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ABSTRACT

A theoretical model has been developed which can simulate a
linebreak occurring in a gas pipeline. By assuming one-dimensional
homogeneous gas flow and neglecting minor losses and changes in
cross~sectional area of the pipe, three simultaneous non-linear partial
differential equations were derived from first principles which
mathematically model pressure transients in a non-perfect gas. A
constant value steady-flow friction factor was used to calculate the
frictional losses which was considered to be a reasonable approach
since it would not be possible to account for all the variations in
friction. The heat transfer into the pipe was accounted for using a
constant value Stanton Number approach which again was an
acceptable approximation considering the comparatively small effect
that heat transfer has on the pressure transients.

The equations were converted to ordinary differential equations
using the Method of Characteristics and these were then solved
numerically using a Taylor expansion. A novel feature of this project
was the incorporation of a reduced grid size in the wvicinity of the
break allowing closer monitoring of the expansion waves in this area.
Also included was a means of modelling flow reversal in the pipe

w.hich enabled situations with a non-zero initial flow rate to be
simulated.

A computer code solving the mathematical model was written in
Fortran 77 for use on a Gould PN9005 mainframe computer. Both

tabular and graphical output were produced which could then be
compared Wii.th available experimental data.

The experimental data that was selected for validation of the
theoretical model included shock tube test results and some full size
tests. Reasonable agreement was obtained between the theoretical

and experimental results and any possible error sources were
investigated.




NOMENCLATURE

The symbols used in this text have the following meanings, except

where they have been otherwise specifically defined:
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Cross-sectional area of pipe
Isentropic wavespeed

Specific heat at constant pressure
Specific heat at constant volume
Diameter of pipe

Specific internal energy

Darcy friction factor
Acceleration due to gravity
Specific enthalpy

Rectangular coordinates used in explicit
finite difference methods

Pressure

Prandtl number

Heat transfer rate per unit volume
Specific gas constant

Reynolds number

Specific entropy

Stanton number

Temperature of the gas

Time

Velocity of the gas

Frictional force per unit length of pipe
Distance along the pipe

Thermodynamic quality or dryness fraction
Gas Compressibility factor

Greek Svmbols

©

e
Q

Angle of inclination of pipe to the horizontal

Mean density of the gas

Heat flow into the pipe per unit length of pipe
and per unit time

actual wave propagation speed selective
to the pipe

m/s
N/m

Units
Rad
kg/m3

J/ms

m/s




CHAPTER 1

INTRODUCTION

Ever since the first gas pipelines of the Western World were laid
in Philadelphia (1796), Genova (1802), and Fredonia {1821), the demand
for gas as an energy source has been growing worldwide. Gas is
now considered to be one of the most valuable raw materials due to

its high calorific value and so safe and efficient transportation is of

prime importance.

Up until the mid 1960’s, this country was using town gas which
was manufactured in gas-making plants in the towns and then
distributed locally at relatively low pressures. Originally; in the
1920’s and 1930’s, the pipes for this gas distribution were made from

cast iron but these were irregular in shape and thickness and by

}fl century steel pipes were being used.

With the advent of natural gas as an energy resource in this
country, longer distance pipelines became necessary, and in 1964 the
first natural gas steel pipeline in the U.K. was installed, connecting
the liquefied natural gas import terminal at Canvey Island with the
Midlands. Following the discovery of natural gas in the U.K. sector
of the North Sea, long distance deep-water lines were built, for
example, the 354 km long, 350 mm diameter pipeline installed in 1973/4

between the northern North Sea (Ekofisk platform) and Teeside.

On these early long distance gas transmission systems,

compression of the gas (necessary in order to overcome the

10




expansion of the gas due to friction) was by reciprocating
compressors driven by gas or diesel engines. Although machines of
this type could compress gas over a wide range of pressures and
flows, there has been an almost complete switch to centrifugal
machines driven by gas turbines. These are more suitable for

handling large volumes of gas although they will only deliver over a

restricted combination of pressure and flow.

Today, gas supplies 20% of the primary energy demand in Britain,
most of this coming from the North Sea. The offshore gas is landed
and treated by North Sea operating companies at ccastal terminals
and is .then fed into the national grid. The national grid consists of
three main sections:-

i) National transmission system - approximately 5000 km of

pipes with'diameters of up to 1050 mm, operating at pressures up

to 70 bar.

ii) - Regional distribution systems - approximately 12000 km of

smaller diameter pipes (minimum diameter = 100 mm), operating at
pressures of 7 bar upwards.

iii) Local service systems - small diameter pipe operating at low

pressures.

There have also been large pipeline networks developed in
several other countries worldwide. The U.S. natural gas pipeline
network is the largest in the world having an overall length of more
than L35 million km, and following large natural gas discoveries in

Siberia and Central Asia, the U.S.S.R. now has the second largest

11




network., In total, the overall length of natural gas pipelines makes

up 70% of all the world’s pipelines.

However, there are some problems involved with natural gas
transportation by pipeline. Although containing a high proportion
of methane, it is also rich in heavier gas components such as butane
and pentane. Since these heavier components are liquid at normal
temperatures and pressures (betwéen 0 and 20°C and up to

approximately 100 bar) the natural gas exists as a two-phase mixture

under those conditions as shown in Figure Ll

" | DENSE PHASE
5— 120 . .
0o ! _¢ricondenbar |
$L2 100
a LIQUID
%0
60 .
40 LIQUID — VAPOUR APQUR
-100 -80 -60 -40 -20 0 20 40 Temperature(°C)
Figure 11. Typical Phase Diagrram for Natural Gas
Two~phase flow in long distance pipelines is undesirable. The

denser liquid phase tends to collect at the bottom of the pipe and
since its flow velocity is less than that of the gas phase, the
capacity of the pipe is reduced. Also, as the faster gas phase
passes over the liquid phase, waves are created which can eventually
build up across the entire cross-section of the pipe creating slug

flow. This highly non-steady flow, accentuated by any changes in

12



elevation of the pipe, should be avoided since the slugs of liquid
being propelled along the pipe can cause serious damage to pipe
fittings and equipment. One way of avoiding this situation is by
regularly pigging the line carrying the two-phase mixtures. This,
however, incorporates substantial costs in the setting-up and

operation of the pigging stations.

A more cost effective solution is to transport the natural gas at
very high pressures in a single pha;se, known as the dense phase.
The dense phase is defined by the critical point and the
cricondenbar (the highest pressure at which separated liquid and
vapour phases can co-exist). This is illustrated in Figure Ll . It
has been found that at these high pressures the gas mixture follows
the same equations as single phase gas flow at lower pressure

{Oranje, Graaff and Fagerland [1985]).

With these dense phase gases being transported in high
pressure, large diameter trunk pipelines, the transient behaviour is
of greater significance and economic concern than with the previous

gas distribution network. A transient analysis is required to

accurately forecast the possibility of the liquid phase appearing as

well as improving the overall reliability of the system and optimising

the operating conditions.

The transient flow situations that require modelling fall into two
main categories, namely, the slow and rapid transients. Slow

transients are those fluctuations in pressure and flow caused by




changes in demand, for example, on a daily cycle. A slow transient
analysis is mainly concerned with the packing and unpacking of gas
in the pipeline. There has been a considerable amount of research
directed towards this type of transient and various computer
software packages are available which model this type of flow (for

example, Bender [1979], Goldfinch [1984], Guy [1967], and Heath and
Blunt [1969]).

This is less true of rapid transients which are those caused by a
linebreak (pipe rupture), compressor failure, or rapid shut-down or
start-up of a system. Although a linebreak in a natural gas pipeline
is unlikely to occur through operational error such as over-pressure,
the risk of accidental pipe rupture from an external source (for
example, by excavation work) cannot be ignored. Figure 1.2 details
the distributior'm of causes of pipeline failures for a group of natural
gas pipelines. This data was extracted from a performance analysis

of the pipelines in Alberta, Canada, between 1975 and 1983 (Cameron

[19841). [nternal Third Party Damage
Corrosion (35%)
(10%)
External
Corrosion Other Causes
(17 %) eg. operator error
or unknown cause
(17%)
Weld
Failure . Pipe
(8%)  Jdoinf poiie
ailure (6%)

(7%)

Figure L2. Pipe Failure Distribution for Natural Gas Lines




Some authors argue that since the rapid transients caused by an
event such as a linebreak are rapidly attenuated in gas pipelines,
they are of little significance compared with the slower transients
caused by the packing and unpacking of the gas. However, the
detection of a linebreak can be important both from an economic and
a safety point of wview. A transient analysis is therefore required
which will simulate the conditions at the break and in the section of
pipe either side of the break so that the potential hazard arising
from such a situation may be assessed. The analysis could also
provide a basis for the design of automatic valve closing devices and

alarms which would minimise the effects of such an accident.

Although there have been a few computer programs developed
which will model rapid gas transients (for example, Issa [1970}], and
van Dean anld 'Reintsema [1983]), it was found, on examination, that
.these models had their limitations. One major consideration was that
since the focus of this investigation was on high pressure, dense
phase gas transportation, it was essential that the model could

simulate the behaviour of a non-perfect gas following a linebreak.

The inclusion of realistic estimates of the effects of friction and heat

transfer in the model was also a requisite of the program.
Therefore it was decided to develop a new computer code which

would incorporate these features.
Equations modelling the unsteady gas flow in the pipe, including

any effects of wall friction and heat transfer into the pipe, were

derived and sclved numerically using the method of characteristics.

15



The computer model that was developed featured a reduced grid size
in the wvicinity of the break in order to capture in detail the
expansion waves created without excessively prolonging the computer
run time. It also successfully simulated the flow reversal that would

occur in the section of pipe downstream of the break.

Theoretical results produced from this program have been
compared with experimental data obtained from various external
sources. These were carefully selected to include realistic data from
pipelines generally of the same size and containing gaseous fluids
similar to those found in typical dense phase gas transmission lines,
as well as data from some fundamental shock tube tests. Reasonable
agreement was obtained between the theoretical and experimental

results.

16




CHAPTER 2
THEORETICAL DEVELOPMENT OF THE BASIC EQUATIONS
2.1, INTRODUCTION

Basic equations describing homogeneous turbulent gas flow in a
pipeline were derived from first principles by defining a control
volume of fixed location or translating with uniform velocity (see
Figure 2l1). This control volume was of length dx and had a
cross-sectional area equal to that of the pipeline. It was assumed
that‘ the flow was geometrically one-dimensional, i.e. that aLll fluid
properties were uniform over each cross-section of the pipe. This
assumption was examined in detail by Goldwater and Fincham [1980],
but briefly it may be stated that for high Reynolds number flows (as
in gas transmission lines), the one-dimensional approximation has
been shown to be very good for steady and slowly wvarying flows.

There could, however, be some slight deviations when considering

large, rapid disturbances.

»

It has also been assumed that‘ the minor losses, arising from pipe
bends, valves and joints, etc.,, were small compared with the
distributed frictional losses, and that the pipe wall was inelastic.
The basic partial differential equations describing the flow could then
be derived by applying the laws of conservation of mass, linear

momentum and energy over a time interval dt.

17




2.2. CONSERVATION OF MASS

The net rate of mass flow out of the control volume is equal to

the rate of decrease of mass within the control volume. Referring to

Figure 2.1 below:-

Figure 2.1. Control Volume illustrating the Conservation of Mass

' e . 3u | 3
Ale + 52 dx) (u + 51 dx) - eua = - 3¢ (eAdx)

Neglecting very small terms:

] 3
AP rugd ax=-aa 2

{2.1)

n
o

3o 3
3+ (ew

1%



2.3. CONSERVATION OF LINEAR MOMENTUM

The net force acting on the fluid within the control volume is
equal to the time rate of change of momentum within the control
volume plus the net loss of linear momentum flux. With reference to

Figure 2.2:

/\\ Sk

'/°Ag.dx
P

Figure 2.2, Control Volume illustrating the Conservation
of Linear Momentum

3P
PA - (P + 3% dx) A - Wdx - pAgsinedx g; (cAudx) + g—x (cAu2dx)

Dividing through by A-dx:-

3 3 3
gft(m)+§§(9u2)+§§+§+pgsine=0

3 3 3u 3u 3 W
u[§+5£(pu)}+oa—t+9u§+§+z+pgsine=o
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But from equation (2.1):-

do . d -
-aT'. + Tx (Pu) =0
Therefore:-
du du P _ ) .
pa—t+9uax+ a-—A—pgsn&e (2.2)

2.4.  CONSERVATION OF ENERGY

If heat is added to the system or work done by the system, the
system energy must change according to the First Law of

Thermodynamics. With reference to Figure 2.3.:

Figure 2.3. Control Volume illustrating the
Conservation of Energy

20



g; {(h * %E) PuA} + a {(e + l') PA} + PAugsine = @

Dividing through by A:-

3 Q
3§(Qhu)+—(92)+-a—€(92)+ (pe) + pugsind = ¢
But
P
h=e+=
%o
a_ P
3 37 (pe) = 37 (eh) - 5%
Substituting back:-
3_ u 3 u?, 3P L8
I {hpu) +3t (ho) +—x-(92—) +—€(9'2—‘) - 3¢ * Ougsine = 7
Factorizing out:-
M 3p 3h dh  u? (3 dp » du
h{ (9)+at}+9uax+9 +-2—[E'Z(pu)+3_t]+9u.${
du 3P _Q
But from equation (2.1):-
3 dp
" (pu) + 3¢ =0
And from equation (2.2):-
du dul _  Wu 3P
u[?at*'ng;l} —-A——ngs1n6-uah
Therefore:
dh sh 4P BP 8 + Wu
et T Fx T YT T a (2.3)
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2.5, BASIC EQUATIONS IN TERMS OF PRESSURE, VELOCITY AND
TEMPERATURE

Equations (2.1}, (2.2) and (2.3) were re-written with pressure,
velocity and temperature as the dependent variables by using the

equation of state for a real gas:-
P = 2zERT,
and the thermodynamic identity given by Zemanksy [1968]:

dh=deT+{g[%%P+l}g£

This method was adopted by wvan Deen and Reintsema [1983] and

.the following 'set of hyperbolic equations is produced:-

ap ap » du _ a2 T (3z] | @ + Wu ,
at*“ax“"asax‘@{l*E[ﬁp} A (2.4)
3u du 1 3 _ W )

. -a—€+u3§+5-§--A—p—g51n6 (2.5)

8_T+u_3_'£+a2{1+2 3z }au &{1'_2[8_2 }ﬂ_ﬂm (2.8)

2.s =
at ax  Cp z laTlp z 3Pip) A

= op

The complete derivation of the above equations is given in

Appendix 1.
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2.6. THE FRICTION TERM

In the basic equations, the friction term ‘W’ may be defined as
the fi'ictional force opposing the flow per unit length of pipe. Since
it was assumed that the minor losses are small compared with the

distributed losses, the frictional force, W, may be written:-

= A ulu|
W=3ef—5 (2.7)

where ‘f’ is the Darcy friction factor.

To date, there have been no friction factors defined for trans.ient
gas flows so it is common practice to adopt the steady flow
definitions in cases of unsteady flow. The time-dependent friction
.factors that have been developed, for example by Brown [1969],
Trikha [1975], and Zielke [1968] are only suitable for laminar liquid
flows and cannot be adapted to suit the turbulent gas flow found in
gas transmission pipelines. The use of a steady flow friction factor
for transient flow causes very little error when the flow variations
are of relatively low frequency and amplitude. However, when large,
rapid disturbances are occurring, a significant error may be
incurred. This fact had to be considered when selecting a friction

factor and also in the subsequent calculations.

There are various types of steady flow friction factor. It had to

be decided whether or not to use a flow dependent friction factor

23
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and also whether to account for the possibility of the liquid phase

appearing in the flow.

The key factor in the argument concerning the flow dependent
friction factor is whether it could be assumed that fully developed
turbulence was achieved in the pipe. If so, the Rough Pipe Law
could be employed which is independent of the Reynolds number (and
hence the flow). If, however, the flow was in the partially developed
turbulent flow regime or even in the transition zone between
partially and fully developed turbulence, then the friction factor
would vary with changes in the Reynolds number. Examples of these

different friction factor relationships are given in Appendix IL

Henry [1969] reported that a flow dependent friction factor
-should be used for high pressure gas pipelines so that the frictional
losses could be determined to within 1%. Opposing this, Issa and
Spalding [1972], Stoner [1969], Cronje et al.[1980], and Guy [1967], all
claimed that at the high Reynolds numbers encountered, the friction
factor could be assumed to be constant and they sﬁpported their

clain'xs with experimental data.

In this analysis it was decided to initially assume that fully
developed turbulence was achieved so that a constant value friction
factor could be used. If necessary, a flow dependent friction factor
could be substituted into the analysis provided that the improvement

in the results obtained justified the additional computing involved.
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Since dense phase gases were of particular interest in this
project, it was appreciated that during the rapid depressurization
following a linebreak, a certain amount of condensation was likely to
occur. The two common methods of allowing for the presence of the
liquid phase are:-

1) Modification of the Reynolds number and Roughness terms of

the friction factor equation. This method was employed by

Oliemans [1976] when he modified the Colebrook equation in order

to model two-phase flow.

2) Inclusion of an empirical two-phase friction multiplier in the

friction term of the basic equations. This method has been used

by Mathers et al.[1976], Kawabe [1982] and Chaudhry [1978].

Of these two methods the use of a two-phase friction multiplier
"was preferre& since it did not involve changing standard terms in
the equations. However, one important consideration had to be made
in that when a linebreak occurs in a pipeline, condensation would not
be uniformly spread along the length of the pipe. Instead, it would
be localized in the immediate vicinity of the break. After examining
the 'two—phase multiplier developed by Hancox and Nicoll [1972], it was
felt that the additional computation involved in adapting this method

for a varying dryness fraction along the pipe would not be feasible.

It was therefore decided that a constant value friction factor

would be used as defined by a version of the Rough Pipe Law.
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Although this friction factor would not initially account for any liquid
phase being present, this could be compensated for by a certain

amount of ‘tuning’, if necessary.
2.7. THE HEAT TRANSFER TERM

In the basic equations, the heat transfer term ‘@’ may be defined
as the heat flow into the pipe per unit length and per unit time.
Although it is considerably smaller in magnitude than the friction
term, the heat transfer is still a necessary inclusion especially when

considering long distance pipelines.

Typically either an isothermal or an adiabatic approach has been
adopted by previous workers.‘ For the case of slow transients
-caused by fluctuations in demand, it was assumed that the gas in the
" pipe had sufficient time to reach thermal equilibrium with its
constant temperature surroundings. Similarly, when rapid transients
were under consideration it was. assumed that the pressure changes
occurred instantaneously, allowing no time for heat iransfer to take_
placé between the gas in the pipe and t.he surroundings. These are
the two extreme cases. In reality a certain amount of heat transfer
does occur between the gas and its surroundings although thermal

equilibrium will not always be reached.

The heat transfer occurs by means of forced convection through

the turbulent boundary layer of the gas in the pipe, conduction
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through the pipe wall, and by natural convection outside the pipe.

This is shown diagramatically in Figure 2.4,

Pipe Wall

Atmospheric Temperature T,
| Natural Convection

Pipe wall  fexternal) Tp } Conduction
Temperature  (infernal) T4

Forced Convection

Temperature of the gas T

*——I‘.—r—-' Disfance from cenfre”
2 of pipe

Figure 2.4. Heat Transfer into the pipe.

With reference to Figure 2.4., the heat transfer may be written:-

(Tyz - Tyy)
@ = 2mry Ty = T) = 2mk —25—¥0° - onpopy (T, - To2)
on (E2) -
ry
where b = convective heat transfer coefficient of the boundary layer

k = thermal conductivity of the pipe wall
h

A= convectivte heat transfer coefficient of the atmosphere.
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Unless the pipe is lagged it can be assumed that the high

conductivity of the pipe results in a negligible temperature

difference between the internal and external pipe walls. A simplified

model can then be used as shown in 'Figure 2.5.

Turbulent Boundary Layer

&

(>

Pipe Wall

0%
Yo%

OO
O
%"

9,

XD
(X
A.’

A ’Q

Atmospheric Temperature Ty

Wall Temperature T,

Gas Temperature T

o

i | Distance from centre
* of pipe

Figure 2.5. Heat Transfer into the Pipe - Simplified Model
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Therefore the heat transfer may be defined as:-

@ =mhd (T, - T) (2.8)

where d = pipe diameter

Ty = mean wall temperature.

Introducing dimensionless parameters, the Stanton number may be
defined as the Nusselt number divided by the product of the

Reynolds and Prandtl numbers.

St = Rzupr
But,
Nu = 11;{}2 '
Pr:E,wherecx=Sg—pandV=§.
and Re = g_zg
Therefore,
St = (hd/k)
(LCP/,ls)(Pud/U)
= b
euCp

Substituting this back into equation (2.8):~-

Q= ndpuCpSt(Tw -T) _ (2.9)
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The Stanton number may initially be calculated from boundary
layer theory or taken as a function of the Reynolds and Prandtl

numbers. For example, Bakhtar [1956] used the relationship:
(st)-(rRe)®'? -(Pr)°'® = constant

However, Issa and Spalding [1972] concluded that, as with the
friction factor, variations in Stanton number with flow rate were not

sufficient to warrant the additional computation involved.

Since the heat transfer term in the basic equations is
comparatively small, it was decided to use a constant value Stanton

number which may be tuned for each situation encountered.

2.8. THE COMPRESSIBILITY FACTOR

In the basic equations, the compressibility factor ‘2’ and its
derivatives with respect to pressure and temperature are used.
There are two methods available for defining the compressibility

factor:- } -

i} Generalized Compressibility Chart

Readings of the compressibility factor may be taken direct from a
compressibility chart. The relevant area of this chart for use with

high pressure gas pipelines is shown in Figure 2.6.

Although this method may be used in order to obtain an
approximate value for ‘z’, these readings may deviate by as much as

10% from the experimental value for a particular gas. Also, further
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calculations are necessary in order to obtain the partial derivatives

of ‘2’.
1.4~

T,=5.0
/

1.0

For air,

Compressibility Z

S 1.6 P,=37.25 atm
1.4 T,=132°K

4 1.2
1.1

2F T,=1.0

0 L 1 1 1 1
0 2 4 6 8 10
Reduced pressure P, = Iﬁ-

Figure 2.6. Generalized Compressibility Factor Chart

-ii) __Equations of State

The use of an equation of state to calculate

2z’ has the
advantages that it can be easily programmed into a computer and
that it can also be solved for the derivatives of the compressibility
factor. A numb:er of equations of state have been developed which
var}; in accuracy and complexity. The choice of which equation to
use in a given situation is dependent on the type of gas that is
being modelled and the temperature and pressure ranges that are

likely to be encountered. The amount of available computer time and

space that can economically be used should also be considered.
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With the modelling of fluid transients it was decided that a
complicated equation of state would not be feasible in terms of

calculation time. Therefore only the simpler equations were examined.

Van der Waals®’ Equation [1873]

P= RT__2 where a and b are constant for
v-b vz

each gas, v=-?- .

At the critical point (subscript ‘¢’):

_ 27 R2T%, _ 1RI,
* 54 P, and b =g p
Therefore:
_ vin _ _27/64
z2== 1 Tpvp
vip-3
. P 1 P
- . —-—-£ - - —-c
_where vip = v RT, - o R,

-3

andTr=T-;

This equation is quite accurate at low pressure, but is inaccurate
near the critical point. It is therefore unsuitable for use in

calculations for high pressure pipelines.

Dietrici’s Equation [1899]

P = _RT . exp(-i-) where a and b are constants

v-b RTv for each gas

At the critical point:-

_ 4R2T12 _ RT
2 = P (exp)? ® = B (exp)?
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Therefore:

z = Y exp ( ~
v'p - (exp)~% * Tp V'

r (o2

This equation is reliable near the critical point for many organic
fluids. However, errors are incurred in other regions far from the
critical isotherm and hence it cannot be used for largely varying
temperatures. The limitations on its use make it unsuitable for gas

transient analysis.

Berthelot's Equation [1903]

where a and b are constants
for each gas

_.a
v-b TV

At the critical point:

_ 27 RT3, _lRL
2= 51 P, and b =g p

This equation produces comparatively accurate results for gases
and vapours at low temperatures. Since the rapid expansion of a gas
following a linebreak would create low temperatures in the pipe, this
equation is the most suitable for use in conjunction with the basic

equations,

Therefore:

v _ _21/64
T°p vy

Writing this equation in virial form:

z=l+{‘]%§'—'2—%égi}",—]:;+{'l—g§}?v—]:17+[ng}?rzlfg+....




In terms of the reduced pressure and temperature only

{neglecting higher order terms):-

z=1.+{ 9 _2;41?4}?‘_

128T,
9T, 2773,y p
=1+ {128T "~ 64T° } Pe (2.10)

Therefore, if the critical temperature and pressure of the gas are
known, the compressibility factor can be calculated directly from the

pressure and temperature in the pipeline.

From equation (2.10) the partial derivatives of z with respect to

temperature and pressure can be deduced:-

-9 8 3
[giz‘}P = [128$§ * 61:4c } g; (2.11)
| 27T3
{%}%}T = {12';; - 64T§ C} ilg (2.12)

Equations (2.10), (2.11}) and (2.12) can then be substituted back

- into the basic equations.

34



CHAPTER 3
REVIEW OF THE METHODS OF SOLUTION

3.1. INTRODUCTION

The three hyperbolic partial differential equations derived in the
previous chapter {equations 2.4, 2.5 and 2.6) may be solved numerically.
A number of different methods of solution have been developed some of
which are discussed by P.Fox [1960], L. Fox [1962], Krivoshein et al

(1976], Ames [1977] and more recently by Martin and Chaudhry [1983].

In this chapter some of the more popular methods used for
modelling fluid transients will be reviewed and an optimum method

selected for solving the ruptured pipe problem under investigation.

3.2, THE METHOD OF CHARACTERISTICS

The method of characteristics converts the partial differential
equations describing the flow (equations 2.4, 2.5 and 2.6) to ordinary
differential equations by using the natural co-ordinates of the system,
otherwise known as the characteristics. These ordinary differential
equations can then be solved numerically on either a grid of

characteristics or on a rectangular grid.
Equations (2.4), (2.5) and (2.6) may be written in matrix form thus:

U+ AUg+t d =0 (3.1)




where subscripts t and x denote partial derivatives with respect to

time and distances, and where

Uu =1P

—

~

0
1
o

T 3z
(1+; (5?)

P) u

ag
- p

2 R + W
- _a T u
d 8- ad (B, T

2 Q i
-2 (1-E (g

The eigenvalues (}) of matrix A give the characteristic directions

which are:-

X1= u
Az = u+ag
)\3= u - ag

.In order to obtain the characteristic equations one needs to

determine a transformation matrix T such that:

=

TA=X>2IT (3.2)

Then the characteristic equations are given by:

d =
T dt(%) +Td =0 (3.3)
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t11 ty2 tI;T

2y tax tas

ti2 tis
ta2 tas
taz tas

Solving equation (3.2):-

tag taz tas
L

——

From the above:

t12

u ead
l/p u
2
ag T
0 E—<1+E(
L P
= t2s = taj

2 a3
past11 + ut;, + 1

> t11 = - -l—

%

Cp (

ut21 + l/ptzz = (u + as)t21

? taz = fagtay

utal + 1/9t32 = (U - as)t31

> tsz s - Past:“

0
0
)P) u

=0

+

1+

I
z

2z

aT’P

T 3z
z 'aT

ut11

(utag)toy

(u—as)t31

) t13 = Utlz

)p) t13
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(u-ag)tsz

ut13

(u+as)t23
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Therefore the transformation matrix may be written:

T = -p—é—pu + 285 0 1
ey : .
s
- 51_ 1 0
and
2 2
Tds= rgc-iéfu L3z %22t &5 - gy pda
Q +Wu
- Ef:_“ + (BT)P)( y ) + A—5 + gsine
a Q +Wu w_ .
L 56:5(1 + (aT) Y(—) Y gsin®
_[. a2 p T, 3z e +Wu‘
= 3 -2, - gl * 25 2) 2% (22,
Q +Wu .
- 56;_(1 + —(aT) Y (——) ot gsin®
Q +Wu W .
@(1 + (aT)P)( ) + st gsine
—
_ r 1 (0 +Wu) )
) TG A
a € +Wu W .
- EE:T(I (aT)P)( ry ) + 2 * gsine
a Q +Wu W .
ﬁ,—rﬂ(l + (BT)P)( A ) + o * gsine
Hence, t-l;e characteristic equations are:-
Along g—}: = u:-
. Tdzy ydb  dT _ _1 & +Wu, _
st *Zarp st tae TgeTa ) =0

38

L)

(3.4)




Along 3—% = u+ag:-
1 dp du _ _ag T, 3z Q +Wu W_ . )
pag dt T dt pcp'r(1 + G ) + a5 + gsine = 0 (3.5)

Along ch_wg =u-ag:-

1 dP, du, ag ,, , T3z, \ @ +Wu, | W_ .
cag dt+dt+PCpT<1+z(8T)P)( ) +ae tesine =0 (3.6)

The method of solving these characteristic equations on a grid of

characteristics is known as the natural method of characteristics.

A
t

Curve on which the
values of x,t,P and
u are known.

Range of Influence of the
point Ay

Figure 3.1 Two-dimensional natural grid of characteristics
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For two dependent variables (as in the case of isothermal flow)
there would be two characteristics through each point as shown in
Figure 3.1, and the characteristic equations may be given by:-

du 1 dp

W NP dx _ .
TS *gd—£+Ae+gsme-0 along = =u £ a (3.7)

A first order finite difference approximation to the C*t
characteristic (referring to the notation of Figure 3.1) produces the

following equations:-

1

. (UB - U.Al) +

oo (Ps = Pas) + (%’g gsine), (tg - tyy) =0 (3.8)
and (xg - xa3) = (ugy + age)(tp - tay) (3.9) -
Similarly for the C~ characteristics:-

(up = uy) - Eiz—(PB - Py) ¢ (ﬁe'r gsine) (ty - taz) 20 (3.10)
and (xg - xa2) = (ug; - 2a2)(tp - taa) '('3.11)

This linear approximation is shown below:-

L —

-t
1
)
'
]
'
]
'
]
[
L)
[}
'
]
]
'
1
]
[}
[}
{
t
B L L T Y PR I P S
]
1
1
]
i
'
]
]
)}>

XT3
o
>
R
>

Figure 3.2. Linear characteristics on an x-t plane
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Equations (3.8), (3.9), (3.10) and (3.11) can be solved
simultaneously for the four unknowns (Pg, up, xg, tg). Hence it can
be realised that if the values of x, t, P and u are known at points
Ay, As, Agy Ay, and Ag in Figure 3.1, then the values of x, t, P and u

can be calculated at all the other marked points.

This region of marked points is known as the "domain of
dependence"” as described by Courant and Friedrichs [1948].
Another feature of the characteristic grid is that the values of x, t,
P and u at point A; will influence the wvalues of x, t, P and u at
succeeding points B, B3, Cy, C;, Cg3, etc. This region, bour_xded by
the characteristics through the point A, is known as the "range of

influence" and is illustrated in Figure 3.1.

Instead of linearizing the characteristic grid, a second order
approximation could be used as expressed by the trapezoidal rule

formula.
X1
L f(x)dx = %(£(xg) + £(x1)) (x5 - Xo)

The use of this formula results in a set of non-linear equations
which may be solved by iteration. Higher order methods have been
constructed by Ansorge [1963] but, because the number of points to
be considered grows exponentially with‘ distance from the line of
known values I, the range of applicability is limited. Higher order
is more readily achieved by extrapolation although the numerical

solution becomes unreliable in the presence of shocks.
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The main advantages of the natural method of characteristics are
that discontinuous initial data and shock waves do not lead to
overshoot and that large time steps are possible since they are not
restricted by a stability criterion. However, this method does have
two main disadvantages when dealing with rapid gas transients.
The first is that if more than two dependent variables are required
to describe the system then the complexity of the computation
increases and hence computing costs and time become unacceptably
high. The second major drawback is that if the solutions of the
dependent variables are required at fixed time intervals, then
two-dimensional interpolation in the characteristic net is required and
this can be very complicated. In order to overcome this second
disadvantage, the mesh method of characteristics was developed
which solves the characteristic equations on a rectangular coordinate
- grid. This method directly 7yields approximate values for the
dependent variables at specified time-distance coordinates. However,
whereas the natural method of characteristics is unconditionally
stable, the mesh method of characteristics is only conditionally stable.
The stability critefion, due to Com-xrant-Friedrichs-Levy, is that the
dom:;.in of dependence of the exact solution is contained within the
domain of dependence of the numerical solution. In terms of mesh

dimensions Ax and At:-

At 1
< ful + ag

(3.12)

Ax O

The physical meaning for this stability criterion is given by

Benson et al [1964] (page 142).
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Taking the case of just two dependent variables, in order to
make a direct comparison with the natural method of characteristics,
the characteristic lines would appear on a rectangular grid as shown

in Figure 3.3.

B
time
o)
t+At
ct . C At
f
LI R M S N
. Dx
— >

Figure 3.3 Characteristics on a rectangular grid
. for two dependent variables

The values of the dependent variables at point P can be found
by using a first order method described by Courant et al [1952]
which assumes that the sections of the characteristics being
considered are straight lines. This assumption is valid provided
that the time steps, &t, are sufficiently small. The slopes of the C*

and C~ characteristics through point M are calculated and these

43



values taken to be equal to the slopes of the characteristics through
point P. From these gradients the positions of points R and S can
be determined. The values of the dependent variables at points R
and S can then be calculated by interpolating from the values at the
grid points L, M and N. Finally the two characteristic equations
(equation 3.7) are integrated from R and S up to point P to give the

values of the dependent variables at P.

An extension of this method for calculating three dependent
variables, as is required for transient non-isothermal gas flow, is
used, for example, by Issa and Spalding [1972] and by Cronje et al
[1980]. This extended method of solution is a development of that
given by Hartree [1952] and it solves the three characteristic

equations (equations 3.4, 3.5 and 3.6) on the grid shown in Figure

- 3.4,
AX
Fme t+At P
dx =u+a =u-3 -
. Cil At
g
1’. ' y
me t R T M SN

Figure 3.4. Characteristics for three dependent variables on a
rectangular grid
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In this method a first order approximation is obtained by taking
the slopes of each of the characteristics through the point P to be
equal to the arithmetic mean of the slopes of the relevant
characteristic pertaining to the two adjacent grid points at time t.
The procedure then continues as previously outlined for the two
dependent variable case, extending the -calculations to iﬁclude the

path characteristic through point Q.

Several methods have been developed to increase the accuracy of
the solution obtained from the mesh method of characteristics. Lister
[1960] describes a .second-order method which obtains a higher
degree of accuracy by using quadratic instead of linear interpolation.
This method was used by Streeter and Lai [1963] to model the water
hammer equations with a non-linear friction term included; they
-obtained gooél correlation between their theoretical and experimental
results. Although Lister only examined the case of two dependent
variables, the method could be easily extended to solve for three
characteristics provided that the increase in computer time necessary

to solve the three simultaneous equations at each iterative step did
not create any difficulties. However, Spalding [1963] supported linear
interpolation only for modelling three characteristics because "it is

the simplest and because more complex procedures appear to have no

advantages".

Another way of increasing the accuracy of the solution would be

to use extrapolation procedures which enable the elimination of
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higher order errors (again at the expense of increased computing
time). Details of these methods are given by Hartree [1852] and

Roberts [1958].

Although the mesh method of characteristics is only conditionally
stable, there are certain circumstances in which adherence to the
stability criterion can cause numerical dispersion of the waves. For
example, problems arise when the absolute gradients of the C* and C~
characteristics differ significantly from each other (as would occur
with high Mach numbers) or when the wavespeed varies significantly
along the length of the pipe. These two cases are illustrated in

Figure 3.5.

P X
c+ C-.

High Mach Number flow
- P lies outside the domain of

dependence of L and N.

Varying wavespeed flow

- In order to satisfy the

stability criteria in the high

wavespeed region interpolation low high
wave
errors may be incurred in the speed wavespeed

low wavespeed region

Figure 3.5. Possible Problem areas when using the
Mesh Method of Characteristics
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In order to overcome such difficulties Vardy [1976] proposed a
method in which a variable mesh size is used. He concluded that in
certain circumstances, such as high Mach number flows, increased
accuracy and/or reduced computing costs could be obtained if At/Ax
8rid ratios in excess of those permitted by the Courant-Friedrichs-
Levy qriterion were used, provided that the flow parameters at the
base of the characteristic lines were still found by ;nterpolation

rather than extrapolation.

Another method of relaxing the stability criterion is by using an
inertial multiplier, «. This concept was introduced by Yow [1971].
By assuming that the inertial effect in a natural gas system is
insignificant, Yow Imultiplied the term (3u/3t) by a factor of «? which
increased the permissible time step by a factor of « The choice of
« is dependent on the severity of the transient being examined and
the accuracy required. Streeter and Wylie[1970] used this method in
conjunction V\fitil an implicit finite difference method in an attempt to
.reduce the computing time required to solve gas transients using the
method of characteristics. Streeter [1972] also included the inertial
multiplier in his discussion of numerical methods for transient flows.
In favour of this method, Wylie and Streeter [1978] illustrated that
with_a 5% error margin, the time step could be increased by a factor
of 6 for a rapid transient or by a factor of 40 for a slow transient.
However, when utilizing this method, the assumption that the inertial

effect of the system is insignificant, must be valid.

Further modifications to the method of characteristics are

continually being proposed. For example, Chabrillac [1976] assumed
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a linear variation in wavespeed between time steps in order to
simplify his model of a loss of coolant accident in a reactor and
Carver [1980] transformed the characteristic equations analytically
into an equivalent set in which time derivatives are explicitly defined

in order to avoid the necessity for iteration or matrix inversion.

In conclusioh, the mesh method of characteristics is a relatively
accurate method of solution which can be readily adapted to solve
the three dependent variables required for the analysis of
non-isothermal, transient gas flow. With this method discontinuities
can be handled and boundary conditions are properly posed. It is
simple to program on a computer, although the main disadvantage is
that it is a comparatively glow method when using a computer

because the time steps are restricted by a stability criterion.

3.3. EXPLICIT FINITE DIFFERENCE METHODS

There are many different explicit finite difference methods,
ranging from the singlé—step, first order schemes, such as the
method of Lax described by Forsythe and Wasow [1960] (page 85), to
the fourth order, four-step method of Abarbanel, Gottlieb and Turkel
[1975]. Second order accuracy is normally regarded as sufficient
for the analysis of gas transients. Niessner [1980] gives details of

higher order methods.

Explicit finite difference methods integrate the basic partial

differential equations by considering the changes in the dependent
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variables (P, u and T) along the directions of the independent
variables (x and t). This produces the solution values at evenly
spaced points in the physical plane. The finite difference grid is

shown in Figure 3.6.
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Figure 3.6. The Finite Difference Grid illustrating a two-step method

In order to solve the basic equations using an explicit finite
difference method, they must first be written in the "conservative"

form. This was defined by Lax and Wendrof [1960] as:-

@+ (® =c ‘ (3.13)

where A, B and C are functions of the dependent variables.
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For the case of transient gas flow in pipes, the three basic
conservation equations (equations 2.1, 2.2 and 2.3) may be written in

conservative form thus:-

3

a —
MASS i (e) + F (pu) = 0 (3.14)
MOMENTUM S (ow) + (ouz +P) = - ¥ _ ogsine (3.15)
3t Pu Ix u = A Pgs1in .
ENERGY e+ Byo14+2r (h+—u2)9uJ'9-9ug'6 3.16
FrA LI R B 5 = sine (3.16)

The simplest explicit finite difference method is the forward Euler
method. Applying this method to equation 3.13 (assuming that C is

equal to zero) produces the following approximation:-

At

Al 541) T A4, T 2 ) (3.17)

B(i+1,5) ~ Bi-1,9)

This method is unconditionally unstable (stability criteria will be
discussed later). To overcome this, a damping term must be added
to produce:~

At
Ere o+ %RA11+1.5)‘2A(i.j)*A(i-1.J)’

A4, 34171, 5 26 Bitl, ) Bli-1,4)
(3.18)

where 0 < w; ¢ 2 and is the natural frequency of the oscillations.
Equation (3.18) is known as the "Method of Lax" and is a single step,

first~order method.
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In general, a first-order approximation is not sufficiently
accurate for modelling gas transients in pipelines and so attention is
focused on the second-order methods. A single step second-order
finite difference method is the "Method of Lax-Wendroff" as defined

by Lax and Wendroff [1960] which can be written as:-

] At .
Ai,541) = A4,5) T 2axB(i41,3) T~ Bri-1,4)’

1,At.2,,3B 3B
+ _(._.) ((._.... + — )(B N =B.. . )
4 4% aA(i-{-l,j) aA(i’J.) (i+1,J) (i,J)

9B

= (3.19)
(1,9) °A(i-1,3)

3B
(34 YB3, 5)7 Bi-1,5)”

This method has the disadvantage that additional computing time
is required to ,evaluate dB/3A as well as B at each step. To avoid
“the necessity of this calculation there have been numerous two-step
methods developed. Probably the most well-known of these is the
"Lax-Wendroff two-step". This method was used by Bender [1979]
to simulate dynamic gas flows in networks and by Martin et al [1976]
to s'imulate pressure wave propagation in two-phase bubbly air-water
mixtures. Cheng and Bowyer [1978] used a generalised form of the
Lax-Wendroff two-step method to develop a transient compressible
flow code and Gorton [1978] applied the equations to transient steam
flow problems. Since it has been used in transient gas analysis, a
more detailed description of this method will be given. Taking
equation (3.13), the Lax-Wendroff two-step approximation may be

described as follows:-
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At

1
TEP: C L = ., A, . J~=C[B,. ., ..-B,. .
FIRST S A(1+>f,J+M) EEA(HI.J) A(l»J)] 28x EB(1+1.J) B(l:J)]
+ 8¢ £C,. ..] + O(&x2,At) (3.20)
2 (i+1,3) (i, ) ! '
SECOND STEP: A = A - At [B -B 1
' (1,J+41)° T(i,J) &ax " (i+%, j#¥8) ~(i-¥4, j+4)
.2 2
+B0C 5 1ys 5130y *C(1se, jasp)] + O18x2,8t3)  (3.21)
where 0O(Ax2?,At2) is the "truncation" or "rounding” error. On close

examination of these equations, it can be seen that in the first step,
the wvalues at all the points at time t = j+¥% can be found. These
values are then used in the second step to derive the values at time

t = j+1. This is illustrated in Figure 3.6.

The MacCormack method (MacCormack [1971]) is also a second

order two-st:.ep method:-

FIRST STEP A,. 2t ¢ J (3.22)

- A - 2t -
(1,51 ~ T(i,9) 2= “Briv1,5) " Bii, g

A =1fa ry - At = -5

SEOOND STEP Ay 511)= 3 (A3, 5)* At 50}~ 2881, +1)” Bie, jo1)?
(3.23)

Although this method is sometimes used for modelling unsteady
gas flow, it produces a slight overshoot at discontinuities and shocks

as does the Lax-Wendroff two-step method. This is clearly illustrated

by Sod [1978] in his comparison of several finite difference methods.
Another second-order method is the "leap-frog" method described

by Roache [1972]. This method involves three time levels within one

time step and the approximation for equation (3.13) (assuming that C
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is equal to zero) may be written:

At[

- A - =t - )
A1,541)° T(i,5-1) " A% CB(ier,y) "B (3.24)

(i-l..]')J

This method shows no amplitude error and requires only one
evaluation of the value for B at each node point. However, when C
of equation (3.13) is not equal to =zero, this method becomes
unconditionally unstable and to regain stability the calculations
become more complicated. Hence this method is not generally used

for calculating effects of rapid gas transients.

One of the major drawbacks of the explicit finite difference
methods mentioned is that, at best, they are only conditionally stable.
For most cases the stability criterion is the same as that defined for

the mesh method of characteristics, i.e.

At 1
ax Y |ul + ag
If the Courant number («) is defined as:
%= (lul +ag) 2=
then this stability criterion_ can be given by:

x< 1

One exception to this is the method of Lax (equation 3.18) in
which there appears a variable W such that 0 < w,;< 2. The stability

criterion for the method of Lax is:-

% /(F)
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Since the stability criterion restricts the size of the time step
which may be used, the explicit finite difference methods require a
large amount of computer time and are hence not suitable for the
analysis of large systems or for the evaluation of unsteady flows
over long periods of time. They are, however, easy to program and
need comparatively little computer memory space since they solve the
equations directly rather than simultaneously. Explicit finite
difference methods can also be used in systems in which a shock
forms. To overcome the considerable overshoot and numerical
oscillations set up by the shock when using a method of higher than
first-order, a smoothing parameter is used. However, extreme care is
necessary when using such numerical damping since it can tend to

smooth out the transient peaks.

Another disadvantage of this type of method of solution is its
inability to solve for the boundary conditions naturally., Considerable
work has been concentrated on this area, for example by Gary [1978],
Gottlieb and Turkel [1978] and more recently by Shokin and Kompaiets
[1987] who also give an extensive review of previous work in this
area,

In an attempt to overcome the drawbacks inherent in the explicit
finite difference methods, modifications are continuously being made
(for example Lakshminarayanan et al [1979]). With these modifications,
the economy of this type of method with regard to computer space,
and the ease with which it can be programmed make it an attractive

method of solution for use with microcomputers.
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3.4. IMPLICIT FINITE DIFFERENCE METHODS

The implicit finite difference methods have the advantage over
the explicit methods of being unconditionally stable. This implies
that the maximu.m practical time step is limited by the rate of change

of the variables imposed at the boundary conditions rather than by a

limitation required by a stability criterion. Some of the implicit

finite difference methods that have been used in the solution of fluid

transient problems are detailed below. The notat.ion used for each

method is that illustrated in Figure 3.7.
X

ﬁme

position

Property ¢ at point X is denoted by ¢.;.

Figure 3.7. An x-t grid for illustrating implicit
finite difference methods

(i) Fully Implicit Method

This method is a backward difference method (whereas the
explicit finite difference schemes are forward difference methods).
It has been used in the analysis of flood propagation in channel

Systems. For the general equation in conservative form:-

lm

(A) + %}z (B =C (3.13)

(.7

t
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the fully implicit finite difference approximation for the point (c,1)

may be written:-

A1 Ao . BasBos c (3.25)
At 28x T e e

The node points used in this approximation are shown in Figure

3.8(a).

{a) The Fully Implicit Method.

b1 cl d1
c0
{b) The Crank-Nicolson Method
b1 cl d1
b0 c0 do
(c) The Centred Difference Method '
ct d1
c0 do

(d) The Characteristic Finite Difference Method

b1 ¢l c1 d1
positive A ‘ l negative A
c0 c0

Figure 3.8. Grid points used in various Finite Difference Methods
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(ii) The Crank-Nicolson Method

Forsythe and Wasow [1960] reported that the implicit difference
methodls "seem to have been used for the first time by Crank and
Nicolson (1947)" What is now known as the Crank-Nicolson Method
is a central difference solution of high order accufacy. This solution
is, however, prone to oscillate about the true solution for sudden

changes in forcing function. The Crank-Nicolson approximation for

equation (3.13) at the point (c,i) may be written:-

Auheo BBt By B) (3.26)

yXs + 15% c1

Figure 3.8(b) gives the nodal plan for this method. Guy [1967]
and Heath and Blunt [1969] used the Crank-Nicolson method to solve
the conservation of mass and the conservation of momentum equations
for slow transients in isothermal gas flow. Both reseach teams
neglected the elevation term (egsin®) and the differential of kinetic

*~

energy with distance (3/3x(eu®)) in the momentum equation {equation

3.15).

The justification for these omissions is that the relative orders of
magnitude of the terms a/ax(puz): a/at(pu): BP/ax are approximately
0.01: 0.1:1 so it is reasonable to neglect the non-linear term

a/ax(Puz), and the elevation term is often considered to be

insignificant.

This method of solution was found to be much simpler than those
proposed by Wilkinson et al [1965]. It was easier to program,
computed much faster,and could be readily extended to pipeline

networks of any size.
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(iii) The Centred Difference Method

Wylie et al [1974] used the centred difference method to solve for
isothermal gas transients in a network. In this method the partial
derivatives are calculated for sections of the pipeline rather than
node points. For section c-d in Figure 3.7 the centred difference

approximation for equation (3.13) is:-

(Ag, =300 (A -AL,) . (By,"Boy )*(Byo=B o) € 1*+C6%C3;*Cy0
At Ax - 2

(3.27)

The node points used in this approximation are shown in Figure

3.8(c).

A developm'ent of this method incorporating upstream weighting
‘was used by Taylor [1978]. This weighted finite difference
approximation for equation (3.13) at points P as shown in Figure 3.9

is given by:-

8(A A +(1-Q)(A -8 ) 2(By,-B ) +{(1-9)(By,-B )
at ¥ Ax

= (1-0)(8C ,+ (1-8)C_ )+ 2(8C,,+(1-8)C ) (3.23)

where £ and $ are the weighting factors

0<g<1, 0<e<1
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§3Ax R
time
B> Ax P
ot 5 Ax R Ab
5 $,AL
4 At

0+ ' =
~ ax "
c . d

position

Figure 3.9, Weighted Finite Difference Approximations

(iv) Characteristic Finite Difference Method

The characteristic finite difference method was used by Banerjee
and Hancox [1978] and by Chaudhry [1978] to simulate transient
homogeneous two-phase flow. It is so called because instead of
approximating the conservative form of the basic equations (equation
3.13) it uses the characteristic form of the equations. The

characteristic form may be written:-

+aTR=p (3.29)

I 3%

mlm
ctic

where T is the transformation matrix defined in equation (3.2), u is
the column vector of the dependent wvariables, A is the diagonal
matrix of the characteristic directions and D is equal to -T d where
d is defined in equation (3.1). Hence the characteristic form of the

basic equations (2.4) to (2.6) is given by:-
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- |zl T3z
1
Gas 1 0 ;
-1
Gag 1 0
—
u = A= u 0 0
u H 0 utag 0
T 0 0 u-ag
1,8 4w ]
b= Cpp(—A )
_Bg_ T 3zy 48 #Wu, W__ .
PCpT(l + z(aT)P)( A ) A0 gsin®
-ag T3z, | 0 +Wu, W
OCPT“' + z(aT)P)( A ) 20 gsin®

The difference approximations at point (c,1) of Figure 3.7 for

equation (3.29) may be written:~

. u .~-u u .-
Fe1 ~co Fe1 b1

Teol—37 ) * Aco ICO(—Cfoi) Deo (3.30)
u .-u u.. ~u
¢t —co “d1 —c1

Teol2525) + Aco Teo(—=) = Doo (3.31)

Equation (3.30) is used for the positive characteristic directions
and equation (3.31) is used for the negative characteristic directions.

The ‘'relevant node points are shown in Figure 3.8(d).

Combining equations (3.30) and (3.31) gives the difference

equation:-

Moc Ups + Mcc Uct + Med Udr = Ne
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M.. = - D) (& (& - (I - 2D)A)T
=CcC <(l _)(At)cd + _(At)bc = ~/c/a2C

Mg = (I - DAL T

AZ

= (I - D0 + D80, ODc + (T - DED 4 + LD, I Teuco

For subsonic flow:~

{lov]
n
—

1 if flow is from left to right

-
n
¥
H
|}

0 if flow is from right to left.

