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Single-molecule experiments typically produce large datasets, which can be 

challenging to analyse. Hypothesis-driven data exploration, informed by an 

expectation of the signal characteristics, can lead to interpretation bias or loss of 

information. The latest developments in Machine Learning, so-called Deep Learning 

(DL) methods offer an interesting, new avenue to address such challenges. A DL 

algorithm 'learns' certain data features towards an optimal prediction (e.g., a base call 

in DNA sequencing). In some applications, such as speech and image recognition, DL 

has been able to outperform conventional Machine Learning strategies and even 

human performance. However, to date DL has not been applied in single-molecule 

science, to the best of our knowledge. We illustrate how it can be used, and discuss 

some of the strengths and weaknesses of the approach. In particular, a 'deep' neural 

network has many features of a 'black box', which marks a significant departure from 

hypothesis-led data interpretation. 

 

Single-molecule sensing, sequencing and characterisation based on electric or optical 

techniques can generate very large datasets, in some cases in a (semi-) automated 

fashion1-4. This data is typically one-dimensional, in the sense that the conductance, 

intensity or current is being recorded as a function of a single, independent variable, 

for example time or electrode distance, as illustrated in Fig. 1. The analysis can be 

very challenging, not only because of the sheer size of the dataset, but also due to 

insufficient knowledge about the characteristic signal features and poor signal-to-

noise ratio (S/N). Some hypothesis-driven data exploration and selection is often 

required: Led by an expectation that may for example be informed by a physical 

model or even intuition, the experimenter inspects the data either manually or 
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automatically using some statistical criteria. They would aim to extract data 

signatures of interest ('signal'), rejecting supposedly uninteresting 'background' or 

'noise'. While this approach undoubtedly has its merits, it can lead to important 

information content being missed, to the omission of unexpected results and to bias in 

the interpretation of the results. Hand selection may also be highly impractical for 

large datasets. 

 

 
 

Figure 1 | Single-molecule methods and illustrations of typical outputs. A common 

feature in various single-molecule detection and characterisation techniques is that 

they often produce large amounts of one-dimensional data, potentially with 

relatively complex sub-structure. With limited a priori knowledge about the data, 

exploration and interpretation can be very challenging. Deep Learning can help 

explore these complexities. 

 

An alternative is 'all-data point' analysis, where the complete dataset is analysed 

without data selection. The disadvantages with this approach include a potentially 

very low S/N, depending on the event frequency, an inherent focus on the most 

abundant event type, and an inability to identify and quantify sub-populations in the 

data.  

Tunnelling current-distance (I(s)) spectroscopy used in single-molecule charge 

transport studies is a good example in this context. Here, the tunnelling current is 

measured as two electrodes are pulled apart, which may be temporarily bridged by 
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one or more molecules at a time. The process is automated relatively easily, so tens if 

not hundreds of thousands of I(s) traces can be generated relatively quickly. The 

formation of a molecular bridge is typically thought to result in a constant current 

('plateau'), as long as charge transport through the molecule dominates (as opposed to 

'through space' tunnelling)5. Sub-populations in the data may arise from different 

numbers of molecules in the junction, different molecular configurations or bonding 

patterns between the molecule of interest and the electrode surface(s)6-13. The 

dynamic stretching process may also affect the junction and hence the measured 

tunnelling conductance. Some of these events may be 'rare' by some standards, but 

nevertheless physically meaningful and may be probed by variations in the 

experimental parameters (e.g., the temperature). 

Unfortunately, the exact manifestation of these effects in the I(s) trace is normally 

not a priori known, rendering hypothesis-led data exploration difficult, and they may 

be too 'rare' to feature in 'all-data' analyses. In cases where multiple event classes 

occur simultaneously with comparable probability, the latter approach can even 

produce misleading results14. Thus, neither of the two strategies appears entirely 

satisfactory in this regard.  

Ideally, one would like to look for common features in the data without making 

prior assumptions and be able to quantify those in a coherent manner. Only recently, a 

Machine Learning (ML) based technique has been introduced that goes some way 

towards this goal, namely Multi Parameter Vector Classification (MPVC)14. MPVC 

follows a different philosophy, compared to the approaches described above, in that 

each data trace is characterised by a classifier of N parameters and thus forms a point 

in N-dimensional vector space. In this space, similar data traces then make up 

clusters, which can readily be extracted using suitable clustering algorithms (albeit the 

definition of what constitutes a cluster is not always trivial). The physical 

interpretation of each cluster typically follows the clustering step, potentially with 

support from additional, independent experimental data or theory and simulations. 

