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Abstract

Background and Objective: The high mortality rate associated with coronary

heart disease (CHD) has driven intensive research in cardiac imaging and image

analysis. The advent of computed tomography angiography (CTA) has turned

non-invasive diagnosis of cardiovascular anomalies into reality as calcified coro-

nary plaques can be easily identified due to their high intensity values. However,

the detection of non-calcified plaques in CTA is still a challenging problem be-

cause of lower intensity values, which are often similar to the nearby blood and

muscle tissues. In this work, we propose the use of mean radial profiles for the

detection of non-calcified plaques in CTA imagery.

Methods: Accordingly, we computed radial profiles by averaging the image in-

tensity in concentric rings around the vessel centreline in a first stage. In the

subsequent stage, an SVM classifier is applied to identify the abnormal coro-

nary segments. For occluded segments, we further propose a derivative-based

method to localize the position and length of the plaque inside the segment.

Results: A total of 32 CTA volumes were analysed and a detection accuracy

of 88.4% with respect to the manual expert was achieved. The plaque localiza-

tion accuracy was computed using the Dice similarity coefficient and a mean of

83.2% was achieved.

∗Corresponding author
Email address: muhammad.jawaid.2@city.ac.uk (Muhammad Moazzam Jawaid)

Preprint submitted to Elsevier June 28, 2017



Conclusion: The consistent performance for multi-vendor, multi-institution data

demonstrates the reproducibility of our method across different CTA datasets

with a good agreement with manual expert annotations.

Keywords: Coronary segmentation; Non-calcified plaques; support vector ma-

chines; plaque localization.

1. Introduction

Coronary heart disease (CHD) is related to the accumulation of fatty ma-

terials (also termed as coronary plaques) inside coronary arteries. The growth

of plaque leads to an obstruction of the vasculature that supplies blood to the

heart musculature. Consequently, the heart muscles become oxygen starved5

which may result in fatal cardiac consequences including angina, heart failure

and arrhythmias. According to the fact sheet of the World Health Organization

[1], CHD was the leading cause of death globally in 2013, with 8.14 million

deaths (16.8%) compared to 5.74 million deaths (12%) in 1990. Moreover, the

recent statistics of the National Health Services, United Kingdom [2] reveals10

that over 2.3 million people in the United Kingdom suffer from CHD where the

annual death toll is approximately 73,000 (an average of one death every seven

minutes). The substantial levels of growing morbidity and mortality have led

to a intensified interest in new techniques for detecting coronary abnormalities.

From a clinical point of view, the detection and quantification of arterial plaque15

can help physicians avoid or at least delay the worst cardiac events by addressing

behavioural risk factors [3].

The conventional methods used to detect coronary obstruction include catheter

guided X-ray angiography, optical coherence tomography (OCT) and intra-

vascular ultrasound (IVUS); however, their invasive nature make these methods20

time consuming and delicate due to considerable patient risk. In contrast, recent

advancements in non-invasive imaging have improved the diagnostic accuracy

in terms of high temporal and spatial resolution [4]. An example is the clinical

use of cardiac computed tomography angiography (CTA) which enables precise
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imaging of the heart with sub millimetre accuracy. This precision makes CTA a25

feasible alternative to cardiac catheterization for detecting coronary obstruction

[5]; however, the composition of the coronary plaques pose a difficult challenge

in the effective diagnosis.

Calcified plaques represent the deposition of calcium inside coronaries, whereas

Non-calcified plaques are formed due to the presence of lipids and cholesterol.30

Clinically, the non-calcified plaques have been established as the most impor-

tant indicator of acute coronary syndromes due to their fragile nature [6]. The

risk of sudden rupture has made soft plaques threatening in clinical context,

i.e. for many individuals, sudden death becomes the first sign of soft plaque

in contrast to the calcified plaques which often lead to disease symptoms at35

early stages. Consequently, the intense focus of the current research is an early

detection of soft plaques to predict and avoid worst cardiac events [7]. It should

be noted that calcified plaques can be identified easily in a CTA image based on

the high intensity value, consequently numerous methods have been reported

with a reasonable detection accuracy [8, 9, 10, 11]. In contrast, the non-calcified40

plaques (NCP) usually have a lower intensity (similar to nearby heart tissues)

that makes the detection problem challenging. Moreover, the positive remod-

elling associated with NCP (also termed as soft plaques) amplifies the detection

challenge as the diameter-reduction based methods [8, 9, 10, 11, 12, 13] fail to

detect the presence of soft plaques.45

We now briefly summarize the flow of this paper. In Section 2 we review

relevant literature addressing the CTA based soft plaque detection. Next, in

Section 3 we briefly explain the clinical data used in this study. In Section 4

we explain the proposed model, whereas results are presented in Section 5. In

Section 6, we provide concluding remarks and give directions for future research.50