The above definitions for M and N may be further complicated by
the inclusion of a weighting matrix. Details of such a system are
given in Banerjee and Hancox [1978] and Chaudhry [1978].

The four methods that have been described are the implicit finite
difference methods most commonly used for gas transient analysis
although there are others, such as the explicit-implicit methods used
by Padmanabhan et al [1978] to solve for pressure transients in

bubbly two-phase mixtures or the three time level implicit scheme

discussed by Osiadacz [1984].
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The major advantage of using an implicit finite difference method
is that such methods are unconditionally stable and hence impose no
restrictions on the maximum allowable time step. These methods do,
however, require the solution of a set of non-linear simultaneous
equaticns (usually by Newton-Raphson linearization) at each time
step. For a complicated gas network the matrix becomes quite large,
the computer storage requirements become very large and the
solution time can become excessive. These drawbacks have been
minimised though by the use of a sparse matrix procedure. Other
disadvantages of these methods of solution (Streeter [1971]) are that
they can yield unsatisfactory results for sharp transients and that
some implicit methods have been known to produce erratic results
during the imposition of some types of boundary condition.
Although implicit methods are suitable for the analysis of slow
transients on relatively large networks, the computer programs

based on these methods do not allow easy extension.

'3.5. SOLUTION OF A RIEMANN PROBLEM - RANDOM CHOICE AND

FLUX DIFFERENCE SPLITTING SCHEMES

In order to overcome some of the difficulties presented by the
finite difference methods when solving transient gas flow equations,

Chorin [1976] developed a method of solution originally introduced by

Glimm [1965].

The characteristic form of the basic equations (Equation 3.29)

may be written in a general form (assuming D = 0) as:
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Up = (£lu))y (3.32)
where subscripts x and t denote partial differentiation.

If the time t and space x are divided into intervals of length k
and h respectively, then the solution is to be evaluated at times
t =nk and t = (n + ¥)k and at points x = * ih and x = % (i + ¥)h
where n and i are integers. In order to do this the near constant

initial data is replaced by discontinuous data:-

u(x,0) = ul for x 3 0
At (3.33)
u(x,0) = u‘i‘ for x < 0 .

Equation (3.33) is the Riemann problem which is, by definition,
the interaction between two adjacent and initially uniform states.
Glimm [1965] introduced a random variable 8} equidistributed over the
interval (-%, %) with values 6{, and using this defined the solution of
the Riemann problem at the point (&h, k/2) to be V(e{h, k/2).  This

value was then allotted to 1.1"“'3é and by a similar process the
i

calculation could proceed to the next time step. The actual solution
of the Riemann problem is obtained using an adapted version of the

above developed by Godunov [1959].

The original aim of the random choice method was to be a
numerical method for solving non-linear hyperbolic systems where a
complex pattern of shock waves and slip planes exists (for example in
combustion engines). Hence, although it has the advantage of being

unconditionally stable, its complexity and execution time (2-3 times
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that of a standard finite difference scheme) make it unsuitable for
solving simpler situations with smoother solutions. Sod [1978] also
found that when applying this method to a simple shock tube
problem, the randomness of the method produced slight displacement
of shock and contact discontinuities and small deviations in the
rarefaction wave. However, since at best this method has only first

order accuracy, the solution at boundaries creates no difficulties.

A method known as the A formulation which alsc makes use of
Riemann invariants was introduced by Moretti [1979]. This method
has been successfully applied to multi-dimensional flow, obtaining
sufficient éccuracy with comparatively low computing time. The major
drawback with this method is that in most cases, shock waves need

to be treated explicitly to correctly evaluate their propagation.

One method that does capture the shock wave numerically is the
flux-vector splitting method proposed by Steger and Warming [1981].
This method is very diffusive when a first order technique is used
and when higher order techniques are employed, post-shock
oscillations develop (as described by Mulpuru [1983]). However, this
problem can be overcome by using a non-linear weighting procedure
developed by Zalesak [1979]. This produces a hybrid scheme which
can be extended to higher spatial dimensions through time splitting.
The disadvantage in this is the increased computing costs that are

incurred.
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A second method for numerically capturing shock waves is the
flux difference splitting method. This method has been developed
during the last decade from the pioneering work of Godunov [1959].

In principle the following procedure is used.

The difference in flux between two adjacent node points is split
into terms that will affect the flow evolution at points either side of
the section under investigation. The initial continuous data is
approximated by piecewise constant data which assumes that the flow
at each node point and over the cell extending for half a grid
interval either side of the node point is uniform. (Extensions to this
are the use of a piecewise linear approximation by van Leer [1979]
and the use of a piecewise parabolic approximation by Woodward and
Colella [1982]). A discontinuity generally separates two neighbouring
cells in the middle of the interval and the evolution in time of this
discontinuity provides the criteria for splitting the flux difference
over an interval into terms associated with waves that propagate up
or down the pipe. This criteria for flux splitting was used by Roe
{1} [1981], and by Osher and Soloman [1982], although other criteria

have been used, for example by Lombard et al [1982].

A good detailed description of this method of solution for the
basic equations with the source terms omitted is given by Roe and
Pike [1984]. Pandolfi [1984] extends the analysis to the set of

hyperbolic equations (previously defined) in the form:
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g_t. (A) + .g—x- (B) = C (3.13)

where, for the basic equations

A = Jp ]
Pu
u2
_(e+2—)9_]
B = Fpu ]
pu? + P
u2
(h+ 2o

W .
- — - )
A efgs1in

2 - pugsine

.as given in equations (3.14) to (3.16).

With reference to the elemental section shown in Figure 3.10,

Let Bi+1 - Bi = AiB

The term AB is the flux difference and the corresponding term
A{B.At/Ax can be interpreted as the contribution of the interval (xj4q
= xij) to the variation in time, from t, to t; of the vector A. In
general the waves will travel in both directions in the pipeline and
so it is necessary to split the term AB into parts that will affect the

points upstream or downstream of the interval under consideration.
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time

Ax > distance

i _ Xi+1

Figure 3.10. Elemental section for flux difference splitting

At time t, let there be uniform flow B; in the interval (X452 = x4)
and uniform flow Bj,1 in the interval (xj41 = Xju)- A discontinuity
(AiA and/or A;B) separates the two half intervals at the centre (xi434)
This is shown in Figure 3.11. The evolution in time of this

. discontinuity .is the solution of a Riemann problem.

flow}
Bi """ I
oo ]

|
i

B : ;
: | :
1] ' N
' X H -
xi ><i+ % Xi+1 distance

Figure 3.11. Discontinuity between two half sections
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Since for this problem there will be three waves corresponding
to the three characteristic directions (u+a, u, u-a) the difference of

flux through the initial discontinuity A;B is split into three terms:
&B = (AB); 4 + (4B)2 + (4B);

Roe {2}[1981] reported that the exact solution of this Riemann problem
is not essential to obtain good numerical results, which is fortunate
considering the large truncation errors that would be. incurred in the
iterative process required to obtain the exact solution. Instead, the
Riemann problem is solved approximately to save on computing time,
and it is the different ways of approximating that identify‘ the

different flux-splitting methods.

Although  very good results have been obtaineci from numerical
experimentation, these methods do have the basic disadvantagé that a
considerable amount of computer time is required to split the flux
difference. Furthermore, if a second-order method is used for the
integration the. computational time is again increased. Also it has
been noted that some inaccuracies can develop in cases such as the

interaction of shocks.

3.6. FINITE ELEMENT ANALYSIS

~ In the past finite element methods have not been widely used for
gas transients since the procedure is lengthy and tedious and hence

the computing time and storage requirements are high. However,
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they do offer some advantages over the finite difference methods in

that the element size, shape and distribution is relatively flexible so

that non-uniform internal distributions of nodal points is possible.

They can also handle some boundary conditions better than finite

difference. methods.

The steps involved in the standard finite element method of

solution are as follows:-

i)

i)

iii)

iv)

Subdivision of the pipeline into subregions or finite elements -

the size, shape and distribution must be decided.

Selection of the shape functions - the dependent variables may
be approximated by different shape functions in each element.
The shape functions are usually polynomials, the simplest of
which is the linear or chapeau representation. The higher
order polynomials yield more accurate solutions unless the

solution contains discontinuities in which case this does not

-always hold true.

Derivation of element behaviour - A relationship is obtained for
a typical element and from this the behaviour of all the

individual elements may be computed.

Application of the boundary conditions - The boundary conditions

are applied by modifying the overall algebraic equations.
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‘v) Solution of the overall equations - These equations, especially

when non-linear, are usually solved iteratively.

Rachford and Dupont [1974] used a Galerkin finite element method
based on Hermite Cubic polynomials to simulate isothermal transient
gas flow. The Galerkin method is a two-step method which reduces
the partial differential equations to ordinary differential equations.
Fincham and Goldwater [1979] examined the use of the Galerkin
method for simulating gas transmission networks and Morton and
Parrott [1980] explored the solution of first order hyperbolic
equations using generalised Galerkin methods. However, because this
type of solution takes a comparatively long time to execute, it is

generally unpopular for transient analyses.

Watt, Boldy and Hobbs [1980] investigated thé possibility of
marrying-up a finite difference procedure with a finite element
component for a system assuming negligible density wvariation. The
computation involved with this idea would be a serious deterrent for
expanding the system to three dependent variables. -

The finite element methods have been developed over the years.
For example, Van Goetham [1978] modelled unsteady compressible flow
problems using a variable domain finite element method. However,
the most promising development must be the moving finite element
method of Wathen and Baines [1983]. In this method a set of
ordinary differential equations is obtained by approximating the

initial data using a piecewise linear function on a number of nodes.
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These ordinary differential equations can then be scolved using a
simple explicit finite difference method. Spivack [1984] summarises
this method and illustrates its application to solving the unsteady
gas flow equations in the pipebreak problem. Further details of the
application of this method to compressible flow problems are given by

Baines [1986].

The only apparent drawbacks with this method of solution are
that care is needed in the treatment of boundary conditions and that

it is very complicated to program.

3.7. DISCUSSION

Each of tlpe numerical methods in this chapter has its own
advantages and disadvantages. The optimum method of solution for a
particular fluid transient analysis is determined mainly by the
accuracy and depth of detail that is required of the results and the
type of transient waves that are being modelled.

In general, higher degrees of accuracy can be achieved at the
expense of increased computational labour. Although the implicit
finite difference schemes are often more economical then the explicit
finite difference schemes or the method of characteristics, it is
widely accepted that more accurate results can be achieved with the
method of characteristics. When wusing the mesh method of
characteristics, errors can be introduced when the characteristics are

approximated to straight lines. These discretization errors can,
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however, be reduced by employing parabolic arcs in place of straight
lines to give a second order approximation. This does have the

drawback of increasing the computational run time still further.

As well as the run time, the available computer memory space is
an important factor when working on a microcomputer. The implicit
finite difference method is unsuitable for small computers since it
requires the solution of a set of non-linear simultaneous equations at
each time step. For a complicated network, the matrix therefore
becomes quite large and the computer storage requirements become
very large. However, the computer storage and time required can be

reduced by using sparse matrix algebra (Wylie et al [1974]).

The type 'of transient flow that will occur = whether it is
compression or rarefaction waves that are being created must be
considered. In the case of compression waves where shock waves
are being set up in the system, a method must be chosen that will
accurately represent the shock waves without smearing the details or
overshooting. The Lax-Wendroff two-step explicit finite difference
method is one of the most suitable for dealing with systems in which
& shock wave forms.‘ The natural method of characteristics is also
accurate but requires special procedures for shock calculations.
Alternatively, the mesh method of characteristics or an extension of
this method such as the flux difference splitting scheme presented
by Roe and Pike [1984] both recognise shocks and cause only small

overshoot. However, the finite difference methods tend to produce
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overshoot in the presence of shocks if methods of higher than first
order are used, and the discontinuities tend to get rounded off due

to numerical diffusion.

If the analysis is solely concerned with slow transients, such as
those caused by fluctuations in demand in a network, then
considerable savings can be made in computational time, and hence
cost, by utilizing an implicit finite difference scheme which does not
require a small time step for stability. However, with rapid
transients such as those caused by a linebreak or compressor failure,
a small time step is necessary and hence the Method of

Characteristics would often tend to be favoured.

Another important factor to consider is the number of type of
boundary‘ éonditions that will be imposed on the system. For
example, the explicit finite difference metheds cannot handle
boundary conditions naturally and so calculations for networks with
many branches becomes difficult. The mesh method of
characteristics does have the advantage that the boundary conditions

are properly posed whereas for most methods of solution care is

needed in the treatment of the boundary conditions.

Finally, the size of the system (i.e. the number of pipes) to be
analysed will influence the choice of method. Implicit finite
difference methods are more suited to the analysis of large systems
whereas the mesh method of characteristics and the explicit finite

difference approaches are comparatively slow and ‘SO are more
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appropriate for single pipelines rather than networks. However, for
an analysis on an expanding network, the implicit methods may not

be the optimum since they do not allow easy extension.

In this analysis of a ruptured gas pipeline, the system consists
of a single pipe with no possibility of shock waves forming. The
numerical method chosen must be capable of solving for three
dependent variables and a variable wavespeed. The major
requirement here, though, is for an accurate and reliable numerical
method in order that the theoretical model may be assessed. The

method of characteristics was selected as the most appropriate.

74



When a linebreak occurs in a high pressure pipeline, a pressure
drop occurs virtually instantaneously at the break and rarefaction
waves are transmitted up and down the pipeline. When the fluid in
the pipe is a gas, these rarefaction waves are rapidly dissipated.
For this reason, it was decided that in order to model these waves

properly, a reduced grid size was required in the vicinity of the

break.

A physical model was initially specified that reduced the grid
size by a factor of 10 near the break and by a further factor of 10
immediately either side of the break. However, it was found that
such a dr.amatic grid size reduction caused numerical instabilities in
the solution. A second model was therefore developed that reduced
the grid size near the break by a factor of 2 six times as shown in

Figure 4.1 This gradual grid size reduction minimised the

instabilities previously experienced.
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Figure 4.. Grid Size Variation for Modelling a Linebreak



4.2. GENERAL SOLUTION FOR INTERNAL POINTS

Since the pressure drop along a pipeline is due primarily to the
. frictional effects (gravitational effects being small), the friction term
(W) in the characteristic equations requires a second-order

approximation. The frictional force may be written in terms of P, T

and u:-

Differentiating this:

IECQN- " S
dW--ﬁ-DdP+aTdT+audu+ade

Neglecting changes in compressibility factor, this expression simplifies

to:

If state 1 is defined as the conditions at the base of the
characteristic being examined and state 2 as the predicted conditions
at the point in question, then an average value for W over the

interval from state 1 to state 2 may be calculated:

Wy + W2

G +
_-——2——
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P -Py uz-uy (T2 -Ty)
W1 {1 + 2P1 + uy - 2T1 }

This equation was substituted into the finite difference form of
the characteristic equations and the following set of equations was

prroduced.

Along dx/dt =

o (10T () e lelrm) - 25 - (B v

Along dx/dt = u + ag

(P2-Py) aght T (3z Q wat [Pz u T2
Pag +(“2'“1)'5€J[1+-E TBTFP]K"'—[_ u, 2T,

asAt T ,3z wua (P2 us _Ti_ . ] )
" eCyT [1 +z &P } A lzp, * ZTI] + g-Atsin® = 0

Along dx/dt = u - ag:

R e R B 2 G 3R

t T (3z) | Wu (P2 w2 T2 .
[1+—[§T}K— 513:+G: ﬁ:+gAt51ne-0

In these equations, At is the length of the time step and all

variables without a subscript refer to the value at state 1. .
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For simplicity, these equations were then written in matrix form:-

— - r - -

A1) A(2) A(3) P2 r*3(1)

A(4) A(5) A(e) Ta| = | B(2)

A7) A(8) A(9) up B(3)

S p— L. pa— . -
where:-

A(1)=[' I3 ] Atuw]

A = 1+ zéé:XT]

A<3)=['AQ

o+ [ R T ) e,

{asAth { 'r[ } WAt}

A5) = tzecrAT?

Mo = (- [+ 2 (30 - B,

aghtiu { T[ ]} WAL )

A7) = ['"‘L 26C,TAP

acAtWu

as) = [~ zocAT? ZZCPAT {1+1[F ]

WAt

Mo = (1 + o {1+ 25} + S
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B(1) = [— é {1 + g(g%]P} + T+ %}Q

Ba) = [~ oy + o~ aegr (1 S5} § - wraveine]

S

The wvalues at state 1 at the base of the characteristic were
found by linearly interpolating between the grid points. Hence by
solving these equations a first-order approximation was obtained for

the predicted pressure, temperature and flow velocity.

Since the required stability and accuracy could not be achieved
using this firsf.—order approximation, this solution was used as an
'initial estimate in a second-order procedure. Although the exact
procedure of this second-order model was dependent on the type of
grid point being examined, in principle, new values for the variables
at state 1 were found using quadratié interpolation. The coefficients
in the characteristic equations were then calculated using these
values. The coefficients were averaged with the previous state 1
coefficients and the results substituted back into the characteristic
equations. By this method new wvalues for the predicted pressure,

temperature and flow velocity were obtained.
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STANDARD INTERNAL POINT
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Figure 42 Different Internal Grid Point Configuratior;s
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4.3. SPECIFIC SOLUTIONS FOR VARIOUS GRID POINT CONFIGURATIONS

There were a number of different grid point configurations for
which the characteristic equations had to be solved. These

configurations are detailed in Figure 4.2.

4.3.1. Internal point with equi-distant adjacent grid points
(Fig.4.2(i})

FIRST ORDER APPROXIMATION:-

The positions of Q, R and S were defined thus:

2at/(1/u(i) + 1/u(i-1)) assuming u(i) or u(i-t) do not equal 0

pos@ =
posR = 2at/(1/(u(i) + ag(i)) + 1/(u(i-1) + ag(i-1)))
posS = 28t/(1/(ag(i) - u(i)) + 1/(ag(i+t) - u(i+1)))

where u(i) = velocity at time t at point i in the pipe

and ag(i) = isentropic wavespeed at time t at point i in the pipe.

The values of the variables P, T, u, z (32/3T)p, ¢, a5, & and W at

points Q, R and S were then calculated by linear interpolation:-
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Py = (posQ/&x) * P(i-t) + (1 - posQ/&x)- P(i)
PR = (posR/&x) - P(i-1) + (1 - posR/&8x)- P(i)
Pg = (posS/Ax) - P(i+t) + (1 - posS/Ax)- P(i)

where Pg = value of P at the base of the path line (point Q)

value of P at the base of the C* characteristic (point R)

Pr

Pg value of P at the base of the C~ characteristic (point S)

P(i) = value of pressure P at time t at point (i) in the pipe.

(Similarly for the other variables listed).

These values were then used in the general solution defined by
equation (4.1) and first-order approximations were obtained for P, T

and u at time (t + At) (i.e. at state 2).

SECOND ORDER PROCEDURE:-

Using the predicted values of the variables P, T, and u obtained
from the first-order approximations, predicted values for the
- variables z, (3z/3T)p, ©, ag, & and W were calculated for point P (at

time, t + At).

The new positions of points Q, R and S were then defined as:-
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posQ = 2At/(1/uQ + 1/u,(i)) assuming ug and u;(i) do not equal zero.
pPosR = 2At/(1/(uR + agp) + 1/(uyti) + agz(i)))
posS = 24t/(1/(agg - ug) + 1/(aga(i) = uali))

where uq = value of u at the base of the path line
up = value of u at the base of the C* characteristic
ug = value of u at the base of the C~ characteristic
agp = value of ag at the base of the C* characteristic
agg = value of ag at the base of the C™ characteristic

uy(i) = predicted value of u obtained from the first-order
approximation

ag2(i)= predicted value of ag obtained from the first-order
approximation '

Taylor’s theorem was then used to obtain a formula for quadratic
interpolation so that new values of P, T, u, 2, (32/3T)p, @, ag, & and
W could be calculated for points @, R and S (the bases of the
characteristics). Full derivation of the formulae for quadratic

interpolation is given in Appendix III

Pq = P(i) - 2259 fp(i+1) - P(i-1)}+ ig§§§12{9(1+1)+P<i-1)-2p(i)}

P = P(i) - BB [p(j4) - P(i-1)}+ 12%%5%3 {P(i+1)+P(i-1)—2P(i)}

Pg = P(i) + Eg%ﬁ {P(i+1) - P(i—:)}+ iEg%g%E {P(i+1)+P(i—1)-2P(i)}

(Similarly for the other variables listed).
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These values were then averaged with the predicted values
obtained from the first-order approximation and the results used as
coefficients in the difference form of the characteristic equations.
Since the second-order approximation for W used in the first-order
method was no longer required, the final values for substituting into

equation (4.1) were:

sw = ([0 + % Glbvel, + (0 + 3 Ve Jrecy
A@2) =1

A(3z) = 0

A(q) = [[1/9%]R + [Veag)p |72

"Ag) = 0 |

A@g) = 1

oy = [[te], ¢ [1ome)p )7
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A(S) -

A(g) =1

B(1) =A(1)PQ+ Tq+ CPA [[Q > wu] [Q;__Wu]P’]

B(2) =4A(4)Prt+uwR+ ﬁ&[“l * E[g% p} [99; ] 'as]R

+ ({1 BRI sl ] - (B, + ()] -eravoine

B(3) = A(7)'Ps + us - %fi?[[{l * g[g—iﬂp] S ‘as]s

o [l 28 ) a)p ] - 2B, ¢ (F), ] -s-sesine

Equation (4.1) was solved so that new predicted values for
Pressure, temperature and velocity were obtained for point P at time
t + At This second-order procedure was repeated, substituting in

these new values until the required accuracy had been achieved.

If at the internal points downstream of the break flow reversal
was occurring, the same method as outlined above would be used
except that different values for posQ and pg etc., would be
necessary. When the direction of flow is reversed in the pipeline the
rath characteristic is moved to the grid space containing the C—

characteristic as shown in Figure 4.3.
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J 1
i-1 R i a S s
Figure 4.3. Effect of Flow Reversal on the Characteristics.

Therefore in this situation, for the first order approximation:

posQ = 2at/(l/u(i) + l/u(i+1)) assuming neither u(i) nor

u(i+1) equal zero

_ PoS®Q . o _ PoS@, .prsv
P = B2 - P(i+1) + (1 - B2¥%)-p(1)

and for the second order approximation:

2
P = P(1) + B2 p(irn)-pi-0)} + Bylp(ive) + P(i-1)-2p(1)}
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4.3.2. Internal Boundary Point between two different grid sizes

Figures 4.2(ii) and (iv) illustrate this type of grid point
configuration. Examining firstly this point situated upstream of the

break:-

FIRST ORDER APPROXIMATION:

The positions of @, R and S were defined as for the standard

internal points. The values of the variables at Q, R and S were then

found by linear interpolation:

Pq = (pos@/24x)-P(i-1) + (1 - posQ/24x) -P(1)
PR = (posR/24x)-P(i-1) + (1 - posR/24x)-P(i)
Pg = (posS/&x)-P(i+t) + (1 - posS/&x)-P(i)

(Similarly for variables T, u, z, (3z/3T)p, ©, ag, @ and W).

These values were then used in the general solution defined by
equation (4.1) to obtain first order approximations for P, T and u at

time t + At.
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SECOND ORDER PROCEDURE:

The same method as that of the standard internal points was
followed and the new values for the positions for Q, R and S were
calculated. The formulae for quadratic interpolation for
non-equidistant adjacent points - derived using two separate Taylor's
expansions -~ were then used to calculate new wvalues of P, T, u, z,
(3z/3T)p, o, a5, & and W at points Q, R and S. These formulae are
given in equations (8), (9) and (10) of Appendix III. The new values
for the variables were then used in the second order iterative

method specified for standard internal points.

For this type of point situated downstream of the break, for the

first order approximation:

Pg = %}S{@ - P(i-1) + (1 - %Q)-P(i)

Pp= BB . pia) 4 (1 - BB p(y)

Pg = 12’2—i§ - P(i+1) + (1 - %s)'P(i)

and for the second order procedure equations (l1), (12) and (13) of
Appendix III were used. If flow reversal occurred then the variables

were defined by:
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Pq = % - P(i+1) + (1 -Pzz—ig)'P(i) etc.

in the first order approximation and equation (14) was used instead

of equation (1) in Appendix IIIL

4.3.3. Internal Boundary Point linking two different grid sizes

This type of boundary point configuration is shown in Figures
4.2(iii} and (v). Since it is apparent that two time levels were
necessary in order to predict values at a third level a more detailed

diagram is given in Figure 4.4,

20x P Ax Ax
time
At
2At
At
iq R e« i1 i+2
position

Figure 4.4, Grid point linking two different grid sizes

In the first order approximation the positions of Q, R and S were

defined as:
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posQ = 4at/(l/u(i-1) + l/ux) assuming neither u(i-1) nor ux equal 0
posR = 4at/{1l/(u(i-1) + agli-1)) + /(ug + agx))
posS = 2At/(1/(ag(i+t) - u(i+1)) + 1/(agy - uy))

where subscripts X and Y denoted the values of the variable at

positions X and Y.

The wvalues of the variables at points Q, R and S were then

determined using linear interpolation. For example:

Pq= B2 . p(i-1) + (1 - B259).py
Pp =22 . p(i-1) + (1 - B2SBy.py

Ps = 255 . p(i+1) + (1 - B5).py

’ - Ax

These values were used in a modified form of the general
solution given by equation (4.1)) The modification to this equation
was to replace At with 24t in the expressions for A(1), A(2), A(3),

A(4), A(5), A(6), B(1) and B(2).
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In the second order procedure the positions of Q, R and S were

defined thus:

posQ = 4At/(1/uQ + 1/u,(i)) assuming neither ug nor up(i) equal 0
posR = 4at/(L/(up + agp) + 1/(up(i) + aga(i)))
posS = 2At/(1/(agg = ug) + 1/(aga(i) - uz(i)))

and the new values for the variables P, T, u, z, (32/3T)p, o, ag, O

and W were calculated using the following equations:

- — 2
Pq = P(i-1) + {280RosOMp, p(;_p))y (2ACROSAp 4p(i-2)- 2p(i-1))
— 2
PR = P(i-1) + ZEXROSRMpy p(; o)}, (20XposR)- oy 4p(i-2)- 2p(i-1))
Pg = P(i+1) + LRSS [p(y0). p Ly (2x°p9sS)” [p(1+2)spy-2p(i+1))

(These are equivalent to equations (15), (16), and (17) of Appendix
ITI),



The second order procedure was again continued as outlined in

Section 4.3.1.

For this type of point, positioned downstream of the break, the
positions of Q, R and S for the first order approximation were

‘defined by:

posQ = 2at/(l/u(i-1) + 1/uy) assuming neither u(i-1) nor uy
are equal to 0

posR = 2at/(1/(u(i-1) + ag(i-1)) + 1/(uy + agy))

posS = 4at/(1/(ag(i+1) - u(i+1)) + 1/(agx - ux))

where subscripts X and Y denoted the value of the variable at the
time levels X and Y shown in Figure 4.4; the values of the variables

at Q, R and S were:

Po = B30 . p(i-1) + (1 - B28).py

Pp = BR . p(i1) + (1 - BBy py

P < 5 - bt + (1 - BS) g
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The modification to the general solution in this instance was to
replace At by 2At in the expressions for A(7), A(8), A(9) and B(3) of

equation (4.1).

For the second order procedure, equations (18), (19) and (20) of
Appendix III defined the variables at points Q, R and S with equation
(21) of the same appendix being used in place of equation (18) if flow

reversal occurred.

4.4. UPSTREAM BOUNDARY CONDITION

The only characteristic available at the wupstream pipe end
boundary condition was the C~ characteristic since it was assumed
that the flow would always be in the positive direction in the section
of pipe upstream of the break. Therefore two additional assumptions
were required at the boundary in order to evaluate the three
variables pressure, velocity and temperature. The two assumptions

used in this analysis were constant pressure and constant mass flow

—— - e

rmvmer e

SRR o —

'vacceptabrle. f‘or thls model since the upstrealii andy .downstream

el ol

bound.ar' es would hav

EPPUPR T T

PSS UNENRE T ACE T

pipe’ Being examined)

P N el an L -

Initially a first order approximation for the C~ characteristic was
performed and the results from this were then used as initial values
in the second order process (as with the previously described grid

points).

The position of point S at the base of the C~ characteristic was

calculated as before and a formula for quadratic interpolation was
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derived using a Taylor expansion about the point i = 2, New values
could then be calculated for the variables P, u, T, 2z, (82/3T)p, @, ag,

@ and W at the point S. For example:

Pg = P((2) - (&x - posS))

p(2) - {&B0sS) p(s) _ (1)) + (2088) p(5) 1p(1)2p(2))

Using these values a second order approximation for the C™
equation was calculated and by implementing the assumptions of
constant pressure and mass flow rate, the wvalues for P, u and T

were deduced for the next time level.
4.5. DOWNSTREAM BOUNDARY CONDITION

‘At the .downstream end of the pipe it was decided for
convenience to simulate a non-return valve to pvrevent flow reversal
occurring in any pipes adjoining the test section that was being
modelled. It was also assumed that this boundary was at constant
temperature. with this additional assumption it was possible to

calculate values for the variables P, u and T at a new time level.

As before, the initial values for a second-order procedure were
calculated from a first-order approximation for the C* and path
characteristics. The second-order approximation was then performed,

using a Taylor expansion about the point adjacent to the boundary,
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to calculate values for the variables at points Q@ and R (shown in

Figure 4.5).

c+
At

path

M-2 M-1 R a M

Ax -

Figure 4.5. Downstream Boundary Condition

4.6. BREAK BOUNDARY CONDITION

An approximation to the situation of a linebreak occurring in a
pipe is the sudden rupturing of a shock tube diaphragm separating
- two areas of different pressure. The main difference between these
two situations is that in a gas pipeline there would be an initial fldw
velocity whereas the flow is initially stationary in the shock tube
model. However, when considering high pressure pipelines, the effect
gf,the initial flow velocity can be assumed to be negligible for the

purpose of modelling the linebreak.
Kobes [1910] and Aschenbrenner ([1937] examined the effect of

suddenly removing a slide separating regions of high and low

pressure in a pipe. They envisaged that the pressure at the
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junction between the two regions would immediately change to a new
value which was termed the 'equalizé.tion pressure’, Compression
and rarefaction waves would propagate into thé low and high
pressure regions respectively, and the gas in the high pressure area
would start to flow into the low pressure zone. A value for the
equalizatio.n pressure may be determined by equating the particle

velocities associated with the compression and rarefaction waves,

The particle velocity of a rarefaction wave, assuming isentropic

conditions, {(as derived by Earnshaw [1860]) is given by:

Y-1

BT )

=
"

where P, = pressure in the high pressure zone prior to rupture

yP,
ay = isentropic wavespeed prior to rupture {= _p_o}
: (o]

A full derivatfion of this equation is given in Appendix IV.

The particle velocity of a steep-fronted compression wave (as

derived by Bannister and Mucklow [1948] is expressed as:

e () - 1)

u - .
/o & o)

(4.3)

where PpT = pressure in the low pressure zone prior to rupture
apT = isentropic wavespeed in the low pressure zone prior to

YP
rupture [=/ ﬁ
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At the junction between the two different pressure regions, the
particle velocity of the rarefaction wave would be equal to that of

the compression wave.

Therefore:
u=u’
P = P P
=10 {1 - 5] 7} e {[55) - 1} 7 7 B {ow0 55+ 00}

(4-4)

Provided that the initial pressures and wavespeeds in both
pressure zones were known, together with the ratios of specific

heats, the equalization pressure, Pay can be found iteratively.

Bakhtar [1956] simplified equation (4.4) by assuming that for
‘moderate’ pressure ratios the particle velocity of a steep-fronted

wave 1is approximately the same as that for a non-steep wave.

Therefore: :
. ] vt ] yer
e (B 7 )i - (7 ) wo
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If the ratio of specific heats is the same either side of the
diaphragm and if the temperatures are the same in each pressure
region, equation (4.5) could be further simplified to:

2y
y=-1i

2y 2Y
PaT

Pe:[%[ 17-1+ lu
Py

However, in the case of a linebreak in a high pressure gas
pipeline, the ratios of specific heats and the temperatures would not
be equal in the high and low pressure regions (i.e. inside and
outside the pipe). Furthermore, an iterative method would be
required to calculate the value of the equalization pressure, and
hence there is little advantage in using the simplified equation (4.5).
Therefore this analysis defined the equalization pressure using

equation (4.4).

It was first necessary to test whether choked flow would occur
at the break. The critical value for the equalization pressure may be

defined as:

2y .

y-1

. Pt = [7 E 1] " Fo (4.6)

where P, is the pressure in the pipe at the break point prior to
rupture

and Y is the ratio of specific heats of the gas in the pipe.
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If the equalization pressure defined by equation (4.4) is less
than or equal to the critical value defined by equation (4.6), then
choking would occur at the break. In order to test for this
condition, the critical wvalue for the equalization pressure was
substituted into both sides of equation (4.4). If it was found that
the left-hand side of the equation was less than or equal to the
right-hand side, then choked flow would occur. In this case the
pressure at the break point at the instant of rupture would
theoretically immediately fall to the critical equalization pressure as

defined by equation (4.6).

If, however, the left-hand side of equation (4.4) was found to be
greater than the right, then the equalization pressure would be

found by an iterative process of the following form:

1. Using the Yalue of the critical equalization pressure, the
left-hand, side of equation (4.4) is determined.

2. By re-arranging the right-hand side of equation (4.4) and by
assuming that the pipe is surrounded by air (¥ = 1..4), the

following expression is obtained:

Pe 12 (LHS)2 |, (Pe (LHS)2, _
Blpg) -0 azgmOf] e @ -T gD 0 ()

~

where (LHS) is the value obtained from the left-hand side of
equation (4.4).
3. By solving the quadratic of equation (4.7) a new value for the

equalization pressure is found.
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4. This value for the equalization pressure is then substituted into
the left-hand side of equation (4.4) in order to obtain a new

value for (LHS).

Steps 3 and 4 were repeated until the required accuracy for the

equalization pressure was obtained.

In this case when rupture occurs, the pressure at the break
point will fall to this equlization pressure and then remain at that
value. Realistically, however, the drop in pressure to either the
critical or the iterative value for the equalization pressure cannot
happen instantaneously, since such a pressure drop must occur over
a finite period of time. Also, in the numerical model such a
discontinuity in the pressure would cause severe instabilities.
Therefore the pressure drop was modelled over a number of time
steps. It was realized that a linear pressure drop would be an
inaccurate model since this would create a discontinuity in the
‘pressure gradient. This can be seen in Figure 4.6. Therefore

various polynomial expressions were examined. These took the form

of:
j) = E S -
where P, = pressure prior to rupture

Peq = equalization pressure

J = number of small time steps after break has occurred

m = number of large time steps in the x-t grid over
which the pressure drop is being modelled
n = index (an even integer) determining the severity

of the pressure drop (as shown in Figure 4.6).
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Discontinuity for n=1
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_8‘0

20m &0

Figure 4.6. Pressure Drop at the Break

With the pressure being determined in this manner, the flow
velocity and temperature could both then be calculated using the

methed of characteristics {as for the upstream and downstream

boundary conditions).
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CHAPTER 5

COMPUTER MODEL

5.1. INTRODUCTION

For a number of years there have been computer programs
available for modelling certain transient gas flow situations, such as
isothermal network analysis (Guy (1967], Heath and Blunt [1969],
Bender [1979], Goldfinch [1984]), and loss of coolant accidents (Elliott
[1968], Moore and Rettig [1973], Brittain and Fayers [1976], Banerjee
- and Hancox ([1978]). Programs which can account for frictional and.
heat transfer effects have also been developed for modelliné rapid
transients (Van Deen ‘;s.nd Reintsema [1983], Issa [1970]). However in
order to solve the characteristic equations using the numerical
method detailed in the previous chapter, allowing for the possibility
of flow reversal downstream of a break as well as handling grid size
reduction in the vicinity of the break, a new program has been

developed.

This program performs é transient analysis on a given shock
tube or single pipe, producing numerical output for the pressure,
flow velocity and temperature at each time step. A second program
then converts the required section of this numerical output into

graphical form.

Both programs were written in FORTRAN 77 for use on a Gould

PN 9005 mainframe computer.
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5.2. TRANSIENT ANALYSIS PROGRAM

After prompting for the required input data, the program
constructs the grid shown in Figure 4.1, pertaining to the pipe being
examined. An isothermal steady flow analysis is then conducted along
the length of the pipe to obtain initial values at each of the grid -
points. From these initial values an analysis using the method of
characteristics is performed modelling the situation prior to linebreak
or diaphragm rupture. This produces more accurate initial data
from which the events following the pipe break are modelled using
the transient analysis. The results are printed out after each major

time step and a results data file created for use with the grap-hics

program.

5.2.1. Main Program

The main program initially prompts for the gas and system data
detailed on the data sheet (Figure S5.1). From the values for the
pipe lengths and the required grid size near the break, the program
forms the grid. It then calls up subroutines STEAD1 and STEAD2 to
perform isothermal steady flow analyses on the pipes upstream and
downstream of the position of the break. This produces initial values

of pressure, temperature and flow velocity at every grid point.

The maximum time step that would not exceed the stability

criterion is then calculated so that the required time step and run

time may be entered.

104



Gas Data
Specific heat o (kJ/kg K)
Gas Constant R (kJ/kg K)
Critical Temperature Te ey
Critical Pressure Pe (kPa)
Pice Data |
Diameter of Pipe (m}
Angle of Inclined Pipe (degrees)
Length of Pipe upstream of break point (m)

Length of Pipe downstream of break point (m)
Required Grid Size near the break (m}
Darcy friction factor

Stanton Number

Wall Temperature ("¢}
Atmospheric Temperature ('C)
Atmospheric Pressure (kPa)
Initial Temperature along Pipe {'C)
Initial Pressure at upstream end of Pipe (kPa)
Mass flow rate through Pipe kg/s)
Run Data -

, Length of time step required {msec)

Total Run Time required (secs)

{Break details: Indexn =

No.of steps x = )

Figure 5.L Data Preparation Sheet

105

T




From the pressure, temperature and flow velocity values at each
point, the program calculates the density of the gas, the
compressibility factor and its partial derivatives with respect to
temperature and pressure, the frictional force and heat transfer and
the isentropic and isothermal wavespeeds. It then calls up
subroutines SUB1 to SUB6 and BREAK1 and BREAK2 to calculate new
values of pressure, temperature and flow velocity at the grid points
marked (1) in Figure 5.2. The program can then calculate the
density of the gas, etc., for these points and by calling up the
subroutines again will produce new values of pressure, temperature
and flow velocity for the grid points marked (2) in Figure 5.2. This
procedure is repeated until the 64 small time steps at the break have
been completed. Subroutines SUBUP and DOWN1 then calculate the
new values of pressure, temperature and flow velocity at the
upstream and. downstream pipe boundaries respectively, thus
_producing steady flow values at each of the grid points which have
been calculated by the method of characteristics. The program then

" prints out these initial values at the specified grid points.

' A by & A b, A
3 3 3 3 ___3 3 3 3

XX

5

2 A ___2 2 2 2|

1 1 1 )| | 1 1 -1 ot
M1-66 M1-65 M1-64 ~ M1
M1-3 M2 M1-1
i values

Figure 5.2. Marching Process of Calculation
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At this point the program initiates the pipebreak. Having
calculated the equalization pressure at the break from Earnshaw’s
theory and determined the number of time steps over which the
pressure drop at the break occurs, the program calculates a new
value for the pressure at the break point one time step after the
rupture occurs. Subroutine BREAK3 is called up to calculate the
temperature and flow velocity at the break point in the upstream
section of pipe. Subroutine BREAK4 then calculates the temperature
and velocity at the break in the downstream section of pipe. The
new values of pressure, temperature and flow velocity at each of the
internal points are calculated using subroutines SUB1 to SUB6 and

the values at the pipe ends using SUBUP and DOWNl as before.

The main program continues looping, printing out results after
each major time step (equal to 64 time steps at the break), until the
‘run time is reached. A full listing of the main program is given in

Appendix V.

5.2.2. Subroutines STEAD1 and STEAD2

STEAD1 and STEAD2 calculate values of pressure, temperature
and flow velocity at each point in the pipe (both upstream and
downstream of the break point) assuming a steady isothermal flow.
The equations used by these subroutines were derived from the

linear momentum equation for steady one-dimensional flow:-

LF=m (up - u)
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Applying this to the section of pipe shown in Figure 5.3:-

Affﬁve
Direction

PASXY

Figure 5.3. Linear Momentum Equation for
Steady One-Dimensional Pipe Flow

(P; - P2)A - WSx - PASxgsin® = m (u; - u,)

Dividing thfough by A and re-arranging:-

: . 2g
P1 - P2 +-1%-(u1 - uZ) - E'f—gég)s bd SXQgSlne =0 (5-1)

But, from the equation of state assuming constant temperature

and compressibility factor,

P, = o, RIZ

-’“—ARTZ whei-e m = mass flow rate
uz

Substituting this into equation (5.1):-

_m_ . - _ fmSx fuituz
{ps uz rrz} * B (u = uz) - Tog (=2
91+n'1/u2 R



This may be re-written producing a quadratic equation in u,.

fmSx . 2 fmSx 01 . .
===+ mf us + {=——=— u; + 5~ Sxgsiné - P; - muy fu,
[ 4d A} { 4d 2 vy }

+ {%’5 gsine + mRTZ] =0

The subroutines STEAD1 and STEADZ2 solve this quadratic and can
then deduce the density and pressure at the next grid point (i.e. €5
and P,). By repeating this procedure, values can be calculated for
each of the grid points shown in Figure 4.1 given the initial
temperature of the gas, the pressure at the upstream end of the pipe
and the mass flow rate. Flow diagrams of these subroutines are
shown in Figure 5.4 and the subroutine listings are given in

Appendix V.

5.2.3. Subroutines SUB1 to SUB6

Using the method of characteristics, these subroutines predict
the values of pressure, temperature and flow velocity at the next
time step for all the internal points. Six routings are required due
to the different possible grid point configurations (Figure 4.2).and
the possibility of flow reversal. Table 5.1 details the points for

which each of these subroutines calculates new values.

The calculation procedures used by subroutines SUB1 to SUB6
are virtually identical differing only in the positioning of the base
points of the characteristics (points @, R and S). Subroutines SUBI1,

SUB2 and SUB5 operating on the section of pipe upstream from the
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break follow the general procedure detailed in the flow diagram in
Figure 5.5(a). For points downstreahx from the break, SUB3, SUB4
and SUBS are used which determine the direction of flow prior to the
numerical calculations detailed in Chapter 4. This is shown in the

flow diagram in Figure 5.5(b).

Subroutine Grid Point on which Subroutine Operates

SUB1 Normal internal points upstream of the break
(Figure 4.2(i))

sSUB2 Internal boundary points between different
grid sizes upstream of the break
(Figure 4.2(ii))

SUB3 Internal boundary points between different
grid sizes downstream of the break
(Figure 4.2(iv))

SUB4 Normal internal points downstream of the break

SUBS Internal boundary points linking different
grid sizes upstream of the break
(Figure 4.2(iii))

SUB6 Internal boundary points linking different
grid sizes downstream of the break
(Figure 4.2(v)).

Table 5.1. Subroutines SUB1 to SUB6

5.2.4. Subroutines BREAK1 to BREAK4

These subroutines all calculate values of pressure, temperature
and flow velocity at the position of the break. BREAK1l and BREAK2
are used to model the situation prior to rupture, and after rupture
BREAK3 and BREAK4 model the situation immediately upstream and
downstream of the break respectively. Examining each routine

separately:-
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ENTER SUBROUTINE

y
at time t from

Transfer variables
main program

V
Define positions of points Q, R and

S and calculate variables p, t, u,
z, zt, ro, as, ht and v at Q, R and

Y

+ - d
Simultaneously solve the C*, C™ &n
ath equations to cbtain values for

gpl(i), uul(i) and tti(1)
v
Save these first-order values for
FP1(1), uul(i) and ££1(1)

Y

~N

Calculate zz1(1), zzpl(i), zztl(1),
rrol(i), aasl(i), hhtl(1) and
wwl(1)

\'

1 Define new positiocns of points Q, R
and S and calculate variables p, t,
u, z, zt, ro, as, ht and v 8t 3, R

and §

N

Simultaneously solve the C*, C~ and
path equations to obtain new values
for ppl(1), uul(1) and ttl(1)

.Y

Compare the new values for ppl(i)
and ttl(1) with previously obtained
values

=18 the difference between the ne
and previously calculated values

s the iterative process converging?
s than 1%?

!Print a8 warning meésage

N

N

Pass the new values for pl(1)
ttl(1) and wul(i o p
N (1) back to the main

IXIT FROM SUBRCUTINE;
ETURN TO MaIN PROGRAM

Figure 5.5(a). Flow Diagram for SUB1, SUB2 and SUB5
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L 4

Transfer variasbles at time t from
main program

Define positions of points R and §
and calculate variables n, t, u, 2,
zt, ro, as, ht and w at R and §

Y

LCheck for flow reversal |}

Y

Define position of point Q end
calculate variables p, t, u, 2z, 2t,
ro, 8s, ht and w:at Q

Y

Simultaneously solve the C¥, C~ and
path equations to obtaln vaiues_for
pp2(1), un2(i) and tt2(1)

Y

Save these first-order values for
pp2(1), uu2(1) and tt2(1)

N

Y

y
te z22(1), 2zp2(1), z2£2(1),
O ) ®aas2(1) ) hht2(1) end we2(1)

Y

Define new positions of points R and
S and calculate variables p, t, U,
z, zt, ro, as, ht and w at R and S

lrcheck for flow reversal ]

y

4
Define new position for point Q an
calculate variables g, t, uy 2, zt,
ro, as, ht and v at

Y

Simultaneously solve the CT, C~ and
path equations to obtain new values
for pp2(1), uu2(i) and tt2(1)

wl
Compare the new values for pp2(i)
ang tt2(1) with previously obtained
values

S the difference between the nev
and previously calculated valnes
less than 1%?

Is the iterative process converging?

' no

[Print a warning message 1

\

Pass the new values for pp2(1),
uu2(1) and tt2(1) back to the main
program

!

EXIT FROM SUBROUTINE;
RETURN TO MAIN PROGRAM

Figure 5.5(b). Flow Diagram for SUB3, SUB4 and SUB6
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BREAK1
BREAK1 performs a method of characteristics analysis identical to

that used for a normal internal point, using the last two points,

i=my - 1and i=my in pipe 1 (upstream of the break), and the
first two points, i = l'and i = 2 in pipe 2 (downstream of the break).
Obviously, prior to rupture the points i = m; in pipe 1 and i =1 in

pipe 2 coincide. The method of characteristics calculations are

therefore carried out on the section of grid shown in Figure 5.6.

Position
of Break
PIPE 2
CAt PIPE1 \ E
0y -
; path
M1-2 | ' M1-1 M11 2 3
i values
Fig;xrei 5.6. Break Point Prior to Rupture.
BREAK2

This subroutine simply defines the wvalues at i = 1 in pipe 2 as
being equal to the values calculated for i = my in pipe 1 by

subroutine BREAKI.
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BREAK3

BREAK3 calculates the new values at the grid point _i = my in
pipe 1 after a rupture has occurred. Referring to Figure 5.7, if the
pressure at point i = m; at time t + At has been defined by the main
program, the flow velocity and temperature may be calculated using
the C* and path characteristics. Since the ﬂow in pipe 1 will always

be in the positive x-direction, there will always be a path line in this

grid section.

Fopt PIPE 1 PIPE 2
\\‘
Y = |\ c
bl \
o 1
f path @ | path
M1-2 M1-1 M1 1 2 3
i'values
positive x direction
Figure 5.7. Break Point after Rupture.
BREAK4

BREAK4 initially ascertains whether flow reversal is occurring at
point i = 1 in pipe 2. If the velocity at i = 1 at time t is less than
zero then a path line is present as shown in Figure 5.7. Since the
pressure at i = 1 has been defined by the main program, the solution
of the C” and path characteristics would determine the flow velocity

and temperature at time t + At. If, however, the flow at i = 1 at
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time t is greater than zero, only the C~ characteristic is present. A
further assumption is therefore necessary and in this case it was
assumed that the temperature at the point i = 1 in pipe 2 is equal to
that at point i = my; in pipe 1. The justification for this is that
since flow reversal would rapidly occur immediately downstream of a
linebreak in a high pressure pipe, there would be insufficient time
for the temperature prior to flow reversal to differ significantly from
the temperature at the upstreamr side of the break. The subroutine
can then solve the C~ characteristic using this value for the
predicted temperature and hence obtain a wvalue for the flow velocity

at time t + At.

Flow diagrams for BREAK1, BREAK3 and BREAK4 are given in
Figures 5.8(a), (b) and (c) respectively. The listings of each of

these subroutines are in Appendix V.
5.2.5. Subroutines SUBUP and DOWN1

These two subroutines calculate the new wvalues of pressure,
temperature and flow velocity at the pipe ends (away from the
break), At the end of pipe 1 (upstream from the break) there will
only be the C~ characteristic and at the end of pipe 2 there is, at
the most, only the C* and path characteristics. Therefore at both
pripe ends certain assumptions are necessary in order to predict the
flow conditions at time t + At. SUBUP models the upstream boundary

in pipe 1 assuming a constant pressure and a constant mass flow
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FNTER SUBROUTINE
transfer varistles at time t from )
main program

L
)
Define positions of points Q, R and
S (ensuring a continuous pipe) and

calculate variables p, t, u, 2z, zt,
ro, as, ht and v 8t Q, R and S

Y

Simultaneously solve the path, C*
and C~ equation using subroutine
DMINV to obtain values for ppl(ml),
ttl(ml) and wul(ml)

Y

Save the first-order values for
ppl(ml), ttl(ml) and uul(ml)

A

Calculate zz1(ml), zzpl(ml)
z2t1(ml), rrol(wl), sasi(mi},
hht1(ml) and wwi(ml)

\

Define new pcsitions of points ¢, R
and S and calculate variables p, t,
u, z, zt, ro, 8s, ht and v at 3, R

and S

Using DMINV calculate new values for
pol(ml), ttl(ml) and wwl(ml) from
the path, C* and C~ equations

\

Compare new values with previously
calculated values for ppl(ml),
ttl(ml) and wwl(ml)

‘ yes
Is the iterative process converging? > g:dtg:eeigggi;ngzlzaizgzg 52;u2:'
: ' - ess than 1%?
Pass the first-order values for P
pol(ml), ttl(ml) and wwl(zl) back te1( the new values for ppl(ml),
to the rain orogram with a warning ml) and wwl(ml) back to the
message méin program

Y

J S

<~
EXIT FROM SUBROUTINE;
RETURN TO MAIN PROGRAM

Figure 5.8(a) Flow Diagram for BREAK]
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[mrTeR suBrCUTINE |
\ 4

| Transfer variables at time t from
main oprogrem

Y

Define positions of voints Q and R
end calculate variables p, t, u, z,
zt, ro, as, ht and w at Q and R

4

Knowing ppl(ml) from the Tein
program. calculate ttl(ml) and
unl?ml) by sirultaneously solving
the C* and path equations

Y

Save the first order values for

ttl(ml) and vul(ml)

AN

Calculate zz1(ml), zzpl(ml)
zzt1l(ml), rrol(mlf, aasl(mli,
hhtl(ml) and wwl(ml)

4

Define new positions of points 3 and
R and calculate variables p, t, u,
z, zt, ro, as, ht and v at Q and R

y

Calculate new values for ttl(ml) from
the path equation and uul(ml) from
the C*+ equation

Y

Compare new values for ttl(ml) and
uul(ml) with previously calculated
values

:Is the iéerative process converging?

yes

Pass the first-order values for
tt1(ml) and uul(ml) back to the
main program with a varning message

v

Is the difference between the new
and previously calculated values
ess than 1%?

