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Abstract

Recent trends in wearable technology have resulted in the introduction of a number of
egocentric devices that provide a first-person view of the world [1]. While the technology
is evolving rapidly, limited natural interaction methods are proving to be a major hurdle
in exploring the usefulness of such devices. The widespread use of existing hand pose
estimation methods is restricted by a number of factors that include lack of generalization,
usage of depth images and the requirement for calibration and initialization steps [2, 3].
Furthermore, most of these methods do not address hand pose estimation under varying
viewpoint, which is a major challenge in first-person vision. Thus, there is a need for a
new hand orientation and pose estimation method that can generalize well for a number of
variations including orientation, hand pose, shape, size and style.

We propose a unified framework for orientation estimation for a planar hand pose.
This framework is used to introduce three novel orientation estimation methods, namely,
single-layered single-variate Random Forest (SL-RF SV), multi-layered Random Forest
with Marginalization through Regression (ML-RF MtR) and staged probabilistic regression
(SPORE). We also present a method for extracting contour-based features from hand silhou-
ette images called Contour Distance Features. The SL-RF SV hand orientation regression
method utilizes dimensionally reduced Contour Distance Features to learn the mapping of
silhouette images onto hand orientation angles. The ML-RF MtR expands on the ability of
SL-RF SV, by dividing the data into subsets and learning expert regressors from each subset.
The main contribution of this method is the use of a regressor for learning marginalization
of multiple trained expert regressors. We further generalize this method to propose SPORE,
which trains expert regressors in stages from multiple variations in a dataset. This method
relies on intermediate model evaluations to define harder samples, which are used to train sub-
sequent stages in the model. We also extend SPORE to simultaneously infer hand orientation
and pose. We provide comprehensive experimental validation of the proposed methods and
compare them to the state-of-the-art for multi-layered Random Forest and hand orientation
regression methods. The experimental validation results indicate that SPORE outperforms
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existing marginalization as well as hand orientation regression methods with a mean absolute
error of 8.42° for Azimuth angle and 7.38° for Elevation angle. Our experimental results
also show that the introduction of hand orientation in pose classification enables the model to
build a better understanding of hand pose under varying viewpoints as compared to a method
that learns from hand pose data only. Furthermore, we present a number of Augmented
Reality applications that show the significance of the proposed methods in facilitating novel
hand-based interactions.

We also propose a framework for capturing automatic annotation of ground truth hand
orientation angles in a dataset. We contribute a painting game application-based method that
enables collection of large hand orientation and pose datasets from a number of participants.
To this end, we collect four different hand orientation datasets containing a total 26,772
samples from up to 22 participants using up to four different planar hand poses.
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Chapter 1

Introduction

The ability to manipulate and interact with different objects comes naturally to us. These

abilities are mainly driven by our curiosity to acquire more knowledge to improve our

everyday life. Today, we are entering a new era of Augmented and Virtual Reality, where

the research of more than 30 years is seeing many of the final pieces falling into place [4–6].

Augmented Reality enables real-time presentation of virtual objects in the context of physical

spaces surrounding a user [7]. Virtual Reality, on the other hand, enables its users to explore

environments that are literally out of this world [8]. However, current devices for both these

alternate realities provide users with limited manipulation and interaction abilities, which are

essential for us to effectively utilize these devices. To this end, determining hand orientation

and pose is critical for understanding the manipulation and interaction with virtual objects in

these alternate realities. Thus, an out-of-the-box solution is sought that can estimate hand

orientation and pose across different users without the need for camera calibration.

This dissertation is devoted to models that can learn the mapping of hand silhouette

images onto the orientation and pose of hands. These proposed models utilize uncalibrated

2D monocular hand images while aiming to generalize across a dataset captured from

different users. In the following sections, the background and motivation for this work are

described to define the problem addressed in this work. The aims of this dissertation are then

laid out, formulating the content of our research. Contributions of the underlying research



2 Introduction

are then listed, followed by the list of publications arising from this work. An overview of

the content of this dissertation concludes this chapter.

1.1 Background and Motivation

The recent advancements in technology have resulted in the introduction of powerful wearable

and mobile computing devices. The key idea behind their widespread success is the human-

centric design. These devices focus on adapting themselves to users’ lifestyle, in contrast

to the existing technology that requires users to conform to the available interfaces, such

as keyboards and mice. This shift in focus has also helped promote the use of computers

from passive accessories, such as laptops and desktops, to being an integral part of our daily

life, like smartphones, smartglasses and smartwatches [9–12]. These devices carry a range

of sensors to sample and understand the users’ activities, which are then used to enhance

the user experience. Furthermore, recent interest in Augmented and Virtual Reality has

shown their applicability in a wide range of applications. The true potential of these devices,

however, is confined by the tangible or voice-based user interface. For this reason, there

has been increased interest from the research community to utilize the available sensors,

especially video cameras, for presenting natural interaction methods [13]. Video cameras on

such devices capture the scene from a user’s perspective which is also known as egocentric

perspective. The unique ability of this perspective to capture hand interactions from a first

person view motivates the need for understanding and utilizing hand-based interaction in

this new setting. This dissertation explores new ways to detect and utilize hand-based

interactions.

Over the recent years, real-time depth cameras have facilitated the introduction of a

range of novel natural interaction methods [14]. These cameras enable acquisition of

depth images that encode the visible 3D shapes using distance values of objects in view.

The acquired depth images are proving fundamental for addressing the human body and

hand pose estimation problems [3, 15, 16]. Furthermore, recent research has focused on

addressing hand pose estimation under challenging settings using depth images [17–20].
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While depth cameras are demonstrating to be of great significance for addressing the hand

pose inference problem, these cameras are not widely available on mobile devices due to the

considerations of power consumption, cost and form-factor [21]. In contrast, 2D monocular

cameras are readily available in majority of mobile devices. Further, existing hand pose

estimation methods have not seen widespread adoption for mobile devices. This is due to

limited accuracy and efficiency of the existing methods. Most existing methods do not take

into account the inter-person hand shape variations [3]. Moreover, some existing methods

also require specialized hardware (e.g. high-end Graphics Processing Unit GPU) which

have limited availability on wearable and mobile devices [22]. Some existing methods

also require camera calibration which is a laborious process, presenting limitations in a

practical context [19, 22–25]. This dissertation focuses on methods that learn hand

orientation and pose using 2D uncalibrated monocular images in new ways. To this

end, we present machine learning models that are capable of generalizing well under

a range of variations resulting from inter-person hand shape, size and style variations.

Most existing hand pose estimation methods have diverse datasets that focus on varia-

tions in hand pose [3]. However, these datasets are limited in terms of viewpoint or hand

orientation, which is an integral source of variation given high Degrees-Of-Freedom (Dof)

of the hand [3]. Furthermore, when utilizing 2D monocular images, the hand orientation

variations can significantly reduce the accuracy of any hand pose estimation method as

changes in hand orientation can result in self-occlusions and significant transformation of the

projected hand shape. Thus, hand orientation is the first step towards determining the detailed

articulation of the hand. A number of previously proposed model-based hand pose estimation

methods utilize 2D monocular images to infer the global hand orientation along with the

detailed hand pose [26, 27]. These methods can significantly benefit from a hand orientation

inference method that learns the mapping of 2D monocular images to hand orientation angles.

Furthermore, when used in Augmented Reality applications, the inferred hand orientation can

provide the user direct control of the orientation of augmented objects [28]. We observe that

the changing orientation of the hand induces changes in the projected hand shape. In such

cases, a model that learns the relationship between features related to hand shape and the
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(a) (b)

Fig. 1.1 Movements in the wrist and the forearm used for hand orientation regression shows
(a) flexion and extension of the wrist and (b) supination and pronation of the forearm.

orientation angles would highly contribute towards understanding and using different hand

postures. In this work, the hand orientation is defined by azimuth and elevation angles

that correspond to the flexion and extension of the wrist and supination and prona-

tion of the forearm measured along the azimuth and elevation axis [29] (as shown in

Fig. 1.1)

1.2 Problem Definition

Given a dataset S = {sk,ok}K
k=1 of K hand silhouette images sk and the corresponding hand

orientation ok captured using a planar hand pose, such that it captures variation in shape, size,

style and orientation from a number of different participants. The problem of hand orientation

estimation aims at (i) extracting reliable hand shape features {dk}K
k=1 and (ii) training a model

to learn the mapping f : {dk}K
k=1 7→ {ok}K

k=1 from {dk}K
k=1 to the hand orientation angles

{ok}K
k=1. The orientation ok contains a pair of angles (φk,ψk), where φk and ψk are the

azimuth and elevation angles along the two major axes of the hand, namely, the azimuth and

elevation rotation axes, respectively. Fig. 1.2 shows the problem formulation for our hand

orientation inference methods. We aim to address the problem of generalization of hand

orientation and pose from a given dataset without requiring any calibration or initialization

and in the presence of a number of inter-person hand variations.
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Application to Augmented Reality

Azimuth rotation 
axis

Elevation rotation 
axis

Hand Orientation EstimationInput Data

Fig. 1.2 Hand orientation inference problem formulation. For a dataset capturing variations
in the hand shape, size, style and orientation, the problem of hand orientation inference learns
the mapping of silhouette images onto the corresponding hand orientations. The extracted
orientations can be used in a number of applications, including Augmented Reality.

The extracted orientation angles can be used to realize an immersive Augmented Reality

application, where orientation manipulations from the hand can facilitate transforming virtual

objects. We further note that these orientation angles can also be used to reduce the search

space for existing generative hand pose estimation methods that optimize against global and

local hand parameters.

1.3 Research Aims

The goal of this dissertation is to contribute and evaluate methods for learning models from

hand orientation and pose data. Our aim is to propose frameworks that are able to learn from

a number of variations in the data. The limitations of the existing literature facilitate us to

put forward the following research questions:

1. Can recently introduced depth cameras be used to acquire a hand orientation and pose

dataset that contains 2D monocular images and additional 3D orientation information?
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And, if so, can we introduce a feedback system for reliable capture of data? This

question is explored in Chapters 3 and 5.

2. Is it possible to use a machine learning model to learn the mapping of hand silhouette

to hand orientation? This question is explored in Chapters 4, 5 and 6.

3. Can such model(s) cover the inter-person and intra-person hand shape, size and style

variations? And, if so, can we propose efficient and flexible frameworks that can exploit

and learn from a number of variations within a dataset? This question is explored in

Chapters 5 and 6.

4. Does the additional hand orientation information contribute towards improving the

hand pose estimation under varying viewpoints? This question is explored in Chapter

6.

In the next section, we present the original contributions of this dissertation that address

the above-mentioned research questions.

1.4 Contributions

The variations in the shape, size and style of the hand across different users makes the hand

orientation inference a challenging task. Moreover, the 2D uncalibrated monocular image

only captures the projected hand shape, where multiple hand orientations can produce the

same captured shape. The main contributions of this dissertation with respect to the problem

defined in Section 1.2 and the research questions raised in Section 1.3 are as follows:

1. We propose a framework for learning hand orientation from a dataset of hand silhouette

images and orientation angles [28]. We design a contour-based feature extraction

method, that enables reliable extraction of hand shape features from a dataset captured

from different users. We also contribute a method for automatic hand orientation

annotation for planar hand poses. The framework trains a Random Forest regressor to

learn the mapping of contour-based features to the corresponding hand orientations.
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2. We contribute four datasets of 2D monocular hand images and corresponding orien-

tation, containing a total of 26,772 samples, captured from up to 22 participants and

containing up to four planar hand poses. We also present a painting game application

that enables capturing of any such dataset using a commodity depth sensor such as a

Microsoft Kinect v11.

3. We propose a multi-layered regression method for learning from a dataset containing

multiple variations. We present a method for dividing the dataset to train multiple

expert regressors, each one learning from a small subset of variations. We propose

a method for using regression to learn marginalization weights for multiple expert

regressors [30].

4. We propose a staged probabilistic regression method, that learns expert regressors

from a dataset without the explicit definition of subsets [31]. This framework learns

expert regressors in stages, where evaluations of existing expert regressors are used

to identify harder samples. We extend this framework to simultaneously infer hand

orientation and pose. Our work is the first to show that simultaneously learning both

hand orientation and pose, using 2D monocular images, enables increased accuracy

for hand pose estimation as the orientation information facilitates the model to learn

the hand pose representation under varying viewpoints.

1.5 Publications

The following is a list of peer-reviewed or submitted research papers developed during

the duration of this doctoral research. Content from the papers in bold is included in this

dissertation.

1. Asad M., Slabaugh G., "SPORE: Staged Probabilistic Regression for Hand Ori-

entation and Pose Inference". In: Computer Vision and Image Understanding

(CVIU), 2017.

1https://developer.microsoft.com/en-us/windows/kinect
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2. Al-Arif S.M.M.R., Asad M., Gundry M., Knapp K., Slabaugh G., "Patch-based Corner

Detection for Cervical Vertebrae in X-ray Images". In: Signal Processing: Image

Communication (Elsevier Journal), 2017.

3. Lazareva A., Asad M., Slabaugh G., "Learning to Deblur Adaptive Optics Retinal

Images". In: International Conference on Image Analysis and Recognition (ICIAR),

2017.

4. Olliverre N., Asad M., Yang G., Howe F., Slabaugh G., "Pairwise Mixture Model for

Unmixing Partial Volume Effect in Multi-voxel MR Spectroscopy of Brain Tumour

Patients". In: SPIE Medical Imaging, 2017.

5. Asad M., Slabaugh G., "Learning Marginalization through Regression for Hand

Orientation Inference". In: Computer Vision and Pattern Recognition (CVPR)

Second Workshop on Observing and Understanding Hands in Action, 2016. (Best

Paper Award)

6. Asad M., Yang G., Slabaugh G., "Supervised Partial Volume Effect Unmixing for

Brain Tumor Characterization using Multi-voxel MR Spectroscopic Imaging". In:

International Symposium on Biomedical Imaging, 2016.

7. Al-Arif S.M.M.R., Asad M., Knapp K., Gundry M., Slabaugh G., "Cervical Verte-

bral Corner Detection using Haar-like Features and Modified Hough Forest". In:

International Conference on Image Processing Theory, 2015.

8. Al-Arif S.M.M.R., Asad M., Knapp K., Gundry M., Appelboam A., Reuben A.,

Slabaugh G., "Hough Forest-based Corner Detection for Cervical Spine Radiographs".

In: Medical Image Understanding and Analysis, 2015.

9. Asad M., Gentet E., Basaru R., Slabaugh G., "Generating a 3D Hand Model from

Frontal Color and Range Scans". In: International Conference on Image Processing,

2015.
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10. Asad M., Slabaugh G., "Hand Orientation Regression using Random Forest for

Augmented Reality". In: International Conference on Augmented and Virtual

Reality, 2014.

1.6 Dissertation Overview

This dissertation is organized as follows.

Chapter 1 motivates the dissertation, formulates the problem of hand orientation inference

and highlights the contributions of this dissertation.

Chapter 2 presents a review of the existing state-of-the-art on hand pose estimation that

can benefit from a hand orientation inference method. It also presents the existing hand

orientation estimation methods and methods that marginalize multi-layered Random Forest.

It details the limitations of the existing methods, putting the contributions of this dissertation

into perspective.

Chapter 3 presents the preliminary concepts required for understanding this dissertation.

It presents a unified framework for hand orientation regression, which forms the basis for the

work presented in the subsequent chapters. It also details the Random Forest algorithm used

for addressing classification and regression problems in this dissertation. We also include an

overview of the data capture process along with the method used for annotating Ground Truth

(GT) hand orientations. This chapter also presents the error measures used for evaluating the

proposed methods.

Chapter 4 presents the hand orientation regression framework that utilizes contour-based

features. We detail the framework, which utilizes two independently trained Random Forest

regressors for inferring hand orientation. We also present an application of the proposed

method for manipulating virtual objects in Augmented Reality.

Chapter 5 details the proposed multi-layered Random Forest method that uses marginal-

ization through regression to learn from different variations within the hand orientation

dataset. We also present a painting-based game method for reliably capturing a hand ori-

entation dataset from multiple users. We evaluate and compare this technique with the one
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proposed in Chapter 4. We also detail the application of the estimated hand orientations to

enable manipulation interactions with characters in Augmented Reality.

Chapter 6 proposes a staged probabilistic regressor, that learns multiple expert regressors

without explicit definition of subsets. This method uses the intermediate model evaluations

to identify harder samples that are not fully learned from in the existing expert regressors.

These samples are used to train the expert regressors in the subsequent stage. We extend this

method to simultaneously learn both hand orientation and pose. We also present comparisons

with methods proposed in Chapters 4 and 5. This chapter also describes two interaction

applications enabled by the proposed orientation and pose inference method.

Chapter 7 concludes this dissertation with a summary of the proposed methods. We

also explore the limitations of our work. The possible future directions that address these

limitations are also discussed in this chapter.



Chapter 2

Literature Review

This chapter presents a review of the previous literature involving hand orientation and pose

estimation. A significant part of our work focuses on estimating hand orientation from 2D

monocular images, however, we also review existing hand pose estimation methods. These

methods can be related to the single-shot hand orientation estimation, where some existing

work also exploits the quantized orientation of the hand [18, 32]. A few hand pose estimation

methods also indirectly estimate the orientation of the hand [19, 22, 24, 26, 27, 33, 34],

however exact orientation is estimated and used by only a few [20, 25, 28, 30, 32, 35].

Existing work by Erol et al. [2] reviewed hand pose estimation methods in 2007. Follow-

ing this, hand pose estimation methods have rapidly evolved as a result of the introduction of

commodity depth cameras and a variety of learning-based discriminative methods [15]. A

recent literature survey in [3], therefore, explores the challenges in depth-based hand pose

estimation methods. Further, [3] also explores the limitations of existing hand pose datasets.

This chapter builds on these existing works, where we have updated and organized the review

based on the overall approach taken to address the pose estimation problem. To achieve their

goals, researchers have employed the use of different modes of input data, which includes

colored gloves, color and depth images [2, 3]. Based on the overall approach taken to address

the pose estimation problem, we categorize previous methods into five categories, namely:

generative, discriminative, hybrid, multi-layered and orientation estimation. We review these

in the subsequent sections below. Following this we summarize the state-of-the-art in Table
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2.1 and detail the limitations of the existing methods while motivating the work proposed in

this dissertation.

2.1 Generative Methods

Generative methods use a model-based approach to address the problem of hand pose

estimation. These approaches reason how different movements of a real hand result in the

corresponding variations in the input data. By optimizing the parameters of a hand model

to the input hand image, generative methods can simultaneously estimate the articulated

hand pose and orientation. Moreover, the use of a 3D articulated hand model enables these

methods to address the ambiguous cases of hand postures in 2D images [23, 26, 27].

Earlier model-based methods utilized color images to estimate hand pose, which raised

a number of challenges due to ambiguity in the projected color images [23, 26, 27, 36, 37].

Furthermore, since these methods utilized a single hand model, they, therefore, lacked

generalization across different users. Initial attempts at model-based hand pose estimation

used simplified hand models with restricted Dof [36, 37]. These methods utilized inverse

kinematics for optimizing the model, where the restricted setting resulted in limited accuracy.

de La Gorce et al. [27] used generative models for both the hand and the background pixels,

in a 2D image; to jointly segment and estimate the hand pose. A similar method in [26]

optimized texture, illumination and articulations of a 3D hand model to estimate hand pose.

This method also automatically scaled bones to adjust the hand model for tracking a new

user. Wu et al. [23] used prior knowledge of hand articulations from a data glove to construct

an importance sampling function. This function was then used with a sequential Monte Carlo

to alternatively optimize the global and local hand motions, where the global motion was

comprised of the hand orientation and translation.

Multiple cameras were employed to further increase the accuracy of generative methods

[19, 39, 41, 45]. Oikonomidis et al. [45] employed a multi-camera system with eight cameras

and a simplified hand model composed of transformed geometric primitives. This method

utilized Particle Swarm Optimization (PSO) to minimize an objective function for estimating
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 2.1 Hand shape models, with varying complexity and level of detail, employed in
generative methods. Models (a)-(d) have been used with color image-based hand pose
estimation, whereas models (e)-(k) are utilized by depth-based hand pose estimation. The
shown models are as follows: (a) truncated quadratics-based hand model from [36], (b)
cardboard hand model from [37] and [23], (c) articulated hand model for hand silhouette
synthesis in [27], (d) realistic hand model from [26], (e) simplified hand model built from
transformed geometric primitives from [22], [19] and [38], (f) mesh model for modeling
hand-object interaction in [39], (g) hand model approximated using 48 spheres in [40], (h)
hand model with 3D Gaussians for optimization in [41], (i) simplified model used with
physics constraints from [42], (j) hand shape model from [43] and [44] and (k) mesh for
modeling hand shape and pose in [20].
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detailed hand pose. The multi-camera-based generative method in [19] also employed eight

cameras to recover hand postures in the presence of occlusion from interaction with physical

objects. This method reasoned that hand-object interaction can be exploited towards a more

accurate system. Ballan et al. [39] showed highly accurate tracking of two-handed hand-

object interaction. This method did not focus on generalizing for multiple users, as it relied on

detailed scanned meshes of hands. Furthermore, the method was computationally expensive

with each frame taking 30 seconds to process. Sridhar et al. [41] used five RGB cameras

and a time-of-flight (ToF) sensor to track a hand at 10 frames per second. The methods in

[45], [19] and [41] utilized a person-specific hand model, limiting their applicability for a

new user.

The recent introduction of depth cameras has provided researchers with additional visible

3D shape information. Furthermore, depth cameras are robust to lighting variations and

background clutter. To this end, most of the recent generative methods utilize depth images

along with advanced optimization techniques [3]. Oikonomidis et al. [22] applied PSO on

depth images for tracking hand articulation in real-time. This method utilized a simplified

hand model that was build from appropriately transformed instances of two geometric

primitives i.e. cylinders and spheres [38]. The approach, however, relied on high-end GPUs.

Qian et al. [40] extended this method by utilizing a fingertip-based re-initializer to assist

PSO and to recover the method from tracking errors. Oikonomidis et al. [38] utilized

quasi-random sampling to improve PSO, achieving speed-up of four times for single hand

and eight times for two hands tracking. Melax et al. [42] inferred 3D hand poses from depth

images using a simplified hand model that imposed physics constraints.