2. Related Work

Due to the complexity of the soft plaque detection problem, there is a little

literature [14, 15, 16, 17, 18] published on automatic detection of soft plaques
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in CTA imagery, out of which the majority have been clinical pilot studies or

generic anomaly detection techniques. An automated framework was proposed55

by Clouse et al. [14] in which the main focus was the the quantification of

manually identified soft plaques. From a dataset of 40 CTA volumes, a total

of 49 coronary segments (41 normal, 8 abnormal) were investigated to validate

the proposed quantification method. The results demonstrated that CTA based

soft plaque quantification was possible; however the outcomes were based on a60

high degree of manual input i.e. selected coronary segments were investigated

in the study. Moreover, the prior knowledge of plaque locations was an addi-

tional requirement as the quantification method required normal cross sections

on terminal sites for computing the plaque volume. An extension of this pilot

study reported successful correlation between CTA analysis and intravenous ul-65

trasound (IVUS) plaque quantifications [19]. A total of 20 soft plaque effected

segments were identified from 12 multi-detector CT (MDCT) volumes for com-

parative quantification. However, the main limitation of this work was the

manual identification of plaque lesions that precludes an automated detection

solution.70

The use of machine learning in soft plaque detection was first reported by

Wei et al. [15] where a linear discriminant analysis (LDA) was used to reduce the

false positives in a set of 120 pre-selected soft plaque candidates. The accuracy of

the classifier was mainly dependent upon NCP candidate selection criteria and

machine learning was employed only to optimize performance by suppressing75

false candidates. A total of 120 plaque candidate regions were chosen from

83 CTA volumes in this study and a sensitivity of 92.5 percent was reported.

Likewise, Tessman [18] proposed a learning based method for the classification

of coronary stenosis. In the first step, the pre-extracted coronary centreline was

used to map the vessel segment with a series of multi-scale overlapping cylinders80

to identify the sampling points inside the segment. In the following step, the

authors extracted image based features at the sampled points including intensity,

gradient magnitude, and the first order derivatives to detect the high intensity

calcifications. Accordingly, the detection accuracies reported were 94% and 79%
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respectively for the calcified and non-calcified plaques, along with a high number85

of false positives. The low detection accuracy for the soft plaques illustrate the

fact that low-density based soft plaques demand a more sophisticated system

i.e. beyond stenosis based computations to handle positive remodelling of the

vessels.

Another interesting method for the automatic detection of vascular abnor-90

malities was proposed by Zuluaga et al. [20]. In this work, the authors for-

mulated a unsupervised learning system for detecting abnormal cross-sections

in a vascular tube using “density level detection” technique of Steinwart [21].

Accordingly, the cross sectional images were discretely sampled around the tube

centreline in first step to derive the feature set for discriminating outliers from95

normal cross sections. In the second step, an unsupervised SVM model trained

on normal cross sections was used to detect the outliers i.e. the cross sec-

tions which violate the intensity pattern of normal class. The authors reported

promising results for 9 clinical CTAs with NCP detection accuracy of 79.62%,

however; the correct selection of ρ (parameter identifying the anomaly concen-100

tration) is important for the optimal results. Moreover, due to the one class

unsupervised learning, a large number of normal cross sections with similar in-

tensity pattern are required to train the SVM classifier, and the presence of

nearby structure severely effects the classification performance.

Renard and Yang [16] proposed a computationally efficient method which105

integrated the plaque detection problem in the vessel segmentation framework.

A coronary skeleton based on eigenvalue analysis was used to segment the lu-

men and vessel wall in the first stage. Soft plaques were detected in the second

stage by comparing effective cross-sectional area of the lumen against vessel

wall. Encouraging visual results were presented for this computationally effi-110

cient method, but no clinical validation was discussed in the paper. Moreover,

the outcomes were reported for a very small data sample (2 CTA volumes only)

which makes the reproducibility difficult. Lankton et al. [17] proposed a novel

method in which the soft plaque detection was posed as an active contour seg-

mentation problem. In this two stage detection process, the coronary tree was115
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extracted from the CTA volume in the first stage using mean separation energy

model. In the subsequent step, two explicit surfaces derived from the original

segmentation were evolved simultaneously to encompass low density soft plaques

using the mean separation energy of Yezzi et al. [22]. A total of 8 CTA volumes

were investigated and a detection rate of 88% against manual annotations was120

reported; however, a requirement for the careful initialization of evolving sur-

faces reduced the practicality of this method. One automated detection method

was reported by Li et al. [23] in which region growing coronary segmentation

was followed with voxel based detection analysis. In the plaque detection step,

the authors constructed a voxel map of the vessel wall using morphological di-125

lation and erosion. Subsequently, mean intensity at the internal and external

interface of the vessel wall was computed and all the abnormal fluctuations were

associated with soft plaques. However, no statistical data was provided for the

detection rate in the paper.

In context of the non-calcified plaque quantification, a number of algorithms130

[24, 25, 26, 27] have been proposed in recent years with a motive of correlat-

ing CTA based plaque quantification with IVUS measurements. An innovative

method for 3D reconstruction of coronary vasculature and arterial plaque quan-

tification was proposed by Athanasiou et al. in [28]. In this work, authors used

4-class Gaussian Mixture Model to identify respective classes namely lumen, cal-135

cified plaque, non-calcified plaques and the background. In the subsequent step,

the identified plaque voxels were reconstructed as surface mesh for comparison

with IVUS segmentation. Accordingly, the paper reported efficiency over the

existing literature and a good correlation with IVUS measurements;however,

the blooming effect of calcified plaque resulted in relatively low agreement for140

calcified plaque volume.

Our contribution in this work is an efficient methodology for explicit de-

tection and localization of the non-calcified plaques in clinical CTA. The first

strength of this work is the use of discrete radial profiles in soft plaque detec-

tion. We demonstrate that the abnormal intensity drops resulting from soft145

plaque inside coronary vessels can be captured using concentric rings along the
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vessel centreline. The second strength is the prototype of a machine learning

framework for segregating non-calcified plaque affected coronary segments. In

contrast to Wei et al. [15] where LDA was used to reduce the false positive

rate, we directly employ a support vector machine (SVM) in our framework for150

segment-wise coronary classification.

