summary Table 4.16). For the seasonal and double-seasonal series

(Synthetic-1S and Synthetic-2S), however, only CB performs well when compared

to the simple average. The ability of CB and GA to outperform the models with

best fit in the ensemble is similar in the cases of STAR2 and Synthetic-1S series;

while for Synthetic-2S, CB combinations are clearly better.

When considering the overall ability of structural combinations (CB and GA)

to outperform NN-based benchmarks, it is noticed that the benefit of building en-

sembles and combining structurally is clearer in the case of the non-seasonal series

(with high noise), since the models with best fit and the simple average are more
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consistently outperformed by the structural combination. For the single-seasonal

series, the structural combinations improve markedly over the models with best fit,

but not over the simple average, while for the double-seasonal series, improvement

over the best models and the average is similar (except for CB8). It seems that the

use of separate models for a regular time series can create well performing individual

models and, consequently, well performing average forecasts. In consequence, such

benchmarks tend to be difficult to outperform with feed-forward NNs and ensembles.
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Table 4.16: Number of forecast horizons for which CB and GA combinations out-
perform benchmarks.

Metric Series / Models Reference benchmarks
MSE STAR2 Series Avg. Bst. IsMAE Bst. IsMSE Stat.

CB2 3 2 3 3

GA2 5 3 4 5

CB4 3 2 3 2

GA4 4 3 4 5

CB8 2 3 3 2

GA8 4 4 4 5

MSE Synthetic-1S Series Avg. Bst. IsMAPE Bst. IsMSE Stat.

CB2 6 10 9 3

GA2 3 11 10 4

CB4 5 9 9 4

GA4 5 10 10 4

CB8 8 12 11 4

GA8 5 11 11 4

MSE Synthetic-2S Series Avg. Bst. IsMAPE Bst. IsMSE Stat.

CB2 4 3 2 0

GA2 2 2 1 0

CB4 7 4 2 0

GA4 0 1 1 0

CB8 12 7 5 0

GA8 1 1 1 0

Metric Series / Models Reference benchmarks
*MAE STAR2 Series Avg. Bst. IsMAE Bst. IsMSE Stat.

CB2 2 4 4 4

GA2 5 4 3 5

CB4 3 2 3 4

GA4 4 4 3 5

CB8 3 3 3 4

GA8 4 4 3 5

MAPE Synthetic-1S Series Avg. Bst. IsMAPE Bst. IsMSE Stat.

CB2 5 10 9 2

GA2 5 10 10 3

CB4 4 9 9 3

GA4 6 10 10 4

CB8 7 12 11 4

GA8 4 10 10 4

MAPE Synthetic-2S Series Avg. Bst. IsMAPE Bst. IsMSE Stat.

CB2 6 3 5 0

GA2 2 3 5 0

CB4 6 4 4 0

GA4 1 3 4 0

CB8 12 5 4 0

GA8 1 2 4 0

Avg. stands for the average of NN in the ensemble;
Bst. IsMAE, Bst. IsMAPE, Bst. IsMSE stand for the best NN
in terms of in-sample MAE, MAPE or MSE in the ensemble;
Stat. stands for the corresponding statistical benchmark used.
* MAE preferred over MAPE when the time series has values close to zero.
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4.7 Forecasting Wind Power Using Ensembles of

NNs Based on Multivariate Time Series

Energy Forecasting Competition (Kaggle, 2012; Hong et al., 2014) provided hourly

wind power scaled in the interval [0, 1] and numerical weather forecast data (wind

speed and direction) for 7 wind farms. The first wind farm was selected for the

present study. The original arrangement in the competition allocated the period

from 2009/07/01 to 2010/12/31 for training (fitting) and for the rest of the data-set

missing periods of 48 hours length were defined, that the participants had to forecast

(all data, however, is available so that forecasting performance can be inferred). No

rolling forecast origin was used and only RMSE error metric was reported in the

analyses of the competition (Hong et al., 2014). Here a data set-up was adopted that

enabled the use of a rolling window over a sufficiently long period of data without

missing values. The data were split between training (in-sample) and testing (out-

of-sample): 66% and 33%, respectively. The subset thus selected covers the period

from 2009/07/01 at 0:00 to 2010/12/31 at 12:00 clock and weather forecast for 48

hours ahead are available every 12 hours from 2009/07/01 to 2010/12/31.

The two-stages procedure of sensitivity analysis and fitting of models that is

used in previous sections is followed here. The configuration parameters for the

first stage are listed in Table 4.17. Inputs comprise 2 exogenous variables (the most

recent forecast for wind speed and wind direction available for a specific forecast

horizon), as well as lagged variable, i.e, lags 1 to 5 from the wind power series (a

partial autocorrelogram shows that only the first 3 lags are important, but 5 are

included in order to allow for a wider view concerning the sensitivity of error metrics

to the number of inputs). As argued by Lee & Scholtes (2014), the use of different

models for every forecast horizon is desirable given that the quality of wind forecasts

differs depending on the horizon: as they are issued every 12 hours, the longer the
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time between the desired horizon and the last issued forecast, the worse is the quality

of available information.

During the preliminary sensitivity analysis, variation was introduced into the

original series in order to create replicas (100 for each factor combination), by adding

noise uniformly distributed in the range [−0.1σb,+0.1σb], where σb is the standard

deviation of the bootstrapped series. This permitted to mimic the conditions of the

sensitivity analysis performed with synthetic time series in the previous chapter.

Because the generating process was unknown in the case of wind power, the noise

addition allowed to create small variations of the series, which play the role of differ-

ent realisations of the process. The idea was inspired by Zhang (2007) and Brown

et al. (2003) who studied the addition of noise to input data in neural networks.

Their findings indicate that the effect on performance depends on the noise level

added and its distribution. The noise level was chosen so that the general dynamics

of the series is not substantially altered. The distribution accounts for a pessimistic

case, since the likelihood of extreme values is the same as that of observations that

are close to the mean.

The period between 2009/7/1 and 2010/06/30 (8760 observations) was used for

model identification and training (in-sample period) and data from 2010/07/01 to

2010/12/31 (4416) was used for model evaluation (out-of-sample period). NMAPE

and RMSE metrics were used to assess the performance of models during both the

sensitivity analysis and the forecasting exercise. The former can be interpreted in

terms of percentages and avoids divisions by zero, as there are times when a wind

farm has no production. The latter is commonly used in the wind-power literature

(see for example Giebel et al., 2003). The NMAPE is calculated as follows:

NMAPE =
1

n

∑n
i=1 |yi − ŷi|

(1/n)
∑n

i=1 yi
(4.24)

Where yi is the i-th observation and ŷi is the corresponding estimated value. RMSE

was preferred over MSE because it is standard in the wind power forecasting litera-
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ture.

The original series and replicas are depicted in Figure 4.20, where training (in-

sample) and evaluation (out-of-sample) periods are separated by a dashed line.

(a) Wind power series. (b) Replicas (first week).

Figure 4.20: Hourly electricity production and replicas for Kaggle wind farm 1, from
1 July 2009 to 31 December 2010.

4.7.1 Preliminary Analysis and Specification of Individual
Models for the Ensemble

Figure 4.21 shows the average out-of-sample NMAPE and RMSE of NN models for

each forecast horizon. The latter metric is preferred over the MSE as it is tradition-

ally used in the wind power industry. A very homogeneous behaviour is noticed,

given the very narrow confidence bands, indicating little variability in forecast per-

formance. Taking into account that the averages and confidence bands are calculated

with data from different architectures, it can be inferred that the forecasting prob-

lem is insensitive to architectural decisions. Table 4.18 lists the architectures with

the lowest average out-of-sample RMSE. Exogenous variables and the first lag of

wind power are common among the specifications and complexity in terms of the

number of neurons tends to be high.
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Table 4.17: Configuration: Kaggle wind power data.

Factor Symbol Levels
Number of inputs NI 1, . . . ,7,

corresponding to the set

[ws,wd,wpL1, . . . , wpL5], where

where ws and wd are the most recent fore-
casts for wind speed and wind direction
available at time t for a specific horizon, k
(see Figure 4.22), and wpL1, . . . , wpL5 are
values of wind power at times t, . . . , t − 4
used to forecast wpt+k, k = 1, . . . , 12.

Number of hidden layers NL 1
Number of hidden units NU 1, . . . ,14 (1 to 2 times the number of levels

for NI)

Activation function for hidden
nodes

AF1 Tangent Sigmoid

Activation function for the
output node

AF2 Linear

Initial values for the weights W0 Values in the range [-2 2] established by
the Nguyen-Widrow algorithm (there is a
degree of randomness)

Training algorithm TA Back-propagation with Levenberg-
Marquardt optimisation.

Stopping criteria SC * The maximum number of epochs (repe-
titions) is reached: 300.

* The maximum amount of time is ex-
ceeded: ∞
* Performance is minimised to the goal: 0

* The performance gradient falls below
mingrad : 10−10

* µ exceeds µmax = 103

* Validation performance has increased
more than maxfail times since the last
time it decreased (when using validation):
6

Data normalisation DN Yes
Initial combination coefficient
(µ)

MU 0.001

Prune units PU Yes, No

Prune input variables PI No

Sample size SS 8760

Data configuration for train-
ing, testing and validation
(training + validation = in-
sample period; testing=out-
of-sample period)

DC Conf. 1: Ntr = 8760, Nva = 760 Nte =
4416

Extreme values treated EV No.
Sampling method SM block, cross-validated

Forecast approach FA Direct: a separate model for each forecast
horizon

In bold are the factors which vary. 164



(a) MAPE. (b) RMSE.

Figure 4.21: Average NMAPE% and RMSE.

Table 4.18: Models with the lowest average out-of-sample RMSE.

Forecast NI NU Average

horizon RMSE

1 4 12 0.06866

2 4 14 0.09859

3 4 13 0.11445

4 3 12 0.12422

5 4 10 0.13204

6 3 11 0.13740

Forecast NI NU Average

horizon RMSE

7 3 10 0.14226

8 3 12 0.14550

9 3 8 0.14711

10 3 11 0.14937

11 3 7 0.15006

12 3 7 0.15163

When NI = p, the first p variables of the set [ws,wd,wpL1, wpL2]

are used, where ws and wd are the most recent forecasts

for wind speed and wind direction available at time t for

horizon k and wpL1, wpL2 are values of wind power at times

t and t− 1 used to forecast wpt+k.

Time (hour)
0 12 24 36 48 60 72

W. forecast 1
W. forecast 2

W. forecast 3
t t+ 1

Figure 4.22: Weather forecasts usage.

Weather forecasts (wind speed and direction) are issued every 12 hours. To fore-
cast wind power at time t + 1 with origin at t, the most recent weather forecast is W.
forecast 3.
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The main effects graphs (Figure 4.23) show how NMAPE and RMSE (in both

the in-sample and out-of-sample periods) are sensitive to NI, which is evident after

NI = 2. The first part (1 ≤ NI ≤ 2) corresponds to the exogenous variables

(wind speed and wind direction forecasts) and the second part (3 ≤ NI ≤ 7)

corresponds to wind power lagged-values. Sensitivity with respect to the weather

forecasts is surprisingly low, and the use of previous values has a marked effect, in

particuar the first lag. The sensitivity of both metrics in both periods to NU is low,

as judged by the main effects graphs, and pruning of synaptic connections (PU)

slightly performance (the complete set of graphs, not shown here, overall supports

these findings).

ANOVA and Kruskal-Wallis tests suggest that NI, NU and PU have significant

effect on both in-sample and out-of-sample metrics. Jonckheere-Terpstra tests con-

firm such influence and further highlight that NI and NU tend to decrease the values

of the metrics, while PR tends to increase them. In all, the tests confirm the general

tendencies observed in the main-effects graphs.

The assessment of residual serial correlation reveals a general failure of the models

to capture the dynamics of the series. For almost all forecast horizons, the tests show

serial correlation in all trials made. Only the forecasts for one step ahead from a

subset of NNs led to serially independent forecast errors. Such models have 3 or

more inputs, which confirms the need for lagged values of wind power production.

In models for the subsequent hour, these inputs are no longer influential in capturing

the dynamics of the series.
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RMSE
NI NU PU

h = 1 IS

OS

h = 6 IS

OS

Figure 4.23: Main effects. Series: Kaggle wind power production series. IS stands
for in-sample; OS stands for out-of-sample.
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(Continued) Main effects. Series: Kaggle wind power production series.
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4.7.2 Combination of Models

The NN models selected are listed in Table 4.19. They are relatively similar in terms

of the number of inputs and have a number of neurons such that NU > NI. This

reflects the higher influence of the exogenous inputs and the need of a relatively

complex forecasting mechanism.

Table 4.19: Selected models for Kaggle series.

h NI NU

1 4 9

2 4 13

3 4 13

4 3 12

5 4 10

6 3 10

h NI NU

7 5 9

8 3 12

9 3 8

10 3 11

11 3 7

12 3 7

When NI = p, the first p variables of the set

[ws,wd,wpL1, wpL2, wpL3] are used, where ws and wd

are the most recent forecasts for wind speed and

wind direction available at time t for horizon h

and wpL1, wpL2, wpL3 are values of wind power

at times t, t− 1 and t− 2 used to forecast wpt+h.

The analysis of performance for this series follows the general procedure that

has already been applied to synthetic series. However, as previously mentioned, the

RMSE metric was used instead of MSE, as it is traditionally used in the wind power

industry and NMAPE metric is preferred over MAPE in order to avoid divisions

by zero when there is no power production in the wind farm. An ARIMA model

with exogenous variables (ARIMAX) was considered as statistical benchmark, and

was selected using the routine auto.arima from forecast package in R (Hyndman &

Khandakar, 2008; Hyndman, 2015). The model is the following:

ŷt = 0.0320ws+0.3334yt−1+0.4916yt−2−0.1670εt−1−0.6504εt−2−0.1617εt−3 (4.25)

Where yt is the normalised wind power production at time t and ws is the
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most recent wind direction forecast available for time t (the automatic specification

routines in R found a zero coefficient for wd, which was confirmed by fitting other

models directly).

Figure 4.24 shows the out-of-sample NMAPE and RMSE for the CB combination

approach and Figure 4.25 focuses on the RMSE performance of key benchmarks (Fig-

ures C.7 and C.8 from Appendix C provide further detail). Behaviour of NMAPE,

not shown, is similar. Numeric detail of performance and the ranking of models for

every forecast horizon are presented in Table 4.20.

Taking into account the RMSE metric, all NN-based outperform the naive and

statistical benchmark. Both CB and GA combinations outperform the individual

NN with best in-sample metrics in most of the forecast horizons. However, CB com-

bination outperforms the NN average only for the first step ahead and, interestingly,

GA combinations outperformed the CB models and the simple average in several

horizons.

For NMAPE, the behaviour is similar, with minor changes in the ranking of

models, but results confirm the tendencies observed. GA combination show supe-

riority with respect to CB, and both combination approaches easily outperform a

single NN, naive and ARIMA benchmarks.

The behaviour of both metrics is very smooth in comparison with synthetic series.

As it was shown before, models with the lowest out-of-sample RMSE and the selected

models for the ensembles had similar structures in terms of inputs and neurons and

the sensitivity analysis showed a relative insensitivity of models to such factors (flat

regions). The smoothness in the metrics vs. forecast horizon graphs (Figure 4.25)

might reflect the insensitivity of model performance to structural factors, which in

turn might come from nature of the phenomenon (achievable performance with a

given structure and input set is very homogeneous). Such insensitivity is also evident

in Figure 4.26, where the number of clusters does not seem to affect the metrics.
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(a) 4 clusters. NMAPE.

(b) 4 clusters. RMSE.

Figure 4.24: Out-of-sample NMAPE and RMSE for Kaggle wind power production
series.
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(a) Comparison with Avg. and ARIMAX. RMSE.

(b) Comparison with GA. RMSE.

Figure 4.25: Out-of-sample RMSE for Kaggle wind power production series.
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Table 4.20: Forecasting performance. Kaggle wind power production series.

F. horizon Model RMSE Rank %∆ wrt Avg. NMAPE Rank %∆ wrt Avg.

h=1 CB2 0.06526 6 0.11% 17.8220% 2 -0.25%

CB4 0.06510 2 -0.13% 17.7910% 1 -0.43%

CB8 0.06509 1 -0.14% 17.8330% 3 -0.19%

Avg. Net. 0.06518 3 0.00% 17.8670% 4 0.00%

Best Net. IsNMAPE 0.06582 8 0.98% 18.0270% 8 0.90%

Best Net. IsRMSE 0.06614 9 1.47% 18.1010% 9 1.31%

GA2 0.06523 4 0.07% 17.8944% 5 0.15%

GA4 0.06526 6 0.11% 17.9940% 7 0.71%

GA8 0.06525 5 0.10% 17.9580% 6 0.51%

Naive 0.07235 11 11.00% 19.2395% 11 7.68%

ARIMAX 0.06724 10 3.16% 18.7348% 10 4.86%

h=2 CB2 0.09616 7 0.87% 27.5890% 6 0.51%

CB4 0.09587 6 0.56% 27.4870% 3 0.13%

CB8 0.09566 2 0.34% 27.4570% 2 0.03%

Avg. Net. 0.09533 1 0.00% 27.4500% 1 0.00%

Best Net. IsNMAPE 0.09743 8 2.20% 28.0450% 8 2.17%

Best Net. IsRMSE 0.09809 9 2.90% 28.0620% 9 2.23%

GA2 0.09581 5 0.50% 27.6183% 7 0.61%

GA4 0.09573 4 0.41% 27.5592% 4 0.40%

GA8 0.09572 3 0.40% 27.5826% 5 0.48%

Naive 0.11323 11 18.77% 30.6929% 11 11.81%

h=3 CB2 0.11190 5 0.69% 33.0640% 5 0.30%

CB4 0.11214 6 0.91% 33.1140% 7 0.45%

CB8 0.11218 7 0.94% 33.1110% 6 0.44%

Avg. Net. 0.11113 4 0.00% 32.9650% 4 0.00%

Best Net. IsNMAPE 0.11520 9 3.66% 33.9090% 9 2.86%

Best Net. IsRMSE 0.11383 8 2.43% 33.5350% 8 1.73%

GA2 0.11109 2 -0.04% 32.8125% 1 -0.46%

GA4 0.11111 3 -0.02% 32.8397% 3 -0.38%

GA8 0.11108 1 -0.05% 32.8365% 2 -0.39%

Naive 0.14187 11 27.66% 38.7617% 11 17.58%

ARIMAX 0.12668 10 13.99% 36.4649% 10 10.62%

h=4 CB2 0.12302 7 1.29% 36.8270% 6 0.57%

CB4 0.12259 6 0.94% 36.7100% 3 0.25%

CB8 0.12145 1 0.00% 36.6180% 1 0.00%

Avg. Net. 0.12145 1 0.00% 36.6180% 1 0.00%

Best Net. IsNMAPE 0.12462 9 2.61% 37.6980% 9 2.95%

Best Net. IsRMSE 0.12369 8 1.84% 37.2800% 8 1.81%

GA2 0.12234 4 0.73% 36.8116% 4 0.53%

GA4 0.12234 3 0.73% 36.8234% 5 0.56%

GA8 0.12234 5 0.74% 36.8339% 7 0.59%

Naive 0.16401 11 35.04% 45.1852% 11 23.40%

ARIMAX 0.14387 10 18.46% 41.8693% 10 14.34%

%∆ = 100(Mmodel −MAvg)/MAvg with Mi being the metric for model i.

Negative % values indicate improvement over the average.
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(Continued) Forecasting performance. Kaggle wind power production series.

F. horizon Model RMSE Rank %∆ wrt Avg. NMAPE Rank %∆ wrt Avg.

h=5 CB2 0.12991 7 1.25% 39.4140% 8 1.10%

CB4 0.12950 6 0.93% 39.2780% 6 0.75%

CB8 0.12914 5 0.65% 39.1470% 5 0.42%

Avg. Net. 0.12831 1 0.00% 38.9840% 2 0.00%

Best Net. IsNMAPE 0.13000 8 1.32% 39.4110% 7 1.10%

Best Net. IsRMSE 0.13391 9 4.36% 40.7060% 9 4.42%

GA2 0.12873 4 0.32% 39.0871% 4 0.26%

GA4 0.12847 2 0.12% 38.9201% 1 -0.16%

GA8 0.12864 3 0.25% 39.0475% 3 0.16%

Naive 0.18232 11 42.10% 50.6443% 11 29.91%

ARIMAX 0.15812 10 23.23% 46.2666% 10 18.68%

h=6 CB2 0.13742 8 1.97% 41.5750% 8 1.04%

CB4 0.13604 5 0.95% 41.3040% 5 0.38%

CB8 0.13640 6 1.22% 41.5550% 7 0.99%

Avg. Net. 0.13476 1 0.00% 41.1470% 4 0.00%

Best Net. IsNMAPE 0.13737 7 1.94% 41.3530% 6 0.50%

Best Net. IsRMSE 0.13853 9 2.80% 42.0780% 9 2.26%

GA2 0.13491 3 0.11% 41.0862% 1 -0.15%

GA4 0.13500 4 0.18% 41.0923% 3 -0.13%

GA8 0.13486 2 0.07% 41.0911% 2 -0.14%

Naive 0.19744 11 46.51% 55.4741% 11 34.82%

ARIMAX 0.16917 10 25.54% 49.8369% 10 21.12%

h=7 CB2 0.14051 6 0.74% 43.0370% 4 0.28%

CB4 0.14063 7 0.82% 42.9110% 1 -0.01%

CB8 0.14038 5 0.65% 42.9930% 3 0.18%

Avg. Net. 0.13948 1 0.00% 42.9160% 2 0.00%

Best Net. IsNMAPE 0.14296 8 2.49% 43.7410% 8 1.92%

Best Net. IsRMSE 0.14296 8 2.49% 43.7410% 8 1.92%

GA2 0.14004 3 0.40% 43.3054% 6 0.91%

GA4 0.14004 3 0.40% 43.3054% 6 0.91%

GA8 0.14001 2 0.38% 43.2899% 5 0.87%

Naive 0.20975 11 50.38% 59.5757% 11 38.82%

ARIMAX 0.17890 10 28.26% 53.2872% 10 24.17%

h=8 CB2 0.14570 7 1.68% 44.7100% 8 1.36%

CB4 0.14526 5 1.37% 44.4080% 5 0.68%

CB8 0.14528 6 1.39% 44.5330% 6 0.96%

Avg. Net. 0.14329 1 0.00% 44.1080% 1 0.00%

Best Net. IsNMAPE 0.14643 9 2.19% 45.0560% 9 2.15%

Best Net. IsRMSE 0.14577 8 1.73% 44.6290% 7 1.18%

GA2 0.14390 3 0.43% 44.2966% 3 0.43%

GA4 0.14407 4 0.55% 44.3549% 4 0.56%

GA8 0.14381 2 0.36% 44.2787% 2 0.39%

Naive 0.21927 11 53.03% 62.9785% 11 42.78%

ARIMAX 0.18527 10 29.30% 55.6429% 10 26.15%
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(Continued) Forecasting performance. Kaggle wind power production series.

