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ABSTRACT 

A theoretical model has been developed which can simulate a 
linebreak occurring in a gas pipeline. By assuming one-dimensional 
homogeneous gas flow and neglecting minor losses and changes in 
cross-sectional area of the pipe, three simultaneous non-linear partial 
differential equations were derived from first principles which 
mathematically model pressure transients in a non-perfect gas. A 
constant value steady-flow friction factor was used to calculate the 
frictional losses which was considered to be a reasonable approach 
since it would not be possible to account for all the variations in 
friction. The heat transfer into the pipe was accounted for using a 
constant value Stanton Number approach which again was an 
acceptable approximation considering the comparatively small effect 
that heat transfer has on the pressure transients. 

The equations were converted to ordinary differential equations 
using the Method of Characteristics and these were then solved 
numerically using a Taylor expansion. A novel feature of this project 
was the incorporation of a reduced grid size in the vicinity of the 
break allowing closer monitoring of the expansion waves in this area. 
Also included was a means of modelling flow reversal in the pipe 
which enabled situations with a non-zero initial flow rate to be 
simulated. 

A computer code solving the mathematical model was written in 
Fortran 77 for use on a Gould PN9005 mainframe computer. Both 
tabular and graphical output were produced which could then be 
compared with available experimental data. 

The ~xperimental data that was selected for validation of the 
theoretical model included shock tube test results and some full size 
tests. Reasonable agreement was obtained between the theoretical 
and experimental results and any possible error sources were 
investigated. 
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NOMENCLATURE 

The s}1mbols used in this text have the following meanings, except 

where they have been otherwise specifically defined: 

SYmbol 

A 

d 

e 

Cross-sectional area of pipe 

Isentropic wavespeed 

Specific heat at constant preSSl~e 

Specific heat at constant vohune 

Diameter of pipe 

Specific internal energy 

f Darcy friction factor 

g 

h 

~} 
P 

Acceleration due to gravi t~' 

Specific enthalpy 

Rectangular coordinates used in explicit 
finite difference methods 

Pressure 

Pr Prandtl number 

Q 

R 

Heat transfer rate per unit volume 

Specific gas constant 

Re Reynolcts number 

s 

St 
T 

t 

u 

w 

Specific entropy 

Stanton number 
Temperature of the gas 

Time 

Velocity of the gas 

Frictional force per unit length of pipe 
Distance along the pipe 

x Thermodynamic quality or dr~~ess fraction 

z Gas Compressibility factor 

Greek SYmbols 

L'nits 

m2 

m/s 

J/kg K 

J/kg K 

m 

J/kg 

m/s2 

J/kg 

Pa 

<3 J/m s 

J/kg 

J/kg K 

K 

s 

m/s 

N/m 
m 

e Angle of inclination of pipe to the horizontal Had 

P Mean density of the gas kg/m<3 

o Heat flow into the pipe per unit length of pipe 
and per uni t time J /IDS 

w actual wave propagation speed selective 
to the pipe m/s 
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CHAPTER 1 

INTRODUCTION 

Ever since the first gas pipelines of the Western World were laid 

in Philadelphia (1796), Genova (1802), and Fredonia (1821), the demand 

for gas as an energy source has been growing worldwide. Gas is 

now considered to be one of the most valuable raw materials due to 

its high calorific value and so safe and efficient transportation is of 

prime importance. 

Up until the mid 1960's, this country was using town gas which 

was manufactured in gas-making plants in the towns and then 

distributed locally at relatively low pressures. Originally i in the 

1920's and 1930's, the pipes for this gas distribution were made from 

cast iron but these were irregular in shape and thickness and by 

(,~,".r.~--;T""'-:--.-f"",'.'. 

the mid. twentieth: i century steel pipes were being used. 
' .... _.:~.~ .... _~..tc.!.. ..:,...--!....::.:z.-" 

With the advent of natural gas as an energy resource in this 

country, longer distance pipelines became necessary, and in 1964 the 

first natural gas .steel pipeline in the U.K. was installed, connecting 

~he liquefied natural gas import terminal at Canvey Island with the 

Midlands. Following the discovery of natural gas in the U.K. sector 

of the North Sea, long distance deep-water lines were built, for 

example, the 354 km long, 350 mm diameter pipeline installed in 1973/4 

between the northern North Sea (Ekofisk platform) and Teeside. 

On these early long distance gas transmission systems, 

compression of the gas (necessary in order to overcome the 
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expansion of the gas due to friction) was by reciprocatin g 

compressors driven by gas or diesel engines. Although machines of 

this type could compress gas over a wide range of pressures and 

flows, there has been an almost complete switch to centrifugal 

machines driven by gas turbines. These are more suitable for 

handling large volumes of gas although they will only deliver over a 

restricted combination of pressure and flow. 

Today, gas supplies 20% of the primary energy demand in Britain, 

most of this coming from the North Sea. The offshore gas is landed 

and treated by North Sea operating companies at coastal terminals 

and is then fed into the national grid. The national grid consists of 

three main sections:-

i) National transmission system - approximately 5000 km of 

pipes with diameters of up to 1050 mm, operating at pressures up 

to 70 bar. 

ii) Regional distribution systems - approximately 12000 km of 

smaller diameter pipes (minimum diameter = 100 mm), operating at 

pressures of 7 bar upwards. 

iii) Local service systems - small diameter pipe operating at low 

pressures. 

There have also been large pipeline networks developed in 

several other countries worldwide. The U.S. natural gas pipeline 

network is the largest in the world having an overall length of more 

than 1.5 million km, and following large natural gas discoveries in 

Siberia and Central Asia, the U.S.S.R. now has the second largest 

11 
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network. In total, the overall length of natural gas pipelines makes 

up 70% of all the world's pipelines. 

However, there are some problems involved with natural gas 

transportation by pipeline. Although containing a high proportion 

of methane, it is also rich in heavier gas components such as butane 

and pentane. Since these heavier components are liquid at normal 

temperatures and pressures (between 0 and 20' C and up to 

approximately 100 bar) the natural gas. exists as a two-phase mixture 

under those conditions as shown in Figure 1.1. 

QJ 
120 '--

:::J,-
"'re 
"'..0 100 QJ-

LIQUID '-
0... 

DENSE PHASE 

cricondenbar .1..----;;::.- - - - - - -

BO 

60 

40 LI QUID - VA POUR 

-100 -00 -60 -40 -20 0 20 40 Temperature (0C) 

Figure 1.1. Typical Phase Diagram for Natural_ Gas 

Two-phase flow in long distance pipelines is undesirable. The 

denser liquid phase tends to collect at the bottom of the pipe and 

since its flow velocity is less than that of the gas phase, the 

capacity of the pipe is reduced. Also, as the faster gas phase 

passes over the liquid phase, \\iaves are created which can eventually 

build up across the entire cross-section of the pipe creating slug 

flow. This highly non-steady flow, accentuated by any changes in 
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elevation of the pipe, should be avoided since the slugs of liquid 

being propelled along the pipe can cause serious damage to pipe 

fittings and equipment. One way of avoiding this situation is by 

regularly pigging the line carrying the two-phase mixtures. This, 

however, incorporates substantial costs in the setting-up and 

operation of the pigging stations. 

A more cost effective solution is to transport the natural gas at 

very high pressures in a single phase, known as the dense phase. 

The dense phase is defined by the critical point and the 

cricondenbar (the highest pressure at which separated liquid and 

vapour phases can co-exist). This is illustrated in Figure 1.1.. It 

has been found that at these high pressures the gas mixture follows 

the same equations as single phase gas flow at lower pressure 

(Oranje, Graaff and Fagerland [1985]). 

With these dense phase gases being transported in high 

pressure, large diameter trunk pipelines, the transient behaviour is 

of greater significance and economic concern than with the previous 

gas distribution network. A transient analysis is required to 

accurately forecast the possibility of the liquid phase appearing as 

well as improving the overall reliability of the system and optimising 

the operating conditions. 

The transient flow situations that require modelling fall into two 

main categories, namely, the slow and rapid transients. Slow 

transients are those fluctuations in pressure and flow caused by 

13 



changes in demand, for example, on a daily cycle. A slow transient 

analysis is mainly concerned with the packing and unpacking of gas 

in the pipeline. There has been a considerable amount of research 

directed towards this type of transient and various computer 

software packages are available which model this type of flow (for 

example, Bender (1979J, Goldfinch [1984], Guy [1967], and Heath and 

Blunt [1969]). 

This is less true of rapid transients which are those caused by a 

linebreak (pipe rupture), compressor failure, or rapid shut-down or 

start-up of a system. Although a line break in a natural gas pipeline 

is unlikely to occur through operational error such as over-pressure, 

the risk of accidental pipe rupture from an external source (for 

example, by excavation work) cannot be ignored. Figure 1.2 details 

the distribution of causes of pipeline failures for a group of natural 

gas pipelines. This data was extracted from a performance analysis 

of the pipelines in Alberta, Canada, between 1975 and 1983 (Cameron 

[1984]). Internal 
Corrosion 

(10%) 

External 
Corrosion 

(17%) 

Joint 
Failure 
(7%) 

Third Party Damage 
(35%) 

Other Causes 
ego cperator error 
or unknown cause 

(17%) 

Figure 1.2. Pipe Failure Distribution for Natural Gas Lines 
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Some authors argue that since the rapid transients caused by an 

event such as a line break are rapidly attenuated in gas pipelines, 

they are of little significance compared with the slower transients 

caused by the packing and unpacking of the gas. However, the 

detection of a linebreak can be important both from an economic and 

a safety point of view. A transient analysis is therefore required 

which will simulate the conditions at the break and in the section of 

pipe either side of the break so that the potential hazard arising 

from such a situation may be assessed. The analysis could also 

provide a basis for the design of automatic valve closing devices and 

alarms which would minimise the effects of such an accident. 

Although there have been a few computer programs developed 

which will model rapid gas transients (for example, Issa [1970], and 

van Dean and Reintsema [1983]), it was found, on examination, that 

these models had their limitations. One major consideration was that 

since the focus of this investigation was on high pressure, dense 

phase gas transportation, it was essential that the model could 

simulate the behaviour of a non-perfect gas following a line break. 

The inclusion of realistic estimates of the effects of friction and heat 

transfer in the model was also a requisite of the program. 

Therefore it was decided to develop a new computer code which 

would incorporate these features. 

Equations modelling the unsteady gas flow in the pipe, including 

any effects of wall friction and heat transfer into the pipe, were 

derived and solved numerically using the method of characteristics. 

1S 
-----------------------



The computer model that was developed featured a reduced grid size 

in the vicinity of the break in order to capture in detail the 

expansion waves created without excessively prolonging the computer 

run time. It also successfully simulated the flow reversal that would 

occur in the section of pipe downstream of the break. 

Theoretical results produced from this program have been 

compared with experimental data obtained from various external 

sources. These were carefully selected to include realistic data from 

pipelines generally of the same size and containing gaseous fluids 

similar to those found in typical dense phase gas transmission lines, 

as well as data from some fundamental shock tube tests. Reasonable 

agreement was obtained between the theoretical and experimental 

results. 
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CHAPTER 2 

THEORETICAL DEVELOPMENT OF THE BASIC EQUATIONS 

2.1. INTRODUCTION 

Basic equations describing homogeneous turbulent gas flow in a 

pipeline were derived from first principles by defining a control 

volume of fixed location or translating with uniform velocity (see 

Figure 2.1). This control volume was of length dx and had a 

cross-sectional area equal to that of the pipeline. It was assumed 

that the flow was geometrically one-dimensional, i.e. that all fluid 

properties were uniform over each cross-section of the pipe. This 

assumption was examined in detail by Goldwater and Fincham [1980], 

but briefly it may be stated that for high Reynolds number flows (as 

in gas transmission lines), the one-dimensional approximation has 

been shown to be very good for steady and slowly varying flows. 

There could, however, be some slight deviations when considering 

large~ rapid disturbances. 

It has also been assumed that the minor losses, arising from pipe 

bends, valves and joints, etc., were small compared with the 

distributed frictional losses, and that the pipe wall was inelastic. 

The basic partial differential equations describing the flow could then 

be derived by applying the laws of conservation of mass, linear 

momentum and energy over a time interval dt. 

17 



2.2. CONSERVATION OF MASS 

The net rate of mass now out of the control volume is equal to 

the rate of decrease of mass within the control volume. Referring to 

Figure 2.1 below:-

Figure 2.1. Control Volume illustrating the Conservation of Mass 

A(P + ~~ dx) (u + ~~ dx) - PllA = - ~t (PAdx) 

Neglecting very small terms: 

A(P au + u ap) dx = -A dx ap ax ax at 

ap a 
.. at + ax (pu) = 0 (2.1) 

1B 



2.3. CONSERVATION OF LINEAR MOMENT'C'M 

The net force acting on the fluid within the control volume is 

equal to the time rate of change of momentum within the control 

volume plus the net loss of linear momentum flux. With reference to 

Figure 2.2: 

\ 
\ 
\ 

/\ 
~~ \ 

.,PAg.dx 

\ A (j-\~ 
\~~ 

\ 
\ 

\ 

Figure 2.2. Control Volume illustrating the Conservation 
of Linear Momentum 

ap a a 
PA - (P + ax dx) A - Wdx - pAgsinedx = at (PAudx) + ax (PAu2d..x) 

Dividing through by A· dx:-

a a ap W 
ot(Pu) + ax (Pu2

) + ox + A + pgsine = 0 

rap a } 
u at + ox (Pu) 

au au ap W 
+ P at + Pu ax + ax + A + pgsine = 0 
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But from equation (2.1):-

ap a 
- + - (~) = 0 at ax 

Therefore:-

au au ap w . 
p at + ~ ax + ax = - A - pgsm6 

2.4. CONSERVATION OF ENERGY 

(2.2) 

It heat is added to the system or work done by the system, the 

system energy must change according to the First Law of 

Thermodynamics. With reference to Figure 2.3.: 

Figure 2.3. Control Volume illustrating the 
Conservation of Energy 

20 



~x {(h + ~2) PuA} + ~t {( e + ~2) PAl + PAugsin6 = Q 

Dividing through by A:-

But 

a a 3 a 2 a Q 
ax (phu) + ax (p ~ ) + at (P ~ ) + at (pe) + pugsin6 = A 

h = e + ~ 
P 

* ~t (Pe) = ~t (ph) - ~~ 

Substituting back:-

a a a 3 a 2 ap Q 
ax (hpu) + at (bp) + ax (p ~ ) + at (p ~ ) - at + pugsin6 = A 

Factorizing .out:-

{
a' ap} ah ah u2 {a ap} a h ax (pu) + at + Pu ax + P at + 2 ax (PU) + at + pu2 a~ 

au ap Q 
+ pu at - at = A - pugsin6 

But from equation (2.1):-

a ap 
ax (pu) + at = 0 

And from equation (2.2 ):-

U {n au + nu aU} = .,.. at .,.. ax 
Wu . ap 

- -A - Pugs~n6 - u -ax 

Therefore: 
ah ah ap ap 

p-+pu----u--at ax at ax -

21 
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2.5. BASIC EQUATIONS IN TERMS OF PRESSURE. VELOCITY AND 
TEMPERATURE 

Equations (2.1), (2.2) and (2.3) were re-written with pressure, 

velocity and temperature as the dependent variables by using the 

equation of state for a real gas:-

P = zPRT, 

and the thermodynamic identity given by Zemanksy [1968]: 

dh = CpdT + {~ [~~]p + I} ~ 

This method was adopted by van Deen and Reintsema [1983] and 

the following 'set of hyperbolic equations is produced:-

(2.4) 

au au 1 ap w 
at + u ax + p ax = - Ap - gsine (2.5) 

P [aZ] lQ + Wu 
z ap T A (2.6) 

The complete derivation of the above equations is given in 

Appendix I. 
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2.6. THE FRICTION TERM 

In the basic equations, the friction term lW' may be defined as 

the frictional force opposing the flow per unit length of pipe. Since 

it was assumed that the minor losses are small compared with the 

distributed losses, the frictional force, W, may be written:-

(2.7) 

where If' is the Darcy friction factor. 

To date, there have been no friction factors defined for transient 

gas flows so it is common practice to adopt the steady flow 

definitions in cases of unsteady flow. The time-dependent friction 

. factors that' have been developed, for example by Brown [1969], 

Trikha [1975], and Zielke [1968] are only suitable for laminar liquid 

flows and cannot be adapted to suit the turbulent gas flow found in 

gas transmission pipelines. The use of a steady flow friction factor 

for transient flow causes very little error when the flow variations 

are of relatively low frequency and amplitude. However, when large, 

rapid disturbances are occurring, a significant error may be 

incurred. This fact had to be considered when selecting a friction 

factor and also in the subsequent calculations. 

There are various types of steady flow friction factor. It had to 

be decided whether or not to use a flow dependent friction factor 
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and also whether to account for the possibility of the liquid phase 

appearing in the flow. 

The key factor in the argument concerning the flow dependent 

friction factor is whether it could be assumed that fully developed 

turbulence was achieved in the pipe. If so, the Rough Pipe Law 

could be employed which is independent of the Reynolds number (and 

hence the flow). If, however, the flow was in the partially developed 

turbulent flow regime or even in the transition zone between 

partially and fully developed turbulence, then the friction factor 

would vary with changes in the Reynolds number. Examples of these 

different friction factor relationships are given in Appendix H. 

Henry [1969] reported that a flow dependent friction factor 

. should be used for high pressure gas pipelines so that the frictional 

losses could be determined to within 1%. Opposing this, Issa and 

Spalding [1972], Stoner [1969], Cronje et al.[l980], and Guy [1967], all 

claimed that at the high Reynolds numbers encountered, the friction 

factor could be assumed to be constant and they supported their 

claims with experimental data. 

In this analysis it was decided to initially assume that fully 

developed turbulence was achieved so that a constant value friction 

factor could be used. If necessary, a flow dependent friction factor 

could be substituted into the analysis provided that the improvement 

in the results obtained justified the additional computing involved. 
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Since dense phase gases were of particular interest in this 

project, it was appreciated that during the rapid depressurization 

following a linebreak, a certain amount of condensation was likely to 

occur. The two common methods of allowing for the presence of the 

liquid phase are:-

1) Modification of the Reynolds number and Roughness terms of 

the friction factor equation. This method was employed by 

Oliemans [1976] when he modified the Colebrook equation in order 

to model two-phase flow. 

2) Inclusion of an empirical two-phase friction multiplier in the 

friction term of the basic equations. This method has been used 

by Mathers et a1.[1976], Kawabe [1982] and Chaudhry [197S]. 

Of these two methods the use of a two-phase friction multiplier 

'was preferred since it did not involve changing standard terms in 

the equations. However, one important consideration had to be made 

in that when a line break occurs in a pipeline, condensation would not 

be uniformly spread along the length of the pipe. Instead, it would 

be localized in the immediate vicinity of the break. After examining . 
the two-phase multiplier developed by Hancox and Nicoll [1972], it was 

felt that the additional computation involved in adapting this method 

for a varying dryness fraction along the pipe would not be feasible. 

It was therefore decided that a constant value friction factor 

would be used as defined by a version of the Rough Pipe Law. 
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Although this friction factor would not initially account for any liquid 

phase being present, this could be compensated for by a certain 

amount of 'tuning', if necessary. 

2.7. THE HEAT TRANSFER TERM 

In the basic equations, the heat transfer term 'Q' may be defined 

as the heat flow into the pipe per unit length and per unit time. 

Although it is considerably smaller in magnitude than the friction 

term, the heat transfer is still a necessary inclusion especially when 

considering long distance pipelines. 

Typically either an isothermal or an adiabatic approach has been 

adopted by previous workers. For the case of slow transients 

'caused by fhlctuations in demand, it was assumed that the gas in the 

pipe had sufficient time to reach thermal equilibrium with its 

constant temperature surroundings. Similarly, when rapid transients 

were under consideration it was assumed that the pressure changes 

occurred instantaneously, allowing no time for heat transfer to take 
. 

place between the gas in the pipe and the surroundings. These are 

the two extreme cases. In reality a certain amount of heat transfer 

does occur between the gas and its surroundings although thermal 

equilibrium will not always be reached. 

The heat transfer occurs by means of forced convection through 

the turbulent boundary layer of the gas in the pipe, conduction 
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through the pipe wall, and by natural convection outside the pipe. 

This is shown diagramatically in Figure 2.4. 

Turbulent Boundary Layer 

~-Pipe Wall 

Atmospheric Temperature TA 4---+-+-+----::~-----

Pipe wall 
Temperature, 

(external) Tw,")-j....---f-f-£1 

(internal) Tw1 

Temperature of the gas T 

Convection 

Conduction 

Forced Convection 

Distance from centre 
of pipe 

Figure 2.4. Heat Transfer into the pipe. 

With reference to Figure 2.4., the heat transfer may be written:-

where D = convective heat transfer coefficient of the boundary layer 

!S = thermal conductivity of the pipe wall 

,eA = convectiv:e heat transfer coefficient of the atmosphere. 
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Unless the pipe is lagged it can be assumed that the high 

conductivity of the pipe results in a negligible temperature 

difference between the internal and external pipe walls. A simplified 

model can then be used as shown in Figure 2.5. 

~><.X;~ 
Turbule nt Boundary Layer 

-- .... 

----- Pipe Wall 

-' 

Atmospheric Temperature TA ;---+--+--+----~----

Wall Temperature Tw"l----+--+--f 

. Gas Temperature T 

Distan'ce from centre 
of pipe 

Figure 2.5. Heat Transfer into the Pipe - Simplified Model 
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Therefore the heat transfer may be defined as:-

n = 17~d (Tw - T) (2.8) 

where d = pipe diameter 

T w = mean wall temperature. 

Introducing dimensionless parameters, the Stanton number may be 

defined as the Nusselt number divided by the product of the 

Reynolds and Prandtl numbers. 

St Nu = Re':Pr 

But, 

M Nu = k ' . ,.., 

Pr = ~ , where 0: = ....lL and V - H 
0: pCp - p , 

and 

Therefore, 

St = (hdlk) 
( J.Cp1ls) (pudl ~ ) 

- -h.. - PuCp 

Substituting this back into equation (2.8):-

(2.9) 
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The Stanton number may initially be calculated from boundary 

layer theory or taken as a function of the Reynolds and Prandtl 

numbers. For example, Bakhtar [1956] used the relationship: 

(St)·(Re)O.2 ·(Pr)o.s = constant 

However, Issa and Spalding [1972] concluded that, as with the 

friction factor, variations in Stanton number with flow rate were not 

sufficient to warrant the additional computation involved. 

Since the heat transfer term in the basic equations is 

comparatively small, it was decided to use a constant value Stanton 

number which may be tuned for each situation encountered. 

2.8. THE COMPRESSIBILITY FACTOR 

In the basic equations, the compressibility factor tz' and its 

derivatives with respect to pressure and temperature are used. 

There are two methods available for defining the compressibility 

factor:-

il Generalized Compressibility Chart 

Readings of the compressibility factor may be taken direct from a 

compressibility chart. The relevant area of this chart for use with 

high pressure gas pipelines is shown in Figure 2.6. 

Although this method may be used in order to obtain an 

approximate value for tz', these readings may deviate by as much as 

10% from the experimental value for a particular gas. Also, further 
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calculations are necessary in order to obtain the partial derivatives 

of 'z'. 

1.4 

1.2 

i"I 
!;-

:.E .8 -;; 

'" Q) .. 
0-

.6 $: 
0 
U 

.4 

.2 

0 
0 2 

1.8 
1.6 

~1.4 1.2 
1.1 
TT-I.O 

4 6 8 
p 

Reduced pressure Pr - -p . 
Cl'1t 

For air, 
Po ·37.25 atm 
To .132 oK 

10 

Figure 2.6. Generalized Compressibility Factor Chart 

. ii) Equations of State 

The use of an equation of state to calculate 'z' has the 

advantages that it can be easily programmed into a computer and 

that it can also be solved for the derivatives of the cornpressibility 

factor. A number of equations of state have been developed which 

vary in accuracy and complexity. The choice of which equation to 

use in a given situation is dependent on the type of gas that is 

being modelled and the temperature and pressure ranges that are 

likely to be encountered. The amount of available computer time and 

space that can economically be used should also be considered. 
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With the modelling of fluid transients it was decided that a 

complicated equation of state would not be feasible in terms of 

calculation time. Therefore only the simpler equations were examined. 

Van der Waals' Equation [1873] 

RT a P=---.,. 
v - b v-

where a and b are constant for 
each gas, v=i-. 

At the critical point (subscript 'c'): 

Therefore: 

27 
a = 64 

v'r 
Z = -.....;.~--:--, 1 

v r - 8 

where v'r = V' 

and 

This equation is quite accurate at low pressure, but is inaccurate 

near the critical point. It is therefore unsuitable for use in 

calc~lations for high pressure pipelines. 

Dietrici's Equation [1899] 

p = ~ . exp( ~) where a and b are constants 
v - b RTv for each gas 

At the critical point:-
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Therefore: 

v'r -4 
z = v' r - (exp) -2 • exp (~T-r-v-+' r~(-e-A"'P--:-) ':1;'2 ) 

This equation is reliable near the critical point for many organic 

fluids. However, errors are incurred in other regions far from the 

critical isotherm and hence it cannot be used for largely varying 

temperatures. The limitations on its use make it unsuitable for gas 

transient analysis. 

Berthelot's Equation [19031 

At the critical point: 

where a and b are constants 
for each gas 

and b - 1 RTc 
- 8 P c 

This equation produces comparatively accurate results for gases 

and vapours at low temperatures. Since the rapid expansion of a gas 

following a line break would create low temperatures in the pipe, this 

equation is the most suitable for use in conjunction with the basic 

equations. 

Therefore: 

__ .;..v_'~r.,.. 
Z = -, 1 v r - g 

27/64 
TZ ' r v r 

Writing this equation in virial form: 

z = 1 + {~ _ 27/64} 1 { 9}2 1 { 9}3 1 
128 ~ v'r + 128· v'rz + 128· v'r3 + •••• 
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In terms of the reduced pressure and temperature only 

(neglecting higher order terms):-

{ 
9 27/64} 

z = 1 + 128T -~ Pr 
r r 

{ 
9Tc 27T3C} p 

= 1 + 128T - 64T3 p­c 
(2.10) 

Therefore, if the critical temperature and pressure of the gas are 

known, the compressibility factor can be calculated directly from the 

pressure and temperature in the pipeline. 

From equation (2.10) the partial derivatives of z with respect to 

temperature and pressure can be deduced:-

{a } { - 9Tc a; p = 128T2 (2.11) 

(2.12) 

Equations (2.10), (2.11) and (2.12) can then be substituted back 

into the basic equations. 
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CHAPTER 3 

REVIEW OF THE METHODS OF SOL UT ION 

3.1. INTRODUCTION 

The three hyperbolic partial differential equations derived in the 

previous chapter (equations 2.4, 2.5 and 2.6) may be solved numerically. 

A number of different methods of solution have been developed some of 

which are discussed by P.Fox [1960], L. Fox [1962], Krivoshein et al 

[1976], Ames [1977] and more recently by Martin and Chaudhry [1983]. 

In this chapter some of the more popular methods used for 

modelling fluid transients will be reviewed and an optimum method 

selected for solving the ruptured pipe problem under investigation. 

3.2. THE METHOD OF CHARACTERISTICS 

The method of characteristics converts the partial differential 

equations describing the flow (equations 2.4, 2.5 and 2.6) to ordinary 

differential equations by using the natural co-ordinates of the system, 

otherwise known as the characteristics. These ordinary differential 

equations can then be solved numerically on either a grid of 

characteristics or on a rectangular grid. 

Equations (2.4), (2.5) and (2.6) may be written in matrix form thus: 

( 3.1) 
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where subscripts t and x denote partial derivatives with respect to 

time and distances, and where 

A = u pa~ 0 

lIP u 0 

2 T az 
0 ~ (l+- (aT)p) u Cp z 

g a 2 T az Q + Wu 
= 

_ !:S-
(lr-z(aT)p) CpT A 

W -+ 
AP 

gsine 

-~ (1- f (C3z) ) Q + Wu 
CpP z C3p T A 

The eigenvalues (A) of matrix A give the characteristic directions 

which are:-

A1 = U 

A2 = U + as 

A3 = u- as 

. In order to obtain the characteristic equations one needs to 

determine a transformation matrix T such that: 

(3.2) 

Then the characteristic equations are given by: 

(3.3) 
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Let I = t11 t12 tu 

t21 t22 t 23 

t31 t32 t33 

Solving equation (3.2):-

tu t12 tu u pa§ 

t21 t22 t 23 l/p U 

o 

From the above: 

1 {1 + 1: (d Z ) } ~ t11 = - pCp z aT p t 13 
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Therefore the transformation matrix may be written: 

I 
1 T Clz 0 = - -{1 + z(ClT)P} 1 
~ 

1 
1 0 

pas 

1 
1 0 --Pas 

and 

I g = 

= 

_ ~(1 + !(dZ) }(o +Wu) + li.. + . 
~T z aT P A AI? gSln6 

Hence, the characteristic equations are:-

Along dx = u'-dt . 

__ 1_{1 + !( az) } dP + dT __ 1_(0 +Wu) = 0 
I?Cp z aT P dt dt Cr:R A (3.4) 
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dx 
Along dt = u + a s :-

1 dP du ~{ !(az) }(Q +Wu) W , 0 
Pas dt + dt - ~T 1 + z aT P A + AP + gS1ne = (3.5) 

cLx 
Along dt = u - a s :-

1 dP + du + ~{1 + !(az) }(Q +Wu) + ~ + gS1'ne = 0 
- pas dt dt ~T z aT P A AP (3.6) 

The method of solving these characteristic equations on a grid of 

characteristics is known as the natural method of characteristics. 

t 

Curve on which the 
values of XI t~ P and 
u are known. 

the 

X 

Figure 3.1 Two-dimensional natural grid of characteristics 
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For two dependent variables (as in the case of isothermal flow) 

there would be ~wo characteristics through each point as shown in 

Figure 3.1, and the characteristic equations may be given by:-

du IdP w. dx 
dt :: Ps. dt + Ae+ gSlIle = 0 along dt = u :: a (3.7) 

A first order finite difference approximation to the C+ 

characteristic (referring to the notation of Figure 3.1) produces the 

following equations:-

Similarly for the C- characteristics:-

This linear approximation is shown below:-

(+ 

------------ -------- A;J. • I 
I 
I . 
I 

x 

Figure 3.2. Linear characteristics on an x-t plane 
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Equations (3.8), (3.9), (3.10) and ( 3.111 can be solved 

simultaneously for the four unknowns (PB' uB' xB' tB'. Hence it can 

be realised that if the values of x, t, P and u are known at points 

Ai' A2 , A3 , A4 , and As in Figure 3.1, then the values of x, t, P and u 

can be calculated at all the other marked points. 

This region of marked points is known as the "domain of 

dependence" as described by Courant and Friedrichs [1948]. 

Another feature of the characteristic grid is that the values of x, t, 

P and u at point A3 will influence the values of x, t, P and u at 

This region, bounded by 

the characteristics through the point A3, is known as the "range of 

influence" and is illustrated in Figure 3.1. 

Instead of linearizing the characteristic grid, a second order 

approximation could be used as expressed by the trapezoidal rule 

formula. 

Xi 

[ f(x)dx :: ~(f(Xo) + ~(Xi)) (Xi - Xc 1 

The use of this formula results in a set of non-linear equations 

which may be solved by iteration. Higher order methods have been 

constructed by Ansorge [1963] but, because the number of points to 

be considered grows exponentially with distance from the line of 

known values I, the range of applicability is limited. Higher order 

is more readily achieved by extrapolation although the numerical 

solution becomes unreliable in the presence of shocks. 
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The main advantages of the natural method of characteristics are 

that discontinuous initial data and shock waves do not lead to 

overshoot and that large time steps are possible since they are not 

restricted by a stability criterion. However, this method does have 

two main disadvantages when dealing with rapid gas transients. 

The first is that if more than two dependent variables are required 

to describe the system then the complexity of the computation 

increases and hence computing costs and time become unacceptably 

high. The second major drawback is that if the solutions of the 

dependent variables are required at fixed time intervals, then 

two-dimensional interpolation in the characteristic net is required and 

this can be very complicated. In order to overcome this second 

disadvantage, the mesh method of characteristics was developed 

which solves the characteristic equations on a rectangular coordinate 

, grid. This method directly yields approximate values for the 

dependent variables at specified time-distance coordinates. However, 

whereas the natural method of characteristics is unconditionally 

stable, the mesh method of characteristics is only conditionally stable. 

The stability criterion, due to Courant-Friedrichs-Levy, is that the 

domain of dependence of the exact solution is contained within the 

domain of dependence of the numerical solution. In terms of mesh 

dimensions Ax and At:-

At 
I:.x 

1 
:( lul + as (3.12) 

The physical meaning for this stability criterion is given by 

Benson et al [1964] (page 142). 
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Taking the case of just two dependent variables, in order to 

make a direct comparison with the natural method of characteristics, 

the characteristic lines would appear on a rectangular grid as shown 

in Figure 3.3. 

time 

~t 

t 
L N 

x 

Figure 3.3 Characteristics on a rectangular grid 
for two dependent variables 

The values of the dependent variables at point P can be found 

by using a first order method described by Courant et al [1952] 

which assumes that the sections of the characteristics being 

considered are straight lines. This assumption is valid provided 

that the time steps, .t..t, are sufficiently small. The slopes of the C+ 

and C- characteristics through point M are calculated and these 
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values taken to be equal to the slopes of the characteristics through 

point P. From these gradients the positions of points Rand 5 can 

be determined. The values of the dependent variables at points R 

and 5 can then be calculated by interpolating from the values at the 

grid points L, M and N. Finally the two characteristic equations 

(equation 3.7) are integrated from Rand 5 up to point P to give the 

values of the dependent variables at P. 

An extension of this method for calculating three dependent 

variables, as is required for transient non-isothermal gas flow, is 

used, for example, by Issa and Spalding (1972] and by Cronje et al 

[1980]. This extended method of solution is a development of that 

given by Hartree (1952] and it solves the three characteristic 

equations (equations 3.4, 3.5 and 3.6) on the grid shown in Figure 

. 3.4. 

time t+llt 

~t 

time t 

Figure 3.4. Characteristics for three dependent variables on a 
rectangular grid 
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In this method a first order approximation is obtained by taking 

the slopes of each of the characteristics through the point P to be 

equal to the arithmetic mean of the slopes of the relevant 

characteristic pertaining to the two adjacent grid points at time t. 

The procedure then continues as previously outlined for the two 

dependent variable case, extending the calculations to include the 

path characteristic through point Q. 

Several methods have been developed to increase the accuracy of 

the solution obtained from the mesh method of characteristics. Lister 

[1960] describes a. second-order method which obtains a higher 

degree of accuracy by using quadratic instead of linear interpolation. 

This method was used by Streeter and Lai [1963] to model the water 

hammer equations with a non-linear friction term included; they 

. obtained good correlation between their theoretical and experimental 

results. Although Lister only examined the case of two dependent 

variables, the method could be easily extended to solve for three 

characteristics provided that the increase in computer time necessary 

to solve the three simultaneous equations at each iterative step did 

not create any difficulties. However, Spalding [1969] supported linear 

interpolation only for modelling three characteristics because "it is 

the simplest and because more complex procedures appear to have no 

advantages" • 

Another way of increasing the accuracy of the solution would be 

to use extrapolation procedures which enable the elimination of 
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higher order errors (again at the expense of increased computing 

time). Details of these methods are given by Hartree [1952] and 

Roberts [1958]. 

Although the mesh method of characteristics is only conditionally 

stable, there are certain circumstances in which adherence to the 

stability criterion can cause numerical dispersion of the waves. For 

example, problems arise when the absolute gradients of the C+ and C-

characteristics differ significantly from each other (as would occur 

with high Mach numbers) or when the wavespeed varies significantly 

along the length of the pipe. These two cases are illustrated in 

Figure 3.5. 

High Mach Number flow 

- P lies outside the domain of 

dependence of Land N. 

Varying wavespeed flow 

- In order to satisfy the 

s,tability criteria in the high 

wavespeed region interpolation 

errors may be incurred in the 

low wavespeed region 

low 
wavespeed 

Figure 3.5. Possible Problem areas when using the 
Mesh Method of Characteristics 
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In order to overcome such difficulties Vardy [1976] proposed a 

method in which a variable mesh size is used. He concluded that in 

certain circumstances, such as high Nach number flows, increased 

accuracy and/or reduced computing costs could be obtained if t:.t/t:.x 

grid ratios in excess of those permitted by the Courant-Friedrichs­

Levy criterion were used, provided that the flow parameters at the 

base of the characteristic lines were still found by interpolation 

rather than extrapolation. 

Another method of rela."{ing the stability criterion is by using an 

inertial multiplier, 0<.. This concept was introduced by Yow [1971]. 

By assuming that the inertial effect in a natural gas system is 

insignificant, Yow multiplied the term (au/at) by a factor of 0:2 which 

increased the permissible time step by a factor of ex. The choice of 

0: is dependent on the· severity of the transient being examined and 

the accuracy required. Streeter and Wylie[1970] used this method in 

conjunction with an implicit finite difference method in an attempt to 

reduce the computing time required to solve gas transients using the 

method of characteristics. Streeter [1972] also included the inertial 

multiplier in his discussion of numerical methods for transient flows. 

In favour of this method, Wylie and Streeter [1978] illustrated that 

with. a 5% error margin, the time step could be increased by a factor 

of 6 for a rapid transient or by a factor of 40 for a slow transient. 

However, when utilizing this method, the assumption that the inertial 

effect of the system is insignificant, must be valid. 

Further modifications to the method of characteristics are 

continually being proposed. For example, Chabrillac [1976] assumed 
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a linear variation in wavespeed between time steps in order to 

simplify his model of a loss of coolant accident in a reactor and 

Carver [1980] transformed the characteristic equations analytically 

into an equivalent set in which time derivatives are explicitly defined 

in order to avoid the necessity for iteration or matrix inversion. 

In conclusion, the mesh method of characteristics is a relatively 

accurate method of solution which can be readily adapted to solve 

the three dependent variables required for the analysis of 

non-isothermal, transient gas flow. With this method discontinuities 

can be handled and boundary conditions are properly posed. It is 

simple to program on a computer, although the main disadvantage is 

that it is a comparatively slow method when using a computer 

because the time steps are restricted by a stability criterion. 

3.3. EXPLICIT FINITE DIFFERE~CE METHODS 

There are many different explicit finite difference methods, 

ranging from the singl~-step, first order schemes, such as the 

method of Lax described by Forsythe and Wasow [1960] (page 85), to 

the fourth order, four-step method of Abarbanel, Gottlieb and Turkel 

[197~]. Second order accuracy is normally regarded as sufficient 

for the analysis of gas transients. Niessner [1980] gives details of 

higher order methods. 

Explicit finite difference methods integrate the basic partial 

differential equations by considering the changes in the dependent 
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variables (P, u and T) along the directions of the independent 

variables (x and t). This produces the solution values at evenly 

spaced points in the physical plane. The finite difference grid is 

shown in Figure 3.6. 

• 6x -

i-1 i-Yi i+1 ~ 
di srance 

o Initial' known values 

o Values found from first step of calculation 

o Values from from second step of calculation 

Figure 3.6. The Finite Difference Grid illustrating a two-step method 

In order to solve the basic equations using an explicit finite 

difference method, they must first be written in the "conservative" 

form. This was defined by Lax and Wendrof [1960] as:-

a a at (A) + ax (B) = C (3.13) 

where A, Band C are functions of the dependent variables. 
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For the case of transient gas flow in pipes, the three basic 

conservation equations (equations 2.1, 2.2 and 2.3) may be written in 

conservative form thus:-

MASS 
a a at (~) + ax (pu) = 0 (3.14) 

!t Cpu) + ~x {~u2 + PI = - ~ - pgsine (3.15) 

ENERGY 

The simplest explicit finite difference method is the forward Euler 

method. Applying this method to equation 3.13 (assuming that 'C is 

equal to zero) produces the following approximation:-

At 
A(, "1) = A(, ') - 'lAx(B( l' +1, J') - B( l' -1, J') ) 1,J+ 1,J ~ 

(3.17) 

This method is unconditionally unstable (stability criteria will be 

discussed later). To overcome this, a damping term must be added 

to produce:-. 

where 0 < Wf ( 2 and is the natural frequency of the oscillations. 

Equation (3.18) is known as the "Method of Lax" and is a single step, 

first-order method. 



In general, a first-order approximation is not sufficiently 

accurate for modelling gas transients in pipelines and so attention is 

focused on the second-order methods. A single step second-order 

finite difference method is the "Method of Lax-Wendroff" as defined 

by Lax and Wendroff [1960] which can be written as:-

_(aB + aB )(B B )} 
~A dA (" ")- (" 1 ") 
Cl ("") (" 1") 1,J 1- ,J 1,J 1- ,J 

(3.19) 

This method has the disadvantage that additional computing time 

is required to evaluate dB/.3A as well as B at each step. To avoid 

the necessity of this calculation there have been numerous two-step 

methods developed. Probably the most well-known of these is the 

"Lax-Wendroff two-step". This method was used by Bender [1979] 

to simulate dynamic gas flows in networks and by Martin et al [1976] 

to simulate pressure wave propagation in two-phase bubbly air-water 

mixtures. Cheng and Bowyer [1978] used a generalised form of the 

Lax-Wendroff two-step method to develop a transient compressible 

flow code and Gorton [1978] applied the equations to transient steam 

flow problems. Since it has been used in transient gas analysis, a 

more detailed description of this method will be given. Taking 

equation (3.13), the Lax-Wendroff two-step approximation may be 

described as follows:-
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FIRST STEP: 

(3.20) 

SECOND STEP: 
~t 

A( .. 1)= A(. ')-:;::; CB(. L< • '",,)-B(. Lt • 1.<)] 1,J+ 1,J ~ l+n,J+n l-n,J+n 

where O(~X2~t2) is the "truncation" or "rounding" error. On close 

examination of these equations, it can be seen that in the first step, 

the values at all the points at time t = j+}t can be found. These 

values are then used in the second step to derive the values at time 

t = j+ 1. This is illustrated in Figure 3.6. 

The MacCormack method (MacCormack [1971]) is also a second 

order two-step method:-

- A 
FIRST STEP A(i,j+1) = (i,j) (3.22) 

SECOND STEP A ( i , j+ 1 ) = ~ {A ( i , j ) + A ( i , j+ 1 )} - ~x[B ( i , j+ 1) - B(i -1 , j+1 ) ] 
(3.23) 

Although this method is sometimes used for modelling unsteady 

gas flow, it produces a slight overshoot at discontinuities and shocks 

as does the Lax-Wendroff two-step method. This is clearly illustrated 

by Sod [1978] in his comparison of several finite difference methods. 

Another second-order method is the "leap-frog" method described 

by Roache [1972]. This method involves three time levels within one 

time step and the approximation for equation (3.13) (assuming that C 
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is equal to zero) may be written: 

(3.24) 

This method shows no amplitude error and requires only one 

evaluation of the value for B at each node point. However, when C 

of equation (3.13) is not equal to zero, this method becomes 

unconditionally unstable and to regain stability the calculations 

become more complicated. Hence this method is not generally used 

for calculating effects of rapid gas transients. 

One of the major drawbacks of the explicit finite difference 

methods mentioned is that, at best, they are only conditionally stable. 

For most cases the stability criterion is the same as that defined for 

the mesh method of characteristics, i.e. 

At 1 
Ax. 'Iul + as 

If the Courant number (aJ is defined as: 

then this stability criterion can be given by: 

One exception to this is the method of Lax (equation 3.18) in 

which there appears a variable w.f such that 0 -< w:f ( 2. The stability 

criterion for the method of Lax is:-
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Since the stability criterion restricts the size of the time step 

which may be used, the explicit finite difference methods require a 

large amount of computer time and are hence not suitable for the 

analysis of large systems or for the evaluation of unsteady flows 

over long periods of time. They are, however, easy to program and 

need comparatively little computer memory space since they solve the 

equations directly rather than simultaneously. Explicit finite 

difference methods can also be used in systems in which a shock 

forms. To overcome the considerable overshoot and numerical 

oscillations set up by the shock when using a method of higher than 

first-order, a smoothing parameter is used. However, extreme care is 

necessary when using such numerical damping since it can tend to 

smooth out the transient peaks. 

Another disadvantage of this type of method of solution is its 

inability to solve for the boundary conditions naturally. Considerable 

work has bee~ concentrated on this area, for example by Gary [19781, 

Gottlieb and Turkel [1978] and more recently by Shokin and Kompaiets 

[19871 Who also give an extensive review of previous work in this 

area. 

In an attempt to overcome the drawbacks inherent in the explicit 

finite difference methods, modifications are continuously being made 

(for example Lakshminarayanan et al [1979]). With these modifications, 

the economy of this type of method with regard to computer space, 

and the ease with which it can be programmed make it an attractive 

method of solution for use with microcomputers. 
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3.4. IMPLICIT FINITE DIFFERENCE METHODS 

The implicit finite difference methods have the advantage over 

the explicit methods of being unconditionally stable. This implies 

that the maximum practical time step is limited by the rate of change 

of the variables imposed at the boundary conditions rather than by a 

limitation required by a stability criterion. Some of the implicit 

finite difference methods that have been used in the solution of fluid 

transient problems are detailed below. The notation used for each 

method is that illustrated in Figure 3.7. 