The proposed model differs from the anomaly detection methods of [18, 20]

that the coronary tree is segmented in the first stage using a hybrid energy model

[29] which reveals radius variations along the length of vessels. Consequently,

the radial information of the segment helps in tracing both positive and negative155

remodelling associated with the soft plaques. Furthermore, the plaque detection

is performed using windowed statistics to uncover abnormalities in a relative

context rather then evaluating individual cross sections as proposed in [20].

Experimental results demonstrate that the proposed method achieves a good

agreement (detection accuracy of 88.4% with respect to manual annotations),160

and in-line with anomaly detection methods of [18], [20]. It should be noted

that the explicit detection of the soft plaques is a challenging clinical problem.

In this context, a number of local features proposed in [18] and [20] fails to

detect the fragile low-intensity soft plaques; hence, the detection rate for the

non-calcified plaques is significantly lower then the calcified plaque detections165

in [18] (i.e. 79.62% versus 94.05%).

In addition, the proposed model approximates the position and length of the

non-calcified plaques in the abnormal coronary segment with a good accuracy of

83.24% against manual annotations. We believe that detected plaque terminal

points can be used to design fully automated plaque quantification model in the170

future. For instance, Clouse’s et al. [14] quantification can be automated using

detected start and end positions.

3. Clinical Dataset Acquisition

Three different datasets have been studied for soft plaque detection in this

work. The first dataset consisting of 18 CTA volumes has been downloaded from175
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publicly available database of Rotterdam Coronary Artery Evaluation frame-

work [30, 31]. The Rotterdam CTA data comes from different sources and is

based on different vendors as illustrated in Table 1. This multi-platform data

Table 1: Rotterdam CTA data specifications

Vendor Siemens Toshiba Philips

Volume Count 6 6 6

Institution Erasmus MC Uni.(NL) Leiden Uni.(NL) Utrecht Uni. (NL)

CT Scanner Somatom Def. Aquilion One 320 Brilliance 64

Slice/Rotation 32x2 320x1 64x1

ECG Gating Retrospective Retrospective Retrospective

Kernel Used b26f b26f b26f

Contrast Medium Ultravist 370 Ultravist Ultravist 370

makes the plaque detection problem challenging as a CTA volume reflects the

acquisition dynamics; however, this serves as a great platform to ensure gen-180

eralization of the proposed method. The motive behind using Rotterdam data

is the availability of the manual ground truth in terms of expert annotations

i.e. (normal/abnormal) and the precise position of soft plaque for the abnormal

segments. A second dataset consisting of 12 CTA volumes is obtained from

Guy’s and St. Thomas’ Hospital, London which was acquired using a Siemens185

Somatom Definition scanner. After obtaining the coronary centrelines, the or-

thogonal cross-sections were computed and an expert was requested to label the

cross sections as normal or pathological (soft plaque affected). In addition, a

third dataset consisting of two CTA volumes was obtained from Semmelweis

university Budapest, Hungary and the segment wise orthogonal cross sections190

were annotated by manual expert as normal or soft plaque affected. Finally

the manual annotations were validated with the help of clinical quantitative

coronary angiography (QCA) report which was available for two datasets.

With a specific focus on the non-calcified plaque detection, the high inten-

sity calcified plaques (if any) are generally pre-processed by assigning normalized195
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values to minimize the impact on non-calcified detection. This pre-processing

was reported in [16, 32, 33] methods to optimize the detection process for non-

calcified plaques. Similarly, plaque detection methods of [17, 15, 23] and quan-

tification methods of [19, 14], started by suppressing the calcified plaque in-

stances (if any) to ensure that the detection algorithm operates specifically on200

segments affected with the non-calcified plaques. Accordingly, we performed

the normalization of the high intensity calcified plaques (if any) to stay within

the scope of this non-calcified plaque detection work. However, it is important

to mention that our proposed plaque detection method is robust to adapt the

calcified plaque detections with a minor change is the detection principle, i.e.205

instead of isolating intensity dips, the intensity ascents or peaks are to be cap-

tured, and we aim to extend the current work for simultaneous processing of all

types of plaques.

4. Proposed Model

In this work, we propose an efficient method for the detection and local-210

ization of soft plaques in clinical CTA. Accordingly, the segmentation of the

coronary vasculature is performed in a first step using an improved formula-

tion of Chan-Vese [34] energy model as defined in Jawaid et al. [29]. Next, we

extracted the vessel centrelines from the segmented tree using sub-voxel thin-

ning algorithm [35]. The accuracy of the obtained centrelines is evaluated by215

computing mean deviation error with respect to the reference ground truth as

presented in Fig. 1. The visual comparison for complete coronary vasculature is

presented in Fig. 1a, whereas the deviation error for individual segments (RCA,

LCX, LAD and D1) is shown in Fig. 1b. It can be observed that the deviation

error for the major coronary segments is less than one millimetre with respect220

to the reference centreline. In the subsequent step, we assigned a segment num-

ber to the individual coronary segments according to the 17-segment model of

American Heart Association (AHA) [36], as the plaque detection is performed

on per-segment basis. Next, the respective centrelines are used to extract the
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Figure 1: Accuracy of the coronary centreline with respect to the reference ground truth

[31].(a) obtained centreline overlaid with the ground truth centreline, (b) mean deviation of

the obtained centreline in millimeters. It can be observed that the coronary centreline has a

mean deviation of about 1mm for the major segments.

orthogonal cross-sections to constitute the segment-wise cylindrical volume. In225

the following step, the support vector machine is applied to differentiate the

plaque affected segments from the normal cross sections. The abnormal marked

segments are investigated using second derivative analysis to identify the length

and position of plaque inside coronary segments. For rest of the paper, we as-

sume that I represents a CTA image and x is the spatial variable denoting 3D230

position in the domain Ω.