F. horizon Model RMSE Rank %∆ wrt Avg. NMAPE Rank %∆ wrt Avg.

h=9 CB2 0.14718 7 1.43% 45.3890% 7 0.90%

CB4 0.14746 8 1.62% 45.5140% 8 1.18%

CB8 0.14681 6 1.17% 45.3600% 6 0.83%

Avg. Net. 0.14511 1 0.00% 44.9850% 1 0.00%

Best Net. IsNMAPE 0.14755 9 1.68% 45.9360% 9 2.11%

Best Net. IsRMSE 0.14651 5 0.96% 45.0980% 5 0.25%

GA2 0.14555 3 0.30% 45.0052% 2 0.04%

GA4 0.14555 3 0.30% 45.0052% 2 0.04%

GA8 0.14551 2 0.28% 45.0276% 4 0.09%

Naive 0.22745 11 56.74% 65.7558% 11 46.17%

ARIMAX 0.19231 10 32.53% 57.7835% 10 28.45%

h=10 CB2 0.14969 5 1.51% 45.8420% 4 -0.09%

CB4 0.15000 7 1.72% 46.4730% 8 1.28%

CB8 0.14989 6 1.65% 46.4930% 9 1.33%

Avg. Net. 0.14746 4 0.00% 45.8850% 5 0.00%

Best Net. IsNMAPE 0.15026 8 1.90% 46.3970% 6 1.12%

Best Net. IsRMSE 0.15026 8 1.90% 46.3970% 6 1.12%

GA2 0.14729 3 -0.12% 45.6733% 1 -0.46%

GA4 0.14710 2 -0.24% 45.7411% 3 -0.31%

GA8 0.14703 1 -0.29% 45.7183% 2 -0.36%

Naive 0.23457 11 59.07% 68.2057% 11 48.64%

ARIMAX 0.19574 10 32.74% 59.2290% 10 29.08%

h=11 CB2 0.14980 6 1.04% 46.5880% 6 0.79%

CB4 0.14976 5 1.01% 46.5480% 5 0.70%

CB8 0.15005 7 1.21% 46.5890% 7 0.79%

Avg. Net. 0.14826 4 0.00% 46.2240% 4 0.00%

Best Net. IsNMAPE 0.15158 9 2.24% 46.9730% 9 1.62%

Best Net. IsRMSE 0.15082 8 1.73% 46.6610% 8 0.95%

GA2 0.14778 3 -0.32% 46.1489% 3 -0.16%

GA4 0.14777 1 -0.33% 46.1334% 1 -0.20%

GA8 0.14777 1 -0.33% 46.1334% 1 -0.20%

Naive 0.24092 11 62.50% 70.0919% 11 51.64%

h=12 CB2 0.15264 9 1.98% 47.2680% 8 0.95%

CB4 0.15151 8 1.22% 46.9790% 5 0.34%

CB8 0.15119 6 1.01% 47.0980% 7 0.59%

Avg. Net. 0.14968 4 0.00% 46.8220% 4 0.00%

Best Net. IsNMAPE 0.15110 5 0.95% 47.0290% 6 0.44%

Best Net. IsRMSE 0.15150 7 1.22% 47.2970% 9 1.01%

GA2 0.14944 1 -0.16% 46.7998% 1 -0.05%

GA4 0.14944 1 -0.16% 46.7998% 1 -0.05%

GA8 0.14944 1 -0.16% 46.7998% 1 -0.05%

Naive 0.24714 11 65.11% 71.9670% 11 53.70%

ARIMAX 0.20421 10 36.43% 61.9097% 10 32.22%
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Not surprisingly, the average of NNs performs relatively well.

Table 4.21 summarises some CB models. Clusters are very homogeneous both in

coefficient ranges and the number of model per cluster. This homogeneity is in ac-

cordance with previous observations. NN models for different forecast horizons have

different structures but the use of such structure by CB combinations throughout

the different horizons is rather similar, as it can also be observed in the prediction

intervals (Figure 4.27).

The cluster validity indexes, suggest that the best structural differentiation in

cluster configuration is found in CB2 models (Table 4.22). It is observed also that

as the number of clusters increases, the clear separation between cluster decreases.

However some CB8 models, with a high number of clusters, performed better than

CB models with less clusters.

176



(a) Steps ahead 1 to 6. RMSE.

(b) Steps ahead 7 to 12. RMSE.

Figure 4.26: Out-of-sample RMSE vs. number of clusters. Kaggle wind power
production series.
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(a) 2 clusters. (b) 4 clusters.

(c) 8 clusters.

Figure 4.27: Forecast intervals for Kaggle wind power time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observa-
tion of the in-sample period and H = 12 is the number of forecast horizons. Therefore,
the last 13 observations of the in-sample period are included along with the first 12
forecasts in the out-of-sample period. The horizontal axis indexes these hours as 1, . . . , 25.
The shades, from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and
0.60.
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Ljung-Box test on serial correlation for forecast errors (Table 4.24) shows that for

the first forecast horizon, CB, GA and the average of NN seem to capture well the

dynamics of the series. Yet, for higher horizons all models present serial correlated

errors. Normality of the errors has been rejected for all models.

Table 4.21: Coefficients for structural combination of NN for Kaggle wind power produc-
tion series.

h

1 α1 -0.0010 0.0895 0.2424 0.1828 0.3799 0.1083

α2 -0.0004 0.4269 0.0263 0.0105 0.3656 0.1727

α3 -0.0008 0.0257 0.2009 0.4336 0.2005 0.1397

α4 -0.0002 0.2245 -0.0448 0.2578 0.2553 0.3123

Φ 0.2720 0.1816 0.2705 0.2745

2 α1 -0.0003 0.2133 -0.2232 0.1395 0.5067 0.3655

α2 -0.0014 0.2501 0.4438 0.4358 -0.1289

α3 0.0005 -0.1831 0.2446 0.4291 0.0416 0.4695

α4 0.0001 0.0511 0.2142 -0.1937 0.5291 0.3993

α5 0.0004 0.0953 0.3450 -0.0108 0.2331 0.3372

α6 -0.0008 0.1824 0.4132 0.1223 -0.0091 0.2946

α7 -0.0011 0.1116 0.1844 0.4762 0.2447 -0.0104

Φ 0.1400 0.1494 0.1477 0.1491 0.1317 0.1462 0.1520

6 α1 -0.0031 0.0714 -0.1468 0.3229 0.3042 0.4525

α2 0.0012 0.1905 -0.2177 0.1612 0.3663 0.5033

α3 -0.0063 -0.1294 0.0917 0.5791 0.0665 0.3996

α4 -0.0023 -0.0941 0.2461 0.1162 0.3234 0.4159

α5 -0.0039 -0.3187 0.4621 0.1318 0.4293 0.3020

α6 -0.0016 0.0814 0.5232 0.3197 -0.2932 0.3770

Φ 0.1688 0.1741 0.1693 0.1728 0.1701 0.1719

12 α1 -0.0064 -0.2765 0.4655 0.1362 0.4513 0.2572

α2 -0.0013 -0.2529 0.2052 0.6912 -0.2086 0.5819

α3 -0.0005 0.0209 -0.1341 0.3927 0.3231 0.3993

α4 -0.0011 -0.4656 0.3210 0.4589 0.6874

α5 -0.0037 0.5154 0.4310 -0.6665 0.4315 0.3067

α6 -0.0023 0.5206 0.2587 0.0191 -0.2661 0.4741

α7 0.0020 -0.3528 0.7391 0.3773 0.2324

Φ 0.1474 0.1474 0.1470 0.1404 0.1500 0.1435 0.1489

MaxC = 8 is the maximum number of clusters. For each selected horizon, h,

αi are the coefficients applied to point-forecasts from models in cluster i

and Φ are the weights applied to the outputs from clusters.

In general, the CB combination approach adopted here provided a very con-

sistent performance, although with difficulties to outperform the average of NN

forecasts. However, there is a gain in structural combinations, as evidenced by the

good performance of GA structural combination.

Although results from other authors using the same data set are not available
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Table 4.22: Cluster validity indexes. Series: Kaggle wind power production.

Maximum number of clusters: 2

h PC MPC MDO Final num.

clusters

1 1.0000 NA 1.0000 1

2 0.5087 0.0175 0.9000 2

3 0.5013 0.0026 0.1000 2

4 0.5008 0.0017 0.0000 2

5 0.5007 0.0014 0.0000 2

6 1.0000 NA 1.0000 1

7 0.5008 0.0015 0.0000 2

8 0.5007 0.0014 0.0000 2

9 0.5036 0.0072 0.3000 2

10 0.5027 0.0054 0.2000 2

11 0.5021 0.0042 0.3000 2

12 1.0000 NA 1.0000 1

Maximum number of clusters: 4

h PC MPC MDO Final num.

clusters

1 0.2509 0.0011 0.0000 4

2 0.3342 0.0014 0.0000 3

3 0.2521 0.0028 0.0000 4

4 0.2501 0.0002 0.0000 4

5 0.2505 0.0006 0.0000 4

6 0.5005 0.0011 0.0000 2

7 0.2521 0.0027 0.0000 4

8 0.3345 0.0018 0.0000 3

9 0.3352 0.0028 0.0000 3

10 0.2505 0.0006 0.0000 4

11 0.2508 0.0010 0.0000 4

12 0.3344 0.0016 0.0000 3

Maximum number of clusters: 8

h PC MPC MDO Final num.

clusters

1 0.2536 0.0048 0.0000 4

2 0.1431 0.0003 0.0000 7

3 0.1697 0.0036 0.0000 6

4 0.1251 0.0001 0.0000 8

5 0.1671 0.0005 0.0000 6

6 0.1668 0.0001 0.0000 6

7 0.1674 0.0009 0.0000 6

8 0.1251 0.0001 0.0000 8

9 0.1431 0.0003 0.0000 7

10 0.1431 0.0003 0.0000 7

11 0.1431 0.0003 0.0000 7

12 0.1431 0.0002 0.0000 7

h denotes the forecast horizon, PC denotes the Partition Coefficient, MPC denotes the Modified Partition Coefficient,

and MDO denotes the Membership Degree Optimum. Values closer to 1 are preferable.
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in great detail (Lee & Scholtes, 2014; Hong et al., 2014), comparisons can be made

with similar studies by using the normalised RMSE. Wind power measurements, pi,

are frequently reported as pi/c where c is the nominal capacity of the wind farm.

This normalisation facilitates the comparison of results among different approaches9.

The power measurements from the data-set used here were normalised in this way

by their providers (Hong et al., 2014). The RMSEs obtained through NN structural

combinations (considering CB, GA, the average forecast and the best models) for

the normalised wind power is in the interval [0.06509, 0.15264]. In general, these

figures are similar to the results obtained in recent wind power forecasting articles,

as highlighted below.

Zhao et al. (2016) developed a forecasting model based on extreme learning

machine and back-forecasting (in addition to the forward mechanisms commonly

adopted in the literature). They normalised the RMSE by using the maximum

power measurement instead of the nominal capacity, which produces a pessimistic

error metric. Their normalised RMSE for steps 1 to 6 ranges from 0.079 to 0.21,

approximately. The lowest value (for h = 1) is very close to the RMSE obtained

with ensemble models here, but their maximum value (for h = 6) is worst than

the RMSE obtained with GA4 for the same horizon:
0.213

0.065
(in red are the

RMSEs from Zhao et al., 2016, and in blue the RMSEs from GA4 combination).

Liang et al. (2016) proposed a framework to forecast wind power with support

vector machines and historic error correction mechanisms. Their normalised RMSE,

reported for steps 1 to 6, are similar to the RMSEs obtained here and marginally

better (in terms of the send and third decimal place):
0.149

0.062
(in red their

RMSEs and in blue the RMSEs with GA4 combination).

Yan et al. (2016) proposed a model to forecast wind power based on Gaussian

processes. They forecasted hourly wind power for up to 12 hours ahead and reported

9Other error measurements based on proportions, such as MAPE and NMAPE, are less stan-
dard.
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normalised RMSE ranging from around 0.13 to 0.21, for their best model. An

approximate comparison can be made only for h = 1 and h = 12:
0.210

0.065

(in red are the RMSEs from Yan et al., 2016, and in blue the RMSEs from GA4

combination).

Finally, Hong et al. (2014) collected the results from various participants in the

Energy Forecasting Competition (Kaggle, 2012), who used the data set presented

here plus data for other wind farms. Forecast accuracy was measured with a single

RMSE, covering all intervals (of 48 hours) with missing power measurements that

participants forecasted: there was no rolling window forecasting to produce perfor-

mance figures for specific horizons. The reported RMSE ranges from 0.145 (for the

best submission) to 0.18 (for the worst submission in the selection). As their focus

was in two days, comparisons are not possible, but it can be seen that the error

figure for the best submission is similar to the figures obtained for h = 12.

Table 4.23: Comparisons by forecast horizon. Series: Kaggle wind power.

RMSE
Avg. Bst. IsNMAPE Bst. IsRMSE ARIMAX

CB2 0 10 10 12

GA2 4 12 12 12

CB4 1 11 10 12

GA4 4 12 12 12

CB8 1 11 11 12

GA8 4 12 12 12

NMAPE
Avg. Bst. IsNMAPE Bst. IsRMSE ARIMAX

CB2 2 9 10 12

GA2 5 12 12 12

CB4 2 11 10 12

GA4 6 12 12 12

CB8 1 9 10 12

GA8 5 12 12 12

Number of forecast horizons for which CB and GA

combinations outperform different benchmark models.

Avg. stands for the average of NN in the ensemble;

Bst. IsNMAPE stands for the best NN in terms of

in-sample NMAPE in the ensemble; Bst. IsRMSE stands

for the best NN in terms of in-sample RMSE in

the ensemble.
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Table 4.24: Ljung-Box test. Series: Kaggle wind power.

Forecast horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12

2C CB * * * * * * * * * * *

GA * * * * * * * * * * *

4C CB * * * * * * * * * * * *

GA * * * * * * * * * * *

8C CB * * * * * * * * * * *

GA * * * * * * * * * * *

Avg. * * * * * * * * * * *

Best Net. IsNMAPE * * * * * * * * * * * *

Best Net. IsRMSE * * * * * * * * * * * *

ARIMAX * * * * * * * * * * * *

Ljung-Box test for serial correlation (with 95% confidence level) for

Kaggle wind power production series. The rejection of the hypothesis

of independent forecast errors is indicated with *.

4.8 Study with an Electricity Demand Time Se-

ries 10

A time series of electricity demand was used to asses the performance of CB combi-

nation approach. The series contains hourly observations in Rio de Janeiro covering

the period from Sunday 5 May 1996 to Saturday 30 November 1996 (Figure 4.28).

It has been used by Taylor et al. (2006) to evaluate the performance of various uni-

variate models, including a NN, which was implemented according to Darbellay &

Slama (2000).

The direct approach of fitting different NNs for different forecast horizons, as

in previous studies in this chapter, led to a performance markedly different from

results obtained by Taylor et al. (2006). In their study, the authors fitted a NN

with input lags 1, 2, 24, 25, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 312,

336 and forecasted the differences in an iterative manner. Further experiments

with this setting provided better results than the direct approach and therefore it

10Study to be presented at the Workshop on Data Mining for Energy Modelling, 12 December
2016, Barcelona, Spain. Rendon, J. and de Menezes, L.M. (2016) - “Structural combination of
neural network models”, DaMEMO 2016 Proceedings, IEEE Society Press.

183



Figure 4.28: Hourly electricity demand in Rio de Janeiro for Sunday, 5 May 1996
to Saturday, 30 November 1996. Original Series.

was adopted for the present study. This requires an adaptation of the structural

combination presented in Section 4.3.2.1, as follows.

4.8.1 Variant of the Model for an Iterative Forecast

When the individual NN models are used to issue forecasts in an iterative manner,

the clustering procedure takes into account the in-sample one-step-ahead forecasts

produced by NNs in order to calculate the loss function minimised during the opti-

misation.

Each network produces forecasts ŷt+1, . . . , ŷt+h based on a set of inputs (e.g

lagged values of the series), xt = {yt, yt−1, . . . , yt−p}, and the previously foreasted

values. Therefore, ŷt+h = f(xt; ŷt+1, . . . , ŷt+h−1) The combined forecast output for

t + h is calculated based on a combination of the forecasts made by the clustered
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NNs for such horizon.

ŷt+h =
n∑
i=1

φiŷCi,t+h (4.26)

Where ŷCi,t+h is the output from cluster i for step t+ h:

ŷCi,t+h = αi,0 + αi,1ŷi,1,t+h + αi,2ŷi,2,t+h + . . .+ αi,Lŷi,L,t+h (4.27)

ŷi,1,t+h, ŷi,2,t+h, . . . are the forecasts for t+ h produced by models selected within

cluster i.

The coefficients φk are calculated as an average of the normalised weights of

vectors (models in vectorial form):

ui(v) = e
− D2

i (v)∑n
j=1

D2
j
(v) (4.28)

wi(v) =
ui(v)∑n
j=1 uj(v)

(4.29)

φk =

∑
m∈Ck

wm(vCk
)

Nk

(4.30)

where Ck denotes cluster k, vCk
is the centre of such cluster and Nk is the number

of models in it.

4.8.2 Preliminary Analysis and Specification of Individual
Models for the Ensemble Based on Iterative Forecasts

As in the study involving the wind power series, the generating process of the de-

mand series is unknown. Therefore, variation in the series was created, during

the sensitivity analysis, by adding noise to the original series. It is distributed as

N(0, 0.1σb), where σb is the standard deviation of the bootstrapped series. The

magnitude of such standard deviation, when compared to the interquartile range of
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Table 4.25: Factor configuration.

Factor Symbol Levels
Number of inputs NI 1, . . . ,16, being 16 the number of lags.

Number of hidden layers NL 1
Number of hidden units NU 2,6,10

Activation function for hidden
nodes

AF1 Tangent Sigmoid

Activation function for the
output node

AF2 Linear

Initial values for the weights W0 Values in the range [-2 2] established by
the Nguyen-Widrow algorithm (there is a
degree of randomness)

Training algorithm TA Backpropagation with Levenberg-
Marquardt optimisation.

Stopping criteria SC * The maximum number of epochs (repe-
titions) is reached: 4000.

* The maximum amount of time is ex-
ceeded: ∞
* Performance is minimised to the goal: 0

* The performance gradient falls below
mingrad : 10−10

* µ exceeds µmax = 103

* Validation performance has increased
more than maxfail times since the last
time it decreased (when using validation):
6

Data normalisation DN Yes
Combination coefficient (µ) MU 0.001
Prune units PU Yes, No

Prune input variables PI No

Sample size SS 5040

Data configuration for train-
ing, validation and testing
(training + validation = in-
sample data; testing = out-of-
sample data)

DC Conf. 1: Ntr = 3024, Nva = 336 Nte =
1680

Extreme values treated EV No.
Sampling method SM block, cross-validated

Forecast approach FA Iterative

In bold are the factors which vary in the study.
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the time series, falls into the low level identified in the research by Barrow et al.

(2010)11.

In their study, Darbellay & Slama (2000), when using NN to forecast demand

time series, indicated that it was unnecessary to use more than 10 hidden units

and, therefore, they selected models with such factor ranging from 6 to 10. In a

sensitivity analysis for seasonal time series, Crone & Dhawan (2007), by studying

the average errors over a set of series, found that a good and robust performance

could be achieved by using 3, 5, 6 or 9 hidden units. These findings inspired the

selection of levels for NU (number of hidden units) in the preliminary analysis.

Pruning of hidden layer weights was not adopted as it was not found helpful in

improving performance for seasonal and double-seasonal series, as seen in Chapter

3.

Figure 4.29 depicts the original series with the replicas generated and Figure 4.30

the average out-of-sample MAPE of NN models for each forecast horizon. Table 4.26

shows the performance for the architecture with the lowest average out-of-sample

MAPE, which is clearly simple in terms of neurons but complex in terms of inputs.

Table 4.26: Model with the lowest average out-of-sample MAPE.