Pass the new values for ttl(ml) and
uul(ml) back to the main program

¥

<Y

EXIT FROM SUBROUTINE;
RETURN TO MAIN PROGRAaM

, Figure 5.8(b)

~n

Flow Diagram for BREAK3
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[evTER susrouTINZ |

Transfer variables at time t from .

main program )
{ Figure 5.8(c) Flow Diagram for BREAK4

Define positicn of point S and
calculate variables o, t, u, z, 2zt,
ro, as, ht and w at S

yQS ,-"/\-l yes
r Is u2(1) > o? .

no ¥ no
Define position of point Q and Define pq = p2(1), tq = t2(1),
calculate variables p, t, u, z, zt, 2q —_zZ(l)i 2tq = 2t2(1),. _
ro, as, ht snd w at Q roq = ro2( ), asq = as2(1l), ug = 0,
wq = 0 and htq = 0 Y
< I
Calculate coefficients in the path
equation
¥ <
Calculate coefficients in the C~
equation
. yes
Is u2(1) 2> 0? z >
Y no ,
Simultaneously solve the path and C™ - :
equations to Tbtain values for Using tt2(1) = ttl(ml), calculate
au2(1) and tt2(1) uu2(l) from the C equation
2 ]
] Y -
Save the first-order values for
tt2(1l) and uu2(l)
Z.
Y -
Calculate 2z2(1), zzp2(1), zzt2(1),
rro2(l), aas2(l),.-hht2(1), and
ww2(1l)
¥

Define new position of point S and
calculate variables p, t, u, 2z, 2%, °
ro, as, ht and w at §

Yes AYGS

> s u2(1) > 0? >
' no
Define 'new position of point +} and Define pq = p2(l), tq = t2(1),
| calculate variables p, t, u, z, zt, 2q = z2(1), ztq = 2t2(1), roq = ro2(1
= ro, as, ht and w at Q : asq = as2(l), uq = 0, htq = 0 and
wq = 0 \\]
\ 4 b i
Calculate new value for tt2(l) from
the path equation
¥ <

Calculate new value for uu2(l) from
the C° equation
Y | :

Compare new values with previously
calculated values for uu2(l) and
tt2(1)

es \
ho sterative srocess converglngZh—sl " [ 13 the 41c€srance betuean the e, no
e

Tno g3 than 1%?
Pass the first-order values for § VoS
tt2(1) and uu2(l) back to the main Pass the new values for tt2(1) and
program with a warning message uu2(1l) back to the main program
L L 1
\y n 3
EXIT FROM SUBROUTINE; 119

RETURN TO MAIN PROGRAM




rate. With these two assumptions the flow velocity and temperature

can be predicted using the C~ characteristic and the equation of

state.

At the downstream end of pipe 2, DOWN1l assumes a constant
temperature non-return valve situation. While the flow is positive
the pressure and flow velocity are calculated by simultaneously
solving the C' and path characteristics. When the flow rate falls to
zero, the subroutine assumes that it is prevented from flowing back
down the pipe and takes a value of zero for the flow velocity in any
further calculations. With the constant temperature assumption as

well, the pressure at this downstream boundary can then be found

from the C* characteristic alone.

Figures 5.9(a) and (b) show the flow diagrams for these two

~subroutines; listings are presented in Appendix V.,

Two further subroutines are used by the transient analysis
program. The first GETFIL is a simple routine which opens a data
file. The second DMINV calculates the inverse of a matrix. This
routine is used to simultaneously solve the C*, C~ and path
equations. Listings of theseAtwo subroutines have been included in

Appendix V.
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[arr=m suBrcuTINE]
Y

Transfer variables at time t from
main program

Y

Define vositicn of point S and
calculate variables p, t, u, z, zt,
ro, as, ht and w at 3

i

Calculate uul(l) from the C~
Ycharacteristic assuming constant
pressure

[Save the first-order value for uu(l) ]

Y

Calculate rrol(l) assuming constant
mass flow rate and then ttl(l) from
the equation of state

Y

Calculate 22z1(1), 22zp1(1), z2tl(l),
aasl(l), hhtl(l) and wwl(l)

~

Define new position for point S and
calculate variables p, t, u, z, zt,
ro, as, ht and w at §

Y

Calculate new value for uul(l) from
the C~ equation

4

Compare the new and previously
calculated values for uul(l)

Y

yes

Is the iterative p{EEEEE:EEEEEEEEEEE:}

4 no

Pass the first-order value for
uul(l) back to the main program
with a warning message

Y

N

ot
-

I3 the difference between the new
and previously calculated values less
han 1%7?

Pass the new value for uul(l) back to

the main program

v

Calculate rrol(l) and ttl(l)
pol(1l) = pl(1l)"

A 4

EXIT FROM SUBROUTINE;
RETURN TO MAIN PROGRAM

Flgure 5.9(a) Flow Diagram for SUBUP
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calculate variables p, t, u, z, 2t,
ro, 3s, ht and w at R

yes
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/
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ro, as, ht and w at

Y
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equations to obtain values for
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Calculate pp2(m2) from the C*
equation assuming uu2(m2) is equal
to zero

Is uu2(2315§—93—447

{ no

Define new position of point Q and
calculate variables p, t, u, z, zt,
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1

Calculate new values for pp2(m2) and
uu2(m2) from the C* and path

equations

<

y
Save the first-order values for
op2(m2) and uu2(m2)

A d <
Assuming tt2(m2) = t2(m2), calculate
zz2(m2), zzp2(m2) zzt2(m5)
rroZ(me, aas2(m2), hhtz(mzf and
ww2(m2)

Y
Define new position of point R and
calculate variables p, t, u, z, zt,
rO, as, ht and w at R

yes
;

Re-define uu2(m2) = 0 and calculate
new value Tor pp2(m2) from the Ct+ -~
equation

A

s the iterative process converging?

Y no

Pass the first-order values for
pp2(m2) and uwu2(m2) back to the main
nrogram with a warning message

Is the difference between the new
and previcusly calculated values for
pp2(m2) less than 1%7?

Y Yes

Pass the new values for pp2(m2) and
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> 7

A 4

EXIT FROM SUBROUTINE;
RETURN TC MAIN PROGRAM

Figure 5.9(b) Flow Diagram for DOWN1
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5.3.  GRAPHICS PROGRAM

The purposé of this graphics prograrﬁ was to obtain graphical
output from the results data‘ file created by the transient’ analysis
program. The program offers the option of pressure versus time or
pressure versus wavespeed graphs so that direét comparisons with

experimental data may be achieved.

To produce ﬁhe graphs the program calls up a number of NAG
routines from the mainframe Gould. The only input necessary are the
grid values for which output is required. However, slight
modifications to the program were necessary for each set of data in
order to set the maximum values on the axes and to alter the title of
the graph. A listing of this program is shown at the end of

Appendix V with the modified sections highlighted and labelled.
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CHAPTER 6

EXPERIMENTAL DATA

6.1. INTRODUCTION

In order to validate the theoretical linebreak model that has been
developed, some comparisons with experimental data were necessary.
Such comparisons effectively check that the idealizations and

assumptions inherent in the theory are realistic.

Numerous experimental pressure transient investigations in gas
and two-phase flow have been conducted over the past forty years.
They may be categorized into two main subgroups, namely, the shock
tube analyses and the full size tests. The following two seci:ions of

this chapter review much of the work that has been carried out.

To enable meaningful comparisons to be made with the theoretical
model, a certain amount of detail of the experimental set-up and
results must be obtainable, Section 6.4 examines more closely
suitable experimental data and section 6.5 details the preparation

necessary for the programming of each set of data.
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6.2. REVIEW OF LABORATORY EXPERIMENTS

For many years shock tubes have been used to illus‘trate
pressure wave phenomena by rupturing a diaphragm separating areas
of high and low pressure fluid. Originally, the studies mainly
concentrated on the low pressure section, examining the compression
waves created in this section. However, the need to simulate
blowdown in water cooled power reactors caused Edwards and O’Brien
[1970] to investigate the effects of the expansion waves in the high
pressure section. They slowly heated a water filled pipe (length
4.096 m, diameter 73 mm) to a fixed temperature and pressure above
the saturation conditions. A glass bursting disc at one end of the
pipe was then ruptured and the subsequent transient pressures and
temperatures were recorded at seven tapping points along the leﬁgth
of the pipe. Transient void fraction readings were also taken at
two of the stations and the end thrust exerted by the shock tube
was measured. This blowdown test was repeated a number of times
with various initial pressures and temperatures. The results were
presented in the form of pressure x time, temperature x time, void
fraction x time and end load x time graphs. From these results it
could be seen that after rupture, the pressure in the pressurized
section falls below the initial sa.turation value and, although
recovering slightly, remains below this saturation value. It was also
concluded that the decompression wave, caused by the rupture of the
bufsting disc, travelled upstream at approximately the isentropic

speed of sound in the compressed liquid phase.
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Further experimental data of Edwards and O’Brien, obtained using
a 32 mm diameter shock tube, were presented by Hancox, Mathers and
Kawa [1975] again in the form of pressure x time graphs.

~

Premoli and Hancox [1976] furthered the shock tube work of
Edwards and O’Brien by using initially flowing subcooled pressurized
water with heat addition. They used a vertical, uniformly heated test
section. The blowdown was initiated by isolating this section and
simultaneously rapidly opening a discharge valve. Extensive data are
presented in their report, including depressurization rate, mass

hold-up and discharge rate, as well as the heat transfer data.

Shock tube experiments using gas rather than water vapour have
been performed by Groves et al.(1978] in an attempt to simulate a gas
pipeline rupture. In order to describe the decompression wave
associated with such a rupture, they examined the high pressure side
of the diaphragm in a shock tube that was considerébly longer than
that used by Edwards and O’Brien (length 30.48 m, diameter 60.3 mm).
Using methane, argon and natural gas as working fluids, the results
obtained illustrated the wvariation in wavespeed of the expansion wave
with pressure. Any discrepancies between experimental and

theoretical results were accounted for in that the small diameter

-
Iy

effects (e.g. heat transfer,tﬂg{ii;ééé;{féti‘gﬁﬁj due to boundary layer

- e

build-up and successive condensations) were not included in their

theoretical analysis.
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Issa and Spalding [1972] appeared to obtain better agreeement
between their theoretical analysis and the experimental shock tube‘
data of Mack [1954] as used by Williams (1956]. The working -fluid
was assumed to be a perfect gas in the theoretical analysis but the
effects of friction and heat transfer were included (which in practice
weaken a shock wave). Although they did not compare the
theoretical and experimental variations of wavespeed with pressure,
the normalized velocity and mass velocity distributions obtained using
their model (with carefully selected friction factor and Stanton

number) compared well with those obtained experimentally.

British Gas have conducted numerous shock tube experimenf;s
using methane/ethane, methane/propane and natufal gas mixtures in
order to validate their theoretical rich gas decompression behaviour
model. The shock tube used was of length 36.58 m and diameter 101.6
mm and decompression was initiated by explosively bursting a disc at
one end of the tube., Pressure x time data were recorded using
pressure transducers at a number of locations along the shock tube.

The results of these tests are presented by Jones and Gough [18981].

Also presented by Jones and Gough are the results from some
BMI . experiments conducted. using a shorter tube (length 6.1 m,
diameter 101.6 mm). These results wére obtained using natural gas as
the working fluid and are presented in the form of pressure x
wavespeed graphs. However, details of the experimental apparatus

and procedure used to obtain these results have not been published.
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6.3. REVIEW OF FULL SIZE TESTS

Some authors, for example, Cheeseman [1970], argue that since the
rapid transients are quickly dissipated by friction, the main pressure
transients of concern to th_e line operator are those arising from the
packing and unpacking of gas in the pipeline. Indeed, the analysis
of these long period transients is essential if full advantage is to be

taken of a network’s capacity for linepacking.

There have been several experimental studies on these slov)er
transients many of which have been conducted using looped or
branched systems. The first major series of experiments using
full-size pipelines was conducted by Wilkinson et al.[1964] in the
early 1960’s., Five single pipelines were examined of various lengths,
diameters and topography. Flow and pressure variations were
imposed at the outlet of each pipe and the flow and pressure were
recorded at both ends of the pipe. Good agreement was obtained

between theoretical and measured input flows and pressures.

Following this, Heath and Blunt [1969] recorded the effects on a
section of the British Gas Council high pressure grid when one
supply point was rapidly shut down and left off for seven hours.
The flows and pressures were monifored at each take-off point and
tee at five minute intervals. Although the t:est:~ was limited by having
only one sudden flow change, the results obtained agreed well with

those predictea from an isothermal analysis. It was realized,
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however, that just one inaccurate reading could affect the pressures
predicted throughout the network so extreme care had to be taken

when recording the flow measurements.

Rachford and Dupont [1974] compared predictions from their
isothermal analysis with recorded experimental data for slow
transients in a looped network (the source of the experimental data
not being disclosed). Although the network was fairly complicated,
they managed to obtain quite accurate pressure history predictions
for various points around the network for the ten hour test
duration. They also carried out an experimental investigation on a
0.59 m diameter, 53 km long, two-leg gas pipeline. They imposed
sudden flow variations at the inlet end of the pipe and slow
variations at the outlet and then compared the calculated and
observed pressure histories. Good agreement was obtained between
their theoretical results and recorded values, the maximum

‘discre'pancy between them being 5 psi over the 12 hour simulation.

Weimann [1978] used both a branched network and a single
four-leg pipeline to validate his isothermal model predicting »the
packing and unpacking of the gas. With the network he recorded
supply and demand flows at one hour intervals and took pressure
readings at fifteen minute intervals for a twenty-four hour period.
From this study he discovered that if the boundary wvalues were hour
stép functions, then one hour time steps had to be used in his
simulations. With the four-leg, 78 km long refinery gas transmission

pipeline, Weimann imposed transient suppl:} and demand flows and
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compared the measured pressure variations with those predicted for
his isothermal analysis. Although the changes in flow rate each took
place within one minute, the resulting effect was the gradual packing
and unpacking of the pipeline. It was, therefore, comparatively slow

pressure transients that were being measured.

More recently, Mekebel and Loraud [1983 and 1985] investigated
unsteady flows and pressures in a 0.22 m diameter, 19.345 km long
gas transmission pipeline operating at pressures up to 20 bar. They
examined the effects of heat conduction between the pipe and its
surroundings and concluded that this heat transfer was a necessary
inclusion in the theoretical analysis. This contradicted the common

assumption of isothermal flow in slow transient situations.

Although, as already mentioned, these slow transient analyses are
important, it is the rapid transient simulations that are of greater
significance to this project. Stoner [1969] was one of the first people
to examine rapid transients in full size pipes. However, he
concentrated on the compression wave caused by rapid downstream
valve closure rather than the linebreak problem. He determined the
wavespeed of the compression wave and then recorded the upstream
and 'downstream pressure histories_in a 0.31 m diameter, 22 km long
pipe when the valves at both ends of the pipe were simultaneously

closed.
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At this time in France, Sens et al.[l1970] were investigating thg
effects of rapidly opening a downstream valve in order to simulate a
linebreak. Using a L0655 m diameter, 1.8 km long pipe, they
discovered that at a distance of 6 km from the venting point, the
rapid opening of the discharge valve had the same effect as
rupturing - a bursting disc. This enabled them to repeat the
experiment and compare recorded pressure histories with those
predicted from their theoretical model. They found that, although
the drop in pressure following a ‘break’ was slower in reality than in
their calculations, the shape of the recorded curve was identical to

that of their theoretical curve.

In the Netherlands, Van Deen and Reintsema [1983] have used
experimental data from the Gasunie transport system to validate their
theoretical model. They conducted two major experiments. In the
first experiment a linebreak was simulated by rapidly opening a valve
which connected the test pipe to a parallel pipe at lower pressure.
The point on the test pipe at which the measurements were taken
was 10 km downstream of this valve. The pressure history was
recorded and a detailed comparison was made between this measured
data and that obtained from their theoretical analysis. The second
experiment involved rapidly opening a gate valve situated between
two measuring points oh a test pipe. The pipe was 90 km long with
a diameter of 0.76 m. Gas was supplied at both ends of the pipe and
délivered to a number of take-off points along the pipe. As the gate

valve was opened, the flow, pressure and temperature were recorded
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at both measuring points. The results showed that a fast pressure
transient occurred at both measuring points due to the valve

opening.

Further tests with natural gas have been conducted using short‘
sections of pipe, investigating the events that occur in the immediate
vicinity of a break. British Gas performed twé tests on a L22 m
diameter pipe for Foothills Pipelines (Yukon) Ltd. The test sections
were 50 m and 51.2 m long with reservoir sections at both ends.
After pressurizing the pipe to approximately 90 bar, a crack was
initiated at the centre of the test section and the pressure histories
were recorded at points either side of the break, The results from
these tests have been presented as pressure x wavespeed graphs by
Jones and Gough [1981] although further experimental data has.not

been published.

’

Jones and Gough also presented pressure x wavespeed graphs
from three tests carried out by BMI on behalf of British Gas and
from a test that British Gas conducted for Shell The initial
pressures in these tests were between 120 and 140 bar. The
experimental details of the tests are given by M-axey, Syler anFi—Eiber

[1975] and by Hayes and Lux [1979].

Between December 1979 and April 198], Foothills Pipelines (Yukon)
Ltd., undertook a program of linebreak tests at the Northern Alberta

Burst Test Facility. The main purposes of this test program were to

.
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examine the effect of the gas composition on fracture behaviour, to
establish the limiting values of Charpy toughness which would give
fracture arrest, and to confirm the arrest capabilities of thé test
pipe. Short lengths (less than 100 m) of L4 m and L2 m diameter
pipe were charged with natural gas of known composition aﬁd
.pressurized to between 74 and 87 bar. Fracture was initiated at the
centre of the test section by detonating an exploéive cutter. Further
details of the test together with the results (in the form of pressure
histories and timing wire data showing the crack tip position) are

given by Rothwell [1981].

Finally, there have also been some transient network experiments
conducted using steam as the working fluid. The purpose of these
was to support simulations for boiler steam lines and rea.ctor
blowdown. For example, Ying and Shah [1978] investigated steam
hammer in the main piping system of an oil fired power plant. They
imposed franéient conditions in the network by rapidly closing the
turbine stop valves and then obtained oscilloscope traces of the

pressure surges created.

Another example of steam transient experimentation is the work of
Banerjee and Hancox [1978]. They conducted avseries of blowdown
experiments on a figure-of-eight loop containing pumps, heaters and
heat exchangers. The blowdown was started by rapidly opening a
quick-acting valve. Pressures, temperatures, coolant densities, and
flow wvelocities were then recorded at »various points around the
circuit and the results obtained comparea with those predicted from

the computer code of Arrison et al.[1977].
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6.4. SELECTION OF TEST DATA

The selection of experimental data for comparison with the

theoretical model was determined by the following criteria:~-

i) The variables required by the program (as detailed on the
data sheet, Figure 5.1) must either be given‘in the experimental
data or be calculable from it.

ii) The experimental results must be of a form that can be
directly compared with the theoretical computer output, for
example, in the form of pressure x time or pressure x wavespeed
graphs.

iii) Details of the apparatus and procedure are necessary in
order to assess the experimental error and evaluate the res.ults

obtained.

The following shock tube and full-size data were selected to

validate the computer model:

i) The shock tube data of Groves et al.[1978]

This data was selected for its transient results obté.ined using
the single gases of methane and argon since other suitable
experimental results used only mixtures of gases. However, details of
the apparatus and procedure used by Groves [1976] were

unobtainable and so various assumptions had to be made regarding

the shock tube material (in order to estimate the friction factor and
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Stanton number), the effective rupture time of the diaphragm, and
the accuracy and sensitivity of the measuring and recording devices.
Therefore no assessment could be made of the experimental errors

incurred.

The gas and pipe data provided by Groves et al.[1978] were pipe
length and diameter, initial temperature and pressure for each test
and the gas composition (accounting for the slight impurity of
methane). Also recorded were experimental wvalues of the sound
speed for eacﬁ test. From this initial data, graphs of pressure ratio
x wavespeed were recorded. Figure 6.1 shows the dimensions of the

shock tube and the positions of the pressure transducers.

~ 30-48m
2.13m
. 1-83m
_0914m
0-610m
0-305m
S FTIEE N\
CLOSED | - ~ BURSTING
END DISC

A - Pressure Transducer Positions

Diameter of Shock Tube = 0-0603m

Figure 6.1 Shock Tube used by Groves et al.
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ii) British Gas shock tube data (Jones and Gough [1981})

Three burst tests were carried out on each of the following gas
mixtures using different initial pressures for each test:

a) 85% methane, 15% ethane

b) 90% methane, 10¥ propane

c) natural gas (of known molar composition).

The shock tube was constructed from seamless drawn steel
tubing with a wall thickness of 1/,¢" and a maximum pressure
specification of 130 bar. It was welded to a girder with a heavy
metal base to prevent any axial or longitudinal movement. A

schematic of the shock tube is given in Figure 6.2.

36-58 m
27'43m
1372 m

3-96m
2:L4m
1-22m
071m

A A R & AA
CLOSED BURSTING
“END DISC

A - Pressure Transducer Positions

Diameter of Shock Tube =0-1016m

Figure 6.2. British Gas Shock Tube
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The bursting disc was ruptured using a 0.123 oz explosive charge.
which would be insufficient to create any noticeable heat transfer

into the pipe. However, the time taken for the rupture to occur was

not recorded.

The 1initial temperature was measured using thermocouples
mounted in the pipe wall. They were therefore measuring the pipe

wall temperature rather than the initial gas flow temperature.

Strain gauge piezo-resistive pressure transducers with small
diaphragms were used to measure the pressures in the shock tube.
The positions of these transducers are shown in Figure 6.2. The
pressure transducers (having an accuracy of 0.3%) were connected to
a tape recorder producing a continuous analogue recording. -The
complete pressure measuring system was statically calibrated and

demonstrated an accuracy to within 5%.

‘The gas composition of each test was measured and recorded
although the methods of mixing and analysing the gas were not
stated. The homogeneity of the gas and the accuracy of the
recorded gas analysis are therefore open to speculation and could be

a so;.lrce of discrepancy between theoretical and experimental results.
For each test the initial pressure and temperature were noted

and pressure x time histories were obtained for several positions

along the shock tube.
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iii) Foothills Pipelines (Yukon) Ltd. full size tests at the
Alberta Burst Test Facility (Rothwell [1981])

Although results from six burst tests using natural gas are
presented in .this reference, only four sets were used for
comparisons with the theoretical model since the last two tests gave
no indication of the positions of the pressure transducers in the
pipe. For each test the pipe diameter and length, wall thickness,
weld type and initial temperature and pressure were recorded.
Included in the test data used were clear diagrams showing the test
section with the positions of the pressure transducers, strain gauges,
timing wires and resistance temperature detectors. These have been

reproduced in Figure 6.3.
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The gas mixtures were made up to specification and their.
compositions analysed using two gas chromatographs. The initial
pressure and temperature were monitored and recorded By a
data-logger and the timing wire, pressure transducer and strain
gauge signals were recorded using tape recorders. The signals could
then be retrieved for analysis by a high speed UV recorder. To
ensure a time reference to within 0.1 ms, each mza;gnetic tape carried

a synchronization trace as well as the burst initiation signal.

The test section and process loop were initially pressurized to a
level above the test pressure. Hydrocarbons were then added to
reach the target composition for the gas. Each gas component was
injected at a constant rate over a whole number of circulation cycles
of the process loop in order to ensure homogeneity. The tempera;:ure
was adjusted to the test temperature (x 1°C at all measuring points)
and the pressure was slowly bled off to the test pressure (%5 kPa at
all measuring points). The test section was then isolated from the

process loop.

The fracture was initiated by detonating an explosive cutter
placed at the centre of the test section. This cut approximately 75%
of the way throﬁgh the wall thickness which was sufficient to initiate

pipe failure.

The test was monitored by high speed cameras which were

triggered a few seconds prior to crack initiation and by a wvideo

system.
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6.5. PREPARATION OF THE DATA

In order to conduct theoretical simulations of the tests out';lined
in section 6.4, the experimental details must be presented in terms of
the specific gas and system data required by the. program. The
calculation procedures necessary to convert the available data into a

programmable form are detailed below.

6.5.1. Preparation of Gas Data

For each test the specific heat at constant pressure, the specific

gas constant and the critical temperature and pressure of the gas

are required.

(i) Specific Heat at Constant Pressure CP

In practice, the specific heats may vary over the considerable
temperature and pressure ranges encountered in transient analyses.
For the program, however, constant values were assumed for
simplicity. (The consequences of such an assumption are discussed
in Chapter 8).

The wvalues used for the specific heats of the pure gases such as
argon and the natural gas components, were calculated from the

specific gas constant of the gas (R) and its ratio of specific heats

(¥):
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Using these values together with the molar compositions of the.
gas mixtures given in the experimental details, the specific heats of
the various gas mixtures were calculated. Further details of this

calculation procedure are given in Appendix VI.

(ii) Specific Gas Constant R

For each gas mixture a mean molecular weight was calculated and
a value for the specific gas constant of the mixture was then
obtained by dividing the universal gas constant by the mean

molecular weight. This procedure is shown in Appendix VI.

(iii) Critical Temperature T,

The critical temperatures of the natural gas mixtures were
calculated using a formula for hydrocarbon mixtures detailed by
Grieves and Thodos [1962]. This method was chosen in preference to
calculating pseudo-critical temperatures as described by Kay [1936]
since the critical temperatures of the individual components differed
by more than 200% in extreme cases. This would lead to an error of
more than 5%— in Kay’s calculated values. Details of the method of

Grieves and Thodos are presented in Appendix VI.

(iv) Critical Pressure Ps

Although a number of correlations for computing the critical

pressure of hydrocarbon mixtures have been developed (for example,
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Mayfield [1942], Organick [1953], Etter and Kay [1961]), these generally .
have some difficulty in haﬁdling systems that contain methane,
. Grieves and Thodes [1963] overcame this problem to an extent‘ but
their method was relatively complex. Therefore, for this project the
method of Prausnitz and Gunn [1958] for calculating pseudo-critical

pressures was chosen for its simplicity.

It should be noted, however, that the accuracy of this method is
dependent on the accuracy of the critical temperature and slight

inaccuracies may be produced near the critical region.

These calculated values for the specific heat, specific gas
constant and critical temperature and pressure for each of the gases

used in the tests are presented in Table 6.1.

6.5.2. Preparation of System Data

The systgm data consists of the pipeline data and the initial flow
conditions. Although the experimental data provides such details as
the pipe dimensions and initial pressures and temperatures, the grid
size and some variables (for example, .friction factor é.nd Stanton
number) still need to be decided upon in order to obtain a
theoretical plot. For each system, the procedure for determining the

system data was as follows.
i)° A suitable grid size was chosen which would produce stable

results. For each separate set of test data, the program was

adjusted so that output was obtained only at the relevant i values
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. TABLE 6.1. EXPERIMENTAL GAS DATA

DATA SOURCE AND GAS Cp R Te P,
(kJ/kg K) | (kJ/kg K) 'c | kpa

Groves' shock tube data:

Methane 2.170 0.517 -82 4610
Argon 0.520 0.208 -122 4870
Natural Gas 1.960 - 0.432 . -50 4888

British Gas shock tube data:

Methane/ethane 2.125 0.458 -56 4872
Methane/propane 2.113 0.441 ~40 5076
Natural Gas at 70 bar 1.941 0.408 -30 | 48713
Natural Gas at 100 bar 1.940 0.407 -40 4876
Natural Gas at 125 bar 1.946 0.411 | -39 4921

Foothills Pipelines (Yukon)
Full size tests at the Alberta
Burst Test Facility:

'NABTFL - Natural Gas 2,006 | 0.445 -53 4878
NABTF3 - Natural Gas 1.999 0.441 -50 4919
NABTF4 - Natural Gas 1.996 0.440 -50 4914
NABTF5 - Natural Gas | 1.994 0.440 -50 4929
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which coincided with the pressure transducer positions specified in.
the experimental data. The grid size used and details of the

pressure transducer positions are included in the results.

ii) In the program, the gradient of the pressure drop at the break
and the time taken for the break to occur are both functions of grid
cycles rather than direct functions of time. | It was therefore
necessary to check that the break readings being produced by the
program for each set of data were feasible. For example, the time
step selected for the transient analysis may cause the pressure drop
at the break to occur unrealistically slowly. To overcome this,
modifications can be made both to the time taken for the complete

pressure drop to occur and to the varying rate of pressure drop

(Figure 4.6).

The equation for the pressure drop at the break, in general

form, is:

j n
P(J) = (Py = Peq) (1 = =) - Peq

where P(j) is the pressure at the break after j time steps
P, is the initial pressure at the break point before rupture
Peq is the equalization pressure.

Variables n and x affect the shape and duration of the pressure drop

respectively. By increasing ‘n’ the pressure drop becomes much

steeper initially but levelling out sooner and by decreasing ‘x’ the
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duration of the pressure drop is decreased. However, care must be .
taken to ensure that such changes' to n and x do not create an
excessively steep initial pressure drop which would cause an

instability in the program at the break point.

iii) Finally, values for the friction factor and Stanton number
for each set of test data had to be determined. The friction factor

was initially estimated from Haaland’s formula (Appendix II):-

=00 10s (B9 + (477

Provided that the pipe material is known, a value for k/d can be
substituted into the above equation. Assuming initially a Reyn_olds
number of 105, the friction factor can be determined. This procedure
was used to obtain an initial value for the friction factor which could

then be tuned for each individual case.

An initial value for the Stanton Number was obtained using the

empirical formula:
St - (Re)9+2 - (Pr)°-® = 0.023

Values for the Prandtl number at atmospheric temperature and
pressure were obtained for argon and methane. These values were
then increased slightly to allow for the higher pressures and lower
temperatures that are encountered in tbe linebreak modelling and

assuming again a Reynolds number of 105, the Stanton number could
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be determined. However, since the Stanton number is strongly.
dependent on the Reynolds number, it was realised that these initial

values may then need tuning for each set of test data.

The initial value calculated for the friction factor in all the sets
of experimental data was L8 x 1072, The Stanton number initial

values were taken to be 2.7 x 1072 for the methane containing

systems and 2.9 x 102 for argon.
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CHAPTER 7

RESULTS

7.1. INTRODUCTION

Results were obtained by performing a number of computer
simulations for each of the sets of data detailed in Section 6.4. The
length of the time step, the grid size and the break details were
varied for each simulation to optimise convergence towards a stable
solution. (The problems encountered with the numerical instabilities

in this project are discussed further in Chapter 8).

The numerical results produced by the linebreak program were
written to a data file which was then used as input for the gréphics
program. " These theoretical results could then be compared

graphically with the experimental results for ease of assessment.

The numerical results (produced in tabular form) included the
temperatures that were being experienced in wvarious parts of the
I;ipe as well as the pressure, velocity and wavespeed data. There
were, however, no available experimental results with which to
. compare these temperatures. One major use of the tabular output

was for identifying areas of numerical instability.
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7.2.  GROVES’ SHOCK TUBE RESULTS

A stable simulation was obtained for each of the three gases
tested by Groves et al. [1978]. These simulations used a grid size of
0.00953125 m near the break, time step length of 0.5 ms and break

characteristics of index = 2, No. of steps = 40.

For each gas, pressure x wavespeed graphs were plotted fer the
transducer positions at which experimental data were available. This
was done using both the isothermal and the isentropic wavespeeds
calculated in the program. The experimental data points from Gro_ves’
graphs were then superimposed onto the theoretical graphs. These
results are shown in Figures 7.1, 7.2, and 7.3. The table below
details the transducer positions corresponding to the i values marked

on the graphs.

Position i value
break 171
transducer 0.305 m from the break 139
transducer 0.61 m from the break 107
' transducer 0.314 m from the break 91
transducer 1.83 m from the break 39
transducer 2.13 m from the break 55

In Figures 7.2 and 7.3, the isentropic wavespeed curves varied
significantly at low pressures for the different i values. For these
traces, the lowest curve was obtained for_the highest i value (i.e. the
point closest to the break). The lower i values (further from the

break) showed higher pressures for a given wavespeed.
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Groves Shock Tube Test - Argon
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Groves Shock Tube Test - Natural Gas
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7.3. BRITISH GAS SHOCK TUBE RESULTS

A number of attempts were made (using a grid size of 0.0254 m
near the break) to obtain stable results for each of the nine shock
tube tests recorded by British Gas. Figures 74 to 7.9 show the
pressure x time traces obtained for British Gas tests 1, 2, 4, 5, 7 and
8 (Jones and Gough [1981]). In these graphs the theoretical
(unmarked) curves were derived using friction factor and Stanton

Number wvalues of 0.018 and 0.0027 respectively as calculated in

Section 6.5.2.

Examination of these graphs led to the modification of the friction
factor to 0.0l in tests 1 and 2 (for the ﬁethane-ethéne mixture) and
to 0.03 in tests 4, 5, .7 and 8. The traces obtained using these new
values are presented in Figures 7.10 - 7.15.  Different values for the

Stanton Number were also experimented with but these showed

negligible difference.

Thé.'experimental plots shown with all these theoretical traces
(Figl,;res 7.4 to 7.15) were obtained by reading data points from the
BGC plots presented by Jones and Gough and re-plotting them onto
the theoretical graphs. The transducer positions corresponding to
each of these experimental plots were obtained through private

communication with D.G. Jones and are listed below:
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Position i value
break 144
transducer 2 ft 4 in from the break 116
transducer 4 ft from the break 96
transducer 8 ft from the break 64
transducer 13 ft from the break 41
transducer 45 ft from the break 16
transducer 90 ft from the break 7

Unfortunately, it was not possible to achieve stable theoretical
results corresponding to the British Gas tests 3, 6 and 9. In these
tests the initial pressure was higher and instabilities appeared in the

solution when a zero initial flowrate was used.
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7.4. FOOTHILLS PIPELINES (YUKON) FULL SIZE RESULTS

Stable solutions were obtained for each of the four tests for
which experimental data was available (NABTF1, NABTF3, NABTF4, and
NABTF5). A grid size of 0.0l m near the break was used with friction
factor and Stanton Number of 0.018 and 0.0027 respectively. The
break characteristics were the same as those used for the shock tube
data exceptb for NABTF3 when it was necessary to use 80 steps

instead of 40 (for stability).

To obtain the theoretical curves, different lengths of time step
were used for each test. For NABTFIl, At = 0.74 s, for NABTF3, At =

0.72 s, for NABTF4, At = 0.65 s, and for NABTFS, At = 0.75 s.

For each test, pressure x time and pressure x wavespeed graphs
were obtained for the pipe sections both east and west of the break.
In order to distinguish between the two pipe sections, the i values
corresponding to positions west of the break are preceaed by a l
and the i values corresponding to positions east of the break are
prec;eded by a 2. The transducer positions corresponding to the

values marked on the graphs (Figures 7.16 - 7.27) were as follows:

MiBTFT]

R Position i value
4,21 m west of break 1172
25.30 m west of break _ 1139
36.00 m west of break ' 1123
46.63 m west of break 1106
4.21 m east of break 2128
11.17 m east of break 2143
25.02 m east of break 2160
36.06 m east of break 2177
46.57 m east of break 2194
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Position : i value
4.25 m west of break 1172
~ 14.08 m west of break 1157
" 24.90 m west of break 1140
35.71 m west of break : 1123
46.49 m west of break - 1106
4.25 m east of break 2128
14.08 m east of break 2143
24.88 m east of break 2160
35.67 m east of break 2177
46.42 m east of break 2194
NABTF4
Position i value
7.61 m west of break 1167
17.61 m west of break . 1151
26.94 m west of break 1137
37.64 m west of break , 1120
46.78 m west of break 1106
7.61 m east of break 2133
17.83 m east of break 2149
28.73 m east of break 2166
39.42 m east of break 2183
48.81 m east of break 2197
NABTES
Position i value
5.18 m west of break 1171
15.53 m west of break : 1155
26.11 m west of break 1138
, 36.79 m west of break 1122
47.40 m west of break : 1105
5.18 m east of break 2129
15.18 m east of break _ 2145
26.13 m east of break 2162
36.97 m east of break 2179
47.30 m east of break 2195

The experimental data for all the full size test graphs were

obtained in the same manner as for the BGC shock tube tests, using

the Foothills Pipelines experimental curves.
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CHAPTER 8

DISCUSSION

8.1. GENERAL DISCUSSION OF RESULTS

The graphs obtained using the transient program in conjunction
with the graphics program clearly showed some similarities to those
obtained from experimental data. Due to the nature of the results it
was decided that primarily a qualitative rather than quantitative
assessment would be most suited. The graphs were examined and

compared with each separate experimental data source ahd the

following observations were made.

8.1.1. Groves’ Shock Tube Results

Figures 7.1 to 7.3 illustrate how the computer program was
successful in predicting the maximum (isentropic) and the minimum
(isothermal) possible wavespeeds for any particular point along the
pipe. In a real situation the actual wavespeeds will be between these
two extremés as is confirmed by the experimental data points.
Although these results do not give an unequivecal indication of the
accuracy of the computer model, they do at least show that the

calculations being performed by the program are of the right order.

With the pressure x wavespeed curves predicted for argon gas
{(Figure 7.2), it was noticéd that the isentropic wavespeed curves
started to vary at lower pressures for the different positions along
the pipe. This trend is not clearly visible in the experimental

data.
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The natural ga's isentropic curves (Figure 7.3) show a more distinct
separation with .the different grid points. ‘In Figure 7.3 it is also
possible to identify a similar separation pattern at the lowest
wavespeeds region of the experimental curves. It is thought that
this separation ‘of curves is occurring when a maximum flow situation
is happening in the pipe. In this situation the pressure upstream
from the break will be greater than that at the break in order for
the flow to overcome fricfion. Therefore the pressure. will be higher

for lower i values than for higher values. Figures 7.1 to 7.3 also

confirm that these final pressures are dependent on the gas being

used.

It might have been useful to have incorporated actual wavespeed
calculations in the computer program so that a direct comparison
could have been made between the theoretical and experimental

readings. However, this would have necessitated calculating the

actual s‘peed'of sound given by:

-
Fa2Atb B4
M
s At e '
A
, 2 |

Figure 8.1 Approximation of dp/de on a' finite grid.
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With reference to Figure 8.1, dP/dp between t and t + At could be

approximated by:

sp Pz = Py
b0 " 05 -0,

But, in order to obtain an estimate for the speed of sound at
time t + At, a further approximation would be necessary of dP/dg

between t + At and t + 2At and the two values averaged.

This procedure would involve storing both pressure and density
values for three consecutive time steps at each grid point. The
required computer storage facilities would therefore be increased ‘and
extra calculations would be involved (hence increasing the program

run time). It was thus decided that for the purposes of this project,

actual wavespeed calculations were not justifiable,

8.1.2. British Gas Shock Tube Results

Despite the poor quality of these graphs, Figures 7.4 to 7.9 do

show that both the theoretical and experimental results produce

similar curves. The lack of smoothness and continuity in the

experimental results arises from the difficulties experienced in

obtaining sufficiently close experimental data points from British Gas

graphs. The graphics program connected these data points with

straight lines which produced some jaggedness when the points were

not close enough together. This also occurred with the theoretical

points in Figures 7.6 to 7.9 since the transient program was only

producing output every 2 ms. Although these theoretical curves
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could -have been improved by decreasing the length of time step, this

may have led to an increase in the accumulative round-off error in

‘the results (as discussed further in section 8.2).

An alternative method of smoothing the curves (both experimental
and theoretical) would be to employ a graphics program which
connected the points using best-fit curves instead of straight lines.
This was experimented with but it was found to produce an
unrealistic apparent pressure rise just before the expansion wave
reached each pressure transducer position. Hence it was thought

that the straight line method of connecting the points was more

suitable.

In the graphs for BGC tests 1 and 2, it was noticed that the
theoretical curves tended to begin their pressure drop too early.
This was more noticeable the further the transducer was from the

break. Possible reasons for this were explored.

Firstly, it was thought that since no information was available to
indicate how the pressure transducers were triggered, maybe the
response times had not been accurately accounted for which was

causing the delay. However, since the theoretical and experimental
results for the pressure transducer 90 ft from the break differed by
as much as 1520 ms for the arrival of the expansion wave, it was
deduced that there was probably another reason. The fact that
British Gas’s theoretical curves coincided better with ' their

experimental results at the start of the expansion wave also

suggested that there may be a problem with the theoretical results.
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‘The theoretical wavespeeds at the initial pressures were
therefore calculated from the pressure x time graphs and these were
then compared with the isentropic and isothermal wavespeeds

calculated in the program. The results from this investigation are

shown below:

calculated isentropic isothermal
wavespeed wavespeed wavespeed
(m/s) (m/s) (m/s)
BGC 1 543 4357 264
BGC 2 583 496 252

Thus, there did appear to be a problem in the theoretical model
regarding the wavespeed of the initial expansion wave since it‘should
be less than the isentropic wavespeed. This falsely high wavespeed
would account for the noticeable djfference in positions of the
pressure X time curves for the transducers at 45 ft and 90 ft from
the break. Further investigation of this problem was therefore

carried out using the Foothills Pipelines (Yukon) Ltd. results.

Another curious feature of the graphs obtained from British Gas
data was that the final theoretical pressures reached in the shock
tube are higher than those recorded experimentally in tests 1 and 2
_but lower than those recorded in tests 4, 5, 7 and 8. This could be
due to inaccuracies incurred in the calculation of the equalization

pressure at the break. These would arise because the conditions

are assumed to be isentrop_ic and the gas is assumed to be a perfect
gas ai; the break point. Therefore any change in state brought

about by the rapid expansion of the gas would not be accounted for

and this could affect the results.
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The adjustment of the friction factor for the different gas
mixtures (Figures 7.10 to 7.153) was found to have little effect. A
slight improvement was ﬁoticed in each graph, but this improvement
did not justify the changes made. The initial estimates used for

friction factor and Stanton Number were therefore acceptable.

The accuracy of the experimental data points used for analysing
these graﬁhs could not be ascertained from contact with British Gas.
However, on enquiring into the reasons for the experimental pressure
transducer traces actually crossing one another in tests 1 and 4
(Figures 7.4 and 7.6), British Gas did report (Jones 1988) that they
"believe (but could not conclusively cohfirm) that PT2 .was
malfunctioning”. This implied that the transducer 8 ft from the
break in test 1 was malfunctioning and the transducer 4 ft from the
break in test 4 was malfunctioning. British Gas also indicated that
they were not entirely satisfied with the results from any of their

tests using the methane/propane mixtures (used in Figures 7.6, 7.7,

7.12 and 7.13) and so some caution should be exercised when using

these experimental results.

’

8.1.3. Foothills Pipelines (Yukon) Ltd. Full Size Results

With the improved quality of these graphs (Figures 7.16 - 7.27)
compared with that of the previous pressure x time graphs, the
effect of the apparent difference in- wavespeed between the
theoretical and experimental curves was more clearly identifiable.
With thesé graphs it was possible to take more accurate readings for

calculating the actual wavespeeds at the initial pipe pressures. Only
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the three  transducers furthest from the break were examined in

order to minimise the reading errors. The following results were

obtained:
Calculated Theoretical Calculated Experimental
Test Wavespeeds (m/s) Wavespeeds (m/s)
1 2 3 Mean 1 2 3 Mean

NABTF 1 472 471 466 470 410 | 398 | 389 399
NABTF 3 472 469 462 468 359 | 359 | 358 359
NABTF 4 491 487 486 488 364 | 388 | 397 383
NABTF 5 470 474 462 469 372 | 372 | 368 371

In all the graphs the calculated theoretical wavespeeds were
greater than the experimental values. Comparing these wavespeeds

with the initial isentropic and isothermal wavespeeds shown in

Figures 7.18, 7.21, 7.24 and 7.27T;

Theoretical | Experimental Wavespeeds | Isentropic |Isothermal

Test Wavespeed From p x t | From p x w | Wavespeed |Wavespeed
(m/s) graph graph (m/s) (m/s)
NABTF1 470 399 389 427 297
NABTF3 468 359 354 441 266
NABTF4 488 383 379 438 273
NABTF5 469 371 375 405 286

From the above table it can be seen that all the calculated

theoretical wavespeeds are higher than the isentropic wavespeeds.

-
This situation is not physically possible . vOner likely cause would be

R A B oo AT — — e

jthat a second-order numerical interpolation has been used in thej
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calaulation. of the theoretical wavespeeds. . This can result in thegretical’
‘-f‘apid.s"f@rese‘ﬁreﬂchﬁan'gesQoc‘cur'ri\ng-'premab_ur'ely. " The problem: may be:

‘raselved By using only: rineétr‘!“»i‘hterpolation in the calculation procedures.

Apart from the problems incurred in the wavespeed calculations
of the program, the theoretical curves showed good agreement with
thcse obtained experimentally. In most of the graphs it would appear
that the final pressures calculated theoretically are slightly higher
than those reccrded. However, the theoretical model cannot account
for the crack prcpagation along the pipe. Theoretically the break is
modelled as a ruptured diaphragm but the rupturing of the pipe
sections produces a lengthwise crack in the pipe which covers a

finite length and opens up the pipe (as shown in Figure 8.2).

Figure 8.Z. Pipe rupture in a full size pipe
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This effectively reduces the pressure at the break point to
atmospheric pressure and moves the point at which the equalization
pressure would occur along the pipe. °~ Hence »the pressures at all
points along the pipe would be proportionally reduced.  This
therefore accounts for the recorded pressures being lower than those
predicted by the théoretical model. This crack propagation would
also account for less levelling off in the experimental pressure data

since the pressure at any transducer'point would continue to fall as

the crack tip approached.

'Finally, in test NABTF] it was noticed that, as with British Gas
tests 1 and 4, the experimental pressure trans'ducer traces actually
crossed. In this case it was thought that the pressure transducer at
i = 1123 (36 m west of the break) was most likely to be in error since
its trace was out of line with the other traces. The cause of this
error was reported to be a temperature-related zero drift during

testing, This may also be the cause of the same problem encountered

by British Gas.

8.2. DISCUSSION OF ERRORS

. When modelling any real life situation, certain discrepancies
between the theoretical prediction and the actual event are bound to
arise. Theée discrepancies may be categoriéed into those arising
from errors incurred in the calibration, measurement and recording
of the exéerimental data, those due to necessary assumptions méde in
the theoretical modelling, and those due to errors inherent in the

‘numerical modelling procedure.
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The errors in the experimental data arise from two main sources;
namely those errors involved in the measuring of the data and those
that are incurred when i:he experimental data is transferred for use
with this project. With Groves’ data, no information was available
detailing the accuracy of the measuring procedures so this could
only be roughly estimated after examining the accuracies with which
British Gas and Foothills Pipelines (Yukon) Ltd. could obtain their
data. Also with Groves’ data, assumptions had to be made regarding
the shock tube material (so that a reasonable wvalue for the fricti_on
factor could be estimated) and the effective rupture time of the
diaphragm (so that the break boundary conditions could be decided
upon). In none of the experimental data sources was there ‘any
indication of an effective rupture time, probably due to the
considerable problems associated with measuring such a small finite
time. Since, 'however, for the computer simulation the time taken for
the pressure at the break point to fall to its equalization pressure

must be estimated, this could be a possible error source.

Through private communication with J.E. Falcus at British Gas, 'it
was established that the pressure measuring system (as a whole) that
they used in their shock tube tests was believed to be accurate to
within 5%. Foothills Pipelines (Yukon) Ltd. were confident that their
initial pressures were within a 5 kPa limit implying pressure
transducer accuracy of 0.2%. They did not; however, estimate the
overall accuracy of the transient pressure measuring system. It was
therefore‘ assumed that the accuracies of the pressure measuring
systems used by Groves and by Foothills Pipelines (Yukon) Ltd.

would be similar to the 5% estimated by British Gas.
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In order to use this experimental data, it was necessary to
transfer it from the graphical form provided to a numerical form for
the co;'nputer. In each case this involved superimposing a grid §nto
the experimental data graph and reading off the co-ordinates. To
reduce the possible inaccuracies involved ’with this process, the
graphs of Groves et al. were enlarged by a factor of 2 prior to
extracting co-ordinates. It was then possible to determine the
pressure ratio to within #0.01 and the wavespeed to within 5 m/s.
Similarly, for the British Gas graphé, the estimated accuracy with
which pressure could be determined was i bar (after the initial
sharp pressure drop); and the accuracy of the time scale was
estimated to be 2 ms for the methane/ethane curves and 0.3 ms for
the methane/propane and natural gas curves. In the graphs
supplied by Foothills Pipelines (Yukon) Ltd. pressure could be
determined to 50 kPa, time to # 2 ms, and wavespeéd to £3 m/s.

Thus the maximum probable reading error involved in the transfer of

data from any of these experimental graphs would be 5%.

- In the development of the theoretical model many assumptions
were necessary in order to produce a viable computer program.
Firstly, in the formation of the basic equations, one dimensional flow
was assumed which could introduce slight errors when the rapid
‘expansion occurs in the pipe. Other assumptions included were that
the pipe wall was inelastic and that there were no localised frictional
losses due to pipe joints, bends, etc. " The use Qf these assumptions

should not, however, cause any significant deviation from the actual

recorded event in the experimental examples used.
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A further source of error in the theoretical model could be due
to the equation of state that was used. A relatively simple equation
was chosen and since this was used for various gas mixtures over a
considerable pressure ~ temperature range (incorporating in some
instances a change of state) some discrepanc.ies were expected.
However, as with many of the consequences of the theoretical

assumptions, it was not possible to quantify this error source.

The use of a constant specific heat also introduced errors since
in practice it will vary over the considerable temperature and
pressure range that is encountered following a pipe rupture. This
variation is not a simple function of temperature and pressure as is
shown by the data available for methane (Figure 8.3). There is no
similar data for the gas mixtures used in the experimental tests and
therefore the consequences of using a constant value term cannot be
determined. Also, since the specific heats for the gas mixtures used
were calculated using the method of mixtures (requiring wvalues for

the specific heat of each component), this may incorporate further

inaccuracies.
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Figure 8.3. Variation of the Specific Heat of Methane
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Values for the critical temperature and pressuré of the gas
mixture were required by f:he program in order that the
compressibility factor could be calculated. Again, because of the
complexity of some of the gas mixtures being used, these quantities
had to be estimated., Any error involved in the estimation of the
critical temperature (for example, due to the necessary exclusion of
the nitrogen and oxygen components of natural gas in the
calculations) would itself create an error of the same magnitude in
the estimated value for the critical pressure. These would then both

influence the calculated value for the compressibility factor.

The friction factor and, to a lesser extent, the Stanton Number
may also be sources of error in the theoretical model since they were
both estimated using steady flow formulae from various assumptions
of the pipe wl'all material and condition. They were both assumed to
be constant and uniform along the length of the pipe whereas in
reality the wvalues would be expected to increase in the vicinity of
the break due to condensation occurring. The use of non-uniform
values for the fricti.on factor may _slightly alter the shape of the
pres'sure x time and pressure x wévespeed curves but the British

Gas results (comparing different values for f) showed that this effect

would be minimal.