A major problem faced by generative methods is the lack of accurate 3D hand models

that describes the inter-person hand shape and size variations. Hand models for some of these

generative methods are shown in Fig. 2.1, where these models contain different complexity

and level of detail. To address the generalization of hand models for users, some existing

methods use scale calibration of a 3D hand model [23, 24, 26, 27]. Other, similar methods

use simplified geometric primitives and manually adjust for different hands [19, 22, 38]. To

this end, a number of methods have been proposed that estimate accurate hand models from
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depth images [43, 44, 46–48]. Taylor et al. [46] proposed user-specific modeling from a

rough template hand model. This method was limited by the use of a long sequence of hand

motion requiring all Dof of the hand to be exercised. These limitations were addressed in

[43] by learning a parametric shape and pose model using a data sequence captured from

50 different participant’s hands. This enabled efficient optimization that simultaneously

accounted for user-specific hand shape and general variations in pose. A similar approach

was proposed in [44], where a golden energy and render-and-compare strategy enabled the

method to robustly converge to the optimal solution. All these methods only worked on

depth images. In contrast, Rhee et al. [47] utilized a single frontal color image of a hand to

extract finger creases. These were used to localize joints and fit a 3D model with user-specific

skinning. Asad et al. [48] utilized both color and depth data from a frontal scan of an

outstretched pose of the hand. The approach extracted joint locations using the fingertip and

inter-finger region detectors with a Naive Bayes probabilistic model. Rigid registration was

performed using direct correspondences between these joint locations in the range scan and a

synthetic hand model. This was followed by non-rigid registration with a thin-plate-spline

deformation [49]. The resulting model fully captured the shape, size and pose variations.

These hand model generation methods are computationally expensive, require specialized

hardware (e.g. depth cameras) and utilize a cumbersome calibration sequence, limiting their

use with generative methods on mobile devices.

Although the generative techniques discussed above are capable of estimating the un-

derlying articulations corresponding to each hand posture, they are affected by the drifting

problem, where the errors in the pose estimation are accumulated over time, which degrades

the performance as the model drifts away from the actual hand pose. Moreover, optimizing

the parameters with up to 27 Dof for 3D hand models is computationally expensive due to the

vast optimization space [2], and in some cases requires implementation on a GPU to achieve

close to real-time execution [19, 22, 45]. As a consequence, such methods are not suitable for

resource-constrained devices such as wearable and mobile computers. Most of the existing

generative methods require manual initialization and are not capable of recovering from
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Fig. 2.2 Overview of the discriminative human body pose estimation method from [15].
Shown is an input depth image, the inferred body part distribution, 3D joint proposals and
the output 3D skeleton.

tracking failures. These methods can benefit from a single-shot hand orientation and pose

estimation method, that can be used to initialize as well as to correct the drifting problem.

2.2 Discriminative Methods

Discriminative methods are based on a range of machine learning techniques and are able to

learn the mapping from the feature space to the target label space. The ability to infer a pose

from a single input image enables these methods to quickly recover from errors as compared

to generative methods which tend to drift away in such scenarios [18]. This has been a major

factor in their recent popularity in human pose estimation [15, 16, 50, 51]. Furthermore,

these methods are computationally lightweight when compared to model-based approaches

[52].

The current state-of-the-art for discriminative methods are the human body pose esti-

mation methods [15, 16, 50]. These methods utilize depth images, where each pixel is first

classified into body parts. The inferred body parts are then used to estimate the human

body pose defined by 3D joint locations (as shown in Fig. 2.2). These methods employ

depth comparison features which compare the depth values from nearby pixels to a thresh-

old for classifying a pixel as a body part. This task follows a hierarchical comparison
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approach, which leverages the structure of a tree in a Random Forest (RF) to combine

complex threshold-based decisions. As the depth comparisons in each tree are independent

from each other, unlike the different layers in convolutional neural networks (CNN), this

approach can be easily parallelized for runtime efficiency [53–55]. Due to the huge success

of discriminative methods in human body pose estimation, these approaches have also been

utilized by a number of hand pose estimation methods [17, 18, 33, 56–58].

Wang et al. [24] presented the first discriminative method that used nearest neighbor

search to infer hand pose from 2D monocular images. The approach relied on colored gloves

for labeling different parts of the hand with distinct color patterns. A large synthetic dataset

of hand poses, using the same pattern as the colored gloves, was generated and used in

nearest neighbor search to infer the hand pose. In [56], a RF classifier was trained on a

large dataset of labeled synthetic depth images to estimate the hand pose. Keskin et al. [17]

improved the performance of the method in [56] by dividing the dataset into clusters and

using a multi-layered Random Forest classifier. Both [56] and [17] utilized depth-based

difference features originally proposed for human body pose estimation method in [15]. A

number of methods extended [17] by utilizing state-of-the-art regression or classification

techniques to improve accuracy for complex poses [33, 34, 57, 58]. Tang et al. [58] exploited

the hierarchical relationship of different hand joints by using a divide-and-conquer strategy.

This method built a topological model of the hand where the global kinematic constraints

were implicitly learned. They also collected a dataset of 10 users performing various random

hand postures, which they used to train and test their topological model. However, their

dataset only contained limited frontal hand viewpoints as reported by [34]. Sun et al. [34]

also exploited the hierarchical relationship between different parts of the hand to train a

cascaded regressor. They argued that unlike the human body, the hand undergoes large

variations due to changes in the viewpoint and finger articulations. They addressed this issue

by presenting a 3D pixel parameterization that achieved better invariance to 3D viewpoint

changes. The pixel-based classification was further improved by using spatial constraints in a

Markov Random Field smoothing method [57]. This method also handled limited viewpoint
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(a) (b)

Fig. 2.3 Hand labeling for discriminative methods in the literature. The methods shown
are: (a) colored glove-based labeling in color images from [24] and (b) synthetic depth data
generation along with the labeled hand parts from [17].

variations, however, it did not address generalization for new users due to its reliance on a

synthetic dataset.

Recent interest in CNN has also been expressed in some discriminative hand pose

estimation methods [59–61]. Tompson et al. [59] localized joints using CNN. They generated

single-view heatmaps for joints localization using depth images as input. Ge et al. [60]

extended [59] to utilize multi-view CNN. A query depth image of the hand was first projected

onto three orthogonal planes to produce multi-view projections. Three CNN were then

trained to infer the heatmaps of different joint locations in each projection. The inferred

multi-view heatmaps were fused together to produce the final 3D hand pose. Oberweger et al.

[61] explored different CNN architectures for articulated hand pose inference. They achieved

this by learning the mapping of depth images onto the 3D joint locations. A regression-based

joint-specific refinement stage was introduced to improve the localization accuracy.

Synthetic ground truth (GT) data generation has been widely used across discriminative

methods as it is less time consuming with more accurate labels [17, 56, 57]. Fig 2.3 shows

some approaches used in discriminative methods for labeling hand pose data. A major

challenge faced by such methods are their lack of generalization for unseen data. Tang
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et al. [18] addressed this issue by proposing a semi-supervised transductive Regression

Forest for articulated hand pose estimation. This approach was able to learn hand pose

from a combination of synthetic and realistic datasets of depth images. Furthermore, this

method also utilized quantized viewpoints to improve pose classification accuracy. In [15],

generalization for human body pose was addressed by incorporating real scenario-based

variations into the synthetic data generation method. A semi-automatic method for annotating

a large dataset was proposed in [62]. This method required 2D annotations on a small set of

key frames. The appearance and the spatial and temporal coherence between different frames

in a sequence were utilized to automate labeling of the rest of the data. The data collection

process, however, was unguided, where the participants relied on descriptions of different

gestures to provide variations in orientation and pose.

Recently proposed discriminative methods focus on utilizing depth images to infer

detailed articulation of hands [3]. The use of depth images has been favorable as it has

allowed researchers to target problems related to hand articulations, while leaving out other

challenges such as segmentation and depth ambiguity in color images. A major challenge for

such methods has been the collection and annotation of depth-based datasets. As noted in

[3], existing depth-based datasets are diverse in terms of variation in articulations, however,

many datasets contain limited variations in viewpoint. Moreover, usage of depth images has

narrowed the applicability of such methods to a limited number of devices due to constraints

related to depth acquisition sensors, which include form factor, cost and power consumption

[21]. Technologies like Google’s Project Tango 1 and Pelican Imaging 2 show the recent

focus on miniaturizing the depth sensors for mobile devices. However, the need for a custom

sensor with complex electronics, high-power illumination and physical constraints, such as

baseline between illumination and sensor, limit the use of such devices, especially when

compared to 2D monocular cameras [21]. In contrast, recent work has not seen methods that

utilize color images, which are widely available across a range of devices including mobile

devices. Towards this end, we propose a method that enable reliable dataset collection that

utilizes the additional depth sensor information to provide ground truth orientation along

1https://get.google.com/tango/
2http://www.pelicanimaging.com/

https://get.google.com/tango/
http://www.pelicanimaging.com/
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with a corresponding color image encoding the shape, size and pose variations in hand. This

enables us to study hands from a new perspective; that of orientation and pose estimation

from color images without the need for camera calibration. Moreover, inspired by the

exceptional performance of data-driven discriminative methods [16–18, 20, 32], we propose

to apply discriminative techniques on color images. We present a more detailed analysis of

the limitations of discriminative methods in Section 2.6, where we further motivate the need

for the work proposed in dissertation.

2.3 Hybrid Methods

Recent literature has seen interest in utilizing a hybrid approach, that combines the gener-

ative and discriminative methods [20, 32, 59, 63, 64]. These methods utilize the one-shot

pose estimation capability of discriminative models to make generative models robust to

tracking failures. Moreover, the generative methods impose kinematic constraints resulting

in realistically accurate descriptions of an articulated hand pose.

Xu et al. [33] took a three-step approach where they learned from a synthetic dataset

of depth images. This method first estimated the in-plane orientation and 3D location of

the bottom of the hand. The orientation information was then used to correct for in-plane

rotation. Depth-based difference features were then used to infer a number of candidate

postures of hand. Following this, a generative model was used to infer the final detailed hand

pose. The resulting method turned out to be computationally expensive and was only able

to generalize under in-plane rotations for a single user. Tompson et al. [59] used CNN for

feature extraction and to infer heatmaps for localizing joints. Inverse kinematics was then

utilized to estimate the hand pose. This approach, however, was limited by prediction of 2D

joint locations, and its reliance on depth maps for determining the third coordinate, which is

unavailable for occluded joints. Oberweger et al. [64] proposed a data-driven approach to

estimate 3D hand poses from depth images. This method utilized CNN for estimating initial

joint locations from a depth image of the hand. They replaced the generative model with a

feedback loop implemented using CNN and trained to synthesize depth images from inferred
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joint locations. Sharp et al. [32] utilized a discriminative re-initializer for optimizing PSO.

A similar approach was proposed in [20] for hand tracking using non-linear optimization

methods.

All of the emerging hybrid methods require a large dataset for learning the discriminative

part, while still relying on computational resources to perform generative optimization.

Owing to the complexity, such methods have not been deployed or tested on egocentric

mobile devices.

2.4 Multi-layered Regression

Multi-layered regression has been previously used for hand pose estimation, where complex

problems have been solved by layered regressors trained on simpler subsets of the data

[17, 21, 34, 65].

Keskin et al. [17] proposed a multi-layered Random Forest (ML-RF) classification

method for hand pose estimation. This method was divided into two layers, the first layer

performed the shape classification, whereas the second layer used classification of individual

hand parts to estimate hand pose. The final hand pose was estimated by combining the

posterior probabilities for both layers as a weighted sum. The three most significant posterior

probabilities from the first layer were used as weights for the corresponding posterior

probabilities in the second layer. Fanello et al. [21] used a similar framework to estimate

depth maps from a modified monocular 2D camera. Dantone et al. [66] proposed Conditional

Random Forest for detecting facial features. Similar to [17], this method used a sum of all

weighted posterior probabilities to localize facial features, given a specific head orientation.

Sun et al. [67] utilized Conditional Random Forest for inferring joint locations for human

body pose estimation. They argued that a multi-layered model that is conditioned on a global

latent variable, such as torso orientation or human height, can significantly contribute to

improved joint location prediction. A boosted classification tree, for hand shape detection

with a multi-layered structure, was presented in [65]. This method performed hand detection

in the first layer, whereas the second layer classified the hand into different shapes. Sun
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et al. [34] utilized the hierarchical relationship between different parts of the hand to train

cascaded regressors. They used a 3D pixel parameterization that achieved some invariance to

3D viewpoint variations. This showed the significance of hand orientation for articulated

pose estimation. Sharp et al. [32] utilized a two-layered re-initializer, where the first layer

consisted of quantized hand orientation classification and the second layer employed expert

predictors to infer other elements of the hand pose. The second layer specifically contained a

hand orientation refinement regressor, an offset translation regressor and a finger-based pose

classifier. During prediction, the top five most likely quantized hand orientations from the

first layer were used to select the corresponding distributions from expert predictors. They

sampled these selected distributions and employed a PSO-based optimizer to estimate the

optimal hand pose.

While the above-mentioned methods present a significant improvement in performance,

their limitation comes from their reliance on the results of the first layer in the hierarchy.

These systems are not capable of fully recovering from misclassifications that arise in the first

layer, where their performance could significantly degrade. The weighted sum of posterior

probabilities is able to partly recover errors related to these misclassifications, nevertheless,

it is still influenced by the other most significant posterior. Thus, resulting in a larger model

bias.

2.5 Orientation Estimation

A limited number of methods exist in the literature that estimate hand orientation [25, 28,

35, 68–70]. Most of these methods use camera calibration and hand features to build a

relationship between camera pose and hand orientation. These methods do not address the

generalization problem and hence require a calibration step for every new user.

Lee et al. [25] proposed a markerless camera tracking method that enabled inspection

of Augmented Reality objects using fingertip tracking. This method required an offline

calibration step where a sequence of images with a checkerboard marker and a coplanar

outstretched hand pose were used to build a relationship between camera pose and fingertips.
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This information was used for online camera pose estimation where fingertip positions were

tracked using a Kalman Filter [71]. A similar method was also proposed for smart phones in

[70]. Both these methods, however, relied on the assumption that the human hand remains

rigid throughout the variations in orientation. Moreover, a tedious calibration step was

employed for each new camera and user setting which limited widespread usage of these

methods as a markerless Augmented Reality method. Mizuchi et al. [35] improved [25] by

utilizing an offline calibration sequence using ARToolkit [72] markers and features based

on the convexity and concavity of the hand contour. This method enhanced hand contour

extraction by differentiating between adjoining fingers using elimination of low brightness

regions in the segmentation mask. The convexity and concavity of the hand contour were

used to extract inter-finger points and the middle fingertip. These feature points were tracked

using a Kalman Filter and used along with the calibrated parameters to estimate the camera

pose relative to the hand orientation. This method also assumed the use of a rigid hand pose,

however, it was able to achieve some invariance to non-rigid movements using interfinger

points. Nevertheless, the performance of this method was not evaluated using different

variations in hands and cameras.

Ng et al. [68] improved the performance of hand-based markerless Augmented Reality

methods by utilizing a stereo camera system. This method only required offline calibration

of the camera setup using a checkerboard pattern and was independent of the user’s hand.

The method, however, relied on convexity defects of hand contour to extract fingertips

and inter-finger regions. A distance transform was utilized for finding the palm center.

Calibrated stereo cameras were used to find depth of each extracted feature points. The

thumb fingertip, palm center and the middle fingertip were used to form a hand coordinate

system. Based on the assumption that the hand remains rigid throughout orientation variations,

the transformation from hand coordinate system to camera pose was found. Some robustness

to feature extraction was achieved in [69], where the most dominant lines in a segmented

hand region were extracted using Hough transform [73]. A homography was used along with

the extracted lines to estimate camera pose.
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All the existing methods focused on building a relationship between hand-based features

and the calibrated camera sequence. These methods were limited by the assumption of a

rigid hand pose throughout the interaction, and were unable to generalize well for a number

of different hands and cameras without the need of tedious calibration steps. Moreover, these

methods did not explore discriminative techniques that have been extremely successful for

solving pose related problems in recent years [15, 20, 32].

To the best of our knowledge, image-based hand orientation regression has only been

applied in our proposed work in [28, 30, 31]. Our method in [28] utilized two single-variate

RF regressors based on an assumption that the orientation angles vary independently. This

method, evaluated on a subset of hand orientation angles, showed the significance of inferring

hand orientation from 2D uncalibrated monocular images. We extend the hand orientation

inference framework further, in [30], by utilizing an ML-RF regression method that uses

multi-variate regressors to regress the orientation angles together. We further improve the

method proposed in [30] to present a staged probabilistic regressor [31]. Our proposed work

does not require camera calibration which renders it suitable for a wider array of applications

across different devices. The datasets used for training the proposed methods come from

multiple people, which enables them to naturally handle person-to-person hand variations.

Independent work proposed in [32] utilized global hand orientations from depth images to

assist in hand pose optimization. The method consisted of an ML-RF, where the first layer

inferred a quantized hand orientation and the second layer estimated refined orientation. The

prediction probabilities, however, were utilized to sample candidate solutions for use with

PSO-based optimization. The depth images provided detailed visible shape information,

which introduced less ambiguities in the data, thus resulting in a less challenging orientation

estimation problem in [32]. The method proposed in [74] utilized a modified Kalman Filter

for tracking hand orientations from an Inertial Measurement Unit (IMU). This method,

however, did not learn and generalize the mapping of image-based hand shape features onto

the measured orientation of the hand.

The hand orientation inference methods proposed in this dissertation can be related to

the head pose estimation method found in literature [75]. A number of different regression
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methods have been previously used to estimate head pose [75–79], that learn the mapping

of a feature set onto head orientation angles. These methods, however, differ from the hand

orientation inference problem due to a number of reasons which include (i) fixed and distinct

landmark configuration for varying head pose as opposed to rapidly changing shape and

high similarity across local features (e.g. features extracted from fingers) that cannot be

used as landmarks, (ii) limited self occlusion for facial features versus self occlusion that

significantly affects hand shape in different viewpoints and (iii) similar configuration of facial

landmarks across a number of users for head pose estimation as opposed to highly varying

hand shapes and styles of doing the same hand pose across a number of users. The method

described in [80] employed a RF with intensity-based difference features on grayscale images

to infer head orientation. Fanelli et al. [76] also utilized RF regression for estimating head

orientation from depth images. They generated synthetic annotated data using a statistical

model of the human face. The RF algorithm employed depth difference features comparing

two rectangular patches. This method was able to generalize well against partial occlusions

and varying facial expressions.

2.6 Limitations of Existing Methods

This chapter presented the existing methods for hand pose estimation as well as hand

orientation inference. The discussed methods either used a generative, a discriminative or

a hybrid approach to estimate the hand pose. Moreover, these methods exploited different

types of input data including color images, depth images and multi-camera systems providing

a number of color images. We summarize the state-of-the-art in Table 2.1, which we assess

against a number of criteria, that are directly related to the motivation of our research direction

and goals. These criteria are discussed below in detail with relation to our research.

The different properties used for comparison in Table 2.1 are (i) the ability of a method

to generalize for new users (GEN), whether a given approach requires (ii) model calibration

(MCL) and (iii) camera calibration (CCL), (iv) direct or indirect use of hand orientation

(OR), (v) guided dataset collection (GDC), (vi) methods requiring specialized hardware
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such as high-end PCs (RSH) and the use of (vii) real (REAL) and/or (viii) synthetic (SYN)

data for the training of discriminative methods. The execution time per frame (ET) for each

method is also presented along with the method summary, however, it should be noted that

the execution times are taken directly from other author’s work where they all used different

hardware. In most cases, the performance is measured on high-end PCs, this is highlighted

in the RSH column.

The ability to generalize is vital for a given method’s application in real scenarios, where

a number of variations in hand shape, size and style are found along with the varying hand

orientations. Overall this has been given limited importance in the existing work, where

only a few methods were able to show their capabilities for new users. de La Gorce et al.

[26] used 54 scaling parameters to morph a hand model during initialization. This method,

however, used a number of assumptions for initialization. The discriminative method in

[24] used colored gloves and scale calibration to prove its generalization capability. This

method was, however, only validated on five users with no qualitative results presented.

Furthermore, the author in [24] agreed that calibrating the precise shape and size of each

hand would improve the accuracy of their method. In contrast to this, existing research

on human body pose estimation has demonstrated solutions to generalization by inducing

variations in the camera pose, body pose, shape and size, directly into the synthetic data [15].

These variations were implicitly learned by a RF classifier. A number of hand pose estimation

methods followed the success of [15] to utilize synthetic depth data [17, 18, 33, 56]. Unlike

the human body, hand shape varies rapidly across a number of users. Moreover, style

variations and large viewpoint variations make hand pose a much more challenging task

[3, 32]. Therefore, discriminative methods that utilize synthetic data were not able to report

success on real hand pose datasets. Recent methods have included real datasets to show

better generalization [18, 34, 58]. However, little attention has been given to generalization

against hand orientation.

While model and camera calibration are important steps for most of the existing generative

methods, they prove to be a major hurdle in their application to real scenarios. The dynamic

nature of mobile devices induce variations in both the hand and the surrounding environment,
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requiring a new calibration for each new scenario. Furthermore, achieving widespread usage

of hand pose estimation methods requires them to work out-of-the-box. On the contrary,

discriminative methods do not require such calibration steps and previous research has shown

that they can work out-of-the-box for specific pose estimation tasks [15, 17, 18]. Furthermore,

comparing the execution times for discriminative and generative methods, discriminative

methods utilize minimal computational resources for real-time execution whereas generative

approaches require a GPU to reach near real-time execution [22].

Fingers move with more complex articulations as compared to the head and limbs in a

human body [18]. This results in self-occlusion, where different viewpoints can induce large

variations for the same pose. Generative methods address this problem by optimizing against

a global orientation of the hand. This, however, depends on the initialization requirement

where a predefined hand orientation and pose is required. In contrast to this, discriminative

methods depend on data to encode invariance to different orientations of the same pose

[15, 18, 24]. Most existing discriminative methods for hand pose estimation focus on limited

viewpoints [17, 56, 58]. The viewpoint is an important aspect of hand pose estimation,

however, the existing datasets do not provide viewpoint variations [3, 34]. The discriminative

approach proposed by Tang et al. [18] introduced a quality function that was able to combine

different information gains related to the quantized viewpoints, joint articulations and hand

poses. While the viewpoints, in this case, were limited, it showed the significance of having a

hand pose estimation method that is invariant to changes in viewpoints. Similar performance

improvement was seen in recent work that catered for hand orientation variations in hand

pose estimation [18, 33, 34]. Multi-layered Random Forest-based orientation regression was

used in a recent method [32]. However, this method utilized synthetic depth images which

produced less ambiguous cases in the data. Hence, it addressed a less challenging orientation

estimation problem as compared to estimating hand orientation from color images.