Forecast horizon Average MAPE%

1 2.4123

2 2.7485

3 3.0102

4 3.2032

5 3.3729

6 3.5216

Forecast horizon Average MAPE%

7 3.6589

8 3.7688

9 3.8778

10 3.9876

11 4.0980

12 4.1812

Configuration: 16 inputs and 2 hidden units.

The main effects graphs (in Figure 4.31) show a clear sensitivity of both error

metrics to the number of inputs (NI) and insensitivity to the number of neurons

11In Chapter 3 it was discussed how the authors considered three different levels of noise when
developing ensembles of NNs for synthetic data.
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(a) First week.

(b) First four weeks.

Figure 4.29: Replications of Rio de Janeiro electricity demand time series with added
noise. One of the replications is highlighted in blue.
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Figure 4.30: Average MAPE%.

(NU). All selected inputs are relevant, which is visible in the almost continuously

decreasing error. ANOVA, Kruskal-Wallis and Jonckheere-Terpstra tests show a

significant effect of NI over both error metrics in all horizons with improvements in

fit and forecast accuracy as more inputs are used. Factor NU, on the other hand,

has a significant effect only in some of the last horizons, and to the detriment of

performance. The assessment of serial correlation revealed a generalised failure of

different model configurations to fully capture the dymacis of the series.
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MSE
NI NU

h = 1 IS

OS

h = 2 OS

Figure 4.31: Main effects (sub-sample). Series: RIO. IS stands for in-sample; OS
stands for out-of-sample.
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MSE
NI NU

h = 1 IS

OS

h = 2 OS

(Continued) Main effects (sub-sample). Series: RIO. IS stands for in-sample; OS
stands for out-of-sample.
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4.8.3 Combination of Models

The preliminary analysis suggested that an NN architecture with 16 inputs (cor-

responding to all lags considered) and 2 neurons would be the best choice. Such

architecture is used here with the clustering procedure explained in Section 4.8.1 to

test the structural combination of forecasting models. Due to the existence of ex-

treme values in the out-of-sample performance of NNs, the ensemble to perform the

combination was built with the over-produce and choose approach (Mendes-Moreira

et al., 2012): 150 NNs where generated and 50 selected. The forecast performance

for h = 12 was assessed with a rolling window in the in-sample period and the best

models were used to conduct the structural combination.

Results are compared with those obtained by Taylor et al. (2006) with a Holt-

Winters-Taylor (HWT) exponential smoothing method and a NN. Comparisons are

made by using MSE and MAPE error metrics as outlined in section 4.4.1. However,

only the MAPE figures are available for the NN used by the authors.

Figures 4.32 and 4.33, along with Figures C.9 and C.10 from Appendix C, show

the out-of-sample MAPE and MSE for the different CB models and the selected

benchmarks and Table 4.27 provides a ranking of models for every forecast horizon,

with the first position corresponding to the lowest metric value, and a percentage of

error difference with respect to the forecast average of all the NNs in the ensemble.

The ranking of models is homogeneous with the HWT model performing best,

followed by the NN in Taylor et al. (2006), the best NN in the ensemble, the CB

models, the GA benchmark and finally the average forecast from the ensemble. For

h ≥ 3 the average outperforms the GA. All NN models and NN-based combinations

have a very similar performance (which is also visible in the forecast intervals in

Figure 4.35). The base NN of the ensemble seems to be relatively well specified

and this, along with the initial filtering of models, possibly makes it harder for

combinations, that include divers models, to defeat the best models.
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Model structural differentiation of clusters is low (Table 4.31), which coincides

with a better performance of CB2 that was reduced to a single-cluster configuration.

In this case, model structural diversity seems low. On the other hand, coefficients in

Table 4.29 show that CB combinations, for higher number of clusters, have heteroge-

neous weighting of cluster outputs. This suggests that little structural differentiation

might still be accompanied by diversity in forecasts.

The assessment of serial correlation in forecast errors showed that all NN based

models left some dynamics of the series unexplained. The Lilliefors test on normality

supports this finding, but Jarque-Bera test (Tables 4.28) revealed normality in errors

from GA models for some horizons.
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(a) MaxC = 4 clusters. MAPE.

(b) MaxC = 4 clusters. MSE.

Figure 4.32: Out-of-sample MAPE and MSE for Rio de Janeiro electricity demand
series.
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(a) Comparison with Avg. and HWT. MAPE.

(b) Comparison with Avg. and HWT. MSE.

Figure 4.33: Out-of-sample MAPE and MSE for Rio de Janeiro electricity demand
series.
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(a) Steps ahead 1 to 6. MAPE.

(b) Steps ahead 7 to 12. MAPE.

Figure 4.34: Out-of-sample MAPE vs. number of clusters. Rio de Janeiro electricity
demand series.
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(a) MaxC = 2 clusters. (b) MaxC = 4 clusters.

(c) MaxC = 8 clusters.

Figure 4.35: Forecast intervals for Rio de Janeiro electricity demand time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observa-
tion of the in-sample period and H = 12 is the number of forecast horizons. The shades,
from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and 0.60.
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Table 4.27: Forecasting performance. Rio de Janeiro electricity demand series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

H=1 CB2 3151.72883 3 -5.74% 1.31262% 4 -1.66%

CB4 3256.80153 7 -2.60% 1.33027% 8 -0.34%

CB8 3267.40143 8 -2.28% 1.33040% 9 -0.33%

Avg. Net. 3343.58294 9 0.00% 1.33479% 10 0.00%

Best Net. isMAPE 3142.80143 2 -6.00% 1.30781% 3 -2.02%

Best Net. isMSE 3495.32677 10 4.54% 1.36547% 11 2.30%

GA2 3230.69771 6 -3.38% 1.32558% 7 -0.69%

GA4 3219.28209 5 -3.72% 1.32446% 6 -0.77%

GA8 3210.09148 4 -3.99% 1.32207% 5 -0.95%

Naive 30638.85387 11 816.35% 4.40468% 12 229.99%

HWT Taylor 2817.24485 1 -15.74% 1.15789% 1 -13.25%

NN Taylor 1.29025% 2 -3.34%

H=2 CB2 5867.33684 3 -4.65% 1.81488% 4 -1.47%

CB4 6089.60336 8 -1.04% 1.85059% 9 0.47%

CB8 6087.55396 7 -1.07% 1.85177% 10 0.54%

Avg. Net. 6153.53015 9 0.00% 1.84190% 6 0.00%

Best Net. isMAPE 5831.06369 2 -5.24% 1.80243% 3 -2.14%

Best Net. isMSE 6624.70839 10 7.66% 1.91473% 11 3.95%

GA2 6058.89821 5 -1.54% 1.84427% 7 0.13%

GA4 6061.83480 6 -1.49% 1.84660% 8 0.26%

GA8 6028.68023 4 -2.03% 1.84117% 5 -0.04%

Naive 30656.98541 11 398.20% 4.40698% 12 139.26%

HWT Taylor 3091.48104 1 -49.76% 1.26844% 1 -31.13%

NN Taylor 1.78818% 2 -2.92%

H=3 CB2 8040.95714 3 -4.09% 2.18189% 4 -1.51%

CB4 8396.57159 8 0.15% 2.23722% 8 0.99%

CB8 8371.82008 5 -0.14% 2.23874% 9 1.06%

Avg. Net. 8383.71246 7 0.00% 2.21531% 5 0.00%

Best Net. isMAPE 7956.83617 2 -5.09% 2.17319% 3 -1.90%

Best Net. isMSE 9267.36009 10 10.54% 2.34494% 11 5.85%

GA2 8376.06017 6 -0.09% 2.23404% 7 0.85%

GA4 8398.63640 9 0.18% 2.23882% 10 1.06%

GA8 8335.41415 4 -0.58% 2.23011% 6 0.67%

Naive 30675.25477 11 265.89% 4.40958% 12 99.05%

HWT Taylor 3630.40116 1 -56.70% 1.42916% 1 -35.49%

NN Taylor 2.16067% 2 -2.47%

H=4 CB2 9845.11384 3 -3.73% 2.45944% 4 -1.26%

CB4 10286.07025 7 0.58% 2.51625% 7 1.02%

CB8 10236.74480 6 0.10% 2.52335% 9 1.30%

Avg. Net. 10226.47264 4 0.00% 2.49087% 5 0.00%

Best Net. isMAPE 9736.42147 2 -4.79% 2.43960% 3 -2.06%

Best Net. isMSE 11511.47718 10 12.57% 2.65476% 11 6.58%

GA2 10289.58501 8 0.62% 2.51911% 8 1.13%

GA4 10330.84008 9 1.02% 2.52640% 10 1.43%

GA8 10236.34174 5 0.10% 2.51421% 6 0.94%

Naive 30693.20304 11 200.13% 4.41157% 12 77.11%

HWT Taylor 4328.80658 1 -57.67% 1.59826% 1 -35.84%

NN Taylor 2.43381% 2 -2.29%

%∆ = 100(Mmodel −MAvg)/MAvg with Mi being the metric for model i.

Negative % values indicate improvement over the average.
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(Continued) Forecasting performance. Rio de Janeiro electricity demand series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

H=5 CB2 11493.72511 3 -3.46% 2.68185% 4 -1.08%

CB4 12060.69103 8 1.30% 2.75439% 8 1.59%

CB8 11985.89748 5 0.68% 2.75890% 10 1.76%

Avg. Net. 11905.34801 4 0.00% 2.71126% 5 0.00%

Best Net. isMAPE 11358.45054 2 -4.59% 2.65482% 3 -2.08%

Best Net. isMSE 13605.60877 10 14.28% 2.92296% 11 7.81%

GA2 12052.80270 7 1.24% 2.74992% 7 1.43%

GA4 12115.85212 9 1.77% 2.75801% 9 1.72%

GA8 11991.14679 6 0.72% 2.74248% 6 1.15%

Naive 30710.78550 11 157.96% 4.41327% 12 62.78%

HWT Taylor 5110.58695 1 -57.07% 1.75986% 1 -35.09%

NN Taylor 2.65238% 2 -2.17%

H=6 CB2 12991.43108 3 -3.13% 2.86016% 4 -0.86%

CB4 13690.93309 8 2.08% 2.94683% 9 2.15%

CB8 13592.09276 6 1.35% 2.95443% 10 2.41%

Avg. Net. 13411.42718 4 0.00% 2.88488% 5 0.00%

Best Net. isMAPE 12819.48827 2 -4.41% 2.82364% 3 -2.12%

Best Net. isMSE 15441.99157 10 15.14% 3.14089% 11 8.87%

GA2 13634.73476 7 1.67% 2.93101% 7 1.60%

GA4 13721.59864 9 2.31% 2.94280% 8 2.01%

GA8 13574.41805 5 1.22% 2.92283% 6 1.32%

Naive 30728.61821 11 129.12% 4.41511% 12 53.04%

HWT Taylor 5926.55778 1 -55.81% 1.91042% 1 -33.78%

NN Taylor 2.82060% 2 -2.23%

H=7 CB2 14303.88902 3 -2.99% 3.01547% 4 -1.12%

CB4 15098.75493 8 2.41% 3.10725% 9 1.89%

CB8 14954.56448 6 1.43% 3.11105% 10 2.01%

Avg. Net. 14744.02128 4 0.00% 3.04962% 5 0.00%

Best Net. isMAPE 14091.42249 2 -4.43% 2.97216% 2 -2.54%

Best Net. isMSE 17044.50125 10 15.60% 3.31318% 11 8.64%

GA2 15014.04330 7 1.83% 3.08845% 7 1.27%

GA4 15118.43194 9 2.54% 3.10015% 8 1.66%

GA8 14953.95279 5 1.42% 3.08110% 6 1.03%

Naive 30746.87366 11 108.54% 4.41739% 12 44.85%

HWT Taylor 6739.33119 1 -54.29% 2.04649% 1 -32.89%

NN Taylor 2.97216% 3 -2.54%

H=8 CB2 15266.51951 3 -2.75% 3.16174% 4 -1.11%

CB4 16112.92750 9 2.64% 3.25405% 9 1.78%

CB8 15937.52525 6 1.52% 3.25406% 10 1.78%

Avg. Net. 15698.52881 4 0.00% 3.19725% 5 0.00%

Best Net. isMAPE 15015.14508 2 -4.35% 3.11168% 3 -2.68%

Best Net. isMSE 18194.51474 10 15.90% 3.45620% 11 8.10%

GA2 15986.47283 7 1.83% 3.23222% 7 1.09%

GA4 16106.10352 8 2.60% 3.24477% 8 1.49%

GA8 15927.52640 5 1.46% 3.22417% 6 0.84%

Naive 30764.93574 11 95.97% 4.41936% 12 38.22%

HWT Taylor 7526.12956 1 -52.06% 2.16884% 1 -32.17%

NN Taylor 3.09950% 2 -3.06%
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(Continued) Forecasting performance. Rio de Janeiro electricity demand series.

Forecast horizon Model MSE Rank %∆ wrt Avg. MAPE %∆ wrt Avg.

H=9 CB2 16165.81701 3 -2.66% 3.29473% 4 -1.11%

CB4 17055.78937 9 2.70% 3.38578% 10 1.63%

CB8 16857.29223 6 1.51% 3.38345% 9 1.56%

Avg. Net. 16607.27474 4 0.00% 3.33156% 5 0.00%

Best Net. isMAPE 15897.35335 2 -4.27% 3.23064% 3 -3.03%

Best Net. isMSE 19292.73843 10 16.17% 3.58460% 11 7.60%

GA2 16907.45179 7 1.81% 3.35955% 7 0.84%

GA4 17041.17000 8 2.61% 3.37243% 8 1.23%

GA8 16852.17106 5 1.47% 3.35486% 6 0.70%

Naive 30783.20126 11 85.36% 4.42158% 12 32.72%

HWT Taylor 8271.15086 1 -50.20% 2.27873% 1 -31.60%

NN Taylor 3.23024% 2 -3.04%

H=10 CB2 17243.68031 3 -2.70% 3.42375% 4 -1.26%

CB4 18142.41535 9 2.37% 3.51324% 10 1.32%

CB8 17952.29223 6 1.30% 3.50719% 9 1.15%

Avg. Net. 17722.05909 4 0.00% 3.46744% 5 0.00%

Best Net. isMAPE 16947.28391 2 -4.37% 3.35471% 3 -3.25%

Best Net. isMSE 20497.39285 10 15.66% 3.70631% 11 6.89%

GA2 17987.56095 7 1.50% 3.48498% 7 0.51%

GA4 18126.04733 8 2.28% 3.49400% 8 0.77%

GA8 17934.69572 5 1.20% 3.47839% 6 0.32%

Naive 30801.62089 11 73.80% 4.42418% 12 27.59%

HWT Taylor 8966.56642 1 -49.40% 2.37657% 1 -31.46%

NN Taylor 3.34397% 2 -3.56%

H=11 CB2 18309.99328 3 -2.60% 3.54540% 4 -0.97%

CB4 19197.49977 8 2.12% 3.62145% 10 1.15%

CB8 19012.02353 6 1.13% 3.61687% 9 1.03%

Avg. Net. 18798.66147 4 0.00% 3.58011% 5 0.00%

Best Net. isMAPE 18001.01188 2 -4.24% 3.46887% 3 -3.11%

Best Net. isMSE 21725.13402 10 15.57% 3.84041% 11 7.27%

GA2 19055.25248 7 1.36% 3.59477% 7 0.41%

GA4 19201.97084 9 2.15% 3.60622% 8 0.73%

GA8 19000.10683 5 1.07% 3.58912% 6 0.25%

Naive 30819.82545 11 63.95% 4.42631% 12 23.64%

HWT Taylor 9605.91503 1 -48.90% 2.46244% 1 -31.22%

NN Taylor 3.45048% 2 -3.62%

H=12 CB2 19304.36839 3 -2.47% 3.64766% 4 -0.92%

CB4 20196.13402 8 2.04% 3.72599% 10 1.21%

CB8 20030.49655 6 1.20% 3.71444% 9 0.89%

Avg. Net. 19793.29945 4 0.00% 3.68158% 5 0.00%

Best Net. isMAPE 18959.65752 2 -4.21% 3.57599% 3 -2.87%

Best Net. isMSE 22918.82751 10 15.79% 3.97378% 11 7.94%

GA2 20045.48860 7 1.27% 3.69610% 7 0.39%

GA4 20199.70261 9 2.05% 3.70961% 8 0.76%

GA8 19979.80420 5 0.94% 3.69010% 6 0.23%

Naive 30836.20581 11 55.79% 4.42741% 12 20.26%

HWT Taylor 10192.92250 1 -48.50% 2.53909% 1 -31.03%

NN Taylor 3.55712% 2 -3.38%
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Table 4.28: Jarque-Bera normality test for Rio de Janeiro electricity demand series.

Forecast horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12

2C CB * * * * * * * * * * *

GA * * * * * * * * *

4C CB * * * * * * * * * * *

GA * * * * * * * * *

8C CB * * * * * * * * * * * *

GA * * * * * * * * *

Avg. * * * * * * * * * * *

Best net isMAPE * * * * * * * * *

Best net isMSE * * * * * * * * * *

The rejection of the hypothesis of normally distributed
forecast errors (with 95% confidence level) is indicated with *.

Table 4.29: Coefficients for structural combination of NN for Rio de Janeiro electricity
demand series.

CB2

α1 24.9383 0.38 0.4028 0.0896 -0.0942 0.2126

Φ 1

CB4

α1 25.3822 0.7965 -1.7627 1.1277 0.2929 -0.4866

α2 26.3815 -1.0451 3.2846 0.5185 1.8219 1.4281

α3 28.9069 0.5246 -2.3253 0.5201 0.8754 0.2391

Φ 0.3984 0.1786 0.4233

CB8

α1 24.9104 1.4617 -5.6481 2.2431 0.3346 0.1906

α2 26.1478 1.7667 6.8272 0.5522 3.0498 1.7813

α3 27.6467 -2.071 1.087 0.9352 0.0621 0.3737

α4 21.5636 -2.3524 0.62 -0.3881 1.4783 -1.4435

α5 29.9801 -6.0529 1.2764 2.8328 0.9112 1.7857

Φ 0.2199 0.1086 0.2297 0.2243 0.2169

αi are the coefficients applied to point-forecasts from models

in cluster i and Φ are the weights applied to the outputs

from clusters.
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Table 4.30: Comparisons by forecast horizon. Series: Rio de Janeiro electricity
demand.

MSE
Avg. Bst. IsMAPE Bst. IsMSE HWT

CB2 12 0 12 0

GA2 3 0 12 0

CB4 2 0 12 0

GA4 2 0 12 0

CB8 3 0 12 0

GA8 3 0 12 0

MAPE
Avg. Bst. IsMAPE Bst. IsMSE HWT

CB2 12 0 12 0

GA2 1 0 12 0

CB4 1 0 12 0

GA4 1 0 12 0

CB8 1 0 12 0

GA8 2 0 12 0

Number of forecast horizons for which CB and GA

combinations outperform different benchmark models.

Avg. stands for the average of NN in the ensemble;

Bst. IsMAPE stands for the best NN in terms of

in-sample MAPE in the ensemble; Bst. IsMSE stands

for the best NN in terms of in-sample MSE in

the ensemble.

Table 4.31: Cluster validity indexes. Series: Rio de Janeiro electricity demand.

Max. num clusters PC MPC MDO Final. num clusters

2 1.0000 NA 1.0000 1

4 0.3669 0.0504 0.0000 3

8 0.2092 0.0115 0.0000 5

h denotes the forecast horizon, PC denotes the Partition Coefficient,

MPC denotes the Modified Partition Coefficient and MDO denotes

the Membership Degree Optimum. Values closer to 1 are preferable.
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4.9 Discussion of Findings from Real Time Series

For the wind power and electricity demand series, the NN-based models have similar

performance and the preliminary analysis showed more evident sensitivity of the

error metrics to the number of inputs than to the number of neurons. However,

the statistical tests showed the benefit in using more neurons for the wind power

series. This can be due to the complex nature of the time series, which involves

non-linearities and weather predictors.

The best performing NNs for the electricity demand series are not only simple

in terms neurons, but also the best performing CB models are the simplest. Only

CB2, with a maximum of 2 clusters, was able to consistently outperform the average

forecast from the NNs. The need for structural simplicity in the case of the electricity

demand series is manifested both at single model level and at the ensemble level.

A difference between the two studies is the modelling effort that was required

prior to the fitting of the models. The electricity demand time series required a

sensible selection of inputs in the early stages of the study, so as to capture the

regularities in the series (in accord with Crone & Kourentzes, 2010). However, this

also implies that the statistical benchmarks are very well suited to the data, and

thus we observed difficulty of NN models and ensembles in outperforming the well

specified models. It thus appears that faced with regular data, it pays off to invest

time and effort in the selection of inputs and use a well-specified model that address

these regularities to forecast the series.

Structural combination using GA is performing well in forecasting the wind

power series, and is able to outperform benchmarks (ARIMAX, best NN and average

of NN forecasts) in several forecast horizons. It outperforms the simple average in

up to 6 forecast horizons and clearly shows improvements over CB combination. As

it was mentioned in Section 4.3.3, GA combination can be viewed as a structurally
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informed average. This might be one of the reasons for its good performance, as in

general the average is known to be a robust benchmark.