One further problem that was inherent in some of the results
from both British Gas and Foothills Pipelines (Yukon) Ltd. was that

the positions of the various pressure transducers had to be
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approximated to the nearest grid point in the theoretical model. This
would cause slight errors in the positioning of the pressure x time

curves. However, closer examination of this problem revealed that

such errors were negligible.

Finally, the errors inherent in the numerical modelling of the
system must be considered. In any situation where a continuous real
life problem is replaced by a discrete model, a discretization error
will arise in the solution. This can cause smearing when fixed grid
methods are used. If the discrete equations are then solved
iteratively rather than exactly, a further error is introduced called

the round-off error. By reducing the grid size, the discretization
error will be reduced since the discrete model would closer
approximate the continuous problem. However, the round-off error

would be increased since more iterative solutions would be required.

Therefore, decreasing the grid size would not necessarily increase

the overall accuracy.

In this.project, where the grid size is varied according to its
distance from the break, the discretization and round-off errors will
vary along the length of the pipe. At points where the grid size

changes there may also be local errors introduced.
Additional numerical problems in this project are due to the

computer rounding error. - Because of the complexity of the

equations, in some instances it is necessary to add numbers differing
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by a factor of 1012, Even when working in double precision, the
storage capabilities of the computer will obviously restrict the

accuracy with which such calculations can be performed.
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CHAPTER 9
CONCLUSIONS

The theoretical model that has been developed successfully
simulated the rapid expansion of gas following a break in a high
pressure gas pipeline. The reduced grid size in the vicinity of the
break .enabled close monitoring of the initiél expansion wa';'e in the
shock tube and full size test runs, and the program’s ability to
simulate flow in both directions in the pipe was appreciated in the
full size test runs where the break was not positioned at the end of
the pipe. = The method of representing the heat transfer and
frictional losses in the pipe by using constant value Stanton Number

and friction factor also appeared satisfactory.

The comparison of the theoretical results with available
experimental data did, however, highlight the areas for concern.
Firstly, it was found that despite calculating realistic isentropic and
isothermal wavespeeds, the model over-estimated the actual
wavespeed. This had the effect of displacing the pressure x time
curves to the left of the experimental traces.

. Secondly, there were found to be slight problems with the
stability of the solution. For certain grid sizes and initial conditions
the. solution would become unstable at random points along the pipe.
Although this type of instability could be controlled to an extent by
varying the grid size and break boundary conditions, the problem

may be totally alleviated by using an alternative numerical method

for solving the theoreticallequations.
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If these teething problems with the program could be overcome,
it is believed that excellent agreement with the experimental data

would be achieved.
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' CHAPTER 10

FURTHER WORK

This project offers considerable scope for further work in a

number of different areas, some of which are detailed below.

10.l. _Investigation of the Wavespeed Error

The elimination of the error in the calculated wavespeed is

essential if this theoretical model is to be developed further. A verj’

detailed examination of the equations used and their numerical

solution should reveal the source of the error. Initial investigations

this problem included an examination of the numerical

into
‘relationship between the theoretical, isentropic, isothermal, and actual

wavespeeds. With the Foothills Pipelines (Yukon) Ltd. data, it was

found that by halving the difference between the theoretical and the
isothermal wavespeeds, good agreement with experimental figures was
is shown in the table below, where the modified

obtained. This

wavespeed is defined as:-

Modifi'ed = isothermal +( theoretical -

isothermal )

wavespeed wavespeed wavespeed wavespeed 2
TEST |Isothermal | Isentropic | Theoretical| Modified | Actual
wavespeed | wavespeed | wavespeed wavespeed | wavespeed
NABTF 1 297 427 470 383.5 389
NABTF 3 266 441 468 367 354
NABTF 4 273 438 488 380.5 379
NABTF 5 286 405 469 377.5 375

(all wavespeeds are in m/s)
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Although these figures are encouraging, further work Iis

obviously necessary in order to pinpoint the error source.
10.2. Further Testing of the Present Mode

This project has highlighted the need for‘ further experimental
data in order to validate conclusively the theoretical model. To date,
thére has been no accurate record made of the temperatures reached
along the length of a pipe during and after a linebreak.
Experimental tests are also required which will record the effects of

a linebreak when the initial flow velocity in the pipe is non-zero.

10.3. Improvement of the Stability of the Solution

In order to improve the stability of the solution, it would be
beneficial to Iexperiment with other numerical methods for solving the
ordinary differential equations produced by the Method of
Characteristics. Improved computer run times may also be obtained
with some methods, which would be advantageous if the program is to

be extended to enable the modelling of branched systems.

10.4. Further Refinement of the Model

An extension to experimenting with alternative numerical methods
for use with the Method of Characteristics, wquld be to examine the
effectiveness of other methods of solutioﬁ. For exémple, the use of
flux difference splitting is now becoming more feasible due to new

technology rapidly advancing the capacity of computers.
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It would also be interesting to examine alternative models for the
boundary conditions (both for the upstream and downstream pipe
ends and for the break boundary). Ideally the need for operator

adjustment in the setting of the break boundary condition could be
overcome so that this possible error source would be eliminated.
Similarly, to reduce any errors incurred in the ‘calculation of the gas

constants, Cp, R, 'TC and P., alternative means of estimating these

values ought to be examined.

One further possible refinement to the program would be to
enable the computer to pre-determine the optimum time step length
for each grid point. This could greatly reduce the numerical
truncation errors incurred in the present model but would

necessitate two-dimensional interpolation.
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APPENDIX I. _ DERIVATION OF THE BASIC PARTIAL DIFFERENTIAL
EQUATIONS. WITH PRESSURE, TEMPERATURE AND VELOCITY AS THE

DEPENDENT VARIABLES.

The basic equations derived from first principles are:

3 de du_ 4

at"“ax]”’ax'o (1)
_a_l}- + u_a_l%] + -a—E - _.‘i - 3
at ax 3x - T A _essin® (2)
3h . 3h) (3P, 3P] _Wu+Q
3t+u3x - [8t+u8x = A (3)

To obtain © in terms of P, z and T

From the equation of state

Therefore

ne =P - R - InT - Inz
Differentiating with respect to time

gut z = z(T,P), therefore

dz

(52)pce + [Fper

dat - ap]T at * [aT P 33

d
t e G EE- G E &
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Substituting this into equation (1):-
B-iCIJE- Bt ToBe0

To obtain h in terms of P, z and T

From Zemansky [1968]:

dh _ . dT , (T (2 1gp
at - %pat* {p {aT]PT 1 } o dt
Substituting this into equation (3):-
ar , (T (3] ,, .} dP _ 8 W
ocp Gt * {5 [Flpr 1 -1 }\dt\" A (3)

Solving equations (4) and (5) simultaneously

[%_1[9_2] ]d_z _[1+1[§_z ]d_T__éz.z
z L3PJT]dt T 2z l3TIPJdt = 3x

. dpP .
Solving for gt °

wolh - BE Bl

&l 2 B

- - su [1 .1
= -5 x ! [T tz

[g%]P] Q +Awu (6)

But from the equation of state:

e = P - R - nT - nz
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Differentiating this with respect to temperature T, keeping pressure P

constant:
é [??T?] =TT [az]P 2 [BT P

1. T (3z
-7 {1 tz [aT P}
Substituting this into equation (6):-
1 1 (3z ll_ag]zd_lz fg_[l l_a_z]Q+Wu
{"CP[E'E[aTP]'[T+z[aT]P }dt+°cpax‘ T+z[3TP A
Dividing through by CP:-
o P (3z PT zg]zdp 3u
3 [[1 s [BP]T] - pcpr[l *z [a'r P }dt t e x

-k [ T[] o )

Solving equations (4) and (5) for g%:-

1 _1(3z)]dr, L, 1 (32 ]I () dr
pCP[}5-E[8_P5T]dt+[T+z{aT]P]p[8T]Pdt
_[l-l[éz ]M+I{i9]ju
“ P z lePITI A e L8TJP 3x
D1v1d1ng through by C and substituting for = [aT]p as before:-
e _Ba_z]_PT[I_az]“’sil
P{[l > [58)s ezt * 2 Sl I3

- B L TR w@
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Assume entropy ‘s’ is a function of pressure and density, s = s(P,o),

then:-
_ [3s 3s
ds = [ap]de * [89]Pdp
If the entropy is constant then:-

[a_s_ ‘ [ap [as

°=8P9'55 dolp

[ s~ ° [apo

=-[%%p[§%P’[%%p[§—§p

Assuming temperature ‘T’ is a function of pressure and density,

T = [%g]p b+ [g_g]Pdp
. [ ] [8P e [g ]T

Therefore:-

' g—g]; [[%]P/ [g_'?"]p] °-_g_1c13>_]T

But from Zemansky [1968] (page 288):

S,
= -

[aTP and [8Tp= T

Also;
5, = - &, &,
Thefefore:

), -2 B3 B,

an- aTP ap

2,
T

[2 2, -1 [ao

1
9—‘an EzgﬁT
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= - (30 (3]
[S%]p [gg]T = ;2 [g%]«{ gl?f [3—?]; (10)

But it has already been proved that:-
3 -_E_[ .’119_2]
[aTJP' T 1+z[aT]p
And from the equation of state:

B, -8 [ -2 3]

Substituting these identities into equation (9):-
%P 92[92 9[_225]__1_[ Iéz]]Z}]-l
[ap]S'T'T{ 1 aP]T cp'rl*z[afrp :

: g [1 ° {[1 —g [%EJT' 5‘3@ [1 +§ %'%]p]z}]‘l

and [SE]% can be defined as the ISENTROPIC WAVE SPEED ‘ag’.

Substituting this into equations (7) and (8):-

1 dP du

dp u _ _1_
aZdt ' €& T [1+z

: (5]

“I%

3
u 1 - 22z Q +Wu

lC;[ (aT)P]ax=$[ zaPT] A

mNIb—-

or alternatively, including equation (2):-

P . 3P au _ T (3z] ] & +Wu -
3t T U3 teas i C CpT [1 *z §T]p] A (11)



3u u du 13P _ _W _ gsin® (12)

ar | ar g_g[ T (3z ]@_az[_ga_z]w
R L ]P “op ! [aP]T A



APPENDIX II. FRICTION FACTOR RELATIONSHIPS

Turbulent flow (such as wusually occurs in gas transmission

pipelines) may be categorised into two regimes:-

1. Fully developed turbulence - this is described by the Rough Pipe
Law which assumes that the friction factor is solely dependent on the

(k d
pipe roughness}md size.h) The rough pipe law is of the form:

1

7F - A; log [%] + By

2. Partially developed turbulence - this is described by either the
Smooth Pipe Law or in Blasius form. Here it is assumed that the
coefficient of friction is dependent on fluid properties and conduit

size alone. The Smooth pipe law is of the form:

1 L
e A, log(Re/ 7f ) + B

and the Blasius form of the friction relationship is:

A and B in each of these e}épressions are constants.

There is also a transition zone between the partially and fully
developed turbulence which can be described by a combination of the

above two laws.
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Listed below are some of the relationships defining the friction
faétors that wvarious research teams have used for the analysis of
transient gas flows in pipes. >Some of the relationships ha‘ve been
adapted so that they all apply to the definition of frictional force per

unit length (W):-

- A ulul

1. Fully Developed Turbulence

In the mid 1950's Smith et al [19856] also developed a version of

the rough pipe law:-

§§ = 2 log [g;ﬁg] + 2,273

This version is almost identical to that developed empirically by
Nikuradse [1933]. Nikuradse’s formula was used by Weimann {[1978]
to dynamically model gas distribution networks because Schlicﬁting
[1965] maintained that it applied approximately to transient flow
processes with slow vibrations of moderate amplitude. - Taylor [1978]
also used a friction factor defined by the rough pipe law. He
assumed that because of the high velocities normally attaiﬁed the

- flow would be fully turbulent.
2. _Partially Developed Turbulence

Blasius [1911] proposed an equation for partially turbulent flow

valid for Reynolds numbers below 105:-
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f = 0.3160 Re~©:2%

Since then, numerous modifications have been made to the equation

by various researchers. For example, Chaudhry [1979] used a

friction factor for flows in which

Re > 2 x 103, defined by:-

f = 0.046 Re™©-2

Another equation that can be written in Blasius form is the

Panhandle ‘A’ equation:-

1 . 0.073
i 3.39 Re. E

3 f = 0.087Re=0.146 %—z
where E is the efficiency of the system and is an adjustable
parameter which allows for the effects of the minor losses and
variations in pipe roughness. The Panhandle ‘A’ relationship is a
popular equation for gas transmission calculations where partially

devgloped turbulent flow is occurring. , B

.

Smith et al.[1956] developed a smooth pipe law which, for the

Darcy friction factor, was defined as:-

s = 2 log [Re/ 22| - 0.3
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This version, when multiplied by a drag factor, F, to account for the
effect of bends and fittings, was favoured by Uhl et al [1965] to

represent pértially developed turbulent flow:-

7 "?F log [5avg)

3. Transition Zone

Colebrook [1938-9] proposed an equation for the transition zone

between partially and fully developed flows:-

1 1

7t = 2108 aTa v 2.5 (1) /Re

This was the first reasonably successful attempt to define a universal
friction factor relationship for turbulent flow. It is an implicit
semi-empirical formula which is represented graphically by the Moody

Diagram and is the basis of the Colebrook-White or Prandtl-Colebrook
equations:

1 k . 2.53
7F = 72 log [3.7d * Revf

Oliemans [1976] used a modified version of Colebrook’s expression

to model friction in two-phase flow:-

1 [ 2k . 18.71 ﬁ
Te= -2 log [deff + Re,/f] +1.74

where Re’ is a two-phase Reynolds number

and dggs is the effective diameter for two-phase mixture.
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Over the years, numerous explicit approximations to Colebrook’s

equation have been developed, the first of which was by Moody

[1947]:-

£=0.0055 {1+ [20000 [g] + égf]i/a}

This equation was relatively inaccurate showing an average error

of 4.3% for the test cases of Zigrang and Sylvester [1982].

Swamee and Jain [1976] developed an explicit equation by curve

fitting the Colebrook-White equation:-

1 K 5.74
7F = @ log (555 * meves

This equation was found to have an accuracy to within 1% for

steady flows where 5 x 102 < Re < 10® and 10~® < k/d < 10~2,

Further explicit equations were obtained by substituting
values for f into the right-hand side of Colebrook’s equation.

Zigrang and Sylvester [1982] used f = 0.04 and Shacham [1980] used

f = 0.03.

Zigrang and Sylvester

1 _ . k/d | 13) .

7F = ~elog (35 + &)
Shacham

1 k/d . 14.5

7f = ~2log {3.7 * e J
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Haaland [1983] re-examined the basis for Colebrook’s equation and

developed the explicit relation:

1,112
L« Ltog [B0 4 (5911

Haaland then generalised this equation to:-

1 _ -1.8 6.9 k/d1-11n
L= B a0 {87 + £

and suggested that n = 3 yielded friction factors in agreement with

those recommended for use in gas transmission lines.

The accuracy of these and more complicated explicit friction

factor equations has been examined by Zigrang and Sylvester [1985].
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APPENDIX III. IMPLEMENTATION OF TAYLOR'’S THEOREM FOR VARIOUS
GRID POINTS

Taylor’s expansion around a point x is given by:-

. h2 , h3 .

u{x + h) = u(x) + hu’(x) +t3u (x) * g ux) tea.,
. h? h3 .

u{x - h) = u(x) - hu’(x) +:2—-u (x) -5 u "{(X) Feorseen

For a standard internal point with equidistant adjacent points,

using the notation shown in Figure 4.2(i), these equations may be

written:~

u(i +1) = u(i) + &x.u’(i) + Lé?z_i_)_i u"(i) + _gég_c)_a u™(i) +....(1)

2  Ave) 3

uli - 1) = u(d) - axu’(3) + B2 wng) - ‘A’g) W) +eeea(2)

Adding equations (1) and (2) produces:

, . _ . (&x)3 . . .
u(i + 1) +u(i - 1) = 2u(i) + 2 —p— .u (i) neglecting higher order
terms
"y - ]. . .

3 uw'(i) =gy {uli + 1)+ -1 - 2u)] (3)

Subtracting equation (2) from equation (1) produces:
u(i + 1) -~ u(i - 1) = 28x.u’(i) neglecting higher order terms

. 1 7 1
> u’(i) = TAx tg(i + 1) - u(i - l)j (4)

212



With reference to point Q in Figure 4.2(i), by substituting
equations (3) and (4) back into Taylor’s expansion, the following

expression for the property u at point Q@ may be derived:

u(i - posQ)

UQ

uli) - 922_}929 { (1+1) - u 1-1)} + 222?— {u(i+1) + u(i-1) - 2u(i)}
(5)

Similarly for point R:

[ui+1) + u(i-1) - 2u()]
(6)

2
ugp = u(i) - E%— {u(1+1) - u(i- 1)} + ZA)S{R

And for point S:
, |
us = u(i) + B3 u(is1) - ui-n} + B fu(isn) + u(i-1) - 2u(i)}
(7)

Equations (5), (6) and (7) are used to define each of the

variables P, u, T, z, 9z/3T, @, a5, &, and W at the bases of the

characteristics.

For an internal point between two different grid sizes, two
separate Taylor’s expansions are necessary at the adjacent grid
points. For such a point upstream of the break, as detailed in
Figu're 4,2(ii), the Taylor’s expansibns about point (i + 1) and point

(i = 1) yield the following formulae:

Gz {ati + 2) 4 u) - 2t + 1)

u"(i + 1) ”

Wi+ 1) =g fuld + 2) - u()
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uw(i - 1) El{—z {u(i) +uli - 2) - 2u(i - 1)}

= [u(d) - ~— 2)}

u'(i - 1)

Therefore,

u((i - 1) + (26x - posQ))

UQ

28x = SQ> {U.(i)

u(i - 1) + 2 uli - z)}

, (28x - posQ) 3 {u(i) + u(i

e 2) - 2u(i - 1)} (8)

For point R:

u((i - 1) + (24x - posR))

u(i - 1) + BEZRoSB(5) _y(s - 2))

UR

2) - 2u(i -_1)} (9)

_ 2
4 28 8A§§SR) {u(i) + u(i

and for point. S:

u((i + 1) - (&x - posS))

us =
) + (Ax2;x§°58)2 {u(i +2) + u(i) - 2u(i + 1)} (10)

By the same logic, for this type of point situated downstream of

the break as shown in Figure 4.2(iv), the following equations may be

derived:
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ug = u((i - 1) + (&x - posq))

= ui - 1) + Ry -y - 2)]
_ 2
+ ‘AXZXZP°SQ’ fui) +u - 2) - 2ui - 1} (11)

up = u((i - 1) + (&x - posR))

s u(i - 1)+ LEZRORyh) -y - g
s 10~ posR)® {u(3) + uli - 2) - 2u(s - 1)) (12)
ug = u((i + 1) - (28x - posS))
s (i + 1) - 12 RSS) (s 4 g - u(i)]
I B {Q(i) +uli +2) - 2u(i + 1)} (13)

Equations (11), (12) and (13) are valid when the flow is in the

positive x direction. However, if flow reversal occurs, equation (11)

has to be replaced by:

u((i + 1) - (28x - posQ))

% =
= u(i o+ 1) - RSy 4 gy -]
, Lenx ;AzgSQ)z {u(i +2) +u(i) - 2uli + 1)} (14)

In the situation of a point linking two different grid size regions
(as illustrated in Figure 4.4) two separate Taylor expansions are
required at two different time levels. Using the notation of Figure

4.4, the following expressions may be derived:
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£For ' point wpSEdai of. the breakis

Wi+ 1) = TZ%T? i + 2) + vy - 2u(d + 1)}
Wi+ 1) 55 {uli 4 2) - uy)
w'(i-1) = Z%EZ{uX +uli - 2) - 2u(i - 1)}

u'(i-1) = ;%; fux - uti - 2)}

Therefore:

ug = u(i - 1) + (ZAX4ZXPOSQ) {uX - uli - 2)}

(2Ax -
+ 8Ax

] :
2os2)° fuy + ud - 2) - 2u(i - 1)} (15)

s u(i - 1) 4 RS s g))

§

- 2 \
. (ZAXangosR) {uX +uli - 2) - 2u(i - 1)} (16)

ug = u(i + 1) - LEEB088) gy 4 2) - uy

- 2
p A0 —ROSSIT fu(i 4 2) 4 uy - 2u(i + 1) (7

Similarly, for this situation occurring downstream of the break,

Figure 4.2(v):-

u(i - 1) + LR fuy - u(i - 2))

uQ'=
- 2
, {ox ZAing> fux + u(i - 2) - 206 - »} (18)
wp = u(i - 1) ¢ SRR (s - g))
. 18 ZA)lzgsRl {UX +uli - 2) - 2u(i -1)} - (19)
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w = (i + 1) - (2Ax4.;xP0sS) futi + 2) - ug}

» 12220552 fu(i 4 2) + uy - 2u(i + 1) - (20)

and if flow reversal occurs, equation (18) is replaced by:

ug = u(i +1) - (ZAX4ZXPOSQ) {u(i +2) - uY}

, l28x - posQ)?2

T {u(i +2) +uy - 2u(i + 1)} (21)
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APPENDIX IV. DERIVATION OF THE PARTICLE VELOCITY OF A
RAREFACTION WAVE '

:After making certain investigations into the properties of a sound
wave transmitted through a small horizontal tube of uniform bore,

Earnshaw [1860] deduced that for a system shown in ‘Figure A.l
dy _ ¢ [dy | |
at = F [dx] (1)

where F is a function of a form to be determined.

Differentiating equation (1) with respect to time produces:-

e R R @
X o dx
é e ]
Z /8 ‘ time tq
Z -
Z
% Y e’ »
Z /° time ‘t

Fig. A.l  Model of fluid movement in a tube.

From the conservation of mass, using the notation shown in

Figure A.L

e dy

&

(3)

U
0
n
o
aio
&h
-k
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Similarly, from the conservation of linear momentum:

d2

3
Pa - [P+ 5& dx|a = 0 A dx $F
3P d2
> "% " Cfat | (4]

P
P = -0 y
0o” ©
3P _ P, y-1 deo
-_= Y . —
x o © 3x | (5)

But by differentiating equation (3) with respect to X, the

4

following expression for 80/39x is obtained:
22 _ gz -2 42
Feeln) (6)

Substituting equations (6) and (3) into equation (5) produces:

2L 7 e (7

dyJ -r-t 1)

= - P 7 [

2%

Equation (4) can then be re-written using equation (7):

o
n o
[oR Te
=4 i)

P -y-1
55 Cy [S.JXJ .

(8)
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Comparing equations (2) and (8):

8 =evg2/ [P 3 (9)

Integrating equation '(9):

e R

where C is a constant of integration.

Substituting for F[—‘i{] and [%xz]using equations (1) and (3)

respectively:
1oy
dy . o . 2 (99 2
1Y
- 2_ Ba (Eay 2
=C ¥ 33 Jbo (p ) (10)

Taking boundary conditions as:

u[=v g%] = 0 when @ = @,

then from equation (10):

2 YPs

= —_—y —

O C ¥ 7.1 po
- 2 YP,
2C== -1 Y oo

Substituting this back into equation (10):

1=~y
2 Po 2 YPo (€0] 2
- 7 -—
i R N T [p]

Yy-1

P
et )
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but since isent:ropic1 flow has been assumed:

e . 2_]?
€o Po
and
ap = v ;—z—g
Therefore:
y=1
as -y (5] 71
Y-1
=550 {1- (5] 77

This expression has been used by several investigators

example Bakhtar [1956], Jones and Gough [1981],

(11)

{for

Bannister and

Mucklow [1948]) to determine the particle velocity of a rarefaction

wave.
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SHOCK TUBE

FULL SIZE
COMPONENT BGC (S/T) FOOTHILLS (ALBERTA)
GROVES
Test 7 Test 8 Test 9 NABTF1 NABTF3 NABTF4 NABTFS

OXYGEN 09 0.0008 0.022 0.017 0.018 0.016 0.013
NITROGEN No - 1.498 0.91 0.87 0.89 1.710 1.56 1.804 2.212
CARBON DIOXIDE CO9 1.073 0.62 0.62 0.61 0.076 0.049
METHANE CHy 83.266 82.4 82.3 82.8 86.59 85.36 85.36 84.70
ETHANE CoHg 9.608 7.89 7.85 7.83 6.80 8.22 7.68 8.21
PROPANE CgHg 3.597 5.2 5.3 5.1 4,03 4.34 4.46 4.38
ISO-BUTANE iC4H10 0.3414 0.45 0.47 0.43 0.262 0.182 0.238. 0.201
N-BUTANE nC4Hy ¢ 0.4581 1.21 1.28 1.15 0.421 0.278 0.331 0.235
ISO-PENTANE  iCgHjpo 0.0403 0.25 0.27 0.24 0.057 0.029 0.032 0.029
N-PENTANE nCgHj 2 0.0342 0.35 0.37 0.33 0.034 0.028 0.032 0.030
N-HEXANE nCgH14 0.0046 0.64 0.63 0.56 0.008 0.013 0.011 .0.008
N-HEPTANE nCq7Hyg 0.0003 0.003 0.003 0.002 - - - -
N-OCTANE nCgHyg 0.0001 - - - - - - -
N-NONANE nCgHoq - - - - - - - -

TABLE Al, NATURAL GAS MOLAR COMPOSITIONS (%)




XA

- SHOCK TUBE

FULL SIZE
COMPONENT - BGC (S/T) FOOTHILLS (ALBERTA)
GROVES

Test 7 | Test 8 | Test 9 NABTF1 | NABTF3 | NABTF4 | NABTF5
OXVGEN 0y - 0.03 0.03 0.03 0.03 0.02
NITROGEN Ny 2.18 1.25 1.19 1.23 2.56 2.32 2.68 3.28
CARBON DIOXIDE COg 2.45 1.34 1.33 1.32 0.18 0.11 o
METHANE cly | 69.40 | 64.89 | 64.57 | 65.66 74,28 72.70 | 72.50 72.04
ETHANE CoHg | 15.01 | 11.65 | 11.54 | 11.64 10.93 13.12 | 12.23 13.09
PROPANE Calg | 8.24 | 11.26 | 11.43 | 11.12 9.50 10.16 | 10.41 10.24
ISO-BUTANE  iC4Hyo | 1.03 1.28 1.34 1.23 0.81 0.56 0.73 0.62
N-BUTANE nCqHyg | 1.38 3.45 3.64 3.30 1.31 0.86 1.02 0.72
ISO-PENTANE  iCsHjp | 0.15 0.89 0.95 0.86 0.22 0.11 0.12 0.11
N-PENTANE  nCsHyp | 0.13 1.24 1.30 | 1.18 0.13 0.11 0.12 0.11
N-HEXANE nCglyg | 0.02 2.71 2.65 2.38 0.04 0.06 0.05 0.04
N-HEPTANE  nCyHjg - 0.01 0.01 0.01 - - - -
N-OCTANE nCgHi g - - - - - - - -
N-NONANE nCgHoq - - - - - - - -

TABLE A2. NATURAL GAS MASS COMPOSITIONS (%)
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Component Mol.wt.|{Boiling Pt. | Critical Critical Critical Critical Spec.Gas | Spec.Heat | Ratio of
M Temp, T Temp. T, | Pressure P; | Spec.Vol. V. | Comp.Factor Z, Const.R Cp Spec.Heats
('K) | ("K) (kPa) (cm®/mol) (J/kg) | (JI/kg) Y

ARGON  Ar 39.948 87.3 150.8 4870 74.9 0.291 208.13 520 1,668
NITROGEN No  [28.013 7.4 126.2 - 3390 89.8 0.290 296.84 1037 1.401
CARBON

- DIOXIDE COy 44.010 316.5 304.1 7380 93.9 0.274 188.92 819 1.300
METHANE CHy 16.043 111.6 190.4 4600 99.2 0.288 518,36 2174 1.313
ETHANE CoHg | 30.070 184.6 305.4 4880 148.3 0.285 276.51 1533 1.220
PROPANE C3zHg | 44.094 231.1 369.8 4250 203.0 0.281 188.64 1639 1.130
ISO-BUTANE -iC4Hyq | 58.124 261.4 408.2 3650 263 0.283 143.03 1633 1.096
N-BUTANE nC4Hyqg | 58.124 272.17 425,2 3800 . 255 0.274 143.03 1633 1.096
ISO-PENTANE iCgHypg | 72.151 282.6 433.8 3200 303 0.269 115,24 1455 1.086
N-PENTANE nCgHjg | 72.151 309.2 469.7 3370 304 0.263 115.24 1455 1.086
N-HEXANE nCgHi4 | 86.178 341.9 507.5 3010 370 0.264 96.48 1302 1.080

TABLE A3. PROPERTIES OF THE MAIN CONSTITUENTS OF THE GAS MIXTURES




V __PROGRAM LISTINGS

The programs and subroutines are listed in the following order:;-

Transient Analysis Program

Subroutine -

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

STEAD1
STEAD2
SUB1
SUBZ
SUB3
SUB4
SUBS
SUB6
BREAK1
BREAK2
BREAK3
BREAK4
SUBUP
DOWN1
GETFIL

DMINV

Graphics Program
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1

Program to evaluate pressure surge in gas pipelines

C. Tiley February 1787
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notation: -~

aat isentropic waveszpeed for atmosphere

ao initial isentropic wavespeed at the break point
ar cross-sectional area of the pipeline

as isentropic wavespeed

cp specific heat at constant pressure

d diameter of pipeline

dt variahle time step used in subroutines

dt1 specified time step

dx variable section length used in subroutines

dx1 specified elemental pipe section length
dd grid length near the break (= dx/64)

e flow vrate / area

f fricton factor

g acceleration due to gravity
ga ratio of specific heats

ht heat ftransfer

11 length of pipe before break
12 length of pipe after break

ml number of i values before break

ma number of i values after break

nl number of elemental sections of length dx before break
ne number of elemental sections of length dx after break
p pressure at a point

pat atmospheric pressure

pc critical pressure of the gas

pe pqualisation pressure

pec  critical equalisabtion pressure
pi pi(=3. 14139}

T specific gas constant

TO density at a point

st stanton number

t temperature at a point

tat atmospheric temperature

tc critical temperature of the gas

th angle of inclination of the pipe

ti time after break

tm total Tun time

tw pipe wall temperature

v ' flow velocity at a paoint
frictional force

z compressibility factor

p (dz/dp) at constant temperature

2t (dz/dt) at constant pressure

character#l quest

implicit double precision ta~h,o-z)
double precision 11,12
dimension pl(BOO).tl(Bﬁﬁ),ul(BOO).21(300);zpl(WOO).zti(SOO).
rol(300), as1(300), ht1 (3200}, wi (300},

p2(300), £2(300), ud (300}, 12(300), zp2(300), 2t2(300),
rod(300), as2(3007, ht2(300), w2(300),
ppl(SOQ),ttl(?OO‘.uul(SOO) pp2(300), tt2(300), uu2(300),
ppsi(300), pps2(200), tts1(300), tEs2(300), zpx (&), z2py (b)),
PX(&Y,uxChl, bx(h), zx (b)Y ux (b)), zbxtE), rax(b),rasx(6), htx(6),
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n

100

R

W

111
112

. - 4 et s m g Nl
% pz(br,uzlb), tz by, 22061, w2zlb), 2t2(b), roz(b),as52(b), htz(b),
2 wavel(300), waveR(300),at1(300), at2(300)

pi=3. 141592654

g=%. 81

format(v)

ti=0. 0

Read in initial gas data

print#, 7is the gas data on file 7 {y/n) '
read#, quest

if (quest.eq.’n’.or.quest.eq.’n’) goto 1
print#, ‘enter name of gas ’

call getfil(1iC)

read(1Q, #rcp, v, tc,pc

goto 2

print#, ‘gas data required: -’

print#, ‘specific heat at constant pressure cp (kj/kg k)’
readid, op

cp=cp#1000

print#*, ‘specific gas constant v (kj/kg k)’
read#*, T

r=7r#1000

print#, ~critical temperature tc (celcius)’
read#, tc

tc=tc+273. 16

print#, ‘critical pressure pc (kpal)’

read#, pc

pc=pc#*1000

Read in initial pipeline data

print#, ‘is the pipeline data on file 7 (y/n) ’
Tread#, quest

if (quest. eq. ‘n’‘.or. quest. eq. 'n") goto 3
print#, ‘pipeline ’

call getfil(1l)

read (11, #)d, th, 11,12, dd. £, st, tw
goto 4

print#, ‘pipeline data rvequired:
print%¥, ‘diameter of pipe d (m}
Tead*, d

print#, ‘angle of inclined pipe (degrees)
read#, th

th = th # pi / 180.0 )
print#, ‘length of pipe upstream of the break poinft (m)
read*, 11

prift®, ‘length of pipe dounstream of the break point (m) 7
readk#, 12

print#, ‘required grid size near the break (m)
if¢l2. eq.0.0) gota 111

dx2=minQ(11, 12)/5746. 0

goto 112 '

dx2=11/576. 0

write (&, Bldx2

format("(must be less than ", 8.3, m)")
read#*, dd :
print#, ‘darcy Friction factor
read#, f '
print#, ‘stanton number
read#, st

print#, ‘wall ftemperabture (celcius)
read#, tw

—
.?,

-

-‘:5 ’

-7

-7
R

D

2727



a N

i1

[n s

it aoMn

11

prints#, ‘atmospheric temperature (celcius) 7
read#, tat

tat=tat+273 16

print#, ‘atmospheric pressure (kpa)
Tead®, pat

pat=pat*1000

-
;

Calculate initial isothermal flow conditions along the pipe

dxl=dd#&4

ga=cp/{cp-1)

aat=dsqgrt(l. 4*287%*tat)
nl=ifix(11/dx1+Q. 37
ne=ifix(12/dx1+0. 3)
mi=ni+i2tl

ma=n2+121

ar=0, 25#pikd#d

call steadl (pl,ti,ul,zl,rol.r,e,d,pc,tc,th, fog,pi,dxl, ml,nl)
ao=dsqrt{ga*pl(ml)/raollml))
if(12.eq.0.0) goto 113
p2{1)=plimi)

t2(1)=t1(ml)

u2(1)=ul{ml’

22(1)=71(ml)

ro2(1)=roll{ml) :
call stead? (p2,t2,u2, 22, voa, T, e,d,pc, te, thy £, g, dxl, m2, n2)

Calculate wavespeed at time to at i=1 in pipe 1

pl(1)=C(z1(1)-1)/p1(1)
zt1(1)=(B1#tc##3/(HA#E1 (1) ##4)-FREc/ (128%t1 (1) ##2) ) upl(1)/pc
as1(1)=CCl+zt1C1)#L1(1) /721 (1Y) #x2)#pl(1)/(rol (1) #E1(1)#cp)
asl(1)=C1-zpl(1)#pl(1)/z1(1)=asli(1))#rol(1)/pl(l)

asli(l)=1/dsgrt(dabs(asi(1)))

Read in the run date

print#, ‘length of time step required (msecs.) 7'

grad=dx1#300. /asl(1l)

write(é:, 7)grad

format("time step must he less than", f8. 3, "msecs")
read#, dtl :

if(dti. le. grad) goto @

print#, ‘time step exceeds the stability criterion’
goto & _ -

print#, ‘total run time required (secs.)
read#, tm

dt1=dt1/1000

b4

PT ARG, 338 3030 H 3030 30303 3 2R S0 36 30 30 3 309 3633 3303 20 S A3

print#, ©
print*, ’ Transient Analysis Results’
4 ?

prints:,
pr i b3, 7R H 3R 0 30 A R 4 4 2 338 3 M 3 H 30 6 B I S R 36 3 M SR 3 A0 IE H M 3N 4

Set number of Ltransducer points for printing out results at

nint=12
write (42, 929)nint

99 format(id)

Transient calculations for pipe 1 (upstream of the break)
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k=0
Jjk=0
33 do 70 j=1, 64
ti=ti+dtis64a
do 5 i=1,ml
21(i)=9xtc/(1208#t1(i))—-27#tc##3/ (64441 (1) %%#3)
z1(i)=z1(¢i)#pl(il)/pc+l
tpl(id=(z1Ci)—=1)/pl(i)
zt1 (i) =01t x3/ (&4 E1 (1) ##E)~ 9*tc/(1“8%t1(1)*t1(1))
zt1(id=rEiCid#pl(i)/pc
rol(l)wpl(l)/(r*tl(l)#rl(i))
wl(i)=dabstar#rpol (i)#frul (i)*¥0l1(i))/(2%d)
asl(i)=((i1+zt1(id#t1 (i) /21 (i) ) ##2)y%pl (i)
asli{i)= as1¢i)/C(rol¢i)#tlCid#cp)+zpl (i) #pl(id/z1C1)
asl(xJ—(J —asl¢i)I#rol(id/plii)
asl(iy=1/dsqri(dabs(asl(i)))
hticisr= pl%cp*st*d*rol(11*u1(1)*(tw—t1(1))
ati(ir=(1+t1(iduztl(i)/z1(i))#%2
atl(it=ati(id)/(1-pl(id#zpl(i)/z1(i))
ati(id=(i—atl¢id#z1(i)#r/cpl*asl(idx*asl(i)
ati(i)=dsqrt(dabs{at1(i)))—dabs{ul(i))
35 continue
do 10 i=1,m2
if(12. eq: 0.0) gote 10
zr(1)u9*tc/(1”8%t2(1))m”7&tr4*3/(64%t“(1)*%?)
z2(iy=z2(1i)#p2(i)/pc+l
zp2(Cir=(z2¢i)~1)/p2(i)
zta(1)—P1*tc%*3/(64*f”(1)**4)—94tc/(1 G#t20i)#£201))
1E2(iy=zt2(i)#p2(i}/pc
TO2(ir=p2¢i)/(r#t2(i)*z2(1))
w2(1)*dabs(ar*r02(1)*F*u2(1)*u2(1))/(“*d)
as2(it=((1+zt2¢i)#L2(i)/z20i) ) ##2)#p2(1)
as2(il)=as2(i)/(ro2(i)#E2(i)#cpr+zp2(i)#pa(i)/z20i)
as2(i)=(l—as2(i))#*ro2(i)/p2(i)
as2(id)=1/dsqrt(dabs(as2(i)))
ht2(i):pi*Cp*st%d%roz(i)*uz(i)*(tw—tQ(i))
t“(1)~(1+t9(i)*ztﬂ(i)/IZ(i))**”
at2(ir=at2(i)/(1-p2(i)#zp2(i)/z2(i))
at2(ir)=(l—at2(iry#z2¢ir*r/cpl#as2(ir*asa(i)
at2(i)=dsqrit(dabs(at2(il)))-dabs(ua(i))
10 continue
if(jk.eq.0) goto 11&
tis=ti-65%#dtl1/64
write(b H&)tis :
56 format(/, fB. &, ‘secs. after break, the results in pipe 1 are:=")
write(42,78)tis '
?8 format(f8.6)
do 92 i=1,ml
ppsi(i)=p1(i)/1000
tts1(id)=t1(i)-273. 16
wavel{(il=asl(i)r—ul{i)
if(i.eq. 27%) goto 881
if(i. eq. 172) goto 381
if(i. eq. 157) goto 881
if(i.eq. 140) gotao 881
if(i.eq. 123) goto 881
if(i.eq. 106) goto 881
goto 52
881 1i=i+10600
write(42, 55)ii, ppslCi), ul(i), ttsi(i), wavel(id, atl(i)
22 continue
if(l2. eq. 0. CG) goto 116
do 446 i=1,m
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tE52(i)=t2(i)-273. 16
waved{i)=as2(i)~dabs(u2(i))
if(i.eq. 1) gote 882

if(i.eq. 1283) goto §82
if(i.eq. 143) goto 882
if(i. eq. 160) goto 882
ifli.eq. 177) goto B82
if(i.eq. 194) goto 882

goto 464

1i=14+2000

write(d2, 55)ii,pps2 (i), u2(i), tts2(i), wave2(i), at2(i)

37

40

13

120

71

393

continue

Jjk=0

dx=dx1/64

dt=dt1/64

.do 37 i=1,ml

ppliCi)=pl(i)

tEtlCid=t1(¢i)

vul(i)=ulfi)

continue

do 40 i=1,m2

if(12. eq.0.0) goto 40

ppali)=p2(i)

tE20i)=t2¢i1)

vu2(id)=u2(i)

continue

do 12 ii=1,ml

i=ii

if(i. 1t. (m1-463)) goto 12

if(i.gt. (m1-1)) goto 13

call subl(pi,ti,ul.dx,ppl, ttl,vul, te,pe,r,ar, f,d.cp,pi,st,
% twrgidt,iszlszpl,ztl,rol, wi,asl, htl, th)

goto 12

if(ti. gt. (Bixdtl)) goton 358

if(ti. gt. dt1) goto 92

if(l12.eq.0.0) goto 120

call biedkl(pl ti,ul,p&, 82, v, ppl, ttl,uul, 21, zt1l,vrol,asl, htl,
¥ owl, dx,tc,pr,rlar,F dicprpisst, turg,dt, i, th, 22, 2t2: ro2, asad,
X ht2, w2)

if(j. ne. 64) goto 12

psave=ppl(ml)

usave=yuyl(ml)

tsave=ttl(ml)

pec=((2/(ga+l1) ) ##(2#ga/(ga—1)))#*psave
yl=(2/(ga—1)i1#*asl(ml)#(l—-(pec/ppliml))#x#((ga—-1)/(2%gal)))
y2=dasqrt(l. 4#( (2. 4)%(pec/pat)+0. 4)/2)
ya=gat#((pec/pati)-1)/ya

if(yl.gt. y2) goto 71

peq=pec

veq=yl :

teq=2#ttl1(mi)/(ga+1)

goto 12

pe=(50+42%yl#yl/(aat*aat) ) ##2-100%(25~7#ylsyl/(aatraat))
pe=(50+42#ylaxyl/(aat*aat)+dsqrtipe) ) /50

if(dabs(pe-pec). 1lt. pe/100) goto 72

pec=pe

yl=(2/(ga— 1))*a:t(mi)*(ln(poc/ppl(mi)))%*((ga 1)/ (2%ga))
goto 71

peq=pe

ueq=yl

teq=ttl(mld*((pe/ppliml))#x((ga—~1)/(2%ga)})

gota 12

format(ifd, 1x, 5f14. 4)
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ppLimi)=(psave-peq)#((1. O~kk/3120. 0)##2)+peq
S8 call break3(pl,t1,ul,ppl,ttl,uul,zl,2t1,vol,asl, htl, wl,
% dx.tc.pc:r,ar.F,d,cp,pi;st.tw;g,dt.i,th,pat,tat)
12 continue
k=1
ji=0j/2)%2
if (jl.eq. j) goto 14
i=mi1—~&4
px(1)=pl{ml-&4)
tx(1)=t1(ml—-64)

ux(1)=ul(ml—-&64) ’
call subz(pi,tl,ul,dx,ppi,ttl;uul.tc'pc,r.ar.F;d.cp,pi,st.

% tw;g.dt,i.zl:zpi.ztl.roi.wi,asl,htl.th)
py(1)=ppl(ml—-64) '
ty(l)=ttli(mli-64)
vy t1)=uul({ml~-64)
goto 11
14 ji=jl/2
dx=dx*2
dt=dt#2
do 15 ii=1, (mi-&4)
i=ii
if(i. 1t (m1-95)) goto 15
if (i.ge. (mi-4&3)) goto 16
tall subl(pl.tl,ul;dx,ppl,ttl.uul)tc,pc,r,ar.F.d.Cp,pi,st,
& tw,g.dt,i.z1,zpl,ztl.rul,wl.asllhtl,th)

goto 195 :
16 zx(k)=(9rtc/(1282tx (k) )-27#Lc##3/ (L4#tx (k) ##3) I#px (k) /pe+l

zpx(kI=CzxCk)=1)/pxCk)
1t (kI=(Blatc##3/(HA%tx (k) ##4)—F#tc/ (128#Ex (k) #Lx (k) ))I#px(k)/pc
rox(k)=px(k)/(r#tx{k)#zx(k)) .
wx({k)=dabs(ar#rox(k)*fxux (k)*ux(k))/(2%d)
asx(k)=CCl+tx(krwztx (k) /zx(k)rwx2)#px(k)/(rox(k)#tx{k)*cp)
asx(k)=asx(k)+zpx(k)#px(k)/zx(k)—1
asx(k)=1/dsqrt(dabs(asx(k)#rox(k)/px (k1))
htx(k)=pi*cp*st%d*rox(k)*ux(k)*(tm«tx(k))
if(i.gt. (m1-&3)) goto B1
plti+1l)=px (k)
ul(i+1)=ux(k)
t1(i+l)=tx (k)
z1(i+1)=zx (k)
wl(i+1)=wx (k)
zblCi+i)=zLix (k)
rol(i+l)=rox (k)
asl(i+l)=asx(k)
htl (i+1)=htx (k)
call subl(pi:tilulldx,ppl,ttl,uui.tc.pc.r.ar;F,d,cp.pi.sh
% tw/g,dt,i,zl,zpl,ztl,rol,wl,asi, htl, th)
goto 15
81 dt=dt/=2
dx=dx/2
ry (k) =(9rtc/ (128#ty (k) )-27#tc##3/(64#ty (k) #*#3) ) #py (k) /pc+l
zpyCk)=Czy(kI=1)/pyCk)
2ty (k)=(Bletc##3/ (64#ty (k) ##4)-Frtc/(12B#ty (k) #ty(k))I#py(k)/pc -
roy(k)=pyCk)/(r#ty(krtzy(kl)
wylk)=dabs(ar#roy (k) #fruyCk)#uy (k) )/ (2%d)
asyCk)=((l+tyCkr#zty(k)/Zzytk) I ##2)#pyCk)/(roy(krI*ty(k)*cp)
asy(k)=asy(k)+zpy(k)stpy(k)/zytki—1
asylkl)=l/dsqrtldabsfasy(k)*roy(k)/pylk)))
hty(k)=piscpestad#roy(k)#uy(kI*(tw-tyk))
call subS(pl, &1, ul,dx,ppl, ttl,vul, tc,pe,rear, fodrcp.piisty
% tw,grdt, i, 23, zpl, 2kl rolwl,asl hEed, thypxouxs Exs wx, 2,
% zhx,vox,asx, htx,py,uy: by, wy. zy, zty, roy, asy, hty, k)
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dx=dx#2

15 continue ,
. 1

17

19

k=2

j@=jl1/72)%#2

if (j2.eq. j1) goto 17

i=(mi-96)

px{2)=pl(m1—-96)

tx(2)=t1(ml1-96&)

ux(2)=ul(ml-9&)

call sub2(pl, ti,ul,dx, PPI: tti,vul, tc,pc,rrar. £ d, cp, pl: st
% tw,g,dt,i,z1,zpl,ztl, rol,wl,asl,htl, th)

py(2)=ppl(mi~-94&)

ty(2)=tt1(m1-96)

uy(2)=uul(mi~-26)

goto 11

j1=j1/2

dx=dx#2

dt=dt*2

do 18 ii=1l, (m1-96)

i=ii

if(i.1t. (mi-111)) goto 18

if(i.ge. (m1-97)) goto 1%
call subl(pi,ti,ul,dx,ppl,tti,uul, tcopcrmiar, f.d,cp,pisst,

¥ tw, g dt,i, z1, Zpiu ztl, rol,wl,asl, htl, th?}

goto 18
2x (k)= (P¥tc/ (12B8#Ex (k) )~27#tc##3/ (&A#Ex (k) ##3) I #px (k) /pc+l

zpx(k)=Czx(k)=1)/px(k)
ztx(k)=(81*tc**3/(b4*tx(k)**4)—9*tc/(128*tx(k)*tx(k)))*px(k)/pc
rox (k)=px(k)/(r#tx(k)*zx(k))

wx (k)=dabs(ar#rox (k) #frux (k) *rux(k))/(2#d)
asx(k)=C(1+Ex(kr)#ztx (k) /7 zx (k) I ##2)#px(k)/(rox(k)#tx{k)*¥cp)
asx(k)=asx(k)+zpx(k)#px(k)/zx(ki—1
asx(k)=1/dsqrt(dabs(asx(k)*rox(k)/px(k)))
htx(k)=pi%cp*st%d*rox(k7*ux(k)%(tw~tx(k))

if(i.gt. (m1-97)) goto 82

plCi+1)=px(k)

ul(i+1)=ux(k)

t1(i+1)=tx (k)

zi(i+l)=zx(k)

wl(i+1)=wx (k)

rti(i+1)=ztx(k)

rol{i+l)=rox(k)

asl(i+1)=asx (k)

htlti+1)=htx (k) ‘
call subl(pl, tl, ul, dx, DDL: ttl,wul, tc,pe, v, ar, f,dycps pll st

& tw, g, dt, i, 21, Zpll zti, rol,wl,asl, htl, th)
gotg 18
dt=dt/2
dx=dx/2
zg(k)=(9*tc/(128*tg(k))"27*tc%*3/(64*tg(k)**B))*pg(k)/pc+1
zpy (k)=Czy(k)=1)/py(k)
ztg(k)=(81*tc**3/(64*tg(k)%*4)—9*tc/(128*tg(k)*tg(k)))*pg(k)/pc
roy(kI=pylk)/C(raty(kr*zy(k))
wy(k)=dabs(ar#roy(k)*fruy (k) *uy(k))/(2#d)
asu(k)=((1+tg(k)*ztg(k)/zg(k))**2)*pg(k)/(rog(k)%tg(k)*cp)
asy(kl)=asy(k)+zpyl(k)#py(k)/zyfk)—-1.
asy(k)=1/dsqrt(dahs(asy(k)¥raoy(k)/py(k)))
hty(kry=piwcp#staderoylk)#uy(k)#(tu~ty(k))
call sub5(pl,tl,ul,dx,ppl,ttl,uul, tc,pcirrarv, fid,cp,pi,st,
% tw,g.dt, i zlyzpl,2ztl,rol,wl,asi, htl, thepxoux, tx, wx, X

%2 ztx,vox,asx, htx, py,uy, tyrwy, 2y, z2ty, roy, asy, hty, k)

dt=dt*2
dx?dx*Q
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21

k=3
j2=(ji/2)22

if (j2.eq. j1) goto 20
i=m1-112
px(3)=pl(mi-112)
tx(3)=t1(mi—~112)

ux(2)=ulimi-112
call suba(pllbi.ul:dx,ppirttlauul,tc,pc.r,ar,F;d.cp,pi.st.