The success of discriminative methods lies in a carefully designed dataset capture process

[16]. We note that such formulation is absent from most existing discriminative methods

[3, 34]. Most datasets are captured with the assumption that the instructions for specific hand

poses suffice for capturing it from different users. Moreover, in cases where hand orientation



28 Literature Review

variations are to be captured [18, 33, 34], participants are instructed to randomly move hands

in different orientations. As we will show in Chapter 4, such an approach leads to a number

of unwanted variations in style, orientations and pose. To this end, a guided method for

collecting a hand orientation and pose dataset is much needed for reliable and detailed dataset

collection.



2.6 Limitations of Existing Methods 29
R

ef
.

M
et

ho
d

In
pu

tD
at

a
Pr

op
er

tie
s

Tr
ai

ni
ng

E
st

im
at

io
n

M
et

ho
d

E
T

C
om

m
en

ts
G

M
D

M
C

I
D

I
M

C
G

E
N

M
C

L
C

C
L

O
R

G
D

C
R

SH
R

ea
l

Sy
n

[2
7]

✓
✗

✓
✗

✗
✗

✓
✗

✓
✗

✓
✗

✗
G

ra
di

en
tD

es
ce

nt
w

ith
Pa

rt
ic

le
Fi

lte
r

3m
in

[2
6]

✓
✗

✓
✗

✗
✓

✓
✗

✓
✗

✓
✗

✗
Q

ua
si

-N
ew

to
n

(p
os

e,
te

xt
ur

e
an

d
ill

um
in

at
io

n)
40

s
C

al
ib

ra
tio

n
re

qu
ir

ed
fo

r
ge

ne
ra

liz
at

io
n

[2
3]

✓
✗

✓
✗

✗
✗

✓
✓

✓
✗

✓
✓

✗
Im

po
rt

an
ce

sa
m

pl
in

g-
ba

se
d

se
qu

en
tia

lM
on

te
C

ar
lo

66
.6

7m
s

D
iv

id
e

&
co

nq
ue

rf
or

or
ie

nt
at

io
n

&
po

se
[2

2]
✓

✗
✗

✓
✗

✗
✗

✓
✓

✗
✓

✗
✗

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

66
.7

m
s

Im
pl

em
en

te
d

on
a

G
PU

[1
9]

✓
✗

✗
✗

✓
✗

✗
✓

✓
✗

✓
✗

✗
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
50

0m
s

E
st

im
at

es
ha

nd
an

d
in

te
ra

ct
in

g
ob

je
ct

po
se

si
m

ul
ta

ne
ou

sl
y

[3
8]

✓
✗

✗
✓

✗
✗

✗
✗

✓
✗

✓
✗

✓
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
w

ith
E

vo
lu

tio
na

ry
Q

ua
si

-r
an

do
m

Se
ar

ch
-

Tr
ac

ks
m

ul
tip

le
ha

nd
s

w
ith

hi
gh

ef
fic

ie
nc

y

[4
2]

✓
✗

✗
✓

✗
✗

✗
✗

✓
✗

✗
✗

✗
Si

m
pl

ifi
ed

ha
nd

m
od

el
-b

as
ed

tr
ac

ki
ng

w
ith

im
po

se
d

ph
ys

ic
s

co
ns

tr
ai

nt
s

16
.6

7m
s

[5
9]

✓
✓

✗
✓

✗
✗

✓
✗

✓
✗

✓
✓

✗
C

N
N

fo
ri

nf
er

ri
ng

he
at

m
ap

s
lo

ca
liz

in
g

jo
in

ts
&

in
ve

rs
e

ki
ne

m
at

ic
s

to
op

tim
iz

e
m

od
el

24
.9

0m
s

H
yb

ri
d

ap
pr

oa
ch

[3
2]

✓
✓

✗
✓

✗
✓

✗
✗

✓
✗

✓
✗

✓
M

ul
ti-

la
ye

re
d

R
an

do
m

Fo
re

st
&

Pa
rti

cl
e

Sw
ar

m
O

pt
im

iz
at

io
n

33
.3

3m
s

H
yb

ri
d

ap
pr

oa
ch

[2
0]

✓
✓

✗
✓

✗
✓

✗
✗

✓
✗

✗
✗

✓
D

is
cr

im
in

at
iv

e
re

-i
ni

tia
liz

er
&

no
n-

lin
ea

r
op

tim
iz

at
io

n
us

in
g

L
ev

en
be

rg
m

et
ho

d
-

H
yb

ri
d

ap
pr

oa
ch

[6
4]

✓
✓

✗
✓

✗
✗

✗
✗

✓
✗

✓
✓

✗
C

N
N

fo
rd

is
cr

im
in

at
iv

e
po

se
,s

yn
th

es
iz

in
g

de
pt

h
&

up
da

tin
g

sy
nt

he
si

ze
r

2.
50

m
s

H
yb

ri
d

ap
pr

oa
ch

[4
1]

✓
✓

✓
✓

✓
✗

✓
✓

✓
✗

✓
✓

✓
G

ra
di

en
tA

sc
en

tO
pt

im
iz

at
io

n
w

ith
SV

M
cl

as
si

fie
r

10
0m

s
H

yb
ri

d
ap

pr
oa

ch

[6
0]

✗
✓

✗
✓

✗
✗

✗
✗

✗
✗

✓
✓

✗
M

ul
ti-

vi
ew

C
N

N
le

ar
ne

d
on

or
th

og
on

al
pl

an
e

pr
oj

ec
tio

ns
of

de
pt

h
da

ta
14

.1
0m

s

[2
4]

✗
✓

✓
✗

✗
✓

✓
✓

✓
✗

✓
✗

✓
N

ea
re

st
N

ei
gh

bo
ur

10
0m

s
G

en
er

al
iz

at
io

n
re

qu
ir

es
sc

al
e

ca
lib

ra
tio

n
of

3D
ki

ne
m

at
ic

m
od

el
[5

6]
✗

✓
✗

✓
✗

✗
✗

✗
✗

✗
✓

✗
✓

R
an

do
m

Fo
re

st
33

.3
3m

s

[1
7]

✗
✓

✗
✓

✗
✓

✗
✗

✗
✗

✓
✗

✓
M

ul
ti-

la
ye

re
d

R
an

do
m

Fo
re

st
-

C
lu

st
er

in
g

po
se

sp
ec

ifi
c

su
bs

et
s

fo
rp

er
fo

rm
an

ce
ga

in

[1
8]

✗
✓

✗
✓

✗
✗

✗
✗

✓
✗

✓
✓

✓
Se

m
i-

su
pe

rv
is

ed
Tr

an
sd

uc
tiv

e
R

eg
re

ss
io

n
Fo

re
st

40
m

s
R

ea
la

nd
sy

nt
he

tic
da

ta
fu

si
on

[5
8]

✗
✓

✗
✓

✗
✓

✗
✗

✗
✗

✓
✓

✗
L

at
en

tR
eg

re
ss

io
n

Fo
re

st
w

ith
to

po
lo

gi
ca

l
le

ar
ni

ng
16

m
s

D
oe

s
no

tc
at

er
fo

r
vi

ew
po

in
tv

ar
ia

tio
ns

[3
4]

✗
✓

✗
✓

✗
✓

✗
✗

✓
✗

✓
✓

✗
R

an
do

m
Fo

re
st

w
ith

ca
sc

ad
ed

le
ar

ni
ng

3.
33

m
s

Si
gn

ifi
ca

nc
e

of
tr

ai
ni

ng
ag

ai
ns

tv
ie

w
po

in
t

va
ri

at
io

ns
sh

ow
n

[3
3]

✓
✓

✗
✓

✗
✗

✗
✗

✓
✗

✓
✗

✓
H

ou
gh

Fo
re

st
w

ith
ge

ne
ra

tiv
e

ha
nd

m
od

el
fit

tin
g

83
.3

3m
s

O
nl

y
ca

te
rs

fo
ri

n-
pl

an
e

ro
ta

tio
n

[2
5]

✗
✗

✓
✗

✗
✗

✗
✓

✓
✗

✗
✗

✗
C

al
ib

ra
tio

n
us

in
g

fin
ge

rt
ip

s
33

.3
3m

s
R

eq
ui

re
s

a
ca

lib
ra

tio
n

st
ep

Ta
bl

e
2.

1
St

at
e

of
th

e
ar

tf
or

ha
nd

po
se

es
tim

at
io

n.
K

ey
:G

M
-G

en
er

at
iv

e
M

et
ho

ds
,D

M
-D

is
cr

im
in

at
iv

e
M

et
ho

ds
,C

I-
C

ol
or

Im
ag

e,
D

I-
D

ep
th

Im
ag

e,
M

C
-C

ol
or

im
ag

es
fr

om
m

ul
tip

le
ca

m
er

as
,G

EN
-G

en
er

al
iz

at
io

n
to

ne
w

us
er

,M
C

L
-U

se
s

M
od

el
C

al
ib

ra
tio

n,
C

C
L

-R
eq

ui
re

s
C

am
er

a
C

al
ib

ra
tio

n,
O

R
-E

xt
ra

ct
s/

U
se

s
H

an
d

O
ri

en
ta

tio
n,

G
D

C
-G

ui
de

d
D

at
as

et
C

ol
le

ct
io

n,
R

SH
-R

eq
ui

re
s

Sp
ec

ia
liz

ed
H

ar
dw

ar
e,

Sy
n

-S
yn

th
et

ic
,E

T
-E

xe
cu

tio
n

tim
e

pe
rf

ra
m

e.





Chapter 3

Preliminaries

This chapter presents an overview of the foundational concepts required for understanding

this dissertation. A major part of our work addresses the inference of hand orientation

from 2D monocular images. Therefore, this chapter starts by presenting an overview of

supervised learning. As the models proposed herein utilize a probabilistic approach, we

present background on different types of probabilistic outputs from a model. We then

present a unified framework for learning the mapping of hand shape features from 2D hand

silhouette images onto the corresponding 3D orientation. The framework puts together the

key components that will be further detailed and discussed in the subsequent chapters. The

common concepts, such as feature extraction and Ground Truth (GT) data annotation, are

further described in this chapter. We also discuss the Random Forest (RF) algorithm, which

is used for both regression and classification tasks proposed in this dissertation. We include

an overview of the different dataset collection methods used to capture hand orientation and

pose datasets. Furthermore, an overview of the datasets collected, for evaluating the methods

proposed in this dissertation, is also provided. In the conclusion, we introduce and explain

the rationale for using different error measures for evaluating the proposed work.
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Training set
Learning 

algorithm
f

 
(unseen)

 
(predicted)

Prediction

Training

Fig. 3.1 A learning task consists of learning a mapping function f from a training set {X ,Y}.
f is used during prediction to predict target y′ for an unseen input x.

3.1 Learning from a Dataset

Learning a mapping between input and labeled output variables, such that it can be used to

predict the output for a previously unseen input is known as supervised learning [81]. This

inference is based on the assumption that the output variable does not take a random value

and that there exists a relation between input and output that can be exploited. We consider

the example of hand orientation and pose estimation problem where input features describe

the shape of the hand, whereas the target could either be orientation or pose. Depending on

the type of target variable, supervised learning can be categorized into different machine

learning tasks, namely:

Regression: Predicting the hand orientation as a function of hand shape features. The target,

in this case, is continuous.

Classification: Identifying, from the shape features if a given hand is in a specific pose.

The target, in this case, is categorical and can only take a single discrete value from a

known set of target variables.

To understand it in detail, consider a training dataset {X ,Y} of input features x and

target variable y [82]. Based on a learning task defined above, the target variable y can be
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(a) (b)

(c) (d)

Fig. 3.2 Linear regression and non-linear regression problems, where the goal is to infer y′,
given an unseen input x and learned models fl and fnl . A linear regression problem is shown
in (a) where (b) a linear regression model fl can be used to learn the mapping of x 7→ y.
(c) shows a non-linear regression problem where a linear regression model is insufficient,
therefore (d) a non-linear regression model fnl can be used.

continuous or categorical. The mapping of X onto Y is learned as a function f : X 7→ Y .

Given a previously unseen input x, the function f can be used to predict a target y′. Fig. 3.1

gives a general overview of learning and prediction tasks described above.

The research in machine learning has produced an extensive literature of different learning

algorithms that fit the problem posed in Fig. 3.1. Some notable examples include: (i) Linear

Regression, (ii) Logistic Regression, (iii) Neural Networks, (iv) Support Vector Machines

and (v) Random Forest [83–86]. The underlying formulation of any learning algorithm can

be broadly categorized into two categories, namely, linear and non-linear learning [87]. A

linear machine learning model learns the mapping function f as a linear combination of

input features x, whereas a non-linear method builds a more complex mapping catering for

non-linearities in the data. We show the concept of linear and non-linear regression with a

set of abstract examples in Fig. 3.2. Fig. 3.2 (a) shows a linear regression problem, where a

linear regression model fl , shown in Fig. 3.2 (b), is able to fully learn from the data. However,
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if the task is that of non-linear learning, as in Fig. 3.2 (c), then a non-linear model fnl is

required (Fig. 3.2 (d)).

The problem addressed in this work - that of learning the mapping f : {dk}K
k=1 7→ {ok}K

k=1,

is a non-linear regression problem where the complex relationship between hand shape

features {dk}K
k=1 and hand orientation angles {ok}K

k=1 is learned.

3.2 Probability Distributions

A probability distribution defines how likely a random variable or a set of random variables

are to be in one of their possible states. The models proposed herein take a probabilistic

approach. Thus, we present an overview of the probabilistic formulation used in this work.

We also describe relevant probability rules.

3.2.1 Posterior Probability

Given an input feature vector x, the online prediction from a probabilistic model gives a

posterior probability p(y|x) of target variable y. Depending on whether the target variable y

is categorical or continuous, p(y|x) can be defined using a probability mass function (PMF)

or probability density function (PDF) respectively [88].

When p(y|x) is PMF, then it must fulfill the following conditions:

• The domain of p(y|x) must be all possible values of y.

• The range of p(y|x) must be in the real interval [0, 1].

• ∑y p(y|x) = 1.

In case of a PDF, p(y|x) must satisfy the following properties:

• It must map from the domain of random variable y to real numbers.

• ∀y, p(y|x)≥ 0.

•
∫

y p(y|x)dy = 1.
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3.2.2 Marginalization of Probability Distributions

In some cases, we know a probability distribution conditioned over a set of variables, e.g.

p(y|x,w) where w is an additional parameter that can be related to a learning model. We

establish how such variables are introduced to learning models in Section 5.1.2. It is some-

times desirable to extract probability over just a subset of variables (such as finding p(y|x)

from p(y|x,w)). The extracted probability is known as marginal probability. Mathematically

it is defined as:

p(y|x) = ∑
w

p(y|x,w). (3.1)

Next, we describe a unified framework for learning hand orientation which forms the

foundation of training and prediction frameworks proposed in Chapters 4, 5 and 6.

3.3 Unified Framework for Hand Orientation Regression

The proposed unified framework provides a general outline for designing a hand orientation

regression method. The flowchart of the framework is presented in Fig. 3.3, where different

specific frameworks could be designed by modifying different blocks. The framework is

further divided into training and prediction stages. Training is done offline using a dataset of

hand silhouette images and GT hand orientation angles. The hand orientation prediction is

done online using only the hand silhouette image. Both prediction and training frameworks

use the same feature extraction method to extract hand shape features from silhouette

images. These are used along with the orientation angles to train a regression model. During

prediction, the hand shape features, extracted from an unseen hand silhouette image, are used

in the trained model to infer the corresponding hand orientation. This dissertation makes

use of some necessary assumptions to achieve the research goals, which are discussed next.

Following this we describe each block within the proposed unified framework.
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Feature 
Extraction

Hand 
Silhouette

Training Framework

GT Hand 
Orientations

Training Data

Training 
Regressor

Feature 
Extraction

Hand 
Silhouette

Predicted 
Orientation

Prediction Framework

Input Data

Regressor

Fig. 3.3 Flowchart of the proposed unified framework, showing the training and prediction
frameworks for hand orientation regression. The trained regressor is highlighted with a solid
gray background.

3.3.1 Assumptions

Most mobile devices are equipped with 2D monocular cameras. 3D depth cameras are not

widely available on such devices due to their high power consumption, cost and relatively

larger form-factor [21]. Our proposed hand orientation estimation methods are targeted

for mobile devices, and for this reason, we only use 2D monocular images. Most existing

state-of-the-art methods utilize depth data, where the focus is to infer detailed articulated

hand pose [17, 18, 22]. These methods are not suitable for a mobile scenario where, in

addition to the absence of depth sensors, limited computational resources are available. The

proposed methods for hand orientation estimation assume the use of 2D monocular cameras,

where limited computational resources are available and real-time performance is required.

We assume that the hand orientation can be represented with a single 3D normal vector for

a planar hand pose. This enables us to reliably extract hand orientation angles encoded by the

3D normal vector, which is satisfied by a limited set of articulated hand postures. Nevertheless,

such assumption facilitates our research to focus on the effects of hand orientation variations
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Fig. 3.4 Hand images with orientation angles in the range
√

φ 2 +ψ2 ≫ 45°. The large
orientations result in self-occlusion where the visible shape of the hand is significantly
occluded. Such orientations are not addressed in this dissertation.

with a predefined set of planar hand shapes. This dissertation refers to planar hand shapes as

hand poses, where our aim is to study the effects of orientation variations on such hand poses.

While the problem seems similar to pose estimation for rigid objects, it is quite different

from it as our data contains multiple sources of variations. These include inter-person hand

shape and size variations and intra-person pose and style variations.

Given the 3D normal vector, we extract the orientation encoded by azimuth (φ ) and

elevation (ψ) angles. Our aim is to model variations in orientations for fronto-parallel

hand, therefore we limit the orientation angles to
√

φ 2 +ψ2 ≤ 45°. On the contrary, hand

orientations with
√

φ 2 +ψ2≫ 45° are affected by self-occlusion where the visible shape of

the hand is significantly occluded. Moreover, our ground truth orientation extraction method

(described in Section 3.5.2) restricts the orientations variations to a fronto-parallel hand.

Fig. 3.4 shows some example hand images where orientation angles are
√

φ 2 +ψ2≫ 45°.

It can be seen that in such cases self-occlusion presents a challenge for extracting both

reliable ground truth orientation angles and shape features that are necessary for training our

proposed methods.
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(a) (b) (c) (d)

Fig. 3.5 Symmetry problem in silhouette images shows color images of the hand in the top row
and the segmented silhouette images in the bottom row. The absence of depth information in
silhouette images results in similar silhouettes for symmetrically opposite hand orientations.
The images in (a)-(b) and (c)-(d) are from symmetrically opposite orientations of the hand.
GT normal vector is shown as green arrow.

Skin and hand segmentation have a long history in computer vision, where many seg-

mentation techniques have been devised [89–91]. We, therefore, assume the segmentation

problem is already solved. This enables us to focus on the hand orientation estimation prob-

lem, given a segmented silhouette image of planar hand shape. While the silhouette images

facilitate capturing the hand shape variations required for learning the problem of hand

orientation inference, they are also affected by the symmetry problem, where the absence

of depth information results in symmetrically opposite orientations to produce similar hand

shape as shown in Fig. 3.5.

To robustly extract hand shape features, we assume that the in-plane orientation θ of

the hand will always be within a predefined range of an upright hand pose, where θ = 90°.

Our assumption is satisfied by setting the operating range on the in-plane orientation to be

0° < θ < 180°.
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3.3.2 Feature Extraction

A rich body of literature exists that provides a number of feature extraction techniques for

hand pose estimation [17, 18, 59, 61, 92, 93]. Recent work has focused on utilizing depth

images from commodity depth cameras, where depth difference features, similar to the one

proposed in [16] for human body pose estimation, have been used [17, 18]. Some methods

have also employed Convolutional Neural Networks (CNN) for representation learning on

depth images, where the most suitable convolutional kernels have been learned [59, 61].

However, these CNN-based methods are limited by the requirement for a large training

dataset and specialized hardware with enough computational resources [94]. We aim to learn

from color images which, unlike most recent methods that utilize depth images, presents

a number of challenges including lighting variations, inter-person skin color variations

and scale changes across different hands and scenes. Moreover, our research studies hand

orientation variations in color images using machine learning models, which has not been

previously studied. We observe that the changing orientation of the hand induces changes in

the projected hand shape. We, therefore, utilize contour-based features in our work as these

features encode the geometric hand shape variations that directly correspond to changes in

orientation of the hand [28]. Similar features have been previously used for hand shape-based

gesture recognition [92] and person recognition [95]. As we will show in this dissertation,

these features also prove sufficient for jointly learning hand orientation and pose. Moreover,

we note that the hand contour is more robust to scene illumination and compactly encodes

(as a 1D signal) the hand’s global orientation unlike local feature descriptors like texture,

shape context, or SIFT [93, 96]. The primary goal of this work is hand orientation estimation,

whereas we also address the hand pose estimation as a secondary objective. Nevertheless,

changes in the CDF relate to variations in both hand orientation and pose. Moreover, we

also employ a method for aligning and normalizing the extracted features. The method for

extracting CDF vectors is described in the following section.
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Contour Distance Features

Given a dataset {sk}K
k=1 of input silhouette images, we propose a method to compute a

corresponding CDF set {dk}K
k=1. The contour extracted from each silhouette image in {sk}K

k=1

consists of points pk = {pk1, · · · , pki, · · ·pkI}, where k specifies the sample index and i is the

index for each point in the contour. Let a contour distance for a single silhouette image be

denoted by d̃k =
{

d̃k1, · · · , d̃ki, · · · d̃kI

}
. d̃ki is computed by calculating the Euclidean distance

of each of the contour points pki = {px
ki, py

ki} to a prevalent point on the wrist qk =
{

qx
k,q

y
k

}
and is given by:

d̃ki =

√(
qx

k− px
ki

)2
+
(
qy

k− py
ki

)2
, (3.2)

where qk is a prevalent point on the wrist that is extracted, for each sample in {sk}K
k=1, by

emanating a ray from centroid in the direction of the wrist. We further discuss the approach

for extracting qk in the next section. The extracted features have different number of samples

and magnitude depending on the scale changes and inter-person hand shape variations. We

normalize the magnitude as:

dk =
d̃k

max
1≤i≤I

(d̃ki)
. (3.3)

dk is then resampled to a specified number of samples ϒ to produce dk ∈ {dk}K
k=1. In our

experimental evaluation, we found that the size of dk is related to the scale of the hand,

which we found to be in the range 800−1400 samples. We empirically choose ϒ = 1000 to

preserve the variations in the feature vector.