While the formation of clusters does depend on the choice of classifiers and is thus to 

some extent subjective, MPVC does not make any assumptions about the signal shape 

as such and does not exclude any data. Very recent work by Wu et al. considers this 

aspect further by employing hierarchical and density-based clustering in analysing 

single-molecule charge transport, which indeed gave very promising results for their 

systems15. 
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Another area where ML techniques have resulted in a notable improvement in 

performance is in the field of DNA base detection and sequence analysis. Here, the 

challenge is to identify the four DNA bases (and potentially epigenetic and other 

DNA modifications) in an a priori unknown sample. While the signal characteristics 

of each individual base are typically known and may be used for 'training', the 

inherent structure within each event can be quite complex and base differentiation be 

fraught by low S/N and context-specific signal variation. To this end, Chang et al. 

have been able to demonstrate that a Support Vector Machine (SVM) could be used to 

enhance tunnelling-based detection of (oligo)nucleotides as well as amino acids16-18. 

A SVM is a type of learning model that uses hand-crafted features, e.g., the event 

magnitude, duration or other statistical properties, combined in a classifier, to 

discriminate between a number of unidentified targets (such as the four DNA 

bases).19,20 It is thus the job of the algorithm designer to identify and implement those 

features, in the hope of minimising the prediction error as much as possible.  

However, even with the training data at hand, it is not at all obvious, which signal 

characteristics to choose for the most reliable and most accurate predictions. It would 

be advantageous to extract those characteristics from the available data itself, to arrive 

at the best possible result. 

Interestingly, as a result of recent and dramatic progress in ML so-called "Deep 

Learning" (DL) methodologies may be able to do just that21-25. Once the architecture 

of a DL network has been designed, in terms of the number of layers that are meant to 

characterise the data, typically at different levels of abstraction (or 'resolution'), the 

'content' of these layers is then 'learned' from the training data. 

In numerous applications, DL has been shown to outperform earlier ML methods, 

including SVM, and in some cases such as image and speech recognition, and 

complex control tasks, it has even achieved results that surpass human performance26-

28. In the specific case of DNA or peptide sequencing-by-tunnelling, this raises an 

interesting prospect: If the application of an SVM resulted in a significant, albeit from 

a technological point of view still insufficient improvement in detection performance, 

could DL enable such an important step? More generally in single-molecule sensing, 

sequencing, and characterisation, could DL help to identify features in a signal that 

were previously unknown or unexpected, but are nevertheless physically meaningful? 

In many ways, it could be a step change in the way data is explored, analysed and 

interpreted. But a comprehensive understanding of these methods in this new context 
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is crucial to reaping the benefits and to avoiding the pitfalls - especially, since the link 

between data analysis and interpretation on the one hand, and the experimenter's input 

and intuition on the other is somewhat weakened.  Hence, in this Perspectives article, 

we aim to provide an insight into the 'internal workings' of a Convolutional Neural 

Network (CNN), as a powerful DL tool for data classification and analysis. We start 

with a brief introduction to the field, in order to introduce the terminology and to 

explain the basic concepts. As a specific example, we then illustrate the use of a CNN 

for simulated, but realistic sets of tunnelling data, and compare its performance with 

SVM, as a more conventional ML methodology.  

 

Artificial Neural Networks and Convolutional Neural Networks 

Supervised ML algorithms 'learn' a function, or model, given a set of training 

examples. Each example is in the form of an input and a matching output –for 

instance, in speech recognition, a ML algorithm can learn a function that recognizes 

text from audio signals after being trained with examples of recordings of spoken 

words and their corresponding text29,30.  

Artificial Neural Networks (NN) are a type of supervised ML architecture formed 

of layers of units or neurons, in which, for each training example, information from an 

input layer is processed in a 'hidden' layer and the result compared against the target, 

forming the 'error', in the output layer. The goal of the NN is to minimize the error for 

all training examples. Once the neural network has been trained, its accuracy is 

evaluated against unseen datasets (see Fig. 2 Top and the technical Jargon Buster for a 

more detailed exposition of NN workings).  
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Figure 2 | Top: A schematic representation of a 'shallow' Artificial Neural Network. 