4.10 Discussion of Findings in the Context of En-

sembles

Timmermann (2006) argued, from a theoretical perspective, that unless one can

find ex ante a particular forecasting model producing smaller forecast errors than

its competitors, forecast combinations offer diversification gains that make them

more attractive than relying on a forecast from a single model. Variety comes from

different forecasters or models. In the present study, model diversity (proxied with

structural descriptors) is explicitly included and used to inform forecast combina-

tions. Diversification in models was explored by generating ensembles of models

trained with randomised input-output data patterns.

One of the main characteristics of ensembles of NNs, as mentioned in Chapter

2, is how the steps of generation pruning and combination (Figure 2.1) are followed.

Some authors (such as Hansen & Salamon, 1990; Drezga, 1999; Siwek et al., 2009)

adopt a sequential approach, where one stage feeds into the next. Others follow

more dynamic approaches, where the stages are interrelated. Fore example, Liu &

Yao (1999), Liu et al. (2000) and Zhou et al. (2002) created ensembles with evolu-

tionary algorithms, in which case the dynamics of the ensemble building process are

interlinked. In the present study, the most dynamic part of the approach is located

in the combination stage. Pruning is part of the normal working of the combining

algorithms: both CB and GA combination routines, by leaving out a proportion of

the models in the generated pool, perform pruning. Although there is an intimate

relation between pruning and combining, as the latter informs dynamically the for-

mer, the general outline puts the present research more on the ground of sequential

approaches.

204



Both the dynamic and sequential approaches mentioned above make use of fore-

casts produced by models. In the present research, departing from that approach,

the information used to combine forecast is the parameter set of NNs. This allows

to include information about the structure of the model into the combining stage (a

procedure inspired by Bakker & Heskes, 2003).

The contribution of the present study is in the context of sequential ensemble

generation and structurally informed forecast combinations. The approaches fol-

lowed to incorporate structural parameters are a clustering-based algorithm and a

genetic-based algorithm. In this way, the inclusion of model structure via clustering,

as suggested by Bakker & Heskes (2003), is explored. The adoption of a clustering

algorithm and a structurally informed benchmark (based on genetic algorithms),

that resembles an average, permits comparisons between combination mechanisms

of the same orientation, but of different complexity. Therefore, both in terms of the

use of clustering and the use of genetic algorithms, this research makes a contribu-

tion. The study of different synthetic and real time series (with a multivariate case)

and the inclusion of different levels in the number of clusters, permitted a realistic

assessment of the performance of the proposed forecasting combinations.

A key point in the study is the rationale for the inclusion of structure in combin-

ing forecasts. The motivation is the use of characteristics of models, and not merely

their single output forecasts. However, the interpretation of what constitutes inter-

nal characteristics could differ from the approach adopted here. Larger structural

representations or measures based on structural components rather than compo-

nents themselves could be used. Additionally, the study of relationships between

internal components and outputs in models, suggested by Garson (1991) and Goh

(1995), could be informative. These are natural extensions of the present research.

Regarding the calculation of forecast intervals, there is considerable room for

research in the future. The Delta method relies heavily on the difference between the
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estimated weights of the network ŵ and the optimal w∗ (see Khosravi et al., 2011).

As the CB method finds clusters in the weight space (w), it would be interesting

to see if this method can be adapted to take into account the distance between

models in such space. The best model in a cluster could be used as a reference

model, assumed to have weights closer to the true values, and could therefore be

used to inform the calculations in the Delta method within the context of ensembles.

The MVE method estimates the mean and variance of the target variable by using

separate NNs. An extension of this method could be attempted for the case in

which several networks are used to estimate the mean. The bootstrap method relies

in the production of forecasts by different models obtained through the re-sampling

of training (in-sample) data. The different forecasts thus produced are used to

calculate the mean and variance needed for the intervals. Therefore, it could be

adapted easily for the ensembles, despite of its main drawback of being more complex

than others to implement (Khosravi et al., 2011). It could be adapted to take into

account the models included in the clusters rather than all models in the ensemble

and, perhaps, to include cluster configuration into the calculations. The empirical

method by Lee & Scholtes (2014), used here, has the limitation of not considering the

possibility of a time-varying error distribution. This issue could be solved by using

more sophisticated methods that incorporate, for example, exponential weighting

schemes, such as those discussed by Taylor (2007), in order to make the quantile

estimation adaptive (Lee & Scholtes, 2014).

The study of ensembles with the structural combination proposed here expands

on the set of methods used in the literature on electricity demand forecasting. Specif-

ically for the Rio de Janeiro electricity demand, results revealed a considerable sim-

ilarity in performance between the single NN specified by Taylor et al. (2006) and

the ensembles in the present research, and also showed the clear superiority of the

exponential smoothing benchmark (a HWT model). This contributes to the evi-
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dence that to forecast this double-seasonal time series, NNs are not the best choice,

thus the findings of this study add to the discussion about the suitability of NNs for

real world seasonal time series (Crone et al., 2011; Zhang & Qi, 2005). This suggests

that the structural combinations of exponential smoothing models should be inves-

tigated, as they may be more appropriate in the case of seasonal time series data.

Their suitability for regular time series and their ability to easily adapt to new infor-

mation makes them attractive for building and combining ensembles. Moreover, the

findings motivate the investigation of structural combinations of forecasting models

that specifically address seasonality and have a good track record on performance.

Considering the wind power forecasting application, the situation is similar to

the electricity demand forecasting study, as the structural combination is infrequent.

Relevant research in forecasting wind power include Wang & Hu (2015), Giebel

et al. (2003), Sanchez (2008), Salcedo-Sanz et al. (2009), Li et al. (2011). The

approaches include very complex modelling, mixing different elements from statistics

and computing intelligence, but the combinations mostly focus on output forecasts

with no information about internals of the models. In the context of this dissertation,

this application illustrates the potential for adopting out proposed approaches in

multivariate time series forecasting, something that can be further explored in future

research.

The results for the seasonal and double-seasonal series highlight a limitation

of the ensembles used in the present research. They are composed of models of

the same nature and the same basic specification. From the perspective of model

diversity (Timmermann, 2006; Bunn, 1975), there is a gain in diversity that might

not be exploited. Our results show how NNs ensembles combined structurally can

be competitive against the average forecast, but are outperformed by the statistical

benchmarks. The use of a single family of models limits the gains in variety. If

combinations of NNs and HWT models were made, there could be a bigger gain
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than in combining NNs or HWT alone. That is why, apart from studying structural

combinations of statistical and other standard forecasting models, future research

may structurally combine ensembles of models of different nature. This could be

achieved by constructing bundles of models, such as Bi =< ARIMA,NN >, and

proposing a structural representation for Bi.

The quality of clusters as measured by several indexes suggests that there are

clusters found by the CB algorithm that are not well differentiated or separated.

Exploring the inclusion of the forecasts and the structure of models as mentioned

above (Garson, 1991; Goh, 1995) seems to be a promising research avenue, as this

could lead to better differentiated clusters. This scheme can be combined with the

exploration of models of different nature, so that both diversity in structure and

diversity in forecasts are exploited.

When the indexes do not give sufficient information to take a decision on the

number of clusters, a rule of thumb can be used: if significant forecast improvement

by a cluster-based combination with respect to benchmarks is observed in the first

horizons, then the cluster-based combination is preferred. If insignificant improve-

ment is obtained for the first horizons through a well-performing benchmark or a

GA combination, such model is preferred. In all cases, the number of clusters should

be small, due to the homogeneity of the belongingness of models to clusters as the

number of these is increased and taking into account the tendency of well performing

combinations to have a few clusters.

4.11 Conclusions and Research Agenda

This chapter has presented a novel forecasting model combination approach that

involves the creation of ensembles of NNs and the combination of a subset of them

based on parameters from their structure. The first implementation of the pro-

posed combination approach is based on clustering algorithms, which groups to-
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gether models that share a measure of similarity (in this case a measure of distance

in the parameter space of models). The second implementation uses genetic algo-

rithms to select models by using reference points (analogous to cluster centres) in

the parameter space and can be seen as a structurally informed average of forecasts.

Different levels in the number of clusters were used and synthetic and real data series

of different complexity and nature were selected to assess the combination scheme.

Structural combination with genetic algorithms (GA) outperforms the simple

average more easily than cluster based (CB) combination for non-seasonal time series

(STAR2 and wind power production12), whereas for the seasonal series (Synthetic-

1S, Synthetic-2S and electricity demand) the CB tend to do better in relation to

the simple average. CB and GA easily outperform the best NNs in the ensembles

in the non-seasonal synthetic series and wind power series. For the seasonal time

series, Synthetic-1S, Synthetic-2S and electricity demand, on the other hand, there

is no marked superiority of structural combinations over individual models. In spite

of this, CB shows better performance than GA with respect to the best models.

GA combinations not only perform well compared to CB for non-seasonal series,

but also show a smoother performance pattern. This is a desirable feature in light

of the structural differences in NNs for different different horizons. These findings

suggest that different forms of structural combination can be explored with the aim

of finding the best combination approach for a given application.

CB and GA structural combinations were outperformed by the chosen statis-

tical benchmark in the cases of the single-seasonal and double-seasonal synthetic

series, and the double-seasonal real series. Exponential smoothing models are bet-

ter equipped to capture the regularities in these time series than NNs. Consequently,

the potential structural combinations of these models should be investigated, as they

12Additional experiments to structurally combine NNs for BL1 time series, which has an even
higher noise than STAR2, support these findings. Characteristics of this series can be found in
Section 3.3.
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may be more attractive in the case of seasonal time series data.

Nonetheless, for non-seasonal series (synthetic and real) the NNs and the struc-

turally combined ensembles showed a clear advantage. In the case of Kaggle wind

power series, the superiority of CB models to the statistical benchmark is likely to

come from the high complexity and non-linearity of the forecasting problem, for

which NNs based models are more robust. It is important, however, that future

studies with wind power data consider the existence and influence of diurnal cycles

as this could further clarify the conditions under which NNs combined structurally

are able to better forecast data of this kind. Based on these findings, future re-

search could investigate the behaviour of a structural combination approach when

models of different nature are combined. If, for example, instead of using single

unit models (statistical or computational intelligence model), bundles of the form

Bi =< ARIMA,NN > are formed, the structural combination of such bundles

could potentially improve performance, by better exploiting diversity, when dealing

with complex forecasting problems.

A direct multi-step-ahead forecasting approach, with separate ensembles for dif-

ferent forecast horizons, was used in some applications, whereas a single ensemble,

in an iterative approach, producing forecasts for all horizons, was used in one appli-

cation, due to its characteristics. Findings suggest that an extension of the present

research could investigate the way in which the chosen multi-step-ahead forecast

approach affects the performance of structural combination.

This understanding of the effect of the forecasting approach could be supported

by more sophisticated forms of forecast interval calculations. The empirical method

by Lee & Scholtes (2014), used here, may not be entirely suitable for time-varying

error distributions. This issue could be solved by using methods that incorporate, for

example, exponential weighting schemes, such as those discussed by Taylor (2007)

in order to make the quantile estimation adaptive (Lee & Scholtes, 2014).
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There is a basic difference between CB and GA structural combinations: the first

is deterministic and the second is random. As the first performs better with seasonal

series and the second worked well with non-seasonal series, the question arises of

how the nature of structural clustering underlying the combination is related to the

regularity in the data. This question is left for future research.

In general, a natural extension of the present study is to explore other inter-

pretations of what constitutes internal characteristics of a model. The study can

be extended to explore the conditions under which CB and GA combinations work

better. One factor that was limited in the present study is the maximum number of

clusters allowed for the combination mechanism. A more general study of the effect

of changes in this factor is needed.

Other particular improvements on the CB combination mechanism can include

the introduction of a performance criterion, so that the models selected in each clus-

ter are filtered to contain only the best around the centroid. Additional selection

inside clusters can be achieved by discarding individual models with very small α

coefficients in the regressions performed for each cluster. Experiments with differ-

ent functional forms for the final forecast and different optimisation mechanisms,

for both CB and GA, can also be tried. For example, the optimisation for CB

combinations could obtain α and φ coefficients in one single step rather than two.

Future research can also explore switching of models in the context of ensembles

of NNs built for iterative forecasting and the adoption of bootstrapping to analyse

the effect of a bagging-like approach in the structural combinations. Additionally,

in a context of big data and business analytics, an automated connection between

the databases produced during the sensitivity analysis of individual models and the

CB or GA structural combinations would be desirable. Such databases can be used

to automatically identify candidates for ensembles, which may improve the quality

of inputs.
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Overall, the exploration of structural forecasting model combination, and its

implementation in two forms, opens the possibility to investigate new types of en-

sembles, which are based on statistical models.
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Chapter 5

Structural Combination of Seasonal Expo-
nential Smoothing Models

5.1 Abstract

This chapter extends the structural combination of NNs in order to develop struc-

tural combinations of forecasting models that are suitable for specific types of sea-

sonal time series. Two exponential smoothing models are considered: the single-

seasonal multiplicative Holt-Winters model (MHW) and the double-seasonal mul-

tiplicative Holt-Winters-Taylor model (MHWT). Structural diversity in models is

promoted either by adding normally distributed noise to the series or by swapping

blocks of data prior to training (fitting). In the first part of the chapter, the rep-

resentation, creation and combination of models are discussed. Subsequently, three

empirical studies are described, which were conducted in order to evaluate the be-

haviour of the combination procedure. The first application aims to forecast daily

peak electricity demand for the next 7 days. A second study forecasts hourly elec-

tricity demand for the next 24 hours. Finally, the third study forecasts half-hourly

electricity demand in England and Wales for the next 24 hours. Results show that

structural combinations can outperform competitive benchmarks. Moreover, when

the method used to add diversity to the original series is considered, structurally

combined ensembles of MHW and MHWT seem to be better suited to forecast the

daily peak demand of electricity and the half-hourly demand en England and Wales

when noise is added to the series; by contrast, for the double-seasonal hourly elec-

tricity demand, block swapping provided better results when combining the models.
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5.2 Introduction

Ensembles originated in climate forecasting, where physical models with different ini-

tial conditions provide different predictions (i.e. Murphy et al., 2004; Parker, 2010).

With univariate models, there is no modelling of the phenomena, but a hypothesis

of how historical values and previous forecast errors relate to the future values of

the series (Pankratz, 2009, p. 8). In both cases there are initial conditions, but of

different nature. In models for climate prediction, these conditions are initial values

of state variables in physical systems. In univariate time series forecasting models,

they are the initial values in optimisation algorithms. The exploration of ensembles

for univariate time series forecasting by changing these algorithmic conditions has

been widely done in the research in NNs, as summarised in Table 2.1, but is rare in

cases of traditional statistical and forecasting models. Combinations using ensemble

forecasts provided by climate agencies have been done, for example, by Taylor &

Buizza (2003) and the building of ensembles containing statistical models (ARMA)

was done by Matijaš et al. (2013), who pioneered the notion of exploring variety in

statistical models. However, the creation of pools of standard forecasting models,

with diversity induction mechanisms has, to the best of our knowledge, received

minimum attention in the time series forecasting literature. In general, by using the

structure when combining models, this research departs from the sole use of point

forecasts made by models or experts (see Clemen, 1989; Diebold & Lopez, 1996; De

Menezes et al., 2000; Timmermann, 2006; Newbold & Harvey, 2007).

The combination mechanism proposed in this chapter generates, in a first stage,

models with diversity induction mechanisms. This task relates to the choice of

initial parameter values, with which a modeller is usually confronted when selecting

a single model. Data variation techniques, e.g. noise addition or swapping data

blocks, have been used to promote model diversity and less needed with NNs due
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to their volatility.

Holt-Winters models are widely used in business (Hyndman et al., 2008) and

Holt-Winters-Taylor models have been successfully applied to load forecasting (e.g.

Taylor, 2010). Such models were devised to address the dynamics of seasonal and

double-seasonal time series, respectively, and tend to be robust, due to the way that

they can adapt to changes in the data pattern. NNs, in contrast, as highlighted in

previous chapters, are general purpose models that tend to be unstable and require

several design decisions prior to their use. Therefore, the HW and HWT models

permit an assessment of the structural combination approach that is proposed in

this dissertation with models that are less volatile than NNs, but also adaptive to

the dynamics of the time series. Three specific models are chosen for this study.

The multiplicative form of the HW model is used to forecast daily peak electric-

ity demand. Peak demand is the maximum amount of power that must be delivered

(Willis, 2000, p. 40). This forecasting task is one of the basic operations undertaken

by the transmission or distribution operator when scheduling generation for the next

day (Haida & Muto, 1994; Iizaka et al., 2002; Amjady, 2001). It is also required

by operators of dispatching centres in order to schedule maintenance or conduct

adequacy assessments (Amjady, 2001). Different studies have addressed peak de-

mand forecasting, for example, by using regression methods (Joe H. Chow, 2004),

clustering based on classification of load curves (Goia et al., 2010), NNs (Wang &

Cao, 2006) and ARIMA-based models (Amjady, 2001). The structural combination

adopted here expands the set of approaches that could be undertaken in practice.

Peak electricity demand data from the Rio de Janeiro time series, which was used in

an application of structural combination of NNs in the previous chapter, is chosen

for assessing the combination of MHW models.

The second study focuses on the multiplicative double-seasonal Holt-Winters-

Taylor. This model was proposed by Taylor (2003) and was used by Taylor et al.
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(2006) when comparing the performance of various univariate models. It is struc-

turally combined to forecast hourly electricity demand from Rio de Janeiro.

Finally, the third study, considers the same double-seasonal Holt-Winters-Taylor

model, but with different seasonal cycle lengths. The model was structurally com-

bined to forecast electricity demand in England and Wales.

The following sections describe the base models, the way in which they were

prepared to form part of ensembles, and the combination approach.

5.3 The Base Models

The multiplicative Holt-Winters model used for the first application, with an au-

tocorrelation error correction term added to the standard Holt-Winters model pre-

sented, for example, by Hyndman et al. (2008), is:

lt = α
yt

wt−S1

+ (1− α)(lt−1 + bt−1) (5.1)

bt = γ(lt − lt−1) + (1− γ)bt−1

wt = ω
yt

lt−1 + bt−1

+ (1− ω)wt−S1

ŷt(k) = (lt + btk)wt−S1+k + φk(yt − (lt−1 + bt−1)wt−S1) (5.2)

where α, γ and ω are smoothing parameters; wt is the seasonal index, bt repre-

sents the trend, lt the level; S1 is the season length, ŷt(k) is the k step-ahead forecast

from forecast origin t and φ is the parameter of the autocorrelation error correction.

Forecasts are produced up to S1 steps ahead.

The multiplicative form of the Holt-Winters-Taylor exponential smoothing model

by Taylor (2003), that is used here for the second and third applications (forecasting

electricity demand for Rio de Janeiro and England and Wales), has the following
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formulation:

St = α

(
yt

Dt−S1Wt−S2

)
+ (1− α)(St−1 + Tt−1)

(5.3)

Tt = γ(St − St−1) + (1− γ)Tt−1

Dt = δ
yt

StWt−S2

+ (1− δ)Dt−S1

Wt = ω
yt

StDt−S1

+ (1− ω)Wt−S2

ŷt(k) = (St + kTt)Dt−S1+kWt−S2+k + φk (yt − (St−1 + Tt−1)Dt−S1Wt−S2)

St and Tt, are the smoothed level and trend. Dt and Wt are the seasonal in-

dices for the intraday and intraweek seasonal cycles, respectively; S1 and S2 are the

intraday and intraweek season lengths, respectively; α, γ, δ, ω are the smoothing

parameters; ŷt(k) is the k step-ahead forecast made from forecast origin t and φ is

the parameter of the autocorrelation error correction. Forecasts are produced up to

S1 steps ahead.

The models were implemented in Matlab R© and were used as building blocks

to construct ensembles and their structural combination. The level, trend and sea-

sonal components are estimated by averaging the early observations through moving

average filters.

5.4 Methodology

Structural combination of ensembles of models was conducted following the general

procedure described in Section 4.8.1 from Chapter 4 with some variations, as seen

in Figure 5.1, illustrated below.

HW and HWT models are characterised by having a low number of parameters,

when compared to NNs, and they tend to be more stable. For a given time series,
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Figure 5.1: Model scheme.

parameters of HW and HWT models in different trials easily converge to very sim-

ilar values. In order to perform the structural combinations, model diversity was

promoted, by using different mechanisms. Model parameter variations were induced

by fitting models to replicas of the original time series (data) that were obtained via

two mechanisms. These are the second stage in Figure 5.1 and are described in the

next subsection.

In general in this study several time series are forecasted with exponential smooth-

ing models and forecast combinations are found through the structural approach

proposed. Results are produced for different levels of noise added or block swap-

ping performed on the series and three different levels of the maximum number of

clusters allowed in the combination procedure. Results are compared against the

näıve benchmark, the simple average of forecasts produced by NN, the base best

model (a model with the best in-sample performance obtained with the original time

series in 100 training operations) and standard benchmarks from other studies (see

sub-section 5.4.3). It is expected to have a picture of the benefit of structurally

combining forecasting models for these specific time series.