P tw,g.dt,i,21,zpllztl,rwllwl'asl,hti,th)

py(I=pplimi~-112)

ty(3r=tti(mi-112)

uy (3y=vulimi=-112)

goto 11

ji=j172

dx=dx¥2

dt=dt#2

do 21 ii=1,mi-112

i=ii

if(i.1t. (m1=1192) goto 21

if(i.ge. (m1—-113)) gote 22

call subi(pl.ti,ul,dx.ppl,ttlnuulntc,pc,r,ar;F,d,cp,pi,st,
& tun g dt, i, z1. Zpll ztl, rol, wl, asl,htil, th?

goto 21

2x (k)= (F#Lc/(128#tx (k) )—-27#tc##3/(64#Lx (k) ##3) Y #px(k)/pc+l
zpx(k)=Czx(k)=1)/px(k}

zEx (k= (Blatesn3/(o4utx (k) ##4)—Futc/(128#tx (kI *tx (kI DI #px (k) /pc
rox(ki=px(k)/(ratx(k)#zx(k)) -
wx(k)=dabs(ar#rox (k) ®fsux(k)#ux (k) )/ (2%d)

asx (k)= (1+tx(kI#ztx (k) Zzx (k) I##2rs#px (k) /(rox(kistx(k)*cp)
asx(k)=asx(k)+zpx(k)#px(k)/zx(k)-1
asx(k)=1/dsqrtldabs(asx{(k)#rox{k)/px(k)))
htx(ky=piscprastaderox (k) *ux (ks tu—tx(k))

if(i.gt. (mi=-113)) goto B3

pl(i+1)=px(k)

ul¢i+1)=ux (k)

t1(i+1)=tx (k)

zi(i+1)=zx (k)

wl(i+l)y=wx (k)

zt1Ci+1)=ztx (k)

rol(i+i)=rox (k)

asl(i+1lr=asx (k)

ht1(i+1)=htx (k) _

call subl(pl.tllul,dx,ppi.ttl,uul,tc.pc.r,ar,F,d.cp,pi,st,
& tu, g, dt,i,zl, Zpll ztl,rol,wl,asl,htl, Ch)

goto 2

dt=dt/2

dx=dx/2
zg(k)=(9*tc/(128*tg(k))~27*tc%%3/(64*tg(k)**3))*pg(k)/pc+1
zpy(k)=Czy(k)—-1)/py k)
th(k)=(81*tc%*3/(b4*tg(k)*%4)_9*tc/(128*tg(k)%tg(k)))*pg(k)/pc
roy(k)=pyCik)/(rtylklI*zy(k))
wyCk)=dabs(ar#roy (k) *fauy(kI#uy(kr)/(2*d)
asy(k)=Ci+ty(kI#zty (k) /zy (k) ##2)#py(k)/(roy(kI*tylk)#cp)
asy(k)=asy(k)+zpy(k)*py(k)/zy(k?—1
asyf{k)=1/dsqrt(dabs(asy(k)#roy(k)/pyck) )
hty(k)=pircp#stederoy(krI*uy (kI (tw-ty(k?)

call subS(pl, tl,ul,dx,ppl,ttl,uul, tc,pc.v,ar, f,d,cp,pisst,
% tw, o g,dt,i,z1,zpl, ztl, rol,wl,asl, htl, th,px,ux, Cx,wx, 2%,
% ztx,)vrox,asx,htx:py, vy, ty,wy, zy, zty, roy, asy, hty, k)
dt=dt=2

dx=dx%2

continue

k=4
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if (j2. eq. j1) goto 23

i=mi~120 :
px(4)=pl{ml-120) ‘
tx(4)=t1(ml1—-120)

ux(4)=ul(mi-120) : :
call subQ(pi.tilul;dx.pplltti,uui,tc;pc.r.ar,F.d:cp,pi.st,

tw,g,dt,i,zl,zp1,ztl.rol.wl:asl:htlath)
py(4r=ppl{mi—~120)

ty(a)=tt1(ml-120)

vy (4)=vul(mi—-120)

goto 11

ji=j1is2

dx=dx*2

dEt=dt#2

do 24 ii=1,mi1~-120

i=ii

if(i. 1t. (m1—-123)) goto 24

if(i.ge. (m1=-121)) goto 25

call subl(pi,ti,ul,dx,ppl, ttl,vul, tc,pec,rrar, f.docpspissty

% tw,g,dt,1,71,7p1;zf1,701,w1.af1.ht1 th)

9,

4

L4

goto 24 _
2xCk)=(G#tc/(128#Lx (k) )=27#tc#rT/ (&4t x (kI ##3) y#px(k)/pc+l

zpx(k)I=Czx(k)=1)/pxCk}

ztx (k)=(O1sto#a3/ (b4t x (k) *#4)-F#tc/ (128#tx (k) #tx(k))I*px(k)/pc

roxCk)=px(k)/(r#tx(k)#zx(k))

wx (k)=dabs(ar#rox(k)#frux(k)#*ux(k))/(2#d)

asx(k)=((1+tx(kr#ztx (k) /zx (k) ##2)#px(k)/(rox(k)#tx(k)*cp)

asx(k)=asx(k)+rzpx(k)#¥px(k)/zx(k)=-1

asx(k)=1/dsqrt(dabstasx(k)#rax(k)/px(k)))

htx(k)=pi#cpestrdérox(k)#ux(k)*(tw-tx(k))

if(i.gt. (m1-121)) goto B4

pl¢i+1)=px (k)

ui{i+i)=ux(k)

t1(i+l)=tx (k)

z1(i+1)=z2x(k)

wi(i+1)=wx (k)

zE1(i+)=zLx (k)

rol(i+l)=rox (k)

asl(i+l)=asx (k)

htl(i+1d=htx (k)

call subl(pl, tl,ul,dx,ppl, ttl,vul, te,pe, voar, £,d, cpy pl.st,
tw, g, dt, i,z1, zpl, ztl, rol,wi,asl, htl, th)

goto 24

dt=dt/2

dx=dx/2
zg(k)-(?*tr/(128*tu(k))~27%tc**8/(64*tg(k)*%3))*pg(k)/pc+1
ng(k)"(zg(k)~1)/pg(k)

ztg(k)—(Bl*tc**G/(b4*tg(k)**4) -9xtc/(128#ty(k)xty(k))I#pylk)/pc
royl{k)=pyl(k)/(retyl(kr®*zy(k))

wy (k)=dabs(ar#roy(k)sfruy (k) %uy (k) )/ (2%d)
asg(P)n((1+tg(k)*ztg(k)/zg(k))**“)*pg(k)/(rog(k)*tu(P)*cp)
asy(kl=asy(k)+zpy(kd#py(k)/zy(k)=1
asyl{k)=1/dsqrtldabs(asy(k)#roy(k)/py(k)))
hty(k)=pistcp#stadérog(k)sruylk)#(tu-—tylk))

call subS(pl,ti,ul.dx,ppl,ttl,vul,tc.pc,rrar,#,d,cp,pi.st,

% tw,g,dt,i,z1l,zpl,ztl, rol,wl,asl,htl, th,px,ux, tx, wx, zx,

K2

ztx, rox,asx. htx, py, vy, ty, wy, zy, zty, roy, asy, hty, k)
dt=dt#2
dx=dx#2
continue
k=5
ja=(jl1/2)#2
if (j2.82q. j1) goto 2
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px(S)i=pli{ml-124)
tx(3)=t1(ml~-124;
ux(S)=ul(mi~-124) ,
call subR(pl,ti.ul,dx,ppi,ttl;uui.tc,pc,r,ar,F,d,cp,pi,st,
2 tw, q. dt,i.z1, Zpll zt1, rol, wl, asl,hti, th) -
py{S)=ppl(mi-124)
ty(3)=tt1(ml-124)
vy (S)=vulimi-124)
goto 11
ji=j1/2
dx=dx#2
Cdt=dtx2
do 27 ii=1,ml-124
i=ii
ifCi. 1t (m1-125)) geto 27
zx(k)=(9*tc/(128*tx(k))"27*tc*%3/(é4*tx(k)**3))*px(k)/pc+1
zpx(k)=(zx(k)=1)/px{k)
ztx(k)=(81*tc**3/(64*tx(k)**4)—9%tc/(128*tx(k)*tx(k)))*px(k)/pc
rox(k)=px(k)/(retx(k)*zx(k))
wx(k)=dabs(ar#rox (k)#f2ux (k) *ux (k) )/ (2%d)
asx(k)=((1+tx(k)*ztx(k)/zx(k))%*2)*px(k)/(rox(k)%tx(k)*cp)
asx(k)=asx(k)+zpx(k)#px(k)/zx(k)—1
asx(k}=1/dsqrt(dabs(asx(k)%rox(k)/px(k)))
htx(k)rpi%cp*st%d*rox(k)*ux(k)*(twﬂtx(k))
ifli.gt. (mi—-125)) goto 85
pli+1)=px (k)
ul(i+l)=ux(k)
t1Ci+l)=txlk)
21 (i+1)=zx (k)
wl(i+1)=wx (k)
ztl¢i+ld=ztx (k)
rol(i+1)=rox(k)
asl(i+1l)=asx{k)
hti(i+1)=htx(k)
call sub1(p1,t1,u1,dx,pp1;ttl.uui.tc.pc.r.ar.F,d,cp.pi,st,
% tm.g.dt,i;zl,zpl,ztl.rol:wi.asl.htllth)
gota 27
dt=dts2
dx=dx/2
zg(k)=(?*tc/(128*tu(k))—27*tc%%3/(64*tu(k)**3))*pg(k)/pc+1
zpy(kI=Czy(k)=1)/pyCk)
ztu(k)=(81*tc%*3/(64*tu(k)**4)~9*tc/(128*tg(k)*tg(k)))*pg(k)/pc
rog(k)=pg(k)/(r*tg(k)*zg(k))
wg(k)=dabs(ar*rog(k)%F*ug(k)*ug(k))/(Q*d)
asg(k);((1+tg(k)*th(k)/zg(k))**2)*pg(k)/(rog(k)*tg(k)*cp)
asg(k)zasg(k)+ng(k)%pg(k)/zq(k)—1
asg(k)wl/dsqrt(dabs(asg(k)*rog(k)/pg(k)))
hty(k)=piscprstrderoy(krzuy (k) (tu—tylk))
call subS(pl,tl,ul,dx.ppl,ttl,uul, tc,pc,mrar, fodrcprpirsty
n tw, 9 dt, i, 21, Zpl! i, rol,wl,asl,htl, th, PXsUX, tx,wx, Zx,
2 ztx,rox,sasx,htx,pyruy, ty,wy, 2y, 2ty, roy, asy, hty., k?
dt=dt#2
dx=dx#2
continue
k=&
j2=(jl1/2) %2
if (j2. eq. j1) goto 29
i=ml-126
px(6)=pl(mi-126)
tx(6)=t1(ml—126)
ux(&)Y=ul{ml—~126)
plCi+2)=px(3)
ul(i+2)=ux(3)
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21 (i+2)=zx(3)
wl(i+2)=wx(3)

zt1(i+2)=z2tx(3)

Tol(i+2i=rox(3)

asl{i+2)=asx(3)

htl(i+2)=htx(3)

call subg(pl,tl,ul.dx.ppl,tti,uui.tc,pc,r,ar,F,d,cp.pi.st.
% tw,g,di, 1,21, zpl,zhl, rol,wil,asl,htl, th) :
py(&)=ppliml-126)

ty(s)=ttl(mi-126)

vy (&)=uul(ml-126)

goto 11

ji=j1rs2

dx=dx#2

dt=dt#2

do 30 ii=1, (m1-126&)

i=ii

if(i.gt. 1) goto 31

tall subup(pl.ti.ul:dx,tti,uulltc,pc.r:ar,F,d,cp,pi,st,
b tw:g,dt,i,z1,zpi.ztl.rol;wl.asi.htl:th.ppllttl.uui)

5

goto 30
ifti.lt. (m1—=127)) goto 20
2x (k)=(9%tc/ (128%tx (k) )—27#tc#a3/(64%tx (k) ##3))#px(k)/pc+l

zpxCkr=C(zx(k)—1)/pxCk)

2tx (k) =(Biste#u3/(64%tx (k) ##4)~-Pxtc/(128%Ex (k)xtx (k) ) )#px(k)/pc
rox(k)=px(k)/(r*tx(k)*zx(k))

wx (k)=dabs(ar¥rox(k)#frux (k) *ux (k) )/ (2#d)
asx(k)=((1+tx(kr#ztx(k)/Zzx(k))#22)#px(k)/(rox(kI®tx(k)*cp)
asx(k)=asx(k)+zpx(k)#px(k)/zx{k)—-1
asx(k)=1/dsqrt(dabs(asx(k)*rox(k)/px(k)))
htx(k)=pi*cp*st*d*rox(k)%ux(k)*(tw—tx(k))

ifCi.gt. (m1-127)) goto 86

plei+i)=px(k)

ul(i+l)=ux(k)

t1¢i+1)=tx (k)
z1(i+1)=zx(k)

wl(i+i)=wx (k)

zt1¢i+1)=z{x (k)

rol(i+l)=rox(k)

asl(i+1)=asx (k)

ht1¢i+1)=htx(k)

call subi(pi,tl.ul.dx,ppi,tti.uui,tc;pc.r,ar,F,d.cp,pi,st,
% tw g, dt,i,z1, zpi: ztl, rol,wl, asl, htl, th)

goto 30
dt=dt/2 -
dx=dx/2
zg(k)=(9*tc/(128*tu(k))—27*tc**3/(64*tg(k)**3))*pg(k)/pc+1
zpylkrI=(zy(k)=1)/pyck) '
ztg(k)=(81%tc**3/(64*tu(k)**4)—9*tc/(128*tg(k)*tg(k)))*pg(k)/pc
roy(k)=pylk)/(r#tylk)*zy(k))
wg(k)=dabs(ar*rog(k)*F%ug(k)*uu(k))/(Q*d)
asg(k)=((1+tg(k)*ztg(k)/zg(k))**2)*pg(k)/(rog(k)*tg(k)*cp)
asy(kr=asy(k)+zpylk)#py(k)/zylkr—1
asy(k)=1/dsqrt(dabs(asy(k)#royCk)/py(kl))
hty(k)=piscprstrduroy(k)stuy (k)= (tw-ty(k))
call sub3(pl, ti,ul,dx,ppl, ttil,vul, tecypearram f,d,cpspis st
% tw,g,dt, i,2z1,zpl, ztl, rol, wl,asl, htl, thypx.ux. Ex,wxs 2x
% ztx,rox,asx,htx,py,uy, ty,wy, 2y, z2ty, roy, asy, hty, k)
dt=dt#2 ‘
dx=dx*2

30 continue

Transient calculations for pipe 2 (downstream of the break)
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11 dx=dx1/64
dt=dt1/64
if(l2.eq.0.0) goto 32
do 33 ii=1, 64
i=ii
if{i.gt. 1) goto 34
if(ti.gt. dt1) goto 95
call break2(ppl, ttl,uul,ppad, 2, vuz, m1, i)

: goto 33
PS5 pp2(1)=ppliml}
call bT‘edl(l"(p 2, ua, pp:’: tt2,vud, 12, 282, 102, as2, ht2, w3, dx, te, pc,
% r,ar.F.d,cp.pi.st tw,g,dt, i, th,pat, ttl1, m1)
goto 33

34 call subd(p2, t2,u2,dx, ppe, £t vu2, tc,pearrars fodscprpis
2 st, tw, g dt, i, 22, Zp:—.’: 252, ro2, w2, as2, ht2, th)
33 continue
k=1
Ji=(0j/2)#2
if(jl.eq. j) goto 35
i=635
pz{l)=p2(i)
uz(l)=u22(i)
tz(1)=t2(i)
2z(1)=z2¢i)
ztz(1)=zt2(1)
roz(ll=ro2(i)
asz(1l)=as2(i)
htz(1)=ht2(i)
wz{l)=w2(i)
call sub3(p2, t2, ud, dx, pp2, tt2, vud, tc, pes v ar, £, d, cp. p1,
2 st, tw, g dt, i, 22, ch.l zt2, ro2, w2, ase, ht2, th)
goto 32
35 jl=j1/2
dx=dx#2
dt=dt#2
do 36 ii=1,%96
i=ii '
if(i. le. 66) goto 36 .
call suh4(p2.tE.u;.dx:pr:tt;.uu;.fc.pc.r,ar.F.d,cp;pi,
 st,tw,g,dt, 1, z2, zp2, 2t2, 702, wd, as2, ht2, th)
36 continue
i=635
dx=dx/2
dt=dtr2
call subéb(pdd, t2, ual, dx, ppas 82, vu2, tecypesrear, £.d,cpy piy
ost, tw, g dt, i, 22, Zpg: zt2, ro2, w2, asa, ht2, th, PZ. tzouzizz,
W ztz,roz,asz,htzowz, k)
dx=dx#2
dt=dt#2
i=b6
pRli—-1)=pz(1)
t2C¢i-1)=tz (1)
v2(i-1)=vuz(l1)
z2¢i-1)=zz(1)
w2(i-1)=wz (1)
2t2(i-1)=z%tz (1)
ro2(i-1)=roz(l)
as2{i—-1)=asz(1)
ht2¢i-1)=htz (1) _
tall subd4(pa, t2, u2, dx, ppa, tt2, vuz, te, perrrar, £,d,cpy pil
2 st tw, g dt, i, &, Zp:.o zt2, rod, w2, as2, ht2, th)

k=
J2

(ji/2)r#2
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i=97
pz(2)=p2(i)

uz(2)=u2(i)

tz{(2)=t2(i)

zz(2)=z2(i)

btz (2)=zt2(1)

roz(2)=ro2(i)

asz(2i=asa(i)

htz(2)=ht2¢i)

wz(2)=w2 (i)

call subl3(p2, t2, ud, dx, pp2, tt2, vuld, tc,pe, rrar, £ dscprpis
. st, tw, g, dt, i, z2, zp2, 212, ro2, wa, as2, ht2, th)

goto 32

38 ji=j1/2

dx=dx#2

dt=dt#2

do 39 ii=1,112

i=ii

if(i.le. 78) goto 39

call subd4(p2, t2, v, dx, pp2, t£2, WU, ke, pes T ar, £, d, cpy pi,

2 st tw, g dt, i, z&, ZP:—:: zt2, ro2, w2, as2, ht2, th)

39 continue

41

i=97
dx=dx/2

dt=dt/a
call subéb(pd, t2, v, dx,ppad, ttd, vud, tespes o ar, fod,ep:piy

st, tw,g,dt, i, 22, 2p2, 2t2, ro2, wd, asd, hi2, thopz, tz,uz, 2z,

&
& ztzsroz,asz,htz,wz, k)

dx=dx#*2
dt=dt#2

i=98

p(i~-1)=pz(2

t2(i-1)=tz(2)

u2(i-1)=uvz(2)

z2¢(i—-1)=z22(2)

w2(i-1)=wz (2)

zt2(i-1)=z4z(2)

ro2(i—-1)=roz(2)

as2(i-1)=asz(2)

ht2(i—-1)=htz(2)

call subd4(p2, t2,u2, dx,pp2, tE2, vua, teypee vy ar, o dscpipiy

& st,tw,g,dt, i, 22, zpa, 2%, vro2, w2, as2, ht2d, th)

k=3
je=0jl/2)%#2

if(j2. eq. j1) goto 41. -
i=113

pz(J)=p2(i)

vz (3)=u2(i)

tz(3)=4£2(i)

12(3)=z2(1i)

2tz (3)=zt2(1i)

roz(3)=ro2(i)

asz(3)=as2(i)

htz(3)=ht2(i)

wz(3)=w2(i)}

call subl3(p2, £2, u2, dx, ppa, tt2, vu2, tec,pecrrrar, £f,dycpy pis

2 st, tw,g,dt, i, 22, 2p2, 282, 702, w2, 352, ht2, th)

goto 32
Jl=j1/2
dx=dx#2
dt=dt=2

do 42 ii=1,120
i=ii
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call sub4(b2;%éfﬁ§:a;fﬁb2,ttZ,UUZ.tc,pc,r,ar.F.d,cp.pi.
B ost,tw, g ,dt, i, 22, 2p2, 2t2, ToR, w2, as2, ht2, th)

42 continue
i=113
dx=dx/2
dt=dt/2
call subb(p2, t2, ud, dx, pp2, tE2, vua, tcypeyryar, £, dy eprpis
% ost, tw, g dt, i, 22, ngJ zt2, ro2, w3, as2, ht2, th, Pz, tz,vuz, 22,

2 ztz,rozsasz,htz, wz, k)
dx=dx#2
dt=d t=2
i=114
p2(i-1)=pz(3)
t2(i-1)=tz2(2
u2(i~-1)=pz(3)
z22(i-1)=22(3)
w2(i-1)=wz{3)
z2t2(i-1)=1£2(3)
ro2(i~1)=roz(3)
as2(i-1)=asz(3)

ht2(i~1)=htz(3)
call subd{p2, t2, u2, dx, pp2, tt2, vuzs tc, pecirrar, £, d, cpypi,

% st, tw, g, dt, i, 28, zpad, 2t T2, w2, 852, ht2, th)

k=4
ja=(ji/2)#2
if(j2.eq. j1) goto 44
i=121
pz(4)=p2(i)
vz(4)=u2(i)
tz(4)=t2(1i)
zz{(4)=z2(i)
1tz (4)=z¢2(1)
roz(4)=ro2(i)
asz(4)=as2(i)
htz(4)=ht2(i)

wz(4)=w22(1)
call sub3(p2, t2, u2,dx, pp, tt2, vud, terypeorrar, £.dycpspiy

% st,tw, g, dt, i, 22, 2p2, 282, 702, w2, as2, ht2, th).
gata 32
44 jl=j1/2
dx=dx#2
dt=dt#2
do 45 ii=1,124
i=ii
if(i. le. 122) goto 43 : .
call subd(pa, t2, v, dx,pp2, tt2,vu2, tc.pecyrrrar, £:d, cpy pi,
[ 517.1 tw, g, dt, 1, 22, Zpgl zt2, ra2, w2, as2, htz2, th)
43 continue "
i=121
dx=dx/2
dt=dt/2
call subb(p2, t2, v, dx,pp2, tt2, vul, tc, pcitrar, £, d, cpspis
sty tu, g, dt, i, 22, zp2, 2t2, 702, w2, as2, ht2, th.pz, tz, vz, 22,
ttz,roz,asz, htz,wz, k)
dx=dx#z
dt=d t#2
i=122
peli-1)=pz(4)
t2(i-1)=tz(4)
uali-1)=uz(4)
2(i-1)=z2(4)
w2li-1)=wz(4)
zE82(i~1)=z4z2(4)

%
&
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asZ(i—l)#asz(4)
ht2(i-1)=htz(4)
call subd(p2, t2,u2,dx,pp2, tt2, uud, teypei v, ar, £ dicpopis

2 st,tw,g.dt,i.zglsz;zt2.r02:w21352:ht2,th)

k=5
ja=j1/2)#2

if(j2. eq. j1) goto 47

i=125

pz(3)=p2(i)

uz(D)=u22(i)

tz(S)=t2(i)

22(5)=z2(1)

ttz(S)=z¢t2(1i)

Troz(S)=r02(1i)

3851(3)=as2(1i)

htz(S)=ht2(i)

wz(d)=w2(i)

call sub3(p2, t2, v, dx,ppa, £t2, vud, tc,parrrar, fodycprpis

% st, tuw, g.dt, i, z2, ZPQ; zt3, ro2, w2, as2, ht2, th)

47

20

goto 32

Ji=jls2

i=125

call sub&(p2, £2, v, dx, ppR, tE2, wu2, tc,perrrar, £, d, epy pis
W st tw grdt, i, 22 zpRs 282y vo2, w2, asd, ht2, thopz, tz vz, 212,

% ztz,vroz,asz,htz,wz, k)

dx=dx#2

dt=dt#2

i=126

pa(i~1)=pz(3)

t2(i-1)=tz(5)

u2(i-1)=uz(5)

z2(i—-1)Y=22(9)

w2(i~1)=wz (3

z2t20i-1)=z242(5)

To2(i-1)=roz(3)

as2(i—-1)=asz(%3)

ht20i-1)=htz(5)

call SUb4(p:‘.’.l t2, v, dx. ppgl tt2, wud, tc, pes.T.ar, £, d, CP. pia
ostsbung,dt, i, 22, z2p2s 282, o2, w2, as2, ht2, th)
k=&

j@=0j1/2)#2

if(j2. eq. j1) goto S50

i=127

pz(&l=pali)

uz(bl=ua(i)

tz(6)=t2(1)

z2z(6)=22(1i)

1tz (B)=7¢2(1)

Toz(b)=ro2(i)

asz(b6)=asa(i)

htz(6)Y=ht2(i)

wz{s)=w2¢(i)

call SUbS(pg; t2, v, dx, ppa, tt2, uul, tc, pc. T, ar, £, d, cp. pl:
2 st, tw, [* ) dt, i, z2, Zpgo z2t2, ro2, w2, as?2, ht2, th)

goto 32

jl=j1/s2

dx=dx#*2

dt=dt%2

do 51 ii=1,ma2-1

i=ii :

if(i. le. 128) goto 51

call sub4(p, t2, v, dx, ppa, tt2, vud, tc, pe, ryar, £, d, cp, pis
% st, tun g.,dt, i, z2, zpes 2t2) ro2, was asa, ht2, th)
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i=127
dx=dx/2
dt=dt/2
call subé&(p2, t2, ul,dx,pp2, tt2, vud, tcyper s ar, £.d, cprpiy
sty tw.g,dt, i, 22, zp2, 252, T2 w2 ased, hE2, thypz, tzivzo 22,
% 2tz,Toz,8%2z, htz, w2, k)
dx=dx#2
dt=dt#2
i=128
p2li~-1ll=pz(4H)
t2(i-1)=tz (&)
u2(i-1)=uyz (&)
z20i=-1)=z2(&)
w2l{i—-1)=wz (&)
1t2¢i-1)=ztz (&)
ro2(i-1)=raoz{é&)
asd(i—1)=asz(&)
hE2(i-1)=asz(b&)
call sub4(pa, t2,ud, dx,pp, tt2, uuds te, peorrar, £, dsecprpiy
% ost, tw, g db i, 22, 2p2, ttd, ro2, wa, as2 hta2, th)
i=ma
call downl(p2, t2, v, dx,ppad, tt2, wud, tc,pey vy ar, th, F,dycprpis
L ost,tu, g, dt, i, 22, 2p2s 282, T2, w2, a2, ht2)
32 do 60 i=1,ml
piti)=ppl(i)
El(id=tt1(i)
vilid=uuld(iy
60 continue
do 59 i=1,m2
if(l2. eq.0.0) goto 39
p2Ci)=ppa(i)
t2(1)=t£20i)
ua(il)=uu2(i)
39 continue
ifdti. 14, (6#dE1)) goto 70
70 continue

jk=1

if(tis. le. tm) goto 353

prints*, ©

print®, 7

print#, End of run’
stop

end

241



NN

o oa

AAR S WA R R

DA BN

subroutine steadl (pl,tl,ul,zl,rol, ™ e, d,pc, te, thy £ g
% pi,dxl,mi,nl)

This subrowtine calculates steady isothermal flow
along pipe 1. (upstream of the break)

implicit double precision (a-h,o-2z)
d1men51on pl(?OO).ul(SOO).r01(300),21(300),+1(300

print#, 7initial conditions required: -

print#, ‘initial temperature along the pipe (celcius)’
read#, t1(1) .

t1(1)=t1(1)+273. 16

print#, “ini%tial pressure at upstream end of pipe (kpa)’
Tead¥*, pl(i)

p1(1)=p1(1)*1000

print#, ‘mass flow rate through the pipe (kg/s)’

read#, flow

21 (1)=9#tc/(128#t1(1))-27#tc##3/(64%t1 (1) #4#3)
1 (1)=z1(1)%pl(1)/p +1

rol(1)=pl(1)/Cz1 (1)l (1))
e=flow/ (. 25%#piHdid)

vi(l)=e/Toli(l)

do 2 i=1,mi-1

if (i.ge. (m1-126)) goto 3

dx=dx1

if(flow. eq.0.0) goto 9

sa=f#e#dx/ {4 OdO%#d)+e

bh=f#e#dx#ul (i)/(4 OdO#d)+dx%rol(id#gadsin(th) /2. QdO
bb=bb-e#ul(i)-pi(i) '
ce=eddydgidsin(th) /2. OdO+e#retl(id#21(1)
ul(i+1)=(-hb-dsqrt(bb*bb-4%#aa%cc))/(2%#aa)
Tol(i+i)d=e/ul(i+l) : '
plei+l)=rol(i+1)#zi(i)#ratl (i)
21(i+1)=#6c/(128#t1(1))-27#Lcax3/ (641 (1)#u3)
21 (i+1)=z1Ci+1)#pl(i+1)/pc +1

ti¢i+1)=%1(1)

goto 2

ul(i+1)=0.0

plii+l)= p1(1)—dx1*d51n(th)

E1(i+1)=%1(i)
zl(1+1)*9*fr/(1£8*t1(1))—”7%tc%*3/(&4*t1(1)**3)
21(i+1)=21Ci+1)#pl(i+l1)/pc+}
r01(1+1)—p1\1+1)/(z1(J+1)#r*t1(1+1))

goto 2

if (i.ge. (mi-124)) goto 4
dx=dx1/2.

goto 1

if (i.ge. (mi-120)) goto 5
dx=dx1/4,

goto 1

if (i.ge. (ml-112)) goto &
dx=dx1/8. ’

goto 1.

if (i.ge. (mi-26)) goto 7

dx=dx1/16.

goto 1 _

if (i.ge. (nl-&64)) goto 8
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goto 1

dx=dx1/64.

goto 1
continue

return
end
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subroutine stead2 (p2, t2,u2, z2, T0d) T, e,d, pc, te, th, £, g,
 dxl.m2,n2) ‘

This subroutine calculates steady isothermal flow
along pipe 2. (downstream of the break)

implicit double precision (a-h,o0-z2) i
dimension p2(300), ua(300), ro2(300), z2(300), t2(300)

do 2 i=1,m2-1

if (i. 1%, 127) goto 3

dx=dx1 ‘

if(u2(1).eq.0.0) goto 9

aa=f#es#dx/(4#d)+e
bb=fredx#u2(i)/(4#d)+da#ro2(i)#g#dsin(th)/2
bb=bb-e#u2(i)-p2(i) '
cc=e#dx#gidsin(th) /2+etrat2(ir#z2(i)
u2(i+1)=(-bb-dsqrt(bb¥*2-4#aa*cc) )/ (2%aa)
ro2(i+l)=e/u2(i+1)
pR(i+id=ro2¢(i+1)#22(i)#r#t2(i)

22C0i+1)=2#tc/ (128#¢t2(1i))-27#tc##3/(H4#L2 (i) #43)
22Ci+1)=22(i+1)#p2(i+1)/pc +1

t2(i+1)=£2(1)

goto 2

uv2(i+1)=0.0
p2(i+1)=p2(i)—dxlsdsin(th)

t2(i+1)=t2(1i)
22(0i+1)=0#tc/(128%#42(1))-27%tcu#3/(64#42 (i) #43)
22(i+1)=z2(¢i+1)#p2(i+1)/pc+l
To2Ci+1)=p2(i+1)/(z2(i+1)#r#t2(1i))

goto 2

if (i.1t. 125) goto 4
dx=dx1/2

goto 1 .

if (i, 1t.121) goto 35
dx=dx1/4

goto 1

if (i.1%.113) goto &
dx=dx1/8

goto 1

if (i.1¢. 973 goto 7
dx=dx1/16

goto 1

if (i. 1t.635) goto 8
dx=dx1/32

goto 1

dx=dx1/64

goto 1

continuve

continvue

return
end
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subroutine subl(pl, tl,ul,dx, ppl,ttl,uul, tc,pe. T
% oar, f.d,cpspisst, tw o g.dby izl zply 28l ol wls asl,

L htl, th)

This subreoutine calculakes p,t and u at normal
internal points upstream of the break.

implicit double precision (a-h,o-z)
parameter(ni = 300)

dimension pl{nil),tl(ni),ul{ni), z1(ni),
% ztl(nid,wl(ni),asi(ni), htlinid,pplini),
2 ottltnid,uul(nid,zzi(nid,zzpl(nid, zzt1(ni),
% rrol(ni),wwl(ni),aasl(ni), hhtli(ni),
% a(9),b(3),rol(ni), zpl(ni)

integer 11(3),mm(3), count

First order approximation

if(ul(i). eq. 0. 0) goto 20

iflul(i—-1}. eq. 0.0) goto 0
posqzz*dt/(l/ul(i)+1/u1(i~1))

goto 22

posq=dt#(ul(i)+ul(i-1))/2
posr=dt*2/(1/(u1(i)+a51(i))+1/(U1(i*1)+asl(i—1)))
poss=dt%2/(1/(asl(i)—ul(i))+1/(a51(i+1)—u1(i+1)))

pq=posq/dx%p1(i“1)+(1—posq/dx)*p1(i)
tquosq/dx%tl(inl)+(1~posq/dx)%t1(i)
uq=p05q/dx*u1(i—1)+(1_posq/dx)*u1(i)
zq=posq/dx%zl(i—1)+(1—posq/dx)%z1(i)
th=posq/dx*zt1(i-l)+(1—posq/dx)*zt1(i)
r0q=posq/dx%r01(i~1)+(1—posq/dx)*r01(i)
asqmposq/dx*asi(i—1)+(1—pnsq/dx)*a51(i)
hthposq/dx*htl(i—l)+(1—p05q/dx)*ht1(i)
mq=p05q/dx%m1(i~1)+(1—p05q/dx)%m1(i)
pr=posr/dx*p1(i—1)+(1—posr/dx)*p1(i)
tr=posr/dx#t1(i-1)+(1-posT/dx)*t1(i)
Ur=posr/dx*u1(i—1)+(1—pasr/dx)*u1(i)
zr=posr/dx%zl(i—1)+(1—p0$r/dx)*zl(i)
ztr=posr/dx*zt1(i—1)+(1-posr/dx)*zt1(i)
ror=posr/dx%r01(i—1)+(1~posr/dx)*rol(i)
asr:pusr/dx%asi(i—1)+(1—posr/dx)*asl(i)
htr=p05r/dx%ht1(i~1)+(1-posr/dx)*ht1(i)
mrmposr/dx*wl(i—l)+(1—posr/ﬁx)%w1(i)
ps=poss/dx*p1(i+1)+(1~pnss/dx)%p1(i)
ts=p055/dx*t1(i+1)+(1—poss/dx)*t1(i)
us=puss/dx*u1(i+1)+(1—poss/dx)*u1(i)
zs=poss/dx%z1(i+1)+(1—p055/dx)*zl(i)
tts=poss/dx#2t1¢i+1)+{1l~poss/dx)#zt1(i)
ros=poss/dx¥rol(i+1)+(1l-poss/dx)*raol (i)
ass=poss/dx#*asl(i+l)+{1-poss/dx)#asl (i)
hts=poss/dx*htl(i+l}+(1l-poss/dx)#ht1(i)
ws=poss/dx#wl(i+1)+(1-poss/dx)*wl(i)

xl=asr#dt#(l+irtztr/zr)/(ror#cpitriar)
x2=ass¥dt#(1+ts#zts/zs)/(ros#cprtssar)
ally=—(1+tqeztq/zq)/(roq#*cp)-wqrtuqdt/(2#roq*cp#aripq)
a(2)=l+wqruq*dt/(2#roqicprar*tq)
a(3)=-uwgidt/(rog#cp#ar)
al4)=1/(rov#asr)-wrur#xl/(2#pr)+uritdt/ (2*ars*rorspr)
a(S)=wr#yr#x1/(2ntr)—~uritdt/ (2*arsror#ir)
al7)=—1/(rostass)+wskusitx/(2#ps)+ws#dt/ (2#ar#ros#ps)
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1¥lur. eq. 0. Clgoto 2
if(us. eq.0. Q) goto &
a(9)=1+uskx2+wskdt/ (ar*rostus)
a(b)=1-wr¥xi+yr#dt/ (ar¥rorsur)
goto 1

a(éeb)=1

a(?r=1

b(1):htq%di/(rnq%rp*ar)++q pq*(1+tq*th/7q)/(ruq*cp)
h(2 )—hfr*xlluv+p1/(ror*asr) gedtxdsin(th)
b(3)=—htsex2+tus—ps/(ros*ass)—gxdttdsin(Lh)

call dminv(a, 3, det, 11, mm)
if(det. ne. 0. 0)goto 7

write(bd,30) i

format(/pipel i=',13)

stop "no inverse"
ppl(l)—d(l)*b(1)+a(”)*b( ) +a(3)#b(3)
tE1(ir=a(a)#h(1)+a(3)#b(2)+a(b6)#b (3}
uul(id=a(7)#b(1)+a(8)#b(2)+a(F)#b(3)

count=0

psave=ppl(i)

tsave=tt1(i)

usave=yul (i)

pdif=ppl(i)*1000C

tdif=£t1(i)#1000

zzl(i)= 9*bc/(1”8%tb1(1))~;7*tc**°/(é4%tt1(1)*¢3)
2z1Cid=z2z21(¢i)#ppl(id/pc+l

zzpllid=Czz1(i)=12/ppl (i

zzt1(i)=81lrtc##3/ (641 (1) ##4)~- 9*tc/(1”8*tt1(1)%tt1(1))
zzti(id)=zztl(id#ppl(id)/pc
rrol(id=ppl(i)/(r#ttl(idHz21(i))
wwl(ir)=dabs(ar#rrol(i)#fryul (i)*uul (i) )/ (2#d)
aasl(id)=((l+zzt1(id=#tt1 i)/ /zz1 (i) )y#x2)#ppl (i)
assllid=aasl(id)/(rrol (i)#Lt1(i)#cpl+zzpl(id#ppl(id/z21(i)
aasl(i)=(l-aasl(i))#rrol(i)/ppl(i)
aasli(i)=1/dsqrt(dabs(aasl(i)))
hhti(i)=pi#¥cp#staderrol (i)#ruul (i)#(tw—-tt1(i))
count=count + 1

Second ovder procedure

if(uq. eq.0.0) goto 21

if(uul(i). eq. 0.0) goto 21
posq=2#dt/(1/uq+l/uul(i))

goto 23

posq=dt# (uqtuul (i))/2
post=R2#dt/(1/(ur+asr)+1/(uul(id+aasi(il))
poss=2#dt/(1/(ass—us)+1/(aasl(i)-uul(id))

pa=pl(i)-pasg#(pl(i+1)-pl(i-1))/(2#dx)
tg=t1C¢i)-posqu(L1Ci+t1)—-t1(i~1))/(2#dx)
uq=ul(iY—posq#(ul (i+1)—ul(i-1))/(2%dx)
zq=z1(i)=posq#(z1(i+1)~z1(i—-1))/(2#dx)
ztq=zt1 (i) —posq# (21 Ci+l)—~zt1Ci~12)/(2#dx)
rog=rol(i)—posg#(rol(i+l)-rol(i--1))/(2#dx)
asq=asl(i)-posq#(asl(i+l)—asl(i-1))/(2#dx)
htq=htl(ij=posq#(htl(i+1)-ht1(i-1))/(2%dx)
wq=wl(i)-posq#(wl(i+1)-wl (i—-1))/(2*dx)
pr=plli)-posr#({pl(i+l)-pl(i=1))/(2%dx)
r=tl(i)=posr#(E1(i+1)~L1(i~12)/(2%dx)
ur=ul(it~posr#{ul(i+l)—-ul(i-1))/(2#dx)
tr=zl(il-posr#{ziCi+l)—-21(¢i~12)/(2#dx),
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ror=rol(i)-posr#(rol(i+l)-rol(i-1))/(Z*dx)
asr=asl(i)—posr*(asl(i+1)~a51(i—1))/(Z*dx)
htr=htl(i)~-pasr#(htli(i+1)~ht1(i-1))/(2%dx)
wrxwl(iiuposr%(wl(i+1)“w1(i—1))/(Q*dx)
pszp1<i)+poss*(p1(i+1)—p1(i—1))/(E*dx)
te=t1(id+poss#(tl(i+1)-t1¢i-1))/(2%#dx)
us=u1(i)+poss*(u1(i+1)—u1(i—1))/(Q*dx)
zs=z1(i)+p055*(zl(i+1)—z1(i—1))/(E*dx)
zts=zt1(i)+poss*(zt1(i+1)—zti(i—l))/(a*dx)
ros=r01(i)+poss*(r01(i+1)~r01(i~1))/(Q*dx)
ass=asl(i)+poss*(asl(i+1)~a51(i—1))/(Q*dx)
hts=hti(i)+poss#(htl(i+1)-ht1(i=1))/(2#dx)
ws=w1(i)+poss*(w1(i+1)—m1(i-l))/(2*dx)
pq=pq+posq*posq%(p1(i+1)+p1(i-17-2*p1(i))/(Z*dx*dx)
tq=tq+posq*posq%(t1(i+1)+t1(i—l)—z*tl(i))/(Q*dx*dx)
uq:uq+posq%posq*(u1(i+1)+u1(i~11—2*u1(i))/(Q*dx*dx)
zq=zq+posq*posq*(zl(i+1)+zl(i—1)—2*zl(i))/(E*dx*dx)
th+posq*posq*(zt1(i+1)+zt1(i*1)—2*zt1(i))/(E*dx*dx)
roquroq+posq*posq*(r01(i+1)+r01(i—1)-2*r01(i))/(Q%dx*dx)
asq=asq+posq*pnsq*(a51(i+1)+asi(i—1)—2*asi(i))/(Q*dx*dx)
htq=htq+posq%posq*(ht1(i+1)+ht1(i—1)*2*ht1(i))/(E%dx*dx)
wq=wq+posq%posq%(m1(i+1)+w1(i—1)-2*w1(i))/(Z*dx*dx)
pr=pr+posr*pasv*(p1(i+1)+p1(i-1)—2*p1(i))/(Z*dx%dx)
tr=tr+posr*posr*(t1(i+1)+t1(i—1)—2*t1(i))/(Q*dx*dx)
Ur=ur+p05r%posr*(u1(i+1)+u1(i—i)—2*u1(i))/(Q*dx*dx)
zr=zr+posr*posr*(zl(i+1)+zi(i~1)—2*21(i))/(Q*dx*dx)
ztr=ztr+posr%posr*(zt1(i+1)+zt1(i—1)—2%zt1(i))/(E*dx*dx)
ror3r0r+pasr*posr*(r01(i+1)+roi(i-11—2*r01(i))/(z*dx*dx)
asr=asr+posr*posr*(asl(i+1)+a51(i—1)—2*asi(i))/(E*dx*dx)
htr=htr+posr*posr*(ht1(i*i)+ht1(i-1)*2*ht1(i))/(Q*dx*dx)
wrmwr+posr%pusr*(w1(i+1)+w1(i—1)—2*m1(i))/(Z*dx*dx) ’
s%poss*(pl(i+1)+p1(i—i)—g%pl(i))/(z*dx%dx)
ts=ts+poss%poss%(t1(i+1)+t1(i—1)—Q*ti(i))/(E*dx*dx)
us=us+poss%poss%(ul(i+1)+u1(i—i)—2*u1(i))/(Q*dx*dx)
zsmzs+poss%pass%(zl(i+1)+zl(i-1)-2*zl(i))/(Q%dx*dx)
zts=zts+p053%poss%(zt1(i+1)+zt1(i~1)~2*zt1(i))/(Z*dx*dx)
ros=ros+puss*poss*(rol(i+1)+r01(i—1)~2*r01(i))/(E*dx*dx)
ass=ass+poss*poss*(asl(i+1)+a§1(i-1)“2*asl(i))/(E*dx*dx)
hts=ht5+puss%poss%(ht1(i+1)+ht1(i—1)"2*ht1(i))/(E%dx*dx)
ws=ws+poss*poss*(w1(i+1)+m1(i-1)—2*m1(i))/(e*dx*dx)

rtq=

ps=ps+pos

a(1)=~(1+tt1(i)*zzt1(i)/zzl(i))/rral(i)
all =(a(1)*(1+tq*th/zq)/roq)/(2*cp)
a(2)=1.0

a(3)=0.0 .
a(4)=(1/(ror#asr)+1/(rral(i)*aasl(i)) )/
a(3)=0.0

ats)=1.0 -
a(7)=(~1/(ros*ass)—1/(rrol(i)*aasl(i)))/2
a(g)=0.0

a(9)=1.0

b(1)=(htq+wq*uq)/roq+(hht1(i)+ww1(i)%uu1(i))/rroi(i)
b(i)=b(l)®dt/(2ucprar)+all)#*pg+iq
b(2)=(1+tt1Cid#zzt1(id)/z221(i))*(hhtl(i)+wwl(i)*uul(i))
h(2y=h()#aasl(i)/(rrol(idxtt1(i))
b(2y=(b(2)+rasre(l+tr#zivr/zv)#(htr+ur*ur)/(ror#tr))/cp
h(2y=(b(2)~C(wr/vor+wwyl{i)/rrol (i) ))ndt/(2%ar)
b(2)=b(2)=g#dtadsin(th)+a(J)#pr+ur
b(2)=(l+tt1¢id#zz61(i)/zz1(id)#(hhtl (i)+wwl(i)*uul(i))
b(3)=b () *aasl(i)/(rrol (i)#*ttl1(i))
b(3)=(~h(3)~assk(l+tskzts/zs)*(hts+wssus)/(raoskts))/cp
b(3)=(b(3)~(ws/ros+wwl(i)/rrol(i)))*xdt/(2#ar)
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31

15
16
14

call dminv(a,3,det, 11, mm)

if(det. ne.0.0) goto 12
write(éb, 31) i

format(‘pipe 1 (2nd order) i=',i3)
stop "no inverse" .
pit=a(l)#b(1)+a(2)#b(2)+a(3)#b(3)
tit=a(4)#b(1)+a(5)%b(2)+alb)#b (3)
yit=a(7)#b(1)+a(BY#b(2)+a(F)#b (3)
difp=dahs(ppl(i)-pit)/pit
dift=dabs(ti1(i)-tik)/tit
if(count,. gt 200) goto 13
if(difp.gt.0.01) goto 13
if(dift. 1. 0.01) goto 14
ppl{i)=pit

tt1Cir=tit

vul(i)=uit

pdif=difp

tdif=dift

goto 10

write(d, 1401

format(‘subl — no itevation for i=‘,i4, " in pipe 1)
ppl(i)=pit '
tti(ir=tit

vul(id)=uit

return

end
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subrogytine subz(pl,tllul.dx.ppllttl,uul:tc,pc:r;
% oar, £.d.cp pi, st, tw: g dt, i, 21, zpleztl,rol,wl, asl,

s

% htl, th)

this subroutine calculates p,t and v at internal
boundary points between different grid sizes.

implicit double precision (a-h,o-z)
dimension pl(BOO).tl(BOO).ul(SOO):21(300),
% zt1(300), wl(300), as1(300), ht1(300), ppl(300),
%, tt1(200),uul (3001, 221(300), 22p1(300), 2zt1(300),
% rrol(BOO).wwl(SOO),aasi(EOO);hhtl(SOO);
% a(9),b(3), ro1(300),2p1(300)
integer 11¢3), mm(3), count

first order approximation

if(ul(iy. eq. 0.0) goto 20

if(ul(i—-1).eq.0.0Q) goto 20
posq=2*dt/(1/u1(i)+1/u1(i—1))

goto 22

posq=dt%(u1(i)+u1(i—1))/2
posrzdt*z/(l/(ul(i)+a51(i))+1/(u1(i—1)+asl(i—1)))
poss=dt%2/(1/(asl(i)—ul(i))+1/(asi(i+1)-u1(i+1)))

pq:pogq/(gudx)*p](]"1)+(1“p05ﬂ_/(2*dx’)*pi(l)
tq=posq/(2*dx)*t1(1"1)+(1~posq/(2*dx))*tl(i)
uq:pggq/(g*dx)*ul(i~1)+(1—p05q/(2*dx))*ul(i)
zq=posq/(2*dx)*zl(i~1)+(1~p05q/(2*dx))*zi(i)
th=pnsq/(2*dx)*ztl(i—1)+(1~posq/(2*dx))*ztl(i)
roq=posq/(2%dx)*r01(i—l)+(1—posq/(2*dx))*rol(i)
asq=pmsq/(2%dx)%asi(i~1)+(1*posq/(2*dx))*asi(i)
htqﬁposq/(&*dx)*htl(i—1)+(I—posq/(z*dx))*htl(i)
wq=posq/(2*dx)*w1(iwl)+(1mposq/(2*dx))*wi(i)
pr=posr/(2%dx)%pl(i~1)+(1*posr/(2*dx))*pl(i)
tr=posr/(2%dx)*t1(i—1)+(1—posr/(2*dx))*tl(i)
ur=posr/(2*ﬁx)*ui(i~1)+(1—posr/(2*dx))*ul(i)
zr=posr/(2*dx)*zl(i~1)+(1~posr/(2*dx))*zl(i)
ztr=p05r/(2*dx)*ztl(i—1)+(1—posr/(2*dx))*zt1(i)
ror:posr/(g*dx)*roi(i—l)+(1—posr/(2*dx))*roi(i)
asr=pasr/(2*dx)*asi(i—1)+(1—posr/(2*dx))*asl(i)
htr:posr/(zﬁdx)*htl(i—1)+(1—posr/(2*dx))*htl(i)
wrxposr/(z%dx)%ml(i~1)+(1“posr/(2*dx))*wl(i)
ps=poss/dx#pl(i+l)+(1-poss/dx)#pl(i)
ts=poss/dx*t1(i+1)+(1-poss/dx)*t1(i)
us=poss/dxﬂul(i+1)+(1*p055/dx)*u1(i)
zs=poss/dx#z1(i+1)+(1~pass/dx)#*z1(1)
zts=poss/dx%zt1(i+1)+(1~poss/dx)%zt1(i)
-pos::pos«_;/dx:&'l"oi(i"‘l)“”‘(l"'{)USS/dX)*T‘QI(i)
ass=po§5/dx*asl(i+1)+(1*poss/dx)*asl(i)
hts=pass/dx%ht1(i+1)+(1~poss/dx)*ht1(i)
ms=poss/dx*w1(i+1)+(1~poss/dx)%w1(i)

xl=gsr#dt#{i+trazitr/zr)/(ror#cp*tr*ar)
xD=assHdb#(l+tsnzts/zs)/(rosH*cpitisH*ar)
ali)=—(1+tq#ztq/zq)/(roq*cp)-wqiuqrdt/ (2*roq*cpitarspq)
a(2)=1+wyrugrdt/(S#rogicprarstg)

a(3)=—wq*dt/ (roqitcp*ar)
alay=1/C(ror#tasri—wriurtx i/ (*prr+turtdt/(2¥ar#ror#pr).
a(5)=wr#yr#xl/ (2*Lr)—-wrHdb/ (2#ar*rorittr)
al(7)==1/(ros*ass)twskuskxd/ (Z#ps)+ws*dt/ (2¥ar#ros#*ps)
ali8)=—wesHyshx2/(2Ets)~wsHkd L/ (2#ar#*ros#ts)
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[§))

30

10

3 posr=2

IF{Us. 6q.0.0) goto 2
a(6)=1-wr%x1+wr*dt/(ar*ror*uv)
a(?)=1+ws*x2+ws*dt/(ar*ros%us)

goto 1
al(sr=1
al{F)r=1

b(l)=htq*dt/(roq%cp*ar)+tq~pq*(1+tq*th/zq)/(roq*cp)
b(2)=htr#xl+ur+pr/(ror#asT)—g#dt*dsin(th) ‘
b()=—hto#xR+us—ps/{ros*ass)—g*dt*dsin(th)

call dminv(a, 3, det, 11, mm)
if(det.ne.0.0)goto 7
write(6,30) i ‘
format(‘pipel i=",13)

stop "no inverse”
ppl(i)=a(1)%b(1)+a(2)*b(2)+a(3)*b(3)

ttl(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3)
uul(i)=a(7)%b(1)+a(8)*b(2)+a(9)*b(3)

count=0

psave=ppl (i)

tsave=ttl (i’

usave=uul (i)

pdif=ppl€i)*1000

tdif=tt1(i)*#1000 : '
zzl(i)3?*tc/(128*ttl(i))—27%tc**3/(64*tt1(i)**a)
zz1¢id=zz1(i)#ppl(i)/pctl