A layer of normalized inputs is connected to a hidden layer in which neurons 

compute the weighted sum of all inputs. A non-linear activation function is applied 

to the latter, and the result passed on to the output layer. During training, the error 

is then back-propagated, the weights adjusted using an optimization algorithm and 

the process repeated until the output matches the target. Bottom: CNN basic steps, 

convolution and max pooling. (a) represents the source or input data and (b) a 3x3 

kernel, filter or feature detector. The kernel is applied to the source by multiplying 

its values element-wise with the original matrix and summing up the result, (c). This 

operation is repeated over the source, by sliding (shifting or dilating) the kernel, in 

this case with 1 stride, which produces the convoluted map (d). Different kernels can 

be applied to a given input. Another CNN operation that reduces dimensionality is 

pooling: for example, in (e) we apply max pooling with a 2x2 stride to a source (i.e., 

in the 2 by 2 submatrix, the maximum value is kept in the pooled result). A CNN 

typically involves several layers of convolving and pooling layers.  
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Jargon Buster 

A signal is a data trace 'as measured', e.g., as a function of time or distance, including events and event-free 
segments. 

An event is defined as a signal modulation due to some 'molecular' process. An event can have substructure, 
such as spikes. 

A feature is a measurement that characterizes an example (e.g., amplitude or duration of a signal in the 
context of single molecule sensing).  A good feature is discriminative, enabling the machine learning 
algorithm to make a correct prediction.  Deep learning methods learn the features that optimally perform 
this prediction, unlike methods like SVM that require hand-crafted features. 

Activation functions are applied to weighted inputs to produce the NN output. In order to learn complex 
decision boundaries they must be non-linear (e.g., sigmoid, tanh or ReLU). In two dimensions, the decision 
boundary can be thought of a line separating two clusters of data points in the best possible way. 

The 'vanishing gradient' problem arises in deep NNs that use activation functions whose gradients are small 
and 'vanish' throughout the layers during backpropagation, preventing the network from learning long-range 
dependencies. The Rectified Linear Units (ReLU) activation function is a non-linear function defined by f(x) = 
max(0, x) and used in CNNs to counteract this problem. 

The error (aka loss function, cost function or, simply, the objective function) is a measure of the difference 
between the output and the target or ground truth. The error is fed into a backpropagation algorithm in 
order to update the weights that process the input in the neural network, in such a way that it generates less 
error. 

Backpropagation is an algorithm that repeatedly applies the chain rule of calculus differentiation for partial 
derivatives starting from the error in the output layer and propagating the gradients (the ratio of the rate of 
change of the weights and the error) backwards.  

Gradient Descent is an optimization algorithm used to minimize the error by iteratively updating the weight 
parameters in the direction of the gradient of the loss function. When we randomly select a single data point 
from our dataset to calculate the gradient, we call it Stochastic Gradient Descent. 
 
Convolutional Neural Networks are deep neural networks, which use convolutions (the integrals measuring 
how much two functions overlap as one passes over the other) to extract features from local regions of an 
input. Their depth comes in sequences of convolutional, ReLU, pooling and dropout layers, and final fully-
connected layers.  

The convolutional layer in a CNN consists of a collection of filters or kernels that convolve (slide) across the 
input to produce feature maps. The underlying principle is that CNNs use local connectivity and shared 
weights (the filters) to search for the same features in the input, enforcing invariance and reducing 
dramatically the number of parameters as compared against traditional fully-connected networks. 
Importantly, a CNN learns the values of these filters (feature detectors) 'on its own' during the training 
process.  

Pooling is a technique used in CNNs, and consists of sliding a window over patches of features, such as 
pixels, and taking the average or the maximum of all values within. It compresses (down-sampling) the input 
representation into a lower-dimensional representation. 

Softmax is a function that takes a vector of real values and 'squashes' it to a vector of real values in the range 
[0, 1] that sum to one (essentially a normalisation procedure).  The softmax output can be interpreted as a 
probability.  Softmax is commonly seen as the last stage of a CNN used for classification, and gives a 
probability that the data being classified is an example of the learned classes. 

A second problem that applies to all ML algorithms, is overfitting, which refers to co-adaptation on training 
data and poor generalization. Within the context of DL and CNNs in particular, dropout is a technique that 
prevents overfitting by randomly dropping units (along with their connections) from the neural network 
during training. 
 