1~---------r--------~~X~------~ 

time 

Q+-----------4-----------;------------T 
d a b 

C position 

Property 4> at point X is denoted by 4>Cl' 

Figure 3.7. An x-t grid for illustrating implicit 
finite difference methods 

(i) F,ully Implicit Method 

This method is a backward difference method (whereas the 

explicit finite difference schemes are forward difference methods I. 

It has been used in the analysis of flood propagation in channel 

systems. For the general equation in conservative form:-

a a at (A) + ax (B) = C (3.13) 
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the fully implicit finite difference approximation for the point (C,l) 

may be written:-

(3.25) 

The node points used in this approximation are shown in Figure 

3.8(a). 

(a) The Fully Implicit Method. 

b1 c1 

ca 
(b) The Crank-Nicolson Method 

b1 c1 

bO cO 
(c) The Centred Difference Method 

c1 

d1 

d1 

dO 

d1 ,......------, 

cO dO 
(d) The Characteristi~ Finite Differen~~ Metbog 

b1 c1 c1 d1 

positive A negative A 

cO cO 
Figure 3.8. Grid points used in various Finite Difference Methods 
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(ii) The Crank-Nicolson Method 

Forsythe and Wasow [1960] reported that the implicit difference 

methods "seem to have been used for the first time by Crank and 

Nicolson (1947)" What is now known as the Crank-Nicolson Method 

is a central difference solution of high order accuracy. This solution 

is, however, prone to oscillate about the true solution for sudden 

changes in forcing function. The Crank-Nicolson approximation for 

equation (3.13) at the point (c,!) may be written:-

= C c1 
(3.26) 

Figure 3.8(b) gives the nodal plan for this method. Guy [1967] 

and Heath and Blunt [1969J used the Crank-Nicolson method to solve 

the conservation of mass and the conservation of momentum equations 

for slow transients in isothermal gas flow. Both reseach teams 

neglected the elevation term (pgsine) and the differential of kinetic 
#" 

energy with distance (alax(pu 2 » in the momentum equation (equation 

. 3.15). 

The justification for these omissions is that the relative orders of 

magnitude of the terms a lax(pu2 ): a lat(pu): ap lax are approximately 

0.01: 0.1:1 so it is reasonable to neglect the non-linear term 

a / ax (Pu 2 ), and the elevation term is often considered to be 

insignificant. 

This method of solution was found to be much simpler than those 
• 

proposed by Wilkinson et al [1965]. It was easier to program, 

computed much faster and could be readily extended to pipeline , 
networks of any size. 
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(Hi) The Centred Difference Method 

Wylie et al [1974] used the centred difference method to solve for 

isothermal gas transients in a network. In this method the partial 

derivatives are calculated for sections of the pipeline rather than 

node points. For section c-d in Figure 3.7 the centred difference 

approximation for equation (3.13) is:-

(Adl-Ado)+(Acl-AcO) (Bdl-Bcl)+(Bdo-Bco) 

At + Ax = 
(3.27) 

The node points used in this approximation are shown in Figure 

3.S(c). 

A development of this method incorporating upstream weighting 

was used by Taylor [1978]. This weighted finite difference 

approximation for equation (3.13) at points P as shown in Figure 3.9 

is given by:-

~(Adl-AdO)+(1-!){Acl-Aco) !(Bd1 -Bc1 )+(1-$) (Bdo -Bco) 

At + Ax 

(3.23) 

where ~ and ~ are the weighting factors 
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1 --

83~X P3 
time 

~2Ax P2 

l\t 8, ~x P. 
~~t 

~2At 

.1>t At 

o 
~1·----------Ax------------~~1 
c a 

position 

Figure 3.9. Weighted Finite Difference Approximations. 

(iv) Characteristic Finite Difference Method 

The characteristic finite difference method was used by Baner jee 

and HancQx [1978] and by Chaudhry [1978] to simulate transient 

homogeneous two-phase flow. It is so called because instead of 

approximating the conservative form of the basic equations (equation 

3.13) it uses the characteristic form of the equations. The 

characteristic form may be written:-

(3.29) 

where 1. is the transformation matrix defined in equation (3.2), .y. is 

the column vector of the dependent variables, ~ is the diagonal 

matrix of the characteristic directions and Q is equal to -1. Q where 

.9. is defined in equation (3.1). Hence the characteristic form of the 

basic equations (2.4) to (2.6) is given by:-
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T = l{l T dZ 
pS, + i(aT)p} o 1 

1 
pas 

1 0 

::L 
pas 

1 0 

y 

=[;J 
~ = o 

u+as 
o 

~ = _1_{Q +Wu) 
CpP A 

~(1 I(dZ ) }(Q +Wu) 
PGpT + Z dT P A 

~(1 I(dZ) }(Q +Wu) 
pepT + Z aT P A 

w 
- - - gsin6 

A{J 

w 
- - - gsin6 

A{J 

The difference approximations at point (C,l) of Figure 3.7. for 

equation (3.29) may be written:-

. u -u u -~ T (-Cl -co) -cl - 1 
= ~co (3.30) -CO ~t + ~o Ico{ ~ ) 

u -u u -u re (-Cl -CO) -'dl -Cl 
= Peo (3.31) o ~t + ~o Teo( ~x ) 

Equation (3.30) is used for the positive characteristic directions 

and equation (3.31) is used fo-r the negative characteristic directions. 

The 'relevant node points are shown in Figure 3.8(d). 

Combining equations (3.30) and (3.31) gives the difference 

equation:-
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where 

Mcc 

= (1 - r)~ To 

For subsonic flow:-

r = [] if flow is from left to right 

r -- -
if flow is from right to left. 

The above definitions for M and li may be further complicated by 

the inclusion of a weighting matrix. Details of such a system are 

given in Banerjee and Hancox [19781 and Chaudhry (1978]. 

The four methods that have been described are the implicit finite 

difference methods most commonly used for gas transient analysis 

although there are others, such as the explicit-implicit methods used 

by Padmanabhan et al (1978) to solve for pressure transients in 

bubbly two-phase mixtures or the three time level implicit scheme 

discussed by Osiadacz [19841. 
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The major advantage of using an implicit finite difference method 

is that such methods are unconditionally stable and hence impose no 

restrictions on the maximum allowable time step. These methods do, 

however, require the solution of a set of non-linear simultaneous 

equations (usually by Newton-Raphson linearization) at each time 

step. For a complicated gas network the matrix becomes quite large, 

the computer storage requirements become very large and the 

solution time can become excessive. These drawbacks have been 

minimised though by the use of a sparse matrix procedure. Other 

disadvantages of these methods of solution (Streeter [1971]) are that 

they can yield unsatisfactory results for sharp transients and that 

some implicit methods have been known to produce erratic results 

during the imposition of some types of boundary condition. 

Although implicit methods are suitable for the analysis of slow 

transients on relatively large networks, the computer programs 

based on these methods do not allow easy extension. 

3.5. SOLUTION OF A RIEMANN PROBLEM - RANDOM CHOICE AND 
FLUX DIFFERENCE SPLITTING SCHEMES 

In order to overcome some of the difficulties presented by the 

-
finite difference methods when solving transient gas flow equations, 

Chorin [1976] developed a method of solution originally introduced by 

Glimm [1965]. 

The characteristic form of the basic equations (Equation 3.29) 

may be written in a general form (assuming D. = 0) as: 
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!It = (f(u)}x (3.32) 

where subscripts x and t denote partial differentiation. 

If the time t and space x are divided into intervals of length k 

and h respectively, then the solution is to be evaluated at times 

t = nk and t = (n + ~)k and at points x = :i: ih and x = :i: (i + ~)h 

where nand i are integers. In order to do this the near constant 

initial data is replaced by discontinuous data:-

y(x,o) 

y(x,o) 

= un i+l 
= ut:l 

1 

for x )). 0 I 
for x < 0 

(3.33) 

Equation (3.33) is the Riemann problem which is, by definition, 

the interaction between two adjacent and initially uniform suites. 

Glimm [1965] introduced a random variable a~ equidistributed over the 

interval (-~, ~). with values ai, and using this defined the solution of 

the Riemann problem at the point (sih, k/2) to be Y(eih, k/2). This 

value was then allotted to U'+~ and by a similar process the 
i+~ 

calculation could proceed to the next time step. The actual solution 

of the Riemann problem is obtained using an adapted version of the 

above developed by Godunov [1959]. 

The original aim of the random choice method was to be a 

numerical method for solving non-linear hyperbolic systems where a 

complex pattern of shock waves and slip planes exists (for example in 

combustion engines). Hence, although it has the advantage of being 

unconditionally stable, its complexity and execution time (2-3 times 
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that of a standard finite difference scheme) make it unsuitable for 

solving simpler situations with smoother solutions. Sod [1978] also 

found that when applying this method to a simple shock tube 

problem, the randomness of the method produced slight displacement 

of shock and contact discontinuities and small deviations in the 

rarefaction wave. However, since at best this method has only first 

order accuracy, the solution at boundaries creates no difficulties. 

A method known as the ). formulation which also makes use of 

Riemann invariants was introduced by Moretti [1979]. This method 

has been successfully applied to multi-dimensional flow, obtaining 

sufficient accuracy with comparatively low computing time. The major 

drawback with this method is that in most cases, shock waves need 

to be treated explicitly to correctly evaluate their propagation. 

One method that does capture the shock wave numerically is the 

flux-vector splitting method proposed by Steger and Warming [1981]. 

This method is very diffusive when a first order technique is used 

and when higher order techniques are employed, post-shock 

oscillations develop (as described by Mulpuru [1983]). However, this 

problem can be overcome by using a non-linear weighting procedure 

developed by Zalesak [1979]. This produces a hybrid scheme which 

can be extended to higher spatial dimensions through time splitting. 

The disadvantage in this is the increased computing costs that are 

incurred. 
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A second method for numerically capturing shock waves is the 

flux difference splitting method. This method has been developed 

during the last decade from the pioneering work of Godunov [1959]. 

In principle the following procedure is used. 

The difference in flux between two adjacent node points is split 

into terms that will affect the flow evolution at points either side of 

the section under investigation. The initial continuous data i. 

approximated by piecewise constant data which assumes that the flow 

at each node point and over the cell extending for half a grid 

interval either side of the node point is uniform. (Extensions to this 

are the use of a piecewise linear approximation by van Leer [1979] 

and the use of a piecewise parabolic approximation by Woodward and 

Colella [1982]). A discontinuity generally separates two neighbouring 

cells in the ~iddle of the interval and the evolution in time of this 

discontinuity provides the criteria for splitting the flux difference 

over an interval into terms associated with waves that propagate up 

or down the pipe. This criteria for flux splitting was used by Roe 

{l} [1981], and by Osher and Soloman [1982], although other criteria 

have been used, for example by Lombard et al [1982]. 

A good detailed description of this method of solution for the 

basic equations with the source terms omitted is given by Roe and 

Pike [1984 j. Pandolfi [1984] extends the analysis to the set of 

hyperbolic equations (previously defined) in the form: 
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--------

a 
(A) 

a 
(B) = c (3.13) at + -dX 

where, for the basic equations 

A = ~ 

pu 

u 2 

(e + 2)~ 

B = pu 

pu2 + P 

2 
(h + ~ )pu 

C = 0 

W 
~gsine 

A 

Q - I?IJgsin6 

as given in equations (3.14) to (3.16). 

With reference to the elemental section shown in Figure 3.10, 

The term ~B is the flux difference and the corresponding term 

~B • .t.t/.t.x can be interpreted as the contribution of the interval (xi+l 

- xi) to the variation in time, from to to tl of the vector A. In 

general the waves will travel in both directions in the pipeline and 

so it is necessary to split the term ~B into parts that will affect the 

Points upstream or downstream of the interval under consideration. 
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time 

to 
1- ·1 distance 6.x 
x· I xi+1 

Figure 3.10. Elemental section for flux difference splitting 

At time to let there be uniform flow Bi in the interval (xi+~ - xi) 

and uniform flow Bi+l in the interval (xi+l - xi+~)' A discontinuity 

(~A and/or ~B) separates the two half intervals at the centre (xi+~)' 

This is shown in Figure 3.11. The evolution in time of this 

. discontinuity ·is the solution of a Riemann problem. 

flow 

B. 
I 

, 
. , 

Bi+1 - - - - - - : - - - - - - - -

x. 
I 

x. tl 
I+n 

x. 1 distance 
1+ 

Figure 3.11. Discontinuity between two half sections 
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Since for this problem there will be three waves corresponding 

to the three characteristic directions (uta, u, u-a) the difference of 

flux through the initial discontinuity ~B is split into three terms: 

Roe {2}[1981] reported that the exact solution of this Riemann problem 

is not essential to obtain good numerical results, which is fortunate 

considering the large truncation errors that would be incurred in the 

iterative process required to obtain the exact solution. Instead, the 

Riemann problem is solved approximately to save on computing time, 

and it is the different ways of approximating that identify· the 

different flux-splitting methods. 

Although. very good results have been obtained from numerical 

experimentation, these methods do have the basic disadvantage that a 

considerable amount of computer time is required to split the flux 

difference. Furthermore, if a second-order method is used for the 

integration the computational time is again increased. Also it has 

been noted that some inaccuracies can develop in cases such as the 

interaction of shocks. 

3.6. FINITE ELEMENT ANALYSIS 

, In the past finite element methods have not been widely used for 

gas transients since the procedure is lengthy and tedious and hence 

the computing time and storage requirements are high. However, 
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they do offer some advantages over the finite difference methods in 

that the element size, shape and distribution is relatively flexible so 

that non-uniform internal distributions of nodal points is possible. 

They can also handle some boundary conditions better than finite 

difference methods. 

The steps involved in the standard finite element method of 

solution are as follows:-

i) Subdivision of the pipeline into subregions or finite elements -

the size, shape and distribution must be decided. 

ii) Selection of the shape functions - the dependent variables may 

be approximated by different shape functions in each element. 

The shape functions are usually polynomials, the simplest of 

which is the linear or chapeau representation. The higher 

order polynomials yield more accurate solutions unless the 

solution contains discontinuities in which case this does not 

. always hold true. 

ill) Derivation of element behaviour - A relationship is obtained for 

a typical element and from this the behaviour of all the 

individual elements may be computed. 

iv) Application of the boundary conditions - The boundary conditions 

are applied by modifying the overall algebraic equations. 
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· v) Solution of the overall equations - These equations, especially 

when non-linear, are usually solved iteratively. 

Rachford and Dupont [1974] used a Galerkin finite element method 

based on Hermite Cubic polynomials to simulate isothermal transient 

gas flow. The Galerkin method is a two-step method which reduces 

the partial differential equations to ordinary differential equations. 

Fincham and Goldwater [1979] examined the use of the Galerkin 

method for simUlating gas transmission networks and Morton and 

Parrott [1980] explored the solution of first order hyperbolic 

equations using generalised Galerkin methods. However, because this 

type of solution takes a comparatively long time to execute, it is 

generally unpopular for transient analyses. 

Watt, Boldy and Hobbs [1980] investigated the possibility of 

marrying-up a finite difference procedure with a finite element 

component for a system assuming negligible density variation. The 

computation involved with this idea would be a serious deterrent for 

expanding the system to three dependent variables. 

The finite element methods have been developed over the years. 

For example, Van Goetham [1978] modelled unsteady compressible flow 

problems using a variable domain finite element method. However, 

the most promising development must be the moving finite element 

method of Wathen and Baines [1983]. In this method a set of 

ordinary differential equations is obtained by approximating the 

initial data using a piecewise linear function on a number of nodes. 
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These ordinary differential equations can then be solved using a 

simple explicit finite difference method. Spivack [1984] summarises 

this method and illustrates its application to solving the unsteady 

gas flow equations in the pipebreak problem. Further details of the 

application of this method to compressible flow problems are given by 

Baines [1986]. 

The only apparent drawbacks with this method of solution are 

that care is needed in the treatment of boundary conditions and that 

it is very complicated to program. 

3.7. DISCUSSION 

Each of the numerical methods in this chapter has its own 

advantages a~d disadvantages. The optimum method of solution for a 

particular fluid transient analysis is determined mainly by the 

accuracy and dept'h of detail that is required of the results and the 

type of transient waves that are being modelled. 

In general, higher degrees of accuracy can be achieved at the 

expense of increased computational labour. Although the implicit 

finite difference schemes are often more economical then the explicit 

finite difference schemes or the method of characteristics, it is 

widely accepted that more accurate results can be achieved with the 

method of characteristics. When 1.tsing the mesh method of 

characteristics, errors can be introduced when the characteristics are 

approximated to straight lines. These discretization errors can, 
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however, be reduced by employing parabolic arcs in place of straight 

lines to give a second order approximation. This does have the 

drawback of increasing the computational run time still further. 

As well as the run time, the available computer memory space is 

an important factor when working on a microcomputer. The implicit 

finite difference method is unsuitable for small computers since it 

requires the solution of a set of non-linear simultaneous equations at 

each time step. For a complicated network, the matrix therefore 

becomes quite large and the computer storage requirements become 

very large. However, the computer storage and time required can be 

reduced by using sparse matrix algebra (Wylie et al [1974]). 

The type of transient flow that will occur - whether it is 

compression pr rarefaction waves that are being created must be 

considered. In the case of compression waves where shock waves 

are being set up in the system, a method must be chosen that will 

accurately represent the shock waves without smearing the details or 

overshooting. The Lax-Wendroff two-step explicit finite difference 

method is one of the most suitable for dealing with systems in which 

a shock wave forms. The natural method of characteristics is also 

accurate but requires special procedures for shock calculations. 

Alternatively, the mesh method of characteristics or an extension of 

this method such as the flux difference splitting scheme presented 

by Roe and Pike [1994] both recognise shocks and cause only small 

overshoot. However, the finite difference methods tend to produce 
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overshoot in the presence of shocks if methods of higher than first 

order are used, and the discontinuities tend to get rounded off due 

to numerical diffusion. 

If the analysis is solely concerned with slow transients, such as 

those caused by fluctuations in demand in a network, then 

considerable savings can be made in computational time, and hence 

cost, by utilizing an implicit finite difference scheme which does not 

require a small time step for stability. However, with rapid 

transients such as those caused by a linebreak or compressor failure, 

a small time step is necessary and hence the Method of 

Characteristics would often tend to be favoured. 

Another important factor to consider is the number of type of 

boundary conditions that will be imposed on the system. For 

example, the explicit finite difference methods cannot handle 

boundary conditions naturally and so calculations for networks with 

many branches becomes difficult. The mesh method of 

characteristics does have the advantage that the boundary conditions 

~re properly posed whereas for most methods of solution care is 

needed in the treatment of the boundary conditions. 

Finally, the size of the system (i.e. the number of pipes) to be 

analysed will influence the choice of method. Implicit finite 

diffp.rcnce methods are more suited to the analysis of large systems 

whereas the mesh method of characteristics and the explicit finite 

difference approaches are comparatively slow and so are more 
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appropriate for single pipelines rather than networks. However, for 

an analysis on an expanding network, the implicit methods may not 

be the optimum since they do not allow easy extension. 

In this analysis of a ruptured gas pipeline, the system consists 

of a single pipe with no possibility of shock waves forming. The 

numerical method chosen must be capable of solving for three 

dependent variables and a variable wavespeed. The major 

requirement here, though, is for an accurate and reliable numerical 

method in order that the theoretical model may be assessed. The 

method of characteristics was selected as the most appropriate. 
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CHAPTER 4 

SOLUTION OF THE CHARACTERISTIC EQUATIONS 
FOR A LI~EBREAK SITUATION 

4.1. INTRODUCTION 

When a linebreak occurs in a high pressure pipeline, a pressure 

drop occurs virtually instantaneously at the break and rarefaction 

waves are transmitted up and down the pipeline. When the tluid in 

the pipe is a gas, these rarefaction waves are rapidly dissipated. 

For this reason, it was decided that in order to model these waves 

properly, a reduced grid size was required in the vicinity of the 

break. 

A physical model was initially specified that reduced the grid 

size by a factor of 10 near the break and by a further factor of 10 

immediately . either side of the break. However, it was found that 

such a dramatic grid size reduction caused numerical instabilities in 

the solution. A second model was therefore developed that reduced 

the grid size near the break by a factor of 2 six times as shown in 

Figure 4.1. This gradual grid size reduction minimised the 

instabilities previously experienced. 
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4.2. GENERAL SOLUTION FOR INTERNAL POINTS 

Since the pressure drop along a pipeline is due primarily to the 

. frictional effects (gravitational effects being small), the friction term 

(W) in the characteristic equations requires a second-order 

approximation. The frictional force may be written in terms of P, T 

and u:-

Differentiating this: 

aw aw aw aw 
dW = ap dP + aT dT + au du + az dZ 

Neglecting changes in compressibility factor, this expression simplifies 

to: 

w W 2W 
dW, = P dP - T dT + ~ du 

If state 1 is defined as the conditions at the base of the 

characteristic being examined and state 2 as the predicted conditions 

at the point in question, then an average value for W over the 

intet;val from state 1 to state 2 may be calculated: 
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This equation was substituted into the finite difference form of 

the characteristic equations and the following set of equations was 

produced. 

Along dx/dt = u: 

Along dx/dt = u + as: 

Along dx/dt = u - as: 

Sg~t [ +! [aZ) } Wu [P2 U2 T2) 
+ PGpT 1 z aT P A 2Pl + ul - 2Tl + g·~tsine = 0 

In these equations, ~t is the length of the time step and all 

variables without a subscript refer to the value at state 1. 
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For simplicity, these equations were then written in matrix form:-

where:-

A(2) 

A(5) 

A(8) 

A( 3) 

A(6 ) 

A(9) 

= [1 + AtuW] 
2~T Q 

= [- t$JQ 

= [-L _ asAt {l + 1: (aZ] } Wu + W~t } 
P8.s P<:1>T z aT p 2AP 2APP R 

{as~tWu {1 + ! [aZ] } _ WAt } 
A(5) = 2~Tz z aT p 2APT R 

= [1 - as~tW {1 + ! [aZ] } + W 
P<;>TA z aT P R 

= [_ -l- + as~tWu {1 + 1: [aZ] } + W~t ] -
pas 2~TAP Z aT p ZAPP S 

= [ as~tWu { T [aZ]} W~t] 
- 2pCpA-TZ 1 + Z aT p - 2APT S 

A(9) = ( asAtW { ![ClZ]} ~ 1 + ~T 1 + z aT p + s 
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B(3) = [- ~ + u - asAt {l + ![aZ] } ~ - goAtsine] 
Pas P<;>T Z aT pAS 

The values at state 1 at the base of the characteristic were 

found by linearly interpolating between the grid points. Hence by 

solving these equations a first-order approximation was obtained for 

the predicted pressure, temperature and flow velocity. 

Since the required stability and accuracy could not be achieved 

using this first-order approximation, this solution was used as an 

initial estimate in a second-order procedure. Although the exact 

procedure of this second-order model was dependent on the type of 

grid point being examined, in principle, new values for the variables 

at state 1 were found using quadratic interpolation. The coefficients 

in the characteristic equations were then calculated using these 

values. The coefficients were averaged with the previous state 1 

coefficients and the results substituted back into the characteristic 

equations. By this method new values for the predicted pressure, 

temperature and flow velocity were obtained. 
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Figure 4.2. Different Internal Grid Point Configurations 
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4.3. SPECIFIC SOLUTIONS FOR VARIOUS GRID POINT CONFIGURATIONS 

There were a number of different grid point configurations for 

which the characteristic equations had to be solved. 

configurations are detailed in Figure 4.2. 

4.3.1. Internal point with egui-distant ad jacent grid points 
(Fig.4.2(i) 

FIRST ORDER APPROXIMATION:-

The positions of Q, Rand S were defined thus: 

These 

posQ = 2~t/(1/u(i) + 1/u (i-1» assuming u(i) or u(i-1) do not equal 0 

posR = ~t/(l/(u(i) + asCi»~ + l/(u(i-l) + a s (i-1») 

posS = 2~t/(1/(as(i) - u(i» + l/(as (i+l) - u(i+l») 

where u(i) = velocity at time t at point i in the pipe . 
and asCi) = isentropic wavespeed at time t at point i in the pipe. 

The values of the variables P, T, u, Z (dz/dT)p, p, as' nand W at 

points Q, Rand S were then calculated by linear interpolation:-
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PQ = (posQ/~x) . P(i-l} + (1 - POSQ/~)· P(i) 

PR, = (posR/~) • P(i-l) + (1 - posR/~x)· P(i) 

Ps = (posS/~) • P(i+l) + (1 - posS/~x)· P(i) 

where PQ = value of P at the base of the path line (point Q) 

PR = value of P at the base of the C+ characteristic (point R) 

Ps = value of P at the base of the c- characteristic (point S) 

P(i) = value of pressure P at time t at point (i) in the pipe. 

(Similarly for the other variables listed). 

These values were then used in the general solution defined' by 

equation (4.1) and first-order approximations were obtained for P, T 

and u at time (t + ~t) (i.e. at state 2). 

SECOND ORDER PROCEDURE:-

Using the predicted values of the variables P, T, and u obtained 

from the first-order approximations, predicted values for the 

- variables z, (az/aT)p, P, 8.g, Q and W were calculated for point P (at 

time, t + ~t). 

The new positions of points Q, Rand S were then defined as:-
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posQ = 2At/(1/uQ + l/uz(i» assuming uQ and u2(i) do not equal zero. 

where lIQ = value of u at the base of the path line 

uR = value of u at the base of the C+ characteristic 

Us = value of u at the base of the c- characteristic 

asR = value of as at the base of the C+ characteristic 

ass = value of as at the base of the c- characteristic 

uz{i) = predicted value of u obtained from the first-order 
approximation 

asz(i)= predicted value of as obtained from the first-order 
approximation 

Taylor's theorem was then used to obtain a formula for quadratic 

interpolation so that new values of P, T, u, z, (az/aT)p, Pt as' Q and 

W could be calculated for points Q, Rand S (the bases of the 

characteristics ). Full derivation of the formulae for quadratic 

interpolation is given in Appendix HI. 

(Similarly for the other variables listed). 
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These values were then averaged with the predicted values 

obtained from the first-order approximation and the results used as 

coefficients in the difference form of the characteristic equations. 

Since the second-order approximation for W used in the first-order 

method was no longer required, the final values for substituting into 

equation (4.1) were: 

= [({l +1 
z 

A(2) = 1 

A(3) = 0 

• A(S) = 0 

A(6) = 1 

85 



A(S) = 0 

A(9) = 1 

Equation (4.1) was solved so that new predicted values for 

pressure, temperature and velocity were obtained for point P at time 

t + ~t. This second-order procedure was repeated, substituting in 

these new values until the required accuracy had been achieved. 

If at the internal points downstream of the break flow reversal 

was occurring, the same method as outlined above would be used 

except that different values for posQ and PQ etc., would be 

necessary. When the direction of flow is reversed in the pipeline the 

path characteristic is moved to the grid space containing the C-

characteristic as shown in Figure 4.3. 
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path 

Q i+1 
x 

Figure 4.3. Effect of Flow Reversal on the Characteristics. 

Therefore in this situation, for the first order approximation: 

posQ = 2At/(l/u(i) + 1/u (i+1» assuming neither u(i) nor 

U(i+1) equal zero 

P - ~ . P(i+l} + (1 - ~)·P(i)· Q- Ax Ax. 

and for the second order approximation: . 

PQ = P(i) + ~~Q {PCi+1)-P(i-l)} + po~~;{P(i+l) + P(i-l)-2P(i}} 
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4.3.2. Internal Boundarv Point between two different grid sizes 

Figures 4.2(ii) and (iv) illustrate this type of grid point 

configuration. Examining firstly this point situated upstream of the 

break:-

FIRST ORDER APPROXIMATION: 

The positions of Q, Rand S were defined as for the standard 

internal points. The values of the variables at Q, Rand S were then 

found by linear interpolation: 

PQ = (posQ/211x) 'P(i-1) + (1 - posQ/Ux) 'P(i) 

~ = (posR/211x)'P(i-1) + (1 - posR/2llx)'P(i) 

Ps = (posS/l1x)'P(i+1 ) + (1 --posS/l1x)'P(i) 

(Similarly for variables T, u, z, (c3z/c3T)p, p, as' Q and W). 

These values were then used in the general solution defined by 

equation (4.1) to obtain first order approximations for P, T and u at 

time t + l1t. 
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SECOND ORDER PROCEDURE: 

The same method as that of the standard internal points was 

followed and the new values for the positions for Q, Rand S were 

calculated. The formulae for quadratic interpolation for 

non-equidistant adjacent points - derived using two separate Taylor's 

expansions - were then used to calculate new values of P, T, u, z, 

(az/aT)p, p, as' 0 and W at points Q, Rand S. These formulae are 

given in equations (8), (9) and (10) of Appendix Ill. The new values 

for the variables were then used in the second order iterative 

method specified for standard internal points. 

For this type of point situated downstream of the break, for the 

first order approximation: 

PQ = ~Q • P(i-1) + (1 - ~Q).P(i) 

P- = ~ . P(i-1) + (1 - ~)·P(i) 
~tt Ax Ax 

Ps = ~S . P(i+1) + (1 - ~S).P(i) 

and for the second order procedure equations (11), (12) and (13) of 

Appendix III were used. If flow reversal occurred then the variables 

were defined by: 
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PQ = ~~Q . PCi+1) + (1 - R?sQ)'P(i) etc. 
","",,,, "'""'x 

in the first order approximation and equation (14) was used instead 

of equation (ll) 'in Appendix ill. 

4.3.3. Internal Boundary Point linking two different grid sizes 

This type of boundary point configuration is shown in Figures 

4.2(iii) and (v). Since it is apparent that two time levels were 

necessary in order to predict values at a third level a more detailed 

diagram is given in Figure 4.4. 

2~x 

time 

2~t 

p 

i+1 

~t 

i+2 

position 

Figure 4.4. Grid point linking two different grid sizes 

In the first order approximation the positions of Q, Rand S were 

defined as: 
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posQ = 4~t/(1/u(i-l) + l/uX ) assuming neither u(i-l) nor Ux equal 0 

poss = ~t/(1/(as(i+l) - u(i+l» + 1/(asY - uy» 

where subscripts X and Y denoted the values of the variable at 

positions X and Y. 

The values of the variables at points Q, Rand S were then 

determined using linear interpolation. For example: 

PQ = ~Q . P(i-l) + (1 - ~~Q)·px 

PR = ~R . P(i-l) + (1 - ~R)·pX 

Ps E22§. P(i+1) + (1 - E22§) 'Py = Ax Ax 

These values were used in a modified form of the general 

solution given by equation (4.1). The modification to this equation 

was to replace ~t with 2At in the expressions for A(1), A(2), A(3), 

A(4), A(5), A(S), B(l) and B(2). 
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In the second order procedure the positions of Q, Rand S were 

defined thus: 

pasQ = 4~t/(1/UQ + 1/u2 (i» assuming neither UQ nor uz(i) equal 0 

pasS = 2At/(l/(asS - uS) + l/(as z(i) - u2(i») 

and the new values for the variables P, T, u, z, (az/aT)p, p, as' Q 

and W were calculated using the following equations: 

PR = P(i-l) + C2Ax-poSR){Px-P(i_2)}+ (2AX-WOSR )2 {Px +P(i-2)- 2P(i-l)} 
4~ ~X' 

(These are equivalent to equations (15), (16), and (17) of Appendix 

IlI). 

92 



The second order procedure was again continued as outlined in 

Section 4.3.1. 

For this type of point, positioned downstream of the break, the 

positions of Q, Rand S for the first order approximation were 

defined by: 

posQ = 26t/(l/u(i-l) + l/uy) assuming neither U(i-l) nor uy 

are equal to 0 

posR = 26t/(l/Cu(i-l) + ag(i-l» + l/Cuy + asY» 

posS = 4~t/(1/(ag(i+l) - U(i+l» + l/(asX - uX» 

where subscr,ipts X and Y denoted the value of the variable at the 

time levels X and Y shown in Figure 4.4; the values of the variables 

at Q, Rand S were: 

. PQ = ~Q . P{i-l) + (1 - ~Q).Py 

nosR . (nnsR 
Ph = ~ . P(1-1) + 1 - ~).Py 4K Ax ~x 

Ps ~. P(i+l) + (1 - ~) .o.p = 26x Uox "X 
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The modification to the general solution in this instance was to 

replace At by 2At in the expressions for A(7), A{S), A(9) and B(3) of 

equation (4.1). 

For the second order procedure, equations (lS), (19) and (20) of 

Appendix III defined the variables at points Q, Rand S with equation 

(21) of the same appendix being used in place of equation (lS) if flow 

reversal occurred. 

4.4. UPSTREAM BOUNDARY CONDITION 

The only characteristic available at the upstream pipe end 

boundary condition was the C- characteristic since it was assumed 

that the flow would always be in the positive direction in the section 

of pipe upstream of the break. Therefore two additional assumptions 

were required at the boundary in order to evaluate the three 

variables pre~sure, velocity and temperature. The two assumptions 

used in this analysis were constant pressure and constant mass flow 

rate ( ~~~~~;~~bl~',r9-~~~·~~~~,;~~,~.~_~:t'~.·~~;i~.~f~~~~.~~i~~€~.~1J I~d?~~s.~rea~~ 
r~b.~~~~f~·~f~~~~~·~~~~~~i.~~ir~:~~~:-?h.··i~F~-:_~ic~i~~~~o.fcPE~£~:~i~~~~~~~i~~~)_. 

Initially a first order approximation for the C- characteristic was 

perfprmed and the results from this were then used as initial values 

in the second order process (as with the previously described grid 

points). 

The position of point S at the base of the C- characteristic was 

calculated as before and a formula for quadratic interpolation was 
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derived using a Taylor expansion about the point i = 2. New values 

could then be calculated for the variables P, u, T, z, (az/aT)p, p, ag, 

Q and W at the point S. For example: 

Ps = P«2) - (~x - posS» 

Using these values a second order approximation for the C­

equation was calculated and by implementing the assumptions of 

constant pressure and mass flow rate, the values for P, u and T 

were deduced for the next time level. 

4.5. DOWNSTREAM BOUNDARY CONDITION 

At the ·downstream end of the pipe it was decided for 

convenience to simulate a non-return valve to prevent flow reversal 

occurring in any pipes adjoining the test section that was being 

modelled. It was also assumed that this boundary was at constant 

temperature. With this additional assumption it was possible to 

calc1!llate values for the variables P, u and T at a new time level. 

As before, the initial values for a second-order procedure were 

calculated from a first-order approximation for the C+ and path 

characteristics. The second-order approximation was then performed, 

using a Taylor expansion about the point adjacent to the boundary, 
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to calculate values for the variables at points Q and R (shown in 

Figure 4.5). 

~~-------------.--------------~P 

~t 

path 

M-2 Q M 
.. 

Figure 4.5. Downstream Boundary Condition 

4.6. BREAK BOUNDARY CONDITION 

An appro,ximation to the situation of a linebreak occurring in a 

pipe is the sudden rupturing of a shock tube diaphragm separating 

two areas of different pressure. The main difference between these 

two situations is that in a gas pipeline there would be an initial flow 

velocity whereas the flow is initially stationary in the shock tube 

model. However, when considering high pressure pipelines, the effect 

of .. the initial flow velocity can be assumed to be negligible for the 

purpose of modelling the linebreak. 

Kobes [1910] and Aschenbrenner [1937] examined the effect of 

suddenly removing a slide separating regions of high and low 

pressure in a pipe. They envisaged that the pressure at the 
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junction between the two regions would immediately change to a new 

value which was termed the 'equalization pressure'. Compression 

and rarefaction waves would propagate into the low and high 

pressure regions respectively, and the gas in the high pressure area 

would start to flow into the low pressure zone. A value for the 

equalization pressure may be determined by equating the particle 

velocities associated with the compression and rarefaction waves. 

The particle velocity of a rarefaction wave, assuming isentropic 

conditions, (as derived by Earnshaw [1860]) is given by: 

~ 
2 {l - [PPoJ 2Y u = Y _ 1 ao } (4.2) 

where Po = pressure in the high pressure zone prior to rupture 

a o = isen.tropic wavespeed prior to rupture {= i'::} 
. A full derivation of this equation is given in Appendix IV. 

The particle velocity of a steep-fronted compression wave (as 

derived by Bannister and Mucklow (1948] is expressed as: 

u (4.3) 

/ ~ {(Y +1) [P~T] + (Y - 1)} 

where PAT = pressure in the low pressure zone prior to rupture 

aAT = isentropic wavespeed in the low pressure zone prior to 

[ 
YPAT] rupture =/--
PAT 
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At the junction between the two different pressure regions, the 

particle velocity of the rarefaction wave would be equal to that of 

the compression wave. 

Therefore: 

u=u 

Y-l 

Y : 1 a o {l - [::)~ } = aAT {[::T) - l} / / {~ {(Y+l)[!:T)+(Y-l)}} 

(4.4) 

Provided that the initial pressures and wavespeeds in both 

pressure zones were known, together with the ratios of specific 

heats, the equalization pressure, Pe' can be found iteratively. 

Bakhtar [1956] simplified equation (4.4) by assuming that for 

tmoderate' pressure ratios the particle velocity of a steep-fronted 

wave is approximately the same as that for a non-steep wave. 

Therefore: 

Y-l 

Y : 1 aAT {[!:T]~ -l} = 

Y-l 

{l _ [::]2Y } (4.5) 
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If the ratio of specific heats is the same either side of the 

diaphragm and if the temperatures are the same in each pressure 

region, equation (4.5) could be further simplified to: 

However, in the case of a line break in a high pressure gas 

pipeline, the ratios of specific heats and the temperatures would not 

be equal in the high and low pressure regions (i.e. inside and 

outside the pipe). Furthermore, an iterative method would be 

required to calculate the value of the equalization pressure, and 

hence there is little advantage in using the simplified equation (~.5). 

Therefore this analysis defined the equalization pressure using 

equation (4.4). 

It was first necessary to test whether choked flow would occur 

at the break. The critical value for the equalization pressure may be 

defined as: 

22:: 

P * = [_2_)Y-1 
e y + 1 Po (4.6) 

where Po is the pressure in the pipe at the break point prior to 

rupture 

and Y is the ratio of specific heats of the gas in the pipe. 

99 



If the equalization pressure defined by equation (4.4) is less 

than or equal to the critical value defined by equation (4.6), then 

choking would occur at the break. In order to test for this 

condition, the critical value for the equalization pressure was 

substituted into both sides of equation (4.4). If it was found that 

the left-hand side of the equation was less than or equal to the 

right-hand side, then choked flow would occur. In this case the 

pressure at the break point at the instant of rupture would 

theoretically immediately fall to the critical equalization pressure as 

defined by equation (4.6). 

If, however, the left-hand side of equation (4.4) was found to be 

greater than the right, then the equalization pressure would be 

found by an iterative process of the following form: 

1. Using the value of the critical equalization pressure, the 

left-hand, side of equation (4.4) is determined. 

2. By re-arranging the right-hand side of equation (4.4) and by 

assuming that the pipe is surrounded by air (y = 1.4), the 

following expression is obtained: 

(4.7) 

where (LHS) is the value obtained from the left-hand side of 

equation (4.4). 

3. By solving the quadratic of equation (4.7) a new value for the 

equalization pressure is found. 
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4. This value for the equalization pressure is then substituted into 

the left-hand side of equation (4.4) in order to obtain a new 

value for (LHS). 

Steps 3 and 4 were repeated until the required accuracy for the 

equalization pressure was obtained. 

In this case when rupture occurs, the pressure at the break 

point will fall to this equalization pressure and then remain at that 

value. Realistically, however, the drop in pressure to either the 

critical or the iterative value for the equalization pressure cannot 

happen instantaneously, since such a pressure drop must occur over 

a finite period of time. Also, in the numerical model such a 

discontinuity in the pressure would cause severe instabilities. 

Therefore the pressure drop was modelled over a number of time 

steps. It was realized that a linear pressure drop would be an 

inaccurate model since this would create a discontinuity in the 

pressure gradient. This can be seen in Figure 4.6. Therefore 

various polynomial expressions were examined. These took the form 

of: 

. n 
P(j) = (Po - Peq){l -~) + Peq 

where Po = pressure prior to rupture 

P eq = equalization pressure 

j = number of small time steps after break has occurred 

m = number of large time steps in the x-t grid over 

which the pressure drop is being modelled 

n = index (an even integer) determining the severity 

of the pressure drop (as shown in Figure 4.6). 

101 



Discontinuity for n=1 

20m 40m 60m 64m 
~ TIME STEPS AFTER BREAK I;l 

Figure 4.6. Pressure Drop at the Break 

With the pressure being determined in this manner, the 'flow 

velocity and temperature could both then be calculated using the 

method of characteristics (as for the upstream and downstream 

boundary con.ditions). 
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5.1. INTRODUCTION 

CHAPTER 5 

COMPUTER MODEL 

For a number of years there have been computer programs 

available for modelling certain transient gas flow situations, such as 

isothermal network analysis (Guy [1967], Heath and Blunt [1969], 

Bender [1979], Goldfinch [1984]), and loss of coolant accidents (Elliott 

[1968], Moore and Rettig [1973], Brittain and Fayers [1976], Banerjee 

and Hancox [1978]). Programs which can account for frictional and. 

heat transfer effects have also been developed for modelling rapid 

transients (Van Deen and Reintsema [1983], Issa [1970]). However in 

order to solve the characteristic equations using the numerical 

method detailed in the previous chapter, allowing for the possibility 

of flow reversal downstream of a break as well as handling grid size 

reduction in the vicinity of the break, a new program has been 

developed. 

This program performs a transient analysis on a given shock 

tube or single pipe, producing numerical output for the· pressure, 

flow velocity and temperature at each time step. A second program 

then converts the required section of this numerical output into 

graphical form. 

Both programs were written in FORTRAN 77 for use on a Gould 

PN 9005 mainframe computer. 
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5.2. TRANSIENT ANALYSIS PROGRAM 

After prompting for the required input data, the program 

constructs the grid shown in Figure 4.1. pertaining to the pipe being 

examined. An isothermal steady flow analysis is then conducted along 

the length of the pipe to obtain initial values at each of the grid 

points. From these initial values an analysis using the method of 

characteristics is performed modelling the situation prior to linebreak 

or diaphragm rupture. This produces more accurate initial data 

from which the events following the pipe break are modelled using 

the transient analysis. The results are printed out after each major 

time step and a results data file created for use with the graphics 

program. 

5.2.1. Main Program 

The main program initially prompts for the gas and system data 

detailed on the data sheet (Figure 5.1). From the values for the 

pipe lengths and the required grid size near the break, the program 

form'S the grid. It then calls up subroutines STEADl and STEAD2 to 

perform isothermal steady flow analyses on the pipes upstream and 

downstream of the position of the break. This produces initial values 

of pressure, temperature and flow velocity at every grid point. 

The maximum time step that would not exceed the stability 

criterion is then calculated so that the required time step and run 

time may be entered. 
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~~ -----~ ~----------------

DATA SHEET NUMBE8 

Gas Data 

Specifi'c heat Cp IkJ/kg Kl ___ _ 

Gas Constant R IkJ/kg Kl 

Critical Temperature Tc , 'Cl 

Critical Pressure 0 ·c IkPal 

Pipe Data 

Diameter of Pipe 

Angle of Inclined Pipe 

Length of Pipe upstream of break point 

Length of Pipe dOMlStream of break point 

Required Grid Size near. the break 

Darcy friction factor 

Stanton Number 

Wall Temperature 

Atmospheric Temperature 

Atmospheric Pressure 

Initial Temperature along Pipe 

Ini tial Pressure at upstream end of Pipe 

Mass flow rate through Pipe 

Length of time step required 

Total Run Time required 

(Break details: Inde.'C n = 
No.of steps x = 

Im} 

(degrees) ___ _ 

Im} 

Im} 

Cm} 

( 'Cl 

( 'Cl 

(kPal 

( 'Cl 

(kPal 

(kg/sI 

Imsee) 

(secs) 

Figure 5.1. Data Preparation Sheet 
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From the pressure, temperature and flow velocity values at each 

point, the program calculates the density of the gas, the 

compressibility ,factor and its partial derivatives with respect to 

temperature and pressure, the frictional force and heat transfer and 

the isentropic and isothermal wavespeeds. It then calls up 

subroutines SUB! to SUB6 and BREAK! and BREAK2 to calculate new 

values of pressure, temperature and flow velocity at the grid points 

marked (1) in Figure 5.2. The program can then calculate the 

density of the gas, etc., for these points and by calling up the 

subroutines again will produce new values of pressure, temperature 

and flow velocity for the grid points marked (2) in Figure 5.2. This 

procedure is repeated until the 64 small time steps at the break have 

been completed. Subroutines SUBUP and DOWN! then calculate the 

new values of pressure, temperature and flow velocity at the 

upstream and downstream pipe boundaries respectively, thus 

. producing steady flow values at each of the grid points which have 

been calculated by the method of characteristics. The program then 

prints out these initial values at the specified grid points. 

4 4 4 4 4 4 . 
3 3 3 3 3 3 3 3 

2 2 2 2 2 2 

1 1 1 1 1 1 1 . 1 
M1-66 M1-65 M1-64 M1-3 M1-2 M1-1 M1 

i values 

Figure 5.2. Marching Process of Calculation 
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At this point the program initiates the pipebreak. Having 

calculated the equalization pressure at the break from Earnshaw's 

theory and determined the number of time steps over which the 

pressure drop at the break occurs, the program calculates a new 

value for the pressure at the break point one time step after the 

rupture occurs. Subroutine BREAK3 is called up to calculate the 

temperature and flow velocity at the break point in the upstream 

section of pipe. Subroutine BREAK4 then calculates the temperature 

and velocity at the break in the downstream section of pipe. The 

new values of pressure, temperature and flow velocity at each of the 

internal points are calculated using subroutines SUBl to SUB6 and 

the values at the pipe ends using SUBUP and DOWNl as before. 