Extraction of a Prevalent Point on the Wrist

We now describe the method for extracting a prevalent point qk on the wrist in a silhouette

image sk. This point is used as a reference point in Equation 3.2 to extract the CDF vector.

Furthermore, the point qk also aligns the corresponding CDF vector. Fig. 3.6 shows the

method for extracting such prevalent point, for a given hand contour, along with its corre-

sponding CDF vector. We use the in-plane orientation θ of the hand which can be defined

by the angle between the x-axis and the major axis of an ellipse that fits the hand contour.
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Fig. 3.6 CDF vector extraction from hand contour showing (a) the method for extraction of
prevalent point qk on the wrist using a fitted ellipse with in-plane orientation θ , centroid ck
and a ray vk and (b) the corresponding CDF vector.

Ellipse fitting is achieved using Matlab region properties function1 which uses the method

proposed in [97] to find an ellipse that has the same normalized second central moments as

the hand contour. Given θ and the contour centroid ck, an equation of a ray emanating from

ck can be defined by:

vk = ξ κ v̂k + ck, (3.4)

where v̂k is the unit vector encoding the direction as:

v̂k =

 1

tanθ


√

12 + tan2 θ
, (3.5)

ξ is a scalar for correcting the direction of v̂k defined as:

ξ =

+1 if θ < 90°,

−1 if θ ≥ 90°,
(3.6)

and κ is a parameter that changes the length of the ray.

1https://uk.mathworks.com/help/images/ref/regionprops.html
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(a) (b)

Fig. 3.7 Variations in the CDF vectors with varying orientations in (a) azimuth (φ ) axis and
(b) elevation (ψ) axis only.

The direction scalar ξ is calculated using Eq. 3.6 based on the assumption that the

in-plane orientation θ of the hand will always be in the range 0° < θ < 180°. ξ is used in

Equation 3.4 to correct the direction of the ray vk so that it is always propagating towards

the wrist. Our proposed method increases κ until the ray intersects with the contour at a

point qk ∈ pki on the wrist. This point is also used as a starting point for the distance feature

calculation.

Fig. 3.7 shows the variations in CDF vectors corresponding to different hand orientations,

which are exploited in our work. For better visualization, we only show the CDF vectors for

orientations near the ends of our defined orientation space. The corresponding hand contours

and images are shown separately in Fig. 3.8, along with the normal vector encoding the hand

orientation. The direct hand shape changes for each angle combination can be observed from

this figure. As further discussed in the following chapters, we are interested in improving the

non-linear regression, to learn the mapping of CDF onto corresponding hand orientations, by

proposing a number of probabilistic regression approaches.

3.4 Why Random Forest?

Random Forest (RF) has previously been used for fast and robust human pose estimation

for the full-body as well as the hand from depth images [15, 56]. Previous studies have
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(a)

(b) (c) (d)

(e)

Fig. 3.8 Variations in the contour corresponding to the CDF vectors in Fig. 3.7 along with
the normal vector encoding the GT azimuth (φk) and elevation (ψk) orientation angles. From
Fig. 3.7 each plot corresponds to the contours in the following manner: (a) Negative Elevation:
φk =+12.60° and ψk =−38.96°, (b) Negative Azimuth: φk =−36.67° and ψk =+8.59°,
(c) Fronto-parallel: φk =+2.29° and ψk =−0.57°, (d) Positive Azimuth: φk =+47.56° and
ψk =+2.29° and (e) Positive Elevation: φk =+10.31° and ψk =+41.83°.

shown a number of desired properties of RF for both classification and regression [86, 98–

100]. Fernandez et al. [98] evaluated performance of 179 classifiers arising from 17 base

classification methods, including Neural Networks, Support Vector Machines and Random

Forest, on 121 different datasets. Their study showed that Random Forest was the best

classifier, outperforming other classification methods on a variety of publicly available datsets.

This section discusses the rationale for choosing RF over other methods for addressing the

problem of hand orientation and pose estimation.

RF is an ensemble of Randomized Decision Trees, which are non-parametric. They

enable learning the non-linear and complex relationship between input and output variables.

Their empirically evaluated performance has shown them to outperform most of the state-
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of-the-art methods for high dimensional data problems [101]. Given its performance, RF

is considered to be close to an ideal learner [94]. Each Decision Tree is independently

trained, where the induced randomization ensures diversity in the Forest, resulting in better

generalization for unseen input while preventing over-fitting.

The tree structure in RF is capable of inherently addressing multi-variate and multi-class

problems. Compared to classifiers like Support Vector Machine (SVM) or Adaboost, RF

is more efficient as it does not rely on decomposition of multi-class problems into binary

classification tasks [102, 103]. Moreover, the decision boundaries generated by RF have

maximum margin properties similar to SVM [99]. Our work undertakes the classification of a

hand shape into pose defined by a set of previously seen postures. Therefore, the multi-class

property is encouraging.

The split node optimization implicitly does feature selection, facilitating efficient learning

from high dimensional data without the need for dimensionality reduction preprocessing.

Our initial work presented in Chapter 4 utilizes a dimensionality reduction preprocessing.

The same procedure step is not used in Chapters 5 and 6, where RF on high dimensional

data produces more accurate models. Moreover, the learned features and the predictions

are interpretable, enabling a better understanding of the learned mapping. This facilitates

research and development of robust model configurations related to a specific problem.

The RF can learn from continuous as well as categorical target labels for solving regres-

sion and classification problems, respectively. Furthermore, with some modification, both

classification and regression problems can be combined into one framework. We will take

advantage of this feature of RF in Chapter 6 to simultaneously infer hand orientation and

pose.

Our proposed marginalization methods in Chapters 5 and 6 follow a probabilistic formu-

lation. In Chapter 6 we demonstrate that these methods are generalizable and can potentially

work with any probabilistic regression model. Using RF, the terminal nodes in a tree can be

used to make probabilistic predictions over the target variable, which significantly contributes

to the development of the proposed marginalization methods.
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One of the most beneficial properties of RF is that the Decision Trees are independent

from each other. It helps in both training and testing, where parallel processing power can

be used to achieve high computational efficiency. Furthermore, owing to the simplicity of

the algorithm, a number of opensource implementations exist that are targeted for mobile

devices or resource-constrained devices 2 3.

A disadvantage of using RF is that it lacks a theoretical background, as due to the induced

randomness it is not possible to mathematically formulate the underlying algorithm. This

is one of the reasons why sometimes choosing different parameters empirically cannot

be avoided. Another drawback of RF is the conventional feature extraction and learning

framework. Deep learning methods have recently gained popularity as they enable joint

learning of feature representation and classifiers [55, 104]. This architecture has outperformed

previous state-of-the-art that used feature extraction as a separate step [55]. Moreover, the

success of deep learning is demonstrated by the fact that these methods can even outperform

humans on the task of image classification [105]. However, the deep learning methods are

limited by the requirement for large training datasets and specialized hardware with enough

computational resources [94].

The following section presents the employed training and prediction algorithms for the

RF model.

3.4.1 Classification and Regression using Random Forest

In our work, we utilize RF for both classification and regression tasks. The classification and

regression forests only differ in terms of the estimation of information gain and leaf node

probability distributions. Further in-depth literature on RF can be found in [99].

The forest is a collection of T trees which are trained using a training dataset U =

{(d1, l1), · · · ,(dk, lk), · · · ,(dK, lK)}, where dk is the CDF vector with the corresponding label

lk. The label lk can be categorical or continuous for classification or regression respectively.

It can also be single-variate or multi-variate. However for sake of generality, this section

2https://github.com/mpielot/androidrf
3https://github.com/karpathy/forestjs
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presents the details with a multi-variate representation. When learning the mapping of CDF

vectors onto hand orientation angles, we replace the label lk with the orientation angle vector

ok = (φk,ψk). Each tree in the RF consists of split nodes, each responsible for performing a

binary split on the input dataset, and terminal leaf nodes that store the probability distribution

of the data propagated down the branches of the tree. We use random splitting criteria

from [106], where splitting parameters are learned by random selection of test features and

corresponding thresholds. This approach is computationally efficient with better overall

accuracy. The learned parameters Θ = (w,τ) are stored at each split node, where w is the

index of the test feature and τ is its corresponding learned threshold defining the split. The

data arriving at the jth node is divided using a splitting function f
(
U j,Θ

)
defined as:

f
(
U j,Θ

)
=

Le f t if U j (w)< τ,

Right otherwise.
(3.7)

Driven by maximizing the information gain Q
(
U j,Θ

)
, the splitting function divides the data

into two sets
{
ULe f t

j ,URight
j

}
∈ U j for the child nodes:

Q
(
U j,Θ

)
= H

(
U j
)
− ∑

b∈{Le f t,Right}

∣∣∣U b
j

∣∣∣∣∣U j
∣∣H (U b

j

)
, (3.8)

where H
(
U j
)

is the entropy of U j, which is defined for a multi-class classification problem

as:

H
(
U j
)
=− ∑

d∈U j

p(l|d) log p(l|d). (3.9)

For a multi-variate regression problem, H
(
U j
)

is defined by differential entropy as:

H
(
U j
)
=− 1
|U j| ∑

d∈U j

∫
l
p(l|d) log p(l|d)dl. (3.10)
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The conditional probability p(l|d) is defined as:

p(l|d) =N
(
l,Σl
)
, (3.11)

where l is the mean and Σl is the covariance of all target labels arriving at jth split node

[99, 107]. Substituting Equation 3.11 in Equation 3.10 yields the following differential

entropy:

H
(
U j
)
=

1
|U j| ∑

d∈U j

log(|Σl|). (3.12)

The branches in the tree terminate with leaf nodes that contain the probability distributions

of the data arriving as a result of the above splitting process. During the online prediction,

given an input feature vector dk, each tree gives a posterior probability pt (l|dk)∀ l which is

aggregated over all the trees as:

p(l|dk) =
1
T

T

∑
t=1

pt (l|dk) , (3.13)

where the final value of l is determined by maximum likelihood estimate (MLE) [87]:

l∗ = argmax
l

p(l|dk) . (3.14)

3.5 Data Capture

The existing methods for articulated hand pose estimation do not generalize for a number

of users under varying hand orientations [3]. To this end, the existing datasets are limited

in terms of hand shape, size and style variations that arise as a result of different users

performing the same task. Furthermore, the existing methods in literature lack a method for

annotating a dataset with global hand orientation. This motivates us to propose a method for

capturing and annotating reliable hand orientation dataset using a commodity depth sensor.

The details of our approach are presented below.
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3.5.1 Color and Depth Images

We use Microsoft Kinect sensor v14 to capture and annotate a hand orientation and pose

dataset. We make use of Kinect v1 due to its availability in our research group, however we

note that the methods proposed in this dissertation are applicable to any sensor that captures

depth and color images. The Kinect sensor can be used to capture aligned 2D color and 2.5D

depth images. Fig. 3.9 visualizes these two modes of images with a planar hand pose. The

color image shown in Fig. 3.9 (a) stores the captured color information in three channels, i.e.

RGB representing Red, Green and Blue channels. The depth image shown in Fig. 3.9 (b)

encodes the visible shape information of the hand, represented as the distance of each pixel

from the sensor. Fig. 3.9 (c) and (d) visualize the depth image using a colormap and a 3D

point cloud, respectively. The acquired depth information enables us to reliably annotate the

3D hand orientation for a captured color image such as the one shown in Fig. 3.9 (a). We

further describe the method for extracting the hand orientation angles from depth images of

planar hand poses in the next section.

3.5.2 Ground Truth Orientation Annotation using Depth Images

The proposed hand orientation regression frameworks are evaluated on datasets that contain

silhouette images and GT orientation angles. These GT orientation angles are only used

during the training phase and are extracted from aligned depth image of hand by fitting an

equation of a plane. In our research, we use planar hand poses for reliable and accurate hand

orientation annotation. These planar poses are sufficient for showing the contribution of the

proposed methods. Given a depth image of hand, we can extract the 3D point cloud shown in

Fig. 3.9 (d), where coordinate system of depth sensor is used. We use RANdom SAmple

Consensus (RANSAC) to fit an equation of a plane on this 3D point cloud [108] defined as:

n0 = xnx + yny + znz, (3.15)

4https://developer.microsoft.com/en-us/windows/kinect
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(a) (b)

(c) (d)

Fig. 3.9 Color and depth images captured from a Microsoft Kinect v1 sensor. The captured
data consists of (a) 2D color image and (b) 2.5D depth image of the hand. The depth
image shows the 3D shape information measured in distance in meters from the sensor. (c)
visualizes the depth information, whereas (d) shows the 3D point cloud.

where the individual coefficients form a normal vector n such that:

n = [nx,ny,nz]
T , (3.16)

which is used to calculate the corresponding GT orientation angles as:

φk = cos−1 nx, ψk = cos−1 ny, (3.17)

where φk and ψk are GT azimuth and elevation angles respectively. Fig. 3.10 shows how

these angles are measured from their respective axes.
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Fig. 3.10 Azimuth (φk) and elevation (ψk) angles as measured from x and y axes, where the
coordinate system of depth sensor is used. The in-plane orientation is estimated using the
orientation of ellipse fitted to the hand silhouette image.

3.6 Captured Datasets

We use the discussed dataset annotation method to collect a number of hand orientation and

pose datasets. Table 3.1 details the four different datasets collected in our research. Each

dataset focuses on validation against a number of different challenges faced by the learning

methods, which include generalization against different shape, size and style as well as

variations in hand orientation and pose. Fig. 3.11 shows variations in style, shape and size

of 15 different hands from our dataset with the same hand orientation, whereas Fig. 3.12

shows the hand shape variations, for a single user, within our defined orientation space.

Dataset 1 is collected by instructing participants to vary hand orientation along both azimuth

and elevation axes. This dataset is captured in an unguided way which means that during

the data collection no feedback was available to users. We note that each participant has

a different style of performing different orientation movements, due to which an unguided

method produces inconsistency in orientations within the collected data. Dataset 1 is used

in our initial hand orientation work presented in Chapter 4. We propose a novel painting

game application that leverages a real-time feedback system for guiding the participants



3.6 Captured Datasets 51

Dataset Dataset 1 Dataset 2 Dataset 3 Datatset 4

Used for
SL-RF SV
orientation

ML-RF MtR
orientation

SPORE
orientation

SPORE
orientation
and pose

Number of
participants

13 15 22 10

Number of
samples

1624 7059 9414 8675

Sampled space
±10° along
both axes

All defined
space

All defined
space

All defined
space

Coverage −45° to +45° −45° to +45° −45° to +45° −45° to +45°

Number of Poses 1 1 1 4

Collection
method

Unguided Guided Guided Guided

Chapter used 4 5 6 6

Table 3.1 Details of the datasets collected for experimental validation of the work proposed
in this dissertation.

in the defined hand orientation space and to cover the complete orientation space (detailed

in Section 5.1.4). It enables some level of control of participants’ movements as we can

guide them to provide consistency in orientation variations. This method is used to collect

Dataset 2, 3 and 4. Dataset 2 is used for validation of our proposed marginalization through

regression method in Chapter 5, whereas the staged probabilistic regression method proposed

in Chapter 6 is validated with Dataset 3 and 4. In Chapter 6, we present an extension of our

work to simultaneously infer hand orientation and pose. To evaluate the performance of this

extension, we collect the Dataset 4 with four poses where for each pose the painting game

application is used to acquire data with consistent hand orientation variations. We describe

different methods used for data collection along with their respective work in the following

chapters.
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Fig. 3.11 Variations in style, shape and size of hand from 15 participants in our dataset. The
hand images are shown for the same orientation.
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3.7 Error Measures

A major part of this dissertation presents regression methods that deal with the inference

of continuous hand orientations. We evaluate the proposed methods using a number of

qualitative as well as quantitative error measures. These include Mean Absolute Error (MAE)

for each orientation angle, Combined Mean Absolute Error (CMAE) for both azimuth and

elevation angles, GT versus predicted angle plots and percentage data versus error plots. We

present a brief overview of these measures below.

3.7.1 Mean Absolute Error

Given a set of GT orientation angles (φk,ψk) and the corresponding predicted angles

(φpk,ψpk) from a trained regressor, the MAE (φm,ψm) is defined by:

φm =
∑

K
k=1 |φk−φpk|

K
, (3.18)

ψm =
∑

K
k=1 |ψk−ψpk|

K
. (3.19)

We use MAE instead of Euclidean distance between the GT and predicted orientation as in

our work we found that sometimes a regressor is able to infer only one of the two angles

correctly. In such a scenario, a Euclidean distance does not present accurate measure of

performance. On the other hand, MAE provides a quantitative measure of regressor’s

performance independently for each orientation angle. Here, this measure is used evaluate

the accuracy of the proposed methods. We use the MAE to define the CMAE as:

CMAE =
φm +ψm

2
, (3.20)

CMAE is particularly used for tuning different training parameters of the methods proposed

in this work. Both MAE and CMAE are affected by outliers in predictions. Therefore, to

overcome this affect, we additionally present and analyze GT versus predicted angles plots.
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Fig. 3.13 GT versus predicted plots for (a)-(b) a model with outliers and (c)-(d) a model with
bias in prediction.

3.7.2 Ground Truth versus Predicted Angles Plots

This dissertation uses GT versus predicted angle plots to visualize outliers and bias in a

given regression model. Fig. 3.13 shows an example GT versus predicted angle plots for

two different models showing both azimuth and elevation angle prediction. In these plots,

the best model should have all points close to the φk = φpk or ψk = ψpk diagonal line. The

results for the model shown in Fig. 3.13 (a)-(b) contain a number of outliers while the model

shown in Fig. 3.13 (c)-(d) has model bias, which shifts some predictions by a certain value. It
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Fig. 3.14 Percentage data versus error plots comparing different models. A good performance
is shown by a model that covers the highest percentage of data within a low error threshold,
which in this case is achieved by SPORE.

should be noted that such plots add more insight into a given model’s ability to learn, which

is not fully depicted by MAE and CMAE.

3.7.3 Percentage Data versus Error Plots

Further insight into model performance is gained by constructing percentage data versus

error plots. Similar plots have been used in literature for thorough validation of human pose

as well as hand pose estimation [15, 16, 58]. These plots show percentage data that lies under

an error threshold (e) as:

Percentage Data =
1
|S |

(
∑

k∈|S |
1((φk<e) ∧ (ψk<e))

)
×100, (3.21)

where 1((φk<e) ∧ (ψk<e)) is an indicator function conditioned on ((φk < e) ∧ (ψk < e)).

Fig. 3.14 depicts an example percentage data versus error plot for a number of regression

models. We note that the best performance is achieved by a regressor that covers most

percentage data in under least error possible, which in this case is SPORE.
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3.8 Summary

This chapter presented the background and terminology required to understand the work

proposed in this dissertation. We gave an overview of a unified framework for hand orientation

estimation. The different key components of the proposed framework were detailed, including

the feature extraction and regressor training and prediction. Following this, we described the

type of images used to collect the datasets in our work. A method was proposed for automatic

and reliable annotation of GT hand orientations using depth images from a commodity depth

camera. We also discuss the different collected datasets for our research. We concluded this

chapter by describing the different error measures employed for evaluating the proposed

methods along with what each error measure details about a model’s performance.





Chapter 4

Hand Orientation Regression

This chapter presents the first realization of the unified framework introduced in Chapter 3.

The proposed method learns a pair of Random Forest (RF) regressors for hand orientation

inference. We present an overview of this method along with a flowchart. Following this, the

dataset collection method is described along with the experimental evaluation and discussion

of the results. We conclude this chapter by highlighting some limitations of the method,

which are further addressed in the methods proposed in subsequent chapters.

4.1 Single-layered Random Forest for Hand Orientation

Regression

We provide a realization of the unified framework to propose a single-layered RF orientation

regression method. The flowchart in Fig. 4.1 shows the different steps in this proposed

method, which has specific methods for each block in the unified framework. Both the

training and prediction stages utilize the Contour Distance Feature (CDF) extraction method,

described in Chapter 3, to extract features from hand silhouette images. For the training

stage, Principal Component Analysis (PCA) of the training dataset is computed and the

corresponding mean and eigenvectors are used to reduce the dimensionality of the CDF in

both the training and prediction stages from 1000 down to 9 dimensions. Next, two single-
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Train Two Random 
Forest Regressors

Fig. 4.1 Flowchart for the proposed single-layered Random Forest hand orientation regression.
The trained regressor and extracted dimensionality reduction parameters are highlighted with
a solid gray background.

variate RF regressors are independently trained to learn the mapping of the dimensionally

reduced features onto each GT orientation angles. For the prediction stage, each trained

regressor is used to infer the orientation angle using silhouette images only.

4.1.1 Dimensionality Reduction

The CDF extracted from the hand silhouettes have a large number of dimensions (ϒ = 1000).

The work proposed in this chapter is our initial work that focuses on presenting a hand

orientation regression method, where a dimensionally reduced feature space contributes to

quick prototyping of the proposed framework. Thus, a post-processing step is introduced

which is able to extract the prominent variations in the dataset by using PCA to project the

feature vectors onto a reduced feature space [109]. We describe this post-processing step in

further detail below.

The eigenvectors and eigenvalues of the corresponding CDF vectors are first extracted

from the training data. The variations covered by each eigenvector is directly related to its
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eigenvalue [110]. When sorted in decreasing order of variations, the first few eigenvectors

capture the largest variations in the dataset. In our work, we use 90% energy defined by the

most prominent eigenvalues to select the corresponding eigenvectors e for dimensionality

reduction [111, 112]. This enables us to retain the primary variations in the dataset with

reduced dimensionality, while leaving high frequency variations typically related to noise

unmodeled. We assume that this unmodeled noise is represented by the left out eigenvectors

corresponding to the lowest 10% energy. We note that similar methods have been previously

used for image compression and noise reduction [113]. Projection of the feature vectors onto

a reduced space can then be defined by:

d̂k = eT (dk−µµµ) , (4.1)

where µµµ is the mean of all the samples and d̂k is a set of dimensionally reduced feature

vectors [114]. Fig. 4.2 shows the variations captured by the first six eigenvectors. The

variations are shown as positive and negative modes defined as:

mvar = µµµ +aei, (4.2)

where −
√

2≤ a≤+
√

2 defines the amount of variations about the mean µµµ and i is the index

of the selected eigenvector. The effect of hand orientation variation on the CDF is seen in the

first four variations shown in Fig. 4.2 (a)-(d). These correspond to changes in the height of

peaks relative to the valleys depicting changes in elevation angles and the shift in the signal

showing changes in azimuth angles. Fig. 4.2 (e)-(f) captures inter-person style variations

where separation of different fingers, especially the thumb, pinky and ring finger, result in

changes in CDF.