Deep networks learn multiple levels of abstractions of data through multiple processing layers.  By doing so, 
the deep network automatically learns the representations (features) that minimize the objective function.  
In contrast, shallow networks do not learn the features, rather, these are engineered by the algorithm 
designer. 
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Neural networks and alternative shallow-structured ML architectures such as SVM 

or logistic regression show limited modelling and representational power –

constraining their usefulness to simple, well-constrained problems. Deep neural 

networks (aka DL networks) are multi-layer NNs that offer a way to enhance shallow 

architectures with the necessary complexity in structure and richness in representation 

required to deal with real-life applications. More specifically, in contrast to 

conventional ML approaches, DL does not use manually defined, 'hand-crafted' 

features. Rather, DL defines hierarchies of layers that 'automatically' learn the data 

representation at different levels of abstraction. For instance, in an image recognition 

task, the algorithm will be presented with a large noisy set of raw pixels, and learn 

first basic low-level features such as curves or shadows, and then categories of 

increasing complexity, e.g., nose, ear, elbow, then face, arm, leg, and finally the 

concept 'MAN'.  

Since, inspired by McCulloch-Pitts neuron model31 and Donald Webb’s work on 

synaptic learning32, NNs were first proposed33,34, a number of advancements in 

computational power and increasingly sophisticated learning algorithms (ReLU 

functions35,36, dropout techniques37) as well as in the availability of large datasets, 

have made DL very popular. Crucially, the drawbacks identified in Minsky and 

Papert’s seminal paper38, namely that NNs were unable to learn complex non-linear 

models, were overcome with the invention of the backpropagation algorithm39,40 and 

Hornik’s proof that NNs are universal approximators41, leading to the development of 

DL technology in the form of Convolutional Neural Networks42,43, autoencoders44, 

Deep Belief Networks45-47 and Recurrent Neural Networks48 (see Fig. 3 for a 

historical perspective). The main principle remained the same as in traditional NN 

algorithms nonetheless: Outputs are compared against the target, that is, against the 

expected outcome. The error is then propagated back to the neurons in previous layers 

using a variation of the backpropagation algorithm and minimised by adjusting the 

weights of the neurons49.  
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Figure 3 | Timeline of the history of Artificial Neural Networks and Deep Learning. 

Deep Learning’s peak corresponds with Hinton’s et al. breakthrough paper50 and the 

increase in data size (number of examples) from 105 of MNIST handwritten dataset 

at the turn of the twenty-first century to 109 in, for example, the WMT 2014 English 

to French dataset51. Likewise, the number of neurons in DL networks has move from 

100 in Rosenblatt’s Perceptron to 107 in GoogLeNet52; and in the number of 

connections from 101 in ADALINE to104 in COTS HPC unsupervised convolutional 

network53. Finally, during the last indiction GPUs have increased computational 

power to 104 GFLOPS. 

 

In particular, Convolutional Neural Networks (CNN) learn to extract relevant 

information for the recognition of signals in a similar way that an infant has to learn 

to group elements in their visual scene in order to make sense of their visual input54. 

CNNs are biologically inspired multi-layer networks of convolutional and 

subsampling layers, which include constraints in the form of feature extraction 

(receptive fields that filter local features), feature mapping (weight sharing, which 

forces invariance), and subsampling (pooling or local averaging). The idea is to 

translate many low-level features (raw input) into compressed high-level 

representations by exploiting local correlation and enforcing local connectivity 

patterns between neurons of adjacent layers. In so doing, the CNN can detect 

hierarchies of features and complex patterns (see Jargon Buster box). Fig. 2 Bottom 

illustrates the basic steps in a CNN with a simple example taken from the analysis 

two-dimensional data (such as image classification).  
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Simulated 'sequencing-by-tunnelling' data 

But how can DL be applied to one-dimensional datasets, such as current-time, 

intensity-time or current-distance data? In order to explore this further, we produced 

simulated 'sequencing-by-tunnelling' data using a simulator developed in Matlab 

2016b (Mathworks, Natick MA, script available on request).  The simulator is 

inspired by experimental results, where binding of DNA bases in an STM junction 

was found to modulate the measured tunnelling conductance16. The occurrence of 

these binding events, their duration and the observed tunnelling conductance are 

stochastic in nature, and dependent on the identity of the molecule. The simulator 

takes this into account via the following parameters: 

 

• The signal length, L, representing the total number of data points in each trace 

(here: 10,000) 

• The number of events E in each signal of length L (a measure for the event 

frequency) 