ZZpl(i)=(zzl(i)—l)/ppl(i)
zzti(i)=81*tc%*3/(64*tt1(i)**4)—9*tc/(128*tt1(i)*ttl(i))
zztl(iy=zztl(i)#ppl(i)/pc
Proi(i)=pp1(i)/(r*tt1(i)*zzl(i))
wwi(i):dabs(ar%rrdl(i)*F*uul(i)*uui(i))/(2*d)
aasl(i)=((1+zzt1(i)%tt1(i)/zzl(i))**2)*pp1(i)
aasl(i)=aasi(i)/(rroi(i)*ttl(i)ﬁcp)+zzp1(i)*ppl(i)/zzl(i)
aasl(i)=(1—aasl(i))*rrol(i)/ppl(i)
aasl(i)=1/dsqrt(dabs(aasl(i)))
hhtl(i)=pi§;p*st*d*rrol(i)*uul(i)*(tw~tt1(i))

count=count+l

second order procedure
if(ug. eq. 0. 0) goto 2

if(uulli). eq. 0.0) goto 21
posq=2*dt/(1/uq+1/uu1(i))

goto 23

posq=dt*(uq+uu1(i))/2

. *dt/(t/(ur+asr)+1/(uu1(i)+aasl(i)))
poss=?*dt/(1/(ass—us)+1/(aasi&i)—uul(i)))

pq=p1(i~1)+(2*dx"posq)*(p1(i)—pl(i—2))/(4*dx)
uq=u1(i—1)+(2*dx"p05q)*(u1(i)-ul(i~2))/(4*dx)
tq=t1(i*1)+(2*dx~posq)#(t1(i)—tl(i—z))/(4*dx)
zq=zl(i—1)+(2*dx—posq)%(zl(i)—zl(i~2))/(4*dx)
wq=w1(i—1)+(2*dx—posq)%(w1(i)—wl(i—2))/(4*dx)
th=zt1(i—l)+(2*dx—posq)*(zt1(i)—ztl(i—2))/(4*dx)
r0q=r01(i—l)+(2*dx~posq)*(r01(i)—rol(i—2))/(4*dx)
asq=asl(i—l)+(2*dx~poaq)*(asl(i)—asl(i~2))/(4*dx)
htq=ht1(i~1>+(2*dx~posq)*(ht1(i)-htl(i”2))/(4*dx)
pr=p1(i—1)+(2*dx~pusr)*(p1(i)—p1(1—2))/(4*dx)
urmu1(1—1)+(2*dx~posr)*(u1(i)—u1(1~2))/(4*dx)
tr=t1(i—1)+(2*dx—posr)%(t1(i)—tl(i~2))/(4*dx)
zr=z1(i—1)+(2*dx—posr)*(zl(i)—zl(i~2))/(4*dx)
wr=w1(i—1)+(2*dx-posr)%(w1(i)-wl(1—2))/(4*dx)
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T=TTITCTEITHF(2Rax—posT I #{rol (i)=-rol (i-2))/(4#dx)
as]":asl(j_—]_)-i-(g*dX"pOST‘)*(aSI(i)—asj.(].."'2) Y/ (4%dx)
htr=htl(i—-1)+(2#dx—posT)¥(ht1(1)-ht1(i-2))/(4%dx)
p5=p1(i+1)—(dxwpmss)*(pi(i+2)-p1(i))/(E%dx)

ve=ul(i+i )...(dx—-posg)*(ul(i""'g)"Ui(i))/(E*dX)
te=tl(i+1)—(dx—poss)#(L1(i+2)—-t1(1))/(2%dx)
ze=z1(i+1)~(dx—poss)#{z1(i+2)—21(i))/(2xdx)
we=wl(i+l)=(dx-poss)¥(wl(i+2)—wl(i))/(2#dx)
ztes=ztl(i+ii—(dx—poss)i®(2TL (i+2)—zt1(i))/(2%dx)
ros=r01(i+1)—(dx~poss)*(r01(i+2)—r01(i))/(E*dx)
ass=asl(i+lr—~(dx—poss)#lasl(i+2)—~asl(i))/(2*dx)
hts=htl{i+1)—(dx—poss)#(htl(i+2)—ht1(i))/(2*dx)
pq=pq+(2§dx-pgsq)*%2%(p1(i)+p1(i—2)-2*p1(i—l))/(B*dx*dx)'
Uqguq+(g*dx-pgsq)**g%(u1(i)+u1(i—2)~2*u1(i~1))/(B*dx*dx)
tqth+(2*dx-p05q)§*2*(t1(i)+t1(i-2)~2*t1(i—1))/(B*dx*dx)
zq=zq+(g*dx_pgsq)%%2*(zl(i)+zl(i-2)-2*21(i—i))/(B*dx*dx)
wa=wgq+(2rdx—posq) #x2# (Wl (1) +wl (1=2)=2%wl (i-1))/(Brdxwdx)
th=th+(2%dx“pogq)**2*(zti(i)+zt1(i"2)—2*zt1(i—1))/(B*dx*dx)
T.qu_.T.‘_.,q.,.(24“5,(_.pc,«;,q)awga&(1*01(i)-!-rc»l(i--f-_")~2~ltvrc;1(i—i))/(B«lt-clx-u-dx)
asqnasq+(2*dxupogq)%*g*(asl(i)+a51(i~2)*;*a51(i-1))/(B*dx*dx)
htq=htq+(2%dx»posq)**zﬁ(htl(i)+ht1(i-2)—2*ht1(i—1))/(B*dx*dx)
preprH(@#dy—-posT ) #R2% (pL(I)+pl(i=2)=2%p1(i=1))/(Brdx¥dx)
Ur=UTH(2%dx-posT) ¥RZE (Ul (1)+ul (i-2)=2%ul(i~1))/(Bxdx#dx)
tr=tr+(2%dx~posr)**ﬁﬁ(t1(i)+t1(i—2)~2%t1(i—l))/(B*dx*dx)
zruzr+(2*dx_pogr)%%2%(zl(i)+21(i—2)"2*zl(i—1))/(S*dx*dx)
wr:wr+(g%dx~p05r)%*2*(w1(i)+w1(i-2)“2*w1(i—1))/(8%dx*dx)
ztvgztr+(2*dx—posr)*§2*(ztl(i)+zt1(i~2)—2*zt1(i-1))/(B*dx*dx)
r0r=v0r+(g%dx-pgsr)**g%(fol(i)+T01(i—2)‘2*T01(i“1))/(B*UX*dX)
agr=agr+(2*dx-pogr)**E*(asl(i)+asl(i~2)—2*asl(i—1))/(B*dx*dx)
htruhtr+(g*dx»pogr)*%2*(htl(i)+ht1(i~2)—2*ht1(i—i))/(B*dx*dx)
p5=p5+(dx«pqsg)%*2*(p1(i+2)+p1(i)—2*p1(i+1))/(Q*dx*dxr
us=us+(dx"p0557%*2%(u1(i+2)+u1(i)—2*u1(i+1))/(2%dx*dx)
be=ts+(dx-poss)®s2e(£1(i+2)+E1(1)-2#t1(i+1))/(2xdxxdx)
35=1g+(dx»p055)**2%(21(i+2)+21(i)-a*zl(i+1))/(g*dx*dx)
w5=m;+(dx~puss)**2&(w1(i+2)+w1(i)—2*w1(i+1))/(2%dx*dx)
zt5=zt5+(dxwposs)**2*(ztl(i+2)+zt1(i)—2*zt1(i+1))/(2*dx*dx)
ros:r05+(dx~pggg)*ug%(ral(i+2)+r01(i)~2*r01(i+1))/(E*dx*dx)
ass=395+(dg—pggg)%%2*(ag1(i+2)+asl(i)—2*&51(i+1))/(2*dx*dx)
ht5=ht5+(dxmpggg)%#2*(ht1(i+2)+ht1(i)~2%ht1(i+1))/(Z*dx*dx)

a(i)=—(l+ttl(id#zztl(i)/zziCi))/rrol(i)
a(1)=(a(1)—(1+tq%th/zq)/roq)/(2*cp)

a(2)=1.0

a(3)=0.0
a(4)=(1/(ror*asr)+1/(rr01(i)*aasl(i)))/2
a(5)=0.0

a(6?=1.0
a(7)=(—1/(ros%ass)“1/(rr01(i)#aasl(i)))/2
a(B8)=0.0

a(?)=1.0

b(1)=(htq+mq*uq)/roq+(hht1(i)+ww1(i)*uul(i))/rrol(i)
b(l)=b(1)%dt/(E*cp*ar)+a(1)*pq+tq :
b(2)=(l+ttlCid)#zzt1(i) /221 (i) #Chhtl(i)+wwl(i)*uul(i))
b(2)=b(2)#aasl(i)/(rrol(i)*Ett1(i))
b(2)=(h(2r+asr#(l+treztr/zr)*(htr+turtur)/(ror*tr))/cp
p(2r=(b(2r—(wr/ror+wwl (i)/rrol(il))ytdt/ (2*ar)
B(2)=b(2)—~g#dt#dsin(th)+a(d)#pr+ur

b(y=C¢1+tt1 (i) #zzt1 (i} /221 Cid)#ChhtlCid+wwl (i) #uul(i))
b(3r=h(I)#aasi(id/(rrolli)#tti(i)) '
b(3)=(~b(3)—ass#(l+ts#zis/zs) ¥ (hts+ws*us)/(ros#ts))/cp
W(3)=(h(3)~Cws/ras+uwl (i) /rral(i)))*dt/(2%ar)
b(3)=b(3)—~g#dtedsin(Lth)+a(7)*ps+us

251



m——-——__v--, e P .. e . . - . -
call dminv(a, 3, det, 11, mm)
if(det.ne. 0.0} goto 12
write(&,31) i

31 format(‘pipe? (2nd order) i=',1i3)
stop "no inverse"

12 pit=a(l)#b(1)+a(2)#b(2)+a(3)#bh(3)
tit=a(4)#b(1)+a(S)#b(2)+a(b)xb(3)
vit=a(7)ah{1)+a(8)#b(2)+a(2)#b(3)
difp=dabe(ppl(il=pit)/pit
dift=dabs(tt1(i)~tit)/tit
if(count. gt. 200) goto 15
if(difp. gt. 0.01) goto 13
if(dift. 1t. 0. 01) goto 14

12 pplcid=pit '
tt1(i)=¢tit
yul(il=uit
pdif=difp

tdif=dift
goto 10

15 write(s, 1601 :
16 format(’sub2 — no iteration
14 ppl(i)=pit

tti(i)=¢tit

vul(id=uit

return

end

for i=',i4, * in pipe 1 (sub2)’)
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subroutine sub3(pa t& v dx, pp2 ££2, UL, te, pe, T,
X ar, £, d, cprpisst tl.}: g, dt, i, 22, tpa, 242, rod, w2, asa,

2 ht2, th)

This subroutine calculates p,t and u at internal
boundary points between different grid sizes in pipe 2.

~implicit double precision (a~h,o-z)
dimension p2(300), t2(300), u2(300), z2(300),

T zt2(200), w2(300), as2(300), ht2(300), pp2(300),
o EE2(300), vu2(300), 2z2(300), 2z2p2(300), 22%2(300),
Zorro2(300), mw2(300), aas2(300), hht2(300),
oa(?),b(3), ro2(300), zp2{300)
integer 11(3), mm(3), count

First order approximation

posr=dt#2/ (1/(u2(ir+as2(idt+1/(u20i~-1)+as2(i—-1)))
poss=dt#2/(1/(as2(i)~u2(i)¥+1/(as2(i+1)~-u2(i+11))
pr=posr/dy#p2{i-1)+(1-posr/dx)#p2(i)
tr=posr/dgaL2¢i—~1}+{l-pousT/dx)2#t2(1)
ur=posr/dx¥u2(i-1)+r(l=-posr/dx)#u2(i)
tr=posr/dx#z2(i-1)+(l-posr/dx)#z2(1)
ztr=posr/dx#zt20i-1)+{1~-posr/dx}#zt2(1i)
ror=posr/dx2#ro2(i—-1)+(l-posr/dx)#ro2(i)
asr=posr/dx#as2(i-1)+(1l-posr/dy)*as2(i)
htr=posr/dxsht2(i~-1)+(1l-post/dx)#ht2(i)
wr=pasr/dx#y2(i-1}+{1-posr/dx)#u2(i)

ps=poss/ (dx)%*p2(i+1)+(l-poss/(2*dx)I%p2(i)
ts=poss/ (2#dx ) #t20i+1)+(1l~poss/(2#dx ) I #t2(1)
us=poss/ (2dx)¥u2(i+1)+{(1-poss/(2#dx) I ®u2(i)
zs=poss/(2%dx)#z2(iti)+(l~pogss/(2#dx))#z2(i)
tts=poss/(2udx )z t2(i+1)+(l-poss/(Qdx) I #zt2¢i)
Tos=poss/(2#dx)#ro2(i+l)+(l-poss/(2#dx))#T02(i)
ass=poss/(2#dx)#as2(i+l)+(l-poss/(2#dx) ) #as2(1i)
hts=poss/(2#dx)#ht2(i+1)+(l-poss/(2#dx))#ht2(i)
ws=poss/ (2¥dx ) #w2(i+1)+(1-poss/(2%dx) I #w2(i)
xl=agradte(l+trrztr/zr)/(ror#cpsivr#ar)
x2=ass#dta(l+ts*zts/zs)/ (ros#cp#tstar)
al4)=1/(rorstasr)~wrturitxl/(2epr)+wrtdt/ (2#ar#ror#pr)
a(H)=wr#ur#xl/(2¥tr)-wradt/ (2¥ar¥ror#*tr)
a(7)=—1/(ros*ass)tustus*x/(2¥ps)+tuwskdt/ (2¢ar*ros#ps)
a(B@)=—wsHus#x2/ (2%ts)—wstdt/(2rar#trostts)

if(ur, eq. 0. 0) goto 20 -
if(us. eq. 0. Q) goto 21
a(&)=l-wr#xl+ursdt/ (ar*ror#ur)
a(9)=1+us#x2+tuskdt/ (ar#rostus)

goto 21
a(b)=]

al(?r=1
b{2)=htr#xlturtpr/(rortasr)—g¥dtadsin(th)

b(B3)=—hts#xZd+us—ps/(rosktass)-g¥dtstdsin(th)

if(u2(i). le. 0.0) goto 1
if(u2Ci-1).aq.0.0) gato 7
posq=dt#2/(1/ud(il)+1/ua(i-1))

goto 17

pasgq=dt#u2(i) /2
paq=posq/dx#p2(i—1)+{1~- pﬂfq/dx)%pg(l)
tq=posq/dx#t2(i—-1)+(1l-posq/dx)#t2(i)
uq=posq/dx*#ud(i~1)+(l-posq/dx)y#u2(i)

Czq=posq/dx#z2(i-1)+(1-posq/dx)#*z22(1i)
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\-~—~»h-ruqapquygx%rcg(1;1)%(f:56§i/dx)*%02(i)
asq:pgsq/dx%asg(i—1)+(1~p05q/dx)*a§2(i)
htq:pogq/d x#ht2(i~1 )’F(l"pDSQ/dX Y#ht2(1)
wq=posq/dx%w2(i—1)+(1-posq/dx)%w2(i)
goto 3

1 if(uR(i). eq.0.0) goto &
if(u2(i+1). eq. 0.0} goko &
posq=dabs(dt*2/(1/u2(i)+1/U2(i+1))7

goto S

pcsq=dabs(dt*(u2(i)+u2(i+1))/2
pq:posq/(g%dx)%p2(1+1)+(1~posq/(2%dx))*p2(i)
tq=posq/(g*dx)*tg(i+1)+(I"posq/(Q*dx))*tE(i)
Uq=p05q/(2%dx)*ug(i+1)+(1—posq/(2*dx))*u2(i)
zq=posq/(2*dx)*12(i+1)+(I”posq/(E*dx))%zE(i)
th=posq/(3%dx)*zt2(i+1)+(1~posq/(2%dx))%ztz(i)
rgq:pggq/(g*dx)*rﬂg(i+1)+(1”FDSQ/(2*dX))*Pog(i)
agq:pgsq/(gﬂdx)*asa(i+1)+(1—p05q/(2*dx))*asQ(i)
?%dx)%ht2(1+1)+(1—posq/(2*dx))*th(i)

htq=posq/(:
wq=pasq/(2%dx)*w2(i+1)+(1~posq/(2*dx))*wz(i)

an

a(l)=~(1+tq#ztﬁ/zq)/(roq*cp)—wq#uq*dt/(2*roq*cp*ar*pq)
a(2)=1+wq*uq*dt/(Z*PDq*cp*ar*tq)
a(3)=—wq*dt/(roq*cp*ar)
b(1)=htq*dt/(roq*cp*ar)+tq—pq*(1+tq§th/zq)/(roq*cp)

J

2]

call dminv(a, 3, det, 11, mm)
if(det.ne. 0. Q)goto 7
write(s, 307 i

20 format(’‘pipe & i=4,13)
stop “no inverse"

? pp2(i)ﬂa(l)%b(1)+a(2)*b(2)+a(37*b(3)
ttg(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3)
uuQ(i)=a(7)*b(1)+aQ8)#b(2)+a(9)*b(3)
count=0
psave=pp2(i)
tsave=tta (i)
usave=uu2 (i)
pdif=pp2(i)#*#1000
tdif=tt2(i)#1000

10 222(1)=9%tc/(128*tt2(i))~27*tc**3/(64*tt2(i)**3)
122Ci)=zz2(i)¥ppR(i)/pc+l
zzp2(i)=(222(i)—1)/pp2(i) ]
,zth(i)=Bl*tcﬁ*3l(64*tt2(i)**4)—9*tc/(128*tt2(i)*ttz(i))
zzt2(i)=zzt2(i)#ppali)/pc
rr02(i)=pp2(i)/(r*tt2(i)*zzz(i))
ww2(id=dabs(ar#rro2(i)#fruua (i) *uu2 (1)) /(2#d)
ags2(iy=(Ci+zz42Cir#tt2(i) /22205 ) ) *u2)#pp2 (i)
aas2(ir=aas2(i)/(rro2(ii#tt2(i)#cpl+zzp2(id*¥ppa(i)/zz2(1)
aas2(i)=(l—-aas2(i))#¥rro2(i)/ppa(i)
aas2(i)=1/dsqrt(dabs(aasa(i)))
hhta(i)=pi*cp*st*d*rr02(i)*uug(i)*(tw-tta(i))
count=count+1

Secand order procedure

NN

if(uq. eq.0.0) goto 8
ifluu2(i). eq. 0. 0) goto 8
pasq=dabs (dt#2/(1/uq+1/uu2(i)))
goto 11
8 posq=dabs(dt#{uq+tuud(ii)/
11 posr=2#dt/(1/(ur+asr)+1l/(uu2li)+aasa (i) ))
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Ty pEpa (IS F (X —posT I * (pR (1) =pR (i) )/ (2%dx)
ur=uR(i~13+idx-posr)r#(u2(i)~udCi-2))/(2#dx)
Er=t2(i-1)+(dx=posr)#($2(i)~-L20i-2) )/ (2#dx)
rr=ga(i-1)+(dx~pasr)#(z201)—~12¢i-2))/(2%dx) ‘
wr=woli-1)+(dx=posr)# (w2 (1)-wd(i-2) )/ (2#dx)
ttr=zt@2 i1+ (dx—-posr)x(zt20(i)-2t201i~2) )/ (2%dx)

ror=ro2(i-1)+(dx—posrm)#(ro2ti)-ro2(i-a2))/(2#dx)
ast=as2(i—-1)+(dx—posT)#{as2(id—~as(i-2)) /(2#dx)

htr=ht2(i-1)+(dx—posT)#(ht2(1)-ht2(i-2))/(2#dx)
p5=pg(i+1)—(g%dx"poss)%(pQ(i+2)—p2(i))/(4*dx)
Us=u(i+l)-(2¥dr=poss)#(u2(i+2)-u2(i)) /(4%dx)
ts=t2(i+1)—(2#dx—poss)k (L2 (i+2)—=t2(1i))/(4%dx)
zs=22(i+1)—(Z*dx—poss)*(ZQ(i+2)—22(i))/(4*dx)
we=w2(i+1)~(2#dx—poss)#(wR(i+2)~w2(i) )/ (4#dx)
ztSﬂth(i+1)—(E*dx—poss)%(th(i+2)—zt2(i))/(4*dx)
ros=r02(i+1)-(R*dx—pogs)*(roE(i+2)“r02(i))/(4*dx)
assaagg(i+1)—(2*dx~poss)*(a52(i+2)—a52(i))/(4*dx)
htszhtgci+1)—(E*dX‘poss)*(htE(i+2)—ht2(i))/(4#dx)
pr=pr+(dx—pogr)%%2§(p2(i)+p2(i—2)—2%p2(i—l))/(Q*dx*dx)
Ur=ur+(dx—pgsr)*%2*(u2(i)+u2(i—2)—2*u2(i—i))/(E*dx*dx)
tr=tr+(dx~posr)**2%(t2(i)+t2(i—2)—2*t2(i—1))/(E*dx*dx)
zr=zr+(dx—p05r)%%2%(12(i)+12(i~2)—2*z2(i—1))/(E*dx*dx)
wr=wr+(dx—posr)%%2*(w2(i)+w2(i—2)—2*w2(i—1))/(E*dx*dx)
ztr=ztr+(dep05r)**2*(ztg(i)+zt2(i—2)—2*zt2(i~1))/(E*dx*dx)
ror=rgr+(dx~posr)%%2*(r02(i)+r02(i~2)~2*r02(i—1))/(Q*dx*dx)
asr=a5r+(dx—posr)%*Z*(asQ(i)+a52(i~2)~2*a52(i—1))/(Q*dx*dx)
htr=htr+(dx~posr)**2%(ht2(i)+ht2(i~2)~2*ht2(i—1))/(E*dx*dx)
p5=p5+(2*dx-poss)**a*(pa(i+2)+p2(i)—2*p2(i+1))/(B*dx*dx)
Usmu5+(2*dX'pOSS)**2*(U2(i+2)+U2(i)"2*U2(i+1))/(B*dx*dX)
ts=ts+(2*dx~poss)*%2*(t2(i+2)+t2(i)—2*t2(i+1))/(8*dx*dx)
zs=zg+(2*dX*poss)**g*(zz(i+2)+12(i)—2*22(i+1))/(B*dx%dx)
wg,::u[g+(2§-dx--'poss)**Q*(lﬂ;(i+2)+w2(i Y-2#w2(i+1)) /(Brdx#dx?
zts=zt5+(g%dx—poss)%*2*(zt2(i+2)+zt2(i)~2*zt2(i+1))/(B*dx*dx)
ros=r05+(2%dx—poss)%*Q*(roQ(i+2)+r02(i)~2*r02(i+1))/(B*dx*dx)
a;g:agg+(2»dxnposg)**2*(352(i+2)+a52(i)—2%a52(i+1))/(B*dx*dx)
ht5=ht5+(gudx~pogg)**2%(hta(i+2)+ht2(i)~2*ht2(i+1))/(B*dx*dx)

if((uu2(idY+ug). 1t.0.0) goto 4
pq=p2(i“1)+(dx—p05q)*(p2(i)~p2(i—2))/(E*dx)
quug(ia1)+(dx~posq)*(u2(i)—u2(i-2))/(2*dx)
tq=t2(i~1)+(dx—p05q)*(t2(i)~t2(i—2))/(Q*dx)
zq=22(i—1)+(dx—posq)*(zQ(i)—zH(i—Q))/(Q*dx)
wq=wg(i—1)+(dx—posq)*(w2(i)~m2(i—2))/(2*dx)
thzztg(i-1)+(dx~posq)*(zt2(i)—zta(i—z))/(E*dx)
roqﬁroz(i~1)+(dx"p05q)*(r02(i)—rOZ(i—Z))/(Q*dx)-
asq=as2(i-1)+(dx~posq)#(as2(i)-as2(i-2))/(2#dx)
htqihtz(i—1)+(dx—posq)%(ht2(i)—htz(i—ﬁ))/(Q*dx)
pq:pq+(dx~posq)**2*(p2(i)+p2(i—2)~2*p2(i—1))/(Q*dx*dx)’
uq=uq+(dx~posq)**2*(u2(i)+u2(i—2)-2*u2(i—1))/(E*dx*dx)
tq=tq+(dxnposq)**2*(t2(i)+t2(i~2)~2*t2(i—1))/(E*dx*dx)
zq=zq+(dx—posq) ¥ (z2(i)+z2(i-2)—2#12(i-1))/(2xdx#dx)
wq=wq+(dx—posq)**2¥ (w2 (1) +w (i-2)—~2*wa (i-1)) /(2dx#dx)
ztqmztqr(dx—posq)##2# (z2t2Ci1)+2E2(i-2)=-R%7E2(i~1))/(2%dx#dx)
T,c,q.-=,«';,q_+(dx—p':vsq)<1H!rt-2*:i-(rr)2-2(i)+1~0.’.~?(i---..~’2)--.2~1$1‘02(:'1—1))/(2~M—dx-)@(-dx)
asq=asq+(dx-posq)#*x2#(asR(id+as2(i-2)-2*asa(i-1))/(2#dxxdx)
htgq=htq+(dx—posq)##2# (ht2(i)+ht2(i~2)-2#ht2(i-11)/(2%dx#dx)
goto 6 :

4 pq=p2(1+1)~(2%dx~pnsq)%ip2(i+2)—p2(i))/(4*dx)
uq=u2(i+1)—(2#dx~posq)* (UR(i+2)=u2 (i) )/ (4xdx)
tq=t2(i+1)=(2#dx~posq) #(t2(i+2)~t2(i)) / (4#dx)
zq=22(i+1)~(2#dx—posq)#(22(i+2)=22(1))/(4#dx)
wg=w2(i+1)—(2¥dx~posq) ¥ (WR(i+2)—w2 (i) )/ (4%dx)
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—roqeET o2 (TR (2%dx-posq) #(ro2(i+2)=T02(1))/ (4%dx)

asq=a52(i+1)"(Q*dx*posq)*(BSZ(i+2)~a52(i))/(4*dx)
htq=htg(1+1)~(2*dx~posq)%(ht2(i+2)~ht2(i))/(4*dx) .
pq=pq+(2%dx~posq)**2*(p2(i+2)+92(i)~2%p2(i+1))/(E%dx*dx)
uqauq+(2%dx-posq)%%z%(UZ(i+2)+u2(i)—2%u2(i+1))/(B%dx*dx)
tq=tq+(2%dx*posq)**z*(ta(i+2)+t2(i)*2%t2(i+1))/(B*dx*dk)
1q=zq+(2%dx—posq) #F2# (22 (1+2)+22(1)=2%22(i+1))/(Brdx*dx)
wq=wq+ (2%d x-—posq)-‘;ﬁ-*,’-—_-’%(ula( PF2) w2 L) ~2%w2(i+1) ) S/ (A#dx*dx)
th=th+(2%dx—posq)**”*(zta(i+2)+zt2(i)wQ%th(i+1))/(8*dx*dx)
roq:rgq’-l-(a%d x—pOSq)*‘*R*(T‘Gf—:( i+2)+ro2(i)-2#ro2(i+1))/(Brdx#dx)
asqxagq+(2*dx«posq)%%aﬂ(asz(i+8)+asz(i)—2*a52(i+1))/(B*dx*dx)
htq=htq+ Q*dxwposq)**z%(hkQ(i+2)+ht2(i)~2*ht2(i+1))/(B*dx*dx)

aCi)=—C1FEtR (i #zzE2C1)/222C1) )/ Trod(i)
a(ir=(a(l)—(1+tq¥ztq/zq)/rogl)/(2%cp)
a(2r=1.0

a(3)=0.0
a(4)=(1/(ror*asr)+1/(rr02(i)*aasz(i)))/2
a(5)=0. 0

a(é)=1.0
a(7)=(—1/(ros*ass)~1/(rr02(i)*aasg(i)))/2
a(B)=0.0

a(9)=1.0

b(1)=(htq+wq%uq)/roq+(hht2(i)+ww2(i)%uu2(i))/rroE(i)
b(1l)=b(1l)#dt/(2%cpHar)+a(l)#pg+tq
b(2)=(1+tt2(i)*zztg(i)/zzZ(i))*(hhtE(i)+ww2(i)*uu2(i))
b(2)=b(2)%aas2(i)/(rro2(i)#tt2(i)) , ‘
b(2)=(b(2)+asr*(1+tr*ztr/zr)*(htv+wr*ur)/(ror%tr))/cp
b(2)=(b(2)~(wr/ror+mw2(i)/rr02(i)))*dt/(Z*ar)
h(2)=b(2)~g#dtxdsin{th)+a(4)*prtur
b(3)=(1+tt2(i)%zzt2(i)/zza(i))*(hht2(1)+ww2(i)*uu2(i))
b(3)=b(3)*a552(i)/(rr02(i)%ttZ(i))
b(8)=(~b(3)—a53*(1+ts*zts/zs)*(hts+ws*us)/(ros*ts))/Cp
b(3)=(b(3)—(w5/r05+ww2(i)/rraz(i)))*dt/(z*ar)
b(3)=h(3)—gudtrdsin(th)+a(7)*ps+us

call dminv(a, 3, det, 11, mm)
if(det.ne. 0. 0) goto 12
write(&, 31) i

format(’pipe 2 (2nd order) i=’,13)
stop “no inverse"
pit=a(1)%b(1)+a(2)%b(2)+a(3)*b(3)
tit=a(4)%b(1)+a (D) #h(2)+a(6)#b (D)
vitz=a(7i1#b (1)+a(8)#h (2)+a(P)#b(3)
difp=dabs(pp(id-pit)/pit
dift=dabs(tt2¢i}—tig)/tit
if(count. gt. 200) gota 15
if(difp.gt. 0,01} goto 13
if(dift. 1. 0.01) goto 14
ppafil)=pit

tta2(ir=tit

yu2(i)=uit

pdif=dFfip

tdif=dift

goto 10

write(é, 1601

format(’sub3 - no iteration for i=’,1i4,’ in pipe 2°)
pp2(i)=pit .
tt2¢i)=tit

pu2(i)=uit

return

end
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subroutine sub4(pa, t2, u2, dx, ppe, tt2, uu, tc,pea T
b ar,F,d.cp.pi.st,tw.g.dt:i,zz.zpzfztzlrag.wz.asz.

% hta, th)

this subroutine calculates p,t and u at normal
internal points downstream of the break.

implicit double precision {a=-h, 0~1)
dimension p2(300), t2(300), v2(300), 22¢(300),
% zt2(300), w2 (300), as2(300), ht2(300), ppR2(300),
& ttZ(BOO),uUZ(BOO).122(300),zsz(BOO).zth(SOO).
2 rro2(300), wu2(300), aas2(200), hht2(300),
% a(9),b(3), ro2(300), zpR2(300) ’
integer 11¢(3), mm(3), count

first order approximation

posr=dt%2/(1/(u2(i)+a52(i))+1/(02(i—1)+a52(i—1)))
poss=dt*2/(1/(352(1)—u2(i))+1/(a52(i+1)—u2(i+1)))
pr=posv/dx*p2(i~1)+(1-pasr/dx)*p2(i)
tr=posr/dx%t2(i—1)+(1—p05r/dx)*t2(i)
ur=posr/dx*u2(i-1)+(1—posr/dx)%u2(i)
ZT“pOSTfﬂX*ZZ(i"i)+(1—p05r/dx)*22(i)
ztr=posr/dx*zt2(i—1)+(1~posr/dx)*zt2(i)
ror=posr/dx%r02(i"1)+(1-posr/dx)*ro2(i)
asr=posr/dx%asz(i—1)+(1—posr/dx)*a52(i)
htr=posr/dx%ht2(i—1)+(1—pasr/dx)*ht2(i)
wrnposr/dx*wz(i—1)+(1—posr/dx)*w2(i)
ps=poss/dx*p2(i+1)+(1—poss/dx)*p2(i)
ts=poss/dx%t2(i+1)+(1—poss/dx)%t2(i)
us=poss/dx*u2(i+1)+(1—p055/dx)%u2(i)
zs=p055/dx%22(i+1)+(1—p055/dx)*12(i)
zts=poss/dx%zt2(i+1)+(1~poss/dx)*zt2(i)
ros=poss/dx*r02(i+1)+(1—poss/dx)*r02(i)
ass=puss/dx*a52(i+1)+(1—poss/dx)*a52(i)
hts=poss/dx%ht2(i+1)+(1—poss/dx)*ht2(i)
ws=poss/dx*w2(i+1)+(1—poss/dx)%w2(i)
xl=asp#dt#(l+treztr/zr)/(ror#cp#tr*ar)
xD=asc#db#(1+tstzis/zs)/(ros¥cp¥ts*ar)

a(a)=1/(rortasr)—ur#ur#xl/(2rpr)+wrsdt/ (2rarsror#pr)

a(5)=wr*ur%x1/(2*tr)—mr*dt/(Z*ar*ror*tr)

a(7)=—1/(ros*ass)+wg*us*x2/(2*ps)+ws*dt/(2*ar*ros*ps)

a(8)=—ws*us%x2/(E*ts)*ws*dt/(E*ar*ros*ts)
iflur.eq.0.0) goto 20

if(us. eq. 0. 0) goto 20
a(éz=1—wr*x1+wr*dt/(ar*ror*ur>
a(9)=1+us#x2+wsH*dt/(artros*us)

goto 21

alb6r=1

a(?)=1
b(D)=htrtxl+ur+pr/(ror#asr)—g#dt#dsin(th)

"h(3)=—hts#x2+us—ps/(rostass)—g#dt¥dsin(th)

if(u2¢i). le. 0. 0) goto 1
iflul(i~1).2q.0.0) goto 1
posq=dt#2/(1/020(i)+1/u2(i~-12)
pa=posq/dx#p2(i~1)+(l-posq/dx)#p2(i)
tq=posq/dx#t2(i~-1)+(1-posq/dxI#t2 (1)
uq=posq/dx#u2(i-1)+(1l-posq/dx)*ua(i)
zq=posq/dx#z2(i~1)+(1-posq/dx)*z2(i)
ttq=posq/dx#zt2(i~1)+(1-posq/dx)I*zt2(i)
roq=posq/dx#ro2(i-1)+(i-posq/dx)*ro2(i)
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htq=posq/dx#ht2(i~1)+(1-posq/dx)*ht2(i)
wq=posq/dx#w2(i-1)+(1-posq/dx)*w2 (i)
goto 3

if(ua(il). eq.0.0) goto 2
if(u2(i+1). eq. 0. 0) goto 2
posq=dabs(dt#2/(1/u2(i)+1/u2(i+1)))
goto 7

posq=dabs(dt#(u2(i)+u2(i+1))/2)
pq=posq/dx#p2(i+1)+(1-posq/dx)#p2(i)
tq=posq/dx#£2¢i+1)+(1-posq/dx)#t2(i)
ug=posq/dx#u2(i+1)+(l-posq/dx)#ua(i)
zq=posq/dx#z2(i+1)+(1l-posq/dx)#z2(i)
ttg=posq/dxtzt2(i+1)+(l-posq/dx)#z1i2(i)
roq=posq/dx#ro2(i+l)+(1l-posq/dx}i¥ro2(i)
asq=posq/dr#tas2(i+1)+(1l-posq/dx)*as2(i)
htq=posq/dx#ht20i+1)+{(1l-posq/dx)#ht2(1)
wg=posq/dx#w2(i+1)+(1l-posq/dx)#w2 (i)

a(l) =—(l+tgqtztq/zq)/(rog*cp)~wqruq*dt/ (2#roq*cp*arspq)
2)=1+uwgruqidt/ (2%roq*cpiar#tq)

a(B) =—wq#d L/ (roq#*cpar)

b(l)=htq#di/(roqucpar)+iq-pa*(l+tqitztq/zq)/(rogq#cp)

call dminv(a,3,det, 11, mm)

if(det. ne. 0.0)goto 9

write(&,30) i

format(/pipe 2 i=’,1i3?}

stop "no inverse"

pp2(id=a(l)#b(1)+a(2)#¥b(2)+a(3)#b(3)

tt2Ci)Y=a(4)s#b (1)+a(D}#b(2)3+a(b)#b (I

uu2(id)=a(71#b(1li+a(B81#h (2)+a()1#h (3}

count=0

psave=ppa2(i)

tsave=tt2(1i)

usave=uu2(i)

pdif=pp2(i)*1000

tdif=64£2(i)r#1000

2z2(1)=9ahe/ (1286121 ) ~27xtc##3/(L4#EE2( 1) #%3)
2z2Ci)=z220i)#pp2Ci)/pc+l

zrp2Ciy)=(zzaCi)—1)/pp2(i)
27t2C¢1)=01#tc##3/ (642 LE2(1 ) ##4) -t/ (128#tE2(1ir#tt2(1))
zzt20i)=z2z2¢t2(i)#pp2(i)/pc
rro2(i)=pp2(i)/(rutt2(i)*#z22(i))
ww2{i)=dabslar#trro2 (i) #fruu2(id#uu (i) )/ (2%#d)
aasd(i)=((1+zz L2 (i) #tE20i)/222(1) ) ##2) #pp2(i)
aas2(id=aas2(i)/(rro2(i)#tt2(i)#cp)+zzp2(id#pp2(id/z22(i)
aas2(i)=(l-aas2(i))#rro2(i)/pp2(1)
aas2(i)=1/dsqrt(dabs(aas2(i)))
hht2(iy=pistcpstidtrro2 (i) #ov2(i)#(tw-tt2(i))

count=count+l

second order procedure

if(uq.eq.0.0) goto 8

if(uud(i). eq. 0.0) goto 8

posq= dabs(dt*"/(l/uq+1/uu (i)))

goto 11

posq= dab:(df*(uq+uu2(1>)/“)
posv=2#dt/(1/(ur+asT)+1/(uu2(id+aas2(i)))
pass=2#dt/(1/(ass—us!i+1/(aas2(i)~yu2(i)))
pr=p2(il-posr#(p2(i+1)—-p2(i—1))/(2%dx)
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ur=u2(i)—p0§r*(u2(i+1)—u&(i~1))/(z*dx)
zr=z2(1)-posr*(zg(i+1)-zE(i-l))/(E*dx)
ztr=zt2(i)—posr#(zt20(i+1)—zt2(i=1))/(S#dx)
ror=r02(i)—posr*(roZ(i+1)-r02<i~1))/(Q*dx)
asr=a52(i)—posr*(a52(i+1)—asQ(i-l))/(z*dx)
htr=ht2(i)~posr#(ht2(i+1)-ht2(i=1))/(2#dx)
wr=m2(i)eposr*(mZ(i+1)—m2(i~1))/(Z*dx)
ps=p2(i)+puss*(p2(i+1)—p2(i—1))/(E*dx)
ts=t2(ir+poss*(t2(i+1)-L2(i-1))/(2*dx)
us=u2(i)+puss*(u2(i+1J—uB(i—l))/(E*dx)
zs=12(i)+poss*(z;(i+1)—z2(i—1))/(E*dx)
zts=zt2(i)+poss*(zt2(i+1)-zt2(i—1))/(z*dx)
r05=r02(i)+poss*(r02(i+1)—roz(i—l))/(z*dx)
ass=a52(i)+poss*(a52(i+1)—asz(i-l))/(Q*dx)
hts=ht2(i)+poss%(ht2(i+1)*htZ(i—l))/(Z*dx)
ws=w2(i)+poss*(wa(i+1)—m2(i—1))/(a*dx)
pr=pr+posr%posr*(p2(i+1)+p2(i-1)—2*p2(i))/(2*dx*dx)
tr=tr+posr%posr*(t2(i+1)+t2(i—1)—2*t2(i))/(a*dx*dx)
ur=ur+posr%posr*(u2(i+1)+u2(i—1)—2*u2(i))/(a*dx*dx)
zr=zr+posr*posr*(z2(i+1)+22(i—17~2*12(i))/(Z*dx*dx)
ztr=ztr+p05r*posr*(zt2(i+1)+zt2(i~1)—2*zt2(i))/(R*dx*dx)
ror=ror+posr*posr*(r02(i+1)+r02(i—1)—2*r02(i))/(z*dx*dx)
asr=asr+posv*posr*(asg(i+1)+a52(i-1J—2*a52<i))/(Q*dx*dx)
htr=htr+posr*posr*(ht2(i+1)+ht2(i—1)~2*ht2(i))/(Z*dx*dx)
wr=wr+posr*poar*(w2(i+1)+w2(i—l)—Z*wZ(i))/(z*dx*dx)
ps=ps+poss*poss*(p2(i+1)+p2(i—1)—2*p2(i))/(a*dx*dx)
ts=ts+poss*poss*(t2(i+1)+t2(i—1)—2*t2(i))/(E*dx*dx)
us=us+poss*poss*(u2(i+1)+u2(i—l)—:*uE(i))/(Q*dx*dx)
zs=zs+poss%poss*(22(i+1)+22(i—1)—2*22(i))/(Z*dx*dx)
zts=zts+poss*poss*(zt2(1+1)+zt2(i—1)~2*zt2(i))/(Q*dx*dx)
ros=ros+p055*poss*(r02(i+1)+ro§(i—1)—2*ro2(i))/(E%dx*di)
ass=ass+p055*poss*(asa(i+1)+a52(i—1)—2*a52(i))/(E%dx*dx)
hts=hts+p0§§%poss*(ht2(i+1)+ht2(i—1)-2*ht2(i))/(2*dx*dx)
w5=w9+poss%poss*(w2(i+1)+w2(i—1)—2*w2(i))/(Z*dx*dx)

if ((uv2(i)+uq). 1t.0.0) goto 4
pq=p2(i)—pnsq*(pz(i+1)—p2(i—1))/(2*dx)
tq=t2(i)—posq*(t2(i+1)—tZ(i—l))/(Q*dx)
uq=u2(i)—posq*(u2(1+1)—u2(i—1))/(E*dx)
zq=12(i)—posq*(22(1+1)—22(i—1))/(E*dx)
th=zt2(i)—posq*(zt2(1+1)—zt2(i—1))/(2*dx)
'roq=r02(i)—posq*(r02(i+1)—roZ(i—l))/(Q*dx)
asq=a52(i)—posq*(a52(1+1)~a52(i—1))/(z%dx)
htq=ht2(i)—posq%(hta(i+1)—ht2(i-1))/(Q*dx)
wQﬂwE{i)—posq*(w2(1+1)~w2(i—1))/(Z*dx)

goto 6

pq=p2(i)+p05q*(p2(i+1)—p2(i—1))/(Q*dx)
tq=t2(i)+posq*(t2(i+1)~t2(i—l))/(Z*dx)
uq=u2(id+posq#(uali+1)~u2(i-1))/(2*dx)
zq=z2(i)+p05q*(12(i+1)-12(i-1))/(Q*dx)
th=zt2(i)+posq*(zt2(i+1)—zt2(i—1))/(E*dx)
roq=r02(i)+posq*(r02(i+1)"r02(i—1))/(2*dx)
asq=as2(i)+posq#(as2(i+l)—as2(i-1))/(a#dx)
htq=ht2(i)+posq*(ht2(i+1)—ht2(i—1))/(E*dx)
wq=w2(id+posq# (w2 (i+1)~wd(i-1))/ (2#dx)

pq=pq+posq¥posq*(p2(i+1)+p2(i-1)-2#p2(i))/(Q*dx¥#dx)
tq=tq+posqipaosqt(t2(i+1)+t2(i-1)-2#t2(1i))/(2*dx*dx)
uq=uq+posqi*posq¥(u2(i+1)+u2(i-1)-2%u2(i))/(2#dx#dx)-
zq=zq+posqrposq#*(z2(i+1)+22(i-1)-2#22(i))/(2%*dx*dx)
1tq=ztq+posq#posq#(ztRUi+1)+2t2¢i-1)-24#242(i) ) /(2#dx#dx)
raq=roq+posq#posq*(ro2(i+1)+ro2(i-1)-a%#ro2(i))/(2#dx#dx)
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c

c

c
31
12
13

c

15
16
14

wqg=wqtposqg¥posqr (w2 i+ D) +w2(i-1)-2#w2(i) ) /(2xdx#dx)

a(l)==(1+ti2(i)#z2t2(i)/2220(i))/rro2(i)
al(l)=(a(l)-(1+tgq*ztq/zq)/Toq)/(2%cp)
a(2)=1.0

a(3)=0.0
a(4)=(1/(ror#asri+i/(rro2(i)#aas2(il)))/2

a(5)=0.0

ale)=1.0
a(7)=(~1/(ros*ass)-1/(rrod{i)#aas2(i)))/2

a(8)=0.0
a(?)=1.0

b(l)=(htq+wqruql/roqg+(hht20i)+ww2 (i) #uu2(i))/rro2(i)

b(1)=b(1)#dt/(2¢cpar)+ta(l)#pg+tq
b(Ry=(1+t420i) #2242 i) /222010y (hhi2 (i) +ww2(i)Y%uu2(i))

h(2)=b(2r#aas2(l)/(rred(i)#Et2(i))

bRI=(h(2)+asr*(l+trrrir/zr)#{htr+urdur)/(ror#tr))/cp

b(2)=(h (2~ C(wr/rvor+rww2 (i) /rro2(i)))#dt/(2%ar)
b(2r=b(2)—g#dt#dsin{th)+a(4)#pr+ur
b(3)=(1+tt20id#zzE2(1i) /2221 ) # (hhL2Q0i)+ww2 (i) #uu2(i))
b(3)=h(3)#raas2(i)/(rro2(i)#tt2(1i))
b(3)=(—b43)—a55*(1+ts*zts/zs)%(hts+ws*us)/(ros*ts))/cp
b(3Y=(b(3)—~(ws/ros+ww2 (i) /rro2(i))Isdt/ (2%ar)
b(3)=b(R)=g#dtadsin(thli+al(7)#pstus

call dminv(a, 3, det, 11, mm)
if(det.ne. 0. 0) goto 12
write(b,31) i

format(‘pipe 2 (2nd order) i=‘,1i3)
stop "no inverse"
pit=a(l)x#b(1)+a(2)#b(2)+a(3)%#b(3)
tit=a(4)#b(1)+a(3)#b(2)+a(b6)#b(3)
uit=a(7)#b(1)+a(8)%b(2)+a(P)%b(3)
difp=dabs(pp2(i)-pit)/pit
dift=dabs(tt2(i)-tit)/tit
if(count. gt. 200) goto 15
if(difp.gt.0.01) goto 13

if(dift. 1t.0.01) goto 14
ppa2(il=pit

tt2¢ir=tit

vua(i)=uit

pdif=difp

tdif=dift

goto 10

write(s, 1671
format(‘sub4 - no iteration for i=7,1i4, ’ in pipe 2%)
ppa2(i)=pit

tt2(i)=tit

wu2li)=vit

return

end
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subroutine subS(pl,tl,ul,dx,ppl, ttl, vul, tc,pcim,
e, ar,f,d,cp,pi;St;tw:g:dt:illlllpllZtl:TOl:ml:BSl:

% htl.th.px,ux.tx,wx,zx,ztx,rox,asx,htx,pg,ug,tg,
& wg.zg,ztg,vog,asq.htg,k)

This subroutine calculates p.t and u at internal
boundary points linking different grid sizes.

implicit double precision (a-=h,o-z)

dimension pl(300), t1(300),ul(300), 21¢(300),
7t1(¢300), wl(300), as1(300), ht1(300), ppl(300},
ttl(SOO),uul(BOO);221(300).Zzpl(BOO).zztl(SOO):
rrol (300), wwl(300); aas1(300), hht1(300),
px(b);tx(b).ux(b),zx(b),wx(b):ztx(é).
rox(é),asx(b).htx(é).pg(b).Ug(é)atg(b),zg(b):
wg(b),ztg(é).rog(b),asg(é),htg(b);a(q),b(B),

2% ral(300)
integer 11¢(3), mm(3), count

DO RO

First order approximation

if(ux(k).eq.0.0) goto 20
if(ul(i—=1).2q.0.0) goto 20
posq=dt*4/(1/ux(k)+1/u1(i—1))
goto 22

posq=dt*(ux(k)+u1(i—1))
posr=dt*4/(1/(ux(k)+asx(k))+1/(u1(i—1)+a51(i-1)))

poss=dt#2/ (1/Casy (k)=uy (k) )1+1/¢as1(i+1)=ul(i+1)))

pq=posq/(2*dx)*p1(i—1)+(1—posq/(2*dx))*px(k)
tq=posq/(2*dx)*t1(i”1)+(1~posq/(2*dx))*tx(k)
Uq=posq/(2*dx)*u1(i—1)+(1—posq/(2*dx))*ux(k)
zq=posq/(2*dx)*zl(i—1)+(1~posq/(2*dx))*zx(k)
th:posq/(g*dx)%ztl(i—l)+(1—p05q/(2*dx))*th(k)
roq=posq/(2*dx)*rol(i—l)+(1—posq/(2*dx))*rox(k)
asq=posq/(a*dx)*asl(i~1)+(1—posq/(2*dx))*asx(k)
htq=posq/(2*dx)*ht1(1—1)+(1—posq/(2*dx))*htx(k)
WQ=posq/(2*dx)*w1(i—l)+(1—posq/<2*dx))*wx(k)
pr=posr/(2*dx)*p1(i—1)+(1—posr/(2*dx))*px(k)
tr=posr/(2*dx)*tl(i~1)+(1—posr/(2*dx))*tx(k)
ur=posr/(2*dx)*u1(i—1)+(1-posr/(2*dx))*ux(k)
zr=posr/(2*dx)*zl(i—1)+(1~posr/(2*dx))*zx(k)
ztr=posr/(2%dx)*ztl(i~1)+(1—posr/(2*dx))*ztx(k)
ror=posr/(2*dx)*rol(i—1)+(1—posr/(2*dx))*rox(k)
asr=posr/(2*dx)*asl(i—l)+(1—posr/(2*dx))*asx(k)
htr?posr/(z*dx)*hti(i—l)+(1~p05r/(2*dx))*htx(k)
wr=posr/(2*dx)*w1(i~1)+(1—posr/(2*dx))*wx(k)
ps=poss/dx*p1(i+1)+(1—poss/dx)*pg(k)
ts=poss/dx*t1(i+1)+(1~poss/dx)*tg(k)
us=poss/dx%u1(i+1)+(1—poss/dx)*ug(k)
zs=poss/dx*zl(i+1)+(1-poss/dx)*zg(k)
zts=poss/dx#ztl(i+1)+(1-poss/dx)*zty (k)
ros=poss/dx*r01(i+1)+(1—poss/dx)*rog(k)
ass=poss/dx*a51(i+1)+(1—poss/dx)*asg(k)
hts=poss/dx#htl(i+1)+(1-poss/dx)#*hiy(k)
ws=poss/dx#wl(i+li+(1-poss/dx)*wy(k)

xl=asr#2#dtr(l+tr#zir/zr)/(ror#cpitriar)
x2=ass#dt#{l+tskzts/zs)/(roskcprtsiar) .
atly=—(l+tq#ztq/zq)/(roq¥#cp)-wq#uq*dt/(raoqitcp*aripq)
a(2)=1+wqruq#dt/(roq*cptarstiq)

a(3)=—wq#2#dt/ (raq#*cpar)
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En i

a(S)=wrkursxl/(2¥tr)—wr#dt/ (aT*TOTHET)