4.1.2 Hand Orientation Regression

The dimensionally reduced features d̂k and GT orientation angles (φk,ψk) are used to train

two RF regressors, one for each orientation angle. Both regressors are single-variate, regress-
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Fig. 4.2 The variations captured by first six eigenvectors used for dimensionality reduction.
The mean of all samples is shown in black, whereas the positive modes and negative modes
of variations are shown in green and red color, respectively.
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ing against the orientation angles independently. In our experimental evaluation we use RF

with 1000 trees and two features are sampled for splitting at each node. The RF learning

algorithm described in Chapter 3 is used to train the regressors. During prediction, the

dimensionality of an input CDF vector dk is reduced using Equation 4.1. The dimensionally

reduced feature vector d̂k is then passed down in the two learned RF regressors where the

leaf nodes infer the posterior probabilities p(φ |d̂k) and p(ψ|d̂k). The final prediction is done

by maximum likelihood estimate (MLE) defined as:

φ
∗ = argmax

φ

p(φ |d̂k). (4.3)

ψ
∗ = argmax

ψ

p(ψ|d̂k). (4.4)

4.2 Evaluation of Single-layered Hand Orientation Regres-

sion

Evaluation of the proposed single-layered hand orientation regression framework is done

using two different methods. A single-fold evaluation is done using 70% of the data for

training while holding out 30% data for testing. Next, we perform a leave-one-out cross-

validation, where in each trial we leave one participant’s data out for training and use it to

test the trained system. This latter validation method demonstrates how the system performs

on unseen individuals, which quantifies the generalization capabilities of the proposed

framework. In this section, we refer to our proposed single-layered Random Forest-based

method with single-variate regressors as SL-RF SV. For comparison, all experiments are also

repeated using a Neural Networks (NN) regressor with one hidden layer containing 1000

neurons. We note that at the time of this work, the author had limited understanding of NN.

Hence, in this chapter we see a NN with a single hidden layer. We note that the Sections

5.2 and 6.2 in the next chapters provide an in-depth comparison of the proposed methods

with relevant machine learning models. In our experiments, we varied the number of trees in
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SL-RF SV and neurons in the NN regressors. However, changing these parameters did not

significantly affect the output of our method. Therefore, we empirically fixed the number of

trees and neurons to be 1000 for all the experiments. The data capture process and results are

presented in subsequent sections below, which are then compared and discussed in Section

4.2.4.

4.2.1 Data Capture

The evaluation of the proposed SL-RF SV method is performed on Dataset 1 which contains

1624 silhouette images and GT orientation collected from 13 participants. The choice of

hand orientation variations used to record the dataset holds significance in depicting the

contribution of the proposed framework. To generate this dataset we asked our participants

to use an outstretched open hand pose throughout the data capture process. They were

asked to rotate the hand back and forth, first along the azimuthal axis and then along the

elevational axis only. Color images were segmented using the segmentation method in

[90]. The segmented silhouette images and GT hand orientations were recorded while the

participants performed these manipulations. As a result of different participants, the Dataset

1 contains variations in hand size, shape and style of rotations for an open hand pose. This

dataset only contains data from participants’ right hand, however taking the advantage of

mirror symmetry the same dataset can be reflected to generate images for the left hand.

The GT orientation angles are only used for the training step and are not part of the final

prediction method, where only hand silhouettes from segmented color images are used. In

Dataset 1 both φk and ψk are limited from −45° to +45° to limit self-occlusions, particularly

in the inter-finger regions, that occur beyond this range. It also provides a balance between the

number of samples and the corresponding variations in the CDF. Furthermore, as shown in

Fig. 4.3, the orientation angles further away from azimuth and elevation axes were discarded

with a threshold of ±10° for both φk and ψk. The selected orientation angles are useful for

visual inspection of virtual objects where up/down and left/right movements are required.

We present one such application in Section 4.3.
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Fig. 4.3 Hand orientation space defined by the captured Dataset 1 for evaluation of single-
layered hand orientation regression method.

4.2.2 Single-fold Validation

To evaluate the overall performance of the proposed regression method, we randomly divide

Dataset 1 into training and testing sets, with 70% and 30% of the total data, respectively. The

system is then trained and evaluated using the corresponding sets of data.

The absolute prediction errors for this validation are calculated as:

φak =
∣∣φk−φpk

∣∣ , (4.5)

ψak =
∣∣ψk−ψpk

∣∣ , (4.6)

where (φk,ψk) are the GT orientation angles,
(
φpk,ψpk

)
are the predicted angles and

(φak,ψak) are the absolute prediction errors for the kth sample. These errors are presented

against GT orientation angles in Fig. 4.4. We also present plots of GT orientation angles

against corresponding predicted angles in Fig. 4.5. For comparison, both these figures in-

clude results from SL-RF SV and NN. The Mean Absolute Error (MAE) (φm,ψm) for the

single-fold validation is presented in Table 4.1. We also show success and failure cases for
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(a) (b)

Fig. 4.4 Absolute prediction error (in degrees) illustrating errors (a) φe and (b) ψe in single-
fold validation using SL-RF SV and NN regression techniques.

Evaluation
method Regressor Used Azimuth (φm) Elevation

(ψm)

Single-Fold SL-RF SV 11.44 ° 9.57 °

NN 15.31 ° 14.19 °

Leave-one-out SL-RF SV 12.93 ° 12.61 °

NN 20.14 ° 18.85 °

Table 4.1 MAE in degrees for experimental evaluation of SL-RF SV hand orientation
regression framework in Section 4.2.

the proposed SL-RF SV method in Fig. 4.7 and Fig. 4.8. Moreover, Fig. 4.9 shows failure

cases that are affected by symmetry problem. The absence of depth information results in

ambiguous predictions, where symmetrically opposite hand orientations are inferred. These

experimental results indicate that the SL-RF SV regression method outperforms NN with an

MAE of 11.44° for azimuth and 9.57° for elevation angles. We further discuss these results

in Section 4.2.4.

4.2.3 Leave-one-out Cross-validation

We further evaluate our method against a scenario where in each trial, we leave one partic-

ipant’s data out from the training dataset. This left out data is then used for testing. This
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(a) (b)

Fig. 4.5 GT versus predicted angle plots showing the accuracy of different regressors for
predicted angles φpk and ψpk in single-fold validation. The predicted angles are illustrated
using (a) SL-RF SV regressors with number of trees = 1000 and (b) NN regressor with one
hidden layer containing 1000 neurons.

depicts a scenario where an unseen hand is used with our method. It is also able to evaluate

the ability of the method to handle variations in hand shape, size and orientation without the

need for an additional calibration step. The average prediction error for each participant using

SL-RF SV and NN is presented in Fig. 4.6 (a) and (b) respectively, while Table 4.1 shows

the results for average prediction error for all participants’ cross-validation. These results

indicate that the SL-RF SV method is able to generalize well from our hand orientation

dataset with an MAE of 12.93° for azimuth and 12.61° for elevation angles. Further analysis

and discussion of these results are presented in the following section.
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4.2.4 Discussion

Experimental results show that the proposed method is able to learn the mapping from CDF

to orientation angles. The method performs well when using SL-RF SV in both single-fold

and leave-one-out cross-validation. The MAE for single-fold evaluation using SL-RF SV is

close to 10° for both φ and ψ angles, as shown in Table 4.1. The average execution time of

the proposed method for the given set of input silhouette images is found to be 16.93 ms per

frame in a Matlab implementation on 3.2 GHz Core-i5 CPU.

Fig. 4.4 shows the absolute prediction errors against GT orientation angles for both SL-RF

SV and NN regressors. It can be seen from this figure that SL-RF SV is able to model the

underlying data well, with significantly fewer outliers as compared to the NN. Looking at the

range −10° to +10°, SL-RF SV is able to predict with better accuracy, while NN regressor

has a significant number of outliers. As shown in Fig. 4.3, this range contains large variations

in orientation and, consequently, the visible shape of the hand, which forms a benchmark for

evaluating the generalization capabilities of the learned models. Prediction errors with the

NN model in this range indicate that the learned model has memorized the training examples

instead of generalizing from the data [115]. We note that if we eliminate the outliers then the

NN performs better as shown in Fig. 4.4. Nevertheless, such outliers are a part of the system

and result in greater overall average error for NN. On the contrary, results from SL-RF SV

model depict its ability to apply learned representation to unseen examples. These differences

in performance also arise due to two different learning methods. A NN model learns from a

dataset by minimizing a global loss making it susceptible to overfitting, model bias and poor

generalization. However, the trees in SL-RF SV are trained independently using a greedy

algorithm that minimizes a local loss, enabling better generalization.

In Fig. 4.5, we establish the relationship between GT and predicted orientation angles to

illustrate the performance of different regressors in single-fold validation. The diagonal line

represents correct predictions. The closer the predicted data is packed around this diagonal,

the better is the performance of the regressor. It can be seen from this figure that for both φ

and ψ , SL-RF SV is able to perform better with fewer outliers. Additionally, from Fig. 4.5 (a)

it can also be seen that the SL-RF SV predictions have a rotational bias as compared to NN
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(a) (b)

Fig. 4.6 MAE in degrees for leave-one-out cross-validation of each participants’ data using
(a) SL-RF SV and (b) NN regression techniques.

predictions. This is an existing problem for SL-RF SV and a number of approaches have been

previously proposed to debias the regression [116, 117]. In our problem, this bias is the result

of the variations in Dataset 1. We address this in the subsequent chapters. Furthermore, the

unguided dataset collection method used here presents a number of challenges, particularly

in limiting the unwanted deviations from planar hand pose assumption. Moreover, as the

method is unguided therefore only a small subset of orientation variations can be recorded in

such method. This can be addressed by utilizing a feedback system where we can guide the

participants to perform hand orientation variations that fully cover the orientation space. We

present this improved data collection method in Chapter 5.

Leave-one-out cross-validation results show the compelling performance of the proposed

SL-RF SV method for unseen hands. This evaluation method illustrates how well the system

can generalize from a training data containing different variations in hand shape, size and

style. Comparing the average prediction errors for leave-one-out cross-validation with single-

fold validation in Table 4.1, there is a significant decrease in the performance of the NN

regressors. This highlights the inability of the NN to generalize for unseen data. Fig. 4.6

further validates these results for each individual participant. In this validation SL-RF SV

produces relatively lesser error, which indicates its ability to generalize better from the

inter-person variations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Absolute Error Absolute Error
φak ψak φak ψak

(a) 0.89° 3.61° (g) 5.17° 1.35°

(b) 4.33° 0.39° (h) 9.08° 0.04°

(c) 1.18° 0.52° (i) 7.83° 1.31°

(d) 0.81° 8.69° (j) 7.12° 0.20°

(e) 1.17° 0.34° (k) 1.07° 0.86°

(f) 3.18° 0.88° (l) 7.18° 1.22°

Fig. 4.7 Success cases for our proposed method. The GT normal vectors are superimposed
on each image using green arrows, whereas predicted normal vectors are shown using blue
arrows. Absolute prediction errors for each case are shown in the table above.
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(a) (b) (c) (d)

Predicted Ground Truth Absolute Error

φpk ψpk φk ψk φak ψak

(a) 2.96° −7.90° −43.46° −7.26° 46.42° 0.64°

(b) −0.54° 2.29° −43.29° 5.85° 42.75° 3.56°

(c) −3.86° −11.16° −1.15° −41.17° 2.71° 30.01°

(d) −4.88° −17.85° −7.00° 20.97° 2.12° 38.82°

Fig. 4.8 Failure cases for our proposed method. The GT normal vectors are superimposed
on each image using green arrows, whereas predicted normal vectors are show using blue
arrows. Error for each case is presented separately in the table above.

(a) (b) (c) (d)

Fig. 4.9 Symmetry problem in silhouette images shows color images of the hand in the top row
and the segmented silhouette images in the bottom row. The absence of depth information in
silhouette images results in similar silhouettes for symmetrically opposite hand orientations.
The images in (a)-(b) and (c)-(d) are from symmetrically opposite orientations of the hand.
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As discussed above the proposed SL-RF SV hand orientation regression method performs

well to recover 3D hand orientation in the presence of a number of underlying variations in

hand shape, size and style. In Fig. 4.7 we present different success cases using SL-RF SV in

single-fold validation. It also shows a table with the absolute prediction errors for each of

these success cases. The variations in Dataset 1 and the capability of our method are clear

from these results.

While our method performs well for most of the cases, it fails in some cases. Fig. 4.8

shows some of the cases where our method fails along with a table showing the corresponding

error. These failure cases can easily be identified as outliers in the dataset as they do not

have outstretched hand pose. In Fig. 4.8 (a), (c) and (d) the hand does not follow the planar

surface assumption which directly affects the calculation of GT orientation angles, whereas

in Fig. 4.8 (b) the fingers are placed too close together making it impossible to extract a CDF

vector that corresponds to the ones in the training dataset. Furthermore, by analyzing the

absolute prediction errors for each failure case in the table, it can be seen that our method

only fails for the orientation where these assumptions fail. Since our method is regressing

both orientation angles independently, therefore, even in these failure cases, the unaffected

angle is predicted with good accuracy. The assumption that both orientation angles vary

independently may be true for the given Dataset 1, where the orientation space is only defined

along the orientation axes, however, the variations in these angles can be correlated for a

fully covered orientation space. Replacing the single-variate regressor with a multi-variate

regressor will use the orientation dependence of both angles to better model the orientation

space. We discuss this in further detail in subsequent chapters. We also show some failure

cases, where symmetrically opposite orientations are inferred (shown in Fig. 4.9). This is

due to the absence of depth information, where multiple symmetrically opposite orientations

result in similar silhouette images. Comparing the silhouette images in Fig. 4.9, we note that

these cases look similar for symmetrically opposite orientations.
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Fig. 4.10 Application of the proposed approach to Augmented Reality for visual inspection
of virtual objects. In this example, the orientations of a virtual teapot are controlled with the
hand orientations extracted using the proposed method. The sequence of hand orientation
starts from the top left and ends at the bottom right image.
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4.3 Application to Augmented Reality

The proposed method can be applied to a number of different applications. In our work, we

present an Augmented Reality-based application for visual interaction with virtual objects

(shown in Fig. 4.10). In this application, the virtual object is overlaid on an augmented

layer. Orientation changes from the hand movements are captured using our method and the

corresponding orientation transformations are applied to the augmented object. This kind of

visual inspection of virtual objects is useful in scenarios where users do not have access to

the actual object, however, they want to view it from different perspectives.

Another scenario where the hand orientation could be used is in computer games. We

present a simple ball bouncing game where an incoming ball is directed into different target

directions using just the orientation of the hand. Fig. 4.11 shows screenshots of this game.

Similar games can be implemented that utilize the orientation of the hand to solve certain

objectives. As the control is directly coming from the user’s hand, the game gives a natural

interaction experience.

Although our work does not study any potential improvements in interaction when using

hand orientation for the proposed application scenarios, we do have some interesting insights

from the application testing. In our testing, we noticed that each new participant quickly

grasped the idea of orientation-based object manipulation. We note that utilizing hand

orientation in Augmented Reality can enable users to naturally interact with a virtual object,

as such manipulations are part of our daily interaction with other physical objects. Further

studies could explore an in-depth analysis of our proposed interaction scenario for improving

human-computer interaction.

4.4 Summary

This chapter proposed a single-layered Random Forest regressor for learning the mapping of

dimensionally reduced CDF onto hand orientation angles. The proposed model was trained

and evaluated on a dataset of hand silhouette images and orientation angles. The system

performed well with an MAE of 10° for single-fold validation and 12° for leave-one-out
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Fig. 4.11 Application of the proposed approach to an Augmented Reality game. The objective
of the game is to deflect the incoming balls to target directions using the orientation of the
hand. The sequence of hand orientations starts from the top left and ends at the bottom right
image.

cross-validation. The proposed method was shown useful for an Augmented Reality-based

visual inspection application of virtual objects. A ball bouncing game was also shown as a

possible application of the inferred hand orientations. The results indicate a number of areas

that require further research. Particularly, the unguided data collection method proved limited

as it enabled collection of only a small dataset with limited variations in hand orientations.

Furthermore, it was found that the lack of feedback during capture resulted in a number of

complex inter-person hand shape variations in which the user deviated from the planar hand
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pose assumption. SL-RF SV was affected by the model bias which indicates that the model

used was unable to fully learn from the variations in the dataset. We address these limitations

in the next chapter where we propose a multi-layered Random Forest method that learns

from specific variations within the dataset.



Chapter 5

MtR: Learning Marginalization

Through Regression for Hand

Orientation Inference

This chapter addresses the challenges faced by the single-layered hand orientation regression

method proposed in Chapter 4. The model proposed in Chapter 4 was unable to fully learn

the mapping of Contour Distance Features (CDF) onto hand orientation angles, where a

model bias was noticed. Another problem faced by the method proposed in Chapter 4 was

the use of unguided dataset collection method. This limited the amount of reliable data

that could be captured, where the participants relied on the description of hand orientation

movements.

Existing work has utilized multi-layered Random Forest (ML-RF) for dividing complex

learning tasks and learning using multiple expert regressors to achieve better accuracy than

a single-layered model [17, 21]. Fig. 5.1 explains this concept with a simplified abstract

example. It shows that when the underlying problem contains a number of variations, then

a single model is unable to learn from all the variations. Fig. 5.1 (b) shows how a single

model tries to fit in to the data, resulting in a model bias. This problem can be solved by

introducing a number of expert regressors where each regressor can be trained on subsets

of the data to learn specific variations (shown in Fig. 5.1 (c)). We visualize the variations
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(a) (b) (c)

Fig. 5.1 Learning from a number of variations within the data shows (a) input data with two
types of variations, (b) a single learned model is shown in black and (c) two learned models
trained for specific variations. In scenarios where the dataset contains a number of variations,
a single model is unable to fully learn the mapping resulting in model bias as shown in (b).
However, when the underlying problem is divided into subproblems, a set of models can
fully learn from the variations within a dataset.

contained in our Dataset 2 in Fig. 5.2, where projections of CDF vectors onto three dominant

variations defined by eigenvectors are shown. Colors from latent variable definition in Section

5.1.1 are shown to represent different orientations of the hand. It can be seen that the hand

shape in different orientations produces different variations resulting in a complex mapping.

Therefore, a single regression model proves insufficient for learning the mapping of CDF

vectors onto the corresponding hand orientation angles. Hence, we utilize multiple expert

regressors, where each regressor learns from a specific variation in the dataset. However,

such a model choice poses a number of challenging questions. These include determining

the best way to divide the dataset into subsets and determining, during online prediction,

which expert regressor(s) are capable of making the most accurate prediction for a given

input feature vector.

In this chapter, we propose a multi-layered Random Forest with Marginalization through

Regression (ML-RF MtR) method to address hand orientation regression [30]. ML-RF MtR

presents a method for dividing dataset using a latent variable space, where each latent variable

forms a subset. Expert regressors are trained on these subsets. During online prediction,

each expert regressor gives a posterior probability for a given latent variable. Our main

contribution comes from the regression-based marginalization of these posterior probabilities.

Furthermore, this chapter also presents a data collection method, where the participants

are provided with feedback which acts as a guidance for collecting similar orientations
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Fig. 5.2 Variations in the Dataset 2 used in this chapter. The most dominant variations in the
dataset are shown by projecting CDF vectors using the first three eigenvectors of Dataset
2. The five different coarse orientations, defined by latent variable space proposed in this
chapter, are shown with same colors as in Fig. 5.5. The variations in the dataset are complex
and in some places not easily separable by a single model. This motivates the need for a
method that depends on multiple expert regressors, each learning from a subset of variations
in the data.

from a number of different users. We also show the application of our proposed method to

augmented character’s manipulation in an egocentric video scenario.

5.1 Marginalization through Regression for Multi-layered

Random Forest

Inspired by existing work in [17, 21, 34, 66], where complex problems have been divided and

solved by a number of expert regressors trained on simpler subsets of the data, we present a

novel ML-RF MtR method that is capable of learning from a number of variations in our

hand orientation dataset [30]. The proposed model utilizes multi-variate Random Forest

(RF) regressors, that are able to simultaneously learn the mapping of CDF onto both hand

orientation angles. Fig. 5.3 shows the proposed ML-RF MtR model architecture, which

is split into two layers, namely, marginalization weights and expert regression layer. The

proposed method is divided into training and prediction frameworks as shown in Fig. 5.4. The

training framework uses a latent variable space along with the GT hand orientation angles to

split the input data into a number of subsets. Expert regressors are then trained on the defined

subsets of the data. The posterior probabilities corresponding to each sample in the training
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Marginalization Weights Regression Layer
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Expert Regression Layer
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Latent Variable Space

Fig. 5.3 The proposed multi-layered marginalization through regression method utilizes
marginalization weights regressor in the first layer to infer the weights for marginalizing
posterior probabilities from each expert regressor in the second layer.

set are acquired from each of these regressors. Our main contribution comes from the use

of a marginalization weights regressor that learns the mapping of CDF to marginalization

weights. We derive and apply a Kullback-Leibler divergence-based optimization technique

that estimates the marginalization weights for training data. The online prediction for a

given CDF utilizes marginalization weights regressor to predict marginalization weights.

Posterior probabilities from each expert regressor are then extracted. These probabilities

are marginalized using the inferred marginalization weights. The resulting marginalized

probability is used to infer the hand orientation angles. We further describe the proposed

ML-RF MtR method in the following sections.

5.1.1 Latent Variable Generation

We define a latent variable space to divide our training dataset into subsets. This space is

based on the simple observation that the hand orientation can be broadly categorized with

respect to the camera as being: (i) fronto-parallel, or facing (ii) right, (iii) left, (iv) upwards

or (v) downwards, which also corresponds to the maximum distinctive hand shape variations.
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Fig. 5.4 Flowchart for training and evaluation of the proposed marginalization through
regression method for hand orientation inference. The trained regressors are highlighted with
solid gray background.