• A Normal distribution modelling the event duration, 𝑁(𝑚𝑑,𝜎𝑑), where 𝑚 is 

the mean and 𝜎 the standard deviation 

• A Normal distribution modelling the event height modulation (magnitude of 

the current modulation) 𝑁(𝑚𝑚,𝜎𝑚) 

• A Normal distribution modelling the noise, 𝑁(𝑚𝑛,𝜎𝑛) 

• A switching probability, representing the likelihood of an event having data 

points with zero conductance, 𝑝𝑠(telegraphic noise) 

 

With the simulator, 10,000 signals (i.e. individual traces, with 10,000 data points 

each) for the five biomolecules representing DNA bases (A, C, G, T) and 5-methyl-

cytosine (MethC) were generated (2,000 traces/biomolecule), with the specific 

simulation parameters shown in Table 1.   
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 E 𝑁(𝑚𝑑,𝜎𝑑) 𝑁(𝑚𝑚,𝜎𝑚) 

·10−2 

𝑁(𝑚𝑛,𝜎𝑛) 

·10−3 

𝑝𝑠 

 

A 40 𝑁(150, 50) 𝑁(2.5, 0.5) 𝑁(2.0, 1.0) 0.3 

C 35 𝑁(25, 15) 𝑁(4.5, 0.5) 𝑁(2.0, 1.0) 0.0 

G 25 𝑁(40, 15) 𝑁(5.0, 2.0) 𝑁(2.0, 1.0) 0.0 

T 65 𝑁(50, 25) 𝑁(4.0, 4.0) 𝑁(2.0, 1.0) 0.05 

MethC 55 𝑁(5, 15) 𝑁(2.0, 0.5) 𝑁(2.0, 1.0) 0.0 

 

Table 1 | Parameters used in the simulator to generate biomolecule conductance 

signals. 

 

An example trace with several individual events for each of these five classes is 

shown in Fig. 4. As shown below, the CNN operates on entire traces, not individual 

events. Hence, initial event recognition and extraction is not required. However, the 

complexity of the event characteristics, and the significant overlap in their statistical 

properties, renders molecular identification from a trace an interesting pattern 

recognition problem. 
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Figure 4 |  Example current-time traces produced by the simulator for the five 

biomolecules.  Signals (or traces) consist of events which may have multiple spikes 

due to a finite switching probability ps (perhaps due to bond formation and breaking). 

Event current histograms (bottom right) show that there is considerable overlap 

between data distributions, which would render differentiation between the 

molecules very difficult and resulting in a large error rate  

 

Analysis of the simulated data by a CNN 

A deep convolutional neural network was thus designed to classify the simulated data 

produced.  As these are one-dimensional time-domain signals, the network employs a 
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series of one-dimensional convolutional and pooling layers, as illustrated in the 

network diagram in Fig. 5.  

In order to keep the computational cost low, we simplified each trace by 

identifying the maximum current value, centred this current value within a window of 

500 data points. This is shown as the initial 'input signal' in Fig. 5 (top right). In 

principle, the network could also process the entire trace of 10,000 data points, which 

increases the complexity of the computational task.  

There are six convolutional layers, arranged hierarchically so that the later layers 

learn a higher level representation of the signal. Each convolutional layer is followed 

by a batch normalization layer, a rectified linear unit (ReLU) layer and a max pooling 

layer that subsamples the data to produce a lower dimensional representation (a CNN 

network typically includes a dropout layer, as in the Jargon Buster; in our case, it was 

not needed).  

In our case, all the convolutional filters are kernels of size 1x3 and applied to the 

temporal data. These can be filters are learned by back propagation, and the resulting 

filters are varied, and include local averaging with varying weighting factors (e.g. a 

conventional gliding average with window size 3 would have constant weighting 

factors of 1/3), differential filters and others. The CNN learns these kernels during 

training, i.e. by comparing the calculated output with the known outcome from the 

training sample. The error in the output is subsequently 'back-propagated' through all 

layers of the network, until the best outcome is achieved. During this process, the 

individual weighting factors, which may be assigned randomly at the start, are 

optimised, for example using a gradient descent method (as used here) or other 

techniques. We note that each convolutional layer has more than one filter - e.g., in 

Fig. 5 'conv1' has 64, 'conv2' 128 and so forth. Each filter acts on the respective input 

signal in a specific way - we show one example of the input signal at each 

convolutional layer as they evolve through the network (incl. the Fully Connected 

layer). 