5.4.1 Block Swapping and Noise Addition

Noise addition (Zhang, 2007) and block bootstrapping (Jing, 1997) have been used

in different forms to create ensembles of NNs. Zhang (2007) explained the rationale

for the addition of noise to time series data in the following way:
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“in almost all practical time-series problems, it is impossible to make

more than one observation at any given time. Thus, although it may be

possible to increase the sample size by varying the length of the observed

time series, there will only be a single observation on the underlying ran-

dom variable at time t. Nevertheless we may regard the observed time

series as just one of a set of an infinite number of time series that might

have been observed from the underlying process. [...] The jittered ensem-

ble method is based on the idea that at each time point, many possible

observations could be made. Thus, for each realized time series, if we

can create many ”noisy” or jittered time series that aim to mimic the

behavior of the data generating process, we will have multiple samples

and each of these time series can be viewed as a possible realization of

the DGP. These jittered time series can then be used to enhance neural

network training and model building by effectively forming an ensem-

ble of neural networks built on different samples from the same DGP1”

(Zhang, 2007, p. 5332)

The same author mentions the moving blocks bootstrap as an alternative to the

addition of noise:

“0ne common resampling method for time series analysis is the mov-

ing blocks bootstrap where blocks of consecutive observations are ran-

domly drawn [...]. The basic idea in the moving blocks bootstrap is to

form b blocks of data zt = (yt, . . . , yt+k−1) of length k from the original

time series (y1, y2, . . . , yT ), where b = T − k + 1. The sampling with

replacement from blocks (z1, z2, . . . , zb) yields resamples (z∗1 , z
∗
2 , . . . , z

∗
l )”

(Zhang, 2007, p. 5333)

1DGP stands for data generating process.
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The first approach has been used by Zhang (2007) as an alternative to bootstrap-

ping (Efron & Tibshirani, 1994). Both methods aim at improving the generalisation

capabilities of ensembles of NNs. The present study adopts both alternatives in the

construction of ensembles of exponential smoothing models, with the aim of pro-

ducing model diversity while attempting to preserve the data process and, finally,

improve forecasting accuracy.

Considering Zhang (2007) and Brown et al. (2003) have found that in neural

networks the effect of noise addition on performance depends on the noise level and

its distribution, in this study initially a normally distributed noise N(0, kσb) was

added to the time series, where σb was the standard deviation of a bootstrapped

replica, S ′, of the original time series, S, and k was a constant that allowed to

use a fraction of the standard deviation and thus create different levels of noise2.

However, it was observed that the use of multiples samples of the standard deviation

of S decreased the correlation between in-sample errors for the ensembles and even

promoted negative correlation more frequently than the use of a single sample of the

standard deviation. Furthermore, with a single sample of the standard deviation,

large proportions of the in-sample errors and out-of-sample residuals converged to

the same values. The in-sample fit and out-of-sample performance of models under

both approaches is similar, but more variety is observed in the second case, which

was therefore applied to the ensembles: if n is the length of S, then n bootstrapped

versions of S are created leading to n samples of the standard deviation, ~σb, which

are then used to add noise to S in the form of ~N(0, k ~σb).

The block swapping applied in the present study is a simplified version of the

moving block bootstrap in Zhang (2007). This modification aims at reducing a

potentially negative effect of the moving block bootstrap on the short-term depen-

dencies in the series. Instead of building entire series from blocks of data taken

2Bootstrapping is performed by using the bootstrp Matlab routine (see Matlab, 2017).
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from the original series, randomly selected pairs of data blocks are swapped in the

in-sample period (see Figure 5.2). The block size is equal to the longest seasonal

cycle and the number swaps is kept low, in order to guarantee that the structure of

the series is fairly preserved3. Based on our observations, it appears to be advisable

to use small numbers of block swaps in order to produce the variety sought for in

the models and yet preserve the general dynamics of the series.

Figure 5.2: Illustration of block swapping. The in-sample period is partitioned in blocks
(blue colour) using reference points (red colour). Randomly selected pairs of blocs are
interchanged. This is performed n times, with replacement.

These variation inducing mechanisms are used to create pools of MHW and

MHWT models, depending on the type of time series, to be combined. Each model

is fitted to a different replica of the original series. For a given time series, the

diversity induction mechanisms are applied separately: one set of experiments with

combinations is done where diversity in models in the pool is induced by fitting

individual models to replicas of the time series generated through the swapping of a

number of blocks (SW); the second set of experiments uses pools where individual

models were fitted to replicas of the time series generated with noise addition. Indi-

3For the peak electricity demand and hourly demand time series there were 20 blocks of data
in the training in-sample period and the number of swaps, for the different levels, was 2, 4, and 6
(comprising the proportions 0.1, 0.2 and 0.3). For the half-hourly electricity demand series from
England and Wales there were 35 blocks of data and the number of swaps, for the different levels,
was 3, 7 and 10.
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vidual models were estimated by minimising the one-step-ahead root mean squared

errors, as in most recent applications in forecasting (e.g. Arora, 2013).

5.4.2 Experimental Setup

The maximum number of clusters (2, 4, and 8), the size of the ensembles (50 models)

and the number of models selected per cluster (5) were kept as in the previous study

with NNs (Chapter 4). This allows for a maximum of 80% of the models in the pool

to be included in the combined forecasts.

Three levels of block swapping or noise addition were adopted. For the block

swapping method, the adopted levels are 0.1I, 0.2I and 0.3I, where I = In-sample

length /S2 and S2 is the length of the longest cycle in the series. For the case of

noise addition, levels ~σ1 = 0.1~σb, ~σ2 = 0.2~σb and ~σ3 = 0.3~σb were used, ~σb being

the standard deviation of the bootstrapped original series. A normally distributed

noise, ~N(0, ~σi), i = 1, 2, 3, was then generated and added to the series, thus leading

to three different levels of uncertainty (variation).

5.4.3 Analysis Procedure

Results for all application are analysed in two groups, depending on whether variety

in the series was induced by noise addition or block swapping. Forecasting per-

formance is assessed by using the Mean Squared Error (MSE) and Mean Absolute

Percentage Error (MAPE). For the time horizon, h, they are calculated as follows:

MSEh =
1

N − h− IS + 1

N−h∑
Fo=IS

(xFo+h − x̂Fo+h)2 (5.4)

MAPEh =
1

N − h− IS + 1

N−h∑
Fo=IS

∣∣∣∣xFo+h − x̂Fo+hxFo+h

∣∣∣∣ (5.5)

Where N is the length of the time series, IS is the index of the last in-sample

observation, Fo is the forecast origin, xi is the observed value and x̂i is the forecasted
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value. Comparisons are made against the following benchmarks:

– Näıve benchmark: the forecast for time period t and lead time k is ŷt(k) =

yt+k−S, where S is the longest seasonal cycle.

– The best model in terms of in-sample MSE (denoted as Best isMSE ): a model

is selected from the ensemble, having the lowest in-sample MSE from all the

models.

– The best model in terms of the in-sample MAPE (denoted as Best isMAPE ): a

model is selected from the same ensemble, having the lowest in-sample MAPE

from all the models.

– Average of point forecasts of all models in the ensemble (denoted as Avg.

models).

– Base best model (denoted as Base MHW or Base MHWT ): An instance of

the base model fitted with the original series (without noise addition or block

swapping). The model is selected as having the lowest in sample RMSE metric

within 100 trials that had different random starting points.

For the peak electricity demand series two other benchmarks were added. The

first is a seasonal ARIMA (SARIMA) model, fitted through the auto.arima routine

from the forecast R package (Hyndman & Khandakar, 2008; Hyndman, 2015). The

second is a single NN with iteratively produced forecasts. For the hourly electric-

ity demand, a model evaluated with the parameters that are reported in Taylor

et al. (2006) is included. This model is referred to as MHWT PT (to denote that

parameters are taken from Taylor et al., 2006). For the half-hourly electricity

demand in England and Wales, a double seasonal model implementation from R

forecast package was included.
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5.5 Structural Combinations of MHW Models to

Forecast Daily Peak Electricity Demand

In this investigation, the multiplicative form of the HW model is adopted to forecast

the daily peak demand in Rio de Janeiro, using data from Sunday 5 May 1996 to

Saturday 30 November 1996 (Taylor et al., 2006). The maximum demand from each

day was extracted from the hourly time series, leading to a sample with 210 daily

observations. The first 20 weeks of data (140 observations) were used for training

(fitting) and the remaining 10 weeks (70 observations) were used for evaluating the

accuracy of forecasts up to 7 days ahead. The time series is depicted in Figure 5.3,

where seasonality and time-varying volatility are observed.

Figure 5.3: Daily peak electricity demand in Rio de Janeiro from Sunday, 5 May
1996 to Saturday, 30 November 1996. Original Series.

The seasonal ARIMA (SARIMA) model that is used as benchmark was obtained

through automated routines available in the forecast R package, by using a logarith-

224



mic transformation of the time series. The specification is the following:

(1− φ1B − φ2B
2)(1− Φ1B

7)(1−B7)(yt − µ) = (1 + θ1B)(1 + Θ1B
7 + Θ2B

14)et

where φ1 = 1.2609, φ2 = −0.3271,Φ1 = −0.7837,

θ1 = −0.7529,Θ1 = 0.0012,Θ2 = −0.5595 and µ = 0.0001

B denotes the backward shift operator. Additionally, a feed-forward NN was

fitted with the series differenced as dt = (1 − B)(1 − B7)yt and using lags 1, 2, 6,

7, 8, 13, 14, 15 as inputs. An exploration of a range of configurations, with models

having from 2 to Num. Inputs + 1 = 9 neurons, led to a NN with 4 hidden units.

This NN was used to iteratively forecast 7 steps (days) ahead.

5.5.1 Results when Model Variation was Introduced through
Noise Addition to Generate MHW Combinations

Figures 5.4 and 5.5 summarise the results based on experiments where variation

in the time series was introduced via noise addition to the original series. They

provide a sub-set of out-of-sample MAPE and MSE for the different CB models

and the selected benchmarks. Significant volatility can be observed in CB combi-

nations (bottom of Figure 5.4), whereas GA combinations are stable, with similar

performance to the base best model.

Figure 5.4 (top) and 5.5 also summarise forecasting performance, for each forecast

horizon with rankings and percentage differences with respect to the average forecast

and the base best model. The percentage of difference is negative when the model

has a smaller error metric than the reference model (average or base model) and

positive when the model has a higher error. This difference is calculated only for

models derived from the ensemble: CB combinations, GA combinations, best model

in terms of in-sample MAPE and best model in terms of in-sample MSE.

Again, the CB model is volatile. In terms of MAPE, for lowest level of noise,

a CB combination with a maximum of 8 clusters provides remarkable improvement
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Figure 5.4: Summary for Rio de Janeiro peak electricity demand under noise addition.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.5: %∆ difference in metric vs. forecast horizon for ensembles generated
with noise at 0.2σb.
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with respect to the average and, additionally, outperforms most benchmarks (the

SARIMA model is closely followed and outperformed in one forecast horizon). For

the level 2 (medium) of noise, CB8 model performs very poorly, but CB4 improves

over the average and all other benchmarks. For level noise 3, CB2 is the only

CB model that was able to improve over the average. In terms of MSE (results

not shown), the patterns of improvement over the average and the model rankings

change, mostly for the first (lowest) level of noise. However, the relevance of CB4

for the level of noise 2 remains.

In general, GA combinations are much more stable, consistently providing marginal

improvements over the average (the higher the level of noise, the higher the gain).

However, they are unable to outperform the SARIMA benchmark. Improvement

over the base best model (Figure 5.4) is observed clearly in CB models for levels of

noise 1 and 2. GA combinations, on the other hand, have a very close performance

to the base best model, without outperforming it consistently. CB4, the best per-

forming in this set of models (produced with noise addition), is reduced to a single

cluster model during the pruning stage of the clustering algorithm. Finally, looking

at the MAPE and MSE rankings of models, a more stable performance is observed

from the medium level (2) of noise, which also produced the best performing CB

model.

Table 5.1 shows sample models (see Equation 5.1) from the three different pools

created with different noise levels. Some variety in the coefficients is noticeable,

which is one of the desirable features for the structural combination. Table 5.2

shows the set of parameters for a CB model obtained with a pool of MHW models

fitted with noisy time series. The first set of parameters (αj) are the coefficients to be

applied to point-forecasts from the selected models for every cluster, and Φ defines

the weights applied to the forecasts extracted from each cluster. The weighting of

models within clusters and the weighting in the overall forecasts from clusters is
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diverse, which confirms that CB combinations are making use of model diversity.

Jarque-Bera and Lilliefors tests for normality and Ljung-Box test for serial cor-

relation were conducted on the forecast errors. Evidence of normality and serial

independence is common at the first level of noise. However, with greater variation

(noise), there is serial correlation in forecast errors for horizons h > 1 in all models

derived from the ensembles.

Table 5.1: Sample MHW models with noise addition.

With noise at level 1: N(0, 0.1σb)
α γ ω φ

0.1705 0.0130 0.1513 0.3113

0.1294 0.0000 0.1583 0.3951

0.1486 0.0000 0.1692 0.3724

With noise at level 2: N(0, 0.2σb)
α γ ω φ

0.1256 0.0001 0.1556 0.3587

0.1888 0.0235 0.1239 0.2111

0.1389 0.0000 0.1547 0.3437

With noise at level 3: N(0, 0.3σb)
α γ ω φ

0.1246 0.0084 0.1329 0.3223

0.1158 0.0323 0.0631 0.3044

0.1943 0.0333 0.1099 0.1215

Each row corresponds to a model.

Table 5.2: Coefficients for sample CB combination of MHW models.

CB8

α1 233.5037 -4.2509 -12.1411 4.5640 1.5756 20.7354

α2 243.2322 -23.6656 3.2236 -9.5765 0.7404

α3 253.8552 33.0597 -12.1856 -32.0101 17.4262 9.9941

α4 245.9087 -22.1712 1.7946 -9.1367 3.9267 33.6397

Φ 0.2541 0.2582 0.2308 0.2568

Noise ∼ N(0, 0.1σb).
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5.5.2 Results when Model Variation was Introduced through
Block Swapping to Generate MHW Combinations

The number of in-sample observations for the electricity peak demand series is 140

and S1 = 7. The number of block swaps (I = Train length/S1) is 0.1I = 2, 0.2I = 4

and 0.3I = 6 for the three levels used in this variant of ensembles.

Figures 5.6 and 5.7 summarise combinations where block swapping was applied

to the original time series. Deterioration of performance in CB combinations is

significant (bottom left of Figure 5.6), when comparing with the noise addition

results that were described above, whereas GA combinations tend to be stable and

perform better.

Figures also show the ranking of models and the percentage differences of per-

formance with respect to the average of forecasts of models in the ensemble and

the base best model. When focusing on the rankings, the graphs show the stability

in performance of GA models since their error metrics are located in a clearly dis-

tinguishable range, whereas performance for CB varies widely. In the graphs that

summarise the improvement with respect to the average and the base best model,

the higher volatility of CB with respect to more stable GA can be fully appreciated.

In general, CB combinations remain volatile and GA continue to be stable. GA2

consistently outperforms the average in the first level of block swapping and CB2

does it in the second level. For the highest level of block swapping, both models

outperform the average in most of the forecast horizons, but the other combinations

and best models also offer advantages with respect to the average. GA2 (for the

first level of block swapping) and CB2 (for the second level) also improve over the

base best model, but GA is more consistent. Overall, GA combinations outperform

CB combinations.

Table 5.3 provides details of selected MHW models generated with block swap-

ping and Table 5.4 shows parameters for a sample CB model obtained from a pool of
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Figure 5.6: Summary for Rio de Janeiro peak electricity demand under block swapping.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.7: %∆ difference in metric vs. forecast horizon for ensembles generated
with Num. swaps = 0.2I.
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such models (the maximum number of clusters was two for this model and the prun-

ing routine left only one). Variation is noticed in the α parameters, which signals a

diverse contribution of models to the final forecast. This relatively well-performing

model was produced with the medium level of block swapping in an ensemble with

more stable ranking of models (in terms of MAPE).

In the post-estimation tests that were conducted there is evidence of normality

in forecast errors, but serial correlation persists in most forecast horizons. However,

when comparing with results when variation was introduced via noise addition, the

models with block swapping exhibit less serial correlation for h = 2.

Table 5.3: Sample MHW models with block swapping.

With block swapping at level 1
α γ ω φ

0.1266 0.0000 0.1523 0.4042

0.0970 0.0000 0.1690 0.4405

0.1581 0.0000 0.1298 0.3774

With block swapping at level 2
α γ ω φ

0.0990 0.0007 0.0000 0.4761

0.1250 0.0000 0.1585 0.4651

0.1709 0.0000 0.1184 0.3290

With block swapping at level 3
α γ ω φ

0.1253 0.0000 0.0231 0.4736

0.1165 0.0000 0.1705 0.4595

0.0408 0.0320 0.1451 0.6324

Each row corresponds to a model.

Table 5.4: Coefficients for sample CB combination of MHW models.

CB2

α1 252.8867 0.4311 9.0562 -10.8901 6.7905 -4.4615

Φ 1

Num. swaps = 0.2I, where I = Train length/S1.
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Considering the results obtained for the peak electricity demand, GA combina-

tions perform well in both noise addition and block swapping, but most notably for

the latter approach. By contrast, CB models do better with noise addition than

with block swapping, but are volatile with respect to performance. Considering

the medium level of noise, such combination, with a maximum of 4 clusters, is ca-

pable of improvements over the base and average models (once outperforming all

benchmarks): improvement of this CB4 with respect to base model ranges from

4.93% to 6.14% in MAPE and between 7.39% and 8.54% for MSE. Improvement

over the SARIMA model ranges between 0.71% and 3.33% in terms of MAPE for

all forecast horizons, although in terms of MSE, the improvement is only present in

the first two forecast horizons: 5.11% and 2.10%. In most configurations (of noise

and maximum number of clusters) they perform worse than the benchmarks in sev-

eral forecast horizons. Figure 5.8 shows a selection of the best models with their

performance in terms of MSE and MAPE. Performance curves for models under

noise addition are sparse compared to the performance curves of models with block

swapping. In general, improvements over the base best model, the average and the

SARIMA benchmark suggest that MHW models can be structurally combined and

this combination can be competitive against established benchmarks.
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(a) MAPE.

(b) MSE.

Figure 5.8: Best ensemble-based models for Rio de Janeiro peak electricity demand.
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5.6 Structural Combinations of MHWT Models

to Forecast Rio de Janeiro Electricity Demand

We refer to the double-seasonal time series in Section 4.8, Chapter 4, to forecast

electricity demand. It is now used to investigate combinations of multiplicative

Holt-Winters-Taylor (MHWT) models. Hourly observations from Sunday 5 May

1996 to Saturday 30 November 1996 (see Figure 5.9) are considered. Base model

and data partitioning follow the procedure by Taylor et al. (2006). The MHWT

was used to generate ensembles using the first 20 weeks of data (equivalent to 3360

hourly observations) for training (fitting) and the remaining 10 weeks (equivalent to

1680 observations) for evaluation of the accuracy of forecasts up to 24 hours ahead.

The results of structural combinations are compared against the benchmarks

described in Section 5.4.3, as well as a MHWT model evaluated with the parameters

that are reported in Taylor et al. (2006): α = 0.01, γ = 0.00, δ = 0.09, ω = 0.15 and

φ = 0.88 (see Equation 5.3). This model is referred to as MHWT PT (to denote

that parameters are taken from Taylor et al., 2006).

Figure 5.9: Hourly electricity demand in Rio de Janeiro for Sunday, 5 May 1996 to
Saturday, 30 November 1996. Original Series.
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5.6.1 Results when Model Variation was Introduced through
Noise Addition to Generate MHWT Combinations

Figures 5.10 and 5.11 summarise forecasting performance of the combinations that

were based on models that were estimated using the disturbed original time series

(through noise addition). Performance of CB combinations, GA and the simple

average of the individual forecasts in the ensemble deteriorates with this training

strategy, and this is evident by the superior performance of the base best model and

MHWT PT. However, the rankings and percentage differences with respect to the

average show how CB combinations are able to consistently improve over the simple

average during the first 16 hours. Although all models do not compare well to the

base best model, Figure 5.10 shows how CB combinations perform comparatively

better than most benchmarks. The individual models with best fit metrics do not

perform well out of sample. Overall, from the rankings, a relatively homogeneous

ordering of models emerges, with clear abrupt changes in the case of CB models.

Contrary to the case of the single seasonal peak load series when noise was added,

CB models outperform the average more consistently than GA combinations. The

latter tend to perform poorly. As the level of noise is increased, GA combinations’

performance further deteriorates.

Sample models from the ensembles are detailed in Table 5.5. Parameters values

for γ and ω are similar to the estimates obtained by Taylor et al. (2006), whereas

differences are also observed: the MHWT model estimates seem to be less sensitive

to the addition of noise when capturing the dynamics of the trend and the weekly

cycle (ω).

The best performing model obtained with the noise addition approach (CB8)

is specified in Table 5.6. Variation in the coefficients for forecasts in every cluster

is observed, but also a relatively homogeneous weighting of forecasts produced by

clusters. This means that variety in forecasts is exploited mostly at the level of clus-
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Figure 5.10: Summary for Rio de Janeiro hourly demand under noise addition.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.11: %∆ difference in metric vs. forecast horizon for ensembles generated
with noise at 0.2σb.
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ters and less at the global level. According to the Jarque-Bera test, most ensemble

models for several forecast horizons (2 ≤ h ≤ 12), had normally distributed forecast

errors, when the level of noise is low (Table 5.7). For the medium level of noise, the

pattern changes (Table 5.8), as only CB2 model led to normally distributed errors in

several forecast horizons. For the high level of noise, normality of the errors was re-

jected. These results are inconclusive as the Lilliefors test rejected normality, when

considering all the models and levels of noise. The Ljung-Box indicated serially cor-

related forecast errors for all models in all forecast horizons, thus highlighting that

they failed to capture the dynamic of the time series.

Table 5.5: Sample MHWT models with noise addition.