4.1. Mean Radial Profile

To investigate the intensity composition along the coronary segment, we

employed the notion of the mean radial profile. We observed that this represen-

tation is effective to identify the intensity abnormalities in 3D tubular vessels by

comparing radial profiles of successive 2D cross sections along the vessel axis.

To illustrate the advantage of mean radial profiles, we obtained 2D cross sec-

tions along the length of segment by substituting respective centreline points in

Eq. 1.

n · (x− c) = 0 (1)

where c represents the centre of the plane and n = [nx, ny, nz]
T represents the

normal of the plane which is computed using successive points of the centreline
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Figure 2: 3D segmented coronary trees with overlaid centreline and two cross sectional planes.

The centreline is overlaid in black colour for the right coronary artery, whereas blue, red and

green represents the curved cylindrical approximations for coronary segments numbered 2,

7 and 8 respectively. A local cylinder with 6mm diameter well encompasses the coronary

segments.

to precisely follow the vessel orientation. In the subsequent step, we computed

the respective radial profiles by sampling the obtained cross sections along con-

centric rings according to Eq. 2.

p[r, k] =

∫ 2π

0
I(r, θ, qk)dθ∫ 2π

0
dθ

(2)

where q denotes the segment centreline and qk defines the kth cross section of

the centreline. Moreover, I represents the image intensity, r defines the radius,

and θ defines the angle of a projecting ray. Fig. 3a shows the mean radial235

profiles for five sequential cross-sections (k=5, 10, 25, 40 and 45) of coronary

segment. It should be noted that the intensity is maximum at the centre of

a healthy cross section (i.e. k=5, 10, 40 and 45) and decreases outwards as a

smooth function of distance. In contrast, the abnormal segments can be clearly

differentiated based on an unexpected response of the mean radial profile. This240

deviation is visually illustrated in Fig. 3b where two cross-sections are displayed

using optimal coronary display settings. High intensity in a normal cross section
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Figure 3: Mean radial profile based intensity examination to detect abnormality in 3D vessel.

(a) show the radial profiles for five sequential cross sections to detect composition abnormality,

whereas (b) shows 2 cross sections (normal and abnormal) at optimal display settings.

Figure 4: Simulation of the intensity composition for normal and abnormal coronary cross

sections. Left represents a normal cross section with adequate flow of blood, whereas right

shows a plaque leading to blood obstruction. Moreover, the dots make the discrete radial

profile obtained by sampling 8 concentric rings.

results in a bright appearance (top), whereas presence of low density material

results in a darker appearance of the diseased cross section (bottom).

4.2. Cylindrical Modelling of Coronary Segments245

To effectively use the radial profiles in plaque detection, we approximated

the individual coronary segments with a curved cylindrical model having di-

ameter of 6 mm. The choice of 6mm diameter is feasible as several studies

[37], [12], [38] show that the maximum coronary diameter remains less than

6mm. Consequently, the circumference of our curved cylinder serves as exter-
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nal boundary between the coronary vessel and background. This is illustrated

in Fig. 2 where three different coronary segments are mapped with respective

curved cylindrical models. This method of segment approximation is superior

to Clouse et al.’s [14] approach, where a hard threshold of 0 Hounsfield units

(HU) was used to cut off the vessel from the background. Nearby calcifications

and image reconstruction artefacts often result in vessel borders that differ from

0 HU. Another advantage of our cylindrical approximation is that it allows a

certain amount of flexibility in the centreline accuracy as the mean response of

the 6mm region can successfully model the segment intensity distribution by

overcoming the slight perturbations in the centreline. Next, we used the ap-

proximated curved cylindrical model of respective coronary segments to obtain

the radial profiles. However, in context of the computational robustness, we

used a discrete approximation of Eq. 2 to construct customized radial profiles

along the length of segment. To maintain a trade-off between the computational

load and the radial profile accuracy, the discretization parameters are chosen

as ∆r = 0.4mm, ∆θ = 22.5◦ and ∆q = 0.4mm. The sampling interval of

0.4 millimeters is used for the radial and cylindrical axis due to the isotropic

voxel size, whereas an angular spacing of 22.5◦ is used to project 16 rays on the

sampling plane. The chosen angular interval is fairly reasonable as the smaller

interval leads to increased processing time without improving the performance.

Accordingly, we define the customized radial profile as follows:

v[i, k] =
1

L

L∑
t=1

I(ri, θt, qk) ∀i, k, i = 1, ..., 8, k = 1, ...K (3)

where qk represents the kth cross sectional of coronary segment and K defines

the total number of points along the length of the segment. L denotes the

total number of projected rays, which is set equal to 16 in our model and the

respective projection angle is computed as θt = t
(
π
8

)
. Moreover, i denotes

the concentric ring formed at radius ri = 0.4(9 − i)mm. This formulation of250

ri reveals that the outermost ring is labelled as v1 and the innermost ring is

denoted as v8. Moreover, this discrete approximation is illustrated in context

of two cross sections in Fig. 4 where it is apparent that the outer four rings (v1