ReLU introduces non-linearity and helps to avoid the 'vanishing gradient' problem, 

as described in Jargon Buster box. We then employ pooling layers that halve the 

dimension of the input signal using a so -called 'max-pooling' technique with 1x2 

window size and stride of 2 (cf. Fig. 2 Bottom). The final pooling layer is followed by 

a fully connected layer and a softmax layer. The softmax layer predicts the categorical 
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probability of the input signal over the class labels that represent the biomolecule 

identity.  

In total, the network has 2,913,669 parameters, which are updated using a 

stochastic gradient descent during training. The training was done for 30 epochs 

(rounds of optimisation), using 7,500 detection events in a training set, 500 in a 

validation set, and 2,000 held out for independent testing. On this independent test set, 

the overall accuracy of the CNN classifier was 98.1%.   

 

 
 

Figure 5 |  Convolutional neural network architecture for classifying the simulated 

biomolecule conductance signals.  A raw signal is input at the top of the figure, and 

goes through numerous layers of convolution, ReLU, and max pooling.  A fully 

connected layer is then connected to a softmax, which produces output probabilities 

for the five classes (A, C, G, T, and MethC).  In this way, a raw signal is transformed to 

a vector of probabilities.  For the example above, there is a high probability it is an 

adenine molecule (A) and it is the highest probability that is selected as the output 
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class.  The example on the right shows how a raw signal is transformed through the 

network and results in a prediction of a class A.  These plots show one of the signals 

input to each convolutional and the fully connected layer. 

  

Comparison to shallow learning using hand-crafted features 

For comparison, a shallow learning method was developed, inspired by Chang et al, 

employing a similar classifier 16-18.    

For a meaningful comparison, the same 7,500 signals were used to train the SVM 

as the CNN described above. Moreover, the same independent 2,000 signals were 

used to test the performance.  The overall accuracy of the SVM classifier was 91.7%, 

which is a strong result and numerically similar in overall performance to 16 (bearing 

in mind that we use simulated data, direct comparison of the performances is not 

straightforward).   

However, the results can be compared to the CNN method described above.  

Although further work could be performed to find additional hand-crafted features to 

improve the SVM performance, searching for features is a tedious, and not 

necessarily an optimal process.  In addition, hand-crafting features may induce bias in 

the results.  In contrast, the CNN learns its features automatically, and therefore is not 

susceptible to bias induced by hand-crafted features.  The CNN in this experiment 

outperforms the SVM by a large margin that is statistically significant based on a 

paired t-test at the p<0.05 threshold.  Looking at the misclassifications reveals that for 

both the CNN and SVM, the A, T, and MethC are classified with low error, however, 

C and G have a higher number of misclassifications in the SVM model as shown in 

Table 2.  Overall, the CNN is better at distinguishing these classes.  

  

 CNN SVM 

A 100% 99.5% 
C 96.4% 78.4% 
G 98.6% 83.4% 
T 96.4% 97.7% 

MethC 99.0% 99.5% 
   

Overall 98.1% 91.7% 
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Table 2 | Classification accuracies for the respective biomolecules for the CNN and 

SVM methods. The overall accuracy is for an independent test set. 

 

Conclusions 

The key question that follows on from these results relates to the broader implications 

of the use of DL in single-molecule science, in comparison with more conventional 

approaches data analysis, including more advanced methods such as SVMs. Indeed, 

the fact that the above CNN performed better on average than the SVM is an 

interesting, but singular result. Both could be improved further, for example 

increasing the complexity of the network and size of the input data on the one hand, 

and by employing a larger number of handcrafted features on the other. That said, a 

difference in prediction accuracy of 6.4% can be very significant, especially when 

repeat observations lead to an accumulation of errors. For example, for 10 subsequent, 

uncorrelated observations, the total accuracy for the CNN is 0.98110 = 0.825 or 

82.5%, whereas we obtain 0.91710 =0.420 or 42.0% for the SVM. So the prediction 

accuracy is only approximately half that of the CNN. 

The need to define hand-crafted features in an SVM has two sides. One the one 

hand, this is an opportunity to use features that are informed by some underpinning 

physical understanding of the process at hand, for example the magnitude of an event, 

its duration or some less obvious event properties characterisation potential sub-

structure.  On the other hand, finding good features can be tedious and it is generally 

difficult to know beforehand, whether a particular classifier will perform well or 

whether it is even close to the best achievable performance. In general, the 

experimenter retains a relatively high level of control - or intuitive understanding - of 

the analysis process. 