Each set of GT orientation angles (φk,ψk) are first transformed into polar coordinates

(γk,ϕk) and are then used to generate latent variables for dividing the target space into five

different regions as:

rn(k) =



r1 if γk ≤ α°,

r2 if γk > α° : ϕk ∈ (0°−β °,90°−β °],

r3 if γk > α° : ϕk ∈ (90°−β °,180°−β °],

r4 if γk > α° : ϕk ∈ (180°−β °,270°−β °],

r5 if γk > α° : ϕk ∈ (270°−β °,360°−β °],

(5.1)

where α and β are adjustable parameters defining the radius of the central region and the

offset for the latent variable space, respectively, and rn ∈ {r1,r2,r3,r4,r5} are the latent

variable labels dividing the dataset for ML-RF MtR regression (shown in Fig. 5.5).
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α β 

Fig. 5.5 Latent variable space showing the different latent variables in different colors. The
parameters α and β define the radius of the central region and the offset for the latent variable
space, respectively.

5.1.2 Expert Regression Layer

A set of multi-variate RF regressors are trained on the subsets of the data to learn the mapping

of hand CDF onto orientation angles. These regressors form the expert regression layer.

Each regressor in this layer is trained using a subset of the data defined by latent variable

rn ∈ {r1,r2,r3,r4,r5}. Training is achieved using a standard RF regression method described

in Section 3.4.1. Given an input CDF vector dk, the posterior probabilities for orientation

angles (φ ,ψ) for a given latent variable rn are given by this layer as:

p(φ ,ψ|rn,dk) =
1
T ∑

t
pt (φ ,ψ|rn,dk) , (5.2)

where pt (φ ,ψ|rn,dk) is the posterior probability from leaf node of tree t and T is the total

number of trees in a given RF model.

In our framework we are interested in finding a marginalized posterior probability

p(φ ,ψ|dk), which can be utilized in maximum likelihood estimate (MLE) to make predic-

tions. A common method for acquiring the marginalized posterior probability, as explained
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in Section 3.2.2, is given by:

p(φ ,ψ|dk) = ∑
n

p(φ ,ψ|rn,dk) . (5.3)

However, as our expert regressors are trained on different subsets of the data, the posterior

probability p(φ ,ψ|rn,dk) is influenced differently by the possible values of latent variable rn.

Moreover, there exist some predictions, especially for the samples that lie on the boundary

of multiple latent variables, where posterior probabilities from only a few expert regressors

contribute towards accurate predictions. To accommodate this, marginalization weights ωnk

are introduced as:

p(φ ,ψ|dk) = ∑
n

p(φ ,ψ|rn,dk)ωnk, (5.4)

where the marginalization weights ωnk correspond to each latent variable such that ∑n ωnk = 1.

The conditional probability p(φ ,ψ|dk) can be used to make the overall regressor prediction

defined by MLE estimate as:

(φ∗,ψ∗) = argmax
(φ ,ψ)

p(φ ,ψ|dk) . (5.5)

Next, we propose a method for estimating these weights given a learned expert regression

layer.

5.1.3 Marginalization through Regression

To learn the marginalization weights regressor, we must first determine the GT weights ωnk,

which form the regression target. This regressor, highlighted as a gray box in flowchart in

Fig. 5.4, learns the mapping of CDF dk onto the multi-variate marginalization weights vector

ωk. We formulate the GT probability for the training samples using the GT orientation angles

(φk,ψk) in a multi-variate normal distribution as:

p(φk,ψk) =N ((φk,ψk) ,Σ) , (5.6)
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Fig. 5.6 Marginalization weights estimation using training data. A training sample is used
to get posterior probabilities from each expert regressor. These probabilities are then used
along with the GT probability in Equation 5.7 to estimate marginalization weights and the
corresponding marginalized probability.

where Σ is the covariance that can be adjusted to control the spread of p(φk,ψk).

Given the GT probability p(φk,ψk) and the corresponding posterior probabilities p(φ ,ψ|rn,dk),

we propose a novel optimization method, where the marginalization error is based on

Kullback-Leibler divergence [118]. This error is optimized to estimate the GT marginaliza-

tion weights ωnk for all latent variables rn ∈ {r1,r2,r3,r4,r5}. Fig. 5.6 shows this marginal-

ization weights estimation framework. We define this error as:

E =
∫∫

p(φk,ψk) log
p(φk,ψk)

p(φ ,ψ|dk)
dφdψ. (5.7)
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Derivation

Here we present the derivation of partial derivatives from Equation 5.7 that can be used to

determine the optimal weights ωnk. We can rewrite Equation 5.7 as:

E =
∫∫

p(φk,ψk) log
p(φk,ψk)

p(φ ,ψ|dk)
dφdψ,

=
∫∫

p(φk,ψk) [log p(φk,ψk)

− log[∑
n

p(φ ,ψ|rn,dk)ωnk]]dφdψ. (5.8)

The partial derivative w.r.t ωnk can then be defined as:

∂E
∂ωn

=−
∫∫ p(φk,ψk) p(φ ,ψ|rn,dk)

∑n p(φ ,ψ|rn,dk)ωnk
dφdψ. (5.9)

Optimization

We use a standard gradient descent with,

∇E =

[
∂E

∂ω1k
,

∂E
∂ω2k

,
∂E

∂ω3k
,

∂E
∂ω4k

,
∂E

∂ω5k

]
, (5.10)

for which the optimization is iteratively evolved for a solution given by:

ω
υ+1
nk = ω

υ
nk−λ∇Eυ , (5.11)

where λ is the step size along the negative gradient direction and υ is the iteration number.

Marginalization Weights Regressor

We use a multi-variate RF regressor to learn the mapping of CDF dk to marginalization

weights ωk. As shown in flowchart in Fig. 5.4, this regressor is used during prediction to

infer marginalization weights ωk for marginalizing the posterior probabilities p(φ ,ψ|rn,dk)

from each expert regressors using Equation 5.4.
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Fig. 5.7 Painting game application for capturing hand orientation Dataset 2, 3 and 4, shows
the captured hand image and the corresponding painting canvas giving feedback to the
participant.

5.1.4 Data Capture

The proposed method is tested on a dataset of real color images and GT orientation angles

captured using a Microsoft Kinect v1 sensor. To capture Dataset 2, 3 and 4 (listed in Table

3.1), we have developed a simple painting game application (shown in Fig. 5.7). The objective

of the game is to paint on a digital canvas using hand orientation movements originating

from flexion and extension of the wrist and supination and pronation of the forearm, as

shown in Fig. 1.1. The canvas is designed to directly represent the hand orientation space in

which different color hues represent the number of samples collected for a particular region.

These include, black color for regions where no samples have been collected, whereas the

painting color changes from green, representing the lowest number of samples, to red which

represents regions that have been densely sampled. The objective of the game is to paint as

much red as possible using a painting cursor shown in gray color. Such a game encourages

participants to move hands in all possible orientations inside the defined orientation space.

Thus, achieving consistency between orientation angles and hand shape for different users in

the dataset.

For the data collection process, we asked our participants to paint a set of digital canvases

using a planar hand pose. Real-time feedback of the canvas was provided to assist in the

movement of the painting cursor. Hand orientation data was captured, using the Microsoft
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(a) (b) (c)

(d) (e) (f)

Fig. 5.8 Digital painting canvas for the data capture application. The canvas directly represents
the hand orientation space with colors indicating the number of samples collected in the
specific regions of the orientation space. A black color indicates the absence of the samples,
while green depicts a low number of samples and red corresponds to densely sampled regions.
The painting cursor is shown in gray. The data capture process progresses in time from
(a)-(f), where (f) shows a densely sampled orientation space.

Kinect v1 sensor, while the participants completed the painting task. Fig. 5.7 shows this

data capture setup with a participant’s hand. The transformation of canvas through time is

shown in Fig. 5.8. Samples from this painting application were collected by segmenting the

hand region using the segmentation method from [90] and performing RANSAC-based GT

orientation annotation using the depth image as described in the Chapter 3.

5.2 Experimental Evaluation

We evaluate the proposed ML-RF MtR method on Dataset 2 that contains 7059 samples

collected for an open hand pose from 15 different participants. The range of the orientation
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Fig. 5.9 Orientation space plot showing the orientation angles captured by Dataset 2.

angles captured by Dataset 2 is restricted to a circular space with a radius of 45°, as shown in

Fig. 5.9. This gives us an appropriate ratio for the number of samples against the variations

within this defined orientation space. We use this dataset to show the experimental results

that demonstrate the ability of our proposed ML-RF MtR method to apply marginalization

through regression for estimating hand orientations. We note that, as can be seen in Fig. 5.9,

the data has a bias due to prevalence of orientation movements that are easier to perform. In

this work, we have not utilized this bias information, however we note in Section 5.3 that

this bias can be useful for further improving the performance of the proposed methods. In

our experimental validation, we found the average execution time of the proposed ML-RF

MtR prediction framework to be 21.90 ms per frame in a Matlab implementation on 3.2 GHz

Core-i5 CPU.

5.2.1 Comparison Methods

The proposed framework is compared with the method described in Chapter 4, which uses

a single-layered single-variate Random Forest (SL-RF SV) with independence assumption

on each hand orientation angle. We also compare with three different methods for marginal-

ization of multi-layered Random Forest (ML-RF) regressors [21, 66]. These methods are

referred to as ML-RF1, ML-RF2 and ML-RF3 herein, adapted from [21] and [66]. While the
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methods proposed in [21] and [66] do not originally address the hand orientation regression

problem, they provide methods for marginalizing a ML-RF in different domains. In our

experimental validation, these three ML-RF comparison methods use a two-layered RF with

a coarse latent variable classification in the first layer and expert orientation regression in the

second layer. For a given CDF vector dk, the latent variable classification layer infers the

posterior probability p(rn|dk) for each latent variable rn ∈ {r1,r2,r3,r4,r5}. These methods

only differ in marginalization where ML-RF1 uses the predicted latent variable in the coarse

layer to select the corresponding expert regressor for prediction, as defined by:

r∗n = argmax
rn

p(rn|dk) , (5.12)

(φ∗,ψ∗) = argmax
(φ ,ψ)

p(φ ,ψ|r∗n,dk) . (5.13)

ML-RF2 uses posterior probabilities of each latent variable in the coarse layer as marginal-

ization weights for predicted angles from each expert regressors, whereas ML-RF3 uses

posterior probabilities from both the coarse and the expert layers to present the marginalized

posterior probability. The mathematical formulation for predictions using ML-RF2 is given

by:

(φ∗,ψ∗) =
N

∑
n=1

p(rn|dk) argmax
(φ ,ψ)

p(φ ,ψ|rn,dk), (5.14)

where N = 5 is the total number of expert regressors in the ML-RF model. Equations 5.15

and 5.16 show the formulation for making predictions using ML-RF3.

p(φ ,ψ|dk) =
N

∑
n=1

p(rn|dk) p(φ ,ψ|rn,dk), (5.15)

(φ∗,ψ∗) = argmax
(φ ,ψ)

p(φ ,ψ|dk). (5.16)
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Fig. 5.10 Single-fold validation shows GT versus predicted angle results for azimuth and
elevation angles using (a)-(b) ML-RF MtR and (c)-(d) SL-RF SV method from Chapter 4.
It can be seen that the ML-RF MtR method infers hand orientation angles without a bias,
which is the main source of error in SL-RF SV.

5.2.2 Parameter Selection

The proposed ML-RF MtR regression has a number of different training parameters. These

include the number of trees (T ), the depth of each tree (δt), the minimum number of samples in

each leaf node (η j), the number of features selected at each split node (ε) and the parameters

α and β defining the latent variable-based label generation. In our experimental evaluation,

we found that the parameters related to the RF classifier and regressors simultaneously

improves the performance of all the comparison methods. Therefore, we empirically set

these parameters to the following values for all experiments, T = 100, δt = 15, η j = 5 and

ε = 1, α = 15° and β = 45°.
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Evaluation
method

Method
used

Azimuth
(φ )

Elevation
(ψ)

ML-RF MtR 8.12° 7.36°

SL-RF SV 9.43° 8.60°

Single-fold ML-RF1 8.80° 8.18°

ML-RF2 11.31° 9.58°

ML-RF3 8.69° 7.79°

ML-RF MtR 7.89° 7.29°

SL-RF SV 8.19° 7.94°

User-
specific

ML-RF1 8.11° 7.45°

ML-RF2 9.20° 8.50°

ML-RF3 8.12° 7.72°

Table 5.1 MAE in degrees for experiments in Section 5.2.

5.2.3 Single-fold Validation

For this experiment, Dataset 2 is randomly divided using 70% of the data for training and

the remaining 30% for testing. Fig. 5.10 presents the predicted orientation angles using

our proposed ML-RF MtR method and SL-RF SV from Chapter 4. These predicted angles

are shown against their corresponding GT orientation angles, where in Fig.5.10 (a)-(b)

we also show the corresponding latent variables using colors from Fig. 5.5. Furthermore,

we also present the MAE of all comparison methods in Table 5.1. The proposed ML-RF

MtR method outperforms the SL-RF SV in hand orientation inference due to its ability to

learn expert regressors on subsets of a dataset. Furthermore, as opposed to training single-

variate regressors for each orientation angles in Chapter 4, the proposed method utilizes

multi-variate regressors to exploit the interdependence of the orientation angles. From

Fig. 5.10 we observe that the ML-RF MtR method is able to infer orientation angles without

introducing any bias, which is the main source of errors in SL-RF SV. Moreover, from

Table 5.1, we note that the proposed ML-RF MtR method also outperforms the ML-RF1,
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Fig. 5.11 Success and failure cases with normal vectors superimposed, where green shows
GT normal vectors, blue shows predicted normal vector for success cases and red shows
predicted normal vector for failure cases. It can be seen that the predicted normal vectors for
failure cases are symmetrically opposite to the GT normal vectors. Silhouette images show
how different orientations can result in similar silhouettes.

ML-RF2 and ML-RF3 in marginalization due to its ability to learn the marginalization

weights with a regressor. Furthermore, as the marginalization weights are extracted using

posterior probability distributions from expert regressors, therefore they also tend to address

inaccuracies in these posterior probabilities. In contrast, previous methods directly use the

posterior probabilities for marginalization which tend to underestimate the true posterior

[119]. The errors in the proposed ML-RF MtR method come from symmetrically opposite

latent variable spaces, i.e. hand facing left/right or up/down, as can be seen in Fig. 5.10

(a)-(b) at around −40° and 40° GT orientation angles. This is due to the depth ambiguity

of 2D silhouette images where two symmetric hand orientations produce similar results.

Fig. 5.11 shows some example predictions with this symmetry problem. Nevertheless, these

errors are few in number and do not affect the overall performance of our method as depicted

in Table 5.1.

5.2.4 User-specific Validation

User-specific validation results of the proposed framework are shown in Table 5.1, where the

training and testing is done using the same participant’s data. This depicts an application

scenario where a one-time model calibration will require the user to provide a user-specific
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Fig. 5.12 Augmented Reality application in an egocentric setting. The hand orientation from
our proposed method can be used for manipulating an augmented character on a hand palm.
The sequence of hand orientation starts from the top left and ends at the bottom right image.

hand orientation dataset. Once trained, our proposed approach would be able to infer the

hand orientation. For this validation, we divide each participants data into training (70%) and

testing (30%) sets. From Table 5.1 we see that the proposed method performs even better

than single-fold validation, as now the marginalization is fine-tuned for a particular user’s

hand where variations in shape and size are limited.

5.3 Application

The inferred hand orientation angles are useful in realizing a novel Augmented Reality

application. We note that similar to Chapter 4, the hand orientation can provide manipulation-

based interaction. In this work, we present an egocentric application scenario where a user

wears a head mounted action camera. The video sequence from such scenario consists of a
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(a) (b) (c)

Fig. 5.13 Augmented Reality application sequence with a failure case. Top row shows the
rendered augmented character on a continuous sequence of input images, whereas the bottom
row shows the posterior probability p(φ ,ψ|dk) from our proposed ML-RF MtR method.
The MLE prediction is shown as a red x. It can be seen in (b) that even when our method
fails, the posterior probability contains information for correct orientation angles.

number of variations that include radial lens distortion and abrupt hand and head movements.

We demonstrate the application of our proposed method without calibrating the camera. The

inferred hand orientation is used to provide interaction with an Augmented Reality character

(as shown in Fig. 5.12), where the inferred orientations along with the location of the hand

are used to render an augmented character on hand palm. A user can manipulate the character

using different hand orientations inferred from the proposed ML-RF MtR method.

We also show the impact of errors from our proposed ML-RF MtR method on the

Augmented Reality application (see Fig. 5.13). It can be seen that the posterior probabilities

p(φ ,ψ|dk) describe a symmetry problem, where multiple hypotheses for prediction exist.

Even in the failure case in Fig. 5.13 (b), the posterior probability contains information

regarding the correct orientation angles. As our method works independently on every image,

therefore such errors are short-lived and are not accumulated over time. Furthermore, the
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short-lived failures can be recovered by exploiting the temporal coherence in the posterior

probabilities using a standard tracking technique [71, 120]. Additionally, the data has bias

due to the presence of some orientation movements that are easier to do than others. This

introduces a general prevalence in orientation movements. Our future work will aim to

explore utilizing such prior knowledge regarding the orientation prevalence to improve the

accuracy of the system.

5.4 Summary

This chapter proposed a novel marginalization method for multi-layered Random Forest

regression of hand orientation. The proposed model was composed of two layers, where the

first layer consisted of marginalization weights regressor while the second layer contained

expert regressors trained on subsets of our hand orientation dataset. This method exploited

the fact that learning from a number of variations in a dataset can be achieved by dividing

the data into smaller subsets and using them to train expert models with better accuracy. To

this end, we used a latent variable space to divide the hand orientation dataset into subsets.

A Kullback-Leibler divergence-based optimization was used to estimate the weights that

marginalized posterior probabilities from each expert regressors against a GT probability.

Our main contribution came from the use of a marginalization weights regressor, which was

trained on the marginalization weights. This regressor enabled our method to fine-tune the

marginalization of the posterior probabilities during online prediction. Furthermore, we also

proposed a method that is used for collecting hand orientation dataset, namely, Dataset 2, 3

and 4. This method provided feedback to participants, which guided them to completely cover

the possible hand orientation variations. Our proposed method outperformed the method

previously described in Chapter 4 and state-of-the-art for both hand orientation inference and

multi-layered Random Forest marginalization with an average error of 7.74° for single-fold

validation and 7.59° for a user-specific scenario. We also showed an Augmented Reality

application in an egocentric scenario. One limitation of the proposed multi-layered Random

Forest regression is that it required an explicit definition of subsets with clear boundaries.
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This limited the number of expert regressors as defining more subsets results in fewer samples

in each subset, which produces under fitting models. Moreover, in some domains the optimal

latent variable space is unknown, hence limiting the use of the proposed ML-RF MtR method.

We address these challenges in the next chapter, where we propose a staged probabilistic

regression method that is capable of defining latent variable space as it learns.



Chapter 6

SPORE: Staged Probabilistic Regression

for Hand Orientation and Pose

Estimation

This chapter proposes the staged probabilistic regression (SPORE) method which consists

of multiple expert regressors, each one of them learning a subset of variations from the

dataset [31]. Inspired by Boosting, the novelty of our method comes from the staged

probabilistic learning, where each stage consists of training and adding an expert regressor to

the intermediate ensemble of expert regressors. SPORE addresses the limitation of explicit

definition of latent variable space faced by the proposed ML-RF MtR method in Chapter

5. The proposed SPORE method utilizes a staged learning approach where after training

each stage, the evaluation of the intermediate model is used to extract the latent variable

space for the next stage. Unlike Boosting, we utilize the marginalization weights regressor

proposed in Chapter 5, to marginalize the posterior prediction probabilities from each expert

regressor. We extend and evaluate our proposed framework for simultaneously inferring hand

orientation and pose. Our proposed method proves to be more accurate in comparison to the

state-of-the-art of both hand orientation inference and multi-layered Random Forest (ML-RF)

marginalization. We also show application scenarios where the hand orientation and pose

can be combined to enable interaction with an augmented character and a computer game.



98 SPORE: Staged Probabilistic Regression for Hand Orientation and Pose Estimation

Moreover, experimental results reveal that simultaneously learning hand orientation and pose

from 2D monocular images significantly improves the performance of pose classification.

6.1 Staged Probabilistic Regression

In our proposed method, we utilize a ML-RF composed of two layers, where the first layer

consists of a single marginalization weights regressor and the second layer is composed

of an ensemble of expert regressors trained on subsets of the hand orientation dataset. We

introduce a staged learning method that trains and incrementally adds the expert regressors to

the model. The flowchart of the training and prediction framework for SPORE is presented

in Fig. 6.1. Algorithm 1 and 2 describe the pseudocode for the training and prediction

algorithms for SPORE, which appear in Section 6.1.1. In the proposed framework, each

added expert regressor is trained on the samples that the existing expert regressors have

difficulty in learning. We achieve this by combining the existing models using marginalization

weights and evaluating the accuracy of the model after each training stage. Based on a

threshold error, we identify the harder regression problems after each stage and use these

samples to train the next expert regressor. The chosen approach enables us to use our

regression-based marginalization framework without defining subsets using latent variable

boundaries as defined in Chapter 5. When all expert regressors have been trained, the posterior

probabilities corresponding to each sample in the training set are acquired from each of

the trained expert regressors. We apply a Kullback-Leibler divergence-based optimization

technique, proposed in Chapter 5, that estimates the marginalization weights for estimating

marginal probability distribution from the given ensemble of expert regressors. We use

these marginalization weights to train a marginalization weights regressor which enables us

to combine the ensemble of expert regressors. This staged learning approach allows us to

achieve higher accuracy as compared to previously proposed marginalization methods as

well as a single regressor-based approach. We now describe the SPORE approach in detail.
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Fig. 6.1 Flowchart shows the SPORE training and prediction framework. The trained
regressors are highlighted with a solid gray background.

6.1.1 Marginalization of Multiple Expert Regressors

In our proposed method, the ensemble of expert regressors consists of a set of multi-variate

Random Forest (RF) regressors that are trained on subsets of our hand orientation dataset.