From the pool with noise at level 1: N(0, 0.1σb)
α γ δ ω φ

0.1475 0.0000 0.0399 0.1504 0.3922

0.1520 0.0000 0.0370 0.1517 0.3475

0.1360 0.0000 0.0449 0.1355 0.3997

From the pool with noise at level 2: N(0, 0.2σb)
α γ δ ω φ

0.1393 0.0000 0.0160 0.1574 0.1222

0.1103 0.0000 0.0219 0.1417 0.1897

0.1171 0.0000 0.0245 0.1394 0.1714

From the pool with noise at level 3: N(0, 0.3σb)
α γ δ ω φ

0.0545 0.0001 0.0053 0.1651 0.0864

0.0759 0.0000 0.0000 0.1616 0.0993

0.0791 0.0000 0.0152 0.1387 0.1051

Each row corresponds to a model.

Table 5.6: Coefficients for sample CB combination of MHWT models.

CB8

α1 7.7504 9.6292 -48.8083 52.4999 0.0024 5.6734

α2 13.6929 -11.4271 24.4374 -0.7998 -24.9317 25.1327

α3 -0.5409 16.2968 2.0425 -18.6673 24.8590 -21.4949

α4 9.0731 -14.4804 5.1019 47.3863 -29.6399 -12.2696

α5 -0.9714 -22.5574 -1.0564 4.7719 9.1180 -15.7031

α6 27.7027 13.4725 8.3640 -20.6679

Φ 0.1669 0.1673 0.1687 0.1668 0.1692 0.1644

Noise ∼ N(0, 0.1σb).
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Table 5.7: Jarque-Bera test of forecast errors for HWT combinations (low noise).

Forecast horizon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2C CB * * * * * * * * * * * * * * * * * * * * * *

GA * * * * * * * * * * * * * * * * * * * * * *

4C CB * * * * * * * * * * * * * * *

GA * * * * * * * * * * * * * * * * * * * *

8C CB * * * * * * * * * * * * * * * * *

GA * * * * * * * * * * * * * * * * * * * * * *

Avg. * * * * * * * * * * * * * * * * * * * * * *

Bst IsMAPE * * * * * * * * * * * * * * * * * *

Bst IsMSE * * * * * * * * * * * * * * * * * *

Noise ∼ N(0, 0.1σb).
The rejection of the hypothesis of normally distributed errors (with 95% confidence level) is indicated with *.

Table 5.8: Jarque-Bera test of forecast errors for HWT combinations (medium noise).

Forecast horizon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2C CB * * * * * * *

GA * * * * * * * * * * * * * * * * * * * * * * * *

4C CB * * * * * * * * * * * * * * * * * * * * * * * *

GA * * * * * * * * * * * * * * * * * * * * * * * *

8C CB * * * * * * * * * * * * * * * * * * * * * * * *

GA * * * * * * * * * * * * * * * * * * * * * * * *

Avg. * * * * * * * * * * * * * * * * * * * * * * * *

Bst IsMAPE * * * * * * * * * * * * * * * * * * * * * * * *

Bst IsMSE * * * * * * * * * * * * * * * * * * * * * * * *

Noise ∼ N(0, 0.2σb).
The rejection of the hypothesis of normally distributed errors (with 95% confidence level) is indicated with *.

5.6.2 Results when Model Variation was Introduced through
Block Swapping to Generate MHWT Combinations

Figures 5.12 and 5.13 provide graphs of the out-of-sample MAPE and MSE of en-

semble models as well as the combinations created through block swapping. A very

similar performance is noticed. Rankings and percentage differences with respect

to the average highlight how difficult it is for combinations in this setting to out-

perform the average of forecasts. Only CB2 has performed better than the simple

average in most of horizons for the first 2 levels of block swapping under MAPE

and GA8 for the third level. When considering MSE, the comparative performance

of CB2 is similar for the first two levels of block swapping, but in the highest level,

the simple average outperforms all models. All improvements with respect to the

average forecast are marginal, as it can be seen in the percentage differences given

in the same graphs.

Consistent improvement over the base best model is observed for GA combina-
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tions and the average (Figure 5.12). CB combinations improve on such benchmark

in an irregular way: CB2 in first level of block swapping and all CB combinations in

the second level, for h ≥ 3; for the last level, improvement is scant and only present

under MSE. The models with the lowest in-sample metrics tend to perform well,

which suggests that relatively well-performing ensembles were created.

Sample MHWT models from the ensembles created with block swapping are

detailed in Table 5.9. Parameters are similar to the values obtained by Taylor et al.

(2006). Models appear to capture the time series dynamics, which was not the case

when the ensembles were generated using noise addition to the original series to

create diversity.

Parameters from the best performing model (CB2) are reported in Table 5.10.

Greater stability in model parameters is noticed in this setting, when comparing

with the noise addition. A heterogeneous contribution of models inside clusters to

their outputs and from clusters to the final forecast is also noticed in the variations

within αj and Φ parameters.

The Jarque-Bera and Lilliefors tests rejected the hypothesis normally distributed

forecast errors. Additionally, the Ljung-Box supported serial correlation in forecast

errors for all models and forecast horizons. Hence, the full dynamics of the time

series are not captured, though MAPEs are significantly lower than 5% on all forecast

horizons and about 1% in the case of one-step-ahead forecasts.

Results indicate that for this double-seasonal time series, the best performance

is achieved with block swapping, as shown in Figure 5.14. All models based on block

swapping perform similarly to the simple average, which is known to be robust to

serial correlation in forecast errors and changes in the data pattern. Nevertheless,

CB2 and GA4 provide marginal improvements with respect to the best average

(from the ensemble with block swapping at level 3). Additionally, they outperform

the base best model, and thus are promising alternatives for this task.
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Figure 5.12: Summary for Rio de Janeiro hourly demand under block swapping.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.13: %∆ difference in metric vs. forecast horizon for ensembles generated
with Num. swaps = 0.2I.
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Table 5.9: Sample MHWT models with block swapping.

From the pool with block swapping at level 1
(Num. swaps = 0.1I)
α γ δ ω φ

0.0088 0.0013 0.0916 0.1167 0.8534

0.0141 0.0012 0.0841 0.1775 0.8404

0.0096 0.0013 0.0955 0.1357 0.8638

From the pool with block swapping at level 2
(Num. swaps = 0.2I)
α γ δ ω φ

0.0090 0.0017 0.0868 0.1462 0.8576

0.0084 0.0016 0.1041 0.1550 0.8655

0.0092 0.0013 0.1090 0.1325 0.8700

From the pool with block swapping at level 3
(Num. swaps = 0.3I)
α γ δ ω φ

0.0011 0.0095 0.2271 0.1270 0.8844

0.0081 0.0011 0.0804 0.1318 0.8666

0.0182 0.0007 0.0811 0.1425 0.8440

Each row corresponds to a model.

Table 5.10: Coefficients for sample CB combination of MHWT models.

CB2

α1 9.6908 -0.4484 0.5746 -3.7500 1.7764 4.2474

α2 9.6010 -3.6880 1.7389 -2.2772 1.3248 2.6450

Φ 0.4718 0.5285

Block swapping at level 2.
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(a) MAPE.

(b) MSE.

Figure 5.14: Best ensemble-based models for Rio de Janeiro electricity demand.
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(a) MAPE.

(b) MSE.

Figure 5.15: Rank of best ensemble-based models for Rio de Janeiro demand series.
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5.7 Structural Combinations of MHWT Models

to Forecast England and Wales Electricity De-

mand

Combinations of the multiplicative Holt-Winters-Taylor (MHWT) were used to fore-

cast electricity demand from England and Wales. Half hourly observations for the

year 2016 (from Friday, 1 January 2016, to Saturday, 31 December 2016) were split

into a training period consisting of 35 weeks and an evaluation period of 17.3 weeks

(121 days) to test accuracy of forecasts 24 ahours ahead.

Adjustments were made on 27 March and 30 October, when the clock went

forward or backward respectively, in order to have 48 observations for all days.

On the first date, when the clock went forward one hour, the resulting missing

data points were linearly interpolated. On the second date, data for the repeated

observations (as the clock went backwards) were averaged. Two additional missing

points were linearly interpolated. Observations corresponding to public holidays

(according to the Bank of England) and Christmas were smoothed prior to fitting

and evaluating forecasting models and combinations. This was done by replacing

demand on each special day by the mean of the demand in the corresponding periods

of the two adjacent weeks. The time series, comprised of 17568 observations, is

depicted in Figure 5.16.

An implementation of the double-seasonal model in Equation 5.3, called dshw,

from the R forecast package (Hyndman, 2017), was included as benchmark. After

fitting the model to the data, the resulting parameters were: α = 0.9892, γ = 0.0000,

δ = 0.2507, ω = 0.0001, φ = 0.2618. This model is referred to as Db. seasonal R.

As in the previous study, results are arranged in two main groups: the first

reports on the generation and combination of ensembles where noise was added to

the series and the second covers the ensembles and combination where the series
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Figure 5.16: Hourly electricity demand in England and Wales for Friday, 1 January
2016 to Saturday, 31 December 2016.

was subject to block swapping.

5.7.1 Results when Model Variation was Introduced through
Noise Addition to Generate MHWT Combinations

Figures 5.17 and 5.18 summarise the forecasting performance for the different CB

models and benchmarks. The first includes performance rankings in terms of MAPE

for every forecast horizon, the percentage of difference in error metric with respect

to the average of forecasts in the ensemble, and the percentage differences in error

metric of ensemble models, with respect to the base best model.

Noise addition produces a well-performing set of combinations, specially with

genetic algorithms. In the low level of noise, all three combinations, GA2, GA3 and

GA8, outperformed the other benchmarks in most horizons. In the middle level of

noise, CB4 and CB8 are the best, while in the high level of noise GA combinations

perform better again. Additionally, the CB combinations, when performing well,

are better at forecasting the first four horizons than the GA combinations.
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Following a similar pattern, GA combinations are better at outperforming the

average of the ensembles and the base model in cases of low and high levels of noise,

whereas at the middle level, the CB combinations dominate. The improvement of

combinations over the basemodel are markedly higher than improvments over the

average. It is clear that the combinations are better than the base model for horizons

h ≥ 4.

Coefficients of sample MHWT models are provided in Table 5.11. The level

coefficient (α) and intra-day cycle coefficient (δ) seem to be affected by the level of

noise, while the remaining parameters are not. As in the case of hourly electricity

demand in Rio de Janeiro, the φ coefficients tend to be low.

The estimated coefficients of the best performing CB combination for the noise

addition setting, produced at a medium level, are reported in Table 5.12. Coefficients

for combinations within clusters are diverse, while the final combination is performed

with relatively homogeneous combination parameters. Diversity is therefore, playing

a more relevant role within clusters than between clusters.

Jarque-Bera and Lilliefors test for normallity indicate that for all horizons and

levels of noise the combinations and individual models produced non-normal and

serially correlated residuals.
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Figure 5.17: Summary for England and Wales half-hourly demand under noise addition.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.18: %∆ difference in metric vs. forecast horizon for ensembles generated
with noise at 0.2σb.
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Table 5.11: Sample of double seasonal models with noise addition.

With noise at level 1: N(0, 0.1σb)
α γ δ ω φ

0.2031 0.0001 0.1344 0.1337 0.3535

0.2110 0.0001 0.1426 0.1320 0.3300

0.1997 0.0001 0.1343 0.1382 0.3643

With noise at level 2: N(0, 0.2σb)
α γ δ ω φ

0.1321 0.0002 0.0827 0.1170 0.1687

0.1306 0.0002 0.0844 0.1165 0.1487

0.1346 0.0002 0.0850 0.1228 0.1655

With noise at level 3: N(0, 0.3σb)
α γ δ ω φ

0.0692 0.0003 0.0492 0.1077 0.1346

0.0670 0.0005 0.0506 0.1088 0.1091

0.0705 0.0004 0.0505 0.1129 0.1296

Each row corresponds to a model.

Table 5.12: Coefficients for sample CB combination of MHWT models.

CB4

α1 -34.7265 51.0860 -21.1629 -14.8134 -4.3644 -8.5177

α2 58.7348 76.6740 1.8792 -20.3662 45.4008 -70.936

α3 -184.4589 -46.5433 31.1391 -7.9123 -3.9978 -3.3043

Φ 0.3457 0.3200 0.3337

Noise ∼ N(0, 0.2σb).
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5.7.2 Results when Model Variation was Introduced through
Block Swapping to Generate MHWT Combinations

Figures 5.19 and 5.20 show a sub-set of the out-of-sample MAPE and MSE for

the different CB models and benchmarks. Rankings and percentage differences of

performance metrics with respect to the average of the ensemble and the best base

model are also included.

In all the levels of block swapping, GA combinations outperform CB. Improve-

ment over the average is achieved consistently by GA combinations and improvement

over the base model is observed in both CB and GA combinations. Sample individ-

ual models’ coefficients obtained for the block-swapping scheme are listed in Table

5.13. The error term’s coefficients (φ) has higher values than in the case of noise

addition. This might be due to limitations of the block-swapping approach when

there is a seasonal cycle longer than the seasonal cycles considered in the forecasting

model. This is the case of England and Wales data, where there is an annual cycle,

which is longer than the data block size being swapped (equal to the number of

observations in a week, that is, 336).

The best performing cluster-based combination is CB4, specified in Table 5.14.

As in the case of noise addition, within-cluster diversity and between cluster ho-

mogeneity is noticed. In general, all models presented non-normality and serial

correlation in forecast errors.

When comparing the two approaches for diversity generation in ensembles, in

the case of England and Wales electricity demand, there is a clear benefit from

using the noise addition over the use of block swapping, specially for longer forecast

horizions (see Figure 5.21 for a selection of the best combinations). A ranking of

models is provided in Figure 5.22. In both approaches the structural combinaions

outperformed the average and the double seasonal R benchmark.
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Figure 5.19: Summary for England and Wales half-hourly demand under block swapping.
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(a) %∆ wrt. avg. (MAPE).

(b) %∆ wrt. Base model (MAPE).

Figure 5.20: %∆ difference in metric vs. forecast horizon for ensembles generated
with Num. swaps = 0.2I.
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Table 5.13: Sample double seasonal models with block swapping.

With block swapping at level 1
α γ δ ω φ

0.0000 0.7563 0.2866 0.1162 0.9896

0.4286 0.0000 0.4323 0.1235 0.8786

0.4030 0.0000 0.4140 0.2429 0.8904

With block swapping at level 2
α γ δ ω φ

0.3981 0.0000 0.3854 0.1738 0.8843

0.4114 0.0000 0.4009 0.1773 0.8827

0.9616 0.0000 0.2089 0.9952 0.6969

With block swapping at level 3
α γ δ ω φ

0.9620 0.0000 0.0000 1.0000 0.6211

0.9209 0.0000 0.0300 1.0000 0.6745

0.4404 0.0000 0.3155 0.0836 0.8561

Each row corresponds to a model.

Table 5.14: Coefficients for sample CB combination of MHWT models.

CB4

α1 27.0983 -2.1562 4.6571 1.7779 4.9938 4.6172

α2 31.7028 -4.4105 -12.4740 2.6930 -5.7148 1.3574

α3 9.6241 -8.2948 10.4048 2.0044

α4 31.1695 -3.1384 8.0233 -4.3081

Φ 0.2657 0.2117 0.2637 0.2599

Num. swaps = 0.2I, where I = Train length/S1.
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(a) MAPE.

(b) MSE.

Figure 5.21: Best ensemble-based models for England and Wales demand series.
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(a) MAPE.

(b) MSE.

Figure 5.22: Rank of best ensemble-based models for England and Wales demand series.
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5.8 Discussion

The advantage of non-linear combinations with NNs over linear combination schemes

has been highlighted in the literature (Donaldson & Kamstra, 1996). Yet, in the pre-

vious chapter, inherent limitations in NNs and a superiority of exponential smooth-

ing models for seasonal and double-seasonal time series were found. This moti-

vated the present study, where the focus is on combinations of seasonal exponential

smoothing models.

It could be argued that ensemble forecasting in climate prediction (Murphy et al.,

2004; Parker, 2010) is a practical way to tackle the lack of knowledge about nature

by using numerous trials of different models. In univariate time series forecasting,

the production of ensembles, as done here, is similar. Lack of knowledge about

the workings of a phenomena is stated from the beginning by focusing on temporal

dependencies. In this study, replicas of the time series are created with the aim

of obtaining as much information as possible from the data in order to better ap-

proximate the temporal dependence. This idea relates to the benefit in exploiting

diversification gains, as argued by Timmermann (2006). That is, different models

created with different initial conditions could be combined to obtain performance

gains from model diversity.

Model diversity was partly explored with a procedure inspired by bootstrapping.

Although bootstrapping has been more commonly used to estimate properties of an

estimator (such as the variance) and aid the construction of measures of uncertainty,

defined in terms of, for example, bias, variance or confidence intervals (Efron &

Tibshirani, 1994), it has also been used to train different instances of forecasting

models to build ensembles (Zhang, 2007). In both cases, bootstrapping generates

different data sets based on a sample, but the purpose is different. In the estimation

of uncertainty, the purpose is to vary data after it is available in order to calculate
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a property, and when building ensembles it is used to vary the data before it is used

to fit a model, so that ensembles created with resampled data series can produce a

better combined forecast (Zhang, 2007). In both cases, the underlying assumption is

that the data at hand is a single realisation of a generating process and that several

realisations can be simulated via resampling. In turn, the underlying assumption in

fitting models with different data sets derived from the original one is that there is

a true model and, some of the generated model instances when combined are better

able to approximate the true model than a single one. The diversity (members of

the ensembles) generated in search for such model benefits the final combination of

forecasts (as argued before in reference to Timmermann, 2006). However, as the

application of bootstrapping might affect the autocorrelation structure of the data,

block bootstrapping has been studied (see Lahiri, 2013, p. 23) and adapted here

(block swapping), with the aim of mantaining the seasonality present in the data.

The other mechanism for generating diversity in models, the addition of noise,

also relies on the assumption of a true generating process around which variations are

created (this time through noise). This mechanism is robust with respect to serial

correlation in the data, but the forecast accuracy might be affected, depending on

the level of noise that is added to the time series.

This study makes a contribution to combining univariate time series models by

using their structure, in contrast to the use of point forecasts (Clemen, 1989; Diebold

& Lopez, 1996; De Menezes et al., 2000; Timmermann, 2006; Newbold & Harvey,

2007), specifically by building ensembles of exponential smoothing models. Addi-

tionally, variation induction mechanisms were explored and used to generate model

diversity, which is uncommon in time series forecasting with established forecasting

models.

When using Holt-Winters or Holt-Winters-Taylor models, the modeller is usu-

ally confronted with the choice of starting model parameter values in order to find
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the best possible performance in a model. Model diversity induction is thus an

alternative way to search for improved performance, since starting points are then

randomly generated and models are trained with slightly different replicas of the

time series.

The results showed that when noise was added to the original series, some good

performing structural combinations were created, such as CB in the case of the daily

single-seasonal time series (peak electricity demand) and GA in the case of double-

seasonal multiplicative models for the England and Wales time series. Forecast

averages from the pools of multiplicative double-seasonal models and GA structural

combinations with stable and good performance were obtained with block swapping

for the hourly electricity demand in Rio de Janeiro.

Even when the structural combinations do not provide competitive results under

noise addition, the improvement over the simple average of forecast is noticeable.

Hence, faced with varied forecasts, the structural combination has the potential to

deliver a reasonable performance. In the case of the multiplicative double-seasonal

time series for Rio de Janeiro, results suggest that noise addition might have altered

the dynamic of the series, making it more difficult for models to capture it. It is

possible that the error correction mechanism that was introduced by Taylor et al.

(2006) explains the greater forecasting performance of this benchmark for the Rio de

Janeiro time series. It appears that there has been a change in the out-of-sample data

pattern, that might have been captured by the strong auto-regressive component in

their model.

The better performance of noise addition over block swapping for the England

and Wales time series might indicate a negative impact of block-swapping in time

series with longer cycles than those considered in the swapping of data blocks.

The effort in producing ensembles with these variations might be compensated by

identifying a few well-performing model combinations that provide relatively good
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improvement over the best model and competing benchmarks. With the availability

of parallel computing and high speed multi-core computers, the implementation of

these ensembles with running times only slightly higher to the training of a single

model is within practical means. The selection of a structural combination can be

made by using a rule of thumb: if significant forecast improvement by a cluster-

based combination with respect to the base best model and other benchmarks is

observed in the first horizons, then the cluster-based combination is preferred. If

insignificant improvement is obtained for the first horizons, either the base best

model, a well-performing benchmark or a GA combination is preferred.

The cluster validity measures (material available upon request), reveal little dif-

ferentiation between clusters, which might stem from the homogeneity in model

specification and the tendency of models to converge to similar parameters, de-

spite the use of mechanisms to promote diversity. For Rio de Janeiro electricity

demand, the combination with block swapping at level 2, which showed good fore-

casting accuracy compared to others (2 clusters), scored better in terms of cluster

differentiation. These two conditions, however, do not match for other cases. This

assessment comprises combinations with more than one final cluster.