The main program continues looping, printing out results after 

each major time step (equal to 64 time steps at the break), until the 

run time is reached. A full listing of the main program is given in 

Appendix V. 

5.2.2. Subroutines STEAD! and STEAD2 

STEADl and STEAD2 calculate values of pressure, temperature 

and flow velocity at each point in the pipe (both upstream and 

downstream of the break point) assuming a steady isothermal flow. 

The equations used by these subroutines were derived from the 

linear momentum equation for steady one-dimensional flow:-
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Applying this to the section of pipe shown in Figure 5.3:-

\7 
\ 

\ 
\ 

\ 
\ 

\ 

~ve /5~~~on 
«. ~y\ y \ 

\ 

"oAexg 

Figure 5.3. Linear Momentum Equation for 
Steady One-Dimensional Pipe Flow 

. = m 

Dividing through by A and re-arranging:-

(5.1) 

But, from the equation of state assuming constant temperature 

and compressibility factor, 

P2 = P2 RTZ 

= m ARTZ 
U2 

where m = mass flow rate 

Substituting this into equation (5.1):-
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This may be re-written producing a quadratic equation in U2' 

{ rhSX. ':''''''TZ} 0 + ~ gS1ne + ll~ = 

The subroutines STEAD1 and STEAD2 solve this quadratic and can 

then deduce the density and pressure at the next grid point (i.e. P2 

and P2)' By repeating this procedure, values can be calculated for 

each of the grid points shown in Figure 4.1 given the initial 

temperature of the gas, the pressure at the upstream end of the pipe 

and the mass flow rate. Flow diagrams of these subroutines are 

shown in Figure 5.4 and the subroutine listings are given in 

Appendix V. 

5.2.3. Subroutines SUB1 to SUB6 

Using the method of characteristics, these subroutines predict 

the values of pressure, temperature and flow velocity at the next 

time step for all the internal points. Six routines are required due 

to the different possible grid point configurations (Figure 4.2) -and 

the . possibility of flow reversal. Table 5.1 details the points for 

which each of these subroutines calculates new values. 

The calculation procedures used by subroutines SUB1 to SUB6 

are virtually identical differing only in the positioning of the base 

points of the characteristics (points Q, Rand S). Subroutines SUB1, 

SUB2 and SUB5 operating on the section of pipe upstream from the 
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~ 

~ 

C> 

Er.'T!1I SUBROU'l' IN E 

tl(l) and 

Celculate zl(l), rol(l) and ul(l) 

Calculate ul(i+l) tram steady 
isothermal flow theory 

Calculate rol(1+l), pl(1+l), zl(1+l) 
t1(1+1) = tl(1J 

.no 

EKIT FRO~: SUBROUTINE; 
B!:'URN TO mIN PROGRAM 

Figure 5.4. 

~~ER SIJ3?CUTINI 

Transfer values for p2(1), t2(1), 
u2(1), z2(1) and ro2(1) from main 
program 

">;;- I dx = dx1 

steady 

Calculate r02(1+l), p2(1+1), z2(1 
t2(1+1) - ~'l1J 

no 

Flow Diagrams for 

STEAD! and STEAD2 



break follow the general procedure detailed in the flow diagram in 

Figure 5.5(a). For points downstream from the break, SUB3, SUB4 

and SUBS are used which determine the direction of flow prior to the 

numerical calculations detailed in Chapter 4. This is shown in the 

flow diagram in Figure 5.S(b). 

Subroutine 

SUB! 

SUB2 

SUB3 

SUB4 

SUBS 

SUBS 

Grid Point on which Subroutin~ Operates 

Normal internal points upstream of the break 
(Figure 4 .2( i» 

Internal boundary points between different 
grid sizes upstream of the break 
(Figure 4.2(ii» 

Internal boundary points between different 
grid sizes downstream of the break 
(Figure 4.2( iv» 

Normal internal points downstream of the break 

Internal boundary points linking different 
grid sizes upstream of the break 
(Figure 4.2(iii» 

Internal boundary points linking different 
grid sizes downstream of the break 
(Figure 4.2(v». 

Table 5.1. Subroutines SUBl to SUB6 

5.2.4. Subroutines BREAK! to BREAK4 

These subroutines all calculate values of pressure, temperature 

and flow velocity at the position of the break. BREAK! and BREAK2 

are used to model the situation prior to rupture, and after rupture 

BREAK3 and BREAK4 model the situation immediately upstream and 

downstream of the break respectively. Examining each routine 

separately:-
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Transfer var1ables at time t trom 
ma1n program 

Def1ne pos1t1ons ot po1nts Q, Rand 
S and calculate var1ables p, t, u, 
z, zt, ro, as, ht and w at ~, Rand 
S 

Simultaneously solve the C , C- and 
path equations to obtain values for 
ppl(i), uul(1) and ttl(1) 

Save these f1rst-order val~s tor 
PPl(1), uul(1) and ttl(1) 

Calculate zzl(1), zzpl(i), zztl(1), 
rrol(1), aasl(1), hhtl(1) and 
wwl(1) 

Def1ne new pos1t1ons of po1nts Q, R 
and S and calculate variables p, t, 
u, z, zt, ro, as, ht and w at ~, R 
and S 

Simultaneously solve the C-+, C- and 
path equat10ns to obtain neW values 
for ppl(i), uul(1) and ttl(i) 

Compare the new values for ppl(1) 
and ttl(1) with previously obtained 
values 

no 

Print a warning message 

Pass the new values tor pol(1) 
ttl(1) and uul(i) back to· the ~ain 
program 

FROM SUBRCUTINE' 
TO ~~HN PROGRAM 

yes 

Fig\lre 5.5(a). Flow Diagram for SUBl, SUB2 and SUB5 
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-_ .. _- -- --_ .. -
--' 

t 
Transfer variables at time t from 
main program 

j'-
Define positions of pOints Rand S 
and calculate variables Pt tt Ut Zt I 

ztt ro, as, ht and w at Rand S 

t 
Check for flow reversal 

f 
Define position of pOint Q and 
calculate variables Pt t, U, z, zt, 
ro, as, ht and w~at Q 

1 
Simultaneously solve the C1"{ C - and 
path equations to obta1n va ues for 
pp2(i), uu2(1) and tt2(i) 

i 
Save these tirst-order values tor • 
pp2(i), uu2(i) and tt2(i) 

~ ... 

calculate zZ2~i~' ~i~~i~'a~~t~~~l) 
rro2(i), aas2 , 

t 
Define new pos1tions ot pOints Rand 
S and calculate variables Pt t, U, 
z, zt, ro, as, ht and w at Rand S 

_t 
Check for flow reversal 

t 
Define new posit1on for point Q and 
calculate variables ~' t, u, z, zt, 
ro, as, ht and w at 

1 
+ -Simultaneously solve the C ,C and J 

path equat10ns to obtain new values 
tor pp2(i), uu2(i) and tt2(1) 

t 
Compare the new values for 
and tt2(1) w1th previously 
values 

pp2(1) 
obtained 

, 

- --~veprocess ---::"I yes s the dirterence between the new --, .no convergin ? , and previously calculated values 
less than 1%? 

.If no yes 
, 

Print a warning messa ge 
1 

.f 
Pass the new values for pp2(i), 
uu2(i) and tt2(i) back to the main 
program 

/rIT FROM SUBROUTINE; I' 
ErtrRN TO }-c.AIN PROGRAM 

Figure 5.5(b). Flow Diagram for SUB3, SUB4 and SUB6 
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BREAK! 

BREAK! performs a method of characteristics analysis identical to 

that used for a normal internal point, using the last two points, 

i = ml - ! and i = ml in pipe 1 (upstream of the break), and. the 

first two points, i = 1· and i = 2 in pipe 2 (downstream of the break). 

Obviously, prior to rupture the points i = ml in pipe 1 and i = 1 in 

pipe 2 coincide. The method of characteristics calculations are 

therefore carried out on the section of grid shown in Figure 5.6. 

Position 
of Break 

PIPE 1 \ PIPE 2 
t+~t _----"T"---~,~---~----1"'" 

t M1-2 
path 

2 3 
values 

Figure 5.6. Break Point Prior to Rupture. 

BREAK2 

This subroutine simply defines the values at i = 1 in pipe 2 as 

being equal to the values calculated for i = ml in pipe 1 by 

subroutine BREAKl. 
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BREAK3 

BREAK3 calculates the new values at the grid point i = ml in 

pipe 1 after a rupture has occurred. Referring to Figure 5.7, if the 

pressure at point i = ml at time t + At has been defined by the main 

program, the flow velocity and temperature may be calculated using 

the C+ and path characteristics. Since the flow in pipe 1 will always 

be in the positive x-direction, there will always be a path line in this 

grid section. 

t+~t-r-___ PI--rPE_1 __ _ 

t M1-2 
path 

\ 
\ 
\ 

:x:: \ 
« \ 
lLJ , 
Q:: , 

co 'path 
I 

M1 1 

.. 
positive x direction 

PIPE 2 

2 
j values 

Figure 5.7. Break Point after Rupture. 

BREAK4 

3 

BREAK4 initially ascertains whether flow reversal is occurring at 

point i = 1 in pipe 2. If the velocity at i = 1 at time t is less than 

zero then a path line is present as shown in Figure 5.7. Since the 

pressure at i = 1 has been defined by the main program, the solution 

of the c- and path characteristics would determine the flow velocity 

and temperature at time t + At. If, however, the flow at i = I at 
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time t is greater than zero, only the C- characteristic is present. A 

further assumption is therefore necessary and in this case it was 

assumed that the temperature at the point i = I in pipe 2 is equal to 

that at point i = m1 in pipe 1. The justification for this is that 

since flow reversal would rapidly occur immediately downstream of a 

line break in a high pressure pipe, there would be insufficient time 

for the temperature prior to flow reversal to differ significantly from 

the temperature at the upstream side of the break. The subroutine 

can then solve the C- characteristic using this value for the 

predicted temperature and hence obtain a value for the flow velocity 

at time t + At. 

Flow diagrams for BREAKl, BREAK3 and BREAK4 are given in 

Figures 5.8(a), (b) and (c) respectively. The listings of each of 

these subroutines are in Appendix V. 

5.2.5. Subroutines SUBUP and DOWNl 

These two subroutines calculate the new values of pressure, 

temperature and flow velocity at the pipe ends (away from the 

break). At the end of pipe 1 (upstream from the break) there will 

only be the C- characteristic and at the end of pipe 2 there is, at 

the most, only the C+ and path characteristics. Therefore at both 

pipe ends certain assumptions are necessary in order to predict the 

flow conditions at time t + At. SUBUP models the upstream boundary 

in pipe I assuming a constant pressure and a constant mass flow 

116 



Transfer variables at time t from 
main program 

Detine positions ot points Q, Rand 
S (ensuring a continuous pipe) and 
calculate variables p, t, u, z, zt, 
ro, as, ht and w at Q, Rand S 

Simultaneously solve the path, c+ 
and C - equation using subroutine 
DMINV to obtaIn values for ppl(ml)~ 
ttl(ml) and uul(ml) 

Save the fIrst-order values tor 
ppl(ml), ttl(ml) and uul(ml) 

Calculate zzl(ml) zzpl(ml)1 
zztl(ml), rrol(relJ, aasl(ml), 
hhtl(ml) and wwl(ml) 

DefIne new posItions of poInts Q, R 
and S and calculate variables p, t, 
u, z, zt, ro, 'as, ht and w at~, R 
and S 

USing DMINV calculate new values tor 
ppl{ml), ttl(ml) and wwl{ml) trom 
the path, c+ and C- equations 

Compare new values with prevIously 
calculated values for ppl(ml), 
ttl(ml) and wwl(ml) 

no 

Pass the fIrst-order values for 
p~l(ml), ttl(ml) and wwl(~l) back 
to the ~aIn orogram with a warnIng 
messa e 

EXIT FROM SUBROUTI~E; 
REl'URN TO ~!AIN PROGRAl-i 

yes 

yes 

Pass the new values tor l( 1) 
ttl(ml) and wwl(ml) backPio ~he' 
main program 

Figure 5.8(a) Flow Diagram for BREAK! 
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Transfer variables at ti~e t from 
main program 

Define positions of points Q and R 
and calculate variables p, t, u, z, 
zt, ro, as, ht and w at Q and R 

Knowing ppl(ml) from the ~ain 
program. calculate ttl(ml) and 
uul(ml) ·by si~ultaneously solving 
the C+ and path equations 

Save the first order values for 
ttl(ml) and uul(ml) 

Calculate zzl(ml) zzpl(~l)1 
zztl(ml), rrol(mlJ, aasl(ml}, 
hhtl(ml) and wwl(ml) 

Define new pOsitions of pOints ~ and 
R and calculate variables p, t, u, 
z, zt, ro, as, ht and w at Q and R 

Calculate new values for ttl(ml) from 
the oath equation and uul(ml) from 
the C + equa tion 

Compare new values for ttl(ml) and 
uul(ml) with oreviously calculated 
values • 

Pau the first-order valUes for 
ttl(ml) and uul(ml) back to the 
main program with a warning message 

EXIT FROM SUBROUTINE; 
RETURN TO MAIN PROGRAM 

yes 

yes 

Pass the new values for ttl(ml) and 
uul(ml) back to the main program 

,Figure 5.8(b) Flow Diagram for BREAK3 
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[ENTER SUBROUTINE I 
t 

Transter variables at time t trom I 

main program 
Figure 5.8(c) 1 Flow Diagram for BREAK4 

Detine oosition or point Sand 
calculate variables p, t, u, z, zt, 
ro, as, ht and w at S 

i 
eIS 

__ les 
"'-Is u2(l) '> 01'-:: 

yes 
u2(l) ~ 01 .--J , 

~ 
-r 

t no T no 

Define position of point ~ and Define pq = p2(1), tq = t2(1), 
calculate variables p, t, u, z, zt, zq = z2(1) ztq = zt2(1), 
ra, as, ht and w at Q roq = ro2(!), asq = as2(1), uq = 0, 

t 
wq = 0 and htq = 0 " , 

Calculate coefficients in the path 
equation 

+ , 
"'! 

Calculate coefficients in the C-
equation 

1. 
u2(1) "> 01 

yes 
IS , 

Tno ,~ 

Simultaneously solve the path and C-
equations to obtain values tor 
uu2(l) and tt2(l) 

USing tt2(1) = ttl(ml), calculate 
uu2(1) tram the C-equation 

I , r 
t 

Save the first-order values tor 
tt2(1) and uu2(l) 

I "' 
~ 

Calculate zz2(1), zzp2(l), zzt2(1), 
rr02(1), aas2(1),.hht2(1), and 
ww2(1) 

+ 
Detine new position at point Sand 
calculate variables p, t, u, z, zt, 
ra, as, ht and w at S 

1. -res yes ... 
Is u2(1) ~ O? s ti2(l) > 01 

T no ~ no 
Define 'new position of point .~ and Define pq = p2(1), tq = t2(1), 
calculate variables p, t, u, z, zt, zq = z2(1), ztq = zt2(1), roq = ro2(l 
ro, as, ht and w at Q asq = 8s2(1), uq = 0, htq = 0 and 

J. wq = 0 'If 
~ I I~ 

Calculate new value tor tt2(1} from 
the path equation 

,J, ~ 

.... 
Calculate new value !or uu2(l) from 
the C - equation 

it I 

Comoare new values with oreviously 
calculated values tor uu2(1) and 
tt2(l) 

~ 
(:Is the iteratiVe ?rocess convergi~ "yes r Is the d1!ference between the ~ew ---, no , Lind previously calculated values J 

"Tno ess than 1%1 

Pass the first-order values tor ~ yes 
tt2(1) and uu2(1) back to the main l Pass the new values !or tt2(1) and 1 
program with a warning messa!e uu2(1) back to the !!lain nrocrram 

"' -V 
~EXIT FROM SUBROUTINE; I 119 
REl'URN TO lI.AIN PROGRAM 
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rate. With these two assumptions the flow velocity and temperature 

can be predicted using the C- characteristic and the equation of 

state. 

At the downstream end of pipe 2, DOWNl assumes a constant 

temperature non-return valve situation. While the flow is positive 

the pressure and flow velocity are calculated by simultaneously 

solving the C+ and path characteristics. When the flow rate falls to 

zero, the subroutine assumes that it is prevented from flowing back 

down the pipe and takes a value of zero for the flow velocity in any 

further calculations. With the constant temperature assumption as 

well, the pressure at this downstream boundary can then be found 

from the C+ characteristic alone. 

Figures 5.9(a) and (b) show the flow diagrams for these two 

subroutines; listings are presented in Appendix V. 

Two further subroutines are used by the transient analysis 

program. The first GETFIL is a simple routine which opens a data 

file. The second DMINV calculates the inverse of a matrix. This 

routine is used to simultaneously solve the C+, C- and path 

equations. Listings of these two subroutines have been included in 

Appendix V. 
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Transfer variables at time t from 
!l!ain program 

Define oosition ot ooint 5 and 
calculate variables·p, t, u, z, zt, 
ro, as ht and w at S 

Calculate uul(l) trom the C 
. characteristic assuming constant 

pressure 

Save the first-order value tor uu(l) 

Calculate rrol(l) assuming constant 
mass: tlow rate and then ttl(l) trom 
the equation ot state 

Calculate zzl(l), zzpl(l), zztl(l), 
aasl(l), hhtl(l) and wwl(l) 

Detine new position for point Sand 
calculate variables p, t, u, z, zt, 
ro, as, ht and w at S 

Calculate new value tor uul(l) trom 
the C - equa tion 

Compare the new and previously 
calculated values· tor uul(l) 

no 

Pass the first-order value for 
uul(l) back to the main program 
with a warning message 

Calculate rrol(l) and ttl(l) 
ppl(l) = pl(l) . 

1!'XI'l! FROH SUBROUTINE; 
RErURN TO MAIN PROGRAM 

yes 

yes 

Pass the new value for uul(l) back to 
the ma in program 

FIgure 5,9(a) Flow Diagram for SUBUP 
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I F.NT~ SUBROUTINE I 
~ 

I 

Transfer variables at time t from 
main ,ro~ram 

t 
I:ef'ine oosition or point Rand 
calculate variables p, t, u, z, zt, 
ro, 9S, ht and w at R 

1. 
Is u2(1I'2) 

yes 
~ :: O? 

no 

~(m2-1) <O~ 
yes 

no 
+ Define position ot point Q and Calculate pp2(m2) from the C 

calculate variables p, t, u, z, zt, equation assuming uu2(m2) is equal 
ro, as, ht and" at '~ to zero 

t 
Simultaneously solve the c~ and path 
equations to obtain values for 
uu2(m2) and pp2(m2) . 

L 

i' 
Save the first-order values for 
op2(m2) and uu2(m2) 

L-

_'f 
Assuming tt2(m2) = t2(m2)~ calculate 
zz2(m2) zzp2(m2)j zzt2(m >J 
rr02(m2J, aas2(m2 ,hht2(m2 and 
ww2(m2) 

t 
Define new position ot point Rand 
calculate variables p, t, u, z, zt, 
ro, as, ht and" at R 

~ 
~u2'(m2)" 01""" 

yes 
, 

1" no 

Define new position of point ~ and Re-define uu2(m2) = 0 and calculate 
I calculate variables p, t, u, z, zt, new value for pp2(m2) from the C+ .. : 

ro, as, ht and w at Q equation 

t 
CaLculate new values for pp2(m2) and 
uu2(m2) from the C+ and path 
equations ., . j, 

U; 
yes ~s the difference between the new -, no the iterative process converg1n!.!J , and previously calculated values for , 

op2(m2) less than 1%1 

t no yes 

Pass the first-order values for 
pp2(~2) and uu2(m2) back to the main Pas] the new values for pp2(~2) and 
,rogram with a warning message uu2(m2) back to the main orogram 

. ., j 

.1 EXIT FROr1 3UBROUTINE; I 
aETURN TO :1AIN PROGRAM 

Figure 5.9(b) Flow Diagram for DOWNl 

122 



5.3. GRAPHICS PROGRAM 

The purpose of this graphics program was to obtain graphical 

output from the results data file created by the transient analysis 

program. The program offers the option of pressure versus time or 

pressure versus wavespeed graphs so that direct comparisons with 

experimental data may be achieved. 

To produce the graphs the program calls up a number of NAG 

routines from the mainframe Gould. The only input necessary are the 

grid values for which output is required. However, slight 

modifications to the program were necessary for each set of data in 

order to set the maximum values on the axes and to alter the title of 

the graph. A listing of this program is shown at the end of 

Appendix V with the modified sections highlighted and labelled. 
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6.1. INTRODUCTION 

CHAPTER 6 

EXPERIMENTAL DATA 

In order to validate the theoretical line break model that has been 

developed, some comparisons with experimental data were necessary. 

Such comparisons effectively check that the idealizations and 

assumptions inherent in the theory are realistic. 

Numerous experimental pressure transient investigations in gas 

and two-phase flow have been conducted over the past forty years. 

They may be categorized into two main subgroups, namely, the shock 

tube analyses and the full size tests. The following two sections of 

this chapter review much of the work that has been carried out. 

To enable meaningful comparisons to be made with the theoretical 

model, a certain amount of detail of the experimental set-up and 

results must be obtainable. Section 6.4 examines more closely 

suitable experimental data and section 6.5 details the preparation 

necessary for the programming of each set of data. 
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6.2. REVIEW OF LABORATORY EXPERIMENTS 

For many years shock tubes have been used to illustrate 

pressure wave phenomena by rupturing a diaphragm separating areas 

of high and low pressure fluid. Originally, the studies mainly 

concentrated on the low pressure section, examining the compression 

waves created in this section. However, the need to simulate 

blowdown in water cooled power reactors caused Edwards and O'Brien 

[1970] to investigate the effects of the expansion waves in the high 

pressure section. They slowly heated a water filled pipe (length 

4.096 m, diameter 73 mm) to a fixed temperature and pressure above 

the saturation conditions. A glass bursting disc at one end of the 

pipe was then ruptured and the subsequent transient pressures and 

temperatures were recorded at seven tapping points along the length 

of the pipe. Transient void fraction readings were also taken at 

two of the stations and the end thrust exerted by the shock tube 

was measured. This blowdown test was repeated a number of times 

with various initial pressures and temperatures. The results were 

presented in the form of pressure x time, temperature x time, void 

fraction x time and end load x time graphs. From these results it 

could be seen that after rupture, the pressure in the pressurized 

section falls below the initial saturation value and, although 

recovering slightly, remains below this saturation value. It was also 

concluded that the decompression wave, caused by the rupture of the 

bursting disc, travelled upstream at approximately the isentropic 

speed of sound in the compressed liquid phase. 
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Further experimental data of Edwards and O'Brien, obtained using 

a 32 mm diameter shock tube, were presented by Hancox, Mathers and 

Kawa [1975] again in the form of pressure x time graphs. 

Premoli and Hancox [1976] furthered the shock tube work of 

Edwards and O'Brien by using initially flowing subcooled pressurized 

water with heat addition. They used a vertical, uniformly heated test 

section. The blowdown was initiated by isolating this section and 

simultaneously rapidly opening a discharge valve. Extensive data are 

presented in their report, including depressurization rate, mass 

hold-up and discharge rate, as well as the heat transfer data. 

Shock tube experiments using gas rather than water vapour have 

been performed by Groves et al.[l978] in an attempt to simulate a· gas 

pipeline rupture. In order to describe the decompression wave 

associated with. such a rupture, they examined the high pressure side 

of the diaphr~gm in a shock tu be that was considerably longer than 

that used by Edwards and O'Brien (length 30.48 m, diameter 60.3 mm). 

Using methane, argon and natural gas as working fluids·, the results 

obtained illustrated the variation in wavespeed of the expansion wave 

with pressure. Any discrepancies between experimental and 

theoJjetical results were accounted for in that the small diameter 

effects (e.g. heat transfer,~fi6i~e~tf~i.ctio;:J due to boundary layer 
• -~ - --••• ~-- ....... ~.--- •• - ••• - .. ~ ',_~_...J 

build-up and successive condensations) were not included in their 

theoretical analysis. 
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Issa and Spalding [1972] appeared to obtain better agreeement 

between their theoretical analysis and the experimental shock tube 

data of Mack [1954] as used by Williams [1956]. The working ,fluid 

was assumed to be a perfect gas in the theoretical analysis but the 

effects of friction and heat transfer were included (which in practice 

weaken a shock wave). Although they did not compare the 

theoretical and experimental variations of wavespeed with pressure, 

the normalized velocity and mass velocity distributions obtained using 

their model (with carefully selected friction factor and Stanton 

number) compared well with those obtained experimentally. 

British Gas have conducted numerous shock tube experiments 

using methane/ethane, methane/propane and natural gas mixtures in 

order to validate their theoretical rich gas decompression behaviour 

model. The shock tube used was of length 36.58 m and diameter 101.6 

mm and decompression was initiated by explosively bursting a disc at 

one end of the tube. Pressure x time data were recorded using 

pressure transducers at a number of locations along the shock tube. 

The results of these tests are presented by Jones and Gough [1981]. 

Also presented by Jones and Gough are the results from some 

BM! . experiments conducted using a shorter tube (length 6.1 m, 

diameter 101.6 mm). These results were obtained using natural gas as 

the working fluid and are presented in the form of pressure x 

wavespeed graphs. However, details of the experimental apparatus 

and procedure used to obtain these results have not, been published. 
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6.3. REVIEW OF FULL SIZE TESTS 

Some authors, for example, Cheeseman [1970], argue that since the 

rapid transients are quickly dissipated by friction, the main pressure 

transients of concern to the line operator are those arising from the 

packing and unpacking of gas in the pipeline. Indeed, the analysis 

of these long period transients is essential if full advantage is to be 

taken of a network's capacity for linepacking. 

There have been several experimental studies on these slower 

transients many of which have been conducted using looped or 

branched systems. The first major series of experiments using 

full-size pipelines was conducted by Wilkinson et al. [1964] in the 

early 1960's. Five single pipelines were examined of various lengths, 

diameters and topography. Flow and pressure variations were 

imposed at the outlet of each pipe and the flow and pressure were 

recorded at both ends of the pipe. Good agreement was obtained 

between theoretical and measured input flows and pressures. 

Following this, Heath and Blunt [1969] recorded the effects on a 

section of the British Gas Council high pressure grid when one 

supply point was rapidly shut down and left off for seven hours. 

The flows and pressures were monitored at each take-off point and 

tee at five minute intervals. Although the test was limited by having 

only one sudden flow change, the results obtained agreed well with 

those predicted from an isothermal analysis. It was realized, 
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however, that just one inaccurate reading could affect the pressures 

predicted throughout the network so extreme care had to be taken 

when recording the flow measurements. 

Rachford and Dupont [1974] compared predictions from their 

isothermal analysis with recorded experimental data for slow 

transients in a looped network (the source of the experimental data 

not being disclosed). Although the network was fairly complicated, 

they managed to obtain quite accurate pressure history predictions 

for various points around the network for the ten hour test 

duration. They also carried out an experimental investigation on a 

0.59 m diameter, 53 km long, two-leg gas pipeline. They imposed 

sudden flow variations at the inlet end of the pipe and slow 

variations at the outlet and then compared the calculated and 

observed pressure histories. Good agreement was obtained between 

their theoretical results and recorded values, the maximum 

discrepancy between them being 5 psi over the 12 hour simulation. 

Weimann [1978] used both a branched network and a single 

four-leg pipeline to validate his isothermal model predicting the 

packing and unpacking of the gas. With the - network he recorded 

supply and demand flows at one hour intervals and took pressure 

readings at fifteen minute intervals for a twenty-four hour period. 

From this study he discovered that if the boundary values were hour 

step functions, then one hour time steps ha.d to be used in his 

simulations. With the four-leg, 78 km long refinery gas transmission 

pipeline, Weimann imposed transient supply and demand flows and 
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compared the measured pressure variations with those predicted for 

his isothermal analysis. Although the changes in flow rate each took 

place within one minute, the resulting effect was the gradual packing 

and unpacking of the pipeline. It was, therefore, comparatively slow 

pressure transients that were being measured. 

More recently, Mekebel and Loraud [1983 and 1985] investigated 

unsteady flows and pressures in a 0.22 m diameter, 19.345 km long 

gas transmission pipeline operating at pressures up to 20 bar. They 

examined the effects of heat conduction between the pipe and its 

surroundings and concluded that this heat transfer was a necessary 

inclusion in the theoretical analysis. This contradicted the common 

assumption of isothermal flow in slow transient situations. 

Although, as already mentioned, these slow transient analyses are 

important, it is the rapid transient simulations that are of greater 

significance to this project. Stoner [1969] was one of the first people 

to examine rapid transients in full size pipes. However, he 

concentrated on the compression wave caused by rapid downstream 

valve closure rather than the linebreak problem. He determined the 

wavespeed of the compression wave -and then recorded the upstream 

and 'downstream pressure histories in a 0.31 m diameter, 22 km long 

pipe when the valves at both ends of the pipe were simultaneously 

closed. 

130 



At this time in France, Sens et al. [1970] were investigating the 

effects of rapidly opening a downstream valve in order to simulate a 

line break. Using a 1.065 m diameter, 11.8 km long pipe, they 

discovered that at a distance of 6 km from the venting point, the 

rapid opening of the discharge valve had the same effect as 

rupturing· a bursting disc. This enabled them to repeat the 

experiment and compare recorded pressure histories with those 

predicted from their theoretical model. They found that, although 

the drop in pressure following a 'break' was slower in reality than in 

their calculations, the shape of the recorded curve was identical to 

that of their theoretical curve. 

In the Netherlands, Van Deen and Reintsema [1983] have used 

experimental data from the Gasunie transport system to validate their 

theoretical model. They conducted two major experiments. In the 

first experiment a line break was simulated by rapidly opening a valve 

which connected the test pipe to a parallel pipe at lower pressure. 

The point on the test pipe at which the measurements were taken 

was 10 km downstream of this valve. The pressure history was 

recorded and a detailed comparison was made between this measured 

data and that obtained from their theoretical analysis. The second 

expe'riment involved rapidly opening a gate valve situated between 

two measuring points on a test pipe. The pipe was 90 km long with 

a diameter of 0.76 m. Gas was supplied at both ends of the pipe and 

delivered to a number of take-off points along the pipe. As the gate 

valve was opened, the flow, pressure and temperature were recorded 
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at both measuring points. The results showed that a fast pressure 

transient occurred at both measuring points due to the valve 

opening. 

Further tests with natural gas have been conducted using short 

sections of pipe, investigating the events that occur in the immediate 

vicinity of a break. British Gas performed two tests on a 1.22 m 

diameter pipe for Foothills Pipelines (Yukon) Ltd. The test sections 

were 50 m and 51.2 m long with reservoir sections at both ends. 

After pressurizing the pipe to approximately 90 bar, a crack was 

initiated at the centre of the test section and the pressure histories 

were recorded at points either side of the break. The results from 

these tests have been presented as pressure x wavespeed graphs by 

Jones and Gough [1981] although further experimental data has not 

been published. 
; 

Jones and Gough also presented pressure x wavespeed graphs 

from three tests carried out by BM! on behalf of British Gas and 

from a test that British Gas conducted for Shell. The initial 

pressures in these tests were between 120 and 140 bar. The 

experimental details of the tests are given by Maxey, Syler and Eiber 

[1970] and by Hayes and Lux [1979]. 

Between December 1979 and April 1981, Foothills Pipelines (Yukon) 

Ltd., undertook a program of line break tests at the Northern Alberta 

Burst Test Facility. The main purposes of this test program were to 
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examine the effect of the gas composition on fracture behaviour, to 

establish the limiting values of Charpy toughness which would give 

fracture arrest, and to confirm the arrest capabilities of the test 

pipe. Short lengths (less than 100 m) of 1.4 m and 1.2 m diameter 

pipe were charged with natural gas of known composition and 

pressurized to between 74 and 87 bar. Fracture \vas initiated at the 

centre of the test section by detonating an explosive cutter. Further 

details of the test together with the results (in the form of pressure 

histories and timing wire data showing the crack tip position) are 

given by Rothwell [1981]. 

Finally, there have also been some transient network experiments 

conducted using steam as the working fluid. The purpose of these 

was to support simulations for boiler steam lines and reactor 

blowdown. For example, Ying and Shah [1978] investigated steam 

hammer in the main piping system of an oil fired power plant. They 

imposed transient conditions in the network by rapidly closing the 

turbine stop valves and then obtained oscilloscope traces of the 

pressure surges created. 

Another example of steam transient experimentation is the work of 

Banerjee and Hancox [1978]. They conducted a series of blowdown 

experiments on a figure-of-eight loop containing pumps, heaters and 

heat exchangers. The blowdown was started by rapidly opening a 

quick-acting valve. Pressures, temperatures, coolant densities, and 

flow velocities were then recorded at various points around the 

circuit and the results obtained compared with those predicted from 

the computer code of Arrison et al.[l977]. 
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6.4. SELECTION OF TEST DATA 

The selection of experimental data for comparison with the 

theoretical model was determined by the following criteria:-

i) The variables required by the program (as detailed on the 

data sheet, Figure 5.1) must either be given in the experimental 

data or be calculable from it. 

ii) The experimental results must be of a form that can be 

directly compared with the theoretical computer output, for 

example, in the form of pressure x time or pressure x wavespeed 

graphs. 

iii) Details of the apparatus and procedure are necessary in 

order to assess the experimental error and evaluate the results 

obtained. 

The following shock tube and full-size data were selected to 

validate the computer model: 

i) The shock tube data of Groves et al.[l978] 

This data was selected for its transient results obtained using 

the single gases of methane and argon since other suitable 

experimental results used only mixtures of gases. However, details of 

the apparatus and procedure used by Groves [1976] were 

unobtainable and so various assumptions had to be made regarding 

the shock tube material (in order to estimate the friction factor and 
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Stanton number), the effective rupture time of the diaphragm, and 

the accuracy and sensitivity of the measuring and recording devices. 

Therefore no assessment could be made of the experimental errors 

incurred. 

The gas and pipe data provided by Groves et al.[1978] were pipe 

length and diameter, initial temperature and pressure for each test 

and the gas composition (accounting for the slight impurity of 

methane). Also recorded were experimental values of the sound 

speed for each test. From this initial data, graphs of pressure ratio 

x wavespeed were recorded. Figure 6.1 shows the dimensions of the 

shock tube and the positions of the pressure transducers. 
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Figure 6.1. Shock Tube used by Groves et al. 
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ii) British Gas shock tube data (Jones and Gough [1981]) 

Three burst tests were carried out on each of the following gas 

mL«tures using different initial pressures for each test: 

a) 85% methane, 15% ethane 

b) 90% methane, 10% propane 

c) natural gas (of known molar composition). 

The shock tube was constructed from seamless drawn steel 

tu bing with a wall thickness of 1/16" and a maximum pressure 

specification of 130 bar. It was welded to a girder with a heavy 

metal base to prevent any axial or longitudinal movement. A 

schematic of the shock tube is given in Figure 6.2. 
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Figure 6.2. British Gas Shock Tube 
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The bursting disc was ruptured using a 0.123 oz explosive charge 

which would be insufficient to create any noticeable heat transfer 

into the pipe. However, the time taken for the rupture to occur was 

not recorded. 

The initial temperature was measured using thermocouples 

mounted in the pipe wall. They were therefore measuring the pipe 

wall temperature rather than the initial gas flow temperature. 

Strain gauge piezo-resistive pressure transducers with small 

diaphragms were used to measure the pressures in the shock tube. 

The positions of these transducers are shown in Figure 6.2. The 

pressure transducers (having an accuracy of 0.3%) were connected to 

a tape recorder producing a continuous analogue recording. The 

complete pressure measuring system was statically calibrated and 

demonstrated an accuracy to within 5%. 

The gas composition of each test was measured and recorded 

although the methods of mixing and analysing the gas were not 

stated. The homogeneity of the gas and the accuracy of the 

recorded gas analysis are therefore open to speculation and could be 
. 

a source of discrepancy between theoretical and experimental results. 

For each test the initial pressure and temperature were noted 

and pressure x time histories were obtained for several positions 

along the shock tube. 
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iii) Foothills Pipelines (Yukon) Ltd. full size tests at the 
Alberta Burst Test Facility (Rothwell [1981]) 

Although results from six burst tests using natural gas 

presented in this reference, only four sets were used 

comparisons with the theoretical model since the last two tests 

no indication of the positions of the pressure transducers in 

are 

for 

gave 

the 

pipe. For each test the pipe diameter and length, wall thickness, 

weld type and initial temperature and pressure were recorded. 

Included in the test data used were clear diagrams showing the test 

section with the positions of the pressure transducers, strain gauges, 

timing wires and resistance temperature detectors. These have been 

reproduced in Figure 6.3. 
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The gas mixtures were made up to specification and their. 

compositions analysed using two gas chromatographs. The initial 

pressure and temperature were monitored and recorded by a 

data-logger and the timing wire, pressure transducer and strain 

gauge signals were recorded using tape recorders. The signals could 

then be retrieved for analysis by a high speed UV recorder. To 

ensure a time reference to within 0.1 ms, each magnetic tape carried 

a synchronization trace as well as the burst initiation signal. 

The test section and process loop were initially pressurized to a 

level above the test pressure. Hydrocarbons were then added to 

reach the target composition for the gas. Each gas component was 

injected at a constant rate over a whole number of circulation cycles 

of the process loop in order to ensure homogeneity. The temperature 

was adjusted to the test temperature (: l' C at all measuring points) 

and the pressure was slowly bled off to the test pressure (:5 kPa at 

all measuring' points). The test section was then isolated from the 

process loop. 

The fracture was initiated by detonating an explosive cutter 

placed at the centre of the test section. This cut approximately 75% 

of the way through the wall thickness which was sufficient to initiate 

pipe failure. 

The test was monitored by high speed cameras which were 

triggered a few seconds prior to crack initiation and by a video 

system. 
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6.5. PREPARATION OF THE DATA 

In order to conduct theoretical simulations of the tests outlined 

in section 6.4, the experimental details must be presented in terms of 

the specific gas and system data required by the program. The 

calculation procedures necessary to convert the available data into a 

programmable form are detailed below. 

6.5.1. Preparation of Gas Data 

For each test the specific heat at constant pressure, the specific 

gas constant and the critical temperature and pressure of the gas 

are required. 

(0 Specific Heat at Constant Pressure Cp 

In practice, the specific heats may vary over the considerable 

temperature and pressure ranges encountered in transient analyses. 

For the program, however, constant values were assumed for 

simplicity. (The consequences of such an assumption are discussed 

in Chapter a). 

The values used for the specific heats of the pure gases such as 

argon and the natural gas components, were calculated from the 

specific gas constant of the gas (R) and its ratio of specific heats 

(y): 
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Using these values together with the molar compositions of the. 

gas mixtures given in the experimental details, the specific heats of 

the various gas mb:tures were calculated. Further details of this 

calculation procedure are given in Appendix VI. 

(ii) Specific Gas Constant R 

For each gas mixture a mean molecular weight was calculated and 

a value for the specific gas constant of the mixture was then 

obtained by dividing the universal gas constant by the mean 

molecular weight. This procedure is shown in AppendLx VI. 

(Ui) Critical Temperature Tc 

The critical temperatures of the natural gas mixtures were 

calculated using a formula for hydrocarbon mixtures detailed by 

Grieves and Thodos [1962]. This method was chosen in preference to 

calculating pseudo-critical temperatures as described by Kay [1936] 

since the critical temperatures of the individual components differed 

by more than 200% in extreme cases. This would lead to an error of 
-

more than 5% in Kay's calculated values. Details of the method of 

Grie~es and Thodos are presented in Appendix VI. 

(iv) Critical Pressure PQ 

Although a number of correlations for computing the critical 

pressure of hydrocarbon mixtures have been developed (for example, 
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Mayfield [1942], Organick [1953], Etter and Kay [1961]), these generally. 

have some difficulty in handling systems that contain methane. 

Grieves and Thodes [1963] overcame this problem to an extent but 

their method was relatively complex. Therefore, for this project the 

method of Prausnitz and Gunn [1958] for calculating pseudo-critical 

pressures was chosen for its simplicity. 

It should be noted, however, that the accuracy of this method is 

dependent on the accuracy of the critical temperature and slight 

inaccuracies may be produced near the critical region. 

These calculated values for the specific heat, specific gas 

constant and critical temperature and pressure for each of the gases 

used in the tests are presented in Table 6.1. 

6.5.2. Preparation of System Data 

The system data consists of the pipeline data and the initial flow 

conditions. Although the experimental data provides such details as 

the pipe dimensions and initial pressures and temperatures, the grid 

size and some variables (for example, friction factor and Stanton 

number) still need to be decided upon in order to obtain a 

theoretical plot. For each system, the procedure for determining the 

system data was as follows. 

i)' A suitable grid size was chosen which would produce stable 

results. For each separate set of test data, the program was 

adjusted so that output was obtained only at the relevant i values 
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. TABLE 6.1. EXPERIMENTAL GAS DATA 

DATA SOURCE AND GAS Cp R Tc Pc 
(kJ/kg Kt (~J/kg K) ·C kPa 

. -

Groves' shock tube data: 

Methane 2.170 0.517 -82 4610 

Argon 0.520 0.208 -122 4870 

Natural Gas 1.960 0.432 -50 4888 

British Gas shock tube data: 

Methane/ethane 2.125 0.458 -56 4872 

Methane/propane 2.113 0.441 -40 5076 

Natural Gas at 70 bar 1.941 0.408 -40 4873 

Natural Gas at 100 bar 1.940 0.407 -40 4876 

Natural Gas at 125 bar 1.946 0.411 -39 4921 

Foothills Pipelines (Yukon) 
Full size tests at the Alberta 
Burst Test Facility: 

·NABTFl - Natural Gas 2.006 0.445 -53 4878 

NABTF3 - Natural Gas 1.999 0.441 -50 4919 

NABTF4 - Natural Gas 1.996 0.440 -50 4914 
-

NABTF5 .:. Natural Gas - 1.994 0.440 -50 4929 
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which coincided with the pressure transducer positions specified in. 

the experimental data. The grid size used and details of the 

pressure transducer positions are included in the results. 

ii) In the program, the gradient of the pressure drop at the break 

and the time taken for the break to occur are both functions of grid 

cycles rather than direct functions of time. It was therefore 

necessary to check that the break readings being produced by the 

program for each set of data were feasible. For example, the time 

step selected for the transient analysis may cause the pressure drop 

at the break to occur unrealistic.ally slowly. To overcome this, 

modifications can be made both to the time taken for the complete 

pressure drop to occur and to the varying rate of pressure drop 

(Figure 4.6). 

The equation for the pressure drop at the break, in general 

form, is: 

P(j) = (Po - Peq) (1 _ -1-)n - P 
64x eq 

where P(j) is the pressure at the break after j time steps 

Po is the initial pressure at the break point before rupture 

Peq is the equalization pressure. 

Variables n and x affect the shape and duration of the pressure drop 

respectively. By increasing In' the pressure drop becomes much 

steeper initially but levelling out sooner and by decreasing lX' the 

.' 
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duration of the pressure drop is decreased. However, care must be 

taken to ensure that such changes to n and x do not create an 

excessively steep initial pressure drop which would cause an 

instability in the program at the break point. 

iii) Finally, values for the friction factor and Stanton number 

for each set of test data had to be determined. The friction factor 

was initially estimated from Haaland's formula (Appendix II ):-

1 {[6. 9] 3 [kid] 3. 33} 
If = -0.6 log Re + 3.7 

Provided that the pipe material is known, a value for kid can be 

substituted into the above equation. Assuming initially a Reynolds 

number of lOS, the friction factor can be determined. This procedure 

was used to obtain an initial value for the friction factor which could 

then be tuned for each individual case. 

An initial value for the Stanton Number was obtained using the 

empirical formula: 

St . (Re) o. 2 • (Pr) 0.6 = 0.023 

Values for the Prandtl number at atmospheric temperature and 

pressure were obtained for argon and methane. These values were 

then increased slightly to allow for the higher pressures and lower 

temperatures that are encountered in the line break modelling and 

assuming again a Reynolds number of lOS, the Stanton number could 
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be determined. However, since the Stanton number is strongly. 

dependent on the Reynolds number, it was realised that these initial 

values may then need tuning for each set of test data. 

The initial value calculated for the friction factor in all the sets 

of experimental data was 1.8 x 10-2 • The Stanton number initial 

values were taken to be 2.7 x 10-3 for the methane containing 

systems and 2.9 x 10-3 for argon. 
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CHAPTER 7 

RESULTS 

7.1. INTRODUCTION 

Results were obtained by performing a number of computer 

simulations for each of the sets of data detailed in Section 6.4. The 

length of the time step, the grid size and the break details were 

varied for each simulation to optimise convergence towards a stable 

solution. (The problems encountered with the numerical instabilities 

in this project are discussed further in Chapter 8). 

The numerical results produced by the line break program were 

written to a data file which was then used as input for the graphics 

program. These theoretical results could then be compared 

graphically with the experimental results for ease of assessment. 