This ensemble of expert regressors enables better generalization in the presence of a number

of variations in the dataset. The subsets of the dataset are defined based on latent variable

representations that are generated using the intermediate model evaluations. Given an

input Contour Distance Feature (CDF) vector dk, each expert regressor infers the posterior

probability p(φ ,ψ|rn,dk) for a given latent variable rn.

The proposed expert regression layer contains an ensemble of trained expert regres-

sors, where the task of marginalization is to estimate their combined marginal probability

p(φ ,ψ|dk) that is used to infer orientation angles o = (φ ,ψ) for a given input feature vector
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Algorithm 1: Training algorithm for SPORE.
Input: Uall = {(d1,o1), · · · ,(dk,ok), · · · ,(dK ,oK)}, N, σ

% N is the number of stages
% σ is the error threshold

Output: (ERn, MR)
% ERn are N Expert Regressors
% MR is the Marginalization Weights Regressor

1 n← 1 % Starting stage
2 {rn(k)}K

k=1 ← 1 % Latent variable selecting all samples
3 Usel ← selectSubset(Uall , rn) % Select initial subset of Uall

4 % Training ERn
5 for n← 1 to N do
6 ERn ← Train(Usel ) % Train stage n using selected subset
7 if n = 1 then
8 p(ok|rn,dk)← Predict(dk , ERn) % Get posterior probabilities
9 op(k)← argmaxok

p(ok|rn,dk)

10 else
11 for m← 1 to n do
12 p(ok|rm,dk)← Predict(dk , ERm)
13 end
14 ωnk ← getMarginalizationWeights(p(ok|rn,dk)) % Described in Section 6.1.3
15 p(ok|dk)← ∑

n
m=1 p(ok|rm,dk)ωmk % Marginalize probabilities described in Section 6.1.1

16 op(k)← argmaxok
p(ok|dk)

17 end
18 % Define latent variable for next stage described in Section 6.1.2
19 if |op(k)−ok|> σ then
20 rn(k)← 1
21 else
22 rn(k)← 0
23 end
24 Usel ← selectSubset( Uall ,rn)
25 end

26 % Training MR
27 for n← 1 to N do
28 p(ok|rn,dk)← Predict(dk , ERn) % Get posterior probabilities
29 ωnk ← getMarginalizationWeights(p(ok|rn,dk))
30 Wall ← {(d1,ωn1), · · ·(dK ,ωnK)} % Define training set for MR
31 MR← Train(Wall )
32 end
33 return ERn,MR

dk. This marginal probability is defined as:

p(φ ,ψ|dk) =
N

∑
n=1

p(φ ,ψ|rn,dk)ωnk, (6.1)

where ωnk are weights corresponding to each latent variable such that ∑
N
n=1 ωnk = 1 and N is

the total number of expert regressors. This marginal probability can be used for maximum



6.1 Staged Probabilistic Regression 101

Algorithm 2: Prediction algorithm for SPORE.
Input: d, ERn, MR, N
% d is the input Contour Distance Feature vector
% ERn are N Expert Regressors
% MR is the Marginalization Weights Regressor

Output: o
% o = (φ ,ψ) is a vector of predicted orientation angles

1 o← ∅
2 ωn ← Predict(d, MR) % Predict Marginalization Weights
3 for n← 1 to N do
4 p(o|rn,d)← Predict(d, ERn) % Get posterior probabilities
5 end
6 p(o|d)← ∑

N
n=1 p(o|rn,d)ωn % Marginalize posterior probabilities

7 o← argmaxo p(o|d)
8 return o

likelihood estimate (MLE) as:

(φ∗,ψ∗) = argmax
(φ ,ψ)

p(φ ,ψ|dk) . (6.2)

6.1.2 Latent Variable Generation using Intermediate Models

In our proposed work for SPORE, we do not explicitly define the latent variable space, as

we defined in Chapter 5. However, herein we rely on intermediate model evaluations for

extracting a latent variable rn, which defines the subset used for training the expert regressor

in the nth stage. We start training the first expert regressor using all samples in the dataset.

Following this, we train and add additional expert regressors to the ensemble using subsets

of the dataset defined by the corresponding latent variable rn. For each training sample in the

dataset, we determine if it belongs to the latent variable rn as:

rn(k) =

1 if |op(k)−ok|> σ ,

0 otherwise,
(6.3)

where op(k) are the orientation angles which are predicted by marginalizing intermediate

model probabilities using Equation 6.1 and ok are the ground truth (GT) orientation angles.

σ is an adjustable threshold and rn(k) ∈ {0,1} determines if the given sample belongs to the

latent variable rn for the nth stage.
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This method has two advantages over the previously proposed latent variable-based

training described in Chapter 5. First, the proposed method relies on the model to define

and use subsets, which might be useful in cases where optimal latent variable-based subset

definitions are difficult or not well defined a priori. Second, our proposed incremental

learning method is capable of defining latent variables with overlapping boundaries ensuring

complete training of expert regressors, in cases where datasets are small and dividing them

into subsets can result in shallow under fitting models.

In the subsequent sections, we present an overview of the method for estimating the GT

marginalization weights ωnk from trained expert models. Our approach is similar to the

marginalization weights estimation presented in Chapter 5. However SPORE can work with

up to N expert regressors. In our experimental validation we determine the number of stages

N by empirical parameter optimization experiments described in Section 6.2.2.

6.1.3 Marginalization through Regression

We generalize the marginalization through regression method, proposed in Chapter 5, for

N expert regressors. Given the GT probability p(φk,ψk) and the corresponding posterior

probabilities p(φ ,ψ|rn,d), we utilize the optimization method from Chapter 5 in which the

marginalization error is based on Kullback-Leibler divergence [118]. The error is optimized

to estimate the GT marginalization weights ωnk for all latent variables rn ∈ {r1,r2,r3 · · ·rN}.

This error is defined as:

E =
∫∫

p(φk,ψk) log
p(φk,ψk)

p(φ ,ψ|dk)
dφdψ. (6.4)

The partial derivative of E w.r.t ωnk is defined as:

∂E
∂ωnk

=−
∫∫ p(φgt ,ψgt) p(φ ,ψ|rn,d)

∑
N
n=1 p(φ ,ψ|rn,d)ωnk

dφdψ. (6.5)
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We estimate the optimal weights ωnk by utilizing the partial derivatives in gradient descent

as:

∇E =

[
∂E

∂ω1k
,

∂E
∂ω2k

,
∂E

∂ω3k
· · · ∂E

∂ωNk

]
, (6.6)

for which the optimization is iteratively evolved for a solution given by:

ω
υ+1
nk = ω

υ
nk−λ∇Eυ , (6.7)

where λ is the step size along the negative gradient direction and υ is the iteration number.

At this stage, we have the optimal weights fit to the GT probabilities defined by GT

orientation angles. These weights are required to train the marginalization weights regressor

that produces the weights ωn during online prediction.

Marginalization Weights Regressor

We use a multi-variate RF regressor, proposed in Chapter 5, to learn the mapping of CDF

dk onto marginalization weights ωnk. This regressor is used during prediction to infer

marginalization weights ωnk for marginalizing the posterior probabilities p(φ ,ψ|rn,dk) from

each expert regressors using Equation 6.1.

6.1.4 Extension to Estimate Orientation and Pose

The proposed SPORE method can be extended to simultaneously infer the hand orientation

and pose angles. To achieve this, we utilize a hand orientation and pose dataset which

contains the CDF (dk), the corresponding categorical hand pose label (χk) and the orientation

angles (ok). We introduce the pose classification into each expert regressor by including

the discrete posterior probability distributions p(χ|dk) in the leaf nodes. Training of the

extended model is driven by both pose classification as well as orientation regression data.

We achieve this by using an information gain Qs, which is determined by:

Qs = (1−β )Qr +βQc, (6.8)
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where Qr is the orientation regression information gain, Qc is the pose classification infor-

mation gain and β ∈ {0,1} is a random variable selected with probability p(β ). We use

standard classification and regression information gain as defined in Chapter 3.

Given the additional pose classification task, we define the latent variable space rn by

modifying Equation 6.3 with an additional term as:

rn(k) =

1 if |op(k)−ok|> σ or χp(k) ̸= χk,

0 otherwise,
(6.9)

where χp(k) and χk are the predicted and GT hand poses respectively. The additional criteria

related to hand poses in Equation 6.9 identifies samples for which the existing intermediate

model has difficulty in inferring the hand pose.

For an input CDF vector dk, each expert model now additionally infers the posterior

probability p(χ|rn,dk). We marginalize these posterior probabilities using:

p(χ|dk) = ∑
n

p(χ|rn,dk)ρnk, (6.10)

where ρnk are weights corresponding to each latent variable for the classification posterior

probabilities p(χ|rn,dk) and ∑
N
n ρnk = 1. We estimate these marginalization weights using

discrete version of energy E defined as:

Ec = ∑
χ

p(χk) log
p(χk)

p(χ|dk)
. (6.11)

The partial derivatives w.r.t ρnk can be defined using Ec as:

∂Ec

∂ρnk
=−∑

χ

p(χk) p(χ|rn,dk)

∑
N
n=1 p(χ|rn,dk)ρnk

. (6.12)

We use gradient descent to estimate the optimal weights ρnk for the classification posterior

probabilities. We concatenate the marginalization weights for pose classification ρnk and



6.2 Experimental Validation 105

orientation regression ωnk together to train a marginalization weights regressor that infers

both weights simultaneously.

6.2 Experimental Validation

We evaluate our proposed SPORE method using two datasets collected from 22 participants.

The first dataset, referred to as Dataset 3 herein, contains 9414 samples captured for an

open hand pose from 22 different participants. The second dataset, referred to as Dataset 4

herein, contains 8675 samples captured using four different hand poses (shown in Fig. 6.2)

from 10 different participants. The different hand poses used for experimental validation are

limited, however, they demonstrate the applicability of the proposed method in scenarios

where multiple hand poses are required. The range of the orientation angles captured by these

datasets is restricted to a circular space defined by
√

φ 2 +ψ2 ≤ 45°, as shown in orientation

space plots in Fig. 6.3. This gives us an appropriate ratio for the number of samples against

the variations within the defined orientation space. The four hand poses used in this work

are selected as they follow our planar hand assumption, which enables us to extract reliable

GT hand orientation using the method described in Chapter 5. Moreover, these hand poses

present different shapes of the hand, which can be used to trigger interaction with Augmented

Reality objects. The χ3 and χ4 hand poses are selected to show the importance of hand

orientation for estimating hand pose. These two postures, under certain viewpoints, exhibit

similar hand shape especially when the fifth digit or pinky finger is partially occluded (see

Fig. 6.12 (c)). As shown in Table 6.3, the SPORE method trained using both orientation

and pose data is able to infer these two postures accurately. The proposed method can be

easily generalized to use additional hand poses, where additional poses can be added along

with their labels, e.g. χ5. The prediction framework of the proposed SPORE method has an

average execution time of 30.80 ms per frame for orientation estimation and 37.70 ms for

simultaneous orientation and pose estimation. These execution times are acquired using a

Matlab implementation on 3.2 GHz Core-i5 CPU.
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(a) χ1 (b) χ2 (c) χ3 (d) χ4

Fig. 6.2 Four hand postures, along with their corresponding labels, used for multiple pose
experimental validation. (a) shows an open hand pose used for single pose experimental
validation of SPORE.

6.2.1 Comparison Methods

The proposed method is compared with a previous method for hand orientation regression

that uses a single-layered single-variate Random Forest (SL-RF SV) with independence

assumption on each hand orientation angle. We also compare with five different methods

for marginalization of ML-RF regressors [21, 30, 66]. Furthermore, as SPORE is inspired

from Adaboost, we compare the proposed method with Random Forest with Adaboost [121].

Our work in Chapter 5, referred to as ML-RF MtR herein, is closely related to SPORE.

This method also utilized a multi-layered Random Forest, where the first layer consisted

of a single marginalization weights regressor and the second layer contained five expert

regressors. The expert regressors in ML-RF MtR were trained on subsets of the orientation

dataset defined using a simple observation that the hand can be oriented (i) fronto-parallel,

or facing (ii) right, (iii) left, (iv) upwards or (v) downwards with respect to the camera.

Marginalization weights for the expert regressors were extracted using posterior probabilities

and a Kullback-Leibler divergence-based optimization as described in Section 5.1.3. ML-RF

MtR differs from our proposed SPORE method in terms of the explicit definition of the five

latent variables for defining subsets of the training data. In contrast, SPORE relies on the

learned models to define the next most suitable latent variable space which has a number of

advantages, as discussed in Section 6.2.3. Moreover, we also utilize the k-means clustering

algorithm with five clusters to define latent variables for training our proposed ML-RF MtR

method. This method, referred to as ML-RF MtR K-means herein, enables us to understand
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Fig. 6.3 Orientation space plots showing the orientation angles captured by (a) Dataset 3 and
(b) Dataset 4.

whether SPORE is learning meaningful latent variable-based representations or if it is just

doing clustering at each stage. The other ML-RF marginalization methods are referred to

as ML-RF1, ML-RF2 and ML-RF3 herein which are adapted from [21] and [66]. These

methods also rely on the same explicit definition of latent variables as in ML-RF MtR. As

defined in Section 5.2, all three ML-RF comparison methods use a two-layered RF with

a coarse latent variable classification in the first layer and expert orientation regression in

the second layer. These methods only differ in marginalization where ML-RF1 uses the

predicted latent variable in the coarse layer to select the corresponding expert regressor

for prediction. ML-RF2 uses posterior probabilities of each latent variable in the coarse

layer as marginalization weights for predicted angles from each expert regressor, whereas

ML-RF3 uses posterior probabilities from both the coarse and the expert layers to present the

marginalized posterior probability.

We evaluate the extension of our proposed method by simultaneously estimating the

orientation and pose using the Dataset 4. To show the role of hand orientation in improving

the pose classification performance, we compare this extension with a Random Forest

Classifier (RF Clf) that infers hand pose only. For this extension, we also compare the

orientation inference with all the comparison methods mentioned above. We further discuss

the results of these comparisons in Section 6.2.4.
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6.2.2 Parameter Optimization

The proposed SPORE method has different training parameters which include, (i) the number

of trees (T ), (ii) the depth of each tree (δt), (iii) the minimum number of samples in each

leaf node (η j), (iv) the number of features selected at each split node (ε), (v) the number of

stages (N), (vi) the latent variable generation parameter σ and (vii) the probability p(β ) for

selecting information gain for the extension of the proposed method for simultaneous hand

orientation and pose inference. All comparison methods utilize RF, therefore we empirically

set the values of the related parameters as, T = 100, δt = 10, η j = 20, ε = 1. As the proposed

SPORE method is not dependent on the number of predefined subsets, therefore any number

of stages N can be used. To evaluate the optimal values for N and σ , we use a single-fold

validation with Dataset 3, 70% of which is used for training and 30% for testing. The optimal

values for p(β ) are determined using a single-fold validation with Dataset 4.

The Combined Mean Absolute Error (CMAE) with varying number of stages N is shown

in Fig. 6.4 (a). It can be seen that SPORE with N = 5 stages presents the minimum CMAE

for both azimuth (φ ) and elevation (ψ) angles. The error increases for N > 5, which means

that the variations contained in our hand orientation dataset can be optimally captured by

N = 5. We choose N = 5 for the rest of the experimental validation. Fig. 6.4 (b) shows the

CMAE with varying σ threshold in Equation 6.3. σ acts as a threshold for defining the

subset of training data for the next stage. We observe that if σ is too low, i.e. σ ≈ 0, then the

subsequent stages will all be trained using all training samples, thus not targeting to learn

from specific variations. On the contrary, if σ is set too high, i.e. σ > 10°, then the latent

variable space will not be fully defined for subsequent stages, hence resulting in under fitting

models. We observe that σ = 6° maintains a good balance for selecting harder samples for

training subsequent stages while also yielding the least CMAE in Fig. 6.4 (b). Therefore, we

select this value for the rest of the experimental validation.

The extension of our proposed SPORE method to classify hand pose additionally depends

on probability p(β ) for selecting classification or regression information gain for training.

We present the effect of varying this probability on hand orientation and pose inference in

Fig. 6.5, which shows that selecting regression information gain more often than classification
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Fig. 6.4 Parameter optimization using Dataset 3, shows evaluation of the proposed SPORE
method for hand orientation inference. The figures present CMAE for (a) varying number of
stages N and (b) varying σ threshold in Equation 6.3.

information gain (i.e. p(β = 0)> 0.5) yields better performance for both hand orientation

and pose inference. It can also be seen that the pose classification is solved even when no

classification information gain is employed (i.e. p(β = 0) = 1). The reason for this is, the

information for each pose is well encoded within the CDF and hand orientation. In our

experimental validation we use p(β = 0) = 0.8. It means that at each split node, regression

information gain is selected more frequently than classification information gain. As we

will further demonstrate in Section 6.2.4, the hand orientation information can significantly

improve pose classification results because with orientation the SPORE model is able to

build a better understanding of the hand pose dataset. This is specifically seen for poses χ3

and χ4 in Tables 6.3 and 6.4.

6.2.3 Experimental Validation using Single Pose Dataset

Our proposed hand orientation inference method is evaluated using the Dataset 3. We

perform single-fold validation by randomly dividing 70% of the data into training set and

using the remaining 30% for testing. Table 6.1 shows the Mean Absolute Error (MAE) in

degrees for the single-fold evaluation using SPORE method and the comparison methods.
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Fig. 6.5 Parameter optimization for p(β = 0) using Dataset 4, shows evaluation of the
proposed SPORE method with hand orientation and pose estimation extension. (a) presents
CMAE for orientation inference and (b) shows the accuracy of pose classification against
varying probability p(β = 0) of selecting regression information gain.

Method used Azimuth (φ ) Elevation (ψ)

p-value p-value

SPORE 8.42° - 7.38° -

ML-RF MtR 9.65° 0.00 7.81° 0.13x10−10

ML-RF MtR K-means 9.80° 0.04x10−10 8.14° 0.14x10−8

SL-RF SV 11.58° 0.25x10−8 8.75° 0.00

RF Adaboost [121] 11.54° 0.72x10−10 9.06° 0.00

ML-RF1 10.24° 0.22x10−5 8.02° 0.00

ML-RF2 12.82° 0.20x10−3 9.12° 0.11x10−2

ML-RF3 10.45° 0.10x10−20 8.13° 0.15x10−18

SPORE (Dataset 1) 15.46° - 13.37° -

Table 6.1 MAE in degrees for single pose experimental validation in Section 6.2.3.

Furthermore, the percentage of data that lies under a given error (e) is shown in Fig. 6.6 (a).

The percentage data in this plot is estimated using Equation 3.21.
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Fig. 6.6 Percentage data versus error in prediction shows the percentage of data that lies
below a given error in prediction for the single-fold validation using (a) Dataset 3 and (b)
Dataset 4.

Our results demonstrate that SPORE outperforms the other existing methods in ML-RF

marginalization as well as hand orientation inference. The proposed method also outperforms

the Random Forest with Adaboost which lacks a probabilistic formulation, resulting in higher

MAE. In contrast, the proposed method is formulated using probabilities, where the complex

mapping between each stage and the input features is learned. We further observe from

Fig. 6.6 (a) that the proposed SPORE method performs better with 78% of data lying in

under 10° of error. Our analysis shows that at around 20° of error, the RF Adaboost, ML-RF2

and SL-RF SV contain higher percentage data than any other method. This is due to the

fact that all other comparison methods, including the proposed SPORE, are affected by the

symmetry problem for around 10% of the data. The symmetry problem arises as a result of

depth ambiguity in 2D monocular images, where multiple hand orientations can produce

the same contour. It affects the regressors where for a given hand contour, the regressors

infer symmetrically opposite hand orientations. RF Adaboost, ML-RF2 and SL-RF SV infer

only a few symmetrically opposite hand orientations. As these methods rely on the weighted

sum of regressor predictions or a prediction from a single regressor, therefore the variations

due to the symmetry problem result in introducing a model bias. This results in greater

MAE for these methods in Table 6.1. In Fig. 6.6 (a), we also show the performance of the

SPORE model with N = 6 stages. It shows a slight decrease in performance, indicating that
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Fig. 6.7 GT versus predicted orientation angle plots showing results for (a)-(b) the proposed
SPORE method and (c)-(d) the ML-RF MtR method proposed in Chapter 5. (e)-(f) shows
the errors in ML-RF MtR that were corrected by SPORE (green arrows) and the correct
predictions by ML-RF MtR that were incorrectly inferred by SPORE (red arrows). In (e)-(f),
we label a sample as being correctly (incorrectly) predicted if the absolute error is less
(greater) than 15°. The larger number of green lines compared to red shows that SPORE
improves estimation for the majority of samples.
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Fig. 6.8 GT angles showing regions with correct (green) and incorrect (red) orientation
predictions using SPORE. We label a sample as being correctly (incorrectly) predicted if the
absolute error is less (greater) than 15°.

increasing the number of stages does not contribute towards better accuracy. In fact, we

note that when we increase N then the last stages receive insufficient data. In case of the

above experiments with N = 6 stages, the last stage receives a total of 673 samples which

is far less than the first stage where all training samples are used. Our findings suggest

that more stages in SPORE can be employed in cases where a sufficiently large dataset is

available. We also evaluate SPORE using Dataset 1 and present our results in Table 6.1.

The results indicate that a SPORE model trained using Dataset 3 can generalize well to

infer orientation angles on a different unseen data. Moreover, we note that Dataset 1 was

collected using unguided orientation movements, where a number of unwanted orientations

might exist. These variations are the reason for the drop in performance of SPORE when

testing using Dataset 1. Our experimental results show that SPORE produces the results with

the least error, and a paired t-test with a p-value less than 0.05 demonstrates that SPORE’s

improvement over all other methods is statistically significant.