The CNN operates in a very different way. While the initial design of the network 

includes (human) decisions on the number of layers, the nature of the filters, input 

data format etc., the contents of the individual layers after training can be very 

difficult to interpret, in terms of some physical meaning. Some attempts in this 

direction have been made in image recognition55,56, but at present it is not clear, how 

(or whether) a direct physical meaning can be assigned to these layers in the present 

context. So from a physical point of view, the CNN is very much a 'black box' - it 
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may perform very well in a particular task, but it may be difficult to comprehend the 

how and why. 

An interesting feature of CNNs is that they can operate on entire data traces, as we 

have done here, rather than individual events. This avoids the need to produce 

potentially subjective 'event-defining' criteria, such as signal thresholds and the like. It 

may also be beneficial in cases, where event detection is complicated by strongly 

varying backgrounds, such that explicit background correction may no longer be 

necessary.      

Another aspect of CNNs that should be borne in mind is that a particular 

combination of learned weights results from training on a particular training set. If a 

CNN were to be retrained with another training set, having been recorded under 

nominally the same or perhaps systematically varied conditions (say, at a different 

temperature), the new learned weights do not normally extrapolate to the original set. 

In this sense, the CNN does not contain any 'knowledge' of the system under study. 

'Transfer Learning' is a relatively new branch in Machine Learning, where networks 

are trained for a particular task (e.g., a particular computer game) and then confronted 

with new one (another computer game)57. This has been shown to work well in some 

situations and may be an interesting prospect in the present context.   

Finally, could CNNs be used to explore data towards identifying unknown features 

in the data? This is not straightforward, but may be possible. For example, if a trained 

CNN were to be confronted with an unseen dataset that contain features that were not 

present in the training data, then the prediction accuracy would be correspondingly 

lower. One approach could then be to extract events, for which the CNN performs 

relatively poorly and then try to rationalize the origin of these deviations. 

In conclusion, it appears that DL methods and CNNs in particular may have very 

interesting and obvious prospects in some areas of single-molecule science, such as 

single-molecule detection and sequencing. DL is still a rather new area in Machine 

Learning, with major breakthroughs since 2012. It is therefore likely that DL and 

other, state-of-the-art Machine Learning techniques will find their way into the 

physical sciences and into engineering. Equally, the ability to provide large amounts 

of data from rather well-defined experiments, the latter may also help to develop a 

better understanding of the internal workings of rather complex networks. 
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Deep Learning Resources 

Software 

• Theano, http://deeplearning.net/software/theano/, an open source deep learning 

library for Python. 

• PyLearn2, http://deeplearning.net/software/pylearn2/ an open source deep learning 

library for Python built on top of Theano. 

• Torch, http://torch.ch an open source deep learning library and scripting language for 

Lua. 

• Caffe, http://caffe.berkeleyvision.org, an open source deep learning library for Python 

and Matlab.  

• MXNet, http://mxnet.io an open source deep learning library for Python, Scala, R, 

Julia, and C++. 

• TensorFlow, https://www.tensorflow.org, an open source deep learning library for 

Python and C++ developed by Google.  

• DeeplearningforJ, https://deeplearning4j.org, an open source deep learning library 

written for Java and Scala. 

• MatConvNet, http://www.vlfeat.org/matconvnet/, a Matlab library for Convolutional 

Neural Networks. 

 
Datasets 
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• MNIST, database of handwritten digits, available from this page, has a training set of 

60,000 examples, and a test set of 10,000 examples.  

http://yann.lecun.com/exdb/mnist/ 

• ImageNet, a large image database for visual recognition research according to the 

WordNet hierarchy (a large lexical database of English), in which each node of the 

hierarchy is depicted by hundreds and thousands of images. Currently we have an 

average of over five hundred images per node. The ImageNet project runs the Large 

Scale Visual Recognition Challenge (ILSVRC). 

http://www.image-net.org/ 

• The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 

6000 images per class. There are 50000 training images and 10000 test images. 

https://www.cs.toronto.edu/~kriz/cifar.html 

• Sports-1M is a database containing 1,133,158 video URLs which have been 

annotated automatically with 487 Sports labels using the YouTube Topics API. 

https://github.com/gtoderici/sports-1m-dataset/ 

• UC Irvine Machine Learning Repository, general repository with 360 data sets, 

including the popular Iris. 

http://archive.ics.uci.edu/ml/ 
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