The numerical results (produced in tabular form) included the 

temperatures that were being experienced in various parts of the 
. 

pipe as well as the pressure, velocity and wavespeed data. There 

were, however, no available experimental results with which to 

compare these temperatures. One major use of the tabular output 

was for identifying areas of numerical instability. 
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7.2. GROVES' SHOCK TUBE RESULTS 

A stable simulation was obtained for each of the three gases 

tested by Groves et al. [1978]. These simulations used a grid size of 

0.00953125 m near the break, time step length of 0.5 ms and break 

characteristics of index = 2, No. of steps = -lOo 

For each gas, pressure x wavespeed graphs were plotted for the 

transducer positions at which experimental data were available. This 

was done using both the isothermal and the isentropic wavespeeds 

calculated in the program. The experimental data points from Groves' 

graphs were then superimposed onto the theoretical graphs. These 

results are shown in Figures 7.1, 7.2, and 7.3. The table below 

details the transducer positions corresponding to the i values marked 

on the graphs. 

Position i value 

break 171 
transducer 0.305 m from the break 139 
transducer 0.61 m from the break 107 
transducer 0.914 m from the break 91 
transducer 1.83 m from the break 59 
transducer 2.13 m from the breru{ 55 

. In Figures 7.2 and 7.3, the isentropic wavespeed curves varied 

significantly at low pressures for the different i values. For these 

traces, the lowest curve was obtained for the highest i value (i.e. the 

point closest to the break I. The lower i values (further from the 

break) showed higher pressures for a given wave speed. 
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7.3. BRITISH GAS SHOCK TUBE REStTLTS 

A number of attempts were made (using a grid size of 0.0254 m 

near the break) to obtain stable results for each of the nine shock 

tube tests recorded by British Gas. Figures 7.4 to 7.9 show the 

pressure x time traces obtained for British Gas tests 1, 2, 4, 5, 7· and 

8 (Jones and Gough [1981]). In these graphs the theoretical 

(unmarked) curves were derived using friction factor and Stanton 

Number values of 0.018 and 0.0027 respectively as calculated in 

Section 6.5.2. 

Examination of these graphs led to the modification of the friction 

factor to 0.01 in tests 1 and 2 (for the methane-ethane mixture) and 

to 0.03 in tests 4, 5, 7 and 8. The traces obtained using these new 

values are presented in Figures 7.10 - 7.15. Different values for the 

Stanton Number were also experimented with but these showed 

negligible difference. 

The experimental plots shown with all these theoretical traces 

(Figures 7.4 to 7.15) were obtained by reading data points from the 

BGC plots presented by Jones and Gough and re-plotting them onto 

the theoretical graphs. The transducer positions corresponding to 

each of these experimental plots were obtained through private 

communication with D.G. Jones and are listed below: 



Position i value 

break 144 
transducer 2 ft 4 in from the break 116 
transducer 4 ft from the break 96 
transducer 8 ft from the break 64 
transducer 13 ft from the break 41 
transducer 45 ft from the break 16 
transducer 90 ft from the break 7 

Unfortunately, it was not possible to achieve stable theoretical 

results corresponding to the British Gas tests 3, 6 and 9. In these 

tests the initial pressure was higher and instabilities appeared in the 

solution when a zero initial flowrate was used. 
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7.4. FOOTHILLS PIPELINES (YUKON) FULL SIZE RESULTS 

Stable solutions were obtained for each of the four tests for 

which experimental data was available (NABTF1, NABTF3, NABTF4, and 

NABTF5). A grid size of 0.01 m near the break was used with friction 

factor and Stanton Number of 0.018 and 0.0027 respectively. The 

break characteristics were the same as those used for the shock tube 

data except for NABTF3 when it was necessary to use 80 steps 

instead of 40 (for stability). 

To obtain the theoretical curves, different lengths of time step 

were used for each test. For NABTFl, ~t = 0.74 s, for NABTF3, ~t = 
0.72 s, for NABTF4, ~t = 0.65 s, and for NABTF5, ~t = 0.75 s. 

For each test, pressure x time and pressure x wavespeed graphs 

were obtained for the pipe sections both east and west of the break. 

In order to distinguish between the two pipe sections, the i values 

corresponding to positions west of the break are preceded by a 1 

and the i values corresponding to positions east of the break are 
. 

preceded by a 2. The transducer positions corresponding to the 

values marked on the graphs (Figures 7.16 - 7.27) were as follows: 

FNAsrFii 
it!.. .._ ~ ~.. _ j 

Position 

4.21 m west of break 
25.30 m west of break 
36.00 m west of break 
46.63 m west of brew{ 
4.21 m east of break 

14.17 m east of break 
25.02 m east of break 
36.OG m east of break 
46.57 m east of break 
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i value 

1172 
1139 
1123 
1106 
2128 
2143 
2160 
2177 
2194 



~ABTF3 

NABTF4 

NABTF5 

Position 

4.25 m west of break 
14.08 m west of break 
24.90 m west of break 
35.71 m west of break 
46.49 m west of break 
4.25 m east of break 

14.08 m east of break 
24.88 m east of break 
35.67 m east of break 
46.42 m east of break 

Position 

7.61 m west of break 
17.61 m west of break . 
26.94 m west of break 
37.64 m west of break 
46.78 m west of break 
7.61 m east of break 

17.83 m east of break 
28.73 m east of break 
39.4? m east of break 
48.81 m east of break 

Position 

5.18 m west of break 
15.53 m west of break 
26.11 m west of break 
36.79 m west of break 
47.40 m west of break 
5.18 m east of break 

15.18 m east of break 
26.13 m east of break 
36.97 m east of break 
47.30 m east of break 

i value 

1172 
1157 
1140 
1123 
1106 
2128 
2143 
2160 
2177 
2194 

i value 

1167 
1151 
1137 
1120 
1106 
2133 
2149 
2166 
2183 
2197 

i value 

1171 
1155 
1138 
1122 
1105 
2129 
2145 
2162 
2179 
2195 

The experimental data for all the full size test graphs were 

obtained in the same manner as for the BGC shock tube tests, using 

the Foothills Pipelines experimental curves. 

167 



-ro 
a.. 
~ -
ID 
L 
:::J 
Ul 
Ul 
ID 
L 
0. 

Xl02 
100 

95 

80 

75 

70 

65 

60 

55 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0 2 4 6 8 

Foothills Test NABTFl 

.. -.. --+-
~~ 

t:. i= 1106 
v i= 1123 
+ i:::: 1139 
x i= 1172 

10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
Xl0-2 

Figure 7.16. P x tGraph for Foothills Test Results NABTFl (West) 

168 
-.--~-----~--.------.--.-- ------~--- --~----- ~--~---- ---- ---



Foothills Test NABTFl 

Xl0 2 
100 

9~ 

90 

85 

80 

75 

70 

65 

60 
10 
Q. 
:::t:: 

55 - 50 
QJ 
L 45 
:::J 
Ul 40 Ul 
QJ 
L 35 c. 

30 --
~~--x--~-- -~.- ._-')( . 

25 

20 

15 

A i= 2194 
v i= 211'7 
+ i= 2160 

10 x i= 2143 

5 0 i= 212d 

0 1 i i i i 

0 2 4 6 8 
i , i i i i , i i i I I i i i I I I i I I 

10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
X10-2 

Figure i.17. P x t Graph for Foothills Test Results NABTFl (East) 

169 



m 
Cl.. 
~ ....... 

QJ 

L.. 
:::J 
Ul 
Ul 
QJ 

L.. 
0. 

X10 3 
10 

8 

6 

4 

2 

Foothills Test NABTF1 

D. i== 1106 

" 
i= 2128 

0T---~--~---.---.~-.----r---.---'---~--~ o 5 10 15 20 25 30 35 40 45 50 

wavespeed (m/s) 
X101 

-,---_ .. ----_.-_ ...... __ .-_.-.. ------------_._-----_._------_.- _ ......... _----_._------_._- --- •.. '-"-

Figure 7.18. P x w Graph for Foothills Test Results NABTFl 

170 



Foothills Test NABTF3 

X10 2 
100 
95 
90 
85 

80 
75 

70 
65 

60 
ro 
a. 55 
~ - 50 
QJ 
c.. 45 
:::J 
Ul 40 

't:.. 

Ul 
QJ 
c.. 35 
a. 

30 

25 

20 A i= 1106 

15 
v i= 1123 
+ i= 1140 

10 x i= 1157 

5 
0 .i= 1172 

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
X10-2 

Figure 7.19. P x t Graph for Foothills Test Results NABTF3 (West) 

171 



Foothills Test NABTF3 

X10 2 
100 

95 

90 

85 

80 

75 

70 

65 

60 
/0 
a. 55 
~ - 50 
ID 
'- 45 
:::l 
en 40 (/) 

ID 
'- 35 
a. 

30 

25 

20 

15 

l::. i= 2194 
v i= 2177 
+ i= 2160 

10 

5 

x i= 2143 
0 i= 2128 

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

time (secs) 

. -- -- ----- - -- -- -- ._.- ---- -- -- --­---_. ---. --.- . - ---- .. 

X10-2 

Figure 7.20. P x t Graph for Foothills Test Results NABTF3 (East) 

172 



ro 
0-
~ ---
ID 
t.. 
:::J 
U) 
U) 

ID 
t.. 
Co 

Foothills Test NABTF3 

8 

6 

6. i= 1106 

4 'il i= 2128 

2 

O+-__ -r----r---.----.----.----r----r---~--~-----
15 20 25 30 35 40 45 

X101 
50 o 5 10 

wavespeed (m/s) 

- -------_.-- - ---- - - - -- -- -------- --- ------~.---.----.' - -_._-_ .. _-.-_ .. 

Figure 7.21. P x w Graph for Foothills Test Results NABTF3 

173 



90 

85 

80 

75 

70 

65 

60 
re 

0... 55 
~ 

50 
QJ 
L 45 
:::::l 
(J) 
(J) 

QJ 
L 
0. 

20 

15 

10 

5 

0 
0 2 4 6 8 

Foothills Test NABTF4 

A 1= 1t06 
'1 .1= 1120 
+ i= 1137 
x i= :1151 
o i= 1167 

10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
Xl0-2 

.~- _ .. -------_.------ .-
-.- - -~-- - - -.---

Figure 7.22. P x t Graph for Foothills Test Results NABTF4 (west) 

174 



Foothills Test NABTF4 

X102 
100 
95 

90 
85 

80 
75 

70 
65 

60 --. 
10 
Q.. 55 
~ - 50 
ID 
L.. 45 
::l 
U} 40 U} 

ID 
L.. 35 --+--+ 
0-

30 
25 

20 A i= 2197 

15 
'il i= 2183 
+ i= 2166 

10 x i= 2149 

5 
0 i= 2133 

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
X10-2 

- -- . ---- - - ~ - -- - - - - - - - -~ - -- - -
-- - - .. -.. - ._- ---- - - -- ."---_ .. "-- .-- - - - -- ... --_._- -- .. -- --- ------. - .. - - ----

Figure 7.23. P x w Graph for Foothills Test Results NABTF4 (East) 

175 



co 
0... 
~ ........ 

QJ 

'-
::::J 
(/) 
(/) 
QJ 

'-
0. 

Foothills Test NABTF4 

X103 
10 

9 

8 

7 

6 

5 

~ i== 1106 
4 v i== 2133 

3 

2 

1 

o +I-'-'I-'-'I-'-'I-'illl~i~rl -.. -.. -r.-'.-ri-r'-"-"-"-"~'~I~'~'~I o 4 8 12 16 20 24 28 32 36 40 44 48 
X10 1 

wavespeed (m/s) 

- .--- -- .. ---. ----------.--.- -- .. - . -- -- --- - - ---- ------ - -------

Figure 7.24. P x W Graph for Foothills Test Results NABTF4 

176 



Foothills Test NABTF5 

X10 2 
100 

95 

90 

85 

80 

75 

70 

65 

60 
re 
a.. 
:::.::: 

55 - 50 
QJ 

'- 45 
:::J 
(f) 40 (f) 

QJ -t,. 

'- 35 
0. 

30 
". 'V "". 

25 

20 t,. i= 1105 

15 'V i= 1122 
+ 1= 113B 

10 x i= 1155 

5 0 t= 117:1 

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

time (secs) 
X10- 2 

Figure 7.25. P x t Graph for Foothills Test Results NABTF5 (~""'est) 

"177 



Foothills Test NABTF5 

X103 
10 

9 

8 

7 

6 
re 

0... 
~ - 5 
(1) 

'-
::J 
Cl) 4 Cl) 
(1) 

'-
0. 

3 

2 t:. i= 2195 
'i1 i= 2179 
+ i== 2162 

1 x i== 2145 
0 i=: 2129 

·0 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 

time (secs) 
X10-2 

Figure 7.26. P x t Graph for Foothills Test Results NABTF5 (East 

178 



......., 
co 
0.. 
~ 

ID 
L 
::J 
U) 
U) 

ID 
L 
Cl. 

X103 
10 

8 

6 

4 

2 

Foothills Test NABTF5 

1105 
2129 

O+----r---,----~--_r--~----~--~--~----~--~ 
o 5 10 15 20 25 30 35 40 45 50 

wavespeed (m/s) 
X101 

Figure 7.27. P x W Graph for Foothills Test Results NABTF5 

179 



CHAPTER 8 

DISCUSSION 

8.1. GENERAL DISCUSSION OF RESULTS 

The graphs obtained using the transient program in conjunction 

with the graphics program clearly showed some similarities to those 

obtained from experimental data. Due to the nature of the results it 

was decided that primarily a qualitative rather than quantitative 

assessment would be most suited. The graphs were examined and 

compared with each separate experimental data source ahd the 

following observations were made. 

8.1.1. Groves' Shock Tube Results 

Figures 7.1 to 7.3 illustrate how the computer program was 

successful in predicting the maximum (isentropic) and the minimum 

(isothermal) possible wavespeeds for any particular point along the 

pipe. In a real situation the actual wavespeeds will be between these 

two extremes as is confirmed. by the experimental data points. 

Although these results do not give an unequivocal indication of the 

accuracy of the computer model, they do at least show that the 

calculations being performed by the program are of the right order. 

With the pressure x wavespeed curves predicted for argon gas 

(Figure 7.2), it was noticed that the isentropic wavespeed curves 

started to vary at lower pressures for the different positions along 

the pipe. This trend is not clearly visible in the experimental 

data. 
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The natural gas isentropic curves (Figure i.3l show a more distinct 

separation with . the different grid points. In Figure i.3 it is also 

possible to identify a similar separation pattern at the lowest 

wavespeeds region of the experimental curves. It is thought that 

this separation of curves is occurring when a maximum flow situation 

is happening in the pipe. In this situation the pressure upstream 

from the break will be greater than that at the break in order for 

the flow to overcome friction. Therefore the pressure will be higher 

for lower i values than for higher values. Figures 7.1 to 7.3 also 

confirm that these final pressures are dependent on the gas being 

used. 

It might have been useful to have incorporated actual wavespeed 

calculations in the computer program so that a direct comparison 

could have been made between the theoretical and experimental 

readings. However, this would have necessitated calculating the 

actual speed of sound given by: 

a
2 

= [:Jactual 

t+ 2tlt ~~ 

Pz~ 

" 

t R,f 

Figure 8.1. Approximation of dp/d(? on a finite grid. 
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With reference to Figure 8.1, dP/dp between t and t + ~t could be 

approximated by: 

~p P2 - P1 

~ = P2 - P1 

But, in order to obtain an estimate for the speed of sound at 

time t + ~t, a further approximation would be necessary of dP / dp 

between t + ~t and t + 2~t and the two values averaged. 

This procedure would involve storing both pressure and density 

values for three consecutive time steps at each grid point. The 

required computer storage facilities would therefore be increased and 

extra calculations would be involved (hence increasing the program 

run time). It was thus decided that for the purposes of this project, 

actual wavespeed calculations were not justifiable. 

8.1.2. British Gas Shock Tube Results 

Despite the poor quality of these graphs, Figures 7.4 to 7.9 do 

show that both the theoretical and experimental results produce 

similar curves. The lack of smoothness and continuity in the 

experimental results arises from the difficulties experienced in 

obtaining sufficiently close experimental data points from British Gas 

graphs. The graphics program connected these data points with 

straight lines which produced some jaggedness when the points were 

not close enough together. This also occurred with the theoretical 

points in Figures 7.6 to 7.9 since the transient program was only 

producing output every 2 ms. Although these theoretical curves 
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could· have been improved by decreasing the length of time step, this 

may have led to an increase in the accumulative round-off error in 

. the results (as discussed further in section 8.2). 

An alternative method of smoothing the curves (both experimental 

and theoretical) would be to employ a graphics program which 

connected the points using best-fit curves instead of straight lines. 

This was experimented with but it was found to produce an 

unrealistic apparent pressure rise just before the expansion wave 

reached each pressure transducer position. Hence it was thought 

that the straight line method of connecting the points was more 

suitable. 

In the graphs for BGC tests 1 and 2, it was noticed that the 

theoretical curves tended to begin their pressure drop too early. 

This was more noticeable the further the transducer was from the 

break. Possible reasons for this were explored. 

Firstly, it was thought that since no information was available to 

indi~ate how the pressure transducers were triggered, maybe the 

response times had not been accurately accounted for which was 

causing the delay. However, since the theoretical and experimental 

results for the pressure transducer 90 ft from the break differed by 

as much as 15-20 ms for the arrival of the expansion wave, it was 

deduced that there was probably another reason. The fact that 

British Gas's theoretical curves coincided better with their 

experimental results at the start of the expansion wave also 

suggested that there may be a problem with the theoretical results. 
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The theoretical wavespeeds at the initial pressures were 

therefore calculated from the pressure x time graphs and these were 

then compared with the isentropic and isothermal wavespeeds 

calculated in the program. The results from this investigation are 

shown below: 

calculated isentropic isothermal 
wavespeed wavespeed wave speed 

(m/s) (m/s) (m/s) 

BGC 1 543 457 264 

BGC 2 583 496 252 

Thus, there did appear to be a problem in the theoretical model 

regarding the wavespeed of the initial expansion wave since it should 

be less than the isentropic wavespeed. This falsely high wavespeed 

would account for the noticeable difference in positions of the 

pressure x time curves for the transducers at 45 ft and 90 ft from 

the break. Further investigation of this problem was therefore 

carried out using the Foothills Pipelines (Yukon) Ltd. results. 

Another curious feature of the graphs obtained from British Gas 

data was that the final theoretical pressures reached in the shock 

tube are higher than those recorded experimentally in tests I and 2 

but lower than those recorded in tests 4, 5, 7 and 8. This could be 

due to inaccuracies incurred in the calculation of the equalization 

pressure at the break. These would arise because the conditions 

are assumed to be isentropic and the gas is assumed to be a perfect 

gas at the break point. Therefore any change in state· brought 

about by the rapid expansion of the gas would not be accounted for 

and this could affect the results. 
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The adjustment of the friction factor for the different gas 

mixtures (Figures 7.10 to i.15) was found to have little effect. A 

slight improvement was noticed in each graph, but this improvement 

did not justify the changes made. The initial estimates used for 

friction factor and Stanton Number were therefore acceptable. 

The accuracy of the experimental data points used for analysing 

these graphs could not be ascertained from contact with British Gas. 

However, on enquiring into the reasons for the experimental pressure 

transducer traces actually crossing one another in tests 1 and 4 

(Figures 7.4 and 7.6), British Gas did report (Jones 1988) that they 

"believe (but could not conclusively confirm) that PT2 was 

malfunctioning". This implied that the transducer 8 ft from the 

break in test I was malfunctioning and the transducer 4 ft from the 

break in test' 4 was malfunctioning. British Gas also indicated that 

they were not entirely satisfied with the results from any of their 

tests using the methane/propane mixtures (used in Figures 7.6, 7.7, 

7.12 and 7.13) and so some caution should be exercised when using 

these experimental results. 

8.1.3. Foothills Pipelines (Yukon) Ltd. Full Size Results 

. With the improved quality of these graphs (Figures 7.16 - 7.27) 

compared with that of the previous pressure x time graphs, the 

effect of the apparent difference in - wavespeed between the 

theoretical and experimental curves was more clearly identifiable. 

With these graphs it was possible to take more accurate readings for 

calculating the actual wavespeeds at the initial pipe pressures. Only 
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the three transducers furthest from the break were examined in 

order to minimise the reading errors. The following results were 

obtained: 

Calculated Theoretical Calculated Experimental 
Test Wavespeeds (m/s) Wavespeeds (m/ s ) 

1 2 3 Mean 1 2 3 Mean 

NABTF 1 472 471 466 470 410 398 389 399 

NABTF 3 472 469 462 468 359 359 358 359 

NABTF 4 491 487 486 488 364 388 397 383 

NABTF 5 470 474 462 469 372 372 368 371 

In all the graphs the calculated theoretical wavespeeds were 

greater than the experimental values. Comparing these wavespeeds 

with the initial isentropic and isothermal wavespeeds shown in 

Figures 7.18, 7.21, 7.24 and 7.27: 

Theoretical Experimental Wavespeeds Isentropic Isothermal 
Test Wavespeed From p x t From p x w Wave speed Wavespeed 

(m/s) graph graph (m/s) (m/s) 
-

NABTFl 470 399 389 427 297 . 
NABTF3 468 359 354 441 266 

NABTF4 488 383 379 438 273 

NABTF5 469 371 375 405 286 

From the above table it can be seen that all the calculated 

theoretical wavespeeds are higher than the isentropic wavespeeds. 
\-'; :',1 . 

This situation is not physically possible. \~P~~,'U likely cause would be 
n:-.~-~· '~.t, ',:-,~"'.:':_"~, ,:,,'. ~ .. ';;'::'''~---'.~.~--~·~-~~:-'--'-;-::-'ry'?:'".:'' __ :---:-_--:-:;:.~-~~7·~~--:-·~,-.~~:r~~~~-~~~-------.·"':\· .----- .... 1 

vthat;~.second-or.del"n_Umerical~.~n~,Elr.p.o;l.Glti6~_"!:l.~~ beeE~ysed~~._ the] 
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bhe'ore,tical ' 

i 'n the calculation procedures. 

Apart from the problems incurred in the wavespeed calculations 

of the program, the theoretical curves showed good agreement with 

those obtained experimentally. In most of the graphs it would appear 

that the final pressures calculated theoretically are slightly higher 

than those recorded. Ho\v-ever, the theoretical model cannot account 

for the crack propagation along the pipe. Theoretically the break is 

modelled as a ruptured diaphragm but the rupturing of the pipe 

sections produces a lengthwise crack in the pipe which covers a 

finite length and opens up the pipe (as shown in Figure 8.2). 

Figure 8.2. Pipe rupture in a full size pipe 
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This effectively reduces the pressure at the break point to 

atmospheric pressure and moves the point at which the equalization 

pressure would occur along the pipe. . Hence the pressures at all 

points along the pipe would be proportionally reduced. This 

therefore accounts for the recorded pressures being lower than those 

predicted by the theoretical model. This crack propagation would 

also account for less levelling off in the experimental pressure data 

since the pressure at any transducer point would continue to fall as 

the crack tip approached . 

. Finally, in test NABTFI it was noticed that, as with British Gas 

tests I and 4, the experimental pressure transducer traces actually 

crossed. In this case it was thought that the pressure transducer at 

i = 1123 (36 m west of the break) was most likely to be in error since 

its trace was out of line with the other traces. The cause of this 

error was reported to be a temperature-related zero drift during 

testing. This may also be the cause of the same problem encountered 

by British Gas. 

8.2. DISCUSSION OF ERRORS 

. When modelling any real life situation, certain discrepancies 

between the theoretical prediction and the actual event are bound to 

arise. These discrepancies may be categorized into those arisin ~ 
=0 

from errors incurred in the Galibration, measurement and recording 

of the experimental data, those due to necessary assumptions made in 

the theoretical modelling, and those due to e~rors inherent in the 

numerical modelling procedure. 
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The errors in the experimental data arise from two main sources; 

namely those errors involved in the measuring of the data and those 

that are incurred when the experimental data is transferred for use 

with this project. With Groves' data, no information was available 

detailing the accuracy of the measuring procedures so this could 

only be roughly estimated after examining the accuracies with which 

British Gas and Foothills Pipelines (Yukon) Ltd. could obtain their 

data. Also with Groves' data, assumptions had to be made regarding 

the shock tu be material (so that a reasonable value for the friction 

factor could be estimated) and the effective rupture time of the 

diaphragm (so that the break boundary conditions could be decided 

upon). In none of the experimental data sources was there any 

indication of an effective rupture time, probably due to the 

considerable problems associated with measuring such a small finite 

time. Since, however, for the computer simulation the time taken for 

the pressure at the break point to fall to its equalization pressure 

must be estimated, this could be a possible error source. 

Through private communication with J.E. Falcus at British Gas, it 
. 

was established that the pressure measuring system (as a whole) that 

they used in their shock tube tests was believed to be accurate to 

within 5%. Foothills Pipelines (Yukon) Ltd. were confident that their 

initial pressures were within a :5 kPa limit implying pressure 

transducer accuracy of 0.2%. They did not, however, estimate the 

overall accuracy of the transient pressure measuring system. It was 

therefore assumed that the accuracies of the pressure mea~uring 

systems used by Groves and by Foothills Pipelines (Yukon) Ltd. 

would be similar to the 5% estimated by British Gas. 
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In order to use this experimental data, it was necessary to 

transfer it from the graphical form provided to a numerical form for 

the computer. In each case this involved superimposing a grid onto 

the experimental data graph and reading off the co-ordinates. To 

reduce the possible inaccuracies involved with this process, the 

graphs of Groves et al. ,,,ere enlarged bJ' a factor of 2 prior to 

extracting co-ordinates. It was then possible to determine the 

pressure ratio to within ±0.01 and the wavespeed to within 5 m/sf 

Similarly, for the British Gas graphs, the estimated accuracy with 

which pressure could be determined was ±1 bar (after the initial 

sharp pressure drop); and the accuracy of the time scale was 

estimated to be ±2 ms for the methane/ethane curves and ±0.3' ms for 

the methane/propane and natural gas curves. In the graphs 

supplied by Foothills Pipelines (Yukon) Ltd. pressure could be 

determined to ±50 kPa, time to ± 2 ms, and wavespeed to ±3 m/sf 

Thus the ma..'{imum probable reading error involved in the transfer of 

data from any of these experimental graphs would be 5%. 

- In the development of the theoretical model many assumptions 

were necessary in order to produce a viable computer program. 

Firstly, in the formation of the basic equations, one dimensional flow 

was assumed which could introduce slight errors when the rapid 

expansion occurs in the pipe. Other assumptions included were that 

the pipe wall was inelastic and that there were no localised frictional 

losses due to pipe joints, bends, etc. The use of these assumptions 

should not, however, cause any significant deviation from the actual 

recorded event in the experimental examples used. 
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A further source of error in the theoretical model could be due 

to the equation. of state that was used. A relatively simple equation 

was chosen and since this was used for various gas mbctures over a 

considerable pressure - temperature range (incorporating in some 

instances a change of state) some discrepancies were expected. 

However, as with many of the consequences of the theoretical 

assumptions, it was not possible to quantify this error source. 

The use of a constant specific heat also introduced errors since 

in practice it will vary over the considerable temperature and 

pressure range that is encountered following a pipe rupture. This 

variation is not a simple function of temperature and pressure as is 

shown by the data available for methane (Figure 8.3). There is no 

similar data for the gas mL'{tures used in the experimental tests and 

therefore the' consequences of using a constant value term cannot be 

determined. Also, since the specific heats for the g~s mixtures used 

were calculated using, the method of mi."ctures (requiring values for 

the specific heat of each component), this may incorporate further 

inaccuracies. 
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Figure 8.3. Variation of the Specific Heat of (l-fethane 
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Values for the critical temperature and pressure of the gas 

mixture were required by the program in order that the 

compressibility factor could be calculated. Again, because of the 

complexity of some of the gas mixtures being used, these quantities 

had to be estimated. Any error involved in the estimation of the 

critical temperature (for example, due to the necessary exclusion of 

the nitrogen and oxygen components of natural gas in the 

calculations) would itself create an error of the same magnitude in 

the estimated value for the critical pressure. These would then both 

influence the calculated value for the compressibility factor. 

The friction factor and, to a lesser extent, the Stanton Number 

may also be sources of error in the theoretical model since they were 

both estimated using steady flow formulae from various assumptions 

of the pipe wall material and condition. They were both assumed to 

be constant and uniform along the length of the pipe whereas in 

reality the values would be expected to increase in the vicinity of 

the break due to condensation occurring. The use of non-uniform 

values for the friction factor may slightly alter the shape of the 

pressure x time and pressure x wavespeed curves but the British 

Gas results (comparing different values for f) showed that this effect 

would be minimal. 

One further problem that was inherent in some of the results 

from both British Gas and Foothills Pipelines (Yukon) Ltd. was that 

the positions of the various pressure transducers had to be 
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approximated to the nearest grid point in the theoretical model. This 

would cause slight errors in the positioning of the pressure x time 

curves. However, closer examination of this problem revealed that 

such errors were negligible. 

Finally, the errors inherent in the numerical modelling of the 

system must be considered. In any situation where a continuous real 

life problem is replaced by a discrete model, a discretization error 

will arise in the solution. This can cause smearing when fixed grid 

methods are used. If the discrete equations are then solved 

iteratively rather than exactly, a further error is introduced called 

the round-off error. By reducing the grid size, the discretization 

error will be reduced since the discrete model would closer 

approximate the continuous problem. However, the round-off error 

would be increased since more iterative solutions would be required. 

Therefore, decreasing the grid size would not necessarily increase 

the overall accuracy. 

In this project, where the grid size is varied according to its 

distance from the break, the discretization and round-off errors will 

vary along the length of the pipe. At points where the grid size 

changes there may also be local errors introduced. 

Additional numerical problems in this project are due to the 

computer rounding error. Because of the complexity of the 

equations, in some instances it is necessary to add numbers differing 
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by a factor of 1012• Even when working in double precision, the 

storage capabilities of the computer will obviously restrict the 

accuracy with which such calculations can be performed. 
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CHAPTER 9 

CONCLUSIONS 

The theoretical model that has been developed successfully 

simulated the rapid expansion of gas following a break in a high 

pressure gas pipeline. The reduced grid size in the vicinity of the 

break . enabled close monitoring of the initial expansion wave in the 

shock tube and full size test runs, and the program's ability to 

simulate flow in both directions in the pipe was appreciated in the 

full size test runs where the break was not positioned at the end of 

the pipe. The method of representing the heat transfer and 

frictional losses in the pipe by using constant value Stanton Number 

and friction factor also appeared satisfactory. 

The comparison of the theoretical results with available 

experimental data did, however, highlight the areas for concern. 

Firstly, i~ was found that despite calculating realistic isentropic and 

isothermal wavespeeds, the model over-estimated the actual 

wavespeed. This had the effect of displacing the pressure x time 

curves to the left of the experimental traces. 

Secondly, there werQ found to be slight problems with the 

stability of the solution. For certain grid sizes and initial conditions 

the solution would become unstable at random points along the pipe. 

Although this type of instability could be controlled to an extent by 

varying the grid size and break boundary conditions, the problem 

may be totally alleviated by using an alternative numerical method 

for solving the theoretical equations. 

195 



If these teething problems with the program could be overcome, 

it is believed that excellent agreement \v-ith the experimental data 

would be achieved. 
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CHAPTER 10 

FURTHER WORK 

This project offers considerable scope for further work in a 

number of different areas, some of which are detailed below. 

10.1. Investigation of the Wavespeed Error 

The elimination of the error in the calculated wavespeed is 

essential if this theoretical model is to be developed further. A very 

detailed examination of the equations used and their numerical 

solution should reveal the source of the error. Initial investigations 

into this problem included an examination of the numerical 

relationship between the theoretical, isentropic, isothermal, and actual 

wavespeeds. With the Foothills Pipelines (Yukon) Ltd. data, it was 

found that by halving the difference between the theoretical and the 

isothermal wavespeeds, good agreement with experimental figures was 

obtained. This is shown in the table below, where the modified 

wavespeed is defined as:-

Modified = isothermal - + (theoretical - isothermal ) / 
wavespeed wavespeed wavespeed wavespeed 2 

TEST Isothermal Isentropic Theoretical Modified Actual 
wavespeed wavespeed wavespeed wave speed wavespeed 

NABTF 1 297 427 470 383.5 389 
NABTF 3 266 441 468 367 354 
NABTF 4 273 438 488 380.5 379 
NABTF 5 286 405 469 377.5 375 

(all wavespeeds are in m/s) 
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Although these figures are encouraging, further work is 

obviously necessary in order to pinpoint the error source. 

10.2. Further Testing of the Present Model 

This project has highlighted the need for further experimental 

data in order to validate conclusively the theoretical model. To date, 

there has been no accurate record made of the temperatures reached 

along the length of a pipe during and after a line break. 

Experimental tests are also required which will record the effects of 

a linebreak when the initial flow velocity in the pipe is non-zero. 

10.3. Improvement of the Stability of the Solution 

In order to improve the stability of the solution, it would be 

beneficial to experiment with other numerical methods for solving the 

ordinary differential equations produced by the Method of 

Characteristics. Improved computer run times may also be obtained 

with some methods, which would be advantageous if the program is to 

be extended to enable the modelling of branched ~ystems. 

10.4. Further Refinement of the Model 

An extension to experimenting with alternative numerical methods 

for use with the Method of Characteristics, would be to examine the 

effectiveness of other methods of solution. For example, the use of 

flux difference splitting is now becoming more feasible due to new 

technology rapidly advancing the capacity of computers. 
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It would also be interesting to examine alternative models for the 

boundary conditions (both for the upstream and downstream pipe 

ends and for the break boundary). Ideally the need for operator 

adjustment in the setting of the break boundary condition could be 

overcome so that this possible error source would be eliminated. 

Similarly, to reduce any errors incurred in the calculation of the gas 

constants, Cp ' R, Tc and Pc' alternative means of estimating these 

values ought to be examined. 

One further possible refinement to the program would be to 

enable the computer to pre-determine the optimum time step length 

for each grid point. This could greatly reduce the numerical 

truncation errors incurred in the present model but would 

necessitate two-dimensional interpolation. 
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APPENDIX I. DERIVATION OF THE BASIC PARTIAL DIFFERENTIAL 
EQUATIONS, WITH PRESSURE, TEMPERATURE AND VELOCITY AS THE 
DEPENDENT VARIABLES. 

The basic equations derived from first principles are: 

p [~~ + u ~~] + ~~ = - ~ -egsine 

To obtain e in terms of P, z and T 

From the equation of state 

Therefore 

P 
P = RTz 

gn P = gnP - gnR - 2rrT - gnz 

Differentiating with respect to time 

1 dp 1 dp 1 dR 1 dT 1 dz 
p dt = P d t - R at - T d t - z d t 

But z = z(T,P), therefore 
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Substituting this into equation (1):-

(4) 

To obtain h in terms of P, z and T 

From Zemansky [1968]: 

Substituting this into equation (3):-

pCp ddT
t 

+ {! (ap] + 1 _ 1 } dP = 0 +Wu 
p aT P \ dt, A (5) 

Solving equations (4) and (5) simultaneously 

r:r rap] ]dP + [p C'_]dT = 0 +Wu LP aT P dt -P dt A 

Solving for ~ :-

(6) 

But from the equation of state: 

RnP = RnP - RnR - QnT - Qnz 

201 -------._._ .. _ .•.. _. --.--- -- . __ ._ .. _-_.- --_.'-. -.- .. _ .•... __ ....... -- . -. 



Differentiating this with respect to temperature T, keeping pressure P 

constant: 

__ 1 {1 + I [aZ] } 
- T z aT P 

Substituting this into equation (6):-

Dividing through by cp:-

£ {[1 - ~z [:pZ] T] PI' [ T [aZ] ] 2}dP au p Cl - ~TZ 1 + Z aT p dt + ~ ax 

= -L [1 + I [.3Z] ] a + Wu 
cpT z aT P A 

(7) 

Solving equations (4) and (5) for ~~:-

= [1 1 [.3Z) ]0 +Wu T [a~) au p - z ap T A + P aT pax 

Dividing through by Cp and substituting for ~ (~~]p as before:-

202 ----- ----- ---- --------- ---~---------- ---- .. ---- ---------- ----



Assume entropy ts ' is a function of pressure and density, s = s(P,~), 

then:-

If the entropy is constant then:-

o = [~~]~.(~~]s+ (~~]p 

.. [ap] _ _ [as] / [as] 
a~ s - a~ P ap ~ 

- _ (as] (aT] / (as] (aT] 
- aT P a~ P aT ~ ap ~ 

Assuming temperature tT' is a function of pressure and density, 

T =T(P,~), then:-

dT = (~~]~ dP + (~~]pdf> 

~ [aT] / (aT] _ _ ~1 _ 
a~ p ap ~ - (a~] 

ap T 

Therefore:-

But from Zemansky [1968] (page 288): 

. 
Also, 

Therefore: 

(as] _ ~ 
aT p - T and [as] _ Cv _ ~ _ (aV] (ap] 

aT ~ - T - T aT p aT v 

(ap] _ _ (aV] / (aV] 
aT v - aT p ap T 

= ~ 1 [a~]2 / -1 (ap ] 
T + p4 aT p ~ ap T 
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. (as] • (ap] _ ~ (ap] _ 1 (ap] z 
. . aT p ap T - T ap T ~ aT p 

But it has already been proved that:-

(ap ] = _ .e... [1 + 1: (aZ] ] 
aT p T Z aT p 

And from the equation of state: 

(a
p ] - e [1 - ~ (dZ] J 

ap T - P z ap T 

Substituting these identities into equation (9):-

+ 1: 
Z 

. and [~:] ~ can be def ined as the ISENTROPIC WAVE SPEED 

Substituting this into equations (7) and (8):-

1 dP au 1 [ T [aZ] ] 0 +Wu 
a§ dt- + p ax = CpT 1 + Z aT P A 

or alternatively, including equation (2):-

ap ap 2 au _ a; [ + 1: [aZ] ] 0 +Wu 
at + uax + Pas ax· - CpT 1 Z aT p A 
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au au 1 ap w . - + u - + - - = - - - aS1.ne at ax p ax PA 0 
(12) 

aT aT § [1 + 1: [a Z] ] au = a~ [1 at + uax + Gp z aT p ax CpP 

(13 ) 
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APPENDIX lI. FRICTION FACTOR RELATIONSHIPS 

Turbulent flow (such as usually occurs in gas transmission 

pipelines) may be categorised into two regimes:-

1. Fully developed turbulence - this is described by the Rough Pipe 

Law which assumes that the friction factor is solely dependent on the 
(k) (d) 

pipe roughness and size'
A 

The rough pipe law is of the form: 
" 

2. Partially developed turbulence - this is described by either the 

Smooth Pipe Law or in Blasius form. Here it is assumed that the 

coefficient of friction is dependent on fluid properties and conduit 

size alone. The Smooth pipe law is of the form: 

1 1 
-If = Az log(ReI -If ) + Bz 

and the Blasius form of the friction relationship is: 

-
A and B in each of these expressions are constants. 

There is also a transition zone between the partially and fully 

developed turbulence which can be described by a combination of the 

above two laws. 
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Listed below are some of the relationships defining the friction 

factors that various research teams have used for the analysis of 

transient gas flows in pipes. Some of the relationships have been 

adapted so that they all apply to the definition of frictional force per 

unit length (W):-

1. Fully Developed Turbulence 

In the mid 1950's Smith et al [1956] also developed a version of 

the rough pipe law:-

1 (3.7dJ If = 2 log ~ + 2.273 

This version is almost identical to that developed empirically by 

Nikuradse [1933]. Nikuradse's formula was used by Weimann [1978] 

to dynamically model gas distribution networks because Schlichting 

[1965] maintained that it applied approximately to transient flow 

processes with slow vibrations of moderate amplitude. Taylor [1978] 

also used a friction factor defined by the rough pipe law. He 

assumed that because of the high velocities normally attained the 

flow would be fully turbulent. 

2. Partially Developed Turbulence 

Blasius [1911] proposed an equation for partially turbulent flow 

valid for Reynolds numbers below 105:-
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f = 0.3160 Re-O. 2S 

Since then, numerous modifications have been made to the equation 

by various researchers. For example, Chaudhry [1979] used a 

friction factor for flows in which 

Re > 2 x 103 , defined by:-

f = 0.046 Re-O. 2 

Another equation that can be written in Blasius form is the 

Panhandle tA' equation:-

;f = 3.39 Re°·073 E 

* f = 0.087Re-O.146 ~ 

where E is the efficiency of the system and is an adjustable 

parameter which allows for the effects of the minor losses and 

variations in pipe roughness. The Panhandle tA' relationship is a 

popular equation for gas transmission calculations where partially 

developed turbulent flow is occurring. 

Smith et al. [1956] developed a smooth pipe law which, for the 

Darcy friction factor, was defined as:-

,i = 2 log (Re I ,; ) - 0.3 
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This version, when multiplied by a drag factor, F, to account for the 

effect of bends and fittings, was favoured by Uhl et al [1965] to 

represent p~rtially developed turbulent flow:-

;f = - 2F log [a!if] 

3. Transition Zone 

Colebrook [1938-9] proposed an equation for the transition zone 

between partially and fully developed flows:-

1 2 1 ---,-__ ~.;;.1 ~~~_-.,_ 
if = og k/3.7d + 2.5 {lfif)/Re 

This was the first reasonably successful attempt to define a universal 

friction factor relationship for turbulent flow. It is an implicit 

semi-empirical formula which is represented graphically by the Moody 

Diagram and is the basis of the Colebrook-White or Prandtl-Colebrook 

equations: 

1 ( k 2. 53J 
if = -2 log 3.7d + Reif 

Oliemans [1976] used a modified version of Colebrook's expression 

to model friction in two-phase flow:-

1 [2k 18.7] 
if = -2 log deff + Re 'if + 1.74 

where Re' is a two-phase Reynolds number 

and deff is the effective diameter for two-phase mixture. 
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Over the years, numerous explicit approximations to Colebrook's 

equation have been developed, the first of which was by Moody 

[1947]:-

This equation was relatively inaccurate showing an average error 

of 4.3% for the test cases of Zigrang and Sylvester [1982]. 

Swamee and Jain [1976] developed an explicit equation by curve 

fitting the Colebrook-White equation:-

1 (k 5.74] If = -2 log 3.7d + Re0 •s 

This equation was found to have an accuracy to within 1% for 

steady flows where 5 x 103 < Re < 109 and 10-6 < kid < 10-2• 

Further explicit equations were obtained by substituting 

values for f into the right-hand side of Colebrook's equation. 

Zigrang and Sylvester [19821 used f = 0.04 and Shacham [1980] used 

f = 0.03. 

Zigrang and Sylvester 

1- = -2log {kid + 13} 
If 3.7 Re 

Shacham 

;f = -21og {~~~ + 1~5} 



Haaland [1983] re-examined the basis for Colebrook's equation and 

developed the explicit relation: 

1 1 1 [6.9 (kId l.ll} 
-If = - .8 og Re + 3.7) 

Haaland then generalised this equation to:-

and suggested that n = 3 yielded friction factors in agreement with 

those recommended for use in gas transmission lines. 

The accuracy of these and more complicated explicit friction 

factor equations has been examined by Zigrang and Sylvester [1985]. 
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APPENDIX IH. IMPLEMENTATION OF TAYLOR'S THEOREM FOR VARIOUS 
GRID POINTS 

Taylor's expansion around a point x is given by:-

u(x + h) = u(x) + hu'(x) + ~2u"(X) + ~3U'''(X) + •••••• 

h2 h 3 · 
u(x - h) = u(x) - hu'(x) + 2 u"(x) - 6 u'''(x) + ••••••• 

For a standard internal point with equidistant adjacent points, 

using the notation shown in Figure 4.2{i), these equations may be 

written:-

u(i + 1) = u(i) + ~x.u'(i) + (~~)2 u"(i) + (~~)3 u'''(i) + .... (1) 

) 2 . )3 
u(i - 1) = uti) - ~x.u'(i) + (~~ u"(i) - (~~ u'''(i) + •••• (2) 

Adding equations (1) and (2) produces: 

uti + 1) + u(i - 1) = 2u(i) + 2 (~~)2 .u"(i) neglecting higher order 

terms 

u"(i) = ~!z {u(i + 1) + (u - 1) - 2u(i)} (3) 

Subtracting equation (2) from equation (1) produces: 

u(i + 1) - uti - 1) = 2~.u'(i) neglecting higher order terms 

1 r 1 
u'(i) = ~x tU(i + 1) - u(i - 1)1 (4) 
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With reference to point Q in Figure' 4.2(i), by substituting 

equations (3) and (4) back into Taylor's expansion, the following 

expression for the property u at point Q may be derived: 

UQ = u(i - posQ) 

= uti) - ~~Q {u(i+l) - U(i-l)} + ~~~2 {U(i+l) + u(i-l) - 2u(i)} 

CS) 

Similarly for point R: 

~ { } posR2 { } uR = u(i) - 2~x u(i+l) - u(i-l) + ~X2 u(i+l) + u(i-l) - 2u(i) 

(6) 

And for point S: 

nosS{ } posS 
2 

{ } Us = u(i) + ~ u(i+l) - u(i-1) + Ux2 u(i+1) + u(i-1) - 2u(i) 

( 7) 

Equations (S), (6) and (7) are used to define each of the 

variables P, u, T, z, az/aT, p, as' a, and W at the bases of the 

characteristics. 