3

30

10

23

a(7)=—1/(roa*ass)+ws*us*x2/(2*ps)+ws*dt/(2*ar*rug§ps)
alg)=—wsruskx2/(2%ts)~ws#dt/ (2*arkroskts)

if(ur.eq. 0.0) goto 2

if(us. eq. 0.0) goto 2
a(6)=1—wr*x1+wr*2*dt/(ar*ror%ur)
() =1+ws#x2+wskdt/ (ar#ros*us)
goto 1.

a(é6)=1

a(?)=1

b(1)=htq*2%dt/(roq*cp%ar)+tq—pq*(1+tq*th/zq)/(roq*cp)
b(2)=htr*x1+ur+pr/(ror*asv)—g*Z%dt*dsin(th)
b(3)=—hts*x2+us—ps/(ros*ass)—g*dt*dsin(th)

call dminv(a,3,det, 11, mm)
if(det. ne. 0. 0)goto @

write(b6,30) i

format(’pipel i=7,i3)

stop “no inverse"” .
ppl(i)=a(1)%b(1)+a(2)*b(2)+a(3)*b(3)
ttl(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3)
uu1(i)=a(7)*b(1)+a(8)*b(2)+a(9)#b(3)

count=0 ~

psave=ppl(i)

tsave=ttl (i)

usave=uul (i’

pdif=ppl(i)*#100C0

tdif=tt1(i)*1000 o
zzl(i)=9*tc/(128%tt1(i))-27*tc**3/(64*tt1(i)%*a)
zz1(i)=zz1(id#ppl(i)/pc+l

zzpl(i)=(zzl(i)—1)/pp1(i) A
zztl(i):al*tc**3/(64*tt1(i)*%4)—9*tc/(128*tt1(i)*ttl(i))
zzti(id=zzti(i)#ppl(id/pc
rrol(i)=pp1(i)/(r*ttl(i)*zzi(i))
wwi(i)=dab5(ar*rrol(i)*F*uu1(i)*uui(i))/(Q*d)
aasl(i)=((1+zzt1(i)*tt1(i)/zzi(i))**Z)*ppi(i) ,
aasl(i)=aasl(i)/(rrol(i)*tti(i)*cp)+zzp1(i)*pp1(i)/zzl(i)
aasl(i)=(1—aa51(i))*rrol(i)/ppi(i)
aasl(i)=1/dsqrt(dabs(aasl(il)))
hhtl(i)=pi%cp*st*d%rvol(i)*uul(i)*(tw—ttl(i))

count=count+l
Second order procedure

if(uq. eq. 0.0) goto 21

if(uul(i). eq. 0.0) goto 21
posgq=4#dt/(1/uq+l/uul i)

gato 23

posq=dt*(uq+uu1(i)) :
posr=4*dt/(1/(ur+asr)+1/(uu1(i)+aasl(i)))

poss=”*dt/(1/(ass—us)+1/(aasl(i)—uui(i)))

pq=p1(i—1)+(2*dx—posq)*(px(k)—pl(i~2))/(4*dx)
uq=u1(i—1)+(2%dx—posq)*(ux(k)—ul(i—2))/(4*dx)
tq=t1(i—l)+(2*dx*posq)*(tx(k)—tl(i“E))/(4*dx)
zq=zl(i—1)+(2*dx—posq)*(zx(k)~zl(i—2))/(4*dx)
wq=w1(i-1)+(2*dx~p05q)*(wx(k)—wl(i—Q))/(4*dx)
1tq=zt1l(i-1)+(2¥dx=-posqi#(ztx(k}-2t1(i-2))/(4%dx)
roq=rol(i-1)+(2#dx-posq)#(rox(k)-rol(i-2))/(4#dx)
asq=asl(i-1)+(2#dx-posq)*(asx(k)-asl(i-2))/(4#dx)
htq=ht1(i—1)+(2%dx—posq)*(htx(k)fhtl(i~2))/(4*dx)
pr=pl(i-1)+(2#dx—posm)#(px{k)—pl{i-2))/(4=dx)
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tr=t1(i-1)+(2#dx—posm)#(tx(k)=t1Ci-2))/(43dx)
zr=11(i—1)+(2*dx~posr)*(zx(k)—zl(i—E))/(4*dx)
wr=wl(i-1)+(2%dx—posr)#(wx (k)~wl(i-Z))/(4%dx) ‘
ztr=zt1(i—1)+(2*dx~posr)*(ztx(k)-ztl(i—E))/(4*dx)
ror=rol(i—1)+(2*dx—posr)*(rox(k)-rol(i-2))/(4*dx)
asr=asl(i~1)+(22dx—-posm)#(asx(k)=asl(i-2))/(4#dx)
htr=htl(i—1)+(2*dx~posr)*(htx(k)-htl(i-2))/(4*dx)
ps=p1(i+1)—(dx—poss)*(pl(i+2)—pg(k))/(E*dx)
us=ul(i+i)—~(dx—poss)#(ul(i+2)—uylk))/(2#*dx)
ts=t1(i+1)—(dx~poss)*(t1(i+2)—tg(k))/(Q*dx)
zs=zl(i+1)—(dx—poss)*(zl(i+2)—zu(k))/(E*dx)
ws=w1(i+1)—(dx—poss)*(w1(i+2)~wg(k))/(Z*dx)
zts=zt1(i+1)—(dx—poss)*<ztl(i+2)—ztg(k))/(Z*dx)
ros=r01(i+1)~(dx—p055)*(r01(i+2)-rog(k))/(E*dx)
ass=asl(i+1)-(dx—poss)*(asi(i+2)—asg(k))/(Q*dx)
hts=ht1(i+1)—(dx—poss)%(htl(i+2)—htg(k))/(2*dx)
pq:pq+(2*dx«posq)**z*(px(k)+p1(i—2)—2*p1(i—1))/(B*dx*dx)
Uq=uq+(2*dx—posq)**2*(ux(k)+u1(1—2)—2%u1(i~1))/(B*dx*dx)
tq=tq+(2*dx—posq)**2*(tx(k)+t1(i—2)~2*t1(i—1))/(B*dx*dx)
zqizq+(2*dx~posq)*%2*(zx(k)+21(i—2)-2*z1(i—1))/(B*dx*dx)
wq=wq+(2*dx~posq)*%2*(wx(k)+w1(i-2)~2*w1(i—l))/(B*dx*dx)
th=th+(2%dx—pnsq)**2*(ztx(k)+zt1(i—2)—2*zt1(i—1))/(a*dx*dx)
roq=roq+(2*dx—posq)**z*(rox(k)+r01(i—2)—2*r01(i—1))/(B*dx*dxr
asq=asq+(2%dx—posq)**E*(asx(k)+asi(i~2)—2*asl(i~1))/(B*dx*dx)
htq=htq+(2*dx—posq)**z*(htx(k)+ht1(i~2)—2*ht1(i—1))/(B*dx%dx)
pr=pr+(2*dx—posr)**2*(px(k)+p1(i—2)—2*p1(i—1))/(B*dx*dx)
ur=ur+(2%dx—posr)**2*(ux(k)+u1(i—2)-2*u1(i—1))/(B*dx*dx)
tr=tr+(2*dx~posr)**2*(tx(k)+t1(i—2)—2*t1(i—1))/(B*dx*dx)
zr=zr+(2*dx—posr)**2*(zx(k)+zl(i~2)~2*11(i—l))/(B*dx*dx)
wr=wr+(2*dx—posr)**2*(wx(k)+w1(i—2)-2*w1(i—1))/(B*dx*dx)
ztr=ztr+(2*dx~posr)**2*(ztx(k)+zt1(i—2)-2*zt1(i—1))/(S*dx*dx)
ror=rov+(2*dx—posr)**zﬁ(rox(k)+r01(1—2)—2*r01(i~1))/(B*dx%dx)
asr=asr+(2*dx—posr)%*z*(asx(k)+asl(i—2)~2*a51(i~1))/(B*dx*dx)
htr=htr+(2*dx—posr)%%z*(htx(k)+ht1(i—2)-2*ht1(i—1))/(B*dx*dx)
pg:ps+(dx”puss)*%2*(p1(i+2)+pg(k)—2*p1(i+1))/(E*dx*dx)
us:us+(dx~poss)**2*(u1(i+2)+ug(k)—E*ui(i+1))/(Q*dx*dx)
ts=ts+(dx—poss)**2*(t1(i+2)+tg(k)—2*t1(i+1))/(Q*dx*dx)
zs=zs+(dx—poss)**2*(zl(i+2)+zg(k)—2*zi(i+1))/(E*dx*dx)
ws=ws+(dx~poss)**2*(w1(1%2)+wg(k)—E*ml(i+1))/(2*dx*dx)
zts=zts+(dx-poss)**2*(ztl(i+2)+ztg(k)—2*zt1(i+1))/(2*dx*dx)
ros=ros+(dx—poss)*%zﬁ(roi(i+2)+rog(k)—2*r01(i+1))/(Q*dx*dx)
ass=ass+(dx—poss)**2*(asl(i+2)+asg(k)-2*asi(i+1))/(2*dx*dx)
hts=hts+(dx~poss)**2%(ht1(i+2)+htg(k)~2*ht1(i+1))/(Q*dx*dx)

a(1)=—(1+tt1(i)*zztl(i)/zzl(i))/rrol(i) : -
a(l)=(a(l)~(l+tqeztq/zq)/raq)/(2¥cp) .
a(2)=1.0

a(3)=0.0 .
a(4)=(1/(r0r*asr)+1/(rrol(i)*aasi(i)))/2

a(s5)=0.0

a(b)=1.0

al7)=(~1/(ros#ass)~1/(rrol(i)*aasi(i)))/

a(8)=0.0

a({9)=1.0

b(i)=(htq+twq*ug)/roq+Chhtl(i)+wwl(id*uul(i))/rrol(i)
b(i1)=b(1)#dt/(cp*ar)+al(l)#pg+tq
b(2)=(1+tt1(i)*zzt1(i)/zzl(i))%(hhtl(i)+wm1(i)*uu1(i))
b(2)=hb(2)*aasl(i)/(rrol(id#tt1(i))
b(2)=(b(2)+asr#(1+tr#ztr/zr)#(htr+writur)/(ror#tr))/cp
b(2)=(b(2)~C(wr/ror+uwl (i) /rrol(i)))xdt/ar
b(2)=b(2)~gu2%dt#dsin(th)+a(4)#pr+ur
b(3)=(1l+ttlCid%zzt1Ci)/zz1¢(i) ) #Chhtl(id+wwlCid®uul(i))
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urg;ﬁT:ﬁC3F3555571+t5*zts/zs)*(hts+ws*Us)/(ros*ts))/cp
b(3)=(b(3)~(ws/ros+uwwl(i)/rrol (i)))ndt/ (Pxar)
b(3)=h(3)—g#dt#dsin(th)+a(7)¥ps+us

c .
call dminv(a,3,det, 11, mm)
if(det. ne. 0.0) goto 12
write(4,31) i

31 format(‘pipe 1 (2nd order) i=’,1i3)

: stop "no inverse"

12 pit=a(1)#b(1)+a(2)4b(2)+a(3)#bH(3)
tit=a(4)#b(1)+a(3)*b(2)+a(6)#b(3)
vit=a(7)#bh(1)+a(B8)#b(2)+a(P)#b(3)
difp=dabs(ppl(i)-pit)/pit
dift=dabs(tt1(i)—-tit)/tit
if (count.gt. 200) goto 15
if(difp.gt. 0.01) goto 12
if(dift. 1.0, 01) goto 14

13 ppitid=pit
tt1(i)=¢tit
uul(i)y=vuit
pdif=difp
tdif=dift
goto 10

C -

15 write(s, 1631 .

16 format(’sub5 — no iteration for i=',i4, in pipe 1 (subS) ‘)

14 pplci)=pit
tti(i)=¢tit
vul(i)=vit
return
end
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subroutine subb(pa, t2, ud,dx, ppas tE2, vu2, te, pes T,
% ar, f.,d,cp, Pi: st, tw, g dt,i, 22, 2p2, 282, 702, w2, as2,
% ht2, th.pzytz,uz, zz, 2tz rozraszo htzowz, k)

This subroutine calculates p{t and u at internal
boundary points linking different grid sizes in pipe 2.

implicit double precision (a—h,o-z)
dimension p2(300), t2(300), u2(300), 22(300),

S z12(3200), w2(300), as2(300), ht2(300), pp2(300),
££2(2300), uu2(300), 222(300), 2zp2(300), 2z2t2(300),
rro2(300), ww2(300), 3asa(300Q), hht2(200),
a(9),b(3), ro2(300),pz(b),tz(b)iuz(b),wz(d),
72(6),ztz(h),Toz(b)asz(d), htz(H)

integer 11(3), mm(3), count

RS R N

First order approximation

posr=db*2/(1/(u2(i)+a52(i))+1/(u2(i—1)+a52(i—1)))
poss=dt*4/(1/(as£(i+1)~u2(i+1))+1/(asz(k)—uz(k)))
pr=posr/dx*p2(i*l)+(1—posr/dx)*p2(i)
tr=posr/dx*t2(i*1)+(1—posr/dx)*t2(i)
ur=posrﬁdx*u2(i-1)+(1—posr/dx)*u2(i)
zr=posr/dx*12(i—1)+(1—posr/dx)*22(i)
ztr=posr/dx#zt2(i—-1)+(1-posr/dx)#2td (i)
ror=posr/dx%r02(i—l)+(1—posr/dx)*r02(i)
asr=posr/dx*a52(i—i)+(1—posr/dx)*352(i)
htr=posr/dx#ht2¢i-1)+(1-pasr/dx)#hta(i)
wr=poasr/dx#w2(i-1)+(1-posr/dx)*wa (i}
pszposs/(z%dx)%pg(i+1)+(1—poss/(2*dx))*pz(k)
ts=poss/(2%dx)*tE(i+1)+(1—poss/(2*dx))*tz(k)
us=poss/(2%dx)%u2(1+1)+(1—poss/(2*dx))*Uz(k)
zs=poss/ (2rdx)#22(i+1)+(1—-poss/(2#¥dx))I#z27(k)
1tes=poss/(2#dx)#2t2(i+1)+(1-poss/(2#dx) I*ztz (k)
ros:poss/(gﬂdx)%raz(i+1)+(1—poss/(2*dx))*roz(k)
ass=poss/(2#dxi#as2(i+1)+(1-poss/(2%dx)I*asz (k)
hts=poss/(2#dx)#ht2(i+1)+(1-poss/(2idx) Ixhtz (k)
ws:poss/(aﬂdx)*wz(i+1)+(1~poss/(2*dx))*mz(k)
xl=asr#dte(l+triztr/zr)/(ror#cptriar)
x2=ass#RudtH(l+ts#zts/zs)/(ros#cprtsar)
a(4)=1/(ror#asr)—wrxurs*xl/(2%prit+urdt/ (2rar#rorspr)
al(s)=wr#¥ur#*xl/(2%tr)—wrrdt/ (2*ar*rovstr)
a(7)==-1/{ros#ass)twsk#us#*x2/(2%ps)+tuwsudt/ (ar#ros#ps)
alB)=—wsH#us#x2/(2#ts)—ws#dt/(ar#Toskts)
if(ur.eq.0.0) goto 30

if(us.eq.0.0) gote 30

atgy=1-~wr#xl+wr#dt/ (ars#rorsur)
a(P)=1l+ws#x2+wsk2tdL/ (ar#rosHtus)

goto 31

a(éb)=1

a(9r=1

b(2y=htr#xl+ur+pr/(ror#asr)-g#dtrdsin(th)
b(3)=-hts#x2+us—ps/(rosktass)~g#dtxdsin(th)

if(u2(i). le. 0.0) goto 1
if(ua(i-1).eq. 0. 0) goto 2
posg=dt#2/(1/v2¢(i)+1/u2(i-1))

goto 5

posq=dt#ud(i)/2
pgq=posq/dx#¥p2(i-1)+(1-posq/dx)#p2(i)
tq=posq/dx#t2(i—~1)+(1-pasq/dx)#t2(i)
ug=posq/dx#u2(i-1)+(1-posq/dx)*u2(1i)
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10

th posq/dx%zt”(1 ~1)+(1-posq/dx)#z{2C¢i)
roq=posq/dx¥ro2(i- —-1)+(l-posq/dx)#ro2(i)
asq=posq/dx#as2(i- -1)+(l-posq/dx)#asa(i)
htqaposq/dx*ht“(l 1)+(1-posq/dx)r#*ht2(i)
wq=posq/dx¥w2(i-=1}-+{1-posq/dx)#w2(i)
a(i)=—(l+tq¥ztq/zq)/(roq#cp)—waruqrdt/ (2¥roq#cpkar#pq)
(2)=1+wqruq#*dt/ (2#Troqrcprar*tq)
a(3)=—wq#dt/ (rogq*cp*ar)
b(l)=htqxdt/(rogq¥cp#ar)ttiq-pa*(l+tqiztq/zq)/(roq*cp?
goto 2

if(u2(i). eq.0.0) goto 7

if(u2(i+1). eq. 0. 0) goto 7
posq=dabs(dt#4/(1/u2(i)+1/u2(i+1)))

goto B8

posq=dabs(dt*(uv2(i)+ua(i+1)))
pg=posq/(2#dx)#p2¢i+1)+(1-posq/(2%dx))I#pz (k)
tq=posq/(2*dx)*t2(1+1)+(1—posq/(2*dx))*tz(k)
uq=posq/(2¥dx)#u2(i+1)+(1-posq/(2#dx))*uz (k)
zq=posq/(2*dx)*12(i+1)+(1—posq/(2*dx))*zz(k)
ztq=posq/(2#dx)#*z2t2(i+1)+(1-posq/(Z#dx))I#ztz (k)
roq=posq/(2#dx)#ro2(i+1)+(1-posq/(2#dx)I*¥roz (k)
asq=posq/(2*dx)*ase(i+1)+(1~posq/(2*dx))*asz(k)
htq=posq¢(2%dx)*hta(i+1)+(1—posq/(2*dx))*htz(k)
wq=posq/ (2#dx ) #w2(i+1)+(1-posq/(2%dx) )*wz (k)

ally=—(1+tq#ztq/zq)/(voq¥#cp)—wq*uq*dt/(roqicp*arupq)
a(2)=1+uwgeruqsdt/ (roq¥cp¥ar*tq)
a(3)=—wqx2#dt/(rogq*cp*ar)
b(1)=htq#2#dt/(roq*cp*ar)+tq-pqe(l+tg¥ztq/zq)/(roq*cp)

call dminv(a,3,det, 11, mm)
if(det. ne. 0. 0)goto <

write(6:,32) i

format(‘pipe 2 i=’,1i3)

stop "no inverse"
pp2(id=a(i)xb(1)+a(2)#b(2)+a(3)#b(3)
Et2(i)=a(4)#b(1)+a(D)#b(2)+a(&)#b(3)
wu2(i)=a(7)#b(1)+a(8)#b(2)+a(9)#b(3)
count=0

psave=pp2(i)

usave=uu2(i)

tsave=tt2(i)

pdif=ppa(i)*1000

tdif=tt2(i)#*#1000

1z2(i)=F#kc/ (1283%tt2(1))-27#tcx#x#3/(64#Lt2(1)##3)
zz2(i)=zz2(i)#pp2(i)/pec+1l
zzp2(id=(zz2(i)-1)/ppa(i)

2zt2(1i) =814t c¥#3/(642LL2(1)##4) -t/ (12B8#Et2¢1)#EE2(1))

z2zt2(i)=zzt2(i)#pp2(i)/pc
rro2(i)=pp2(i)/(r#tt2(il)wzz2(1i))
ww2¢il)=dabs(ar#rro2(i)#ftuud (1)*uu2(1))/(”*d)
gas2(il=((1+zzt2(1)#tt2(1) /22201 ##2)#pp2(1i)

aas2(i)=aas2(i)/(rro2¢id)#tt2(i)#cpl+zzp2Cidstpp2(¢i)/zz2(i)

aas2(i)=(l—-aas2(i))x#rro2(il/ppali)
aas2(i)=1/dsqrt(dabs(aas2(i))) ’

hht2(i)= p1*cp*st*d*rr02(1)*uu2(1)*(tw— t2¢(i))
count= count+1 ‘

Second order procedure

posr=2%dt/(1/(ur+asr)+1/(vu2(i)+aasa(i)))
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pr=p2(i—1)+(dx—posr)*(p2(i)—p2(i—2))/(E*dx)
ur=u2(¢i-1)+(dx—posr)#(ua(il)—uv20(i~-2) )/ (2#dx)
tr=t2(i-1)+(dx-pasr)#(t2(i)~-L2(i-2) )/ (23#dx)
1r=12¢i~1)+(dx—posT)#(z2(i)—12(i=2) )/ (2#dx)
wr=w2(i=1)+(dx=-posr)# (w2 (i)~wd(i=-2) )/ (2#dx)
ztr=1t2¢i-1)+(dx~posr)=®(zt2(i)-zt2(i~-2))/(2rdx)
ror=ro2(i—=1)+(dx=posT)#(ro2(i)-r02(i-2) )/ (2%#dx)
astr=as2{i—~1)+(dx—posT)#({as2(i)—as2(i-2))/(2#dx)
htr=ht2¢(i-1)+(dx—posTi#(ht2(i)~ht20(i-2))/(2%#dx)
p5=p2(i+1)—(2*dx—poss)%(p2(i+2)—pz(k))/(4*dx)

us=ul(i+1 )= (2#dx~posst# (U2 (i+2)~uz (k) )/ (4#dx)
te=t2(i+1)—(2udx~poss) # (L2 (i+2)~tz (k) )/ (4%dx)
z5=712(i+1)~(2#dx—~puss)#(z2(i+2)=22(k))/(4#dx)
ws=w2(i+1)-(2#dx—-poss?#(wR(i+2)~wzlk))/(4xdx)
zte=zt2(i+1)—~(2#dx—~poss)H(zta(i+)—ztz(k))/(4=dx)
ros=ro2(i+1)—-(2#dx-poss)#(ro2(i+2)-roz (k) )/ (4%dx)
ass=as2(i+1)—(2#dx-poss)#¥(as2(i+2)—-asz(k) )/ (4%#dx)
hts=ht2(i+1)—(2%dx-poss)#(ht2(i+2)~htz (k) )/ (4%dx)
pr:pr+(dx—posr)*%2%(p2(i)+p2(i—2)—2*p2(i—1))/(E*dx*dx)
ur=ur+(dx—pcsr)**2*(u2(i)+u2(i—2)-2*u2(i—1))/(E*dx*dx)
tr=tr+(dx—posr ) ##2# (t2(1)+t2(i-2)-2#t2(i~-1) )/ (2%dx¥*dx)
zr=zr+(dx—posT)##2%#(22(i)+22(i-2)—2#22(i-1))/(2#dxxdx)
wr=wr+(dx—posrT ) ##2# (w2 (i) +w2 (i~-2)-@#w2(i-1))/(2*dx#dx)
ztr=ztr+(dx—posT)##2# (2t2(i)+2t2(i-2)—2%z2t2(i~1))/(2#dx#dx)
ror=ror+(dx—posr)##2#(ro2(i)+ro2(i-2)-2#702(i-1))/(I#xdx#dx)
asr=asT+(dx-posT)#x2#(as2(i)+as2(i-2)-2#as2(i~1))/(2#dx#dx)
htr=htr+(dx—posrT)##2# (ht2(i)+ht2(i-2)-2#h¥t2(i-1))/(2#dx#dx)
p5=p5+(2*dx—poss)**2*(p2(i+2)+pz(k)~2*p2(i+1))/(B*dx*dxi
us=us+(2%dx—poss)##2# (LACI+2)+uz (k) —2#u2(i+1) )/ (B#dxxdx)
te=ts+(2#dx—poss) a2 (£2(i+2)+Ez (k) -2#t2(i+1)) / (B#dx#dx)
zs=zs+(2*dx~poss)%*2*(:2(i+2)+zz(k)"2*12(i+1))/(B*dx*dx)
ws=ws+(2#dx—poss ) ##2¥ (w2 i+2)+wz (k) -2#w (i+1) )/ (B*dx#dx)
zts=zts+H(2#dx—poss ) ##2#(zL2Ci+2)+2tz (k) -2#2t2(i+1))/(B#dx#dx)
ros=ros+(2¢dx—poss)##2#(ro2(i+2)+roz(k)-2%ro2(i+1))/(Brdx#dx)
ass=ass+t(2#dx—poss)##2¥(as2(i+2)i+asz(k)-2%as2(i+1) )/ (Badx#dx)
hts=hts+(2udx—poss) ¥#2¥(ht2(i+2)+htz () =2#ht2(i+1) )/ (Brdx#dx)

if((uu2(id+ug). 1£.0.0) goto 4

if(uq.eq.0.0) goto 11

if(uu2(i). #q. 0.0) goto 11

posgq=dabs(dt#2/(1/vu2(i)+1/uq))

goto 20

posq=dabs(dt*(uqtuua(i))/2)
pa=pa(i-1)+(dx—posq)#(p2(i)—p2(i~-2))/(2*dx)
vg=u2(i-1)+(dx-posq)#(ua(i)=~u2(i-2) )/ (2#dx)
tq=t2(i-1)+(dx—-posq)#(t2(i)—-t2(i~-2) )/ (2#dx)
1q=z2¢i—-1)+(dx—posqI#(22(i)~228(i-&))/(2#dx)
wq=w2(i—1)+(dx—posq) #(wWR(1)~w2(i-2) )/ (I*dx)
1tq=zt2¢(i—1)+(dx—posq)#(2t2(i)—zt2(i=-2))/(2#dx)
rog=ro2(i-1)+(dx—posql)#(ro2¢(i)—-ro2(i~2) )/ (2#dx)
asq=as2(i-1)+(dx—posql)#*#(as2(i)—as2(i-) )/ (2#dx)
htq=ht2(i-1)+(dx—posq)#(ht2(i)-ht2(i-2))/(2%dx)
pa=pq+(dx—posq)##2#(p2(i)+p2(i-2)~2#p2(i~-1))/(I#dx#dx)
vg=uq+(dx—posq)##2#(v2(i)+u2(i-2)-3%u2(i-1))/(2#dx#dx)
tq=tq+(dx—posq)##2#(t2(i)+t2(i-2)-2#t2(i—-1))/(2%¥dx#dx)
zq=zq+(dx—-posqg)##2%(22(1)+22(i-2)-2#22(i-1))/(2#dx#dx)
wg=wq+{(dx-posq)¥#2#¥ (w2(i)+w2 (i-2)-2%¥w2(i-1))/(2#dx#dx)
ttq=ztqt(dx—posqg)##2# (2t2(1)+zt2(i-2)-2#2E2(i-1))/(2#dx#dx)
rogq=roq+(dx—-posq)##2#(ro2(i)+ro2(i-2)-2%r02(i~-1))/(2#dx#dx)
asq=asq+(dx—posq)##2#(as2(i)+as2(i-2)-2#as2(i—-1) )1/ (S*dx#*dx)?
htq=htq+(dx—posq)##2# (ht2(i)+ht2(i-2)-2#ht2(i~1))/(2%dx#dx)
goto &
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if(uu2(i). eq. 0.0) goto 21
posq=dabs(dt*4/(1/uq+1/uu2(i)))

goto 19

posq=dabs(dt%(uq+uu2(i)))
pq=p2(i+1)—(E*dx—posq)*(p?(i+2)—pz(k))/(4*dx)
uq=u2(i+1)~(2*dx-posq)*(u2(i+2)—uz(k))/(4*dx)
tq=t2(i+1)—(2*dx-posq)*(t2(i+2)~tz(k))/(4*dx)
zq=12(i+1)—(2*dx~posq)*(22(i+2)—zz(k))/(4*dx)
wq=w2(i+1)—(Z*dx—posq)%(wZ(i+2)~wz(k))/(4*dx)
th=zt2(i+1)—(2%dx—posq)*(zt2(i+2)—ztz(k))/(4*dx)
roq=r02(i+1)«(2*dx—pcsq)*(r02(i+2)-roz(k))/(4*dx)
asq=a52(i+1)—(Z%dx—pOSQ)*(aSZ(i+2)—asz(k))/(4*dx)
htq=ht2(i+1)—(2*dx—posq)*(ht2(i+2)—htz(k))/(4*dx)
pa=pq+(2#dx-posq)#¥#2# (p2(i+2)+pz (k) -I#tp(i+1))/(Brdxxdx)
uq=uq+(2*dx—posq)**E*(uQ(i+2)+uz(k)—2*U2(i+1))/(S*dx*dx)
tq=tq+(2*dx—posq)**2*(t2(i+2)+tz(k)—2*t2(i+1))/(8%dxudx)
zq=zq+(2%dx—posq)**2*(22(i+2)+zz(k)—2*22(i+1))/(B%dx*dx)
wq=wq+(2%dx—posq)**z*(wa(i+2)+wz(k)~2*w2(i+1))/(B%dx*dx)
th=th+(2*dx~posq)**2*(ztE(i+2)+ztz(k)~2*xt2(i+1))/(B*dx*dx)
roq=roq+(2*dx-posq)**2*(r02(i+2)+roz(k)~2*r02(1+1))/(B*dx*dx)
asq=asq+(2*dx—posq)**z%(aSQ(i+2)+asz(k)—2*asQ(i+1))/(B*dx*dx)
htq=htq+(2%dx~posq)**2*(ht2(i+2)+htz(k)-2%ht2(i+1))/(B*dx*dx)

all)=—(1+tt2(i)#zzt2(i)/222(i))¥/vrro2(i)
a(l)=(ali)-(1+tq#ztq/zq)/Toq)/(2*cp)
al{2)=1.0

a({3)=0.0
a(4)=(1/(ror#asr)i+i/{(rro2(i)*aas2(il)))/2
a(3)=0.0

a(6)=1.0
al(7)=(~1/(ros¥ass)~1/{(rro2(i)*aasa(i)))/2
a(g)=0.0

a{92)=1,0

if(uuR(i). 1t.0.0) goto 17

b(1)=(htq+twqi*ug) /Toq+(hht2(i)+ww2(i)*uvu2(i))/rro2(i)
b(l)=b(1)#dt/(2#cprar)+al(ll#pq+tq

goto 18 '

b(1)=(htq+wq#ug)/rogq+(hht2 (i) +ww2 (i) *#uu2(i))/rro2(i)
b(1)=b(1)#dt/(cp*ar)+al(l)#pg+tq
b(2)=(1+tt2(id#zzt2Cid/zz20i ) #Chht2(i)+ww2(i)#uu2(i))
b(2)=hb(2)*aas2(i)/(rro2(i)#tt2(i))
b(2)=(b(2)+asr#(l+tr#ztr/zr)*(hEtr+uwr*ur)/(ror*tr))/cp
h(2)=(b(2)—(wr/ror+tyw2(i)/rrod(i) ))#dt/(2#*ar)
b(2)=b(2)—g#dE#dsin(thi+tal(4)#pr+ur
b(3)=(1+tt2Ci)#z2¢2(1) /22201 )*(hht2(1) +ww2 (i) *uu2(i))
b(3)=b (I #aas2(id/(rro2(i)xtt2(i))
b(3)=(~b(3)~ass#(l+ts#zts/zs)*#(htstwsHus)/(ros¥ts))/cp
b(3)=(b(3)=(ws/ros+wwa2(i)/rro2(i))i#dt/ar
b(3)=b(3)—gu2#dterdsin(th)+a(7)#ps+us

call dminv(a,3,det, 11, mm)
if(det.ne. 0.0) goto 12

write(b4,33) i

format(’pipe 2 (2nd order) i=’, i3)
stop "no inverse" :
pit=a(l)#b(1)+a(2)#b(2)+a(3)#b(3)
tit=al{d4)#b(1)+a(3)#b(2)+a(b)#b(3)
vuit=a(7)#b(1)+a(8)#b(2)+a(F)%b(3)
difp=dabs(pp2(i)=pit)/pit
dift=dabs(tt2(i)—-tit)/tit
if(count. gt. 200) goto 15
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if(dift. 1%t.0.01) goto 14

13 ppaCid)=pit
tt2¢i)=tit
uu2(i)=uit
pdif=difp
tdif=dift
goto 10

15 write(é, 16)1 ‘
16 format(’subb& — no iteration for i=',i4, "’ in pipe 2)
14 pp2C¢i)=pit

tt2¢ir=tit

vu2(i)=uit

return

end
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subroutine breakl (pl,tl,ul.,p2, t2,ud,ppl, tt1,vul,
% 121,zt1,rol,asl,htl,wl,dx: tc.pc,rrav, f,.d,cp,pi,
& s, tu, g dt, 1, th, 22, 1t2 y 702, as2) hta2, w2)

this subroutine calculates steady flow conditions
at the break point prior to failure (pipe 1).

implicit double precision (a-h,o-2)
dimension pl(BOO),tI(SOO),ul(UOO).21(300),

% zt1(300),wl(300),as1(300), ht1(300),
2 ppl1(300), tt1(300), uu1(300), p2(300), £2(300),
% Uu2(300), 212(300), 2t2(300), Tro2(300), w2(300),
as2(300), h£2(300), 2z1(300), zzp1(300),
77t1¢(300), rT70l1(300), wwl (300}, aasl1(300),

, hht1(300),3(?), b(3), T01(200)
1nteger 11¢(3), mm(3), count

e

first order approximation

if(ul(i).eq.0.0) goto 1

if(ul(i-1).eq. 0.0 goto 1
posq=dt*2/(1/(u1(i"1))+1/u1(i))

gonto 2

posq=dt®¥(ul(i)+ulli-1))/2
posr=dt#2/(1/(ul(i-1)+asl(i- 1))+1/7¢ullid)+asi(i)))
poss=dt#2/(1/(asd(1)~- -y2(1))+1/(as2(2)-u2(2)))

pq=posq/dx*p1(i—1)+(1—posq/dx)*p1(i)
tq=posq/dx#t1i(i-1)+(1-posq/dx)#t1(i)
uq=posq/dx*u1(i—1)+(l—posq/dx)*ul(i)
zq=posq/dx*21(i—1)+(1—posq/dx)*zl(i)
th=posq/dx*zt1(i—l)+(1—posq/dx)*zt1(i)
r0q=posq/dx%rol(i~1)+(1—posq/dx)*roi(i)
asq=posq/dx*asi(i—l)+(1—posq/dx)*a51(i)
htq=posq/dx*ht1(i—i)*(i-posq/dx)*htl(i)
wq=posq/dx%w1(i—1)+(1*posq/dx)*w1(i)
pr=post/dx#¥pl(i-1)+(1l-posr/dx)#pl(i)
tr=posr/dx#t1(i-1J+(1-posr/dx)#t1(i)
'ur=posr/dx*u1(i—1)+(1—p05r/dx)*u1(i)
zr=posr/dx#z1(i-1)+(1~posr/dx)*z1 (i)
ztr=posr/dx*zt1(i—1)+(1—posr/dx)*zt1(i)
rar=posr/dx#rol(i-1)+(i-posr/dx)¥rol(i)
astT=posr/dx#azl(i—~1)+(l-posr/dx)#asi(i)
htr=posr/dx#htl(i-1)+(l—paosr/dx)#htl(i)
wr=posr/dx#wl(i-1)+(1—-posr/dx)#*wl(i}
ps=poss/dx#p2(2)+(1-poss/dx)#p2(1)
ts=poss/dx#t2(2)+(1~poss/dx)#*t2(1)
us=poss/dx#u2(2)+(1-poss/dx)#ua(1)
zs=poss/dx#z2(2)+(1—-poss/dx)#22(1)
zts=poss/dx#zt2(2)+(1-poss/dx)#*zt2(1)
Tos=poss/dx*ro2(2)+(1-poss/dx)#rod(1)
ass=poss/dx#*as2(2)+(1—-poss/dx)#asd(l)
hts=poss/dx#ht2(2)+(1—-poss/dx)*ht2(1)
ws=poss/dx#w2(2)+(1-poss/dx)#wa(l)

xl=asr#dt#(l+tr#ztr/zr)/(ror#cpsirtar)
x2=ass#dt#(l+ts#zts/zs)/(roskcprisitar)
a(l)=—(1+tq*th/zq)/(roq*cp)—wq*uq*dt/(”*roq*cp*ar*pq)
al2)=1+wq#uqidt/ (2#roq*cprar*tiq)
a(3)=—wq#dt/(roq*cp#*ar)
a(4r=1/(ror#tasr)~wr#ur#xl/ (2#pr)+urs*dt/ (2*artror#pr)
a(S)=wriur#xl/(2#tr)—wridt/(2#ar#ror#*tr)
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a(8)=—wstuskxa/ (2#ts)—wsHd b/ (Z*ar*rosits)

if(ur.eq.0.0) goto 20

if(us. eq.0.0) goto =20

a(&y=1-wrexl+ur#dt/(arsroriur) ‘
a(9)=1+ws#x2+wskdt/(ar*rosius)

goto 21

a(6)=1.0

af(?)=1.0

b(l)=htq#dt/(roq#cp*ar)+itq-pq*#(l+tq*ztq/zq)/(rogq#*cp)
b(2)=htr#xl+ur+pr/(ror#asr)—g#dtedsin(th)
b(3)=—hts#x2+us—ps/(ros¥ass)—g#dt*dsin(th)

call dminv(a,3,det, 11, mm)
if(det.ne. 0. 0)goto %

stop "no inverse”
ppl(i)=a(1)*b(1)+a(2)*b(2)+a(3)*b(3)
tE1(i)=a(a)#b(1)+a(5)#b(2)+a(6)*b ()
vul(id=a(7)#b(1)+a(B)*b(2)+a(P)#b (3)

count=0

psave=ppl(i)

usave=yul (i)

tsave=tti(i)

pdif=ppl(i)#1000

udif=0ul(i)*1000

tdif=tt1(i)#1000

721 (i)=9#tc/¢(128#tt1 (1)) —27#tc#*3/(LH4%¥EE1 (1) #x3)
zz1(i)Y=zz1Ci)#ppl(i)/pc+l

zzpl(i)=(zz1(i)—1)/pp1(i)
77E10i)=81#tc##3/(ba4xtt1(i)##4)-xtc/(12ButEl (i #LE1(i))
zzt1(id=zzt1(i)#ppl(i)/pc '
rrolCid=ppl(id/(rxtt1Cid*zz1(i))
wwilli)=dabstar#*rrol (ir#fruul (id*¥oul (il )/ (Zxd)
aasl(id)=((l+zzt1(idxtti(i)/zz1(i))»=2y#ppl(i)
aasl(id=aasi(i)/(rrolci)#tti(id#cp)+zzpl(id*ppl(id/zz1(i)
aasi(i)=(1-aasl(i))#vrrolli)/ppl(i) '
aasi(i)=1/dsqrt(dabs(aasli(i)))
hhtl(id)=piscp#staderrol (i) #uul (i) (tw-tt1(i))
count=count+1

second order procedure

if(ugq. eq.0.0) goto 3

if(uul(i). eq.0.0) goto 3
posq=2#dt/(1/uq+1/uuli(i))

goto 4 ‘
posq=dt#(uqtuul(i))/2
posr=2#dt/(1/(ur+asr)+1/{uulli)+aasl(i)))
poss=2#dt/(1/(ass~us)+1/(aasl(i)~uul(i)l))

paq=pl(i)=posq*(p2(2)-pl(i-1))/(2#dx)
tq=t1(i)=-posq*(t2(2)=t1(i~-1))/(2#dx)
ug=ul(i)=posq#(u2(2)-ul(i~1))/(2#dx)
zq=z1(i)-posq#(z2(2)~-z1(i-1))/(2#dx)
rtgq=zt1(i)—posq#(zt2(2)—zt1(i~1))/(2*dx)
roq=r01(i)—posq*(r02<2)4r01(i—1)ll(z*dx)
asq=asl(i)-posq#(as2()~asl(i-1))/(2xdx)
htq=ht1(i)-posq#(ht2(2)-ht1(i-1))/(2%dx)
wg=wl(i)-posq#(w2(2)-wl(i~1))/(2xdx)
pr=pli)-posr#(p2(2)-pl(i-1))/(2x%dx)
tr=ti1(i)—posri#(t2(2)-t1(i~-1))/(2%dx)
ur=ul(id)=-posr#(u2(2)—-uvli(i=1))/(2xdx)
r=z1(i)~posr#(z22(2)—~21(i-1))/(2%dx)
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“hror r01(1) posr*(roa(”) rol(i-1))/(2%#dx)

asr=asl(i)-postT#(as2(2)-asl(i=-1))/(2%dx)
htr=htl1(i)-posr#(ht2(2)-ht1(i~1))/(2»dx)
wr=wll(i)~posr#(w2(2)-wlli-1))/(2#dx)
ps=p1(i)+poss*(p2(2)—p1(i—1))/(E%dx)
ts=t1(i)+poss#(Lt2(2)—-t1(i-1))/(2#dx)
us=ul(id+poss#(u2(2)-ul(i-1))7(2%#dx)
15=z1(i)+poss#(z12(2)—z1(i-1))/(2#dx)
zts=zt1(id+poss#(zL2(2)~zt1(i~-12)/(2#dx)

ros=rol(i)+poss¥(ro2(2)-rol(i-1))/(2xdx)

ass=asl(i)+poss*(as2(2)- ~asl{i-1))/(2#dx)}
hts=htl(i)+poss#(ht2(2)-htl(i=1))/(2#dx)
ws=wi(i)+poss#(w2(2)—wl(i-1))/(2#dx) ‘
pa=pq+posq¥posq¥(p2(2)+plli—-1)- 2#¥pl1 (i) )/ (2#dxxdx)
tq=tq+posq#posq# (t2(2)+L1(i-1)-2#E1 (1)) /(2#dx#dx)
uq=uq+posq¥posgr(u2(2)+uli-1)- 2#uL (i) )/ (2udx*dx)
z1q=zq+posq¥posq#(z2(2)+z1(i-1)-a#¥71(i))/(2#dx#dx)
th-th+posq*posq*(zt“(”)thl(l-i) 2#zt1(i))/(2#dx#dx)
roq=req+posq#posqi#(ro2(2)+rol(i-1)~-A#ral(i))/(2#dx*dx)
asq=asq+posq¥posq#(as2(2)+asl(i-1)-2xasl(i))/(2#dx#dx)
htq=htq+posq#posq¥(ht2(2)+ht1(i-1)-2#ht1(i))/(2#dxdx)
wq=wq+posq¥posqit (w2(2)+wl (i—-1)-2*wl (1)) /(2#dx#dx)
p1=pr+posr*p051*(p?(”)+p1(1~1) S¥plL(i))/(2edx#dx)
tr=tr+posreposT# (E2(2)+E1 (i-1)-2%£1 (1)) / (2*dx*dx)
ur=ur+posrT#posr#(u2(2)+ul (i—17-23%ul i)/ (2#dx*dy)
ir=zrT+posTHposTH(z2(2)+21(i-1)-2%21(1))/(Sxdx*dx)

Ttr= z+r+pasr*po;r*(zt”(”)+zt1(i—l)—"*zti(i))/(7*dx*dx)A
ror=ror+posT#posr#(ro2(2)+rol(i-1)-2%rol (i))/(2#dxxdx)
asr*asr+pc=r*posr*(as=(“)+a=l(1 1)-2#asl(i))/(Sndxsdx}
htr=htr+posr#posT#(ht2(2)+ht1(i~-1) ”%ht1(1))/(”*dx*dx)
wr=gr+pasTHposr (w2(2)+wl (i-1)-2#wl (1)) /(2#dxdx)
ps=ps+poss#poss#(p2(2)+pl(i—-1)-2%¥pl1{i})/(2edx#dx)
ts=ts+poss#poss*(LE2(2)+L1(i-1)-2#E1 (1)) /(2udxrdx)
us=us+poss#poss#(u2(2)+ul (i-1)-2#0ul1 (1)) /(2#dx*dx)
zs=zs+poss#poss*(z2(2)+21(i-1)-2#*21(i) )/ (2udx#dx)
ztg:1t5+pgss%poss*(zt2(2)+zt1(i—1)—Q*ztl(i))/(Q*dx*dx)
ros=ros+poss¥poss#(ro2()+rol(i-1)-2#r0l1(i))/(S#dxsdx)
ass=ass+poss#poss#(as2(2)+asi(i-1)~2¥asl(i))/(2udxxrdx)
hts=hts+poss#poss#(ht2(2)+ht1(i-1)-2#ht1(i))/(2edx#dx)
we=ws+poss#pass* (wW2(2)+wl(i-1)-2%wl (i) )}/ (2#dx#dx)

a(l)=—C1+tt1(id#zzt1 (i) /zz1<¢i))/rrolli)
a(1)—(a(l)—(1+tq*th/zq)/roq)/(“*cp)

a(2)=1.0

a(3)=0.0 . -
a(4)~(1/(ror%asr)+1/(rr01(1)*aasi(1)))/“

ai{35)=0.0

a(b)=1.0
a(7)“(~1/(ros*ass)—1/(rrol(1)*aa51(1‘))/”
a(g8)=0.0

a(?)=1.0

b¢i)=(htq+twas*uq)/roq+Chhtl (i) +wwl{i)*uul(i))/rrol{i)
h(l)=b(l)#dt/(2%cprar)+a(lixpq+tq
b(2)=Cl+tt1(id#zzt1C¢id/2zz1C¢i))#C(hhtl1Cid+wwl(id*uul(i))
b(2)=b(2)%aasl(i)/(rrol(i)=ttl1(i))
b(2)=(b(2)+asr#(l+tr#ztr/zr)#Chtr+wrtur)/(ror#tr))/cp
B(2)=(b(2)~C(wr/ror+wwl (i) /rrolli)) )adt/(2%ar)
b(2)=b(2)—g#dt#dsintth)+a(4)r#pr+ur
b(3)—(1+tt1(11*zzt1(1)/zzl(1))*(hhtl(x)wal(x)*uul(l))
b(3)=b(J)*aasl(i)/(rrol(id#tt1(i))
b(3)=(-b(3)~ass#(l+tsstzts/z5)#¥(hts+wstus)/(ros*ts))/cp
B(31=(b(3)=(ws/ros+wwl (i) /rrol(i)))dt/ (2%ar)
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call dminv(a,3,det, 11, mm)

if{det. ne.0.0) goto 12

stop "n¢ inverse"
pit=a(1)#b(1)+a(2)#h(2)+a(3)#b(3I)

S tit=add)#bh () +a(3)#b(2)+a{b)#h (3)

13

15
16

14

uit=a(7)#b(1)+a(B)#b(2)+a(P)%#b(3)
difp=dabs(ppl(i)=pit)/pit
dift=dabs(ttl(i)—~tit)rtit
if(difp. gt. (4#pdif)) goto 15
if(dift. gt. (4#tdif)) goto 13
if(count. gt. 200) goto 13
if(difp.gt. 0.01) goto 13
if(dift. 1t.0.01) goto 14
ppllilt=pit

tti(i)=tit

vul(il=uit

pdif=difp

tdif=dift

goto 10

write(b, 16)1

format(’divergence — no ikteration for i=’,i4, ‘in pipe 1)

pit=psave
tit=tsave
vit=usave
ppl(i)=pit
tt1c(i)=¢tit
vul(id)=vuit
return

end
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subroutine break2(ppl, ttl.vul,pp2, tt2, vul2, m1, i)

this subroutine calculates steady flow conditions
at the hreak point prior to failure (pipe 2).

implicit double precision(a~h,o-z)
dimension ppl(300), tt1(300), vul(3060), pp2(300),
tt2(300), uu2(300)

pp2(ii=ppl(ml)
tt2(1)=tt1{ml)
vu2(1l)=uul(mi)
return

end
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subroutine break3(pl, tl,ul,ppl,ttl,uul,z1,zt1i,rol,as51l,htl,
& wil,dx, £tCcope:, Ty am, f.decprpis st, tw, g, d%, i, th, pat, tat)
This subroutine calculates the conditions at the break
using the equalisation pressure as defined by Bannister
and Mucklouw.

implicit double precision{a—h,o-z] ‘
dimension p1(300), t1(300),ul(300), 21(300), zt1(300),
% wil(300),as1(300),ht1(3C0), ppl(300), t£1(300),
2 uul(300),zz1(300),22t1(300), 2z2p1(300), rTr0l1(300),
% wwl(300):,aas1(300), hhtl1(300),a(?),r0l1(300)

integer count
first order approximation

if(ul(i).eq.0.0) goto 1
if(ul(i-1).eq.0.0) goto 1
pasq=dt#2/(1/ul(id+1/vl (i~ 1))

goto 2

posq=dt#(ul(i)+ul(i-1))/2
posr=dt#2/(1/(ul(i)+asl(i))+1/(ulli-1)+asi(i~1))?
pq=posq/dx#pl(i-1)+(1- posq/dx)#pl (i)
vq=posq/dx#¥ul(i—-1)+(1-posq/dx)*ul (i)
tq=posq/dx#tl(i-1)+(1-posq/dx)#t1(i)
zq=posq/dx#z1(i—1)+(1-posq/dx)*z1(i)
1tq=posq/dx#ztl(i=1)+(1-posq/dx)*zt1(1i)
roq=posq/dx#rol(i-1)+(l-posq/dx)#¥rol(i)
asq=posq/dx#asl(i—~1)+(l~posq/dx)*asl(i)
htq=posq/dx#*htl(i-1)+(1-posq/dx}*htl1 (i)
wq=posq/dx#wl (i-1)+(1-posq/dx)#wl (i)
pr=posr/dx#pl(i—-1)+(1-posr/dx)#pl(i)
ur=posr/dx#ul(i-1)+(l—-posr/dx)#ul(i)
tr=posr/dx#t1(i-1)+(1l-posr/dx)#t1(i)
zr=post/dx#*z1(i—-1)+(1l-posr/dx)#z1(i)
ztr=posr/dx#zt1(i-1)+(1-posr/dx)*zt1(i)
ror=post/dx#¥rol(i-1)+(l-posr/dx)*rol(i)
asr=post/dx#asi(i—1)+(l-posr/dx)#asl(i)
htr=posr/dx#hti(i—-1)+(1-posr/dx)#h¥1(i)
wr=posr/dx#wl(i-1)+(l-posr/dx)*wl (i)

xl=1/Car#ror)—asr#ur*(l+treztr/zr)/(ror#cprtriar)
a(l)=—wq/(roqicp*ar)

a(2)=wq#*uq/(2#rogq¥cparttq)+1/dt

a(3)=x1lxwr/ur+l/dt

a(4)=—x1%wr/(2%tr)
a(5)=(1+tq#ztq/zq)#{ppl(i)—pq)/(roqicp#dt)+tq/dt
a(5)=a(S5)+htq/(roqicp#ar)tuqtuqppl (1) /(2#pgrroqitcp#ar)
até)=(l+trztr/r)sasrdhir/(rorcprirkar)—g#dsin(th)
ato)=alh)—xirurdppl i)/ (2epri+ur/di-(ppl(i)—pri)/(ror*asridt)

vul(id)=(a(4rza(sS)~-a(2)#a(s&))/(a(ir)*a(d)—a(2ry%a(3))
tti(id=(a(l)#a(s&)—=a(3)*a(3))/(al(ld)*a(4)—~a(2)%a(3))
count=0

tsave=tt1(i)

usave=uul (i)

tdif=tt1(i)3#1000

7z1(i)=9#tc/ (128261 (i) )~ ”7*tc**3/(64*tt1(1)**3\
zz1(i)=zz1 (i) #ppl(i)/pc+1
zzpl(id=(zz1(i)~1)/ppl(i)