The results obtained can be viewed from the perspective of a learning process,

interpreted as a link between a problem space and a solution space (Kasabov, 1996,

p. 332). For different problems (data) there are different mappings (forecasting

algorithms) that lead to a solution. This interpretation was exploited by Matijaš

et al. (2013), when ranking statistical forecasting models, and is common when

training pools of neural networks. In this research the fitting of a forecasting model

was used instead of a learning algorithm (as in neural networks), and variation

was introduced into the problem by altering the data. These variations led to dif-

ferent mappings (of the same kind, namely Holt-Winters or Holt-Winters-Taylor

models). Subsequently, such mappings were combined, structurally. When using
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cluster-based combinations (which showed volatility), the forecasting performance

could undergo favourable jumps when noise was added to the data and therefore im-

prove markedly over benchmarks. This could be interpreted as a jump in the search

of a problem-solution mapping. When data were diversified through block swap-

ping, the mappings (or fitted models) provided a more stable performance, closer

to the average and the base model. The first situation is specially observable in CB

combination, when applied to the single-seasonal time series (peak demand in Rio

de Janeiro). The second situation is observed in various CB and GA combinations

in both hourly and half-hourly electricity demand time series.

Both approaches to generate diversity, block swapping and noise addition, have

limitations. Block swapping might be too simplistic in handling the temporal depen-

dencies in the data as long term dynamics might not be preserved. Noise addition,

on the other hand, might modify the data regularity patterns.

Resuming the argument on diversity gains obtained in forecast combinations

(Timmermann, 2006), as in the previous study, there is a limit for the diversity

gain that can be obtained: the ensembles are composed of models of the same

nature and therefore only diversity coming from structural variations of models of

the same family is obtained. This diversity can be extended by combining ensembles

of models of different families. Or, simpler, models of the same family but trained

with different algorithms (e.g. that minimised alternative loss functions) or with

different training configurations.

In Chapter 4, it was suggested that ensembles of NNs trained to forecast iter-

atively could be modified as to resemble a strategy of switching between different

forecasts at different periods (Granger, 1993; Deutsch et al., 1994; Taylor & Majithia,

2000). This could be implemented, at the level of models, if a different clustering

instance (of the same ensemble) was performed for every forecast horizon. Addition-

ally, during the training of the ensemble, the fit for different forecast horizons could
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be assessed, and this information could be included in the structural representation

of each model.

5.9 Conclusions and Research Agenda

Model ensembles originated in climate modelling due to the existence of different

sources of uncertainty (Parker, 2010). It then has been applied since the work by

Hansen & Salamon (1990) to neural networks, with the general idea of creating

diverse models under different conditions. This approach is extended here to the

Holt-Winters, Multiplicative Holt-Winters-Taylor and Additive Holt-Winters-Taylor

statistical models. For such models, optimal parameters (structural descriptors)

tend to be homogeneous. Therefore, diversity was promoted by adding noise or

swapping blocks of data. The resulting ensembles are used to perform structural

combinations proposed in the previous chapter: one approach with a clustering-

based algorithm (CB) and other with genetic algorithms (GA).

Three applications were conducted. The first focuses on peak electricity demand

from Rio de Janeiro, the second uses hourly electricity demand from Rio de Janeiro

as well and the third application forecasts half-hourly electricty demand from Eng-

land and Wales. Performance comparisons were made against the average of point

forecasts in the ensemble, the base best model (building block in each ensemble)

and other competitive benchmarks. Table 5.15 summarises forecasting performance

of structural combinations with respect to the average and the base best model.

The average forecast from the ensemble is a robust benchmark, but it was ob-

served that under noisy conditions, improvements over it are not associated with

improvements over competitive benchmarks. The base best model gives another

reference point that allows the modeller to further assess the benefit of building

ensembles. As this model has been trained with the original time series and is sub-

ject to a selection process, comparisons against it can give a clearer idea of how
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Table 5.15: Summary of findings for structural combinations.

Rio peak Rio hourly England &
Wales

half-hourly
CB GA CB GA CB GA

Improvement wrt. Noise addition XXX XXX XXX X XXX XXX
Average Block swapping XX XXX XX X X XXX

Improvement wrt. Noise addition XX XXX XXX
base best model Block swapping XX XX XXX XXX XXX

Summary of findings for CB and GA combinations. Improvement of performance over the respective

benchmark is marked with tick symbols, one for every level of noise or block swapping for which the

improvement was observed. Each mark stands for improvement in most of horizons.

competitive the combinations are.

For the single-seasonal daily time series series (peak electricity demand), im-

provements over both the average and the base best model were observed, but the

strategy of noise addition worked better than block swapping in producing compet-

itive structural combinations. Results suggest that CB combinations are better at

exploiting model variations coming from noisy data in order to improve performance

on this series. GA combinations, on the other hand, seem to be well suited to ex-

ploit model variations through block swapping. Additionally, it was found that CB

combinations are volatile while GA are not. Having found a CB combination which

outperformed other benchmarks under the scheme of noise addition (at a middle

level) opens the question of a possible interaction between the type of time series

(single seasonal with a changing pattern), the type of combination (based on clus-

tering and exhibiting volatility) and the level of noise in the data. This is a topic

for further research.

For the first multiplicative double-seasonal time series (hourly electricity demand

in Rio de Janeiro), improvement over the average forecast in the ensembles produced

with noise addition was more common in CB combinations than in GA. However,

none of the combinations or models with best in-sample metrics improved over the

best base model. When using block swapping, the performance of the ensembles

266



improved markedly and produced competitive averages, with further improvements

being observed in GA and CB combinations. However, while the averages and the

GA consistently outperformed the base best model, CB combinations were less con-

sistent. The later were volatile and tended to performed poorly for the first forecast

horizons. A question remains in relation to the fact that time series in the studies

were split in a similar fashion. As sample size could influence forecasting perfor-

mance and its stability, future research could consider the sensitivity to different

partitioning of the time series. In doing so, it would address the question of how

much forecast history is needed in such a computer intensive approach.

For the second multiplicative time series (hourly electricity demand in England

and Wales), improvement over the average was easier for GA combinations than for

CB under both noise addition and block swapping. However, improvement over the

base model (and the double-seasonal R benchmark) was present in both approaches

for all levels, specially for the noise addtion scheme (30% reductions in MAPE over

the base model are reached for some forecast horizons). However, combinations

performed poorly against the base model in the first forecast horizons. Overall, less

volatility in performance was noticed for this time series, which might be due to the

use of more data than in the previous applications.

Regarding the models, other forms of structural combination, besides clustering

and genetic algorithms, can be explored. Other features can be included in the

structural description of models, such as a measure of the evolution of the error

during the training period. Additionally, a strategy similar to the switching of

forecasts could be implemented by using a different clustering instance (of the same

ensemble) for every forecast horizon. Regarding the variety induction mechanisms,

more sophisticated ways of introducing noise or performing block swapping can

be devised to further study the effect of these strategies on the performance of

forecasting ensembles.
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In general, this study permitted the extension of the structural forecast combi-

nation approach from the neural networks to exponential smoothing models from

the Holt-Winters and Holt-Winters-Taylor family and, in this way, combinations

were better equipped to deal with seasonality. Results obtained suggest a potential

improvement in forecast accuracy when the structural combination is applied, but

also highlight how robust exponential smoothing models can be.

In the context of business analytics, with the contemporary abundance of data,

the combination models proposed here could be implemented by using different

data sources. Available information can be used to train the individual forecasting

models in the ensembles and also to determine the kind of data variations to be

introduced. In general, the process of pooling models and combining them by using

their structure fits in the tendency to search for knowledge in large data repositories:

if a model is used to learn from the data, several can be used for the same purpose

to then find a combination based on a proxy of the learned knowledge, such as the

structure.
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Chapter 6

Summary and Directions for Future Re-
search

In this dissertation, a forecast combination approach that uses the structure of fore-

casting models was proposed, thus departing from the general approach of combining

forecasts. The research was inspired by the existence of sophisticated models that

tend to exhibit some form of intelligent behaviour and the possibility of using their

structure to inform forecasts.

Ensembles of Neural networks (NN) were initially investigated. NNs were se-

lected as they have a clear structural representation and are widely applied in fore-

casting. Prior to using feed-forward NNs in combining forecasts, a sensitivity analy-

sis was conducted in order to investigate their behaviour when forecasting time series

of diverse complexity. This study permitted a more objective selection of models

to construct ensembles. Subsequently, the structural combination of feed-forward

NNs was conducted. Ensembles were created and represented in their parameter

space and were then combined according to two algorithms. The first proposal finds

groups of models that are close together in their parameter space, so that forecasts

are produced based on selected models from each identified cluster. The second

proposal is based on genetic algorithms. It finds reference points in the parame-

ter space and selects models around it, to then average their respective forecasts.

Finally, to complement the analysis of the NN structural combination, a study ap-

plied the proposed procedures to two forecasting models that specifically address

the type of seasonality in the time series and that are adaptive to changes in the

data pattern: the multiplicative Holt-Winters and the multiplicative Holt-Winters-
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Taylor models. The following sections summarise the findings for the three studies.

Finally, this chapter concludes by suggesting potential lines of future research that

emerged from this dissertation.

6.1 A Sensitivity Analysis of the Performance of

Feed-Forward Neural Networks

The first study analysed the sensitivity of NN fit and forecasting performance,

according to different forecast error metrics, to several NN design factors. Non-

seasonal, single-seasonal and double-seasonal synthetic time series were considered.

The factors studied were the number of inputs, the number of neurons, the sample

size and the pruning of weights in the hidden layer.

Volatility in performance was commonly found when inspecting the plots of

average MSE with confidence bands. More general tendencies, with less volatility,

were observed through cross-validated variants of the experiments. Additionally,

robust non-parametric tests were used to further assess the influence of factors over

the MSE and MAE error metrics.

Considering previous literature, Zhang et al. (2001) reported a significant impact

of input nodes (NI in this study) on MSE and MdAPE, for both training (in-sample)

and test (out-of-sample) sets across different sample sizes for one-step-ahead fore-

casts. The experiments conducted in the present study (by using MSE and MAE)

produced results which support their findings for the in-sample period and similar

time series. Additionally, the direction of influence found here is almost always neg-

ative in error metric for the first horizon (improved fit). For other forecast horizons,

the findings are mixed, and emphasise the volatile performance of neural networks

for univariate time series forecasting and the risk of over-fitting the time series as

models become more complex: generally an increase in the number of inputs im-

proves model fit, but not necessarily forecasting performance. In the out-of-sample
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periods, significant effects of the number of inputs were found, but the influence of

the number of inputs is mixed and forecasting performance may deteriorate.

Zhang et al. (2001) observed an error metric curve, with respect to NI, that

decreased until achieving a minimum for a certain number of inputs and growing

afterwards. This pattern was observed in one series (STAR2) from the non-seasonal

set, but for the rest, results were mixed. It is noteworthy that while previous

literature focused on one-step-ahead forecasts, the study addressed multiple steps

ahead.

The number of neurons was found to be a significant factor for all forecast hori-

zons and series, in terms of MSE and MAE during the training (in-sample) period,

thus improving fit. In the out-of-sample period, the effect is significant for most fore-

cast horizons and series. The effect is mixed for non-seasonal time series and there

are indications of over-fitting, but for the single-seasonal and double-seasonal time

series, there is evidence of improvement in accuracy when the number of neurons is

increased.

Balestrassi et al. (2009) reported that the number of neurons was significant

for all the series considered in their study (SAR, BL1, BL2, TAR, NAR1, NMA,

STAR1 and STAR2). The number of inputs was fixed in their univariate time

series approach. The sample size was also found significant, which are in line with

the findings obtained in the present study. Yet the simple pruning of NNs weights

conducted here led to mixed results, with a common tendency to worsen the forecast

accuracy.

A plausible explanation for these mixed findings, in terms of significance of fac-

tors, specially for higher forecast horizons, is the effect of high levels of noise on the

data generating processes. Zhang et al. (2001) used generating processes (adopted

here for non-seasonal series) which add noise equivalent to a high proportion of the

interquartile range. However, in this research, when performing experiments with
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configurations used by Barrow et al. (2010), it was found that high levels of noise

in the data generating process impact the forecast accuracy of NNs, and the impact

can be amplified for longer forecast horizons. STAR2 series appears to have been

less affected by the high level of noise than other non-seasonal series, thus leading

to more stable and better model performance.

In general, it was observed that the time series that were better captured by the

feed-forward NNs used in this study are stable and are characterised by a regular

pattern and strong serial dependence (supporting findings by Crone et al., 2011).

For other series, the consideration of multi-step-ahead forecasts revealed that NNs

are capable most of the times to capture the main dependencies present in the

generating processes.

The present study found ordinary least-square regression unsuitable to assess the

effects of design factors over error metrics because the model assumptions did not

hold. In our experience, one should use non-parametric statistical tests as the data

are subject to serial dependence and non-normality.

NNs needed low complexity for non-seasonal series. For the single-seasonal, NNs

with relatively high number of inputs and neurons showed better forecast accuracy

and better behaved errors (in the autocorrelation maps). For the double-seasonal

time series, the benefit of complexity in terms of forecast accuracy seems to reach a

limit after 6 inputs and 12 hidden units after which over-fitting appears, but forecast

errors are better behaved with more complex models and the main effects graph-

ics support the benefit of having more complex models as well. This importance

of inputs (past lags), specially for the single-seasonal and double-seasonal series

has implications for the combining algorithm, which will be considered in the next

section.

The research question formulated in this first study was How can a sensitivity

analysis, based on design of experiments, be used to aid the selection of NN models
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for a forecasting ensemble? The sensitivity analysis can aid the model selection

by and objectively assessing the average behaviour of different error metrics within

the NN model constrains imposed by the ensemble design. The model constraints

are translated into design factors (and respective levels) in the study, such as the

number of hidden units or the number or inputs.

Overall, model selection for the ensembles would comprise several steps: estab-

lishing the characteristics of the ensemble (big or small models, same or different

structure, etc.), designing the experiments, creating the performance data-base, us-

ing it to visualise performance and conduct statistical tests and, finally, selecting

models based on performance and residual behaviour. Given the volatility of NNs,

ideally the modeller would make use of several metrics.

6.2 Structural Combination of Neural Network

Forecasting Models

The next stage of the investigation was the proposal of a structural forecast combi-

nation method and the assessment of its performance. Based on previous research,

the synaptic weight space of NN was used to perform clustering of models. This per-

mitted the development of forecast combinations based on structural characteristics.

An algorithm based on recursive partitioning was used so that from each region or

cluster found, a subset of models to be combined is selected. Additionally, an imple-

mentation based on genetic algorithms (GA) was proposed as a simpler alternative

structural combination. It relies on using reference points in the parameter space of

models, from which models are selected, based on their distance to reference, and

their forecasts are averaged.

Both synthetic and real time series were used to assess the performance of the

models. The synthetic time series were STAR2, Synthetic-1S and Synthetic-2S. A

real time series application focused on electricity demand and a multivariate time
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series applications forecasted wind power production. Different numbers of clusters

were considered. Results from the initial study on sensitivity analysis were used

to select base models for the STAR2, Synthetic-1S and Synthetic-2S ensembles.

Additionally, sensitivity analyses were conducted to select models for the electricity

demand and the wind power production series.

Structural combination with genetic algorithms (GA) outperformed the aver-

age more easily than cluster based (CB) combination for non-seasonal time series

(STAR2 and wind power production) whereas for the seasonal series (Synthetic-1S,

Synthetic-2S and electricity demand) the CB tended to do better in outperforming

such benchmark. CB and GA easily outperformed the best NNs in the ensem-

bles in the non-seasonal synthetic series and wind power series. For Synthetic-1S,

Synthetic-2S and electricity demand, on the other hand, there was no marked su-

periority of structural combinations over such individual models. Nonetheless, CB

showed better performance than GA with respect to the best models.

GA combinations showed a smoother performance pattern when compared to

CB in most applications. This is an interesting feature in light of the structural

differences in NNs for different horizons: for all the series, except the electricity

demand, a separate ensemble was used for each horizon and the base specification

for each ensemble was usually different. The GA benchmark is an average version

of CB and it thus may replicate the robustness of the simple average that h.as been

observed in the forecasting literature. These findings suggest that different forms

of structural combination can be explored for different forecast horizons and that

simpler forms are competitive.

CB and GA structural combinations were outperformed by the best benchmarks

in the cases of the single-seasonal and double-seasonal series (synthetic and real).

Exponential smoothing models are better equipped to adapt to changes in the reg-

ularities in these series than NNs. However, for non-seasonal series (synthetic and
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real) the NNs and the structurally combined ensembles showed a clear advantage.

Nonetheless, for non-seasonal series (synthetic and real) the NNs and the struc-

turally combined ensembles showed a clear advantage. In the case of Kaggle wind

power series, the superiority of CB models to the statistical benchmark is likely to

come from the high complexity and non-linearity of the forecasting problem, for

which NNs based models are more robust. This study suggests potential gains in

multivariate time series forecasting, which should be addressed in future research.

For the electricity demand series, the specification of inputs was crucial (coincid-

ing with the importance of inputs in the sensitivity analysis). The base specification

had many inputs and a few hidden units. Because the internal parameters of NNs

includes weights associated to inputs, the structural combination of models for this

application has a component heavily associated to inputs. In cases like this, when a

neural network has many inputs and a few hidden units, the clustering of models in

their parameter space becomes more similar to a clustering of the weighted inputs.

In summary, the research questions of How can the structure of neural networks

combined? and How do the proposed models perform in forecasting? are answered

by empirically examining two variants of structural combination under different

conditions provided by several time series. The use of internal parameters of models

permitted to include the structure of models in the combination of forecasts, and the

implementation of two forms of structural combination allowed to distinguish the

conditions under which such approach had potential to improve forecast accuracy.

CB tended to work better with seasonal and double-seasonal time series and GA

with non-seasonal time series.
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6.3 Structural Combination of Seasonal Exponen-

tial Smoothing Models

The last study of this dissertation extended the structural combination of NNs

in order to address seasonality, which is a common feature of time series in the

energy sector (e.g. demand, prices of electricity and gas), and assess combinations

of statistical models. Two seasonal exponential smoothing models are explored,

namely: the Holt-Winters and Holt-Winters-Taylor multiplicative models. The first

was used to forecast a single-seasonal time series of peak electricity demand in Rio de

Janeiro. The second was used to forecast hourly electricity demand in Rio de Janeiro

and half-hourly electricity demand in England and Wales. Structural diversity in

models was promoted via modelling replicas that were generated by adding normally

distributed noise to the series or by swapping blocks of data previous to the training

stage.

For the multiplicative single-seasonal time series (peak electricity demand), im-

provements over both the average and the base model were observed. Results suggest

that cluster-based (CB) combinations are better at exploiting model variations com-

ing from noisy data in order to improve performance on this series. Combinations

based on genetic algorithms (GA), on the other hand, seem to be well suited to

exploit model variations through block swapping. Additionally, it was found that

CB combinations are volatile while GA are not.

For the multiplicative double-seasonal time series applied to the hourly Rio de

Janeiro electricity demand, improvement over the average forecast in the ensembles

produced with noise addition was found (more clearly in CB than in GA combi-

nations). However, as judged by the sample parameters obtained in this setting,

the dynamics of the series is time-varying, which could be the cause of the poorer

performance observed when comparing with the base best model: none of the com-
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binations improved over this benchmark. When using block swapping, the perfor-

mance of the ensembles improved markedly and produced competitive averages and

further improvements with GA and CB combinations. However, while the averages

and the GA consistently outperformed the base best model, CB combinations were

less consistent. The latter were volatile and tended to performed poorly for the first

forecast horizons.

In the case of the second multiplicative time series (hourly electricity demand

in England and Wales), improvement over the average was easier for GA combina-

tions than for CB under both noise addition and block swapping. However, both

approaches outperformed the base model in most forecast horizons. Overall, less

volatility in performance was noticed for this time series, which might be due to the

use of more data than in the previous applications.

To summarise, the last research question formulated in the dissertation was How

can the structural combination approach be extended from NN to other forecasting

models? This extension has to take into account the fact that exponential smooth-

ing models usually have less parameters than NNs and the training tends to produce

very similar optimal parameters. Consequently, there was a need to promote model

diversity to generate combinations, and solutions based on computational intelli-

gence literature were considered. Structural model diversity is promoted in statisti-

cal models by fitting them to replicas of the original time series. Two mechanisms

were explored to create the replicas: noise addition or data block swapping. The

obtained models are structurally combined to finally obtain the forecast. A detailed

assessment of forecast performance under different levels of noise addition or block

swapping is then undertaken.

In general, the results obtained suggested a potential improvement in forecast

accuracy when the structural combination is applied. CB combinations performed

better for the peak single-seasonal electricity demand and the double-seasonal elec-
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tricity demand in Rio de Janeiro. GA performed well in all time series, were more

stable, and outperformed CB when forecasting the double-seasonal electricity de-

mand in England and Wales. Additionally, it was found that the robustness of

MHWT models can be better exploited when forecasting regular time series if en-

sembles are generated through block swapping. When the time series is less regular,

or when there is a longer cycle not considered in the models or in the data swapping

scheme, the noise-addition mechanism is preferable.

6.4 Implications for the Literature and Future Re-

search

Timmermann (2006) argued, from a theoretical perspective, that unless one can

find ex ante a particular forecasting model producing smaller forecast errors than

its competitors, forecast combination offers diversification gains that make it attrac-

tive to combine individual models rather than relying on a forecast from a single

model. The present research made use of diversification in models to create ensem-

bles and incorporated an aspect of such diversity into the combination of forecasts

from those ensembles. The models have the same specification but can differ in

parameter values, that is, in their structural descriptors. Bakker & Heskes (2003)

suggested the use of clustering to summarise ensembles of neural networks(NN).

Matijaš et al. (2013) ranked models by exploiting the interpretation of the learning

process as a link between a problem space and a solution space (Kasabov, 1996, p.