For an internal point between two different grid sizes, two 

separate Tay1or's expansions are necessary at the adjacent grid 

points. For such a point upstream of the break, as detailed in 

Figure 4.2(ii), the Tay1or's expansions about point (i + 1) and point 

(i - 1) yield the following formulae: 

. u"(i + 1) = (~!)2 {u(i + 2) + u(i) - 2u(i + 1)} 

u'(i + 1) = Z!X {U(i + 2) - U(i)} 
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u"(i - 1) = 4~!Z {u(i) + u(i - 2) - 2u(i - 1)} 

u'(i - 1) = 4~! {UCi) - u(i - 2)} 

Therefore, 

UQ = u(i - 1) + (2~x - posQ» 

= u(i - 1) + (2~X4~~sQ) {U(i) - u(i - 2)} 

(~x - posQ)2 { } + ~XZ u(i) + u(i - 2) - 2u(i - 1) (8) 

For point R: 

UR = u(i - 1) + (~x - posR» 

= u(i - 1) + (~~~ poSR){u(i) - u(i - 2)} 

+ (2~x ~~SR)2 {U(i) + u(i - 2) - 2u(i - l)l (9) 

and for point. s: 

Us = u(i + 1) - (~x - posS» 

= u(i + 1) - (Ax ~~SS) {U(i + 2) - U(i)} 

+ (~X~x~sS)2 {U(i + 2) + u(i) - 2u(i + I)} (10) 

By the same logic, for this type of point situated downstream of 

the break as shown in Figure 4.2(iv), the following equations may be 

derived: 
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UQ = u«i - 1) + (~x - posQ» 

= u(i - 1) + (~x ~posQ){u(i) - u(i - 2)} 

+ (~X2~ZpoSQ)2 {U(i) + u(i - 2) - 2u{i - 1)} 

uR = u«i - 1) + (~ - posR» 

= u(i - 1) + (~x ~~SR){U(i) - u(i - 2)} 

+ (~X~~SR)2 {u(i) + u(i - 2) - 2u(i - I)} 

Us = u«i + 1) - (2~x - posS» 

= u(i + 1) - (2~X4~XpoSS) {u(i + 2) - U(i)} 

+ (~x ~SS)2 {U(i) + u(i + 2) - 2u(i + I)} 

(11) 

(12) 

(13) 

Equations (11), (12) and (13) are valid when the flow is in the 

positive x direction. However, if flow reversal occurs, equation (11) 

has to be replaced by: 

UQ = u«i + 1) - (~x - posQ» 

= u(i + 1) - (2~~~~ posQ){U(i + 2) - U(i)} 

+ (~x ~~SQ)2 {U(i + 2) + u(i) - 2u(i + I)} (14) 

In the situation of a point linking two different grid size regions 

(as illustrated in Figure 4.4) two separate Taylor expansions are 

required at two different time levels. Using the notation of Figure 

4.4, the following expressions may be derived: 
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~,FOr"a ·P~i~ty·p~~~a~_~£'u~J1.~. break:=J 

u"(i + 1) = (~!)Z {U(i + 2) + uy - 2u(i + I)} 

U ' (i + 1) =2 !x {u (i + 2) - UY} 

u"(i - 1) = 4!x2 {uX + u(i - 2) - 2u(i - I)} 

u ' (i - 1) = t;x {UX - u( i - 2)} 

Therefore: 

( ' 1) (Ux - posQ) { (' 2)} llQ = u l. - + 4~x Ux - U l. -

(Ux - posQ)2 { } + ~x~ Ux + u(i - 2) - 2u(i - 1) (15) 

(16) 

Us = u(i + 1) - (~x ~~SS) {U(i + 2) - UY} 

(~x - posS)2 { } + - 2~~ u(i + 2) + Uy - 2u(i + 1) (17) 

Similarly, for this situation occurring downstream of the break, 

Figure 4.2(v):-

llQ'= u(i - 1) + (~x2~posQ) {ux -u(i - 2)} 

(18) 

( ' 1) + (~x - posR) {ux - u(l.' - 2)} uR = u l. - 2~x . 

(~x - ~sR)2 { } + U~ Ux + u(i - 2) - 2u(i -1) (19) 
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· (Z6x - pasS) { . } Us = U (1 + 1) - 4.Ax U (1 + 2) - Uy 

+ (2~X~yosS)2 {u(i + 2) + Uy - 2u(i + I)} (20) 

and if flow reversal occurs, equation (18) is replaced by: 

- (. + 1) - (Z6x - posQ) {U(i + 2) - uy} llQ-Ul 4~x 

+ (2~ ~~sQ)2 {U(i + 2) + Uy - 2u(i + I)} (21) 
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APPENDIX IV. DERIVATION OF THE PARTICLE VELOCITY OF A 
RAREFACTION WAVE 

',After making certain investigations into the properties of a sound 

wave transmitted through a small horizontal tube of uniform bore, 

Earnshaw [1860] deduced that for a system shown in 'Figure A.l: 

Ql = F [91:] 
dt dx (1) 

where F is a function of a form to be determined. 

Differentiating equation (1) with respect to time produces:-:-

(2) 

x dx 

Y dy 

time t 

Fig. A.l Model of fluid movement in a tube. 

F'rom the conservation of mass, using the notation shown in . 
Figure A.l. 

Po dx = P dy 

(3) 
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Similarly, from the conservation of linear momentum: 

( 
ap ] d2y 

PA - P + ax dx A = Po A dx dt2 

ap d2} 
~ - ax = Po dt (4 ) 

If the flow in the tube can be assumed to be isentropic, then: 

(5) 

But by differentiating equation (3) with respect to x, the 

following expression for apjdx is obtained: 

ap _ [2l)-2 d 2y 
ax - -Po dx dX2" (6) 

Substitut~ng equations (6) and (3) into equation (5) produces: 

_ 
[
dYJ-Y-l . d2y 

= Po Y . dx dX2" - (7) 

Equation (4) can then be re-written using equation (7): 

(8) 
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Comparing equations (2) and (8):. 

Integrating equation (9): 

where C is a constant of integration. 

Substituting for F(~] and (~]USing equations (1) and (3) 

respectively: 

l-Y 

3l = C :I: iYPo • ~ 
dt Po l-Y 

[:0]-2 

l-Y 

= C ~ ~ /1'0 (&) 2 
Y-l Po P 

Taking boundary conditions as: 

u[= ~] = 0 when P = Po 

then from equation (IO): 

2 YPo 
O=C~-/­

Y-l Po 

2 YPo --/-
Y-l Po 

Substituting this back into equation (10): 

l-Y 
2 Wo 2 YPo (PpO]2 u=:I:-';'-~-/-

Y-l Po Y-l Po 

Y-l 

= ~ ~ / YPo {(E...]2 -1 } 
Y-l Po Po 
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but since isentropic
1 

flow has been assumed: 

P [P )Y 
Po = Po 

and 

Therefore: 
Y-l 

2 {[pPo] 2Y_ 1} u = - y=r ao 

~ 
2 {l - [ppoJ 2Y } = Y-l a o (11) 

This expression has been used by several investigators (for 

example Bakhtar [1956], Jones and Gough [1981], Bannister and 

Mucklow [1948]) to determine the particle velocity of a rarefaction 

wave. 
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N 
N 
N 

mMPONENT 

OXYGEN 02 
NI'l'RO}EN N2 
CARBON DIOXIDE 002 

MElHANE CH4 

E'IlIANE C2H6 
PROPANE C3H8 
ISO-BUTANE iC4HlO 
N-BUTANE nC4HlO 

ISO-PENTANE iC5Hl2 

N-PENTANE nC5H12 

N-HEXANE nC6Hl4 
N-HEPTANE nC7H16 

N-oaJ'ANE nCSHlS 

N-NONANE nC9H20 

GROVES 

0.0008 

1.498 

1.073 

83.266 

9.608 

3.597 

0.3414 

0.4581 

0.0403 

0.0342 

0.0046 

0.0003 

0.0001 

-

SHOCK WEE FULL SIZE 

BGC (SIT) FOOTHILLS (ALBERTA) 

Test 7 Test 8 Test 9 NABTFl NABTF3 NABTF4 NABTF5 

0.022 0.017 0.018 0.016 

11.56 
0.013 

12
•
212 0.91 0.87 0.89 1.710 1.804 

0.62 0.62 0.61 0.076 0.049 

82.4 82.3 82.8 86.59 85.36 85.36 84.70 

7.89 7.85 7.83 6.80 8.22 7.68 8.21 

5.2 5.3 5.1 4.03 4.34 4.46 4.38 

0.45 0.47 0.43 0.262 0.182 0.238 0.201 

1.21 1.28 1.15 0.421 0.278 0.331 0.235 

0.25 0.27 0.24 0.057 0.029 0.032 0.029 

0.35 0.37 0.33 0.034 0.028 0.032 0.030 

0.64 0.63 0.56 0.008 0.013 0.011 0.008 

0.003 0.003 0.002 - - - -
- - - - - - -
- - - - - - -

TABLE Al. NATURAL GAS HOLAR COMPOSITIONS (%) 



N 
N 
W 

i 

(X)t.fP()NENT 

OXYGEN 02 
NITROOEN N2 

CARBON DIOXIDE CO2 

t-ffi.~rHANE CH4 

ETHANE C2H6 
PROPANE C3H8 
ISo-BtITANE iC4H10 

N-BtITANE nC4H10 

ISO-PENTANE iC5H12 

N-PENTANE nC5H12 

N-HEXANE nC6H14 

N-HEPTANE nC7H16 

N-ocTANE nC8H18 

N-NONANE nC9H20 

GROVES 

-
2.18 

2.45 

69.40 

15.01 

8.24 

1.03 

1.38 

0.15 

0.13 

0.02 

-
-
-

. SHOCK TUBE FULL SIZE 

BGC (SIT) FOO'IlIILLS (ALBERTA) 

Test 7 Test 8 T~st 9 NABTFl NABTF3 NABTF4 NABTF5 

0.03 0.03 0.03 0.03 

)2.32 
0.02 

)3.28 1.25 1.19 1.23 2.56 2.68 

1.34 1.33 1.32 0.18 0.11 

64.89 64.57 65.66 74.28 72.70 72.50 72.04 

11.65 11.54 11.64 10.93 13.12 12.23 13.09 

11.26 11.43 11.12 9.50 10.16 10.41 10.24 

1.28 1.34 1.23 0.81 0.56 0.73 0.62 

3.45 3.64 3.30 1.31 0.86 1.02 0.72 

0.89 0.95 0.86 0.22 0.11 0.12 0.11 

1.24 1.30 1.18 0.13 0.11 0.12 0.11 

2.71 2.65 2.38 0.04 0.06 0.05 0.04 

0.01 0.01 0.01 - - - -

- - - - - - -

- - - - - - -

TABLE A2. NATURAL GAS MASS COMPOSITIONS (%) 



N 
N 
+-

Component 

ARGON Ar 

NITROOEN N2 

CAROON 
DIOXIDE 002 

METIIANE CH4 

ETHANE C2H6 
PROPANE C3H8 

ISo-BUTANEiC4H10 

N-BUTANE nC4H10 

ISO-PENTANE iC5H12 

N-PENTANE nC5H12 

N-HEXANE nC6H1.4 

Mo1.wt. Boiling Pt. Critical Critical Critical Critical Spec.Gas 
M Temp~ 1b Temp. Tc Pressure Pc Spec. Vo1. Vc Comp.Factor Zc Const.R 

C"K) I (,K) (kPa) (cm3 /mo1) (J/kg) 

39.948 87.3 150.8 4870 74.9 0.291 208.13 

28.013 77.4 126.2 3390 89.8 0.290 296.84 

44.010 316.5 304.1 7380 93.9 0.274 188.92 

16.043 111.6 190.4 4600 99.2 0.288 518.36 

30.070 184.6 305.4 4880 148.3 0.285 276.51 

44.094 231.1 369.8 4250 203.0 0.281 188.54 

58.124 261.4 408.2 3650 263 0.283 143.03 

58.124 272.7 425.2 3800 255 0.274 143.03 

72.151 282.6 433.8 3200 303 0.269 115.24 

72.151 309.2 469.7 3370 304 0.263 115.24 

86.178 341.9 507.5 3010 370 0.264 96.48 

-- ---~-

TABLE A3. PROPERTIES OF THE HAIN CONSTITUENTS OF THE GAS HIXTURES 

Spec.Heat Ratio of , 

(J/~) Spec.Heats 
y 

520 1.668 

1037 1.401 

819 1.300 

2174 1.313 

1533 1.220 

1639 1.130 

1633 1.096 

1633 1.096 

1455 1.086 

1455 1.086 

1302 1.080 



APPENDIX V PROGRAM LISTINGS 

The programs and subroutines are listed in the, following order:­

Transient Analysis Program 

Subroutine STEADl 

Subroutine STEAD2 

Subroutine SUBl 

Subroutine SUB2 

Subroutine SUB3 

Subroutine SUB4 

Subroutine SUB5 

Subroutine SUB6 

Subroutine BREAKl 

Subroutine BREAK2 

Subroutine BREAK3 

Subroutine BREAK4 

Subroutine SUBUP 

Subroutine DOWNl 

Subroutine GETFIL 

Subroutine DMINV 

Graphics Program 
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Program to evaluate pressure surge in gas pipelines 

C. Tiley February 1987 

* 
* 
* 
* 
* 

************************************************~************** 
c: 
t: noca·l;ion:-
c 
c 

c 
c 
c 
c 
c 
c 
r. 
e: 
r;: 

C 

C 

C 

C 

C 

C 

C 

C 

C 

c 
. c 

c 
c 
c 
c 
(: 

c 
c 
c 
c 
c 

c: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

~~ 
~ 

~~ 

~~ 

~~ 
g( 
~~ 

aat 
ao 
ar 
as 
cp 
d 
dt 
dtl 
dx 
dxl 
dd 
e 
f 
9 
ga 
I1t 
I 1 
12 
ml 
m2 
n1 
n2 
p 
pat 
pc 
pe 
p ec. 
pi 
r 
ro 
s1"; 

t 
ta t 
tc 
th 
ti 
tm 
tU} 

LI 

ill 

Z 

zp 
z1; 

isentropic wavespeed for atmosphere 
initial isentropic wavespeed at the break point 
cross-'sectional ill'!?':.:! of the pir)eline 
isentropic wavespeed 
specific heat at constant pressure 
diameter of pipeline 
variable time step used in subroutines 
specified time step 
variable section length used in subroutines 
speciFied elomental pipe section length 
grid length near the bT'eak (= dx/64) 
f 1 a III T'ate I are.:} 
rricton factor 
acceleration due to gravity 
ratio of specific heats 
heat transfer' 
length of pipe before break 
length of pipe aFter break 
number of i values before bre~k 
number of i values after break 
number of element~l sections of length dx before break 
number of elom~ntal sections of length dx after break 
pressure at a paint 
atmospheric pressure 
critical pressure of the gas 
equalisation pressure 
critical equalisation pressure 
pi (=3. 1415t,) 

speci'ic gas constant 
density at a point 
st;anton rl'.lmber 
temperature at a point 
atmospheric temperature 
critical temperature of the gas 
angle of inclination of the pipe 
time after break 

pipe llIall tempe'l"aturf..' 
floUJ velDc.it!:! at Cl point: 
fr'iction.:.d force 
compressibility factor 
(dlldp) at constant temperaturE! 
(dz/dt) at constant ~ressure 

character*1 quest 
implicit double pT'ei:isicln (a-h,o-z) 
double pl"ecision l1,12 
dimension p1(300), t;1(300), u1(300), z1(300), zp1(300), zt1(300), 

r 01 (300) , as 1 ( 300 ) I h t 1. ( 300 ) , UJ 1 (300) , 
P 2 ( 300 ), t2 ( 300), 1.12 (300), z 2 ( 300), z P 2 ( 300 ), z t2 ( 300 ) , 
ro2(300),as2(300), ht2(300),w2(300), 
ppl(300), tt1(300),uul(300),pp2(300), tt2(300),uu2(300), 
pps 1 ( 300) I pps;2 ( 300 ), t t s 1 (300) , t t s 2 (300), z P x ( 6 ), z P Y (6) I 
P X ( 6 ) , u x ( 6 ), f; x r; 6 ) I Z X ( 6 ) , U/ X ( 6 >, z t x (6 ) , r 0 x ( 6 ) , a s x ( 6) , h t x ( 6 ) , 
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c 

J .- ••••• ..,,.-~' 

~{ pz(6i, uz(6). 'l;z(6)-,-zz(6). wz(6). ztzeb). roz(6),a5z(6). htz(6), 
& wavel(300),wt3ve2(300),atl(300),at2e300) 

p i=3. 141592654 
g=9. 81 

100 format(v) 
ti=O.O 

c Read in initial gas data 
c 

c 

print*, 'is 1;he yr3S dat<::l o1'l.file ? (y/n) 
read'!}' quest 
if (qIJest. €Iq .. 'n'. or. tI.'Jest;. E!q. 'n') goto 1 
print*, 'enter name of gas ' 
call getfil(10) 
read (10, *:'cp, T', tc. pc 

goto 2 
1 print*, 'gas data required:-' 

print*, 'speciFic heat at constant pressure cp (kj/kg k)' 
read*, cp 
cp=cp*1000 
print*, 'specific gas constant r (kj/kg k)' 
read*, l' 

1'=1'*1000 
print*, "'critical temper.3tu·re tc (celcius)' 
read*, tc 
tc=tc+27:~. 16 
print*, 'c,~itical pressure pc (kpa)' 
read*, pc 
pc=pc*1000 

c Read in initial pipeline data 
c 

2 print*, 'is the pipeline data on file? (y/n) 
read*, quest 
if (quest. eq. 'n'. 0'1'. quest. eq. 'n ') gote 3 
print*, 'pipeline' 
call getfil<l1> 
read<11, *)d~ th, 11, 12, dd. f, st, tw 
goto 4 

3 print*. 'pipeline data required:-' 
print*, 'diameter of pipe d (m) ?' 
read*, d 
print*, 'angle of inclined pipe (degrees) l' 
read*, th 
th = th * pi I 180.0 
pl~int;*, 'length of pipr~ upstream of- the break point (m) ?' 
read*, 11 
prirlt*, 'length of pipe downstream of the break point (m) ?' 
l'ead'~' 12 
print*, 'required grid size near the break Cm) ?' 
if<I2. eq. O. 0) got!) 111 
d x2=mi nO ( 11, 12) 1576. 0 
goto 1.12 

111 dx2=11/576.0 
112 write (6,S)dx2 

8 f-oT'tTlat("(must be less than ",f8.3,;" m)") 
read*, d d 
print*, 'darcu friction factor ?' 
read'~' f 
print*, 'stantrJTl number ?' 
read*, st 
print*, 'wall temperature Ccelcius) ?' 
read*, till 
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c 

print*. 'atmospher-Ic temperature (c.elcius) '7' 
read*. tat 
ta t=ta t+273. 16 
print., 'atmospheric pressure (kpa) 7' 
read*, pat 
pat=pat*1000 

c Calculate initial isothermal Flow conditions along the pipe 
c 

4 dxl=dd*64 
ga=cp/(cp-l') 
aat=dsqrt(1.4*287*tat) 
n 1:;;: if i x ( 111 d x 1 +0. 5) 
n2==ifix(l2/dxl+O.5) 
ml=nl+1.21 
m2=n2+121 
ar=O.25*pi*d*d 
call steadl (pi. 1;1, uJ., zl, 1'0.1. 1', e, d, pc, tc, th,.p, g, pi, dxl, m1, n1) 
ao=dsqrtCga*pl(m1)/rol(ml» 
if(l2.eq.O.O) goto 113 
p2(1)=pl(ml) 
t2( 1 )=tl (ml) 
u2 ( 1 ) =u 1 ( m 1 i 
z 2 ( 1 ):;;: z 1-( m 1 ) 
1'02(1)=1'01(011) 
call stead2 (p2, t2, tJ2, z2, 1'02, 1', e, d, pc, tc, th, f, g, dxl, m2, n2) 

c Calculate wavespeed at time to at i==1 in pipe 1 
c 

c 

113 zpl(I)::::Czl(1)-I)/pl(1) 
ztl(I)=(81*tc**3/(64*tlC!)**4)-9*tc/(128*tl(1)**2»*p1'(1)/pc 
asl(1)=«1+ztl(1)*tl(1)/zl(1»**2)*p1(1)/Crol(1)*tl(1)*cp) 
asl(l)=(l-zpl(l)*pl(l)/zl(l)-asl(l»*rol(l)/pl(l) 
asl(l)::::l/dsqrt(dabs(asl(l») 

c Read in the run data 
c 

c 

6 print*, 'length of time step required (msecs.) ?' 
grad=dxl*500. lasl Cl) 
Ulrite(6,7)gr'ad 

7 fOl-mat("time s·tep must he less than", f8. 3, "msecs") 
read*, dtl 
if(dt1. le. gl'ad) gato 9 
print*, 'tim8 step exceeds the stability criterian' 
goto 6 

9 print*, ''I;ot~al run time required (secs.) ?' 
read·lf, till 
dtl;dtl/1000 

print*, '***************************************************** I 

print*, ' 
print*, I Transient Analysis Results' 
print*, ' 
print*, '***************************************************** I 

c Set number of transducer points for printing out results at 

c 

nint=12 
Ulrite(42,99)nint 

99 format(i4) 

c Transient calculations for pipe 1 (upstream of the break> 
c: 
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k 1<::0 
j k=O 

53 do 70 j::::l, 64 
ti=ti+dt:l/64 
do 5 i=1,1111 
zl(i)=9*tc/(128*tl(i»-27*tc**3/(64*tl(i)**3) 
zl(i)=zl(i)*pl(i)/pc+l 
zpl(i)=(zl(i)-l)/pl(i) 
ztl(i)=81*tc**3/(64*tl(i)**4)-9*tc/(128*tl(i>*tl(i» 
ztl(i)=ztl(i)*pl(i)/pc 
rol(i)=pl(i)/(r*tl(i)*zl(i» 
wl(i)=dabs(ar*rol(i)*f*ul(i)*ul(i»/(2*d) 
asl{i)=«1+ztl(i)*tl(i)/zl(i»**2)*p!(i) 
asl{i)::asl(i)/(rol(i)*tl(i)*cp)+zpl(i)*pl(i)/zl(i) 
aslCl)=Cl-aslCi»*rolCi)/plCi) 
asl(i)=I/dsqrt(dabsCasl(i») 
htlCi)=pi*cp*st*d*rol(i>*ul(i>*(tw-tl(i» 
atl(i/=(1+tl(1)*ztl(i)/zlCi»**2 
atl(i)=atl(i)/(l-pl(i)*zpl(i)/zl(i» 
atl(i)=(l-atl(i)*zl(i)*r/cp)*asl{i)*as!(i) 
atl(i)=dsqrtCdabs(atl(i»)-dabs(ul(i» 

5 continue 
do 10 i=l, 1112 
ifCl2.eq:0.0) goto 10 
z2(i)=9*tc/(128*t2(i»-27*tc**3/(64*t2(i)**3) 
z2(i)=z2(i)*p2(1)/pc+l 
zp2(i)::::(z2(i)-1)/p2(i) 
zt2(i)~81*tc**3/(64*t2(i)**4)-9*tc/(128*t2(i)*t2(i» 
zt2(i)::::zt2(i)*p2(1}/pc 
ro2(i)=p2(i)/(r*t2(i)*z2(i» 
w2(i)=dabs(ar*ro2(i)*f*u2(i>*u2(i»/(2*d) 
as2(i)=«I+zt2(i)*t2(i)/z2(i»**2)*p2(i) 
as2(i)=as2(i)/(ro2(i>*t2(i)*cp)+zp2(i)*p2Ci)/z2(i) 
as2(i):(1-as2(i»*ro2(i)/p2(i) 
as2(i)=1/dsqrt(dabs(as2(i») 
ht2(i)=pi*cp*st*d*ro2(i)*u2(i)*<tw-t2(i» 
at2Ci)=(1+t2(i>*zt2(i)/z2(i»**2 
at2(i)=at2(~>/(1-p2(i)*zp2(i)/z2(i» 
at2(i)=(1-at2(i>*z2(i>*r/cp>*as2<i)*as2(i) 
at2(i)=dsqrt(dabs(at2(i»)-dabs(u2{i» 

10 continue 
if(jk. eq. 0) goto 116 
tis=ti-65*dtl/64 
wr it e (6, 56) t i s 

56 format(/, f8. b, '~H~CS. a-Pter break, i;he results in pipe 1 a.re:-') 
Ulr i t e (42, 9fJ> t i s 

98 format(f8. 6) 
do 52 i=l,ml 
ppsl(i)=pl(i)/1000 
ttsl (i )=tl (i )-273.16 
wavel(i)=asl(I)-ul(i) 
if ( i. e q. :::!9?) got 0 881 
if ( i. e q. 17.2) got 0 881 
If(1. eq. 157) gate 881 
if( 1. eq. 140) gato 881 
if ( 1. e Q.. 1.23) got 0 881 
if ( 1. e q. 106) got 0 881 
goto 52 

881 ii=i+l000 
U/T'i t e ( 42, :J 5 ) i i, p p ~~ 1 ( i ), LJ 1 ( i ) , t t s 1 ( i ) , wa vel ( i ) , at 1 ( i ) -

52 continue 
if(12. eq. O. 0) gote 116 
do 46 i=1., 1112 
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· -- .--~- _._- ~--.- .. 

tts2( i )=t2( i )-;;'~73. 16 
wave2(i)=as2(i)-dabs(u2(i» 
i f ( i. e q. 1) got 0 882 
if ( i. e q. 128) got 0 882 
ifU. eq. 143) goto 882 
if( i. eq. 160) goto 882 
i f ( i. e q. 1 77) got 0 8S;;::2 
if ( i. e q. 194) got 0 882 
goto 46 

882 i i, = i +2000 
wr i t e (4'+2 .. 5~j) i j" pps 2 ( i ), u;2 ( i ) , t t s 2 ( i ) , wa ve2 C i ), a t2 ( i ) 

46 continue 
116 jk=O 

dx=dxl/64 
dt=dtl/64 
do 37 i = L m 1 
pp 1 ( i ) =p 1 ( i ) 
'I;t1(i)=t1(i) 
uu1( i)=u1( i) 

37 continue 
do 40 i.=1, m;:;;! 
if<12. eq. O. 0) gato 40 
pp2(i)=p2(i) 
tt2(i)=t2(i) 
uu2(i)=u2(i) 

40 continue 
do 12 i ;.=1, ml 
i=ii 
if (i. 1 t. (m 1-63» 9 0 to 12 
ifCi. gt. (m1--1» goto 13 
ca 11 sub 1 ( p 1. t 1, u 1, d x, pp 1. t t 1, u u 1, t c, pc. r, ar, f, d, c p, pi,'s t. 

~-.( tw. g, d t, i, z 1, z p L z i; 1, r Cl L tu 1, as L h t 1, t h > 
goto 12 

13 if(ti. gt. (81*dtl» goto 58 
ifCti. gt. dt1.) goto 92 
if(12. eq.O.O) goto 120 
ca 11 b 1" er3 k 1 ( P 1, t 1, tJ 1, P 2, t2, u2, pp 1. t t 1, u u 1, z 1, z'l; 1, l' a 1. as 1. h t 1, 

~-.( tu1, dx, tc, pc, T', ar, -p, d, cp, pi, st, tU/, g, dt, i, th, z2, zt2, T'02, as2, 
~-.( ht2,w2) 

120 if ( j. ne. 64) got () 12 
psave=pp1(ml) 
usave=uulCml) 
tsave=tt1(ml) 
pec=C(2/Cga+1»**(2*ga/Cga-1»)*psave 
y1=(2/(ga-l»*as1(m1)*(1-(pec/ppl(ml»**«ga-1)/(2*ga)» 
y2=dsqrt(1. 4*( (2. 4HHpec/pat)+0. 4)/2) 
y2=a~t*«pec/pat)-1)/y2 

if(y1. gt. y~U goto 71 
peq=pec 
ueq=yl 
teq=2*tt1(ml)/(ga+l) 
goto 12 

71 p~=(50+42*yl*yl/(aat*aat»**2-100*(25-7*y1*yl/(aat*aat» 
pe=(50+42*y1*y1/(a~t*aat)+d5qrt(pe»/50 
if ( dab 5 ( pe - pe c ). 1'1;. pe 11 00) got 0 72 
pec=pe 
yl=(2/(ga-l»*asl(ml)*<1-Cpec/pplCm1»)**«ga-1)/(2*ga» 
gato 71 

72 peq=pe 
ueq=y1 
teq=tt1(ml)*«pe/ppl(ml»**«ga-l)/(2*ga») 
gotel 12 

55 format (i4, 1 x, 5f14. i.).) 
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PP1\ml)={pSave-peq)*«1.0-k k/5120.0>**2)+peq 
58 c Cl 11 b r ea k 3 ( P 1, t 1, IJ I, pp I, 1; t 1, u u 1, z 1, z t I, T' 0 1, as I, h t 1, w 1, 

~~ dx, tc, pc, T', aT', f, d, cp, pi, st, tw, 9' dt, i, th, pat, tat) 
12 continue 

k=1 
jl=(j!2)*2 
if (j1. eq. j) goto 14 
i=m1-64 
px(1)==pl(m1-64) 
tx(1)=t1(ml-64) 
ux(1)=ul(ml-64) 
call sub2(p1, t1, ul, C/X, pp!, ttl, uul, tc, pc, T', aT', f, d, cp, pi, st, 

~~ t U.I, 9' d t, i, z 1, z P 1, z t 1, T' 0 1, IU 1, Cl 5 1, h t 1, t h ) 
py(1)=pp1(ml-64> 
t lJ ( 1 ) =·t t 1 ( m 1-64 > 
uy(1)=uul(m1-64) 
goto 11 

14 jl=j1!2 
dx=dx*2 
dt=dt*2 
dol 5 ii. = 1, (m 1-64 ) 
i=ii 
ifCi. It. (m1-95» 90to 15 
i f (L 9 e. (m 1 -.6 5» 9 0 t 0 16 
call subl(p]., tl, ul, dx, ppL ttL tJuL tc, pc, T', aT', f, d, cp, pi. st, 

~{ tw, 9' dt, i, zl, zpl, ztl, T'ol, wl, as1, htl, th) 
goto 15 

16 zx(k)=C9*tc!(128*tx(k»-27*tc**3/(64*tx(k)**3»*px(k)/pc+1 
zpx(k>=(zx(k)-1)/pxCk) 
ztxCk)=(81*tc**3/(64*tx(k)**4)-9*tc/C128*tx(k)*txCk»)*px(k)/pc 
rox(k>~px(k)/(r*tx(k>*zx(k» 
wxCk)=dabsCar*roxCk)*f*ux(k)*uxCk»/(2*d) 
asx(k)=«1+txCk)*ztxCk)/zx(k»**2)*pxCk)/(rox(k)*tx(k)*cp) 
c1sxCk)=asx(k)+zpx(k)*pxCk)/zx(k)-l 
asx(k):l/dsqrtCdabs(asx(k)*rox(k)!Px(k») 
htx(k)=pi*cp*st*d*rox(k>*ux(k>*<tw-txCk» 
if ( L 9 t. (m 1-65» 9 fJ to 81 
P 1 ( i + 1 > =p x ('k ) 

ul(i+l)=ux(k) 
tl(i+l)=tx(k) 
zl(i+1)=zx(/() 
w 1 ( i + 1. ) =IU X ( k ) 
ztl (i+1 )==ztx (k) 
rol(i+l)==rox(k) 
asl(i+l)=asx(k) 
htl(i+1)=htxCk) 
call subl(p1., t1, IJ1., dx, pp1, ttl,UlIl, tc, pc, T" ar, f, d, cp, pi, st, 

a{ t UJ; g, d t, i, z 1., I P I, z t 1., l' 0 1, lU l,a s 1, h t 1, t h ) 

9 oto 15 
81 dt=:dt/2 

dx==dx!2 
zyCk)=(9*tc/Cl28*ty(k»-27*tc**3!(64*ty(k)**3»*py(k)/pc+l 
zpyCk>=(zy(k)-l)/py(k> 
zty(k)=(81*tc**3!(64*ty(k>**4)-9*tc!(128*ty(k>*tyCk»)*py(k)!pc 
royCk)=py(k)!Cr*ty(k)*zy(k» 
wyCk)=dabs(ar*noyCk)*f*uy(k)*lIy(k»!C2*d) 
as y ( k ) == ( ( 1 + t Y ( k ) * z t I) ( k ) ! z Y ( k ) ) .jf.* 2) * P Y ( k ) I ( T' 0 Y ( k ) * t Y ( k ) * c p ) 
asy(k)=asy(k)+zpy(k)*py(k)!zy(k)-l 
asy(k)=l/dsq1't(dabs(asy(k>*roy(k)/py(k») 
hty(k)=pi*cp*st*d*roy(k>*uy(k>*(tw-ty(k» 
call subS(p!, tl, u1, dx, ppl, ttl, uIJ1, tc, pc, T', ar, f, d, cp, pi, st, 

~{ tU/I 9' dt, i, 1.1., zpl, ztl, r1Jl/1U1, as1, htl, th, px, ux, tx, UJX, IX, 

~~ zi;lC, T'OX, asx, htx, py, tJlJ' ty, UJY, IY, ItlJ, rO I.}, aS1J1 hty, k) 
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dx=dx*2 
15 continue 

k=2 
j2=(jl/2>*2 
if (';2.eq .. jl) gata 17 
i=(ml-96) 
p x ( 2 ) =p 1 (m 1--96) 
tx(2)=tl(ml-96) 
ux(2)=ul(ml-96) 
call sub2(pt. t1, u1, dx, pp!.tt1, uu!. tc, pc, r, ar, f, d, cp, pi, st, 

~~ tU), 9' dt, i. z 1, zp 1, ztl, rol, 101, asl, htl, th) . 
py(2)=ppl(m1-96) 
ty(2)=tt1(ml-96) 
uy(2)=uul(ml-96) 
gato 11 

17 jl=jl/2 
dx=dx~'2 

dt=dt*2 
do 18 ii=l, (011·-96) 
i=ii 
if(i. It. (ml-l11» gato 18 
if ( i. 9 e. (en 1-97» got 0 19 
call subl (pI, tl, ul, dx, pp1, ttl, {Jul, tc, pc, r, ar, f, 0, cp, pi, st, 

~~ tw, g, dt, i, zl, zp1, zt!. rol,tU!. as1, tit!. th) 
goto 18 

19 zx(k)=(9*tc/(128*tx(k»-27*tc**3/(64*tx(k)**3»*px(k)/pc+l 
zpx(k)=(zx(k)-l)/px(k) 
ztxCk)=(81*tc**3/C64*txCk)**4)-9*tc/(128*tx(k)*tx(k»)*px(k)/pc 
rox(k)=px(k)/(r*tx(k)*zxCk» 
wx(k)=dabs(ar*rox(k)*f*ux(k)*ux(k»/(2*d) 
asx(k)=«1+tx(k)*ztx(k)/zxCk»**2)*pxCk)/(rox(k)*tx(k)*cp) 
asx(k)=asx(k)+zpx(k)*px(k)/zx(k)-l 
asx(k)=l/ds~rt(dabs(asx(k)*rQx(k)/px(k») 
htxCk)=pi*cp*st*d*rox(k)*ux(k)*(tw-tx(k» 
if ( i. 9 t. (1TI1-97» got 0 82 
plU+1>=px(k) 
u 1 ( i + 1 ) = u x (.k ) 
tl(i+t)=tx(k) 
z 1( i+t)=z x (k) 

w 1 ( i + 1 ) =UI x ( k > 
ztl (i+l )=ztx (J< > 

ro1(i+l)=rox(k) 
asl(i+l)=asx(k) 
htl(i+l)=htx(k) 
ca 11. sub 1 (p 1. t 1, u 1. d x, pp :l, t t I, u u 1. t c, pc, r, ar, f, d. c p, pi. s t, 

~oo( tUl, 9' elt, L zl, zpl, zt!. ro!. wl, a51, htl, th) 
gotQ 18 

82 dt=dt/2 
dx=dx/2 
zy(k)=(9*tc/(120*ty(k»-27*tc**3/(64*ty(k)**3»*pyCk)/pc+l 
zpy(k):::(zyCk)-1)/py(k) 
ztyCk):::(81*tc**3/(64*ty(k)**4)-9*tc!C128*tyCk)*ty{k»)*pyCk)/pc 
r6y(k>=py(k)/Cr*tyCk>*zy(k» 
wy(k)=dabs(ar*royCk>*f*uy(k)*uyCk»!C2*d) 
asyCk)=«1+ty(k)*zty(k)!zy(k»**2)*pyCk)!Croy(k)*tyCk)*cp) 
asy(k)=asy(k)+zpyCk)*pyCk)/zy(k}-l· 
asyCk)=l/dsqrt(dabs(asy(k)*roy(k)/pyCk») 
hty(k)=pi*cp*st*d*royCk>*uy(k)*CtUl-tyCk» 
call 5ub5(p1., tL lIl, dx, ppl, ttl. (Jul, tc, pc, r, clT', f, d, cp, pi, st, 

~~ tw, g, d t, i, ri, z pt. z t 1, r 0 I, III 1, a 51, h t I, t h, P x, u x, t X, III le, Z X, 

~( z t x, r 0 x , Cl S x, h t x, p y, t"J' t Y , UlI.,J, I y, It y, 'r 0 y , as y, h t IJ, k ) 
dt=dt*2 
dx=dx*2 



k=3 
j2=(j1/2>*2 
if (j2. eq. j1) gate 20 
i=m1-112 
px (3)=pl Cml·-112) 
tx (3)=tl (ml--112) 
ux(3)=ul(ml-112) 
call sub2(pL tL u1., dx, ppl,·ttl, lIuL tc, pc, T', ar, f, d, cp, pi, st, 

~I, tw, g, d t, i, z I, z P L z t 1, l' (J 1. tu L as 1, h t 1, t h ) 
py(3)=ppl(ml-112) 
ty(3)::ttlCml-112) 
uy(3)=uul(ml-112) 
gato 11 

20 jl=j1./2 
dx=dx*2 
dt=d-t;*2 
do 21 ii=1,ml-112 
i=ii 
if(i. It. (m1-119» gate 21 
i f ( i. 9 e. (m 1--11 3» got a 22 
call subl (pi, tl, ul, cix, ppl, ttl, uul, tc, pc, T', ar,.p, d, cp, pi, st, 

~-! tU), 9' d,!;, 1, zl, zpl, ztl, 1"01, LU1, as1, htl, th) 
gato ~!1 

22 zx(k)=(9*tc/(128*tx(k»)-27*tc**3/(64*tx(k)**3»*px(k)/pc+1 
zpxCk)=(zx(k),....I)/px(k) 
ztx(k)=(81*tc**3!C64*tx(k>**4)-9*tc/(128*txCk)*tx(k»)*pxCk)/pc 
T'oxCk)=px(k)/(T'*tx(k)*zxCk» 
wx(k)=dabsCar*roxCk>*f*ux(k)*uxCk»/(2*d) 
asxCk):::«1+tx(k)*ztx(k)/zx(k»**2)*px(k)/(rox(k)*tx(k)*cp) 
asxCk)=asx(k)+zpx(k>*pxCk)/zx(k)-l 
asx(k)=l/dsqrt(dabs(asx(k)*rax(k)/px(k») 
htx(k>=pi*cp*st*d*roxCk)*ux(k)*(tw-tx(k» 
i of C i. 9 t. (m :I. - 113» 9 0 to 83 
p 1 ( i + 1 ) =p x C k ) 
ul(i+l)=ux(k) 
tU i+1>=tx (k> 
zi(i+1>=zx(k) 
wl(i+1)=wx«(() 
ztlCi+1>=ztx(k) 
rol(i+l)=T'ox(k) 
asl(i+l)=.::l5XCk) 
htl(i+l)=htxCk) 
ca 11 sub 1 ( p 1. t 1, u I, d x, pp 1, t t 1, u tit, t c, pc, 1", ar, f, d, c p, pi, s t, 

~~ tIll, g, dt, j" zt, zpI, zt1, T'ol, w1. as!, htl, th) 
go_to 21 

83 dt=dt/2 
dx=dx/2 
zy(k~=(9*tc/(128*ty(k»-27*tc**3/(64*ty(k)**3»*py(k)/pc+l 
zpy(k)=(zy(k)-l)/pyCk) 
zty(k)=(81*tc**3/(64*ty(k)**4)-9*tc/(128*tyCk)*ty(k»)*py(k)/pc 
roy(k)=py(k)/(r*tyCk)*zyCk» 
wy(k)=dabs(ar*roy(k>*f*uy(k>*uy(k»/(2*d) 
asy(k>=(Cl+tyCk>*ztyCk)/zy(k»**2)*py(k)/Croy(k>*ty(k)*cp> 
asyCk>=asy(k)+zpy(k>*py(k)/zyCk)-l 
asyCk>=1/dsqrtCdabs(asy(k)*royCk)/py(k») 
hty(k)=pi*cp*st*d*royCk>*uy(k>*<tw-tyCk» 
call sub5(pl., tI, u1, dx, ppl, ttl,lJul, tc, pc, l~, ar,.p, d, ep, pi, st, 

;:-1. tU), g, dt, i, zl, zpl, zt1, 1"01, IUl, as1, htl, th, px, ux, tx, WX, IX, 

~~ ztx, rrJX, asx, htx, py, uy, ty, UJIJ' ll), zty, roy, dSY, ht'J, k) 
dt=dt*2 
dx=dx*2 

21 continue 
k=4 
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i f (j 2. e q. j 1.) got a 23 
i=ml-120 
px(4)=plCml-l20) 
tx(4)=tlCml-120) 
ux(4)=ul(ml-120) 
call sub2(p1.. tL u1, dx, pp1, ttL !Jul, tc, pc, r, .Jr, f, d, cp, pi, sb 

~1. '\:;w, g, dt, i. zL zp1. ztL 'r'ol, wl, as1, htl, th) 
py(4)=ppl(ml-120) 
ty(4)=ttl(ml-120) 
uy(4)=uul(ml-120) 
gate 11 

23 j1=j1/2 
dx=dx*2 
dt=dt*2 
do 24 ii=1,ml-120 
i=ii 
ifCi.lt. (mi-123» goto 24 
if(i. ge. (ml-1.21» goto 25 
call subl (pI, tl, ul, dx, pp1. ttl, uul, tc, pc, r, ar, P, d, cp, pi, st, 

~1. t w, g, d t, i, z 1, z p 1. z t 1, T' 01. tu 1, a si, h t 1, t h ) 
gato 24 

25 zxCk)=(9*tc!(128*tx(k»-27*tc**3/(64*txCk>**3»*px(k)/pc+l 
zpx(k)=(zxCk)-l)/px(k) 
ztx(k)=(81*tc**3/(64*tx(k)**4)-9*tc/C128*txCk)*tx(k»)*pxCk)/pc 
rox(k)=pxCk)/(r*tx(k)*zx(k» 
wxCk)=dabs(ar*rox(k)*f*uxCk>*ux(k»/(2*d) 
asxCk)=CC1+tx(k)*ztxCk)/zxCk»**2)*pxCk)/Crox(k)*tx(k)~cp) 
asxCk)=asxCk)+zpxCk>*pxCk)/zxCk)-l 
asxCk)=1/dsqrtCdabs(asx(k)*rox(k)/pxCk») 
h t x ( k ) =p i *c p *s t*d *1' C.I xC k ) *u x ( k ) * ( tw-t xC k ) ) 
if CL gt. (ml-121» goto 84 
pl<i+l)=px(k) 
u1 Ci+1J=ux (k) 

tl< i+1)=tx (k) 

zl C i+l )=zx C k) 
wl(i+1)=wxCk) 
ztl(i+l)=ztx(k) 
ro1Ci+l)=roxCk) 
as1(i+l)==asx(k) 
h t 1 ( i + 1 ) =h 'b ( k ) 
c a I 1 5 tJ b 1 C P 1., ~; 1, u 1, d x, P P 1, t t 1 " tlU 1, t c, pc, r, a r, f, d, c p, pi, s t, 

& tw, g, dt, i, zt. zp1. ztl, ro!. wl, asl, htl, th) 
goto 24 

84 dt=dt/2 
dx=dx/2 
zy(k)={9*tc/CI28*ty(k»-27*tc**3/(64*tyCk>**3»*pyCk)!pc+l 
zpyCk)=(zy(k)-l)!pyCk) 
zty~k)=C81*tc**3/(64*ty(k)**4)-9*tc/C128*ty(k)*ty(k»)*pyCk)/pc 
roy(k)=py(k)/(r*ty(k>*zy(k» 
wy(k)=dabs(ar*roy(k>*f*uy(k)*uyCk»/(2*d) 
asy(k)=«1+ty(k)*zty(k)/zy(k»**2)*py(k)/(royCk)*tyCk)*cp) 
asyCk)=asy(k)+zpyCk)*py(k)/zyCk)-l 
asy(k)=l/dsqrtCdabs(asyCk)*royCk)/py(k») 
htyCk)=pi*cp*st*d*royCk>*uyCk>*(tw-tyCk» 
call sub5(p!. t1. u1. d x, pp 1, tt!. lIul, tc, pc, r, ar,;, d, cp, pi. st, 

a~ tU/, g, dt, i. z1. zp!. ztl, ro1. OIl, as!. htl, th, px, ux, tx, wx, zx, 
~{ z t x, r 0 x I a s x, h t x, P 'J' u ,:/, t 'J' ID Y' z Y I Z t y, r 0 y, a s y, h t y, k ) 

dt=dt*2 
dx=dx*2 

24 continue 
k=5 
j2=(jl/2)*2 
if (j2. eq. jl) got() 26 
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px(S)=pl(ml .... 124) 
tx(5)=tl(ml-124) 
ux(S)=ul(ml-124) 
c.:!II sub2(p1., tl. uL dx, pp!, tt1, uu1, tc, pc, r, .3r, f, d, cp, pi, st, 