72t1 (i) =81utbc##3/(L4%#GE1(i)##4)-F#tc/ (128#tt1 (i) nttl(i))
zzti(id=zzt1(id#ppl(i)/pc
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GwitTid=dabs(ar®rrol (i) #f#uul(id#uul (i) )/ (2%d)
aasl(i)=(C(l+zzb1(i)att1(i) /221 (1)) ##2)#ppl (i)
aasi(il)=aasl(i)/(rrolCid#tti(id#cp)rzzpl(idspplid/zz21 (i)
aasl(i)=(l~aasi(i))#rrol(i)/ppl(i)
sasl(i)=1/dsqrt(dabs(zasl(i)))
hhtl(id)=pitcpé#stiaderrol(i)ruul (i) (ty~tE1(i))
caunt=count+1

Second order procedure

if(ugq.eq.0.0) goto 3

if(uul(i). eq. 0.0) goto 3

posq=2*dt/(1/uq+1/uu1(i))

goto 4

posq—dt*(uq+uu1(1))/“
posr=2#dt/(1/(ur+asri+1i/(uvul(i)+aasi(i)))
pq=pl(i—-1)+{l-posq/dx)#(pl(i)-pl(i-2)}/2
tq=t1(i-1)+(l=-posq/dx)#(t1(i)-t1(i-2)3)/2
uq=ul(i—-1)}+(1-posq/dx)#(ul(i)-ul(i-2))/2
zq=z1(i—-1)+(l-posq/dx)#(z1(i)-21(i-2))/2
ztq=zt1(i—-1)+(1~posq/dxi#(zt1(id-zt1(i-2))}/2
raog=rol{i-1)+{1l-posq/dx)#(rol(i)-rol(i-2))/2
asq=asl(i—-1)+(l-posq/dxi#(asl(i)-asl(i-2))/2
htq=htl1(i-1)+(l-posq/dxi#{htli(id-ht1(i-2))/2
wg=wli(i~1)+(l-posq/dx)#(wl(i)-wl(i-2)3/2
pr=pl(i-1)+(l-posr/dx)#(pl(i)-pl(i-2}))/2
tr=t1(i-1)+(l-posr/dx)#(t1(i)-t1(i-2)}/2
ur=ul{i-1)+(l-posr/dx)}#(ul(i)—-ul(i-2))/2
zr=z1(i-1)+(1—-posr/dx}#{z1(i)—z1(i-2))/2
ztr=zt1(i-1)+(1—-posr/dxd#(zti(i)—zt1(i-2))/2
ror=rol{i-1)+(l-posr/dx)#(rol(i)-rol(i-2))/2
asr=asl{i-1)+(l-posr/dx)#(asi(i)-asl(i-22)/2
htr=htl(i-1)+(1—-posr/dx)s#(ht1(i)~-hti(i-2))/2
wr=wl(i—-1)+(1-posr/dx}#(wl(i)-wi(i-2)3)/2
pq=pq+(pl{id+pl(i—-2)-A#pl(i~-1))%#(1l~posq/dx)#%2/2
tg=tq+(t1(i)+t1(i-2)-24t1(i-1))#(1l-posq/dx)##2/2
uqmugqr(ul(i)+ul(i-2)-2#ul(i-1))%(1l-posq/dx)##2/2
1q=z2q+(z1(i)+z21(i-2)-2%#z21(i~-1))%#(1~posq/dx)#**2/2
ztgq=ztq+(zt1(id+zt1(i-2)-2#%2t1(i-1))#(1—-posq/dx)¥x2/2
roq=roq+(rol(i)+rol(i-2)~2%rol(i-1))#(1~posq/dx)#*3#2/2
asq=asq+(asli(i)+asi(i-2)-2#asl(i~1))#(1l-posq/dx)##2/2
htgq=htgq+(ht1(i)+ht1(i-2)-2#ht1(i-1))#(1-posq/dx)#*#2/2
wg=wqt(wl (i) +wl (i-2)-2#wl(i-1))#(1-posq/dx)##2/2
pr=pr+{(plCil+pl(i-2)-2%pl(i-1))#(1l-posr/dx)##2/2
tr=tr+(t1(i)+t1(i-2)-2#t1(i-1))#(1l-posr/dx)##2/2
ur=ur+(ul (i)+ul(i-2)-2#ul(i-1))#(1-pasr/dx)##d/2
zr=IrH(zi(i)+21(i-2)-2%z21(i-1)2)#(1-posT/dx)*#d/2
ztr=ztr+(zt1(i)+zE1(i-2)-2%2¢1(i~-1))#(1l~posT/dx)##2/2
ror=ror+(rol(i)+rol(i-2)-2#rol(i-1))#(1l-posT/dx)##2/2
asr=asr+(asl(i)+asl(i-2)-2%asli(i-1))#(1l-posr/dx)##2/2
htr=htr+(htl(i)+htl1(i-2)-2#ht1(i~1))#(1l-posr/dx)##2/2
wr=wr+(wl (i)+wl(i-2)-2#wl{i-1))#(1-posT/dx)##2/2

tit=(1l+tq*ztq/zq)/roq+(i+tti(id#zzti(id)/zz1(Ci))/rrol (i)
tit=tit®#(ppl(id—pqg)/(2#cpl+tqg
t1tt~(htq+wq*uq)/roq+(hhf1(1)+wm1(1)*uu1(1))/rr01(1)
tit=tittu#dt/ (2#cpHar)+tit

it (1+tt1Cid#zzt1 (i) /220 (id)#(hhtl(id+uwwl (i)#uul(i))*aasl (i)
vit=vuit/(rral i)ttt (i))r+Cl+tr#ztr/zr)#Chirtwr#urlttasr/(ror#tr)
vitz=uit#dt/(Sxcp¥ar)+ur—ghdtddsin(th)
vit=uyit—=(1/(rroi(iYtaasi(i))+1/(rvor*tasr))#(ppl (i) pr)/’7
vit=vuit=(wwl(id/rrol(i)+twr/roriitdt/(2%ar)
dift=dabs(ttl(id)—tit)/tit
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16

14

if{count. gt 200) goto 15
if(dift. 1t.0.01)goto 14
ttl1di)=tit

uul({i)=uit

tdif=dift

goto 10

write(b, 16}1
format(‘divargence - no it
tit=tsave

uit=usave

tt1(i)=%it

vul(id=vuit

return

end

eration for i=',1i4,’ in pipe 1)
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subroutine breakd4(p2, t2, u2, ppa, ttd, vud, 22, 2£t2, ro, as2, ht2
& w2, dx,» terpesroar, fodscprpisst, twigedts i, th, pat, tt1, ml)

This subroutine calculates conditions at the point
immediately downstveam of, the break after the break
has occurred

implicit double precision({a-h,o—-z1)

dimension p2(300), £t2(300), u2(300), 12(3007, zt2(300),
& w2(300),as2(300), ht2(300), 102(300), pp2(30017J, tLt2(3200),
& wu2(300), 2z2¢(300), 2zt2(300), 1zp2(300), rro02(300),
% ww2(300), aas2(300), hht2(300), a(F), t£1(300)

integer ml, count

First order approximation

poss-dt*”/(l/(as (1)-u2(1))+1/(as2(2)-u2(2)))
ps=poss/dx#p2(2)+(l-poss/dx)#p2(1)
ts=poss/dx#t2(2)+(1l-poss/dx)*#£t2(1)
us=poss/dx#u2(2)+{1l-poss/dxI#u2(1)
z5=poss/dx#z2(2)+(1—-poss/dx)#12(1)
tte=poss/dx¥zt2(2)+(1-poss/dx)#*#z2£2(1)
ros=poss/dx*ro2(2)+(1l-poss/dx)#roa(l)
ass=poss/dx#as2(2)+(1l-poss/dx)#as2(1)
hts=poss/dx#ht2(2)+(l~-poss/dx)#ht2(1)
ws=poss/dx#w2(2)+(1-poss/dx)#w2(1)

if(u2(l1). ge. 0. 0) goto 20
if(u2(2). eq. 0.0) goto 1
posq=dabs{dt#2/(1/u2(1)+1/u2(2}))
goto 2

posqg=dabs{u2(1l)#dt/2)
pg=posq/dx#p2(2)+(1l~posq/dx)#p2(1)
uq=pos/dx#u2(2)+(1-posq/dx)#uv2(1l)
tq=posq/dx#t2(2)+{(1-pasq/dx)#t2(1)
1q=posq/dx#z22(2)+{(1—-posq/dx)*z2(1)
ttgq=posq/dx#zt2(2)+(1-posq/dxr*zt2(1)
rogq=pasq/dx#¥ro2(2)+(1l~posq/dxr#ro2(l)
asq=posq/dx#*#as2(2)+(1l-posq/dx)*¥as2(1)
htq=posq/dx#ht2(2)+(1-posq/dx)#ht2(1)
wg=posq/dx#*w2(2)+(1-posq/dx)*w2{1)
goto 21

if(u2(1).g9t. 0.0) goto 23
pg=pa(1l)

uq=0. 0

tq=t2(1)

zq=z2(1)

ttgq=z2¢t2(1)

roq=ro2(1)

asq=as2(1)

htq=0.0

wgq=0. O

al(l)=1/dt+uqzuq/ (2#roq¥cprar*tq)

a(2)=—-wq/(roq#cp¥ar)

al(3)=(1+tq#ztq/zq)#{pg~ pp2(1))/(roq*cp*dt) htq/(roq#cp#ar)-tq/dt .
a{3)=a(3)—~uqruq*pp2(1l)/(rog¥cprark2ipq)
x1=ass#(l+tenzts/zs)/(rosscpar#ts)
a(d)=wsH#(—xl#us—1/(ar#ros) )/ (2*ts)

ai{S)=1/dt+xisws+ws/ (ars¥ros#us)
albi=(ps—ppa(i))/{rostassi#dt)—us/dttws4pp2(1)/(2#ar#ros#ps)

278



B I e e s A AR Ay Tag T R A an i TR I SUR SR LI

C

[

a}

3
&

10

if(u2(1).1e.0.0) goto 24
tt2(1)=tt1lml)
pu2(1)=(-a(d)#tt2(1)~-a(6))/a(3)
goto 25 ’

tt2(1)=(a( )*a(b)»a(a)%a(B))/( (I)#a(lr)—a(2)*a(d))
pu(l)=(al{i}#a(b&)—-a(A)#a(3)}/(a(d)2a(2)—-a(l1)#a(3}))

psave=ppa(1l}

usave=uu2(1l)

tsave=tt2(1l)

count=0

tdif=£t2(1)%#1000

udif=uu2(1)#1000
zzE(l)-?*t:/(l”B**t”(l))—”7*tc**3/’64*tt”(1)**3)
222¢1)=z22(1)#pp2(1)/pc+l

zzp2€1)=(zz2(1)=1)/pp2(1)
27t2(1)=81#¢c##3/7 (646521 ##4)-Futc/(128#tE2¢ 1 ¥ £201))
zzt2(i)=zzta( 1) =#pp2(l)/pc

rro2(1l)=ppR (1) /{rxtt2(1)#222(1))
ww2(l)=dabs(ari#rro2(1)#fuu2(1)*uu2(1))/(2%d)
aasce(1)=((1+tt2(1)#z2t2(1)/222(1) ) ##2)#ppl2(1)
aas2(1)=aas2(1)/(rro2{(1)#tt2(1)*cpl+zzp2(1)#pp2 (L) /222(1)
aas2(1)=(1-aasz2(1))#rro2(1)/pp2il)
aas2(l)=1/dsqrt(dabs(aasa(1})))
hht2(1)=pistcpsttdirro2 (L) #uud (1)#(Lw-5t2(1))
count=count+i

Second order procedure

poss=2#dt/(1/(ass~us)+1/(aas2(l1)-uwud(1)))
ps=p2(2)¥~(dx-poss)#(p2(3)~p2(1))/(2%dx)
ts=t2(2)~(dx—=poss)#(t2(3)-£2(1) )/ (2#dx)
us=u2(2)—(dx—poss)#(u2(3)-u2(1))/(2#dx?
15=22(2)-(dx—-poss)#(12(3)-12(1}}/(2%dx)
1ts=zt2(2)-(dx—-poss?#(zt2(3)-z2t2(1) )/ (2#dx)
T05=102(2)~(dx-poss)}#(ro2(3)-r02(1) )/ (2#dx)
ass=as2(2)—(dx-poss)*#(as2(3)—as2(1))/(2#dx)
hts=ht2(2)—(dx—poss)# (ht2(3)-ht2(1))/(2%dx)
ws=w2(2)~(dx—poss)#(w2(3)~wd (1)) /(2xdx)
ps=ps+(dx~poss)##2#(p2(J)+p2(1)-2#p2(2) )/ (2*dx*dx)
ta=ts+(dx—poss)##2# (t2(3)+t2(1)-2#t2(2) ) /(2#dx#d x)
us=us+(dx—-poss)##2#(u2(3)+u2(1)-2#u2(2) )/ (2#dx#*dx)
15=25+(dx—poss)##2# (z2(3)+22(1)-2#22(2) ) /(2¥dx#*dx)
tts=zts+(dx—poss)##2#(zt2(3)+2t2(1)-2#2¢t2(2) )/ (2#dx#dx)
ros=ros+(dx—poss)##2#(ro2(3)+ro2(1)-2#¥r02(2) )/ (2%dx=dx)
assTass+{dx—poss) #¥#2#(as2(3)+as2(1)-2#as2(2) )/ (2xdx#dx)
hts=hts+(dx—poss)##2#(ht2(3)+ht2(1)-2#ht2(2) )/ (2#dx*dx)
ws=ws+(dx—poss ) ##2# (w2 (3)+w2 (1) -2#p2(2) ) /(2#dx#*dx)

if{u2(1l). ge. 0.0) goto 2&

'posq=dabs(2*dt/(1/uq+1/uu2(1)))

pa=p2(2)~(dx=posq)#*(p2(3)—p2(1))/(2%#dx)
tgq=t2(2)~(dx-posq)#(£2(I)~t2(1))/(2#dx)
uq=u2(2)—(dx-posq)*(uQ(S)*uc(1))/(“*dx)
zq=12(2)—(dx—posq)*(12(3)— 201 /7(2%dx)
1tq=zt2(2)-~(dx-posq)*(2t2(3)~2t2(1}) )/ (2#dx)

roqgq= ro?(")~(dx posq)#(ro2(3)-ro2(1))/(2%dx)
asq=as2(2)~(dx—posq)#(as2(3)—-as2(1))/(2#dx)
htq=ht2(2)~(dx—posq#(ht2(3)-ht2(1))/(2%dx)
wq=w2(2)~(dx-posq) ¥ (w2(3)-w2 (1)) /(2*dx)
pq=pq+(dx—pasq)##2#{(p2(3)+p2(1)-2#p2(2) )/ (2%dx%dx)
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uq=ugq+(dx—posq)##2% (u2(3)+u(1)-2#02(2) ) /(2dx#*dx)
1q=2q+(dx—posq)##2x¥(22(3)+22(1)-2#22(2) )/ (2#dx#dx)
ttq=ztqt(dx—posq)##2#(1t2(3)+71t2(1)-2#2E2(2)) /7 (S#dx#dx)
roq=roq+(dx—posq)##2#(ro2(3}+ro2(1)-2#r02(2))/(2%dx#dx)
asq=asq+{dx-posq)#3#2#(as2(I)+as2(1)-2*as2(R) )/ (2%dx#dx)
htq=htq+(dx—posq)*##2#(h{t2(3)+ht2(1)-2#ht2(2) ) /(2#dx#dx)
wq=wq+{dx—posq) ##2# (w2 (J)+w2 (1) -2#w2(2) )/ (2#d x#dx ]
goto 27

.26 if(u2¢(1).9%.0.0) goto 28
pag=p2(1}
ug=0.0
tgq=t2(1)
zq=z2(1)
ttq=zt2(1)
rog=ro2(l)
asq=asa(l)
htq=0.0
wq=0.0

27 tit=(1l+tg¥zig/zq)/voqrli+tt2(1)%z22¢2(1) /2221 )Y /vro22(1)
tit=tit#(pp2()-p)+(hht2( ) +ww2(1)#yu2(1))#dt/(rro2(1)*ar)
tit=(tit+(htqrwaqruq)*dt/ (rogq*ar?)/(2x#cpl+tq
goto 29

28 tit=tt1(ml)

29 uvit=aas2(1)#(1+tt2(1)#22t2(1) /2221 )Y ¥ (hht2(1)+uwd (1)Y#uu2(1))
vit=vuit/(rro2(1)#tt2(1))+ass#(l+tsxzts/zsi#(htstws*us)/(ros*ts)
vuit=(uit/(cprar)+tww2(l)/{ar#rro2(1))+ws/(ar¥ros)isdi
uit=((pp2(li-ps)#(1/(ros*ass)+1l/(rro2(1)*aas2(1l)))-vit)/2
vit=uit—g#dt#dsin(thl+us
dift=dabs(tt2(1)-tit)/tit
if (dift.gt. (4#tdif)) goto 15
if{count. gt. 200) goto 15
if (dift. 1%.0.01) goto 13
vu2(l)=uit
tt2(1)=%it
tdif=dift
goto 10

15 write(é: 16)

16 format(‘divergence — no iteration for i=1 in pipe 2)
tit=tsave
vit=usave

13 tt2(1)=%i+%
uu2(l)=uvit
return
end
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subroutine subup (pl,tl,ul,dx, tt1l,vul, tc,pc,rrarm,
% F,d,cp, pl: st, tw, g, dt, irzl,2p1, ttl,rol,wl,asi, htl, th,
% ppl,ttl,uul)

this subroutine calculates p,u and t at the upstreah
end of the pipe assuming constant pressure and
constant mass flow rate.

implicit double precision (a-h,o0-1)
dimension pi(300), t1(300), vl (3007, z1(300), 2£1(300),
% z2p1(300),T701¢(300),as51¢(300), ht1(300),wl(300),
% £t1(300),uul(3007,221(300), 22t1(300), z2p1(300),
2 rrol(300),aas1(300),hht1(300), wwl(300), ppl1(300)
integer count

first order approximation

poss=dt#2/(1/(asl(1)-ul(1))+1/(asl(2)~ul(2)))
ps=(poss/dx)#pl(2)+(1-poss/dx)#pli(l)
us=(poss/dx)#ul(2)+(1-poss/dx)#ul(l)
ts=(poss/dx)#t1(2)+(1-poss/dx)#tl1(1)
zs=(poss/dx)#z1(2)+(1-poss/dx)#z1(1)
tts=(poss/dx)#zt1(2)+(1-poss/dx)#zt1(1)
ros={(poss/dx)#rol(2)+(l-pogs/dx)#rol1(1)
ass=(poss/dx)#asl(2)+(1-poss/dx)*asi(1)
hts=(poss/dx)#ht1(2)+(1-poss/dx)#htl1(1)
ws=(poss/dx)#wl(2)+(1~-poss/dx)*wl(l)
xi=1/dt+(1+tszts/zs)#wsHass/ (roskcpitskar)
xl=xi+ws/(ar#*rosius)
x2=(1+ts#zts/z5)#(hts~ws*us/2)tass/(ros¥kcpits*ar)
x2=x2-ws/ (2*ar#ros)-us/dt—-(pl(1l)-ps)/(ros*ass*dt)
x@=x2+qg#dsin(th)

x3=(1l+tes#zts/zs)tassrwstusrrol (1)#ul(1)/(cpx*ts)
x3=(x3twsH#rol (1)#ul 1))/ (2ar#rosr*)
vul(l)=(dsqrt(x2#x2-4#x1#x3)-x2)/(23%x1)
usave=uul(1l)

count=0 '

udif=uul(1)#1000

rrol(i)=rol(1)xuli(l)/uul(l)
tE1(1)=p1{1)/(rrol(1)%21(1)%r)

221 (1)=9#tc/(128%Lt1(1) ) -27#tc#43/(64#LL1 (1) #%3)
zz1(1)=z2z1(1)#p1(1)/pc+1
7zpl(1)=(zz1(1)=-1)/p1(1)

12t1(1)=Bl#tc##3/(64#LE1 (1) ##4) -/ (128xtL1 (1) xEt1 (1))

zzt1(1)=z2t1(1)%pl(1)/pc
wwl(l)=dabs(ar#rrol(1)#fruui(l)#*oul(i))/(2%d)
aasl(1)=((1+zzt1 (1) #tt1(1)/221(1))»#2)
aasl(l)=aasl (1) /(rrol(l)#tt1(1)#cpi+zzpl (1) /22z1(1)
aasl(1)=(1/pl(l)—aasi(l))#rrol(l)
aasl(l)=1/dsqrt(dabs(aasi(1)))

_hhti(i)= p1*cp*st*d*1rol(l)*uul(l)*(tw—ttl(l))

caount=count+1
second order procedure

poss=dt#2/(1/(aasi(l)-uul(1))+1/(ass-us))
ps=pl(2)—~(dx-poss)#*(pl(3)-pl(1))/(2#dx)

ps= ps+(dx~pos:)**"*(p1<°)+p1(1)—2*p1(“)J/(”*dx*dx)
ts=t1(2)-(dx~poss)x#(t1(3)—-t1(1))/(2%#dx)
ts=ts+(dx~poss)##28(t1(3)+Lt1(1)-2#L1(2) )/ (2#dx#dx)
us=uyl(2)~(dx—passt#(ul(3)-ul 1))/ (2*dx)
us=ust{dx—poss)##2%(ul(3)+ul(1)-2#ul(2) )}/ (2%dx%*dx)
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z2s=zs+(dX~poss)##2# (21 (3)+21(1)-2#21(2))/(2#dx#*dx}
ws=wl(2)~(dx-paoss)#(wl(3)-wil(1))/(2#dx)
ws=ws+(dx—=poss ) #3#2#(wi () +wl (1) -2#wl(2) )/ (2#dx#dx)
ths=z 61 (2} ~{dx—posg)#(zt1(D)—2t1(1) )}/ (2rdx)
zts=zts+(dx—poss)##2u8 (21 (3)+z 41 (1) -2%281(2))/(2xdxxdx)
ras=rol(2)-(dx-poss)&(rol{3)-rol(1))/(2%dx)
ros=rost(dx-poss)#u2¥(rol ()+rol(1)-2%#r0l(2))/(2xdx*dx)
ass=asl(2)-(dx~possi#(asl(3)—asl(l))/(2%dx)
assrasst(dx-possiux2a(asl(3)+asl(1)-2#asl(2))/(2dx#dx)
hts=ht1(2)-(dx-poss)#(ht1(3)~-ht1(1))Y/(2%dx)
hts=hts+(di-posz)#x2#(ht1(3)+ht1(1)-2xh1(2))/(Sxdxxdx)

n

vit=us+(l/{(ras#ass)+i/(rrol{ll+aasl(1)))#(pl(l)-ps)/2
xl=ass#(l+ts#z{s/zs5)#(htstws*us)/(ros*ts)
2=aasi(1d#(i+tt1 1)z 1 (1) /221 C1))u(hhtl (1 +wwli(1)#uul(l))
x2@=x2/€(rrol(1)xtt1(1)) ,
x3=(x1+x2)/(cprar)tws/(ar¥ros)+wwl (1) /(ar+rrol (1))
x3=x3#dL/2+gxdt#dsin(th)

cyit=uit—x3 '
difu=dabs(uul(i)-uit)
if (count. gt. 200) goto 1
if(difu.1%.0.01) goto 3
uul(l)=uit
goto 4
write(22,2
format(’‘no iteration for i=1 in pipe 1)
vuit=usave :

3 uwulli)=uit
rrold{l)=rol(i)#ul{l)/uul(l)
tt1(1)=p1(1)/(rrol(l)3kzz 1 (1) %)
ppl(i)=pl(l)
return
end

P o=
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subroutine downl(p2, t2,u2, dx,ppad: ttd, vu2, tc, pc, v, ar,
2 th, f,d,cpspi,st, twrg,dt, i, 22, 2p2r 282, T02, W2, 358, \
%2 ht2)

this subroutine calculates p,u and t at the downstream
boundary condition assuming a conztant temperature
non-return valvae situation. (valve closes if u<O m/s)

implici% double precision (a-h,a-z) v

dimension pa(300), u2(300), £t2(300), z2(300), z2t2(300), T02(300),
2 pp2(300), uu2(300), t£2(300), rra2(300), w2(3200), as2(300), h£t2(300),
B 222(3002, 2zp2(300), 221203000, ww2(300), aas2(300), hht2(300)

integer count
First order approximation

posr=dt#2/(1/(u2(i)+as2(i))+1/(u2(i~1)+as2(i~-11))
pr=(posr/dx)#p2(i—1)+(1l-posr/dx)#p2(i}
ur=(posr/dx)#u2(i~-1)+(1-posr/dx)#u2(i)
tr=(posr/dx)#*£t2(i-1)+(1-posr/dx)#t2(1i)
zr=(post/dx)*#22(i~1)+(1-posr/dx)#22(i)
rtr=(posr/dx)#zt2(i~-1)+(1—-posr/dx)#zt2(1i)
ror=(post/dx)#¥ro2{(i—-1)+(1l—posr/dx)#ro2(i)
asr=(posr/dx)#asz2(i—-1)+(1l-posr/dx)*as2(i)
htr=(posT/dx)#ht2(i—~-1)+{(1-posr/dx}#ht2(1i)
wr=(posr/dx)}#w2(i-1)+(i-posr/dx)#w2(i)

x1=1/(ror#asr)—asr#wrurtdt#(l+tr#ztr/2v)/(2#pr#ror*cprtritar)
xi=xl+wrkdt/(2#artror#pr)
x2=1-asr#wrsdt*(l+tr#ztr/zr)/(ror#cp#*trear)+turtdt/ (ar#rortur)
x3=asr#dt{l+trdztr/zvI¥(hir-wrturst2(i) /7 (2%tr) )/ (rorscptriar)
x3=x3+wr#dt¥t2(i)/(2rtr#ar#ror)—g#dtr#dsin(th)+pr/(ror*asr)+ur

if(u2(i). 2q.0.0) goto 3
if(uu2(i-1).1t.0.0) goto 3

if(u2(i-1). eq.0.0) goto 1 ,
posq=dabs(dt#2/(1l/u2(i)+1/ua(i-13))

goto 2

posq=dt#u2(i)/2
paq=(posq/du)#p2(i-1)+(1l~posq/dx)#p2(i)
vq=(posq/dx)#u2(i-~-1)+(1-posq/dx)*ud(i).
tq=(posq/dx)#t2(i~1)+(1-posq/dx)#t2(i)
1q=(posq/dx)#z2(i—-1)+(1~-posq/dx)#z2(1i)
ttq=(posq/dx)#zt2¢(i—-1)+{1-posq/dx)#zta(i) : -
roq=(posq/dx)#r02(i-1)+(1-posq/dx?#ro2d(i)
asq=(posq/dxl)#as2(i—-1)+(l—-posq/dx)#asa(i)
htq=(posq/dx)#ht2(i—-1)+(1—-posq/dx)#ht2(i)
wg=(posq/dx)#w2(i-1)+(1-posq/dx)#w2(i)

x4==(1+tq#ztq/zq)/(roq¥#cp)—~uqHtuqitdt/ (2#roqicpHar#pq)
. xS=—wqH#dt/ (rogq*cp#ar)

xb=(htq-wq#ugq*t2(i)/(2#tq))#dt/ (ar#roq#cp)~-t2(i)+tq

xb=xb-(1+tq*ztq/zq)*¥pgq/ (roq¥cp)

vu2(i)=(x3#x4—x1#x6)/{x4#x2—-x1#x3)
ppRi)=(x3#x3—x2#x6)/ (x1#xI5—x4%x2)
goto 4

uu2(i)=0.0

pp2(i)=x3/x1

psave=ppa(i)

count=0

pdif=pp2(i)#1000
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222(1i)=F#tc/(128#¢L2(1))-27#tc##3/(64#4Lt2(i)%23)
222(i)=z212(i)#pp2(i)/pc+l

zzpalir=(zz2(i)~1)/pp2(1i)
2zt2(i)=8Bl#tcruB3/(H43Et2(1)##4) PRt/ (128# L2001 #tE2(1))
zzt2(i)=zzt2¢i)#pp2(¢i)/pc
rro2¢i)=pp2(i)/(rett2C¢i)#222(i))
ww2f{i)=dabs(ar#rro2(i)#fruud(id#uu2 (i) )/ (2%d)
sas2(il=((1+zzt2(i)#tt2(i)/z222(1) ) ##2)#pp2(1i)
aas2(i)=aasZ(i)/(rro2(i)#tt2(id¥cpl+zpI2(id#pp2(id)/z22(1i)
aas2(il=(l—-aas2(i))#rrod(i)/pp2(i)
aas2(i)=1/dsqrt(dabs(aasa(il)))
hht2(i)=pi#cp#stidarro2(i)*ruu2(i)#(tw-tt2(¢(i))
count=count+l

second order procedure

posr=dt#2/(1/(asr+ur)+i/(aas2(i)+uu(i)))
pr=p2(i=1)+(dx~posr)#(p2(i)-p2(i-2))/(2#dx)
ur=u2(i-1)+{dx-posri#(uad(i)—-u2(i-2))/(2%dx)
tr=t20i-1)+(dx~posr)#(t2(i)—-t2(i-2))/(2%dx)
ir=22(i—-1)+(dx-posr)#(z22(i)—22(i-2))/(2#dx)
tbtr=zt2(i-1}+(dx—posrd#(z2t2(i)—2t2(i-2))/(2%#dx)
ror=ro2(i—=1)+(dx~posr)#(ro2(i)-ro2(i-2))/(2%dx)
asr=ase2(i~1)+{dx—-posri#t(as2(il—-as2(i-2))/(2#dx)
hEtr=ht2(i~1)+(dx—-post)#(ht2(i)-ht2(i~-2))/(2#dx)
wr=w2(i~1)+{dx—posri#(w2(i)—w2(i~2) )/ (2*dx)
pr=pr+{dx—posr)##2#(p2(i)+p2(i-2)-2#p2(i-1))/(2#dx#¥dx)
ur=ur+(dx—posr)##24(u2(i)+u2(i-2)-2%u2(i~-1))/(2%dx#dx)
tr=tr+(dx—posr)##2#(t2(i)+t2(i-2)-2#L2(i-1)) /(2#dx#dx)
tr=zr+(dx—posT)##22#(22(i)+22(i~-2)-2#22(i~1))/(2#dx#dx)
ttr=ztr+(dx—posr)##2#(2t2(i)+2t2(i-2)-24#2t2(i~1))/(2#dx#dx)
ror=ror+{dx—posr)##2#(ro2(i)+ro2(i-2)-2#1r02(i-1))/(2%#dx#dx)
asr=asr+(dx-posr ) ##2#(a3s2(i)+as2(i~-2)-2#%as2(i~-1))/(2%#dx*dx)
htr=htr+(dx~posr)##2# (ht2(1)+ht2(i-2)-2#ht2(i-1))/(2#dx#dx)
wr=wr+{dx—posr )} ##2#8(w2(i)+w2(i~-2)-2#w2 (i-1))/(2*dx#dx)

x1=(1/(ror#asr)+l/(rro2(i)#*aas2(il)))/2

x2=1.0
x3=aas2(i)#(1+tt2(i)*z2z2t2(1i)/222(i) )y #(hht2Ci)+ww2(i)#uud(i))
x3=x3/(rro2(i)#tt2(i))+asr#(l+tr#ztr/zr)#(htr+wrsrur) /(rorstr)
xJd=(x3/cp—uww2{i)/rro2(i)—wr/ror)dt/(Z#ar)—g#dt*¥dsin(th)
x3=x3+xl#pr+ur

ifluu2(i). 1e.0.0) goto S

posq=dabs(dt#2/(1/vu2(i)+1/uq)) -
paq=p2li-1)+(dx—posql#(p2(i)— p2(1—”))/(¢%dx)
uq=pa(i-1)+{dx—~posq)#(ud(i)—~u2(i-2))/(2%#dx)
tq=t2(i-1)+(dx-posq)#(t2(i)-t2(i-2) )/ (23%dx)
21q=z2(i-1)+(dx—posqi)#(z2(i)—22(i~2) )/ (2#dx)
ttq=zt2(i-1)+(dx—posqi#(z2t2(i)~2zt2(i-2))/(2%dx)
roq=ro2(i~1)+{(dx—posq)#(ro2(i)-ro2(i-2))/(2%*dx)
asq=as2(i~11+(dx—posq)#(as2(i)—as2(i-2))/(2#dx)
htq=ht2(i~-1i+(dx—posq)#(ht2(i)-ht2(i-2))/(2#dx)
wq=w2(i—-1)+(dx—posq) #(w2(i)~w2(i-2))/(2%#dx)
pa=pqt{dx—posq)*#2%(p2(i)+p2(i—-2)-2#p2(i—-1))/(2%*dx#dx)
vq=uq+{(dx=—posq)##2#*(u2(i)+u2(i~-2)-2#ud(i-1))/(2#dx#*dx)
tg=tq+(dx—-posq)##2#(t2(i)+£2(i-2)-2#t2(i-1))/(2xdx#dx)}
zq=zq+(dx=posq)#¥#2#(22(1)+22(i-2)-2#12(i-1))/(2#dx#*dx)
ttq=ztqr(dx~posq)##2#(z2t2(i)+2t2(i~-2)-2#z2t2(i~1))/(2ndx#dx)
roq=roq+(dx—posqg)##2#(ro2(i)+ro2(i~-2)-2#r02(i~1))/(2#dx#dx)
asq=asq+(dx—posqg)##2#(as2(i)+as2(i-2)-2#as2(i-1))/(2#dx#dx)
htq=htq+(dx-posq)##2#(ht2(i)+ht2(i-2)-2xht2(i-1))/(2%dx%dx)
wg=wgq+{dx—posq}##28(w2(i)+w2(i-2)-2%w2(i~-1) ) /(2adx#dx}

Q.



it s e s L e

x4=(—~(1-+rtt20idnzzt2Ci)/z22(i))/rro2(i)~-(1+tqeziq/zq)/roq)/ (2%#cp)
x3=0.0
x6=((hht2(i>+wm2(i)§uu2(i))/rroZ(i)+(htq+wq*uq)/roq)*dt/(z*tp*ar)
xo=xo6-tt2(i )+ q+xdxpq

yit=(x3#x4~x1%#x&)/x4 .
pit=x&/x4

gota &

uit=0.0

pit=x3/x1
difp=dabs(pp2(i)—-pit)spit
if(difp. gt. (4%#pdif)) goto 7
if(count. gt. 200) goto 7
if(difp.1t.0.01) goto 8
ppatilt=pit

vu2(i)=uit

pdif=difp

gato 10

write(b,?)i

format(’divergence - no iteration for i=’,1i4,’ in pipe 2}
pit=psave

uit=usave

ppa(i)=pit

vu2(il=uit

return

end
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1233
12234

1235

) S UBT‘BTJ tinég}‘e tfi 1¢ 1 )“an o

character#80 Ffilnam

write(#, 1234)

format(lx, ‘filename 7+ /, %)

read#, filnam

open(unit=i, file=filnam, err=1235)
rewind i .
return

print#, "Can’t open", filnam

goto 1233

end

286




3

[ A B |

al

N

[a]

N TN aonOannn

10
15

30

33

38

40

435
44

gubroutineg dminvia, n,d, 1, m)

Description of parameters

a = Input matrix replaced by inverse on exit
Matrix & is the whole matrix stored in a single
dimension array columnwise.

m

-

Order of matrix ‘a’
Resultant determinant
Work vector of length

Work vector of length

double precision a{*),d,biga,hold
integer 10(#),m(3%)

d=1.0
nk=-n

do 80 k=1l:n

nk=nk+n
1C(k)ry=k
mlk)=k
kk=nk+k
biga=a(kk

do 20 j=k/n

iz=n#*{j-1

do 20 i=k,n

ij=iz+i

)

)

if(dabs(bigal)—dabs(a(ij)))13, 20,20

biga=al(ij
1(k)=i
mik)=j
continue

)

Interchange rows

j=1¢k)

if(j-k)39, 35,5

ki=k—-n

do 30 i=1i,n

ki=kitn

hold=—a(ki)

jiski—k+ ]

alkid=a(ji)

a(jid)=hol

d

Interchange calumns

i=m(k?

iF(i-k)45145:38

jp=n#(i-—1

do 40 j=1.n

jk=nk+j
ji=jp+j

hold=-a( jk)
aljlr=alji)

alji)=hol

Divide column by minus pivot valuve ( ~biga )

)

d

if(biga)ag, 46, 48

d=0. 0
return
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B

n [ B |

[ 2 ]

a N n

60
2

65

70
73

80

100
1038

108

110
120

o~y
[

fury
U

130

150

if(i~k}50, 335, 50

ik=nk+i
a(ik)=a(ik)/(-biga)
continue

Reduce matrix

do 6% i=1l.,n
ik=nk+i
hold=a(ik)
ij=i-n

do 65 j=l,n
ij=ij+n
if(i-k)&0, 65, 60
if(j-k)o2: 65, 62
k j=1 j—i+k
a(ij)=hold#alkji+a(ij)
continue

Divide row by pivot

kj=k-n

do 79 j=1l.n
kj=kj+n
if(j-k27Q,73,70
alkjr=al(kjl/biga
continue

Product of pivots

d=d#biga

Replace pivot by reciprocal

alkk)=1.0/biga
continue

Final row and column interchange

k=n

k=k-—1

if(k)150, 150,105
i=1¢k) '
if(i~k)120, 120,108
ja=n#(k-1)
jr=n#(i-1)

do,110 j=1,n
Jk=jq+j
hold=a( jk)
Jji=jr+j
al(jkry==alji)
a(jir=hold

j=mCk)
if(j=k2100, 100, 123
ki=k-n

do 130 i=1,n
ki=ki+n
hold=a(ki)
jizki—k+j
alkid)==—a(ji)
altji)=hold

gota 100

Teturn

end



800

100

25

20

400

300
10

200
500

GRAPHICS __PROGRAMS ‘

Routine to plot graphs of bressure vs time

real#4 p(20).u(20).t(ZO),wisen(QO).wisot(ZO).time(SOO).pplot(SOO)
dimension int(20)

character#20 ygyorn

format (A20)

iflag=0

ipen=0

open(unit=1l, file=’theory’)

rewind (1)

open(unit=2, file="expt”)

rewind (2)

yspot=65.0

print#, ‘Enter value of i required for plot’

rewind(1)

rewind (2)

read (S5, *) iset

Tead(l, #) nint

write(é6,23) :

format( ‘Do you require the experimental data plotted?’)
read (3,800} yorn &
if(yorn. eq. 'N’. or. yorn.eq. 'n’) goto 300

read(2, #) nint2 '

ipen=1 :

1=0

1=1+1

read (2, ¥, end=400) time (1)

do 3 i=1,nint2

read (2, %)} int(i),plid,uli), t(i),wisen(i),wisot (i)
continue

do 4 j=t,nint2

{1fC¢int(j). ne. iset) goto 4

pplot(li=p(j?

goto 20

if(j.eq.nint2}) goto 400

continue
goto 20
1=1-1
gote 500
1=0
1=1+1
read(1l, #, end=200) time(l)

do 1 i=1l,nint

read (1, #) int(i},p(i),u(i), t(i), wisen(i),wisot(i)
continvue

do 2 j=1l,nint

"iflint(j). ne.iset) goto 2

pplot(l)=p(j)

continue

goto 10

1=1-1 . ‘
pmax=10000 «— Maximum Pressure Value
if(iflag.gt. 0} goto 11 .

call hp7330

call devpap(380. 0:250. 0, 0)

call windaw(2)

call pense21(1,0. 35,2}
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i1

12

13

call’
call
call
call
call
call
call
call
call
call
call
call
call
call
if(ip
call
call
goto
call

axipos(1,30.0,30.0,150.0, 1)
axipos(1,30.0,30.0,150. 0,2}
axisca(1,1,0. 0, time(l), 1)
axisca(i,1/2,0.0, pmax, 2)
axidra(i, 1,1}
axidra(-2,-1,2)
movto2(80. G, 15. Q)
chastri{‘time (secs)’)
movto2(13. 0.80.0)
chaang(90. 0)
chastr(‘pressure (KPa)"‘)
chaang(0. O}
movto2(90. 0, 200. 0)
chastr(‘Foothills Test NABTF3
en.eq. 1) goto 12
pensel(1,0. 5. 2)
grapol(time,pplot, 1)

i3

pense1(2,0. 5,2}

"y <-—  Title of Graph

prints#, ‘Enter code for symbol type (1-6}°

read(
call
call

S, #) nsym
grapol(time,pplot, 1)
grasym(time,pplaot, l,nsym, 1}

yspot=yspot-5.0

call
call
call
call
call
call

movto2(150. 0, yspot)
symbol(nsym)
movto2(153. O, yspat)
chastr(’i= /)
chaint(iset, 4)
cthamod :

ipen=0

iflag

=1 .

print#, ‘Do you require anather i? Y or N’

read(

if(yorn. eq. ‘Y‘. or.yorn. eq.

call
call

- stop

end

9, 800) .yarn

piccle
devend
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800

100

25

Routine to plot graphs of pressure vé wévespeed

!

real#d p(20),u(20), £(20), wisen(20),wisot (20}, txme(‘OO),pplot(SOO)
real#*4 wplot(300) .

dimension int(20)

charactzr*2C yorn

format (A20)

iflag=0

ipen=0

open(unit=1, file="thecry’)

rewind (12

openf{unit=2, file=‘expt’)

rewind (2}

yspot=100.0

print#, 'Enter value of i required for plot’
rewind (1)

rewind (2}

read(S, %) iset

read(1,#) nint

write(é,25)

format( ‘Do you rvequire the experimental data plotted?’)
Tead(3,800) yorn

if (yorn.eq. ‘N‘.or.yorn. eq. ‘n‘) goto 700
read (2, #) nint2 .

. ipen=1

400

700
22

30

600

300
10

1=0
1=1+1

read (2, %, end=400) time(l)

do 3 i=l,nint2

read (2, #) int(i):p(z),u(1).t(z),wxsen(x),wzsot(1)
continue

do 4 j=l,nint2

if(int(j).ne, iset}) goto 4
pplot(ld=p(j)

wplot{ll)=wisen( j)

continue

goto 20

1=1-1

goto S0CO

write(é&, 22} .
format(‘Theoretical Plot:-’)
write(b,21)

farmat( ‘Do you want isothermal (1} or isentropic (2? wavespeed")
read(S,#*) ii .

if(ii.eq.2) goto 300

1=0

1=1+1

read (1, #,end=600) time (1)

do S5 i=i,nint

read(1l,#) int(i),pCid,ufi), t(i),wisen(i},wisot(i)
continue

do &6 - j=1l,nint

if{int(j).ne. iset) goto &
pplot(ll)=p(j)

wplot(l)=wisot(j?

continue

goto 30

1=1~-1

goto 500

1=0

1=1+1
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200
S00

read (1, %, end=200) time(l)

do 1 i=l,nint

read(1l,%) int(i),p(id,u(i), t(i),wisen(i),wisot (i)
continue .

dg 2 j=l.nint

if(int(j).ne iset) goto 2
pplot(ll=p(j)
wplot(ll)=wisen(j)

conti
goto
1=1-1

wmax=
pmax=

if(if
call
call
call
call
call
call
call
call
call
call

. call

11

call
call
call
call

-eall

call
call
iflip

. call

call
goto

print#, '‘Enter code for symbol type (1-6)°

Tead(
call
call

call grasym(wplaot,pplot, l,nsym: 0)

yspot
call

nue
10

500

lag.gt. 0} goto 11

hp7350
devpap (380. 0, 230.0,.0?
window(2)

pensel(I: 0. 5. 2)
axipos(1,30.0,30.0,150.0, 1)
axipos(1i,30.0,30.0,150. 0,2}
axisca(1,1,0. 0, umax,1)
axiscat(1,1/2,0.0, pmax.,2)
axidra(l, 1,1}
axidra(-2,-1,2)
movto2(80. 0, 15. 0)
chastr(‘wavespeed (m/s)’)
movto2(15. 0,B80. O)
chaang(90.0)
chastr(‘pressure (KPa)’)}
chaang (0. 0}
movto2(40. 0, 200. 0)

1oooo} — Maximum Wavespeed and Pressure Values

- Title of Graph

chastr(‘Groves Shock Tube Test — Natural Gas’)

en.eq. 1) goto 24
pensel(1,0. 5. 2) A
grapol(wplot,pplot, 1)
23

S,%) nsym
pensel(2,0. 5, 2)
grapol(wplot.pplot, 1)

=yspot—-3.0
movto2(150. O, yspot)

call symbol(nsym)

call .movto2(135. O, yspot)
call chastr(’i= )

call chaint(iset, 4)

call chamod

ipen=0

iflag=l

print#, ‘Do you require another i? Y or N’

read(

if(yorn. eq. ‘Y’.or.yorn. eq. ‘y’) goto 100

call
call
stop
end

S5, 800) yorn

piccle
devend
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APPENDIX VI. PREPARATION OF GAS DATA

i} Specific Heat at Constant Pressure Cp

From the known molar compositions (LTabl;A],D’ége 2221 ), the mass

composition of the gas mixtures could be calculated using the Method of

Mixtures:-

_ooXi M
™OT T (% My (1)
i=1,n

where m; = mass percentage of component i

xj = molar percentage of component i

M; = molecular weight of compohent i

n

number of components.

e .
The calculated mean percentages are presented in Table A2/on ‘page 223,

The specific heats of the mixtures were then obtained by applying the

following formula:-

p =~£n mj Cpy

oL (2)
where -('3; = mean specific heat of mixture

n;i = mass pércentage of component i

Cpi = specific heat of component i

n = number of components.
EXAMPLE

To calculate the specific heat of the natural gas mixture used by
Groves [1378]:
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From Table Al, the molecular composition (neglecting components of less

than 0.001%) is:-

Molecular % - Component Molecular Weight
{From Table A3)

1.498 No 28.013
1.073 COg 44.010

83.266 CHy 16.043
9.608 CoHg 30.070
3.597 C3Hg 44.094
0.3414 iC4Hq10 - 58.124
0.4581 nCy4Hyg 58.124
0.0403 iCsHi2 72.151
0.0342 nCsHyg 72.151
0.0046 CeH14 86.178

the mass percentage of, for example, methane (CHy) is

_ 83.266 x 16.043
MCHy = {(1.498x 28.013)+(1.073x44.010)+(83.266x16.043)+,..)

= 69.40%

The mass percentage qf the other components were calculated in a
similar manner and the mean specific heat could then be obtained from the
specific heats of the components given in Table A3 on"pégézzu

Cp = (0.0218x1037)+(0.0245x819)+(0.6940x2174)+(0.1501x1533)+...

= 1960 J/kg K.
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ii) Specific Gas Constant R

The mean molecular weight of a gas mixture was calculated from the

formula:-
G . ifin (%3 M) )
L xj
i=t,n
where x; = molecular percentage of component i
M; = molecular weight of component i
n = number of components.

The specific gas constant for the gas mixture could then be calculated

from:-
*
R =2 (4)
M
where R = specific gas constant for the gas mixture
R* = universal gas constant.
EXAMPLE

’

To calculate the specific gas constant of the natural gas mixture used

by Groves [1978]:

Mean Molecular _ ((1.498x28.013)+(1.073x44.010)+(83.266x16.043)+...)
Weight M T (1.498 + 1.073 + 83.266 + 9.608 + 3.597 + .....)

19.264

_ 8314 |
R=79.260 J/kKsK

= 432 J/kg K.
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iii) Critical Temperature Te

In the chosen procedure, the ratios of the boiling point temperatures

of the components of the gas were used to obtain coefficients Axy and Ayx

from the charts below. 24
22 -
20 A
A
15 1.8 7
14 ] A 16
3 7
1.3 l 7 14 N
12 1.2 \
N / E
§ / 1.0
10 :
09 N // 08
~ ™~ /, 06 \
08 ==
09
\
10 08
p at \
09} - o7
™ - A,
08, 06
A, < 6
o7 \ o: A,
84 N
08 0.4 N =t
05 03
04
o 12 14 16 I8
T 2z 24 5 20 , 25 30 35
Te -
Y Y
{nonmethane systems) (methane systems)

Figure A.2. Coefficient Charts for use in the
Method of Grieves and Thodos

The following formula was then implemented to obtain wvalues for the

critical temperatures:-

Tc,- . -
Tem =.L T (5)
© 1=1,n(] 4+ = z Ajj " Xj
i 3;]1_,n

= critical temperature of component i ('R)

g,
o
]
2]
[t}
-
(¢
e
|

mixture critical temperature ('R)

M
p—to
]}

molar fraction of component i

molar fraction of component j

"
[
n

= coefficient taken from chart

e
e
[}

n = number of components.
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EXAMPLE

For Groves' data, neglecting the No and COg components of the natural

gas, the main components are:-

Molar fraction Tp ('R) Tc ('R)
1. Methane 0.83266 200.9 342.7
2. Ethane 0.09608 332.3 549.,7
3. Propane 0.03597 416.0 665.6

From these three components three binary pairs exist. The ratios of

the boiling point temperatures and the corresponding coefficients are listed

below:
Tb;/Tby Coefficients
(from Figure A2)
Methane-ethane 1.65 Ay, = 1.46 Azqy = 0.65
Methane-propane - 2.07 Aqs3 = 2.06 Ayy = 0.42
Ethane-propane 1.25 Az = 0.966 Azs = 0.986
Therefore
T. = 342.7 + 549.7
cm ~ 9.608 3.597 83.266 3.597
1 +'83.266(1'46)+ 83.266(2'06) 1+ 3 608 (0.65)+ 9.608(0'966)
+ 665.6
83.266 9.608
1+ 3-.—5-9-7—-(0.42)*!' 3.597(0.986)
= 400.8 ‘R
= -50.5°C.
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iv) Critical Pressure Pc

The critical pressures were calculated from the

(Prausnitz and Gunn [1958]):-

R* (T Xi Zcj) Tep

- —
Pcm - ; (xi Vci)

i
where P.y = pseudo critical pressure

ol
o
n

N
2]
e

L}

0
e
1

= critical temperature

molar fraction

= specific volume of component i

= compressibility factor of component i

R* = universal gas constant (= 8.3144 kJ/kmol K).

EXAMPLE

For the natural gas used by Groves,

Tables Al and A3 (given'on pages 222.and 221) are:)

i X4

1 1.498
2 1.073
3 83.266
4 9.608
5 3.597
6 0.3414
7 0.4581
8 0.0403
9 0.0342
10 0.0046

v

Vci (cm3/mol)

89.8
93.9
99.2

148.3

203.0

263

255

303

304

370

298

Zey

0.290
0.274
0.288
0.285
0.281
0.283
0.274
0.269
0.263
0.264

following

(6)

equation

the relevant data taken from



Therefore:

L (%Xi Zcj) = (1.498x0.290)+(1.073x0.274)+(83.266x0.288)+. ...
1 .
= 28,701
and
L (xi V) = (1.498x89.8)+(1.073x93.9)+(83.266x99.2)+......

i
10881 cm®/mol

_ 8.3144 x 28.701 x 222.66 x 103

> Pep = 10851 kPa

= 4888 kPa.
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