13



to v4) generally defines the interface between lumen and external fat, while the

inner four rings (v5 to v8) represent the contrast medium affected blood.255

This fact is further demonstrated in Fig. 5 where the intensity response of

eight concentric rings is plotted for the complete segment. It can be observed

that irrespective of the segment composition, the inner four rings reflect the im-

pact of the contrast medium in terms of high intensity, whereas the outer four

rings represent comparatively lower HU values related with external boundary

of the vessel. Moreover, Fig. 5 shows that the healthy segments lead to stable

intensity response for all the eight rings (see Fig. 5a) throughout the segment

length, whereas the presence of low intensity (soft plaques) results in significant

concavities for inner four rings (see Fig. 5b). We observed that this consid-

erable disparity in the stability of four inner rings can be used to differentiate

coronary segments into two classes i.e. normal and abnormal. Consequently, we

derived the mean representation (s) of the coronary segments by averaging the

response of four inner rings as expressed in Eq. 4. It should be noted that the

segment mean representation s is based on four inner rings, which minimizes

the probability of erroneous plaque detection associated with 6 mm circular

approximation of distal segments.

s[k] =
1

4

8∑
i=5

v[i, k], ∀k, k = 1...K (4)

To overcome the short term fluctuations in the mean representation of the coro-

nary segments, we applied finite impulse response filter using a moving window

technique. Accordingly, the smoothed statistical representation of the coronary

segment is obtained with the help of moving mean and moving standard devia-

tion operation as expressed in Eq. 5, where n i.e. the size of moving window is

set equal to 3.

σs[k] =

√√√√ 1

(2n+ 1)− 1

n∑
i=−n

(s[k + i]− µ[k])2,

µs[k] =
1

2n+ 1

n∑
i=−n

s[k + i], ∀k, k = 1, ...,K (5)
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Figure 5: Mean intensity response for 8 concentric rings (v1 to v8) along the length of segment.

The mid of the lumen, (v8) exhibits high HU intensity, whereas a low value of (v1) indicates

a position away from the lumen centre. Moreover, the mean profile of the coronary segment

is obtained by averaging the four inner rings (v8) - (v5).

In addition, we constructed the segment radius profile Srad by computing the

lumen radius from the segmented coronary tree to take into account the remod-

elling impact along the length of the vessel. It should be noted that different

coronary segments have variable length as defined in standard AHA coronary

model (see Fig. 2 for visual difference between segment 2, segment 7 and seg-260

ment 8). We apportioned the variable length of individual segments at this stage

with the help of spline interpolation to redefine the segments in terms of the

fixed length characteristic functions µ
′

s, σ
′

s and S
′

rad (each having 100 samples).

4.3. SVM Based Segment Classification

4.3.1. Feature Based Representation for Coronary Segments265

After obtaining the fixed length characteristic functions for coronary seg-

ments, we used an SVM classifier to differentiate the plaque affected segments

from the normal ones. An imperative pre-requisite for a learning-based classi-

fier is the selection of appropriate features from the data. Ambiguous features

failing to discriminate two classes effectively leads to poor accuracy, whereas

distinctive features result in optimal classification. It should be noted that the
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Figure 6: Subset based signal representation to reduce the dimensions of the feature vector.

It can be observed that both (normal and abnormal) classes can be adequately represented

using 20 subsets.

non-calcified plaques can be optimally detected by investigating the composition

of the arterial segment. Hence intensity based features play an important role

in the abnormality detection process. Moreover, non-calcified plaques generally

lack a specific texture or shape which makes the application of geometric fea-

tures relatively difficult. Recent clinical studies [39, 40] have shown that Napkin

Ring Sign (NRS) can be used as a shape descriptor; however, it is applicable

on significantly developed stable non-calcified plaques. Accordingly, we iden-

tified the representative features of our data by analytical investigation before

applying the SVM model to ensure the computational robustness. As the mo-

tive of this work is to detect plaque-based abnormalities along the length of

the segment, we therefore extracted the features by splitting the characteristic

functions µ
′

s and σ
′

s into m windows as expressed in Eq. 6.

fµ[m] =

5∑
n=1

µ
′

s[n+ 5(m− 1)],∀m = 1, 2, ..., 20

fσ[m] =

5∑
n=1

σ
′

s[n+ 5(m− 1)],∀m = 1, 2, ..., 20 (6)

The windowed or sub-set based statistics can effectively reveal the relative

changes along the length of segment; however, the selection of m is critical

as it serves as a trade-off between the the approximation error and the feature
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Figure 7: Graphical representation for segment representative features. (a, c) defines a normal

segment having stable mean and deviation, whereas (b, d) represents a soft plaque effected

segment.

vector dimensions. To select the optimal number of windows, we investigated

the relation between m and segment approximation accuracy as shown in Fig.270

6. It can be observed that the quantization error is inversely proportional to the

number of windows, i.e. increase in m leads to improved approximation of the

segment profile s. Thus, to maintain a balance between the accuracy and the

feature vector size, we defined number of windows m equal to 20. The choice

of 20 windows is reasonable, as both normal and abnormal segments show that275

the approximation error becomes steady at m = 20. Fig. 7 demonstrates the

discriminative capability of extracted features (fµ and fσ) to distinguish the

intensity patterns of two classes (see Fig. 7a - 7d).

Furthermore, two additional parameters namely mid-lumen intensity fmid

and mean radius frad are added to improve the performance of the SVM clas-
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sifier. The mid-lumen intensity through the vessel is acquired by modelling

the intensity response of the innermost ring v8 through the length of vessel as

expressed in Eq. 7, whereas the mean radius frad encoding the vessel remod-

elling impact is approximated in terms of m windows using radial profile S
′

rad

as expressed in Eq. 8.

fmid[m] =
1

5

5∑
n=1

v8[n+ 5(m− 1)],∀m = 1, 2, ..., 20 (7)

frad[m] =
1

5

5∑
n=1

S
′

rad[n+ 5(m− 1)],∀m = 1, 2, ..., 20 (8)

Fig. 9a - 9d demonstrate the advantage of the additional features. Apparently

fmid replicates the distribution pattern of fµ; however, it encodes the mid-lumen280

behaviour (i.e. the concentration of the contrast medium) from ostium to the

end of segment. It should be noted that a plaque present in the segment ostium

(or even in the preceding segment) will result in low HU intensity through the

mid of lumen; hence, the segment should be classified as abnormal but the stable

mean and variance may lead to an erroneous classification in terms of normal285

region. In this context, the feature fmid ensures that the classifier takes into

account not only the intensity variations but the mid-lumen response of segment

for efficient classification.