~~ tw. g, d t. i I Z I. z P 1. z t I. r 01.. UlI. c:lsl. h t I, t h) 
py(S)=ppl(ml-124) 
ty(5)=ttl(ml-124) 
uy(5)=uul(ml-124) 
gatD 11 

26 jl=j1/2 
dx=dx*2 
dt=dt*2 
do. 27 ii=l,ml-124 
i=ii 
if{ i. It. (m1--125» grJto 27 
zx(k):::(9*tc/(128*tx(k)-27*tc**3/(64*tx(k)**3»*px(k)/pc+1 
zpx(k):::(zxCk)-l)/px(k) 
ztxCk):::(81*tc**3/(64*txCk>**4)-9*tc/C128*tx(k)*txCk»)*pxCk)/pc 
rDx(k)=px(k)/(r*tx(k)*zxCk» 
wx(k)=dabs(ar*rox(k)*f*uxCk)*uxCk»/(2*d) 
asx(k)=«1+tx(k)*ztxCk)/zx(k»**2)*px(k)/(roxCk)*txCk)*cp) 
asx(k)=asx(k)+zpxCk)*pxCk)/zxCk)-l 
asx(k)=1/dsqrtCdabsCasxCk'*roxCk)/px(k») 
htx(k)=pi*cp*st*d*rox(k)*ux(k)*<tw-txCk» 
if (i. gt. Cm1.--125» goto 85 
plCi+1)=px(k) 
ul(i+l)=ux(k) 
tlCi+l)==tx(k) 
zlU+1>=zx(k) 
wl(i+1)=wxCk) 
ztl(i+l)=ztxCk) 
ral(i+1)=raxCk) 
a 5 1 ( i + 1 ) =a ~J){ ( k ) 
htl(i+l)=htx(k) 
ca 11 5 ubI ( P 1, f; 1, u 1. I d x. pp L t t 1, u u 1, t c, pc, r, ar, f, d, r: p, pi,s t, 

~~ tUJ, g, dt, i, .7:1, zpl, ztl, rol. LUI, 1351, htl, th) 
gato 27 

85 dt=dt/2 
dx=dx/2 
zy<k)=C9*tc/(12S*tyCk»-27*tc**3/(64*ty(k)**3) )*PU(k)/pc+1 
zpy(k):::(zyCk)-l)/pyCk) 
ztyCk):::C81*tc**3/(64*tyCk)**4)-9*tc/C12S*tyCk)*ty(k»)*py(k)/pc 
roy(k)=pyCk)/Cr*ty(k)*zyCk» 
wy(k)=dabs(ar*royCk)*f*uyCk)*uyCk»/(2*d) 
asyCk>=«1+tyCk)*ztqCk)/zyCk»**2)*pyCk)/(royCk)*tyCk)*cp) 
asyCk)=asyCk)+zpyCk)*py(k)/zy(k)-l 
asy(k)=l/dsqrt(dabsCasy(k)*ray(k)/py(k») 
hty(k)=pi*cp*st*d*roy(k)*uy(k)*<tw-tyCk» 
call 5ub5(p1., tl, u1, dx, ppl, ttl, uu1, tc, pc, r, ar, f, d, cp, pi, st, 

~1. tUJ, 9' dt, i, ll, zpl. zt1., rol,lII1, asl, htl, th, px, UX, tx,llJX, zx, 
& z t x, r a x , Cl 5 X , h t x, P IJ, U y, t y, UJIJ' z y, z t y, ray, as y, h t y, k} 

dt=dt*2 
dx=dx*2 

27 continue 
k=6 
j2=(jl/2>*2 
if (j2.eq. j1) gClta 2(T 
i=ml-126 
px(6)=pl(ml-126) 
tx(6)=tl(mi-1.26) 
ux(6)=ul(ml-126) 
pl(i+2)=px{5) 
ul(i .... 2)=ux{5) 
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c 

z1(i+2>=zx(5) 
w1(i+2)=wxC5) 
zt1(i+2)=ztx(5) 
ro1Ci+2)=rox(5) 
asl(i+2)==asx(5) 
htlCi+2)=htx(5) 
call sub2Cpl. tl, uL dx, ppl, ttl, (Ju!, tc, pc, 1', ar, f, cl, cp, pi, st, 

~~ tw, 9' dt, i. zl, zpl, ztl, rol, wl, asl, htl, th) 
py(6)=pplCml-126) 
ty(6)=ttlCml-126) 
uy(6)~uul(ml-126) 

gate 11 
29 j1=jl/2 

dx=dx*2 
d t=d til-2 
do 30 ii=1, (m1-126) 
i=ii 
ifCi. gt. 1) goto 31 
call subup(pl, tl. u1, dx, tt1, uul, tc, pc, r, ar, f, d, cp, pi, st, 

~-.: tw, 9' dt, L zl, zpl, zt1., rol, w1, asl, htl, th, pp1, ttl. uu1) 
gate 30 

31 ifCi. It. (ml-127» gata 90 
zxCk)=(9*tc/(128*tx(k»--27*tc**3/(64*tx(k)**3»*pxCk)/pc+l 
zpx(k)=(zxCk)-I)/pxCk) 
ztx(k)~C81*tc**3/(64*txCk)**4)-9*tc/(128*tx(k)*tx(k»)*px(k)/pc 
roxCk>=pxCk)/(r*txCk>*zx(k» 
wx(k)=dabs(ar*roxCk)*f*ux(k)*ux(k»/C2*d) 
asx(k)=(C1+txCk)*ztx(k)/zx(k»**2)*pxCk)/(rox(k)*tx(k)*cp) 
asx(k)=asx(k)+zpxCk)*px(k)/zx(k)-1 
asx(k)=I/ds~rt(dabs(asx(k)*rox(k)/Px(k») 
htxCk)=pi*cp*st*d*roxCk)*uxCk)*Ctw-tx(k» 
i oF C i. 9 t. (m 1-127» 9 0 t 0 86 
plCi+l)=px(k) 
ul(i+1)=ux(k) 
tlCi+l)=tx(k) 
zl(i+1>=zx(k) 
wlCi+1)=wx(k) 
ztl(i+l)=ztx(k) 
rolCi+1)=roxCk) 
as1(i+l)==asxCk) 
ht1(i+1)=htx(k) 

90 c Cl 11 S 'J b 1 ( P I, t I, 1.J 1, d x, pp I, t t I, u u I, t c, pc, r, i3 r, f Id, c p, pi, s t, 
~1. tw, 9' dt, 1, zl, zpi, zti,roi,lUi,asi, htl, th) 

gate 30 
86 dt=dt/2 

dx=dx/2 
zy(~)=C9*tc/C128*ty(k»-27*tC**3/(64*tyCk)**3»*py(k)/pc+l 
zpyCk)=(zy(k)-l)/pyCk) 
ztyCk)=C81*tc**3/(64*tyCk)**4)-9*tc/C128*tyCk)*ty(k»)*py(k)/pc 
roy(k)=py(k)/(r*ty(k)*zyCk» 
wy(k)=dabsCar*roy(k)*f*uyCk>*uy(k»/(2*d) 
asy(k)=«1+ty(k)*zty(k)/zy(k»**2)*pyck)/(roy(k>*ty(k)*cp) 
~sy(k)=asy(k)+zpy(k)*py(k)/zy(k)-l 
asy(k)=l/dsqrt(dabs(asyCk)*roy(k)/py(k») 
hty(k)=pi*cp*st*d*royCk)*uy(k)*(tw-ty(k» 
call sub5Cpl. t1, ul, dx, pp!, ttl, uul,tc, pc, r, ar, f, d, cp, pi, st, 

~ tw, 9' dt, i, zl, zpl, zt1, rol, Ill!, as1, htl, th, px, ux, tx, wx, zx, 
~~ ztx, rox, asx, htx, py, uy, tlJ, w1J, zy, zt,), roy, asy, hty, k) 

dt=dt*2 
dx=dx*2 

30 continue 

C Transient calculations for pipe 2 (downstream of the break) 
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11 dx=dx1/64 
dt=dt1/64 
if(12. E.'!t. O. 0) gote 32 
do 33 ii=1,64 
i=ii 
if ( i. 9 t. 1) got 0 34 
if(ti. gt. dtl) gate 95 
call break2(ppl, ttl, (Jul, pp2, tt2, uu2, ml, i) 
goto 33 

95 pp2(1)=ppl(ml) 
call breal<4(p2, t2, u2, pp2, tt2, uu2, z2, zt2, 1'02, 0352, ht2, w2, dx, tc, pc, 

~-: 1', 031', f, d, c p, pits t, tUJ, g, d t, i, t h, pat, t t 1, m 1 ) 
gote 33 

34 call 5ub4(p2, t2, u2, dx, pp2, tt2. uu2, tc, pc, 1', ar, f, d, cp, pi, 
~~ s t, tw, g, d t, i, z2. z p2, z t2, r02, U/2, o3s2, h t2, th ) 

33 continue 
k=l 
jl=(j/2)*2 
if( j1. eq. j) gote 35 
i=65 
pz(1)=p2(i) 
uz(1)=u2(i.) 
tz(1)=t2(U 
zz(1)=z2H) 
ztz(1)=zt2(i) 
roz(1)=ro2(i) 
asz(1)=as2(i) 
htz(1)=ht2(i) 
wz(1)=w2(i) 
call sub3(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, r, ar, 'F, d, cp, pi, 

~-! st, tw, g, dt, it z2, zp2, zt2, 1'02, w2, as2, ht2, th) 
goto 32 

35 jl=.j1/2 
dx=dx*2 
dt=dt*2 
do 36 ii=l,96 
i=ii 
i f ( i. 1 e. 66) . got 0 36 
call 5ub4(p2, t2, u2, dx, pp2, tt2, lJu2, tc, pc, r, aT', f, d, cp, pi, 

~-! st, tw, g, dt, it z2, zp2, zt2, r02, w2, 0352, ht2, tl1) 
36 continue 

i=65 
dx=dx/2 
dt=dt/2 
call sub6(p2, t~!, u;;:!, cix, pp2, tt2, uu2, tc, pc, ruJT', f, d, cp, pi, 

~~ st, tw, 9' dt, i, z2, zp2, zt~~, r02, w2, 0352, ht2, th. pz, tz. uz, zz, 
~-! ztz: roz. ':'ISZ. htz,wz, k) 

dx=dx*2 
dt=dt*2 
i=66 
p2(i-1)=pz(l) 
t2(i-l)=tz(l) 
u2( i-l )=uz (1) 
z2(i-l)=zz(1) 
w2(i-l)=wz(1) 
zt2(i-l)=ztz(1) 
T'o2(i-l)=T'oz(1) 
as2(i-l)=asz(1) 
ht2(i-l)=htz(1) 
call sub4(p2, t2, Ll2, dx, pp2, tt2, uu2, tc, pc, T', aT', f, cl, cp, pi. 

~~ st, tw, g, dt, it z2, zp2, zt2. T'o2. w2, as2. ht2. th) 
k=2 
j2=(j1/2)*2 
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i=97 
pz (2)=p2<i) 
uz(2)=u2(i) 
tz(2)=t2(i) 
zz(2)=z2(i) 
ztz(2)=zt2(i) 
roz(2)=r02(i) 
asz(2i=as2(i) 
htz(2)=ht2(i) 
wz(2i=UJ2(i) 
call sub3(p2, t2, 1.12, dx, pp2, tt2, U 1J2, tc, pc, 1", .:Jr, f, d, cp, pi, 

~~ st, tUJ, g, dt, it z2, zp2, zt2, 1"02, w2, as2, ht2, th) 
goto 32 

38 j1=j1/2 
dx=dx*2 
dt=dt*2 
do 39 ii=L 112 
i=ii 
if<i. le. 98) goto 39 
call sub4(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, 1", ar, f, d, ep, pi. 

~~ st, tw, g, dt, it z2, zp2, zt2, 1"02, w2, as2, ht2, th) 
39 continue 

i=97 
dx=dx/2 
dt=dt/2 
call sub6(p2, t2, u2, dx, pp2, tt2, lJu2, tc, pc, 1", ar, f, d, cp, pi, 

::~ st, tw, g, dt, i, z2, zp2, zt2, 1"02, w2, as2, ht2, th, pz, tz, uz, Zz,· 
~~ ztz, roz, aS1:, htz, wz, k) 

dx=dx*2 
dt=dt*2 
i=98 
p 2 ( i -1 ) =p z (2) 
t2(i-1)=tz(2) 
u2( i-l )=uz (2) 
z2(i-1)=zz(2) 
w2 ( i -1 ) =w % ( 2 ) 
zt2( i-l )=ztz (2) 
ro2( i-l )==1"0% (2) 
as2(i-l)=asz(2) 
h t2 ( i -1 ) =h t z (2 ) 
call sub4(p2, t2, u2,dx,pp2, tt2,uu2, tc, pc,r,ar,f, d, cp, pi, 

~f. st, tw, g, dt, i, z2, zp2, zt2, 1"02, w2, as2, ht2, th) 
k=3 
j2=(j1/2)*2 
if(j2. eq. jl) goto 41. 
i=113 
pz(:p=p2(i) 
uz(3)=u2(i) 
tz(3)=t2(i) 
zz(3)=z2(f) 
ztz(3)=zt2(i) 
roz(3)=r02(i) 
a·s z (3) =a 52 ( i ) 
htz(3)=ht2(i) 
wz(3)=1JI2(i) 
call sub3(p2, t2, 1.12, dx, pp2, tt2, u 1J2l.tc, pc, 1", ar, f, d, cp, pi, 

lY. st, tw, g, d,!;, i, z2, zp2, zt2, 1"02, UJ2, as2, ht2, th) 
goto 32 

41 jl=j1/2 
dx=dx*2 
dt=dt*2 
do 42 ii=l,120 
i=ii 
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-
call sub4(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, r, ar, f, d, cp, pi. 

~~ st, tw, g, dt, i. z2, zp2, zt2, ro2, w2, a52, ht2, th) 
42 continue 

i=113 
dx=dx/2 
dt=dt/2 
call 5ub6(p2, t2, 1)2, dx, pp2, tt2. \.IIJ2, tc. pc, r, ar, f, d, cp, pi. 

~1. st. tw, 9' !:It, i. z2. zp2. zt2, ro2,lU2, as2, ht2, th, pz, tz, U1, zz. 
~1. ztz, roz, c3!:>:l, htz, wz, k) 

dx=dx*2 
dt=dt*2 
i=114 
p2(i-1)=pz(3) 
t2( i-1 )=tz (3) 

u2( i-1 )=uz (3) 
z2( i-1 )=zz (3) 

w2(i-1)=wz(3) 
zt2( i-1 )=z"l;z (3) 
r02( i-1 )==rOI (3) 

as2( i-1 )==ClSZ (3) 

h t2 ( i -1 ) =h t I (3) 
call slIb4(p2, t2, u2, dx, pp2, t"1;2, U\.l2, tc, pc, r, ar, f, d, cp, pi, 

~1. st, tw, 9' dt, i, z2, zp2, zt2, ro2, w2, as2, ht2. th) 
k=4 
j2=(j1/2)*2 
if(j2. eq. jl) goto 44 
i=121 
pz(4)=p2(U 
uz(4)=u2(i) 
tz(4)=t2(i) 
zz(4)=z2U) 
ztz(4):::zt2(i) 
roz(4)==ro2(i) 
as z ( 4) =a 52 ( i ) 
htz(4)=ht2(i) 
w z ( 4 ) =uJ2 ( i ) 
call sub3(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, T', ar, f, d, cp, pi, 

~~ 5 t, t lL', g, cl t, i, z 2, z P 2. z t 2, r 02, w2, as 2. h t 2, t h ) 
goto 32 

44 j1=j1/2 
dx=dx*2 
dt=dt*2 
do 4~ i i=l, 124 
i=ii 
i "F ( i. 1 e. 12~D 9 Cl t Cl 45 
call sub4(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, r, ar, f, d, cp, pi, 

& st f tw, 9' dt, i. z2, zp2, zt2, ro2, w2, as2, ht2, th) 
45 continue 

i=121 
dx=dx/2 
dt=dt/2 
call sub6(p2, t2. u2, dx, pp2, tt2, uu2, tt, pc, r, ar. f, d. cp, pi, 

~1. "st, tw. 9' dt. i, z2, zp2, zt2, ro2, w2, as2. ht2, th, pz, tz, uz. zz, 
'l~ ztz. roz, asz, tltz. wz, k) 

dx=dx*2 
dt=dt*2 
i=122 
p2(i-l)=pz(4) 
t2( i-1 )=1;z (4) 
u2( i-1 )=uz (4) 

z2( i-1 )=z z (4) 
w2 ( i -1 ) =un; ( 4 ) 
z t2 ( i -1 ) = z t z ( 4 ) 
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a s2 ( i -1) =a s z (4) 
ht2(i-l)=htz(4) 
call sub4(p2, t2, u2, dx, pp2, tt2, uu2, tt, pc, 1', ar, f, d. cp/ pi, 

~I, st, tw, g, dt, it z2, zp2, zt2, 1'02, Ul2, as2, ht2, th) 
k=S 
j2=(j1/2)*2 
if(j2. eq. jl) gato 47 
i=125 
pz(S)=p2(i) 
uz(S)=1I2(i) 
tz(S)=t2(i) 
zz(S)=z2(i) 
ztz(5)=zt2(i) 
l' a z ( 5) =T' 02 ( j ) 

asz(5)=as2(i) 
htz(5)=ht2(i) 
w z ( 5 ) =uI2 ( i ) 
call sub3(p2. t2. u2, dx, pp2, tt2, uu2, tc, pc/ 1', ar,.p, cl. cp, pi, 

~-< st, tw. 9, dt, it z2, zp2, z 1;2,1'02, w2, as2, ht2. th) 
gato 32 

47 j1=j1/2 
i=125 
call sub6(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, 1', ar, f, d, cp, pi, 

~I, st, tw, gi dt, it z2, zp2, zt2, 1'02, w2, as2, ht2, th, PI, tz, uz, IZ, 

1.-< ztz, 1'01, aS2, htz, wz, k) 
dx=dx*2 
dt=dt*2 
i=126 
p2(i-l)=pz(S) 
t2(i-1>=tz(5) 
u2( i.-1 )=uz (5) 
z2(i-l)=zz(5) 
w2(i-l)=wz(5) 
zt2(i-l)=ztz(5) 
r02(i-1)==roz(5) 
as2(i-l)=asz(S) 
ht2( i-1 )::ht+ (5) 

call sub4(p2, t2, 1I2, dx, pp2, tt2, lIu2. tc, pc, 1', ar, -F, d, cp, pi, 
:!-< st, tu)' 9, dt, it 22, zp2, z't2, 1'02, w2, as2, ht2, th) 

k=6 
j 2= ( j 1/2) *~~ 
if(j2. eq. jU goto 50 
i=127 
pz(6)=p2(i) 
uz(6)=u2(i) 
tz(6)=t2(i) 
z z ( 6,> = 2 2 ( i > 
ztz(6)=zt2(i> 
roz(6)=r02(i) 
asz(6)=as2(i) 
htz (6)=ht2( i) 
wz(6)=Ul2(i) 
call sub3(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, 1', ar, f, d, cp, pi, 

& sf;, tw, g, dt, it z2. zp2. zt2, 1'02. w2, as2, ht2. th) 
goto 32 

50 jl=jl/2 
dx=dx*2 
dt=dt*2 
d a 51 i i = 1 , m2-1 
i=ii 
if(i. le. 128) goto 51 
call sub4(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, T', aT', f, d, cp, pi, 

~I, st, tw, 9' dt, i, z2, zp2, zt2, ro2, w2, as2, ht2, th) 
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i=127 
dx=dx/2 
dt=dt/2 
call sub6(p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, r, ar, f, d, cp, pi, 

~~ st, tw .. g, dt, i, z2, zp2, zt2, ro2, w2, as~!, ht2, th, pz, tz, LIZ, ZZ, 

~~ ztz, roz, asz, htz, wz, k) 
dx==dx*2 
dt=dt*2 
i=128 
p2(i-1)=pz(6) 
t2( i-1 )=tz (6) 

u2(i-l)=uz(6) 
z2(i.-l)=zz(6) 
w2(i-1)==wz(6) 
zt2(i-l)=ztz(6) 
ro2( i-I )=:roz (6) 
as 2 ( i -1. ) :;:0) S Z ( 6 ) 
h t2 ( i -1 ) :::a 5 Z ( 6 ) 
call 5ub4(p2, t2, u2, dx, pp2, tt2, IJtJ2, tc, pc, r, ar, f, d, cp, pi, 

~-I. st, tw, g, <ft, i, z2, zp2, zt2, ro2, w2, as2, ht2, ·th) 
i=m2 
call down1 (p2, t2, u2, dx, pp2, tt2, uu2, tc, pc, r, aT', th, f, d, cp, pi, 

~~ st, tw, 9' dt, i, z2, 2p2, zt2, ro2, UJ2, as2, ht2) 
32 do 60 i=l,ml 

p1(i)=ppl(i) 
tlU)=ttl(ij 
u 1 ( i ) =u u 1 ( i i 

60 continue 
do 59 i=L m2 
if(12.eq.0.O) gate 59 
p2(i)=pp2(i) 
t2( i )=tf;2( i j 

u2(i)=uu2(i) 
59 coni;inlJe 

if(ti. 1"1;. (6~~di;1» gotQ 70 
70 continlJe 

jk=l 
if ( t is. le. t"m) got 0 53 
print*, ' 
pT'int*, f 

print'l"I-, f 

stop 
end 

End o'P run' 
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c 

c 

subroutine steadl (pi, t1, u1, zl, rol, r, e, d, pc, tc, th, f, g, 
~~ pi, dx1.ml,nl> 

c This subroutine calculates steady isothermal flow 
c along pipe 1. (upstream of the break) 
c 

c 

c 

implicit d(JIJble precision (a-h,o-z) 
dimension pl(300), lI1(300),rol(300), zl(300), tl(300) 

pri.nt*, 'inii;ial conditions reltuired:-' 
print*, 'ini.1:ial temperature along the pipe (celcius) I 

read*, tl(1) 
tl (1 )=tl (1 )+273.16 
print*, 'initial pressure at upstream end of pipe (kpa) I 

read*, plO) 
pl(I)=pl(I)*lOOO 
print*, 'mass flow rate through the pipe (kg/s) I 

read*, flow 

zl(I)=9*tc/(128*tl(1»-27*tc**3/(64*tl(I)**3) 
zl(l)=zl(l)*pl(l)/pc +1 
rol(I)=pl(I)/(zl(l)*r*tl(l» 
e=flow!(.25*pi*d*d) 
ul (1 )=e/rf.:>1 (1) 

c 

c 

c 

do 2 i=1,ml-1 
if (i. ge. (ml-126» gete 3 
dx=dxl 

1 if(floUJ. elt. O. 0) gate 9 
aa=f*e*dx/(4.0dO*d)+e 
bb=f*e*dx*ul(i)/(4.0dO*d)+dx*rol(i)*g*dsinCth)/2.0dO 
bb=bb-e*ul(i)-pl{i) 
cc =e * r1 x *g *d sin ( t h ) 12. Od O+e*'r * t 1 ( i ) * z 1 ( i ) 
ul(i+l)=(-bb-ds ltrt (bb*bb-4*aa*cc»/(2*aa) 
rol(i+l)=e/ul(i+l) 
pl(i+l)=rolCi+l)*zl(i)*r*tl(i) 
zl(i+l)=9*tc!(128*tl(i»-27*tc**3/(64*tl(i>**3) 
zl(i+l)=zl(i+l)*pl(i+l)/pc +1 
tU i+1)=tl (i) 

gote 2 

9 ul(i+l)=O.O 

3 

4 

5 

6 

7 

pl(i+l)=pl(i)-dxl*dsin(th) 
tl(i+l)=t;l(i) 
zl(i+l)=9*tc/(128*tl(i»-27*tc**3/(64*tl(i>**3) 
zl(J+l)=zl(i+l)*pl(1+1)/pc+l 
rel(i+l)=plCi+l)/(zl(1+1)*r*tl(i+l» 
goto 2 

if (i. ge. (ml-124,» gote 4 
dx=dxl/2. 
gote 1 
if (i.ge. (ml-120) ) g ote) 5 
dx=dxl/4. 
gato 1 
if (1. gP.. (1111-112» gato 6 
dx=dxl/8. 
gete 1 
if ( i. 9 e. (m 1-96) ) gCJto 7 
dx=dxl/16. 
gote 1 
if ( i. 9 e. (In 1-64 ) ) gote 8 
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c 

go'co 1 

8 dx==dxl/64. 
gote 1 

2 continue 

return 
end 
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c 

c 
c 
c 
c 

c 

c 

c 

c 

subroutine stead2 (p2,t2,u2, z2,r02,r,e,d,pc, tc, th,~,g, 
~( d x I, m2, n2) 

This subroutine calculates steady isothermal flow 
along pipe 2. (downstream of the break) 

implicit double precision (a-h,o-z) 
dimension p2(300), u2(300), r02(300), z2(300), t2(300) 

do 2 i = 1, m2-! 
if (L It. 127) got 0 3 
dx=dxl 

1 if(u2(1>.eq.O.O) goto 9 
aa=f*e*dx/(4*d)+e 
bb=f*e*dx*u2(i)/C4*d)+dx*ro2(i)*g*dsin(th)/2 
bb=bb-e*u2(i)-p2(i) 
cc=e*dx*g*dsinCth)/2+e*r*t2Ci)*z2(i) 
u2(i+l)=(-bb-dsqrt(bb**2-4*aa*cc»!(2*aa) 
ro2(i+l)=e/u2(i+l) 
p2(i+l)=ro2(i+!)*z2(i)*r*t2(i) 
z2(i+!)=9*tc!(!28*t2(i»-27*tc**3!(64*t2(i)**3) 
z2(i+l)=z2(i+!)*p2Ci+l)!pc +1 
t2( i+l )=t2( i) 
goto 2 

9 u2(i+l)=O.O 

3 

4 

:; 

6 

7 

8 

2 

p2(i+l)=p2(i)-dx!*dsin(th) 
t2(i+l)=t2(i) 
z2(i+!)=9*tc/(128*t2Ci»-27*tc**3/(64*t2(i)**3) 
z2(i+l)=z2(i+l)*p2(1+1)!pc+l 
ro2(i+l)=p2(i+l)!(z2(i+l)*r*t2(i» 
goto 2 

if (LIt. 125) goto 4 
dx=dxl!2 
goto 1 
if (LIt. 121> goto :5 
dx=dx!/4 
goto 1 
if (L It. 113) goto 6 
dx=dxl!8 
gote 1 
if (1. It. 97) goto 7 
dx=dxl/16 
goto 1 
if (1. 1 t. 65) gota 8 
dx=dxl!32 
gate 1 
dx=dx1!64 
gato 1. 
continue 

continue 
return 
end 
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c 

c 
r.: 
c 
c 

c 

~~ 

~~ 

subroutine subl(pl, tl, IJI, dx, ppl,ttl, uul, tc, pc, r, 
a r, f, d, c p, pits t I till, 9 I cl t, ;., z 1, 7. (J 1, 1. t 1, T' 01, \1J 1, as 1 , 
htl, 1;h) 

T his 5 u bra uti nee a 1 c: IJ 1 a t f..' 5 p, t Cl n d IJ a t nor ma 1 
internal points upstream of the break. 

implicit double precision (a-h/o-z) 
parameter(ni = 300) 
dimension pl(nii, tl(ni), u1(ni>, zl(ni), 

~~ ztl(ni),!Ul(ni),asl(ni),htl(ni)/ppl(ni), 
~1. ttl<ni>, uul(ni), zzl(ni>, 1.zpl(ni>, zztl<ni>, 
::-1. r r 0 1 ( n i > , WIU 1 ( n i ) , a a s 1 (n i ), h h t 1 ( n i > , 
~< 13(9), b(3), ro1(ni), zp1Cni) 

integer 11(3),mrn(3), count 

c First order approximation 
c 

c 

c: 

if(u1<ii.eq.O.O) goto 20 
if(ul(i-l). eq. o. 0) goto ~W 
posq=2*dt/(1/ul(i)+1/ul(i-l» 
goto 22 

20 posq=dt*Cul(i)+ul(i-l»/2 
22 posr=dt*2/(1/Cul(i)+asl(i»+1/(ul(i-l)+asl(i-l») 

poss=dt*2/(1/(asl(i>-ul(i»+1/(asl(i+I>-ul(i+l») 

pq=posq/dx*pl(i-l)+(l-posq/dx)*plCi> 
tq=posq/dx*tl(i-l)+(l-posq/dx>*tl(i) 
uq=posq/dx*ul(i-l>+(l-posq/dx)*ulCi) 
zq=posq/dx*zl(i-l)+(l-posq/dx>*zl(i) 
ztq=posq/dx*ltl(i-l)+(l-posq/dx)*ztl(i) 
roq=posq/dx*rol(i-l)+(l-posq/dx)*rol(i) 
asq=posq/dx#asl(i-l)+(l-Posq/dx)*asl(i) 
htq=posq/dx*htl(i-l)+(l-posq/dx)*htl(i) 
wq=posq/dx*wl(i-l)+(!-posq/dx>*wl(i) 
pr=posr/ux*pl(i-l)+(l-posr/dx>*pl(i) 
tr=posr/dx;tl(1-1)+(1-posr/dx)*tl(i) 
ur~posr/dx*ul(i-l)+(l-pasr/dx)*ul(i) 
zr=posr/dx*zl(i-l)+Cl-posr/dx)*zl(i) 
ztr=posr/dx*ztl(i-l'+(l-posr/dx)*ztl(i) 
ror=posr/dx*rol(i-l)+(l-posr/dx)*rol(i) 
asr=posr/dx*asl(i-l)+(l-posr/dx)*asl(i) 
htr=posr/dx*htl(i-l)+(l-posr/dx)*htl(i) 
wr=posr/dx*wl(i-l)+(1-pD5r/~x)*wl(i) 
ps=poss/dx*pl(i+l)+(l-poss/dx)*pl(i) 
ts=poss/dx*tl(i+l)+(l-poss/dx)*tl(i) 
us=poss/dx*ul(i+l)+(l-poss/dx>*ul(i) 
zs=poss/dx*zl(i+l)+(l-poss/dx)*zl(i) 
zts~pos5/dx*2tl(i+l)+(1-poss/dx)*ztl(i) 
ros=poss/dx*rol(i+l)+(!-poss/dx)*rol(i) 
ass=poss/dx*asl(i+l)+(l-poss/dx)*asl(i) 
hts=poss/dx*htl(i+l)+(l-poss/dx)*htl(i) 
ws=poss/dx*wl(i+l)+(l-poss/dx)*wl(i) 

xl=asr*dt*(l+tr*ztr/zr)/(ror*cp*tr*ar) 
x2=ass*dt*(1+ts*zts/zs)!Cros*cp*ti*ar) 
a(1)=-Cl+tq*ztq/zq)/Croq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
a ( 2 ) ::-: 1 + W q * u q * cl t; I' ( 2 * T' 0 q -11. C P * a r * t q ) 
a(3)=-UJq*dt/(roq*cp*ar) 
a(4)=1/(ror*asr)-wr*ur*xl/(2*pr)+wr*dt/(2*ar*ror*pr) 
a(S)=wr*ur*xl/(2*tr)-wr*dt/(2*ar*ror*tr) 
a(7)=-I/(ros*ass)+ws*us*x2/(2*ps)+ws*dt/(2*ar*ros*ps) 
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c 

c: 

c 

If(Ur.fHI..O.-O)goto 2 
ifCus.eq.O.O) goto 2 
a(9)~1+ws*x2+ws*dt!(ar*rDs*us) 
a(6)=1-wr*xl+wr*dt/Car*ror*ur) 
gotfJ 1 

2 a(6}=1 
a(9)=1. 

1 b(l)=htq*dt/(roq*cp*ar)+tq-pq*(l+tq*ztq/zq)/(rDq*c~) 
b (2 ) =h t r * x 1 +Ul' +p l' ! (r 0 r *a s r ) - 9 ·,f-d t *d sin ( t h ) 
b(3)=-hts*x2+us-ps/(ros*ass)-g*dt*dsin(th) 

call dminv(;,;), 3, det, 11, mm) 
i·F(det. ne. O. O)gCJto 9 
UJr i t e ( 6, 30) i 

30 formate 'pipe1 i=',13) 
stop "no inverse" 

9 ppl(i)=a(1)*b(1)+a(2)*b(2)+a(3)*b(3) 
ttl(i)=aC4)*b(1)+a(5)*b(2)+a(6)*b(3} 
uul(i)=a(7)*b(1)+a(8)*b(2)+a(9)*b(3) 
count=O 
psave=ppl(i) 
tsave=ttl(i) 
usave=ulJl ( i j 

pdif=ppl(i)*1000 
tdif=ttl(i)*1000 

10 zzl(i)=9*tc/(128*ttlCi»-27*tc**3/(64*ttl(i>**3) 
zzl(i)=zzl(i)*ppl(i)/pc+l 
zzpl(i)=(zzl(i)-l)/ppl(i) 
zztl(i)=81*tc**3/C64*ttl(i)**4)-9*tc/C128*ttl(i>*ttl(i» 
zztl(i)=zztl(i)*pplCi)/pc 
rrol(i)=ppl(i)/(r*ttl(i)*zzl{j» 
wwl(i)=dabs(a1'*rrol(i)*f*uul(i)*uulCi»/(2*d> 
aasl(i)=«1+zztl(i)*ttl(i)/zzl(i»**2>*ppl(i) 
aasl(i>=aasl(iJ!Crrol(i>*ttl(i>*cp)+zzpl(i>*ppl(i)/zzl(i) 
aasl(i)=(l-aasl(i»*rrol(i)/ppl(i) 
aasl(i)=l/dsqrt(dabs(aasl(l») 
hhtl(i)=pi~cp*st*d*rrDl(i)*uul(i)*(tw-ttl(i» 

count=count + 1 

c Second order procedure 
c 

c 

if(uq.eq.O.O) 9 01;021 
if(uul(i). eq. O. 0) go'~o 21 
posq=2*dt/(I/uq+l/~ul(i» 

goto 23 
21 posq=dt*(uq+uul(1»/2 
23 pos~=2*dt/(1/(ur+asr)+1/(uul(i>+aasl(i») 

poss=2*dt/Cl/Cass-us)+1/(aasl(i)-uul(i») 

pq=pl(i)-posq*<plCi+l)-pl(i-l»/(2*dx) 
tq=tl(i)-posq*(tl(i+l)-tl(i-l»/(2*dx) 
uq=ul(i)-posq*(ul(i+l)-ul(i-l»/(2*dx) 
zq=zl{i>-posq*(zl(i+l)-zl(i-l»/(2*dx) 
ztq=ztl(1)-posq*(ztl(i+l)-ztl(i-l»/(2*dx) 
roq=rol(i)-posq*Crol(i+l)-rol(i-l»/(2*dX) 
asq=asl(i)-posq*(asl(i+l)-asl(i-l»/(2*dx) 
htq=htl(i)-posq*(htl(i+l)-htl(i-l»/(2*dx) 
wq=wl(i)-posq*(wl(i+l)-wl(i-l»/(2*dx) 
pr=pl(i)-posr*(pl(i+l)-pl(i-l»/(2*dx) 
tr=tl(i)-posr*(tl(i+l)-tl(i-l»/(2*dx> 
ur=ul(i)-posr*(ul(i+l)-ul(i-l»/(2*dx) 
zr=zl(i)-posr*(zl(1+1)-zl(i-l»/(2*dx), 
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c 

c 

"~- -

ror=rol(i)-posr*(rol(i+l,-rol(i-l')/(2*dx) 
asr=asl(i)-posr*(asl(i+l)-asl(i-l»/(2*dx) 
htr=htl(ij-posr*(htl(i+l>-htl(i-l»/(2*dx) 
wr=wl(ij-posr*(wl(i+l)-wl(i-l»/(2*dx) 
ps=pl(i'+poss*(pl(i+l)-pl(i-l)'/(2*dx) 
ts=tl(i)+puss*(tl(i+l)-tl(i-l»/(2*dx) 
us=ul(i)+poss*(ulCi+l)-ul(i-l»/(2*dx) 
zs=zl(i)+poss*(zl(i+lJ-zl(i-l»/(2*dx) 
zts=ztl(i)+poss*<ztl(i+l)-ztl(i-l»/(2*dx) 
ros=rol(i)+poss*(rol(i+l)-rol(i-l»/C2*dx) 
ass=asl(i)+poss*(asl(i+l)-asl(i-l»/(2*dx) 
hts=htl(i)+poss*(htl(i+l)-htl(i-l»/(2*dx) 
ws=wl(i)+poss*(wl(i+l)-wl(i-l»/(2*dx) 
pq=pq+posq*posq*(pl(i+l,+pl(i-l)-2*pl(i»/(2*dx*dx) 
tq=tq+posq*posq*<tl(i+lj+tl(i-lJ-2*tl(i»/(2*dx*dx) 
uq=uq+posq*posq*(ul(i+l)+Ul(i-l)-2*ul(i»/(2*dx*dx) 
zq=zq+posq*posq*(zl(i+l)+zl(i-l)-2*Zl(i»/(2*dx*dx) 
ztq=ztq+posq*POSq*(ztl(i+l)+ztl(i-l)-2*ztl(i»/(2*dx*dx) 
roq=roq+posq*posq*(rol(i+l)+rol(i-l)-2*rol(i»/(2*dx*dx) 
asq=aSQ+pOsq*pOsq*(asl(i+1)+asl(i-1)-2*asl(i»/(2*dx*dx) 
htq=htq+posq*posq*(htl(i+l)+htl{i-l)-2*htl(i»/(2*dx*dx) 
wq~wq+posq*posq*(wl(i+l)+wl(i-l)-2*wl(i»/(2*dx*dx) 
pr=pr+posr~posr*(pl(i+l)+pl(i-l)-2*pl(i»/(2*dx*dx) 
tr=tr+posr*posr*(tl(i+l)+tlCi-l)-2*tl(i»/(2*dx*dx) 
ur=ur+posr*posr*(ul(i+l)+ul(i-l)-2*ul(i»/(2*dx*dx) 
zr=zr+posr*posr*(zl(i+l)+zl(i-l)-2*zl(i»/(2*dx*dx) 
ztr=ztr+posr*posr*(ztl{i+l)+ztl(i-lJ-2*ztl(iJ)/(2*dx*dx) 
ror=ror+posr*posr*(rol(i+l)+rol(i-1J-2*rol(i»/C2*dx*dx) 
asr=asr+posr*posr*(Bsl(i+l)+asl{i-l)-2*asl(i»/(2*dx*dx) 
htr=htr+pOSr*posr*(htlCi+l)+htl(i-l)-2*htlCi»/C2*dx*dx) 
wr=wr+posr*posr*(wl(i+l)+wl(i-l)-2*wlCi»!(2*dx*dx) 
ps=ps+poss*poss*(pl{i+l)+pl(i-l)-2*plCi»/<2*dx*dx) 
ts=ts+poss*poss*<tl(i+l)+tl(i-l)-2*tl(i»!C2*dx*dx) 
us=us+poss*poss*Cul(i+l)+ul(i-l)-2*ul(i»/(2*dx*dX) 
ZS=zS+poss*poss*(Zl(i+l)+Zl(i-l)-2*zl(i»/(2*dx*dX) 
ztS=ztS+poss*poss*(ztl(i+l)+ztl(i-l)-2*ztl(i»/(2*dx*dx) 
ros=ros+po~S*poss*(rol(i+l)+rol(i-l)-2*rol(i»/(2*dx*dx) 
ass=ass+posa*poss*(asl(i+l)+asl(i-l)-2*asl(i»/(2*dx*dx) 
hts=hts+poss*poss*Chtl(i+l)+htl(i-l)-2*htl(i»/(2*dx*dx) 
IUS=UJS+pOSS'l!-p OSS* (wl (i+ 1) +w1. (i-l )-2*'.111 (i) ) / (2*d x*d x) 

a(l)=-(l+ttl(i)*zztl(i)/zzl(i»/rrol(i) 
a(1)=(a(1)-(1+tq*ztq/zq)/roq)/(2*cp) 
13(2)=1. 0 
a(3)=O.O 
a(4)=(1/Cror*asr)+1!(rrol(i)*aasl(i»)/2 
a(5)=O.0 
a(6)=1. 0 
a(7)=(-1/(ros*ass)-1/(rrol(i)*aasl(i»)/2 
<3(8)=0.0 
<3(9)=1. 0 

bCl)=(htq+wq*uq)/roq+(hhtl(i)+wwl(i>*uul(i»/rrol(i) 
b(1)=b(1)*dt/(2*cp*ar)+a(1)*pq+tq 
b(2)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i» 
b(2)=b(2)*a~sl(i)/(r~ol(i)*ttl(i». 
b(2)=(b(2)+asr*(1+tr*ztr/zr)*(htr+wr*ur)/(ror*tr»/cp 
b(2)=(b(2)-(wr/ror+wwl(i)!rrol(i»)*dt/(2*ar) 
b(2)=b(2)-g*dt*dsin(th)+~(4)*pr+ur 
b(3)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i» 
b(3)=b(3)*aasl(i)/(rrol(i)*ttl(i» 
b(3)=(-b(3)-ass*<1+ts*zts/zs)*(hts+ws*us)/(ros*ts»/cp 
b(3)=(b(3)-(ws/ros+wwl(i)/rrol(i»)*dt/(2*ar) 

? 1.. 7 



c 

call dill i. n v ( a, 3, de t, 11, mill) 
if(det. ne.O. 0) goto 12 
write(6,31> i 

31 -Format( 'pipe 1 (2nd o-r·der) i=', i3) 
stop "no inverse" 

12 pit=a(1)*b(1)+a{2)*b(2)+a{3)*b(3) 
tit=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uit=a(7)*b(1)+a(S)*b(2)+a(9)*b{3) 
difp=dabsCppl(i)-pit)/pit 
dift=dabs(ttl(i)-tit)/tit 
i f ( [ Cl LJ n \;. g 1;. 200) g Cl t Cl 1. 5 
if(difp. gt.O.Ol) go\;o 13 
if(dift. It. 0.01) goto 14 

13 ppl(i}=pit: 
ttlU)=tit 
uul(ii=uit 
pdif=r.fifp 
tdif=dift 
goto 10 

15 write(6, 16>i 
16 formut( '5l/bl - no itel"ation fOT' i=', i4,' in pipe 1') 
14 pp 1 ( i) =p"i t 

ttl(i)::tit 
uu1(i)=uit 
return 
end 
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C 

.~----' ,--- _.-. - -

subrolJtine 'Sub2(pl., -1;1, u1. dx, pp1, 'ctl, uul, tc, pc, r. 
~Y: ar,'. cl, cp. pi, st, tw. g, dt. j" 1.1, 1.pl, zt!, rol, 1U1, as1, 

~~ htl, th > 

t.: this subroutine calr.uli::ltes p, t and u at internal 
c boundary points between different grid sizes. 
c 

c 

implicit double precision (a-h,o-z) 
dimension p1.(300J, t1(300), u1(300), z1(300), 

~~ z t 1 (300) , wl (300) , as 1 (:300 J , h t 1 ( 300 " pp 1 ( 300 J , 
~~ t t 1 (300) , u u 1 (:300), z z 1 (300), z z p 1 (300), z z t 1 (300) , 
~ rrol(300J,wwl(300i,aasl(300J,hht1(300J, 
~~ a ( 9 ) , b ( 3 ) , r 01 (300 ) , z p I ( 300 ) 

i n t e gel' 1 1 (3 i , mm ( 3 i , COLI n t 

c first order approximation 
c 

c: 

c 

if(ul(U.eq.O.O) goto 20 
if ( u 1 ( i-I J. e q. O. 0) got 0 20 
posq=2*dt/(1/ul(iJ+l/ul(i-l» 
goto 22 