332). Alamaniotis et al. (2012) built ensembles of Kernel-based Gaussian processes

by using a linear (multi-objective) problem for which a solution was sought with

genetic algorithms (GA). Different error measures constituted the vector of objec-

tives. In this series of research there are attempts to enrich the context that informs

the combinations. The present research contributes to this literature by building

ensembles of neural networks, Holt-Winters (HW) and Holt-Winters-Taylor (HWT)
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models in their parameter space. NNs are easily diverse, given that they are volatile

(Mendes-Moreira et al., 2012), but HW and HWT models tend to have very sim-

ilar optimal parameters. To exploit diversity gains, the NNs were trained with

randomised input-out patterns, but HW and HWT models, given their relative ho-

mogeneity in final parameters, were fitted with replicas of the original time series.

Results confirm that there are gains in promoting model diversity. This relates to

the diversification mentioned by Timmermann (2006). Here, however, the model di-

versity is explicitly included (proxied by structural parameters) and used to inform

forecast combinations. Therefore, diversity is explored in a context where there is

access to the internal (structural) characteristics of the forecasting models.

One of the main characteristics of ensembles of NNs as mentioned in Chapter 2

is how the steps of generation, pruning and combination are followed. Some authors

(such as Hansen & Salamon, 1990; Drezga, 1999; Siwek et al., 2009) adopt a se-

quential approach, where one stage feeds into the next. Others follow more dynamic

approaches, where the stages are interrelated. Fore example, Liu & Yao (1999), Liu

et al. (2000) and Zhou et al. (2002) created ensembles with evolutionary algorithms,

in which case the dynamics of the ensemble building process is interlinked. In the

present study, the most dynamic part of the approach is located in the stage of com-

bination. Although there is an intimate relation between pruning and combining

as the latter informs dynamically the former, the general outline puts the present

research more on the ground of sequential approaches.

Both the more dynamic approaches and the sequential ones mentioned above,

make use of forecasts produced by models. In the present research, departing from

that approach, the information used to combine forecast is the parameter set of

NNs. This allows to include information about the structure of the model into the

combining stage (a procedure inspired by Bakker & Heskes, 2003).

Therefore, the contribution of the present study is located in the context of se-
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quential ensemble generation and structurally informed forecast combinations. The

approaches followed to incorporate structural parameters are a clustering-based al-

gorithm and genetic-based algorithm. In this way, the inclusion of model structure

via clustering, as suggested by Bakker & Heskes (2003), is explored. The adoption

of a clustering algorithm and a structurally informed benchmark (based on genetic

algorithms), that resembles an average, permits to make comparisons of combina-

tion mechanisms of the same orientation but different complexity. Additionally, the

general idea of the combination, by including internal characteristics of objects, nat-

urally suggests the use of genetic algorithms, as these can represent objects whose

components are evolved. Here, instead of using genetic algorithms to evolve the

weights assigned to NNs outputs, as Zhou et al. (2002), we evolve a configuration

of centres in the parameter space from which models are selected and averaged.

Therefore, both in terms of the use of clustering and the use of genetic algorithms,

the structural extension in forecasting makes a contribution. The study of differ-

ent synthetic and real time series (with a multivariate case) and the inclusion of

different levels in the number of clusters, permitted to have a realistic view of the

performance of the proposed forecasting combinations.

A key point in this dissertation is the reasoning behind the inclusion of structure

in combining forecasts. The motivation is the use of characteristics of models and

not merely their single output forecasts. The approach and results contribute in

offering a large empirical study about one possible approach for the inclusion of

structural information in forecast combination. However, the interpretation of what

constitutes internal characteristics could be different from the approach adopted

here. Additionally, the study of relationships between internal components and

outputs in models, suggested by Garson (1991) and Goh (1995), could be productive.

Both ideas are natural extensions of the present research.

An implication of this research for the ensemble literature is the potential benefit
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in including structural information in the combination of forecasts. As the likelihood

of the appearance of increasingly intelligent models is high, this orientation in com-

bining forecasting models could become gradually more productive. This research

shows how variety can be exploited within a set of models of the same type. The

same approaches for variety generation, specially in HW and HWT models, could

be explored with other forms of forecast combinations (structural or not) to extend

the present research. The complexity of models would create a challenging number

of features to perform structural combinations. A proper balance between dimen-

sion reduction and the use of a sufficiently rich structural representation would be

needed to structurally combine ensembles within practical computing times.

There is a basic difference between CB and GA structural combinations: the first

is deterministic and the second is random. As the first tended to perform better

with more regular time series and the second worked well with less regular data, the

question arises of how the nature of structural clustering behind the combination is

related to the presence of regularity in the data. The appropriateness of a determin-

istic structural combination for a regular series when compared to a random one,

and the opposite situation (appropriateness of a random structural combination for

less regular data) is an issue that could be further investigated.

The multi-step ahead approach with NNs affects both training (fitting) and fore-

casting. Other approaches should be explored for different applications. Here the

direct approach was used for synthetic series where a separate NN is used for each

forecast horizon. This approach allows for networks to specialise in a specific fore-

cast horizon (Gouriveau & Zerhouni, 2012) and, consequently, for a division of the

training task between multiple machines. The iterative approach was used for the

electricity demand application given that the direct approach led to a performance

markedly different from results obtained by Taylor et al. (2006). However, a system-

atic exploration of multi-step-ahead forecasts for structurally combined ensembles
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allow to compare different approaches for the same data. If such comparison is made

within a sensitivity analysis scheme, as in this dissertation, the computational cost

would be higher than in the present research. Therefore, it could concentrate on a

smaller number of series.

Another point for future research, in relation to training, involves the use of a

bootstrap strategy to create the individual models that participate in the clustering

algorithm. The adoption of this strategy, instead of the randomisation of the in-

sample data set as done in the present research, would move the approach in the

direction of bagging 1. The GA combination can also benefit from such modification

and these are potential research avenues for future research.

Simplified forms of design of experiments (DOE) can be devised, in order to

speed up the exploration of models and the application of statistical tests. This

could facilitate automation. The judgement exercised by the modeller in apply-

ing the heuristics suggested here could be automated to then feed the ensemble

mechanisms without human intervention. The practicality of this would depend on

finding a proper balance between the computational complexity of the experiments

(combination of factors and levels) and the availability of parallel computing.

Further research on forms of structural combination with low computational cost,

which could be inspired by genetic algorithms, could potentially be productive, given

the good results obtained with such variant. They would have the advantages of

speed and simplicity, which would contribute as an enhancement of the combinations

proposed.

The limits imposed on the number of models per cluster in the combination

algorithms allowed to use at least 20% of the total of models and at most 80% in

1Breiman (1996) defines bagging predictors as “a method for generating multiple versions of
a predictor and using these to get an aggregated predictor. The aggregation averages over the
versions when predicting a numerical outcome and does a plurality vote when predicting a class.
The multiple versions are formed by making bootstrap replicates of the learning set and using these
as new learning sets”.

282



the forecast combination. This choice permitted to follow findings by Zhou et al.

(2002) which suggest that it is better to ensemble many available NNs but not all.

The same proportions were used when combining exponential smoothing models. In

the literature, however, there are dynamic options that could suggest modifications

to the combinations routines. For example, Chen & Yao (2007) use an evolutionary

algorithm whose selection mechanism produces a set of models in the last stage of

the ensemble building process; Yu et al. (2008) establishes the number of models to

combine by minimising the conditional generalised variance and Kourentzes et al.

(2014) choose a varying number, depending on the forecast median or mode. Given

that a structural combination with genetic algorithms has provided competitive

results with low computational cost, a mechanism could be added to such approach

to automatically determine the final population size, that is the number of clusters,

and the number of models to be selected from each of them.

There is no conclusive evidence about the superiority of the combination of en-

sembles generated with noise addition over the ensembles combined when block

swapping was performed. There could be an interaction between the type of time

series (single-seasonal or double-seasonal), the type of combination (based on clus-

tering or genetic algorithms), the length of the time series, the existence of longer

cycles than those considered in individual models or the swapping of data blocks,

and the level of noise or block swapping in the data. However, it was noticed, firstly,

that noise addition can be superior in the case of single-seasonal and not very regular

time series. Secondly, noise addition was also superior when a double-seasonal time

series has dynamics not captured by individual models or when the length of data

blocks to swap is shorter than other cycles present in the data. And thirdly, block

swapping can perform better for more regular double-seasonal time series. This, plus

a wider exploration of levels and approaches for noise addition and block swapping,

are topics for further research.
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The results obtained highlight a limitation of the ensembles used in the present

research. They are composed of models of the same nature and the same basic

specification. From the perspective of model diversity (Timmermann, 2006; Bunn,

1975), there is a gain that might not be exploited. Our results show that NNs

ensembles combined structurally can be favourably compared to the average forecast,

but are outperformed by the statistical benchmarks. Additionally, the study of HW

and HWT model ensembles show how the base best model is difficult to outperform.

The use of a single family of models might be limiting variety gains. If, for example,

combinations of NNs and HWT models were made, there could be a bigger gain than

in combining NNs or HWT alone. That is why, it would be interesting to structurally

combine ensembles of models of different nature. One way of accomplishing that

would be to combine bundles Mi =< A,B >, where each Mi is composed of a

model of type A and a model of type B, such that Mi has internal characteristics

that could be useful for a structural combination. Combinations of pairs of models

in the parameter space defined by M can be done. Optionally, combinations could

be performed first in the parameter space of models A , then on the space of models

B to then perform a final combination.

The quality of clusters as measured by several indexes suggests that there are

clusters found by the CB algorithm that are not well differentiated or separated.

Exploring the inclusion of the forecasts and the structure of models, based on sug-

gestions by (Garson, 1991; Goh, 1995), seems to be a promising research avenue,

as this could lead to better differentiated clusters. This scheme can be combined

with the exploration of models of different nature, as mentioned earlier, so that both

diversity in structure and diversity in forecasts are exploited.

Applications of the proposed combinations to high frequency data can be ex-

plored. In the case of NNs, the computing time can be lowered, if needed, by using

an iterative forecasting approach, which leads to a single pool of models to run the
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combinations, instead of a direct approach, which leads to a number of pools equal

to the number of forecast horizons.

6.5 Main Contributions of this Research

The first contribution of this research is the preliminary sensitivity analysis, per-

formed before combining neural networks, in order to analyse the influence of dif-

ferent design factors on several error forecasting metrics. It permitted to expand

on previous research regarding design of experiments, by adding detail, time series

and a more robust statistical analysis of the influence of the chosen factors on the

performance of NNs. The results of this analysis allowed to have a more objective

selection of specifications for the obtention of structural combinations.

The second contribution of this research is the incorporation of model structures

in forecasting combinations. It is done both with neural networks and several mod-

els of the Holt-Winters and Holt-Winters-Taylor families, thus providing a view of

the capacity of such combinations to improve forecast performance. The study of

seasonal time series constitute a contribution, as the capacity of neural networks

to forecast such series is contended. In general, the studies permitted to explore

the conditions under which the proposed combinations tend to work better and the

possible routes for research. Some conditions of promising performance were found:

Structural combination of neural networks (NN) with genetic algorithms (GA) seem

to work better than cluster based (CB) combinations for non-seasonal time series,

whereas, for seasonal series, the CB tend to do better. When combining expo-

nential smoothing models for a single seasonal series of peak electricity demand,

results suggest that cluster-based (CB) combinations are better at exploiting model

variations coming from noisy data in order to improve performance. Combinations

based on genetic algorithms (GA), on the other hand, seem to be well suited to

exploit model variations through block swapping. The structural combination of
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exponential smoothing models to forecast a multiplicative double-seasonal series of

electricity demand in Rio de Janeiro, produced better results under block swapping

with CB combinations. Finally, the results obtained with a double-seasonal time

series of electricity demand from England and Wales suggest that noise addition

is better suited to exploit model diversity in the structural combinations when the

data have dynamics that might be affected by the block swapping scheme. Un-

der noise addition, GA combinations performed better than CB. In all, the simpler

structural combination with genetic algorithms tended to be more stable than the

cluster-based structural combination.
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Appendix A

Multi-Step-Ahead Forecasts with Neural Networks

Forecasting with statistical models has been done normally for several horizons

(Ord & Fildes, 2012). On the contrary, the NN literature has tended to focus on

a single one. This focus is partly driven by the greater complexity of the multi-

step ahead forecasting problem, as highlighted by the different approaches that

have been proposed. Here a brief summary of those approaches is made in order

to inform design decisions for the present research. A review and classification of

works according to the approach for multi-step ahead forecast is given by Gouriveau

& Zerhouni (2012).

According to the authors, simple approaches to multi-step ahead forecast include

the parallel one, which uses one network with multiple outputs, one for every step.

It is practical as all forecasts are obtained with a single model, but it suffers from

the presence of serious rounding errors. Another simple approach is the iterative,

which uses one model with one output. The model is fed iteratively with previous

estimated values (x̂t+1) to produce forecasts at the following steps (x̂t+2, . . .). It is

easy to implement but suffers from error propagation.

More complex methods include the direct approach (Taieb et al., 2010). It fits

one network for every step ahead with all models using the same data. Specialisa-

tion on a single horizon is the main advantage of this approach. However, complex

dependencies between variables is not taken into account. DirRec (or cascade) has

one model fitted for every horizon and the forecast for period t+1 is used as input

for a network producing the forecast for period t+2. Although this method is easy

to implement it also suffers from error propagation. The MIMO approach works as
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the parallel one, but with several networks, each one of them producing forecasts

for several horizons until all horizons are covered. Finally, MISMO (Multiple-Input

Several Multiple-Outputs) consists of several MIMO with a parameter s that deter-

mines the output number of all MIMO.

These approaches are adopted with variations in the literature. Sample works

are cited to illustrate.

Drezga (1999) and Matijaš et al. (2013) adopted the iterative approach for hourly

electricity load forecasting while Siwek et al. (2009) uses the parallel approach. How-

ever, authors do not include comparisons with other multi-step ahead approaches.

Atiya et al. (1999) used several NNs forecasting approaches to conduct river

flow forecasting. When comparing the direct, iterative and cascade methods, better

results were reported with the direct one, although they clarified that the compara-

tive ability of the different approaches is usually problem dependent. Lee & Billings

(2003) also found evidence in favour of the direct approach when compared with

the iterative one, in the case of non-linear time series, and proposed a modification

of the former in order to reduce the mean squared prediction errors that come from

the existence of autocorrelation in the prediction errors.

Goh et al. (2006) proposed to forecast several steps ahead the vector composed of

wind speed and wind direction, with a recurrent NN architecture based on a cascade

scheme. Although performance was satisfactory, no comparison is made with other

multi-step ahead forecasting schemes.

Cheng et al. (2008) used NNs with time delays and splines obtaining better

performance with respect to other time delays networks. Multi-step ahead fore-

casts were produced with the iterative approach. The improvement in performance

obtained with the proposed method came from sophisticated input treatment and

model training but not from a fundamental difference in the form of producing

multi-step ahead forecasts.
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Yan (2012) proposed an approach for automatic time-series forecasting with NN

which included a direct approach for multi-step ahead forecasting with good results

in the NN3 competition, for its reduced data set category. The method for producing

multi-step ahead forecasts is not compared against others, but it is clear that a simple

approach was helpful in his attempt to automate the forecasting process.

Chen et al. (2013) developed a cascade version of a training algorithm for recur-

rent NN. They reported superior results in multi-step ahead forecasts when compar-

ing with the a training algorithm limited to one-step ahead forecasts. This research

shows how the training algorithm and the scheme for multi-step ahead forecasts

tend to be interrelated. A given training algorithm may limit the options to pro-

duce multi-step ahead forecasts and a given strategy to multi-step ahead forecasting

can require modification in the training algorithm. This is also clear from the re-

search by Bao et al. (2014). They implemented MIMO strategy with support vector

regression and obtained lower forecast errors when comparing with the direct and

iterative approaches. Their strategy had to be carefully chosen taking into account

the type of network. Zhang et al. (2014) also used the MIMO strategy with extreme

learning machine and obtained superior results when comparing with the iterated

and direct approaches.

In general the superiority of a given approach to produce multi-step ahead fore-

casts is undecided and dependent on the problem, but it can be seen that the ten-

dency is to use recurrent networks and adapt iterative, cascade or MIMO approaches

depending on the architecture characteristics and training algorithms. The direct

approach is well positioned with the potential of producing smaller independent

models at the expense of loosing interaction between steps ahead. It is a practi-

cal solution with moderate complexity. The parallel and iterative approaches are

also practical but tend to be less used used with simple networks probably due to

the propagation of error. In the case of electricity load forecasting, the iterative
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approach remains in use throughout the years.
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Appendix B

Selected Model Configurations for Sample Series

The base procedure proposed in section 3.4.5 is used to select models to ensemble

for several series. Such series are chosen as to have different levels of complexity.

The procedure is used to favour compact models because this conveniently limits

the running times for the combination routines to be used in the following chapter.

The model database and results gathered can also be used to select models with

different criteria so that performance on ensembles constructed with such models

improves.

Given that the generating processes for the non-seasonal series are based on

information from a few lags and taking into account the homogeneity of the metrics

behaviour for higher forecast horizons, the selection made here is restricted to the

first 6 horizons in the selected non-seasonal series. Table B.1 shows the selected

models for STAR2, Synthetic-1S and Synthetic-2S series.

For non-seasonal series no benefit was observed in adding complexity (high num-

ber of inputs or neurons) but relatively large models were found appropriate for

the seasonal series. The most practical way to use the results from the design of

experiments to identify those configurations is going to the main effects graphs and

locating the levels of the NI and NU factors for the out-of-sample period where the

error metric has reached a relatively low value and further increases in the factors do

not lower the metric considerably. This information is contrasted, by the proposed

heuristic, with tests and serial correlation maps in order to reduce the selection to

parsimonious configurations, if possible.
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Table B.1: Selected NN models.

h NI NU

1 2 3

2 2 1

3 3 5

4 2 5

5 2 1

6 2 3

STAR2 series.

h NI NU

1 7 9

2 7 9

3 6 10

4 7 9

5 6 9

6 7 8

7 6 9

8 4 7

9 3 8

10 3 8

11 2 7

12 1 8

Synthetic-1S series.

h NI NU

1 2 8

2 3 6

3 3 6

4 3 7

5 3 7

6 3 6

7 3 7

8 3 6

9 4 6

10 4 6

11 3 8

12 2 7

Synthetic-2S series.
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Appendix C

Additional Material for the Chapter on Structural

Combination of Neural Network Forecasting Mod-

els

C.1 STAR2 Time Series

This section contains results obtained with structural combinations for the STAR2

time series.
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(a) MaxC = 2 clusters. MSE (b) MaxC = 2 clusters. MAE.

(c) MaxC = 4 clusters. MSE. (d) MaxC = 4 clusters. MAE.

(e) MaxC = 8 clusters. MSE (f) MaxC = 8 clusters. MAE.

Figure C.1: Out-of-sample MSE and MAE for STAR2 series.
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(a) Comparison with Avg. and ARIMA. (b) Comparison with GA.

(c) All CB.

Figure C.2: Out-of-sample MSE for STAR2 series.
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C.2 Synthetic-1S Time Series

(a) MaxC = 2 clusters. MSE (b) MaxC = 2 clusters. MAPE.

(c) MaxC = 4 clusters. MSE. (d) MaxC = 4 clusters. MAPE.

(e) MaxC = 8 clusters. MSE (f) MaxC = 8 clusters. MAPE.

Figure C.3: Out-of-sample MSE and MAPE for Synthetic-1S series.
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(a) Comparison with Avg. and HW. (b) Comparison with GA.

(c) All CB.

Figure C.4: Out-of-sample MSE for Synthetic-1S series.
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C.3 Synthetic-2S Series

(a) MaxC = 2 clusters. MSE. (b) MaxC = 2 clusters. MAPE.

(c) MaxC = 4 clusters. MSE. (d) MaxC = 4 clusters. MAPE.

(e) MaxC = 8 clusters. MSE. (f) MaxC = 8 clusters. MAPE.

Figure C.5: Out-of-sample MSE and MAPE for Synthetic-2S series.
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(a) Comparison with Avg. and additive Dbl.
seasonal.

(b) Comparison with GA.

(c) All CB.

Figure C.6: Out-of-sample MSE for Synthetic-2S series.
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C.4 Wind Power Time Series

(a) 2 clusters. NMAPE. (b) 2 clusters. RMSE.

(c) 4 clusters. NMAPE. (d) 4 clusters. RMSE.

(e) 8 clusters. NMAPE. (f) 8 clusters. RMSE.

Figure C.7: Out-of-sample NMAPE and RMSE for Kaggle wind power production
series.
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(a) Comparison with Avg. and Ari-
max. RMSE.

(b) Comparison with GA. RMSE.

(c) All CB. RMSE.

Figure C.8: Out-of-sample RMSE for Kaggle wind power production series.
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C.5 Rio de Janeiro Electricity Demand Time Se-

ries

(a) MaxC = 2 clusters. MAPE. (b) MaxC = 2 clusters. MSE.

(c) MaxC = 4 clusters. MAPE. (d) MaxC = 4 clusters. MSE.

(e) MaxC = 8 clusters. MAPE. (f) MaxC = 8 clusters. MSE.

Figure C.9: Out-of-sample MAPE and MSE for Rio de Janeiro electricity demand
series.
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(a) Comparison with Avg. and HWT.
MAPE.

(b) Comparison with Avg. and HWT.
MSE.

(c) Comparison with GA. MAPE. (d) Comparison with GA. MSE.

(e) All CB. MAPE. (f) All CB. MSE.

Figure C.10: Out-of-sample MAPE and MSE for Rio de Janeiro electricity demand
series.
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