Motivation for using the radius based feature frad is illustrated in Fig 8. It

can be observed from the figure that the vessel boundary (red contours) suffer290

through compressions at three distinct points along the length. The compression

points represent stenosis locations of different degrees (mild, mild, moderate)

respectively. The impact of the vessel stenosis can be clearly visualized in terms

of the vessel radiusfrad plotted in blue colour, as the radius shows an unexpected

dip in the stenosis region. In general, the radius obtained along the length295

of the segment conveys useful information to the classifier regarding vascular

abnormality as illustrated in Fig. 9c - 9d. It can be observed from Fig. 9c that

the segment radius decreases smoothly as a function of ostia distance for normal

segment, whereas the plaque effected regions undergo unexpected variations in
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Figure 8: 3D boundary contours (red) for segmented coronary vessel and corresponding ra-

dius(blue).Three stenotic locations in the vessel are well reflected in radius deviations.

radii due to the positive or negative remodelling in the plaque affected area. The300

statistical results illustrate that integration of the mid lumen intensity and the

segment radial information improves the classifier accuracy by approximately

11% as demonstrated in Section 5. Next, we concatenate four feature sets fµ,

fσ, fmid and frad to obtain a feature based representation Fxi for respective

coronary segment with dimensions [1 x 80].305

4.3.2. Feature Selection Methods

Based on the fact that we employed prior clinical knowledge to derive hand-

crafted features in the context of non-calcified plaque detection, it is less likely

that feature selection techniques will significantly reduce the dimensionality of

the feature space. For the proof of concept, we compared three different feature310

selection techniques including Relief-F [41], recursive feature elimination [42]

and Fisher [43] methods using a feature selection library [44]. To illustrate the

efficiency of these methods we performed the classification using top ranking

features for three techniques as shown in Fig. 10. It can be observed that use of

the top 5 features leads to a minimal accuracy for all three techniques, whereas315

an increased feature space lead to a continuous improvement in the accuracy
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Figure 9: Graphical representation for segment representative features. (a, c) defines mid-

lumen intensity and radius trend for normal segments, whereas (b, d) represents the abnormal

segment. It can be observed that normal segments are characterized with high mid-lumen

intensity and smooth decreasing radius, whereas abnormal segment is related with low mid-

lumen intensity and often suffers with unexpected radius variations (+ve, -ve and hybrid vessel

remodelling).

of the classifier. This is due to the window-based nature of the features as

increased windowed statistics allow the classifier to make relatively improved

decision. From a comparative point of view, it can be observed from Fig. 10 that

the Fisher method [43] achieves higher accuracy as it employs the correlation320

information to to rank the feature’s discriminative power.

4.3.3. SVM Classification Framework

For an SVM based classification, our data consists of n feature vectors of

the form Fxi and the associated binary labels yi defining the class of vector as

normal or diseased. The mathematical representation for classification data is

20



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
50

60

70

80

90

100

Top ranking features

A
cc

ur
ac

y 
(%

)

 

 

Relief−F [29]

SVM−REF [30]

Generalized Fisher [31]

Figure 10: Classification accuracy based on top ranking features for three different feature

selection techniques. Method [43] shows comparatively better accuracy due to correlated

feature information.

as follows:

D =
{

(Fxi, yi) |Fxi ⊆ Rd, yi ⊆ {−1, 1}
}n
i=1

(9)

where n is the number of samples, and d denotes the feature vector dimension i.e

set equal to 80 in our work. The use of support vector machines in binary clas-

sification is equivalent to quadratic optimization subject to linear constraints.

The SVM model finds an optimal hyperplane by minimizing the norm of weights

for ideal segregation; however, a slack variable is often integrated to relax the

constraints for a feasible solution as expressed in Eq. 10.

min |w|2 + P

n∑
i=1

εi (10)

subject to : yi
(
wTFxi + b

)
≥ 1− εi, εi ≥ 0, for i = 1, 2, ....n

A penalty cost P regulates the influence of individual support vectors in the

classification as high value of P leads to hard margin, whereas very small value

allows frequent violations of the constraints. After investigating values in the

interval
[
10−5, 105

]
, we defined P = 100 by adjusting the box-constraint param-

eter of the SVM classifier. Moreover, we used a non-linear radial basis Gaussian
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kernel for mapping data into higher space with sigma defined equal to 1. Ac-

cordingly, the SVM model classifies the test vector Fxi into normal or diseased

class according to Eq. 11.

Out (Fxi) = sgn
(
wTFxi + b

)
(11)

4.4. Plaque Localization in Abnormal Segment

Segments classified as “abnormal” are further investigated for precise posi-

tion of the plaque in the vessel. The essence of localization process is to identify325

unpredicted intensity dips in the mean radial profile of the coronary segment.