20 posq=dt*(ul(i)+ul(i-l»/2 
22 posr=dt*2/(1/(ul(i,+asl{i)'+1/(U1(i-1J+asl(i-1») 

p05s=dt*2/Cl/(asl(iJ-ul(iJJ+l/(as1(i+l)-ul(i+l») 

pq=Posq/(2*dx>*pl(i-l'+(1-posq/{2*dx»*pl(iJ 
tq=posq/(2*dx)*tl(i-!)+(1-posq/(2*dx»*t1(i) 
uq=posq/(2*dx)*ul(i-lJ+(1-posq/(2*dx)'*ul(i) 
zq=poSq/(2*dx>*zl(i-lJ+(1-posq/(2*dx»*zl(i) 
ztq=posq/(2*dxJ*zt1(i-l)+(1-posq/(2*dx»*zt1(i) 
roq=posq/(2*dx>*rol(i-l'+(l-Posq/(2*dx)J*rOl(i) 
asq=posq/(2*dx)*asl(i-lJ+(l-posq/(2*dx»*aSl(i) 
htq=posq/(2*dx>*htl(i-l)+(1-posq/(2*dx»*htl(i) 
wq~posq/(2*dxJ*wl(i-l'+(1-posq/{2*dx»*wl(i) 
pr=posr/(2*dx>*pl(i-l)+(1-posr/(2*dx»*pl(i) 
tr=posr/(2*dx)*tl(i-l)+(1-posr/(2*dx»*tl(i) 
ur=posr/(2*dx)*ul(i-l)+(1-posr/(2*dx»*ul(i) 
zr=posr/(2*dx)*z!(i-1)+(1-posr/(2*dx»*zl(i) 
ztr=posr/(2*dx)*ztl(i-l)+(1-posr/(2*dx»*ztl(i) 
ror=posr/(2*dx)*rol(i-l)+(1-posr/(2*dx»*rol(i) 
asr=posr/(2*dx>*asl(i-l)+(1-posr/(2*dx»*asl(i) 
htr=posr/(2*dx)*htl(i-I)+(1-posr/(2*dx»*htl(i) 
wr=pasr/(2*dx)*wl(i-l)+(1-posr/(2*dx»*wl(i) 
ps=poss/dx*pl(i+l'+(l-poss/dx)*pl(i) 
ts=poss/dx*tl(i+l)+(!-poss/dx)*tl(i) 
us=poss/dx~ul(i+l)+(l-poss/dx>*ul(i) 
z 5 == p' 0 s s / cl x * z 1 ( i + 1 i + ( 1-P 0 S s / d x ) * z 1 ( i ) 
zts=po5s/dx*ztl(i+l)+(1-poss/dx)*ztl(i) 
ros=poss/dx*rol(i+l)+(1-poss/dx)*ro1(i) 
ass=poss/dx*asl(i+l)+{l-poss/dx>*asl(i) 
hts=poss/dx*htl(i+l)+(l-poss/dx>*htl(i) 
UJ s == p 0 S 5 / d x *w 1 C :i + 1 ) + ( 1-po ss/ d x J ~'w 1 ( i > 

xl~asr*dt*(l+tr*ztr/zr)/Cror*cp*tr*ar) 
x2=ass*dt*(1+ts*zts/zs)/Cros*cp*ts*ar) 
a(1)=-(1+tq*ztq/zq)/(roq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
a(2)~1+wq*uq*dt/(2*roq*cp*ar*tq) 
a(3'=-wq*dt/Croq*cp*ar) . 
a(4)=1/(ror*asp)-wr*ur*x1/(2*pr)+wr*dt/(2*ar*ror*pr). 
a(5)=wr*ur*x1/(2*tr)-wr*dt/(2*ar*ror*tr> 
a(7)=-1/(ros*ass)+UJs*us*x2/(2*ps)+ws*dt/(2*ar*ros*ps) 
a(8)=-ws*us*x2/(2*ts)-ws*dt/(2*ar*ros*ts) 
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c 

c 

c 

if(us. ~q.6.b)'~~1~ 2 
a(6)=1-wr*xl+wr*dt/(ar*ror*ur) 
a(9)=1+ws*x2+ws*dt/(ar*ros*us) 
goto 1 

2 a(6'=1 
a(9)=1 

1 b(l)=htq*dt/(roq*cp*ar)+tq-pq*(l+tq*ztq/zq)/(roq*cp) 
b(2)=htr*xl+ur+pr/(ror*asr)-g*dt*dsin(th) . 
b(3)=_hts*x2+us-ps/(ros*ass)-g*dt*dsin(th) 

5 ca 11 d m in v ( a, 3 , de t;, 11, ITlIll ) 

if(det.ne.O.O)goto 9 
UJr i t e ( 6, 30) i 

30 formate 'pipel i=', i3) 
stop "no iTlVeT'Se" 

9 ppl(i)=a(1>*b(1)+a(2)*b(2)+a(3)*b(3) 
ttl(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uul(i)=a(7)*b(1)+a(S)*b(2)+a(9}*b(3) 

count=O 
psave=pp1.(i) 
tsave=ttl(ii 
usave=uul(i) 
pdif=pplii>*lOOO 
tdif=ttl(i>*1000 

10 zzl(i)=9*tc/(128*ttl(i»-27*tc**3/(64*ttl(i)**3) 
zzl(i)=zzl(i>*ppl(i)/pc+l 
zzpl(i):(zzl(i)-l)/ppl(i) 
zztl(i):81*tC**3/(64*ttl(i)**4)-9*tc/(128*ttl(i)*ttl(i» 
zztl(i>=zztl(i)*ppl{i)/pc 
rrol(i)=ppl(i)/(r*ttl(i>*zzl(i» 
wwl(i)=dabs(ar*rrbl(i>*f*uul(i)*uul(i»/(2*d) 
aasl(i)=«1+zztl(i)*ttl(i)/zzl(i»**2)*ppl(i) 
aa~l(i>=aasl(i)/(rrol(i)*ttl(i)*CP)+zzpl(i)*ppl(i)/zzl(i) 
aasl(i)=(l-aasl(i»*rrol(i)!ppl(i) 
aasl(i)=l!dsqrt(dabs(aasl(i») 
hhtl(i)=pi*CP*st*d*rrol(i)*uul(i>*<tw-ttl(i» 

count=count+l 

c second order' procedure 
c 

c. 

if(uQ.. eq. O. 0) gate> 21 
ifCuul(U.eQ .. O.O) gote> 21 
posq=2*dt/(1/uq+l!Uul(i» 
goto 23 

21 posq=dt*(uq+uul(i»/2 
23 posr=2*dt/ct/cur+asr)+1/CuulCi)+aasl(i») 

pos~=2*dt/(1!(ass-us)+1/(aasl(i>-uul(i») 

pq=pl(i_l)+(2*dX-POSq)*(pl(i>-pl(i-2»/(4*dX) 
uq=Ul(i_l)+C2*dX-POSq>*(ulCi)-Ul(i-2»/(4*dx) 
tq=tl(i_l)+(2*dX-P05q)*<tlCi)-tl(i-2»/(4*dX) 
zq=zlCi_l)+(2*dX-POSq)*(zl(i)-zl(i-2»!(4*dx) 
wq=wl(i_l)+(2*dX-POSq)*(Wl(i)-wl(i-2»/(4*dX) 
ztq=ztl(i_l)+(2*dx-posq)*(ztl(i)-ztl(i-2»/(4*dX) 
roq=rol(i_l)+(2*dX-POsq)*(rol(i)-rol(i-2»/(4*dX) 
asq=asl(i_l)+(2*dX-Posq)*<asl(i)-aSl(i-2»/(4*dX) 
htq=htl(i-l)+(2*dX-POSq)*<htl(i)-htl(i-2»/(4*dX) 
pr=pl(i_l)+(2*dx-po~r)*(pl(i)-pl(i-2»/(4*dx) 
ur~ul(i_l)+(2*dx-posr)*Cul(i)-ul(i-2»/(4*dx) 
tr=tl(i_l)+(2*dx-posr)*(tl(i)-tl(i-2»/(4*dx) 
zr=zl(i_l)+(2*dx-posr>*(zl(i)-zl(i-2»/(4*dx) 
wr=wl(i_l)+(2*dx-posr)*(wl(i)-wl(i-2»/C4*dx) 
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c 

c 

I U I run-r=TT-~2*(J X:::-posr )-)f.Crof (1) -r~oiTi -2»/ (4*~d x) 
asr=asl(i-l)+(2*dx-posr)*(asl(i)-asl(i-2»/(4*dx) 
htr=htl(i-l)+(2*dx-posr)*(htl(i)-htl(i-2»/(4*dx) 
ps=pl(i+l)-Cdx-po5s)*<pl(1+2)-pl(i»/(2*dx) 
us=ul(i+l)-{dx-poss>*(ul(i+2}-ul(i»/(2*dx) 
ts=tl(i+l)-(dx-poss)*(tl(i+2)-tl(i»/(2*dx) 
zs=zl(1+1)-(dx-poss)*(zl(1+2)-zl(i»/(2*dx) 
ws=wl(i+l)-(dx-poss>*(wl(i+2)-wl(i»/(2*dx) 
zts=ztl(i+lj-(dx-possj*(ztl(i+2)-ztl(i»/(2*clx) 
ros=rol(i+l)-(dx-poss)*(rol(i+2)-rol(i»/(2*dx) 
ass=asl(i+li-(dx-poss)*<asl(i+2)-asl(i»/(2*dx) 
hts=htl(i+l)-(dx-poss>*(htl(i+2)-htl(i»/(2*dx) 
pq=pq+(2*dx-POSq>**2*(pl(i)+pl(i-2)-2*pl(i-l»/(S*dx*dx) 
uq~uq+(2*dx-posq)**2*Cul(i)+ul(i-2)-2*ul(i-l»/(8*dx*dx) 
tq=tq+(2*dx-posq)**2*(tl(i)+tl(i-2)-2*tl(i-l»/(8*dx*dx) 
zq=zq+(2*dx-posq)**2*(z1(i)+z1(i-2)-2*Zl(i-l»/(8*dx*dx) 
wq=wq+(2*dx-posq)**2*<wl(i,+wl(i-2)-2*Wl(i-l»/(8*dx*dx) 
ztq=ztq+(2*dx-posq)**2*(ztl(i)+ztl(i-2)-2*ztl(i-l»/(S*dx*dx) 
roq=roq+(2*dx-Posq)**2*(rol<i)+rol(i-2)-2*rol(i-l»/(S*dx*dx) 
asq=asq+(2*dx-Posq)**2*<asl(i)+aslCi-2)-2*asl(i-1»/CS*dx*dx) 
htq=htQ+(2*dx-posq)**2*(htl(i)+htl(i-2)-2*htlCi-l»/CS*dx*dx) 
pr=pr+C2*dx-posr)**2*CplCi)+pl(i-2)-2*pl(i-l»/(8*dX*dxl 
ur=ur+(2*dx-posr)**2*(ulCi)+ul(i-2)-2*ul(i-l»/(8*dx*dx) 
tr=tr+(2*dx-posr)**2*<tlCi)+tl(i-2)-2*tl(i-l»/C8*dx*dx) 
zr=zr+(2*dx-posr>**2*(zl(i)+zl(i-2)-2*zl(i-l»/(S*dx*dx) 
wr=wr+(2*dx-poSr)**2*<wl(i)+Wl(i-2)-2*wl(i-l»/(8*dx*dx) 
ztr=ztr+(2*dx-posr>**2*(ztl(i)+ztl(i-2)-2*ztl(i-l»/(S*dx*dx) 
ror=ror+(2*dx-posr)**2*(rol(i)+rol(i-2>-2*rol(i-l»/(S*~x*dx) 
asr=asr+(2*dx-posr>**2*<asl(i)+asl(i-2)-2*asl(i-l»/(S*dx*dx) 
htr=htr+(2*dx-posr>**2*(htl{i)+ht1(i-2)-2*htl(1-1»/(S*dx*dx) 
ps=ps+(dx-poss)**2*(pl(i+2)+pl(i)-2*pl(i+l»/(2*dx*dX)" 
uS==lIs+ (d x··p ass) *-l~;'2*( u 1 (1+2) +u 1 (i )-2*'J1. (i+l) ) / (2*d x*d x) 
ts=ts+(dx-poss)**2*(t1.Ci+2)+tl(i)-2*tl(i+l»/(2*dx*dx) 
zs=zs+(dx_poss)**2*(zl(i+2)+zl(i)-2*z1.Ci+l»/(2*dx*dX) 
ws=ws+(dx_poss'**2*{wl{i+2'+wl(i)-2*wl(i+l»/(2*dx*dx) 
zts=zts+(dx-poss)**2*(ztl(i+2)+ztl(i)-2*ztl(i+l»/(2*dx*dx) 
ros=ros+(dx-pass>**2*(rol(i+2)+rol(i)-2*rol(i+l»/(2*dx*dx) 
,3ss=ass+ (d x"-p (55) **2"jf- C as1 ( i+2) +asl (i) -2*a5 1 ( 1+1) ) / (2*d x*d x) 
hts=hts+(dx-poss)**2*<htl(i+2)+htl(i)-2*htl(i+l»/(2*dx*dx) 

a(1)=-<1+ttl(i)*zzt1(i)/zzl(i»/rrol(i) 
a(1)=(a(1)-(1+tq*ztq/zq)/roq)/(2*cp) 
a(2)==1. 0 
13(3)=0.0 
a(4)=(1/(ror*asr)+1/(rrol(i)*aaslCi»)/2 
a(5)=O.O 
a(6)=1. 0 
a(7)=(-I/(ros*ass)-1/(rrol(i)*aasl(i)))/2 
a(S)=O.O 
a(9)=1. 0 

b Cl) == ( h t q +llJCI. * U q) Ir 0 q + ( h h "~ 1 ( i ) + Will 1 ( i ) *u u 1 ( i ) ) /rr 01 ( i ) 
b<lj=b(1)*dt/(2*cp*ar)+a(1)*pq+tq 
b(2)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(1)+wwl(i)*uul(i» 
b(2)=b(2)*aasl(i)/(rrol(i)*ttl(i» 
b(2)=(b(2)+asr*(1+tr*ztr/zr)*(htr+wr*ur)/(ror*tr»/cp 
b(2)=(b(2)-(wr/ror+wwl(i)/rrol(i»)*dt/(2*ar) 
b(2)=b(2)-g*dt*dsin(th)+a(4)*pr+ur 
b(3)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i» 
b(3)=b(3)*aasl(i)/(rrol(i)*ttl(1» 
b(3)=(-b(3)-ass*(1+ts*zts/zs)*(hts+ws*us)/(ros*ts»/~P 
b(3)=(b(3)-Cws/ros+wwl(i)/rrol(i»)*dt/(2*ar) 
b(3)=b(3)-g*dt*dsinCth)+aC7)*ps+us 
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~~~~~ ------ --" ... ,~. -

c a I I din i n v ( a, 3, de t, 11, mm) 

c 

if(det. ne. O. 0) goto 12 
wr it e (6, 31) i 

31 formate 'pipe2 (2nd order) i=', i3) 
stop "no inveT'se" 

12 pit=a(1)*b(1)+a(2)*b(2)+a(3)*b(3) 
tit=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uit=a(7)*b(1)+a(S)*b(2)+a(9)*bC3) 
difp=dabs(ppl(i)-pit)/pit 
dift=dabs(ttl(t)-tit)/tit 
if ( co t/ n 1;. 9 t. 200) got 0 15 
i.f(difp. gt. O. ()1) goto 13 
if(dift. It. O. 01) gato 14 

13 ppl(i)=pit 
tt1(i)=tic 
IJ u 1< i) =u i t 
pdif=difp 
tdif=dift 
goto 10 

15 wr i t e ( 6, 16) i 
16 TOl'mat( 'sub2 - no iteration for i=', i4, ' in pipe 1 (sub2)') 
14 ppl(i)=pit 

tt1(i)=tit 
uu1U)=uit 
return 
end 
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t: 

c 
c 
c 
c: 

c 

subroutine sub3(p2, t2, 112, dx, pp2, tt2, uu2, tc, pc, r, 
~-I. a r, f, d, c p, pi, s t, t 1!J, g, d t, i. z 2, z P 2, z t 2, r 02, \u2, as 2, 
~< ht2, th) 

This subroutine calculates p, t and u at internal 
boundary points between different grid sizes in pipe 2. 

. imp 1 i c i t d 0 ubI e p T' e c i s ion (a - h, 0 - z ) 
dimension p2(300), t2(300), u2(300), z2(300), 

& zt2(300),w2(300),as2(300),ht2(300), pp2(300), 
~~ tt;~!(300), UI.I~~(300), Zl;;~(.30(), Izp2(300), 1l:t2(300), 
& rro2(300J,ww2(300),aas2(300),hht2(300), 
~~ a(9), b(3),l'o2(300), t.p~·:~(300) 

integer 11 (3), mm(~n, count 

C First order approximation 
c 

posr=dt*2/(1/(u2(i)+as2(i»+1/(u2Ci-l)+as2(i-l») 
poss=dt*2/(1/(as2(i)-u2Ci»+1/Cas2Ci+l)-u2(i+1J» 
pr=posr/dx*p2(i-l)+(1-posr/dx>*p2(i) 
tr=posr/dx*t2(i-l)+(1-posr/dx)*t2(i) 
ur==posT'/d x*u2( i··1 ,+( 1-posr/d x )*u2( i) 

zr=posrrdx*z2(i-1)+(1-posr/dx)*z2Ci) 
ztr=posr/dx*zt2(i-l)+(1-posr/dx)*zt2(i) 
ror=posr/dx*ro2(i-l)+(1-posr/dx)*ro2(i) 
asr=posr/dx*as2(1-1)+(1-posr/dx)*as2Ci) 
htr=posr/dx*ht2(i-1)+(1-posr/dx)*ht2(i) 
wr~pasr/dx*w2(i-l)+(1-posr/dx)*w2(i) 

ps=pass/(2*dx)*p2(i+1)+(1-pass/(2*dx»*p2(1) 
ts=poss/(2*dx)*t2(i+l)+(1-poss/(2*dx»*t2Ci) 
us=poss/C2*dx)*u2(i+l)+(1-poss/(2*dx»*u2(1) 
zs=pass/(2*dx)*z2(i+l)+(1-po5s/(2*dx»*z2Ci) 
zts=poss/(2*dx)*zt2(i+l)+(1-poss/(2*dx»*zt2(i) 
ros=poss/(2*dx)*ro2(1+1)+(1-poss/(2*dx»*ro2(i) 
ass=pass/(2*dx)*as2(i+l)+(1-poss/(2*dx»*as2(i) 
ht5=poss/(2~dx)*ht2(i+l)+(1-poss/(2*dx»*ht2(i) 

ws=poss/(2*dx)*m2(i+l)+(1-poss/(2*dx»*w2(i) 
xl~asr*dt*(1+tr*ztr/zr)/(ror*cp*tr*ar) 

X2=c3SS*dt*( l+ts*zts/zs)/ (r'os*cp*ts*ar) 
a(4)=1/Cror*asr)-wr*ur*x1/(2*pr)+wr*dt/(2*ar*ror*pr) 
a(5)=wr*ur*xl/(2*tr)-wr*dt/(2*ar*ror*tr) 
a(7)=-1/(ros*ass)+ws*us*x2/(2*ps)+ws*dt/(2*ar*ros*ps) 
a(8)=-wS*U5*x2/C2*ts)-ws*dt/(2*ar*ros*ts) 
if(ur.eq.O.O) got(J 20 
if(us. eq. O. 0) goto 21 
a(6~=1-wr*xl+wr*dt/(ar*ror*ur) 

a(9)=I+ws*x2+ws*dt/(ar*ros*us) 
goto 21 

20 8(6)=1, 

a(9)=1 
21 b(2)=htr*xl+ur+pr/Cror*asr)-g*dt*dsin(th) 

b(3)=-hts*x2+us-ps/(ros*ass)-g*dt*dsin(th) 

if(u2(U. le. O. 0) gott1 1 
ifCu2(i-i). eq. O. 0) gote 7 
posq=dt*2/(1/u2(i)+1/u2(i-l» 
goto 17 

7 posq=dt*u2(i)/2 
17 pq=posq/dx*p2(i-l)+(1-posq/dx)*p2(i) 

tq=posq/dx*t2(i-l)+(1-posq/dx)*t2(i) 
uq=posq/dx*u2(i-l)+(1-posq/dx)*u2(i) 
zq=posq/dx*z2(i-l)+(1-posq/dx)*z2(i) 
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-------.·u4."-p 0 sq! trx*r 02 ( 1-1 }·H I -p 0 sq.ld x> *r o~! ( i ,----­
asq=posq/dy.*as2(i-l)+(1-posq/dx)*as2(i) 
htq=posq/dx*ht2(i-l)+Cl-posq/dx)*ht2(i> 
wq=posq/dx*w2(i-l)+(1-PDsq/dx)*w2Ci) 

c 

c 

c 

c 

c 

goto 3 

1. if(u2(i>. eQ.. O. 0) goto 2 
if(u2(i+1). eQ.. O. 0) got!) 2 
posQ.=dabs(dt*2/(1/u2(i)+1/u2(i+l») 
goto ::; 

2 posq=dabs(dt*(u2(i)+u2(i+l»/2) 
5 PQ.=posQ./(2*dx)*p2(i+l)+{1-posq/(2*dx»*p2(i) 

tQ.=posq/(2*dx>*t2(i+l)+(1-Posq/(2*dx»*t2(i> 
uq=posq/(2*dx>*u2(i+l)+(1-posq/(2*dx»*u2(i) 
zq=posq/(2*dx)*z2(i+l)+(1-POSQ./(2*dx»*z2(i) 
ztq=posq/(2*dx>*zt2(i+l)+(1-posq/(2*dx»*zt2(i) 
rOQ.=posq/(2*dx>*ro2(i+l)+(1-posq/(2*dx»*ro2(i) 
asq=posq/(2*dx)*as2(i+l)+(1-posq/(2*dx»*as2(i) 
htQ.=posq/(2*dx)*ht2(i+l)+(1-posq/(2*dx»*ht2(i) 
wq=posq/(2*dx)*w2(i+l)+(1-poSQ./(2*dx»*w2(i) 

3 a(1)=_(I+tq*ztq/zq)/(roq*cp)-wq*uQ.*dt/(2*roQ.*cp*ar*pq) 
a(2)=I+WQ.*uQ.*dt/(2*roQ.*cp*ar*tq) 
a(3)=-wQ.*dt/(ro~*cp*ar) 
b(I)=htQ.*dt/(roq*cp*ar)+tq-pQ.*(l+tq*ztq/zq)/(ro q*c p ) 

call dlTlinv(a, 3, det, 11, mm) 

ifCdet. ne. O. O)goto 9 
wr i t e ( 6, 30 ) i 

30 for ma t ( I pip e 2 i = " i 3 > 
stop lino inverse" 

9 pp2(i>=a(1)*b(1)+a(2)*b(2)+a(3)*b(3) 
tt2(i)=a(4)*b(1)+a(5)*b(2)+~(6)*b(3) 
uu2(i)=a(7)*b(1)+a~8>*b(2)+a(9)*b(3> 

count=O 
psave=pp2(i) 
tsave=tt2(i) 
usave=uu2 ( i '> 
pdif=pp2(i)*1000 
tdif=tt2(i>*1000 

10 zz2(i)=9*tc/(128*tt2(i»-27*tc**3/(64*tt2(i)**3) 
zz2(i)=zz2(i)*pp2(i)/pr.+l 
zzp2(i)=(zz2(i)-1)/pp2(i) 

_zzt2( i )=81*tc_**3/(b4*tt;~( i HH4)-9*tc/( 128*tt2( i >*tt2( i» 
zzt2(i)=zzt2(i)*pp2(i)/pc 
rra2(i)=pp2(i)/(r*tt2(i)*zz2(i» 
ww2 (' i) =dab 5 (ar il'l'ro2 ( i > *f·jt·uu2 (i) *lIu2 ( i) ) I (2*d ) 
aas2(i)=«1+zzt2(i)*tt2(i)/zz2(i»**2)*pp2(i) 
aas2(i)=aas2(i)/(rrD2(i>*tt2(i)*cp)+zzp2(i)*pp2(i)/zz2(i) 
aas2(1)=(1-aas2(i»*rro2(1)/pp2(i) 
aas2(i)=1/dsqrt(dabs(aas2(i») 
hht2(i)=pi*cP*st*d*rro2(i)*uu2(i)*(tw-tt2(i» 
caunt=collnt+l 

c Second order procedure 
c 

if(uq. eq. O. 0) goto 8 
ifCuu2(1).eq.0.0) goto 8. 
posq=dabs(dt*2/(1/lIq·~I/uu2(i») 

gato 11 
8 posq=dabsCdt*(uq+uu2(i)/2) 

11 posr=2*dt/(1/(ur+asr)+1/Cuu2(i)+aas2(i») 
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------ .. .-.----_ ..... "_ .. _-----_.-
- -- pT' =p ~ (i ';;;'TT+ Cd x - po S l' ) * ( {/;:U i ) - P 2 ( i -2) ) / ( 2* d x ) 

c 

c 

ur=u~~ ( i -1. )H d x '_'p C,I 5,.. ).U- (U;-.!( i. ) --u:;H 1-2) ) / (2*d x ) 
tr=t2(i-l)+(dx-posr)*(t2(i)-t2(i-2»/(2*dx) 
zr=z2Ci-l)+(dx-posr>*(z2(i)-z2Ci-2»!(2*dx) 
wr=w2(i-l,.(dx-posr)*<w2(i)-w2(i-2»/{2*dx) 
ztr=zt2(1-1)+{dx-posr)*(zt2{i)-zt2(i-2»!(2*dx) 
ror=ro2(i-l)+{dx-posr)*{ro2(i)-ro2(i-2»/(2*dx) 
asr=as2(i-l)+(dx-posr)*Cas2(i)-as2(i-2»/(2*dx) 
htr=ht2(i-l)+(dx-posr)*(ht2(i)-ht2{i-2»/{2*dx) 
ps=p2(i+l)-(2*dx-poss)*(p2(i+2)-p2(i»/(4*dx) 
us=u2(i+l,-(2*dx-poss)*<u2(i+2)-u2(i»/(4*dx) 
ts=t2(i+l)-(2*dx-POSS'*lt2(i+2)-t2(i»/(4*dx) 
zs=z2(i+l,-(2*dx-poss)*(z2(i+2)-z2(i»/(4*dx) 
ws=w2(i+l)-(2*dx-poss)*(w2(i+2)-w2(i»/(4*dx) 
zts=zt2(i+l)-(2*dx-poss)*<zt2Ci+2)-zt2(i»/(4*dx) 
ros=ro2(i+l)-(2*dx-poss)*(ro2(i+2)-ro2(i»/(4*dx) 
ass=as2(i+l)-(2*dx-poss>*(as2(i+2)-as2(i»/(4*dx) 
hts=ht2(i+l)-(2*dx-poss'*(ht2(i+2)-ht2(i»/(4*dx) 
pr=pr+(dx-posr)**2*<p2(i)+p2(i-2)-2*p2(i-l»/(2*dx*dX) 
ur=ur+(dx-pasr)**2*(u2(i)+u2(i-2)-2*u2(i-l»/(2*dx*dx) 
tr=tr+(dx-posr>**2*(t2(i)+t2(i-2)-2*t2(i-l»/(2*dx*dx) 
zr=zr+(dx-posr)**2*<z2(i)+z2(i-2)-2*z2(i-l»/(2*dx*dx) 
wr=wr+(dx-posr)**2*(w2(i)+w2(i-2)-2*w2(i-l»/(2*dx*dx) 
ztr=ztr+(dx-posr)**2*(zt2(i)+zt2Ci-2)-2*zt2(i-l»/(2*dx*dx) 
ror=ror+(dx-posr>**2*(ro2(i)+ro2(i-2)-2*ro2(i-l»/(2*dx*dx) 
asr=asr+(dx-posr>**2*Cas2(i)+as2(i-2>-2*as2(i-l»/(2*dx*dx) 
htr=htr+(dx-posr)**2*(ht2(i)+ht2(i-2)-2*ht2(i-l»!(2*dx*dx) 
ps=pS+(2*dx-poss)**2*(p2(i+2)+p2(i)-2*p2(i+1»/(S*dx*dx) 
us=us+(2*dx-poss)**2*(u2(i+2)+u2(i)-2*u2(i+1»/(8*dx*dx) 
ts=ts+(2*dx-poss)**2*(t2(i+2)+t2(i)-2*t2(i+1»/(8*dx*dx) 
zs=zS+C2*dx-poss)**2*(z2(i+2)+z2(i)-2*z2(i+l»/(8*dx*dl) 
ws=ws+(2*dx-poss)**2*(w2(i+2)+w2(i)-2*w2(i+l»/(S*dX*dx) 
zts=zts+C2*dx-poss)**2*(zt2(i+2)+zt2(i)-2*zt2(i+l»/(S*dx*dx) 
ros=ros+(2*dx-poss)**2*(ro2(i+2)+ro2(i)-2*ro2(i+l»/(S*dx*dx) 
ass=ass+(2*dx-po§s)**2*Cas2(i+2)+as2(i)-2*as2(i+l»/(8*dx*dx) 
hts=hts+(2*dx-poss)**2*(ht2(i+2)+ht2(i)-2*ht2(i+l»/(S*dx*dx) 

i f ( ( u u 2 ( i ) -,:u q ). 1 t. O. 0) got 0 4 
p q = P 2 ( i --1 ) + ( d x - po 5 q > * ( P 2 ( i ) - P 2 ( i -2) ) I ( 2* d x ) 
uq=u2(i-l)+(dx-posq>*(U2(i)-u2(i-2»/(2*dx) 
tq=t2(i-l)+(dx-posq)*<t2(i)-t2(i-2»/(2*dX) 
zq=z2(i-l)+(dx-posq>*Cz2(i)-z2(i-2»/(2*dx) 
wq=w2(i-l)+(dx-posq)*(w2(i)-w2(i-2»/(2*dx) 
ztq=zt2(i-l)+(dx-posq)*(zt2(i)-zt2(i-2»/(2*dx) 
T'oq::::r'u2(i-l)-Hdx--Pt1sq)*(ro2(i)-ro2(i-2»!(2*dx) -
<3 S q =<352 ( 1'-1 ) + ( d x --p 0 S q) * (i3 52 ( i ) -a s2 ( i -2) ) / (2*d x ) 
htq=ht2(i-l)+Cdx-posq)*Cht2(i)-ht2(i-2»/(2*dx) 
pq=~q+(dx-posq)**2*(p2(i)+p2(i-2)-2*p2(i-l»/(2*dx*dx) 
uq=uq+(dx-posq)**2*(u2(i)+u2(i-2)-2*u2Ci-l»/(2*dx*dx) 
tq=tq+(dx-posq)**2*{t2(i)+t2(i-2)-2*t2(i-l»/(2*dx*dx) 
zq=zq+(dx-posq)**2*(z2(i)+z2Ci-2>-2*z2(i-l»/(2*dx*dx) 
wq=wq+(dx-posq)**2*(W2(i)+w2(i-2>-2*w2Ci-l»/(2*dx*dx) 
.ztq=ztq+(dx-posq)**2*(zt2(i)+zt2(i-2)-2*zt2(i-l»/(2*dx*dx) 
roq=roq+(dx-posq)**2*(ro2(i)+ro2(i-2)-2*ro2(i-l»/(2*dx*dx) 
asq=asq+(dx-pDsq)**2*<as2(i)+as2(i-2)-2*as2(i-l»/C2*dx*dx) 
htq=htq+(dx-posq)**2*(ht2Ci)+ht2Ci-2)-2*ht2(i-l»/(2*dx*dx) 
goto 6 

4 pq=p2Ci+l)-(2*dx-posq)*.(p2(i+2)-p2(i»/{4*dx) 
uq=u2(i+l)-(2*dx-posq)*(u2(i+2)-u2(i»/(4*dx) 
tq=t2(i+l)-(2*dx-posq>*(t2(i+2)-t2(i»/(4*dx) 
zq=z2{i+l)-(2*dx-posq)*(z2(i+2)-z2(i»/(4*dx) 
wq=w2(i+l)-(2*dx-pcsq)*(w2(i+2)-w2(i»/(4*dx) 
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---------roq=r t,2 (F~rr=-( 2*d x -p os q-)-~;-(r-~2Ti. +2-):';'~2(-i)-)/-( 4~d;') 
asq=as2(i+l)-(2*dx-posq>*(C3s2(i+2)-as2(i»/(4*dx) 
htq=ht2(i+l)-(2*dx-posq)*(ht2(i+2)-ht2(1»/(4*dx) 
pq=pq+(2*dx-posq)**2*(p2(i+2)+p2(i)-2*p2(i+l»!(S*dx*dx) 
uq=uq+(2*dx-posq)**2*(u2(i+2,+u2(i'-2*u2(i+l»!(S*dx*dx) 
tq=tq+(2*dx-posq)**2*(t2(i+2)+t2(i)-2*t2(i+l»!(8*dx*d~) 
zq=zq+(2*dx-POSq>**2*(z2(i+2)+Z2(i)-2*Z2(i+l)'/(8*dx*dx) 
wq=wq+(2*dx-pDSq)**2*(W2(i+2>'~w2(i>-2*w2(i+l)'/(8*dx*dx) 
ztq=ztq+(2*dx-POsq>**2*(zt2(i+2)+zt2(iJ-2*zt2(i+l»/(S*dx*dx) 
roq=roq+(2*dX-POSq)**2*(ro2(i+2)+r02(i)-2*ro2(i+l»/(S*dx*dx) 
asq=asq+(2*dx-Posq)**2*<as2(i+2,+aS2(iJ-2*as2(i+l»/(S*dx*dx) 
htq=htq+(2*dx-posq>**2*(ht2(i+2)+ht2(iJ-2*ht2(i+l»/(S*dx*dx) 

r. 

c 

c: 

e 

6 a(l'=_(1+tt2(i)*zzt2(i)!zz2(i»/rro2(f) 
a(1)=(a(1)-(1+tq*ztq!zq)!roq)/(2*cp) 
a(2)=1. 0 
a(3)=O.O 
a(4)=(1/(ror*asr)+1/(rra2(i)*aas2(i»)/2 
a(5)=0.0 
a(6)=1. 0 
a(7)=(-1/(ros-lf'ass )-1/(rro2( i >*i3·3S2( i» )/2 

a(8)=0.0 
a(9)=1. 0 

b(I)=(htq+wq*uq)!ro~+(hht2(i)+ww2(i)*uu2(i»/rro2(i) 
bCl)=b(1)*dt/(2*ep*ar)+aC1)*pq+tq 
b(2)=(1+tt2(1)*zzt2(1)/zz2(i»*(hht2(i)+ww2Ci)*uu2(i» 
b(2)=bC2)*aas2(1)/(rro2(i)*tt2Ci» , 
b(2)::(b(2)+asr*(1+tr*ztr/zr)*(htr+wr*ur)/(ror*tr»/ep 
b(2)=(b(2)-Cwr/ror+ww2(i)/rro2Cl»)*dt/C2*ar) 
b(2)=b(2)-g*dt*dsin(th)+a(4)*pr+ur 
b(3)=(I+tt2(i)*zzt2(1)/zz2(i»*(hht2Ci)+ww2(1)*uu2(i» 
b(3)=b(3)*aas2(i)/(rro2(i)*tt2Ci» 
b ( 3 ) = ( - b (3 ) - a 5 S~· ( 1 + t 5 * Z 1; 5 I Z 5 ) * ( h t s +w s * us) 1 ( T' 0 5 * t 5 ) ) le p 
b(3)=Cb(3)-Cws/ros+ww2 (i)/rro2(i»)*dt/(2*ar) 
bC3'=b(3)-g*dt*dsinCth)+a(7)*ps+us 

ca 11 d m i Tl V ( .n, 3, de t, 1. 1. mm) 
ifCdet. ne. o. 0) gtlto 12 
wr i t e C 6, 31) i 

31 formate 'pipf! ;;.~ (2nd or-de,.,) i=', i3) 
stop "no inverse" 

12 pit=a(1)*b(1)+a(2)*bC2)+a(3)*b(3) 
tit=a(4)*b(1)+aCO'*bC2)+a(6)*b(3) 
uit=a(7)*b(1)+a(S)*b(2)+a(9)*b(3) 
difp=dabs(pp2(i)-pit)/pit 
dift=dabs(tt2(i)-tit)/tit 
if(e·Qunt. gt. 2(0) goto 15 
ifCdifp. gt. O. OU gottl 13 
ifCdift. It. O. 01) goto 14 

13 pp2(i)=pit 
tt2(i)=tit 
uu2(i)=:uit 
pdif=dFip 
tdif=dift 
goto 10 

15 write(6, 16)1 
16 formate 'sub3 - no itera!;iorJ -For 1=', i4,' in pipe 2') 
14 pp2(i)=pit 

tt2(i)=tit 
uIJ2( i )==IJit 
return 
end 
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c 

c 

.•. ...................... ........... #'" ••• , " r\,..,"'" '" "" "'" 
- - -.----.~--.--~-~---~~---.~-~.~-

subroutine sub4(p:-:!, t2, 1)2, dx, pp21 tt2, uu2, tc, pc, r. 
~-( a r, f, d, t: p, pi, 5 'I; I t w, 9 I d t; I i, z 2. z P 2, z t 2, r 02, w2 I a s 2, 
~-( h t2, 1; h) 

c this subroutine calculates Pit and u at normal 
C internal points downstream of the break. 

c 

impiici.t double precision (a-h/o-z) 
dimension p2(300), t2(300), u2(300), z2(300), 

& zt2(300)/w2(300),as2(300)/ht2(300)/pp2(300), 
~( t t ~~ ( 300 ) I \J IJ 2 ( :300 ), z z 2 ( 300 ), z z p 2 ( 300 ), z z t 2 ( 300 ) I 

~( T'r 02 <:300 ) , UJIJ/2 C 300 ) , Cl as 2 ( 300 ) I h h t 2 ( 300 ) , 
~~ a (9), b ( 3) I r 02 (300), z p 2 (300) 

in t e 9 er 11 ( 3) I mm ( 3 ) lea II n t 

c first order approximation 
t 

c 

posr=dt*2/(I/(u2(i)+as2(i»+1/(u2(i-l)+as2(i-l») 
poss=dt*2/Cl/(as2(i)-u2Ci»+1/cas2(i+l)-u2(i+l») 
pr=posr/dx*p2(i-l)+(1-posr/dx)*p2(i) 
tr=posr/dx*t2(i-l)+(1-posr/dx)*t2(i) 
ur=posr/dx*u2(i-l)+(1-posr/dx)*u2(i) 
zr=posr/dx*z2Ci-l)+(1-posr/dx)*z2(i) 
ztr=posr/dx*zt2(i-l)+(1-pasr/dx)*zt2(i) 
ror=posr/dx*ra2(i-l)+Cl-posr/dx)*ro2Ci) 
asr~posr/dx*as2(i-l)+(1-posr/dx)*as2(i) 
htr=posr/dx*ht2(i-l)+(1-posr/dx)*ht2(i) 
wr~posr/dx*w2(i-l)+(1-posr/dx)*w2(i) 
ps=poss/dx*p2(i+l)+(1-poss/dx)*p2(i) 
ts=poss/dx*t2(i+l)+(I-poss/dx)*t2(i) 
us=poss/dx*u2(i+l)+(1-poss/dx)*u2(i) 
zs=poss/dx*z2(i+l)+(1-pOss/dx)*z2(i) 
zts=poss/dx*zt2(i+l)+(1-POss/dx)*zt2(i) 
ros=poss/dx*ro2(i+l)+(I-Poss/dx)*ro2(i) 
ass=poss/dx*as2(i+l)+(1-POss/dx)*as2(i) 
hts=poss/dx~ht2(i+l)+(1-poss/dx)*ht2(i) 
ws=poss/dx*w2(i+l)+(1-poss/dx>*w2(i) 
xl=asr*dt*<l+tr*ztr/zr)/(ror*cp*tr*ar) 
x2=ass*dt*(1+ts*zts/zs)!(ros*cp*ts*ar) 
a ( 4 ) = 1 / ( r 0 r * a s l' ) -u/ T' * U r * x 1 / ( 2 * pr) +w l' -11' d t I ( 2 * a r * r 0 r * pr) 
a(5)=wr*ur*xl/(2*tr)-wr*dt/(2*ar*ror*tr) 
a(7)=_1/(ros*ass)+UJs*us*x2/C2*ps)+ws*dt/(2*ar*ros*ps) 
a(S)=-ws*us*x2/C2*ts)-ws*dt/(2*ar*ros*ts) 
if ( u r. e q. (). 0) got Cl 20 
if-Cus. eq. O. 0) gate 20 
a(6~=1-wr*xl+wr*dt/(ar*ror*ur) 
a(9)=1+ws*x2+ws*dt/Car*ros*us) 
goto 21 

20 a(6)=1 
a(9)=1 

21 b(2)=htr*xl+ur+pr/(ror*asr)-g*dt*dsinCth) 
b(3)=-hts*x2+us-ps/Cros*ass)-g*dt*dsin(th) 

ifCu2(U.le.O.O) goto 1 
ifCu;;'1(i-l>. eq. O. 0) goto 1 
posq=dt*2/(1/u2(i)+1/u2(i-l» 
pq=posq/dx*p2(i-l)+(1-posq/dx)*p2(i) 
tq=posq/dx*t2(i-l)+(1-posq/dx)*t2(i) 
uq=posq/dx*u2(i-l)+(1-posq/dx)*u2Ci) 
zq=posq/dx*z2(i-l)+(1-posq/dx)*z2(i) 
ztq=posq/dx*zt2(i-l)+Cl-posq/dx)*zt2(i) 
roq=posq/dx*ro2(i-l)+(1-posq/dx)*ro2(i) 
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c 

c 

c 

c 

c 

· . 
htq=posq/dx*ht2(i-l)+(1-posq/dx)*ht2(i) 
wq=posq/dx*w2(i-l)+(1-posq/dx)*w2(i) 
goto 3 

1 if(u2( i). eq. O. 0) goto 2 
if(u2(i+1>. eq. O. 0) goto 2 
posq=dabs(dt*2/(1/u2(i)+1/u2(1+1») 
goto 7 

2 posq=dabs{dt*{u2(i)+u2(i+l»/2) 
7 pq=posq/dx*p2(i+l)+(1-posq/dx)*p2(i) 

tq=posq/dx*t2(i+li+(1-posq/dx)*t2(i) 
uq=posq/dx*u2(i+l)+(1-posq/dx)*u2(i) 
zq=posq/dx*z2(i+l)+(1-posq/dx)*z2(i) 
ztq=posq/dx*zt2(i+l)+(1-posq/dx)*zt2(i) 
roq=posq/dx*ro2(i+l)+(1-posq/dx)*ro2(i) 
asq=posq/dx*as2(i+l)+(1-posq/dx)*as2(i) 
htq=posq/dx*ht2(i+l)+(1-posq/dx)*ht2(i) 
wq=posq/dx*w2(i+l)+(1-posq/dx)*w2(i) 

3 a(I'=-(1+tq*ztq/zq)/(roq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
a(2)=1+wq*uq*dt/(2*roq*cp*ar*tq) 
a(3)=-wq*dt/(roq*cp*ar) 
b(l)=htq*dt/(roq*cp*ar)+tq-pq*(l+tq*ztq/zq)/(roq*cp) 

5 ca lId m i n v ( a, 3, d El f;, 1 1, mm) 
if(det. ne. O. O)goto 9 
write(6,30) i 

30 formate 'pipe 2 i=', i3) 
stop "no invel'se" 

9 pp2(1)=a(1)*b(I)+a(2)*b{2)+a(3)*b(3) 
tt2(i)=a(4)*b{1)+a(5>*b(2)+a(6)*b(3) 
uu2(i)=a(7)*b(I)+a(S)*b(2)+a(9)*b(3) 
count=O 
pSdve=pp2(t) 
tSClve==t;t2(1) 
usave=uu2(i) 
pdif=pp2(i)~1000 

tdif=tt2(i)*1000 

10 zz2(i)=9*tc/(128*tt2(i»-27*tc**3/(64*tt2(i>**3) 
zz2(i)~zz2(i)*pp2(i)/pc+l 

zzp2(i)=(zz2(1)-1)/pp2(1) 
zzt2(i)=81*tc**3/(64*tt2(i)**4)-9*tc/(128*tt2(i)*tt2(i» 
zzt2(i)=zzt2(i)*pp2(i)/pc 
rro2(i)=pp2(i)/(r*tt2(i)*zz2(i» 
ww2(i)=dabs(ar*rro2(i)*f*uu2(i)*uu2(i»/(2*d) 
aas~(i)=«1+zzt2(i)*tt2(i)/zz2(i»**2)*pp2(i) 

aas2{i)=aas2(i)/(rro2{i)*tt2(i)*cp)+zzp2{i)*pp2{i)/zz2(i) 
aas2(i)=(1-aas2(i»*rro2(i)/pp2{i) 
aas2(i)=I/ds~rt(dabs(aas2{i») 

hht2(i)=pi*cp*st*d*rro2(i)*uu2(i)*(tw-tt2(i» 
count=count+l 

c second order procedure 
c 

if(uq. eq.O. 0) gato 8 
if(uu2( i >. eG.. O. 0) goto 8 
posq=dabs(dt*2/(1/uq+l/uu2(i») 
goto 1.1 