We also show the comparison of the proposed SPORE method with the most closely

related ML-RF MtR method proposed in Chapter 5. In Fig. 6.7, we present the single-fold

validation results showing the GT versus predicted plots for the proposed SPORE method
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(a) (b) (c) (d) (e) (f)

Fig. 6.9 Success and failure cases for the proposed SPORE method. The GT orientation
(green) and predicted orientation using SPORE (blue) and ML-RF MtR (red) are shown with
arrows. (a)-(d) shows success cases where the proposed SPORE method is successfully able
to infer the orientations. (e)-(f) shows the failure cases where the proposed method fails.

and the ML-RF MtR method. Fig. 6.7 (e)-(f) shows the comparison of both methods, where

green arrows show predictions that were corrected using the proposed SPORE method and

red arrows show the predictions that were incorrectly inferred by the proposed method. In

these comparisons, we label predictions as correct when the absolute error is less than 15°

and incorrect when it is greater than 15°. We observe that in this comparison 162 incorrectly

inferred predictions by ML-RF MtR are corrected by the proposed SPORE method. This

is due to the ability of our proposed SPORE method to define the latent variable space

using predictions from previous stages. Such approach, however, is absent from the ML-RF

MtR method where the latent variable space is explicitly defined based on the observation

that the hand can be (i) fronto-parallel, or facing (ii) right, (iii) left, (iv) upwards or (v)

downwards with respect to the camera. Moreover, we visualize these correct and incorrect

predictions for SPORE using GT orientation angles in Fig. 6.8. It can be observed that most

of the incorrect predictions lie in regions where lesser samples are captured due to unnatural

hand movements required to acquire those orientations. Fig. 6.9 shows some cases for the

proposed SPORE method. We observe that the proposed method fails on difficult samples

where the fingers are not completely outstretched (Fig. 6.9 (e)-(f)). We also compare SPORE

to ML-RF MtR K-means where the latent variables are defined using k-means for the ML-RF

MtR method proposed in Chapter 5. This is to understand whether SPORE is learning

complex latent variable-based representations or if it is only doing automatic clustering at
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Fig. 6.10 Learned latent variables shown for different stages of SPORE. Each sample is
shown with GT orientations angles and the learned latent variable representation shown in
colors representing rn ∈ {r1,r2,r3 · · ·rN} for N = 5.

each stage with ML-RF MtR’s marginalization through regression method. The results in

Table 6.1 and Fig. 6.6 (a) indicate that indeed the learned representations are meaningful as

they enable SPORE to outperform ML-RF MtR K-means. Fig. 6.10 shows the learned latent

variable representation for SPORE. It can be seen that this representation builds a complex

relationship between the learned expert regressors. While such relationship is not dictated by

a trend, it does enable the SPORE method to outperform the comparison methods. Moreover,

in Fig. 6.11 we present the easy versus harder to learn hand orientation samples. In Fig. 6.11

(a) easy samples are presented that the SPORE learned from the first stage. Fig. 6.11 (b)

shows harder to train samples that are used for learning the next stages of SPORE. It can be

seen that easy samples contain limited inter-person variation in hand shape, size and style,

whereas harder samples have additional variations induced due to the movement of fingers,

affecting the inter-finger spacing.

6.2.4 Experimental Validation using Multiple Pose Dataset

We use the Dataset 4 to evaluate the extension of our proposed SPORE method for inferring

both hand orientation and pose simultaneously. The MAE in degrees for the single-fold
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(a)

(b)

Fig. 6.11 Easy versus hard training samples for SPORE. (a) shows easy training samples that
are successfully learned in the first stage regressor with error |op(k)−ok|< σ . (b) shows
harder training samples, with error |op(k)−ok|> σ , that are not completely learned by the
first stage regressor and hence are selected for the next training stage. Green arrows show
the GT orientations. The difference between easy and hard samples can be seen in terms of
inter-person pose, shape and style variations.

evaluation using this extension and the comparison methods is presented in Table 6.2.

Furthermore, the percentage data under a given error (e) is shown in Fig. 6.6 (b). We

notice that again, the proposed SPORE outperforms the comparison methods that infer hand

orientation and pose simultaneously.

Furthermore, we compare the pose classification accuracy of the proposed SPORE method

with RF Clf that learns only the pose classification [86]. We present confusion matrices for

these results in Tables 6.3 and 6.4, respectively. It can be seen that SPORE outperforms the

RF Clf for the pose classification task. This is due to the presence of the additional orientation

information that SPORE uses to learn both hand orientation and pose simultaneously. The

comparison RF Clf method lacks the orientation information, which is why it is unable to

differentiate the poses with variations in orientation. In Fig. 6.12, we present the samples

that are misclassified by RF Clf due to absence of orientation information. Moreover, the
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Method used Azimuth
(φ )

Elevation
(ψ)

SPORE 8.72° 8.28°

ML-RF MtR 9.62° 9.80°

ML-RF MtR K-means 9.75° 9.42°

SL-RF SV 14.53° 14.13°

RF Adaboost [121] 11.87° 11.08°

ML-RF1 10.61° 10.86°

ML-RF2 12.69° 11.65°

ML-RF3 10.80° 10.40°

Table 6.2 MAE in degrees for multiple pose experimental validation in Section 6.2.4.

RF Clf method confuses pose χ3 and χ4. This is because under certain viewpoints hand

undergoes self occlusion where the visible shape for χ3 and χ4 hand poses look similar (see

Fig. 6.12 (c)). As the RF Clf does not learn from hand orientation, therefore it is not able

to differentiate well between these poses. These results let us understand the importance of

hand orientation in hand pose classification in 2D images. We observe that with the absence

of such orientation information the classifier has difficulty in classifying poses under varying

viewpoint.

Table 6.3 Hand pose classification results
using SPORE.

Predicted Pose
χ1 χ2 χ3 χ4

G
T

Po
se χ1 97.94% 0.00% 1.90% 0.16%

χ2 0.00% 99.66% 0.17% 0.17%
χ3 0.15% 0.00% 98.97% 0.89%
χ4 0.00% 0.56% 1.50% 97.89%

Table 6.4 Hand pose classification results
using RF Clf.

Predicted Pose
χ1 χ2 χ3 χ4

G
T

Po
se χ1 95.40% 0.00% 4.60% 0.00%

χ2 0.00% 94.16% 5.84% 0.00%
χ3 0.15% 0.00% 98.97% 0.89%
χ4 0.00% 1.54% 17.84% 80.62%
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(a) (b) (c) (d)

Fig. 6.12 Hand poses that are correctly inferred by the proposed SPORE method but mis-
classified by RF Clf. (a) shows χ1 poses incorrectly classified as χ3, (b) shows χ2 pose
incorrectly classified as χ3, (c) shows χ3 poses incorrectly classified as χ4 and (d) shows
χ4 incorrectly classified as χ3 by the RF Clf comparison method. Green arrows show the
GT orientation information that is used by SPORE to correctly infer the hand pose. The
orientation information is not used for training RF Clf.

6.2.5 Applications

To show the usefulness of the inferred hand orientation and pose, we present two application

scenarios that utilize the inferred output in novel ways. Firstly, we extend the egocentric

application scenario presented in Chapter 5 by introducing interaction through different hand

postures. The video sequence captured from a head mounted camera contains a number

of variations that include radial lens distortion and abrupt hand and head movements. The

inferred orientation along with the location of the hand is used to render an augmented

character on the hand palm. A user can interact with this character using different hand

orientations and poses. In our application, χ2 is used to trigger character spinning animation,

χ3 makes the character jump and χ4 increases the scale of the character. Fig. 6.13 shows

some frames from this Augmented Reality application of our method. We note that such

interaction enables users to use their existing knowledge of how they manipulate physical

objects and apply that in Augmented Reality, resulting in a natural interaction experience.

Future work can be done to evaluate and compare our new interaction experience with



6.2 Experimental Validation 119

Fig. 6.13 Augmented Reality application in an egocentric setting. The hand orientation and
pose from our proposed method can be used for interaction with augmented characters on
the hand palm.

existing technologies, such as keyboards, mice and touch screen, that enable interaction with

digital content.

To show the versatility of our proposed hand orientation and pose inference framework

we also present a game interaction application (shown in Fig. 6.14). This demo utilized

a standard off-the-shelf uncalibrated webcam. We utilized SPORE to infer both the hand

orientation and pose which were used to control the movement and actions of a character in

the game. The extracted orientations from the hand enable the user to control the direction

of motion of the character, whereas the different hand postures trigger different actions like

jump and fire. We use χ2 to trigger jump and χ3 to enable fire. This game provides some

ideas of how our method can be used within existing applications and games.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.14 Game interaction application using the inferred hand orientation and pose. The game
character can be moved using left and right orientation, whereas different hand poses trigger
fire and jump actions. (a) and (b) show left and right movement using hand orientations, (c)
shows the fire action performed using χ3 pose and (d)-(f) show jump action performed using
χ2 pose. We use a standard off-the-shelf uncalibrated webcam to run this demo.

6.3 Summary

We proposed a staged probabilistic regression method that is capable of learning well from

a number of variations within a dataset. The proposed method is based on multi-layered

Random Forest, where the first layer consisted of a single marginalization weights regressor
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and second layer contained an ensemble of expert learners. The expert learners are trained in

stages, where each stage involved training and adding an expert learner to the intermediate

model. After every stage, the intermediate model was evaluated to reveal a latent variable

space defining a subset that the model had difficulty in learning from. This subset was used

to train the next expert regressor. The posterior probabilities for each training sample were

extracted from each expert regressors. These posterior probabilities were then used along with

a Kullback-Leibler divergence-based optimization method to estimate the marginalization

weights for each regressor. A marginalization weights regressor was trained using CDF

and the estimated marginalization weights. We showed the extension of our work for

simultaneous hand orientation and pose inference. The proposed method outperformed the

state-of-the-art for marginalization of multi-layered Random Forest and hand orientation

inference. Furthermore, we show that a method which simultaneously learns from hand

orientation and pose outperforms pose classification as it is able to better understand the

variations in pose induced due to viewpoint changes.





Chapter 7

Conclusions

7.1 Summary

A detailed review of the literature on hand pose estimation showed that the existing methods

took either a generative or discriminative approach. The generative methods optimized a

detailed hand model for estimating hand pose and were found to be computationally expensive

to work on a mobile device. Moreover, most of these methods required an initialization

step involving a fixed hand orientation and pose. In contrast, the recent developments in

discriminative methods have shown the potential of a learned machine learning model for

generalizing variations in a given dataset [3]. However, these methods were based on depth

images which are not widely available on mobile devices due to consideration of power

consumption, cost and form-factor [21]. Furthermore, it was found that despite using depth

images, most existing datasets overlooked hand orientation [3]. These resulting methods

worked for inferring complex hand pose articulation under limited viewpoint variations [34].

The introduction of egocentric devices requires methods that are robust to the changing

viewpoint of different hand postures. As we have shown in this dissertation, the hand

orientation information is important for learning discriminative models that can accurately

infer hand pose under varying viewpoints. To this end, our work dealt with the problem of

inferring hand orientation angles from 2D silhouette images of the hand. We describe our

achievements below.
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We proposed a unified framework for hand orientation regression that was further used

to propose the single-layered and multi-layered Random Forest regression frameworks. We

contributed a single-layered single-variate Random Forest (SL-RF SV) regression method

that learned the mapping of Contour Distance Features (CDF) onto the hand orientation

angles [28]. This framework presented a method for extracting CDF that encoded the shape

variations in a planar hand pose for varying viewpoint. We also proposed a method for ground

truth (GT) hand orientation annotation using depth images. To the best of our knowledge,

the proposed method is the first to present automatic hand orientation annotation. SL-RF SV

was evaluated on a dataset of varying orientation captured using a planar open hand pose

from 13 participants. This method showed promising results while revealing some challenges

that defined our later research work. SL-RF SV also showed potential novel application

scenarios for using the inferred hand orientation for interaction in an Augmented Reality

application. The dataset collection method used in this work was unguided, where we relied

on participants’ understanding of hand orientation variations. This resulted in a smaller

dataset with many inconsistencies, motivating a need for the guided data collection method.

Furthermore, a single model proved limited for learning the variation of hand orientation

from the dataset, which was evident from the bias in the learned models.

We further contributed a method for multi-layered Random Forest Marginalization

through Regression (ML-RF MtR). This method utilized the idea of dividing a complex

learning task into smaller subsets and learning using multiple expert regressors [17, 21]. ML-

RF MtR was composed of two layers, namely, marginalization weights and expert regression

layer. Training of ML-RF MtR involved using a latent variable space to define subsets, with a

simple observation that the hand can be oriented (i) fronto-parallel or facing (ii) right, (iii) left,

(iv) upwards or (v) downwards with respect to the camera. Expert regressors were trained on

the subsets defined by the latent variable space. The posterior probabilities corresponding

to each sample in the training set were acquired from each of the trained expert regressors.

Our main contribution came from the use of a marginalization weights regressor that learned

the mapping of CDF to marginalization weights. We derived and applied a Kullback-

Leibler divergence-based optimization method that estimated the marginalization weights
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for the training data. The online prediction involved inferring the posterior probabilities

from each expert regressor and the corresponding marginalization weights inferred using

marginalization weights regressor. These probabilities were marginalized to infer the hand

orientation angles. ML-RF MtR outperformed the state-of-the-art for both hand orientation

and multi-layered Random Forest (ML-RF) marginalization methods. We also proposed a

method for collecting the hand orientation dataset by guiding participants in a painting game

application. This method enabled collection of consistent datasets, where more samples

were acquired from each participant. The objective of the painting application was to give

real-time feedback to participants so that they could perform variations to fully fill the hand

orientation space. We also showed an egocentric Augmented Reality application scenario,

where an uncalibrated head mounted camera was used to acquire color images of the hand.

ML-RF MtR was used to infer the hand orientation angles, which were used to manipulate

the orientation of an augmented character.

One limitation of ML-RF MtR was that it required explicit definition of latent variable

space for defining subsets. This limited its applicability to a wider range of applications, as

an explicit definition of the subsets is not always available. Furthermore, dividing subsets

for cases where limited data is available could potentially result in fewer samples in each

subset, hence producing under fitting models. To address this, we proposed a staged proba-

bilistic regression (SPORE) method. This method utilized a staged learning approach where

after training each stage, the evaluation of the intermediate model was used to extract the

latent variable space for next stage. SPORE utilized the marginalization through regression

proposed for ML-RF MtR that combined predictions from multiple stages. It outperformed

SL-RF SV, ML-RF MtR and a number of comparison methods including Random Forest

with Adaboost and ML-RF marginalization methods. We extended SPORE to simultane-

ously infer hand orientation and pose, which showed the significance of hand orientation in

learning models that better understand hand pose under varying viewpoints. Comparison

of this extension with Random Forest classification method that only learned from hand

pose showed that indeed a model that simultaneously learns from hand orientation and pose

can outperform a pose only model. An egocentric Augmented Reality application scenario
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was presented, where the inferred hand orientations and poses were used to manipulate and

interact with an augmented character. We also described how our method can be used to

enable hand-based game interactions. In this application, the left/right movements of the

game character were controlled using the hand orientations, whereas the hand poses were

used to trigger different actions, such as fire and jump. Both application scenarios utilized

uncalibrated off-the-shelf cameras.

7.2 Limitations

The human hand exhibits high Degrees-Of-Freedom (DoF) resulting in a number of different

hand postures. The methods proposed in this dissertation followed a number of assumptions

that introduce a number of limitations. We discuss these limitations below.

The hand poses were assumed to be planar in order to help with the acquisition of

GT hand orientation datasets. This limits the application of these methods to a wider

range of applications, where complex hand-based interactions are desired. Moreover, the

orientation angles were limited to the range
√

φ 2 +ψ2≤ 45° which also imposed restrictions

on the application scenario. Although such orientations are useful, there exist a number of

viewpoints in the egocentric scenario that fall outside the defined range. Furthermore, the

color images from 2D monocular cameras were assumed to have an uncluttered background,

which aided in a good segmentation of the hands. However, such assumption limits the

applicability of the proposed methods to the dynamically changing egocentric scenarios. The

segmentations of the wrist were aided by using a black sweatband, which is not present in

most real-world scenarios. This can be addressed by adding a method that detects the ulnar

points on the wrist and uses them to segment out the arm [47].

The problem of inferring 3D hand orientations from 2D monocular images is ill-posed,

where a single hand shape can be obtained from a number of different orientations. This

results in the symmetry problem, where the proposed model infers symmetrically opposite

hand orientations for a given hand shape. Moreover, the employed Contour Distance Features

represent hand shape information only, where the additional shading and texture information
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might be useful for resolving ambiguity in the hand orientation problem. However, using

shading and texture might pose additional challenges such as generalizing across a range

of different lighting conditions and skin tones. While we tested our method using different

cameras, the experimental validation utilized images from only one camera. Although this

enabled an in-depth analysis of our methods, future work can utilize different cameras to

further validate the performance. Furthermore, the proposed methods utilized only a single

hand, where egocentric scenarios may contain two handed interactions. This can be addressed

in future work by presenting a model that simultaneously learns to classify the hand into the

left or the right hand, infers the orientation and pose. The accuracy of the proposed hand

orientation inference methods is influenced by symmetry problem resulting in abrupt changes

in the application scenario. This can be addressed by exploiting the temporal coherence using

an existing tracking technique [120].

The color and depth images, from Microsoft Kinect v1, that were employed in our work

also impose some limitations. The resolution of these images is 640x480 pixels, where hand

normally occupies about 150x150 pixels. This relatively small size makes the extracted GT

orientation angles susceptible to quantization errors and noise from the depth images [122].

Moreover, at this resolution, the depth information for fingertips and fingers pointing towards

the camera is not fully captured. Nevertheless, the planar hand assumption along with

RANSAC-based GT orientation extraction makes our proposed methods tolerate these noise

and errors. If, in future work, non-planar hand poses are used then the noise in depth images

can raise issues in GT orientation angle estimation. These limitations can be addressed by

utilizing our data capture as well as hand orientation and pose estimation frameworks with

newer versions of depth sensors, such as Microsoft Kinect v2.

We now describe our future work, which aims at addressing these limitations, in the next

section.

7.3 Future Work

Below we discuss the future directions of the work proposed in this dissertation
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(a) (b) (c)

Fig. 7.1 Hand part label and distance transform-based features showing (a) labeled synthetic
image rendered in Poser1, the corresponding (b) silhouette and (c) distance transform.

Dataset for Multiple Articulated Hand Pose Future work can extend the painting game-

based hand orientation dataset collection method for acquiring dataset of articulated

hand pose with varying orientations. This can be achieved by utilizes additional sensors

such as an Inertial Measurement Unit (IMU) placed on the palm. When registered

with the 2D monocular sensors, viewpoint variations for nonplanar hand pose can be

captured. These new datasets can be used with our proposed SPORE method to infer

both hand orientation and pose from 2D monocular images.

Feature Extraction While Contour Distance Features proved to be efficient for hand ori-

entation regression from planar hand pose, they provide limited information for the

inferring complex hand articulations. Our future work will aim to propose more ef-

fective and detailed feature extraction techniques from 2D color images. In particular,

we envision using the distance transform of silhouette images to propose features,

similar to [15, 17, 56]. Fig. 7.1 shows a labeled synthetic hand image along with the

corresponding silhouette image and the extracted distance transform features. As it

is evident from Fig. 7.1 (c), the distance transform features represent the details of

both the hand and the parts within the hand. These features will enable us to build an

approach based on different parts of the hand, which can then be used to distinguish

different articulations and viewpoints. Part-based features will also help us make a
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generalized approach, as specific parts of the hand are more likely to be similar for

different persons as compared to the whole hand in the Contour Distance Feature [15].

Moreover, features based on texture and illumination can be utilized to address the

symmetry problem.

Temporal Coherence A number of post-processing methods can be used to exploit the

temporal coherence in a sequence of hand orientation estimation. This could signif-

icantly improve the performance of the proposed methods as in most failure cases

the symmetrically opposite hand orientations are inferred. However, such errors are

short-lived, hence utilizing a filtering method is an interesting future direction that can

be explored. A dynamical system model can be used to infer the internal states such

as velocity and acceleration of an object by using observable states such as distance

moved [71, 120]. When applying such models to filter the inferred hand orientations,

changes in orientation angles can be used to predict the angular velocity and angular

acceleration. Once the internal states of the hand are known, one can reason and reject

possible erroneous orientation angles resulting from the symmetry problem.

Hybrid Methods A major limitation of generative methods is their inability to recover from

tracking errors. The inferred hand orientation and pose from our proposed methods can

be used as a re-initializer for a generative model-based articulated hand pose estimation.

Moreover, it can help improve the computational efficiency as well as the accuracy

of such methods by proposing a hand orientation and pose that is close to the final

solution. Another limitation of generative methods is their requirement for initializing

hand orientation and pose. Our discriminative hand orientation and pose estimation

method can address this limitation by allowing the model to work with a number of

different poses with varying orientations.

Generalizing for Other Learning Problems This dissertation focused on using SPORE

for hand orientation and pose inference. We note that the proposed method can be

generalized to other domains. SPORE can be used with any probabilistic regressor or

1Poser Pro 2014: http://my.smithmicro.com/poser-pro-2014.html

http://my.smithmicro.com/poser-pro-2014.html
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classifier, where the dataset contains large variations that are not fully learned with a

single model. One similar problem, where our method can be applied to, is the head

orientation estimation from 2D monocular images [77]. A trained SPORE model for

this problem can be useful in CCTV surveillance applications, where the orientation of

a person’s head can be used to help determine the higher level activities.

Real-world Applications The proposed hand orientation and pose estimation method can

be deployed to latest Augmented and Virtual Reality platforms such as Microsoft

Hololens2 and Oculus Rift3. Our method can provide simple interaction and manipula-

tion of virtual objects that can enhance the user experience on such devices. Possible

extensions to our work can include a larger vocabulary of hand poses and orientations,

which can further contribute to a richer interaction experience.

Exploring Other Latent Variables This dissertation aims to learn and utilize latent vari-

ables for hand orientation and pose inference only. The proposed methods can be

extended to explore other relevant latent variables such as the size of the hand, catego-

rized by height and width, freedom of movement of different joints, finger separation

area etc. As we have shown in this dissertation, learning such latent variables can

significantly contribute towards improvement in overall accuracy of a given machine

learning model.

Extension to Two Hands The proposed dataset capture as well as hand orientation and pose

estimation frameworks can be extended to two-handed interaction scenarios. Given

a hand orientation and pose dataset captured from two hands, the proposed SPORE

method can be trained to simultaneously infer handedness, orientation and pose. This

can be used to identify the hand and provide appropriate interaction using orientation

and pose.

Overlapping Latent Variable Boundaries for ML-RF MtR Our proposed work for SPORE

showed that overlapping boundaries for latent variable definition can be advantageous.

2https://www.microsoft.com/microsoft-hololens/en-gb
3https://www3.oculus.com/en-us/rift/
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The proposed ML-RF MtR only uses non-overlapping boundaries. Therefore, our fu-

ture work may involve exploring the use of explicit definition of overlapping boundaries

to see if ML-RF MtR can surpass SPORE in performance.
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