For tracking valleys in the mean profile (s) of an abnormal segment, we com-

puted the intensity variation enormity using a first order derivative. It should be

noted from Fig. 11 that the relative slope (shown in blue colour) remains steady

through the normal regions of the coronary segment, whereas the unexpected330

drop associated with soft plaques lead to a significant transition in the slope

magnitude. In the subsequent step, we applied second order derivative analysis

of Eq. 12 to identify the local extrema points. This computation is based on

the idea that valley region can be well characterized by pair of adjacent maxima

points as shown in Fig. 11.335

After identifying the local extrema positions, we quantified the section-wise

intensity drop by computing the sum of relative slope between successive max-

ima points. Consequently, two maxima encompassing the maximal intensity

drop are marked as the start and end positions of the lesion in the segment. To

generalize the performance, an additional constraint was posed directly in terms

of an intensity threshold of 50 HU to ensure that low HU value inside the vessel

were directly marked as plaque without requiring any additional evidence.

f
′′

(s) =

 Maxima at (s = p) if f
′
(s) = 0 & ∂2f

∂s2 > 0

Minima at (s = p) if f
′
(s) = 0 & ∂2f

∂s2 < 0

(12)
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Figure 11: Derivative based plaque localization in an abnormal segment. Black represent

segment mean profile and blue curve show the relative change in mean profile. Moreover, red

and green markers show the detected local extrema points.

5. Results

5.1. Results for SVM Classification

Out of the available 32 CTA volumes, a total of 344 segments (200 normal,

144 abnormal) are extracted in the first stage for validation of the SVM classifier.

In the subsequent stage, the mean HU profiles are generated as defined in Section340

4 for individual coronary segments. The performance of our SVM classifier

is presented in Fig. 12 where Leave One Out (LOO) cross-validation shows

promising results with a sensitivity of 93%. Furthermore PPV for the LOO

validation is 86.4% and NPV is 91.9% which makes the overall soft plaque

detection accuracy equal to 88.4%.345

Next, we used the trained SVM classifier to investigate the impact of feature

vector dimensions on the classifier efficiency. In this test we used 122 coronary

segments extracted from 3 datasets (70 normal and 52 abnormal according to

the manual ground truth) and compared the classifier performance in terms of

accuracy and processing time. It has been observed that the windowed mean350

and deviation based 40 features lead to a classification accuracy of 77.8%, where
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Figure 12: Leave One Out validation for the SVM classifier. The overall accuracy (around

88.4%) shows the effectiveness of the plaque detection method.

the addition of mid-lumen fmid and radius frad based features improved the

classifier accuracy by approximately 11%. Moreover, the comparative analysis

demonstrates that the further increase in the feature space dimensions show only

a marginal improvement in the classifier accuracy, while the computational time355

increases significantly. These results lead to the conclusion that the classifier

performance becomes resistant to the feature vector dimensions at a certain

point due to the redundancy of features.

We evaluated the efficiency of our classification model against three individ-

ual datasets to validate the reproducibility on generic CTA data. We extracted360

test segments individually from three datasets (66 from Rotterdam, 76 from St.

Thomas and 36 from Semmelweis) and SVM classification results are presented

in Fig. 13. It should be noted that the individual classification accuracy is con-

sistent around 85% across the data. Moreover, the classification results of Fig.

13 can be interpreted based on the fact that a “significant intensity dip” helps365

the classifier to achieve higher accuracy. In this context, the high sensitivity of

the Rotterdam data can be related with the presence of severe soft plaques in

different coronary segments, whereas the lower accuracy for Semmelweis CTA

dataset reflects less test data and the absence of severe plaque instances. It
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Figure 13: Plaque detection results for three individual datasets using individual statistics

and overall accuracy. It can be observed that SVM consistently achieves plaque detection rate

higher than 80%.

should be noted that the detection of the immature (clinically graded as mild370

to moderate) soft plaque becomes extremely difficult due to uncertain intensity

profiles.

5.2. Results for Plaque Localization

SVM based identification of the abnormal segments is followed by the lo-

calization of the plaque inside the vessel. The plaque localization is illustrated375

in Fig. 14 where first and second order derivative analysis is used to highlight

the intensity concavities. The proposed model achieved encouraging results

as all substantial plaques are well localized; however, it slightly overestimates

the plaque position due to numerical dependence on the second order extrema

points as shown in Fig. 14. The accuracy for plaque localization is evaluated380

by computing the Dice similarity index between the ground truth and the de-

tected plaque locations. The total number of cross sections along the segment

are represented using a binary vector where a zero denotes normal cross section

and one reflects the abnormality. The ground truth vector is constructed using

the start and end positions of the soft plaque from the manual observer anno-385

tations, whereas the obtained plaque vector is derived from our detected plaque

positions.
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Figure 14: Plaque localization for abnormal segments of Rotterdam data (Green is detected

region and red is the manual ground truth). It can be observed that the proposed method

identifies the plaque region in the vessel with a slight over-estimation. First row shows the

section-wise first order change between consecutive maxima pairs, whereas the second row

shows detected plaque region.

Fig. 15a demonstrates the efficacy of the plaque localization method with

a mean Dice index of 83.2% with respect to the expert annotations. Moreover,

Fig. 15a also presents the plaque length in millimeters where our obtained390

length is in correlation with the expert based length. However, a trend of slight

over-estimation can be observed which is due to the numerical dependence on

second derivative-based maxima points. The shortcoming of the plaque local-

ization method can also be observed in Fig. 15a as plaque length and Dice

index under performs for CTA volume 6 and 15. The mismatch for these two395

volumes occurred due to the unexpected length of the plaque (spanning over

the complete segment) that leads clinician to make a relative decision. This is

further illustrated in Fig. 15b, where the human observer selected start and

the end positions of the plaque relative to the significant intensity drop and the

complete intermediate region is marked as plaque, whereas the proposed model400

results in two individual plaque instances centred at the start and the end of
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Figure 15: Plaque localization performance. (a) show the localization accuracy using Dice

index (%) and the plaque length with respect to the manual expert of Rotterdam, (b) show a

particular case where the proposed method fails in precise localization of plaque.

the actual plaque.

6. Discussion

We proposed a simple yet efficient method for detection of the non-calcified

coronary plaques using support vector machines. The innovative aspect of this405

work includes automated detection of the abnormal coronary segments (affected

with non-calcified plaques) using SVM classifier. Moreover, this model precisely

locates the position and approximate length of the non-calcified plaque in ab-

normal segment which can be used in fully automated plaque quantification.

The overall accuracy of our plaque detection model is 88.4% against the manual410

observer ground truth with a sensitivity of 93% and specificity of 80%. More-

over, the Dice coefficient for plaque localization in diseased segments is 83.2%

with respect to clinical annotations. Moreover, the proposed model has been

tested on three different CTA datasets individually and has produced consistent

results, demonstrating its reproducibility for generic CTA data.415

After comparing individual results, we also compared our outcome with

plaque detection models of Wei et al. [15], Lankton et al. [17] and Tessmann

et al. [18] to establish a correlation with the reported literature. It should be
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noted that the overall detection trend can be observed in Table 2 for different

methods; however, a head to head comparison is not possible with [15] and420

[17] as the results are based on different quantitative metrics. For instance,

the sensitivity reported by Lankton et al. [17] is achieved using volume based

processing, whereas Wei et al. [15] used 2mm long plaque candidate regions.

Table 2: Plaque detection - Comparison with reported methods.

Proposed Tessman[18] Lankton[17] Wei[15]

Test Volumes 32 45 8 83

Classifier SVM AdaBoost Energy Minimization LDC

Target Plaques Non-calcified Non-calcified Non-calcified Non-calcified

Features Used 80 144 x 14

Data set Tested User Defined User Defined User Defined User Defined

Detection Target Coronary segments Coronary segments Plaque regions Plaque candidates

Sensitivity 93 79.62 88 92

The limitations of this work include an under-estimation of the long plaques

in fully occluded segments and the low detection rate for the minor coronary425

segments due to the reduced diameter. However, from a clinical point of view,

the plaques present in the minor segments are less threatening as they do not

cause sudden fatalities due to limited muscular damage. The future work on

this method will include manual input from multiple experts to investigate the

classifier efficiency relative to inter-observer error. Moreover, an ongoing study430

is extending this work in which we aim to perform a quantitative analysis for lo-

calization accuracy and aggregate plaque volume in the coronary tree. Another

possible extension of the current work can be replacement of the hand-crafted

features with a convolutional neural network (CNN) to take maximal advantage

of machine learning procedures; however, this requires a large repository of CTA435

data.
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7. Conclusion

The proposed automated non-calcified plaque detection method shows a

good detection rate of 88.4% and plaque localization accuracy of 83.2% with

respect to manual ground truth. Moreover, we compared our results with ear-440

lier studies and found a good agreement with abnormality detection rate of Wei

et al. [15], Lankton et al. [17] and Tessmann et al. [18]. We believe this can

serve as an important step forward towards the automated quantification of the

soft plaques, which have been identified as the major reason of fatal cardiac

events.445

References

[1] S. Waxman, F. Ishibashi, J. E. Muller, Global, regional, and national age-

sex specific all-cause and cause-specific mortality for 240 causes of death,

1990-2013: a systematic analysis for the global burden of disease study

2013, Lancet 385 (9963) (2015) 117–171.450

[2] U. K. NHS, Coronary Heart Disease, statistics for united kingdom, Avail-

able at http://www.nhs.uk/Conditions/Coronary-heart-disease/

Pages/Introduction.aspx(2016/11/11).

[3] W. H. Organization, Cardiovascular diseases CVDs, the global

statistics, Available at http://www.who.int/mediacentre/factsheets/455

fs317/en/(2016/11/11).

[4] T. Flohr, B. Ohnesorge, Multi-slice ct technology, in: Multi-slice and Dual-

source CT in Cardiac Imaging, Springer, 2007, pp. 41–69.

[5] M. S. David C. Levin, D. Fischman, Coronary CTA, a cost-effective al-

ternative to cardiac catheterization for the evaluation of cad, study sug-460

gests, Available at https://www.sciencedaily.com/releases/2010/04/

100421162617.htm(2016/12/07).

29

http://www.nhs.uk/Conditions/Coronary-heart-disease/Pages/Introduction.aspx
http://www.nhs.uk/Conditions/Coronary-heart-disease/Pages/Introduction.aspx
http://www.nhs.uk/Conditions/Coronary-heart-disease/Pages/Introduction.aspx
http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs317/en/
https://www.sciencedaily.com/releases/2010/04/100421162617.htm
https://www.sciencedaily.com/releases/2010/04/100421162617.htm
https://www.sciencedaily.com/releases/2010/04/100421162617.htm


[6] R. Virmani, A. P. Burke, A. Farb, F. D. Kolodgie, Pathology of the vulner-

able plaque, Journal of the American College of Cardiology 47 (8s1) (2006)

C13–C18.465

[7] S. Waxman, F. Ishibashi, J. E. Muller, Detection and treatment of vul-

nerable plaques and vulnerable patients novel approaches to prevention of

coronary events, Circulation 114 (22) (2006) 2390–2411.

[8] S. C. Saur, H. Alkadhi, L. Desbiolles, G. Székely, P. C. Cattin, Automatic
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