8 pos~=dabs(dt*(uq+uu2(i»/2) 
11 posr=2*dt/(1/(ur+asr)+1/(uu2(i)+aas2(i») 

poss=2*dt/(1/(ass-us)+1/(aas2(ii-uu2(i») 
pr=p2(i)-posr*(p2(i+1)-p2(i-l»/(2*dx) 
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-- . ___ .. ___ .... - - ' ...... o· "-----.---ur=u2(i}-posr*(u2(i+l)-U2Ci-l»/(2*dX) 

c 

c 

c 

zr=z2(i)-poSr*(z2(i+l}-z2(i-l}}/(2*dx) 
ztr=zt2(i)-posr*(zt2(1+1)-zt2(i-l»!(2*dx) 
ror=ro2(i)-posr*(ro2(i+l)-ro2(i-ll)!C2*dx) 
asr=as2(i)-posr*(as2(i+l)-as2(i-l»!(2*dx) 
htr=ht2(i)-posr*(ht2(i+l)-ht2(i-l»!(2*dx) 
wr=IIJ2 ( i ) -p 0 s r* (UJ2 ( i + 1 ) -u12 ( i-I) ) / (2* d x ) 
ps=p2( i )+poss*(p2( i+l )-p2( i-I» / (2*d x) 
ts=t2(i)+pass*<t2(i+l)-t2(i-l»/(2*dx) 
us=u2(i)+poss*(u2(i+l)-u2(i-l»/(2*dx) 
zs=z2(i)+poss*(z2(i+l)-z2(i-l»/(2*dx} 
z t s == 7. t 2 ( i ) + po S S * ( z t;! ( i'''' 1 ) - l t 2 ( i -1 ) ) / (2* d x ) 
ros=ro2(i)+poss*(ro2(i+1)-ro2(i-l»/(2*dx) 
ass=as2(i)+poss*(as2(i+l)-as2(i-l»!(2*dx) 
hts=ht2(i)+poss*(ht2(i+l)-ht2{i-1»/(2*dx) 
ws=w2(i)+poss*(w2(i+l)-w2(i-l»/(2*dx) 
pr=pr+posr*posr*(p2(i+l)+p2(i-l)-2*p2(i»/(2*dx*dX) 
tr=tr+posr*posr*(t2(i+l)+t2(i-l)-2*t2(i»/(2*dx*dx) 
ur=ur+posr*posr*(u2(i+l)+u2(i-l)-2*u2(i»/(2*dx*dx) 
zr=zr+posr*posr*(z2(i+l)+z2(i-l>-2*z2(i»!(2*dx*dx) 
ztr=ztr+posr*posr*(zt2(i+l)+zt2(i-l)-2*zt2(i»!(2*dx*dxl 
ror=ror+posr*posr*(ro2(i+l)+ro2(i-1)-2*ro2(i»/(2*dx*dx) 
asr=asr+posr*posr*Cas2(i+1)+as2Ci-l'-2*as2(i»!(2*dx*dx) 
htr=htr+posr*posr*(ht2(i+l)+ht2(i-l)-2*ht2(i»!(2*dx*dx) 
wr=wr+posr*posr*<w2Ci+l)+w2(i-l)-2*w2(i»/(2*dx*dx) 
ps=ps+poss*poss*(p2(i+l)+p2(i-l)-2*p2(i»!(2*dx*dx) 
ts=ts+poss*poss*(t2Ci+l)+t2(i-l)-2*t2(i»!(2*dx*dx) 
us=us+poss*poss*(u2(i+l)+u2(i-l)-2*u2(i»!(2*dx*dx) 
zs=zs+poss*poss*(z2(i+l)+z2(i-l)-2*Z2(i»/(2*dx*dx) 
zts=zts+poss*poss*(zt2Ci+l)+zt2(i-l)-2*zt2(i»/(2*dx*dx) 
ros=ros+po5s*poss*(ro2(i+l)+ro2(i-l)-2*ro2(i»!(2*dx*d i) 
ass=ass+poss*poss*(as2(i+l)+as2(i-l)-2*as2(i»/(2*dx*dx) 
hts=hts+poss*poss*(ht2(i+l)+ht2(i-l)-2*ht2(i»/(2*dx*dx) 
ws=ws+poss*poss*(W2(i+l)+w2(i-l)-2*w2(i»!(2*dx*dx) 

if «uu2(U+uq,>.lt.O.O) gate 4 
pq=p2(i)-poSq*(p2(i+l)-p2(i-l»/(2*dx) 
tq=t2(i)-posq*(t2(i+l)-t2(i-l»/(2*dx) 
uq=u2(i)-posq*(u2(i+l)-u2(i-l»/(2*dx) 
zq=z2(i)-posq*(z2(i+l)-z2(i-l»!(2*dx) 
ztq=zt2(i)-posq*(zt2(i+l)-zt2(i-l»!(2*dx) 

. roq=ro2( i )-posQ.*(ro2( i+l )-ro2( i-I) )/(2*d x) 
asq=as2(i)-posq*(as2(i+l)-as2(i-l»!(2*dx) 
htq=ht2(i)-posq*(ht2(i+l)-ht2(i-l»!(2*dx) 
wq=w2{i)-posq*(w2(i+l)-w2(i-l»!(2*dx) 
gato 6 

4 pq=p2(i)+posq*(p2(i+l)-p2(i-l»/(2*dx) 
tq=t2(i)+posq*<t2(i+l)-t2(i-l»!(2*dx) 
uq=u2(i)+posq*(u2(i+l)-u2(i-l»/(2*dx) 
zq=z2(i)+posq*(z2(i+l)-z2(i-!»!(2*dx) 
ztq=zt2(i)+posq*(zt2(i+l)-zt2(i-l»/(2*dx) 
raq=ro2Ci)+posq*(ro2(i+l)-ro2(i-l»/(2*dx) 
asq=as2(i)+posq*(as2(i+l)-as2(i-l»/(2*dx) 
htq=ht2(i)+posq*(ht2(i+l)-ht2(i-l»/(2*dx) 
wq=w2(i)+posq*(w2(i+l)-w2(i-l»!(2*dx) 

6 pq=pq+posq*posq*(p2(i+l)+p2(i-l)-2*p2(i»!(2*dx*dx) 
tq=tq+posq*posq*<t2(i+l)+t2(i-l)-2*t2(i»/(2*dx*dx) 
uq=uq+posq*posq*(u2(i+l)+u2(i-l)-2*u2(i»/(2*dx*dx)· 
zq=zq+posq*posq*(z2(i+l)+z2(i-l)-2*z2(i»/(2*dx*dx) 
ztq=ztq+posq*posq*(zt2(i+l)+zt2Ci-!)-2*zt2Ci»!(2*dx*dx) 
roq=roq+posq*posq*(ro2(i+l)+ro2(i-l)-2*ro2(i»/(2*dx*dx) 
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'------------ . . -.. - - - - -- -' - , -- -- -- -----htq=htq+posq*posq*(ht2(1+1)+ht2(i-l>-2*ht2(i»/(2*dx*dx) 

c 

c 

c 

c 

wq~wq+posq*posq*(w2(i+l)+w2(i-l)-2*w2(i»/C2*dx*dx) 

a(1)=-(1+tt2(i)*lzt2(i)/zz2(i»/rro2(i) 
aCl)=(a(I)-(I+tq*ztq/zq)/roq)/C2*cp) 
a(2)=1. 0 
a(3)=0.0 
a(4)=(I/(ror*asr)+I/Crro2(i)*aas2(i»)/2 
a(5)=0.0 
a(6)=1. 0 
a(7)=(-1/(ros*ass)-1/(rro2(i>*aas2(i»)/2 
a(S)=O.O 
a(9)=1. 0 

b(1)=(htq+wq*uq)/roq+(hht2(i)+ww2(i)*uu2(i»/rro2(i) 
b(1)=b(1)*dt/(2*cp*ar)+a(1)*pq+tq 
b(2)=(1+tt2(i)*IZt2(iJ/zz2(i»*(hht2(i)+ww2(i)*uu2(i» 
b(2)=b(2)*aas2(i)/(rro2(i)*tt2(i» 
b(2)=(b(2)+asr*(1+tr*ztrlzr>*Chtr+wr*ur)/(ror*tr))/cp 
b(2)=(b(2)-(wr/ror+ww2(tJ/rro2(i»)*dt/(2*ar) 
b(2)=bC2)-g*dt*dsin(th)+a(4)*pr+ur 
b(3)=(1+tt2(i)*zzt2(i)/zz2(i»*(hht2(1)+ww2(i)*uu2(i» 
b(3)=bC3)*aas2(i)/(rro2(i>*tt2(i» 
b(3)=(-b~3)-ass*(1+ts*zts/zs)*(hts+ws*us)/(ros*ts»/cp 
b(3)=(b(3'-(ws/ros+ww2(t)/rro2(i»)*dt/(2*ar) 
b(3)=b(3)-g*dt*dsinCth)+a(7)*pS+U5 

call dminv(a,3,det,ll,mm) 
ifCdet. ne. o. 0) goto 12 
write(6,31> i 

31 formate 'pipe 2 (2nd order) i=', i3) 
stop "no inverse" 

12 pit=a(1)*b(I)+aC2)*b(2)+aC3>*bC3) 
tit=a(4)*b(1)+a(3)*b(2)+a(6)*b(3) 
uit=a(7)*b(I)+a(8)*b(2)+a(9)*b(3) 
difp=dabs(pp2(i)-pit)/pit 
dift=dabs(tt2(i)~tit)/tit 

i -F ( C 0 un t. 9 t .. 200) gat 0 15 
if(difp. gt. o. 01) gu'to 13 
if(dift. It. 0.01) gata 14-

13 pp2(i)=pit 
tt2(i)=tit 
uu2(i)=uit 
pdi-F=difp 
tdif=dift 
gata 10 

15 wr i t;'e (6, 16) i 
16 for ma t ( , sub 4 - T1 0 i t era f; i t1 n of 0 r i = " i 4, I in pip e 2 I ) 

14 pp2(i)=pit 
tt2(i)=tit 
uu2(i)=uit 
return 
end 
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c 

c 

subroutine sub5(pl, tl, ul, dx, ppl, ttl, uul, tc, pc, 1', 

l!-! ar, T, d, cp, pi, st, tw, 9' dt, i, zl, zpl, ztl, 1'01, wl, asl, 
~~ htl, th, px, ux, tX,l1JX, ZX, ztx, rox, asx, htx, py, uy, ty, 
:Y, wy, Z IJ, Z t IJ, l' 0 IJ ' Cl S IJ, h t y, k ) 

c This subroutine calculates p, t and u at internal 
C boundary points linking different grid sizes. 
C 

c 

implicit double precision (a-h,o-z) 
dimension pl(300), tl(300), ul(300), z1(300), 

& ztl(300),wl{300),Clsl(300),htl(300),ppl{300), 
~-< t t 1 (300), u u 1 ( 300 ), z z 1 (300), z z P 1 (300), z z t 1 ( 300) , 
& rrol(300),wwl(300),aasl(300),hhtl(300), 
l!-< px (6), tx (6), ux (6), z x (6), wx (6), ztx (6), 

~-< rox(6),asx(6), htx(6), py(6), uy(6), ty(6), zy(6), 
~-< wy ( 6), z t Y (6) , l' 0 Y (6) , as y C 6), h t Y ( 6) , a C 9 ), b C 3) , 

~-< l' 01 (300 ) 
integer 11(3),mm(3),count 

c First order approximation 
c 

c 

c 

if (u xC k >. e q. O. 0) got 0 20 
if ( u 1 C i --1 ). e q. o. 0) 9 0 t 0 20 
posq=dt*4/(1/ux(k)+1/ul{i-l» 
goto 22 

20 posq=dt*(ux(k)+ul(i-l» 
22 posr=dt*4/(1/(ux(k)+asx(k»+1/(ul(i-l)+asl(i-l») 

poss=dt*2/Cl/(asyCk)-uy(k»+I/{asl(i+l)-ul(i+l») 

pq=posq/(2*dx)*pl(i-l)+(1-posq/(2*dx»*px(k) 
tq=pOSq/(2*dx)*tl(i-l)+(1-posq/(2*dx»*tx(k) 
uq=posq/(2*dx)*Ul(i-l)+(1-posq/(2*dx»*uxCk) 
zq=posq/(2*dx)*Zl{i-l)+(1-posq/(2*dx»*zx(k) 
ztq=posq/C2*dX)*ztl(i-l)+(1-posq/(2*dx»*ztx(k) 
roq=posq/(2*dx)*rol{i-l)+{l-posq/C2*dx»*roxCk) 
asq=posq/(2*dx)*aslCi-l)+(1-Posq/(2*dx»*asxCk) 
htq=posq/C~*dx)*htl(i-l)+(1-posq/(2*dx»*htx(k) 
wq=posq/(2*dx)*wl(i-l)+(1-posq/(2*dx»*wx(k) 
pr=posr/(2*dx)*pl(i-l)+(1-posr/(2*dx»*px(k) 
tr=posl'/(2*dx HI·tl (i-l )+( I-posr/(2*dx > )*tx (k) 
ur=posr/(2*dx)*ul(i-l)+(1-Posr/(2*dx»*ux(k) 
zr=posr/(2*dx)*zl(i-l)+(1-posr/(2*dx»*zx(k) 
ztr=posr/(2*dx)*ztl(i-l)+(1-posr/(2*dx»*ztx(k) 
ror=posr/(2*dx)*rol(i-l)+(1-posrJC2*dx»*roxCk) 
asr=posr/C2*dx)*asl(i-l)+Cl-posr/(2*dx»*asxCk) 
htr~posr/(2*dx)*htl(i-l)+(1-posr/(2*dx»*htxCk) 
wr=posr/C2*dx)*wl(i-l)+(1-posr/(2*dx»*wx(k) 
ps=poss/dx*pl(i+l)+(l-poss/dx)*pyCk) 
ts=poss/dx*tl(i+l)+(l-poss/dx)*tyCk) 
us=poss/dx*ul(i+l)+(l-poss/dx)*uyCk) 
zs=poss/dx*zl(i+l)+(l-poss/dx)*zy(k) 
zts=poss/dx*ztl(i+l)+(l-poss/dx)*ztyCk) 
ros=poss/dx*rol(i+l)+(l-poss/dx)*royCk) 
ass=poss/dx*asl(i+l)+(l-poss/dx>*asy(k) 
hts=poss/dx*htl(i+l)+(l-poss/dx>*htyCk) 
ws=poss/dx*wl(i+l)+(l-poss/dx)*wy(k) 

xl=asr*2*dt*(1+tr*ztr/zr)/Cror*cp*tr*ar) 
x2=ass*dt*(1+ts*zts/zs)/Cros*cp*ts*ar) 
a(l)=-(l+tq*ztq/zq)/Croq*cp)-wq*uq*dt/(roq*cp*ar*pq) 
a(2)=1+wq*uq*dt/Croq*cp*ar*tq) 
a(3)=-wq*2*dt/Croq*cp*ar) 
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c 

c 

c 

a(S)=wr*ur*xl/(2*tr)-wr*dt/(ar*ror*tr) 
a(7)=-1)(ros*ass)+ws*us*x2/(2*ps)+ws*dt/(2*ar*ros*ps) 
a(S)=-ws*us*x2/(2*ts)-ws*dt/(2*ar*ros*ts) 
if(ur. eq. 0.0) gato 2 
if(us. eq. O. 0) goto 2 
a(6)=1-wr*xl+wr*2*dt/(ar*ror*ur) 
a (9) =1+ws*x2+ws*d tl (iH'*r 0 S*US ) 
gete 1 
a(6)=1. 
a(9)=1 

1 b(1)=htq*2*dt/<roq*cp*ar)+tq-pq*(1+tq*ztq/zq)/(ro q*c p ) 
b(2)=htr*xl+ur+pr/(ror*asr)-g*2*dt*dsin(th) 
b(3)=-hts*x2+us-ps/(ros*ass>-g*dt*dsin(th) 

Sea 11 d m i n v ( Cl, 3, d et, 1 1, mm) 
if(det. ne. O. O)goto 9 
wr i t e ( 6, 30) i 

30 fOT'mat( 'pipel i=', i3) 
stop "no inverse" 

9 ppl(i)=a(1)*b(1)+a(2)*b(2)+a(3)*b(3) 
ttl(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uul(i)=a(7)*b(1)+a(S)*b(2)+a(9)*b(3) 
count=O -
psave=pp1( i) 

tsave=ttl(i) 
usav'e=uul (i i 
pdif=ppl(i)*1000 
tdif=ttl(i>*1000 

10 zzl(i)=9*tc/(12S*ttl(i»-27*tc**3/(64*ttl(i>**3) 
zzl(i)=zzl(i)*ppl(i)/pc+l 
zzpl(i)=(zzl(i)-l)/ppl(i) 
zztl(i)=81*tc**3/(64*ttl(i)**4)-9*tc/(128*ttl(i>*ttl(i» 
zztl(i)=zztl(i)*ppl(i)/pc 
rrol(i)=ppl(i)/(r*ttl(i)*zzl(i» 
wwl(i)=dabs(ar*rrol(i)*f*uulCi)*uul(i»/(2*d) 
aasl(i)=«1+zztl(i)*ttl(i)/zzl(i»**2)*ppl(i) 
aasl(i)=aasl(i)/(rrol(i)*ttl(i)*CP)+zzpl(i)*ppl(i)/zzl(i) 
aasl(i)=(l-aasl(i»*rrol(i)/ppl(i) 
aasl(i)=l/dsqrt(dabs(aasl(i») 
hhtl(i)=pi*CP*st*d*rrel(i)*uUl(i)*(tw-ttl(i» 
cOl.mt=collnt+l 

c Second order procedure 
c 

c 

if(uq.eq.O.O) gClto 21 
if(uu1<i>. eq. O. 0) gate 21, 
posq=4*dt/(1/uq+l/uul(i» 
goto 23 

21 posq=dt*(uq+uul(i» 
23 posr=4*dt/(I/(ur+asr)+l/Cuul(i)+aasl(i») 

poss=2*dt/(1/(ass-us)+1/(aasl(i)-uul(i») 

pq=pl(i-l)+(2*dx-posq)*<px(k)-pl(i-2»/(4*dx) 
uq=ul(i-l'+(2*dx-posq)*Cux(k)-ul(i-2»/C4*dX) 
tq=tl(i-l)+(2*dx-posq)*(tx(k)-tl(i-2»/(4*dx) 
zq=zl(i-l)+(2*dx-posq)*(zx(k)-zl(i-2»/C4*dx) 
wq=wl(i-li+(2*dx-posq>*(wx(k)-wl(i-2»!(4*dx) 
ztq=ztl(i-l)+C2*dx-posq>*(ztx(k)-ztl(i-2»/(4*dx) 
roq=rol(i-l'+(2*dx-posq)*(rox(k)-rol(i-2»!(4*dx) 
asq=asl(i-l)+(2*dx-posq)*(asx(k)-asl(i-2»/(4*dx) 
htq=htl(i-l)+C2*dx-posq'*(htx(k)-htl(i-2»/(4*dx) 
pr=pl(i-l)+(2*dx-posr)*(pxCk)-pl(i-2»/(4*dx) 
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c 

c 

tr=tl(i-l)+(2*dx-pusr)*(tx(k)-tl(i-2»/(4*dx) 
zr=zl(1-1)+(2*dx-posr)*(zx(k)-zl(i-2»/(4*dx) 
wr=wl(i-l)+(2*dx-posr)*Cwx(k)-wlCi-2»/(4*dx) 
ztr=ztl(i-!)+(2*dx-posr>*<ztxCk)-ztl(i-2»/(4*dx) 
ror=rol(i-l)+(2*dx-posr)*(rox(k)-rol(i-2»/(4*dx) 
asr=asl(i-l)+(2*dx-posr)*(asx(k)-asl(i-2»/(4*dx) 
htr=htl(i-l)+(2*dx-posr)*(htxCk)-htl(i-2»/(4*dx) 
ps=pl(i+li-(dx-poss)*(pl(i+2)-py(k»/(2*dx) 
us=ul(i+l)-(dx-poss)*(ul(i+2)-uy(k»/{2*dx) 
ts=tl(i+l)-(dx-poss)*(tl(i+2)-ty(k»/(2*dx) 
zs=zl{i+l)-Cdx-poss)*(zl(i+2)-zyCk»/C2*dx) 
wS=Wl(i+l'-(dx-poss>*(wl(i+2)-wy(k»/(2*dx) 
zts=ztlCi+l)-(dx-poss)*Cztl(i+2)-zty(k»/(2*dx) 
ros=rolCi+li-(dx-poss>*CrolCi+2)-roy(k»/(2*dx) 
ass=asl(i+l)-(dx-poss)*(asl(i+2)-asy(k»/(2*dx) 
hts=htl(i+l)-(dx-poss)*(htl(i+2)-hty(k»/C2*dx) 
pq=pq+(2*dX_POSq)**2*(PXCk)+pl(i-2)-2*pl(i-l»/(S*dx*dx) 
uq=uq+(2*dX-POsq)**2*(ux(k,+ul(i-2)-2*ul(i-l»/(8*dX*dx) 
tq=tq+(2*dx-posq)**2*(tx(k)+tl(i-2)-2*tl(i-l»/(S*dx*dx) 
zq~Zq~(2*dX-posq)**2*(ZX(k)+Zl(i-2)-2*zl(i-l»/(8*dx*dx) 
wq=Wq+(2*dX-POsq)**2*(Wx(k)+Wl(i-2)-2*wlCi-l»/(S*dx*dx) 
ztq=ztq+(2*dX-posq>**2*(ztx(k)+ztl(i-2)-2*ztl(i-l»/(S*dx*dx) 
roq=roq+(2*dX-Posq)**2*(rOxCk)+rOl(i-2)-2*rOl{i-1»/(S*dx*dxJ 
asq=asq+(2*dX-POSq)**2*(aSxCk)+aslCi-2)-2*aslCi-l)'/(S*dx*dx) 
htq=htq+C2*dX-posq)**2*(htx(k'+htl(i-2)-2*htlCi-l»/CS*dx*dx) 
pr=pr+(2*dx-posr)**2*(PxCk)+pl(i-2)-2*pl(i-l»/CS*dX*dx) 
ur=ur+(2*dx-posr)**2*(Ux(k)+ul(i-2)-2*UlCi-l»/(8*dX*dx) 
tr=tr+(2*dx-posr)**2*(txCk)+tl(i-2)-2*tl(i-l»/(8*dX*dx) 
zr=zr+(2*dx-pOSr)**2*(ZXCk)+zl(i-2)-2*zl(i-l»/(S*dx*dx) 
wr=wr+(2*dx-pOSr)**2*(wx{k}+Wl(i-2)-2*wl(i-l»/(8*dx*dx) 
ztr=ztr+(2*dx-posr>**2*(ztx(k)+ztlCi-2)-2*ztl(i-l')/C8*dx*dx) 
ror=ror+(2*dx-posr)**2*(rox(k)+rol(i-2)-2*rol(i-l»/(8*dx*dx) 
asr=asr+(2*dx-PosT')**2*Casx(k)+aslCi-2)-2*aslCi-l»/(8*dx*dx) 
htr=htr+(2*dx-posr)**2*(htxCk)+htl(i-2)-2*htl(i-l»/(S*dx*dx) 
PS=pS+CdX_PUSS)**2*Cpl(i+2)+pyCk)-2*plCi+l»/(2*dx*dX) 
US=US+CdX-POss)**2*Cul(i+2)+uy(k)-2*ul(i+l»/(2*dx*dX) 
ts=ts+CdX-P.OSS)**2*(tl(i+2)+tyCk)-2*tl(i+l»/(2*dx*dX) 
zS=1.s+(dx_poss)**2*(zlCi+2)+zyCk)-2*zlCi+l»/(2*dx*dx> 
ws=ws+Cdx-puss)**2*(WlCl+2)+wy(k)-2*wlCi+l»/(2*dx*dx) 
zts=zts+(dx-poss>**2*Cztl(i+2)+ztyCk)-2*ztlCi+l»/C2*dx*dx) 
ros=ros+(dx-poss)**2*<rolCi+2)+roy(k)-2*rol(i+l»/(2*dx*dx) 
ass=ass+Cdx-Poss>**2*Casl(i+2)+asy(k)-2*asl(i+l»/C2*dx*dx) 
hts=hts+(dx-pOSs)**2*Chtl(i+2)+htyCk)-2*htl(i+l»/(2*dx*dx) 

a(l)=-(l+ttlCi)*zztlCi)/zzl(i)}/rrol(i) 
a(1)=(a(1)-(1+tq*ztq/zq)/roq)/(2*cp) 
a(2)=1. 0 
a(3)=O.O 
a(4)=(1/Cror*asr)+1/Crrol(i)*aasl(i»)/2 
a(5)=O.O 
a(6)=1. 0 
a(7)=(-1/(ros*ass)-1/(rrol(i)*aasl(i»)/2 
'a (8) =0.0 
.:I(9)=1. 0 

b(l)=(htq+wq*uq)/roq+(hhtlCi)+wwlCi)*uul(i»/rrol(i) 
b(l)=b(l)*dt/(cp*ar)+a(l)*pq+tq . 
b(2)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtlCl)+wwl(i)*uul(i» 
b(2)=b(2)*aasl(i)/CrrolCi>*ttl(i». 
b (2) = ( b ( 2 > +a s r * ( 1 + t" * z t r / z r.> * ( h t r +wr * u T' ) / ( r 0 r * t r ) > le p 
b(2)=(b(2)-(wr/ror+wwl(i)/rrol(i»)*dt/ar 
b(2)=bC2)-g*2*dt*dsinCth)+a(4)*pr+ur 
b(3)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i» 
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b(3)=(b(3)-Cws/ros+wwl(i)/rrol(i»)*dt/(2*ar) 
b(3)=b(3)-g*dt*dsin(th)+a(7)*ps+us 

c 

c 

ca 11 d m in v ( a I 3, de 1; I 11, mm) 
if(det. ne. O. 0) goto 12 
wr i t e ( 6, 31) i 

31 formate 'pipe 1 (2nd ordeT') i=', i3) 
stop "no inverse" 

12 pit=a(I)*b(I)+a(2)*b(2)+a(3)*b(3) 
tit=a(4)*b(I)+a(S)*b(2)+a(6)*b(3) 
uit=a(7)*b(1)+a(8)*b(2)+a(9)*b(3) 
difp=dabs(ppl(i)-pit)/pit 
dift=dabs(ttl(i)-tit)/tit 
if (count. gt. 200) gate 15 
if{di'Fp. gt. O. 01) goto 13 
if{dift. It. O. 01) gato 14 

13 ppl(i)=pit 
ttl{i)=tit 
uutU)=uit 
pdif=difp 
tdif=dift 
goto 10 

15 write(6, 16>i 
16 formate'subS - no iteration for i=', i4, 'in pipe 1 (subS)') 
14 ppl(i)==pit 

tt1<i>=tit 
uul(i)=uit 
return 
end 
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subroutine 5ub6(p2. t2. u2. dx, pp2, tt2, uu2, tc, pc, r, 
a r. of. d, cp. pi, 5 t,t ID, g, d t, i, z 2, z P 2, z t 2, r 02, w2, as 2, 
ht2, th, pz, tz, !Jr, 1.:<:, ztz, rOl, asz, htz, UIZ, k) 

This SubT'outine calculates p, t and u at internal 
boundary points linking different grid sizes in pipe 2. 

implicit double precision (a-h,o-z) 
dimension p2(300), t2(300J, u2(300), z2(300), 

zt2(300),w2(300).as2(300),ht2(300),pp2(300), 
tt2(300), uu2(300). l.z2(300), np2(300), zzt2(300), 
rro2(300),ww2(300),aas2(300),hht2(300), 
a ( 9 ), b ( 3 ) I r 02 ( 300 ) , P z ( 6 ) I t z ( 6 ) , u z C 6 ) , w z ( 6 ) , 
zz(6), ztz(6),roz(6),asz(6), htz(6) 

integer 11 (3), mm(3), count 

First order approximation 

posr=dt*2/(1/Cu2(i)+as2(i»+1/Cu2(i-l)+as2(i-l») 
poss=dt*4/(1/(as2(i+l)-u2(i+l»+1/(asz(k)-uz(k») 
pr=posr/dx*p2(i-l)+(1-posr/dx)*p2(i) 
tr=posr/dx*t2(i-l)+(!-posr/dx>*t2(i) 
ur=posrFdx*u2(i-l)+(1-posr/dx>*u2(i) 
zr=posr/dx*z2(1-1)+(!-posr/dx)*z2(i) 
ztr=posr/dx*zt2(i-l)+(!-posr/dx)*zt2(i) 
ror=posr/dx*ro2(i-l)+(1-posr/dx)*ro2(i) 
asr=posr/dx*as2(i-l)+(1-posr/dx)*as2(i) 
htr=posr/dx*ht2(i-!)+(1-posr/dx>*ht2(i> 
wr=posr/dx*w2(i-l)+(1-posr/dx>*w2(i) 
ps=poss/C2*dx)*p2(i+l)+(1-poss/C2*dx»*pzek) 
ts=pass/(2*dx)*t2(i+l)+(1-po$s/(2*dx»*tz(k) 
us=poss/C2*dx)*u2(i+l)+(1-poss/C2*dx»*uz(k) 
zs=poss/(2*dx)*z2(i+l)+(1-poss/(2*dx»*zz(k) 
zts=po5s/C2*dx)*zt2(i+l)+(1-poss/(2*dx»*ztz(k) 
ros=poss/(2*dx)*ro2(i+l)+(!-poss/(2*dx»*rozCk) 
ass=poss/C2*dx>*as2(i+l)+(1-poss/(2*dx»*asz(k) 
hts=poss/(2*dx)*ht2(i+l)+(1-poss/(2*dx»*htz(k) 
ws=poss/(2*dx)*w2Ci+l)+(1-poss/(2*dx»*wz(k) 
xl=asr*dt*Cl+tr*ztr/zr)/(ror*cp*tr*ar) 
x2=ass*2*ctt*(1+ts*zts/zs)/Cros*cp*ts*ar) 
a(4)=1/(ror*asr)-wr*ur*xl/(2*pr)+wr*dt/(2*ar*ror*pr) 
a(S)=wr*ur*xl/(2*tr)-wr*dt/e2*ar*ror*tr) 
a(7)=-1/(ros*ass)+ws*us*x2/C2*ps)+ws*dt/Car*ros*ps) 
a(S)=-ws*us*x2/(2*ts)-ws*dt/Car*ros*ts) 
if(ur. eq.O. 0) gate 30 
if(us. eq. 0.0) goto 30 
a(67=1-wr*xl+wr*dt/(ar*ror*ur) 
a(9)=1+ws*x2+ws*2*dt/(ar*ros*us) 
goto 31 

30 a(6)=1 
a(9)=1 

31 b(2)=htr*xl+ur+pr/(ror*asr)-g*dt*dsin(th} 
b(3)=-hts*x2+us-ps/(ros*ass)-g*dt*dsin(th) 

ifl(u2Ci>.le.0.O) goto 1 
ifCu2ei-l).eq.O.O) gote 2 
posq=dt*2/(1/u2(i)+1/u2Ci-l» 
goto S 

2 posq=dt*u2(i)/2 
5 pq=posq/dx*p2(i-l)+(1-posq/dx)*p2(i) 

tq=posq/dx*t2(i-l)+(1-posq/dx)*t2(i) 
uq=posq/dx*u2(i-l)+(1-posq/dx>*u2(i) 
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C 

C 

c 

c 

c 

C i -. 

ztq=posq/dx*zt2(i-l)+(1-posq/dx)*zt2(i) 
roq=posq/dx*ro2(i-l)+(1-posq/dx)*ro2(i) 
asq=posq/dx*as2(i-l)+(1-posq/dx)*as2(i) 
htq=posq/dx*ht2(i-!)+(1-posq/dx)*ht2(i) 
Ulq=posq/d x*Ul2( i--l )+( 1-posq/d x )*w2( i) 
a(l}=-(1+tq*ztq/zq)/(roq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
a(2)=1+wq*uq*dt/(2*roq*cp*ar*tq) 
a(3)=-wq*dt/(roq*cp*ar) 
b(l)=htq*dt/(roq*cp*ar)+tq-pq*<l+tq*ztq/zq)/(roq*cp) 
goto 3 

1 if(u2(U.eq,.0.0) gato 7 
if(u2(i+l>' eq. O. 0) goto 7 
posq=dabs(dt*4/(1/u2(i)+1/u2(i+l») 
goto 8 

7 posq=dabs(dt*(u2(i)+u2(i+l») 
8 pq=posq/(2*dx>*p2(i+l)+(1-posq/(2*dx»*pz(k) 

tq=posq/(2*dx>*t2(i+l)+(1-posq/(2*dx»*tz(k) 
uq=posq/(2*dx)*u2(i+l)+(!-posq/(2*dx»*uz(k) 
zq=posq/(2*dx)*z2(i+l)+(1-posq/(2*dx»*zz(k) 
ztq=posq/(2*dx)*zt2(i+l)+(1-posq/(2*dx»*ztz(k) 
roq=posq/(2*dx)*ro2(i+l)+(1-posq/(2*dx»*roz(k) 
asq=posq/(2*dx)*as2(i+l)+(1-posq/(2*dx»*asz(k) 
h t q = P 0 s q-I ( 2 * d x ) * h t 2 ( i + 1 ) + ( 1 - P 0 s q / ( 2 * d x ) ) * h t z ( k ) 
wq=posq/(2*dx)*w2(i+l)+(1-posq/(2*dx»*wz(k) 

a(l)=-(l+tq*ztq/zq)/(roq*cp)-wq*uq*dt/(roq*cp*ar*pq) 
a(2)=1+Ulq*uq,*dt!(roq*cp*ar*tq) 
a(3)=-wq*2*dt/(roq*cp*ar) 
b(!)=htq*2*dt/(roq*cp*ar)+tq-pq*(1+tq*ztq/zq)/(roq*cp) 

3 ca lId m i n v ( a, 3, d et, 1 1 , mm ) 
if(det.ne.O.O)goto 9 
wr i t e (6, 32) i 

32 formate 'pipe 2 i=', i3) 
stop "no inverse" 

9 pp2(i)=a(1)~b(1)+a(2)*b(2)+a(3)*b(3) 
tt2(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uu2(i)=a(7)*b(1)+a(8)*b(2)+a(9)*b(3) 
count=O 
psave=pp2(i) 
usave=uu2(i) 
tsave=tt2(i) 
pdif=pp2(i)*1000 
tdif=tt2(1)*1000 

10 zz2(i)=9*tc!(128*tt2(i»-27*tc**3/(64*tt2(i)**3) 
zz2(i)=zz2(i)*pp2(i)/pc+l 
zzp2(i)=(zz2(i)-1)/pp2(i) 
zzt2(i)=81*tc**3/(64*tt2(i)**4)-9*tc/(128*tt2(i>*tt2(i» 
zzt2(i)=zzt2(i)*pp2(i)/pc 
rro2(i)=pp2(i)/(r*tt2(i)*zz2(!» 
ww2(i}=dabs(ar*rro2(i)*f*uu2(i)*uu2(i»/(2*d) 
aas2(i)=«1+zzt2(i)*tt2(i)/zz2(i»**2>*pp2(i) 
aas2(i)=aas2(i)/(rro2{i)*tt2(i)*cp)+zzp2(i)*pp2(i}/zz2(1) 
aas2(1)=(1-aas2(i»*rro2(i)/pp2(i) 
aas2(i)=1!ds~rt(dabs(aas2(i») 

hht2(i)=pi*cp*st*d*rro2(i>*uu2(i>*(tw-tt2(i» 
cOllnt=collnt+l 

c Second order procedure 
c 

posr=2*dt/(1/(ur+asr)+1/(uu2(i)+aas2(i») 
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pr=p2(i-l)+(dX-posr)*<p2(i)-p2(i-2»/(2*dx) 
ur=u2(i-!)+(dx-posr)*(u2(i)-u2(i-2»/(2*dx) 
tr=t2(i-l)+(dx-posr>*(t2(i)-t2(i-2»/(2*dx) 
zr=z2(i-l)+(dx-posr)*(z2(i)-z2(i-2»/(2*dx) 
wr=w2(i-l)+(dx-posr)*(w2(i)-w2(i-2»/(2*dx) 
ztr=zt2(i-l)+(dx-posr)*<zt2(i)-zt2(i-2»/(2*dx) 
ror=ro2(i-l)+(dx-posr)*(ro2(i)-ro2(i-2»/(2*dx) 
asr=as2(i-l)+(dx-posr)*(as2(i)-as2(i-2»/(2*dx) 
htr=ht2(i-l)+(dx-posr)*(ht2(i)-ht2ei-2»/(2*dx) 
ps=p2(i+l)-(2*dx-poss)*(p2(i+2)-pz(k»/(4*dx) 
us=u2(i+l)-(2*dx-poss)*(u2(i+2)-uz(k»/(4*dx) 
ts=t2(i+l)-(2*dx-poss)*(t2(i+2)-tz(k»/(4*dx) 
zs=z2(i+l)-(2*dx-poss)*(z2(1+2)-zz(k»/(4*dx) 
ws=w2(i+l)-(2*dx-poss)*(w2(i+2)-wzek»/(4*dx) 
zts=zt2(i+l)-(2*dx-poss)*(zt2(i+2)-ztzCk»/C4*dx) 
ros=ro2(i+l)-(2*dx-poss)*ero2(i+2)-roz(k»/(4*dx) 
ass=as2(i+l)-(2*dx-poss>*(as2(i+2)-asz(k»/C4*dx) 
hts=ht2(i+l)-(2*dx-poss)*(ht2(i+2)-htz(k»/(4*dx) 
pr=pr+(dx-posr)**2*(p2(i)+p2(i-2)-2*p2Ci-l»/(2*dx*dX) 
ur=ur+(dx-posr)**2*(u2(i)+u2(i-2)-2*u2(i-l»/(2*dx*dx) 
tr=tr+(dx-posr)**2*(t2(i)+t2(i-2)-2*t2(i-l»/(2*dx*dx) 
zr=zr+(dx-posr)**2*(z2(i)+z2(i-2)-2*z2(i-1»/(2*dx*dx) 
wr=wr+(dx-posr)**2*(w2(i)+w2(i-2)-2*w2(i-1»/(2*dx*dx) 
ztr=ztr~(dx-posr)**2*(zt2(i)+zt2Ci-2)-2*zt2(i-l»/(2*dx*dx) 
ror=ror+Cdx-posr)**2*(ro2(i)+ro2Ci-2)-2*ro2Ci-l»!(2*dx*dx) 
asr=asr+(dx-posr)**2*(as2(i)+as2Ci-2)-2*as2(i-l»!(2*dx*dx) 
htr=htr+(dx-posr>**2*(ht2(i)+ht2(i-2)-2*ht2(i-1»/C2*dx*dx) 
ps=ps+C2*dx-poss>**2*(p2(i+2)+pz(k)-2*p2Ci+l»/(S*dx*dxj 
us=us+(2*dx-poss>**2*(u2Ci+2)+uzek)-2*u2Ci+l»/(8*dx*dx) 
ts=ts+(2*dx-poss)**2*(t2(i+2)+tz(k)-2*t2(i+l»/(8*dx*dx) 
zs=zs+(2*dx-poss)**2*(z2(i+2)+zz(k)--2*z2(i+l»/(S*dx*dx) 
ws=ws+C2*dx-poss)**2*(w2(i+2)+wz(k)-2*w2(i+l»/(8*dx*dx) 
zts=zts+(2*dx-poss)**2*(zt2(i+2)+ztzCk)-2*zt2Ci+l»/(S*dx*dx) 
ros=ros+(2*dx-poss)**2*(ro2(i+2)+rez(k)-2*ro2(i+1»/(S*dx*dx) 
ass=ass+(2*dx-poss)**2*(as2(i+2)+asz(k)-2*as2(i+1»/(S*dx*dx) 
hts=hts+(2*dx-poss)**2*(ht2(i+2)+htz(k)-2*ht2(i+l»/(S*dx*dx) 

if«lIu2(iH·uq>'lt.O.0) gate 4 
if(uq. eq. O. 0) gate 11 
ifCuu2(i>.eG..O.0) gate 1.1 
posq=dabs(dt*2/(1/uu2(i)+1/uq» 
gate 20 

11 posq=dabsCdt*(uG.+uu2(i»/2) 
20 pq=p2(i-l)+(dx-posG.)*(p2(i)-p2(i-2»/(2*dx) 

uq=y2Ci-l)+(dx-posG.>*(u2(1)-u2(i-2»/(2*dx) 
t~=t2(i-l)+(dx-posq)*(t2(i)-t2(i-2»/(2*dx) 

z q = 2,2 ( i -1 ) + ( d x -p 0 s q) * ( 22 ( i ) - z 2 ( i -2) ) / C 2* d x ) 
wq=w2(i-l)+(dx-posq)*(w2(i)-w2(i-2»/(2*dx) 
ztq=zt2(i-l)+(dx-pasq)*(zt2(i)-zt2(i-2»/(2*dx) 
roq=ro2(i-l)+(dx-posq)*(ro2(i)-ro2(i-2»/(2*dx> 
asq=as2(i-l)+(dx-posq)*(as2ei)-as2(i-2»/(2*dx) 
htq=ht2(i-l)+(dx-posq)*(ht2(i)-ht2(i-2»/(2*dx) 
pq=pq+(dx-posq)**2*<p2(i)+p2(i-2)-2*p2<i-l»/(2*dx*dx) 
uq=uq+(dx-posq)**2*(u2(i)+u2(i-2)-2*u2(i-l»/(2*dx*dx) 
tq=tq+(dx-posq>**2*<t2(i)+t2{i-2)-2*t2(i-l»/(2*dx*dx) 
z~=zq+(dx-posq)**2*(z2(i)+z2(i-2)-2*z2(i-1»/(2*dx*dx) 
wq=wq+(dx-posq)**2*(w2(i)+w2(i-2)-2*w2(i-l»/(2*dx*dx) 
ztq=ztq+(dx-posq>**2*(zt2(i)+zt2(i-2)-2*zt2(1-1»/(2*dx*dx) 
roq=roq+(dx-posq)**2*(ro2(i)+ro2(i-2)-2*ro2(i-l»/(2*dx*dx) 
asq=asq+(dx-posq)**2*(as2(i)+as2(i-2)-2*as2(i-l»/(2*dx*dx) 
htq=htq+(dx-posq)**2*(ht2(i)+ht2(i-2)-2*ht2(i-l»/(2*dx*dx) 
gato 6 
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c 

c 

c 

c 

i-FCuu2(i>. eq. O. 0) gato 21 
posq=dabsCdt*4/(I/uq+l/uu2Ci») 
goto 19 

21 posq=dabsCdt*Cuq+uu2(i») 
19 pq=p2(i+l)-(2*dx-Posq)*(p2(i+2)-pz(k»/e4*dx) 

uq=u2Ci+l)-C2*dx-posq)*(u2Ci+2)-uz(k»/(4*dx) 
tq=t2(i+l)-<2*dx-posq)*(t2(i+2)-tz(k»/(4*dx) 
zq=z2(i+l)-(2*dX-Posq>*(z2Ci+2)-zzek»/C4*dx) 
wq=w2ei+l)-(2*dx-posq)*(w2(i+2)-wz(k»/(4*dx) 
ztq=zt2(i+l)-(2*dx-posq)*ezt2ei+2)-ztz(k»/(4*dx) 
roq=ro2(i+l>-(2*dx-posq>*(ro2(i+2)-rozek»/(4*dx) 
asq=as2(i+l)-(2*dx-posq)*eas2(i+2)-asz(k»/(4*dx) 
htq=ht2(i+l)-(2*dx-posq)*(ht2(i+2)-htz(k»/(4*dx) 
pq=pq+(2*dx-posq)**2*<p2(i+2)+pzek)-2*p2ei+l»/(8*dx*dx) 
uq=uq+(2*dx-posq)**2*eu2ei+2)+uzek)-2*u2(i+l»/(8*dx*dx) 
tq=tq+(2*dx-posq)**2*(t2(i+2)+tz(k)-2*t2(i+l»/(8*dx*dx) 
zq=zq+(2*dx-posq)**2*(z2(i+2)+zz(k)-2*z2ei+l»/(8*dx*dx) 
wq=wq+(2*dx-posq)**2*(w2(i+2)+wzek)-2*w2Ci+l»/(8*dx*dx) 
ztq=ztq+(2*dx-posq>**2*(zt2(i+2)+ztz(k)-2*zt2(i+l»/(S*dx*dx) 
roq=roq+(2*dx-posq)**2*(ro2Ci+2)+roz(k)-2*ro2(i+l»/(S*dx*dx) 
asq=asq+(2*dx-posq)**2*(as2(i+2)+asz(k)-2*as2Ci+l»/(S*dx*dx) 
htq=htq+e2*dx-posq)**2*(ht2(i+2)+htz(k)-2*ht2(i+l»/(S*dx*dx) 

6 a(1)=-(1+tt2(i)*zzt2(i)/zz2(i»/rro2(1) 
a(1)=(a(1)-(1+tq*ztq/zq)/roq)!(2*cp) 
a(2)=1. 0 
a(3)=0.0 
a(4)=(1/Cror*asr)+1/Crro2(i)*aas2(i»)!2 
a(5)==0.0 
a(6)=1. 0 
a(7)=(-I/(ros*ass)-1!(rro2(i)*aas2(i»)/2 
a(8)=0.O 
a(9)=1. 0 

i-F(uu2(U. It. O. 0) gote 17 
b(1)=(htq+wq*uq)/roq+(hht2(i)+ww2(i)*uu2(i»/rro2(i) 
b(1)=b(1)*dt/(2*cp*ar)+a(1>*pq+tq 
goto lS . 

17 b(1)=(htq+wq*uq)/roq+(hht2(i)+ww2(i)*uu2(i»/rro2(i) 
b(l)=b(l)*dt/Ccp*ar)+a(l)*pq+tq 

18 b(2)=(1+tt2(i)*zzt2(i)!zz2(i»*(hht2(i)+ww2(i)*uu2(i» 
b(2)=b(2)*aas2(i)/(rro2(i)*tt2(i» 
b(2)=(b(2)+asr*(1+tr*ztr/zr)*(htr+wr*ur)/Cror*tr»/cp 
b(2)=(b(2)-(wr/ror+ww2(i)/rro2(i»)*dt/(2*ar) 
b(2)=b(2)-g*dt*dsinCth)+a(4)*pr+ur 
b(3)~(1+tt2(i)*zzt2(i)/zz2(i»*(hht2(i)+ww2(i)*uu2(i» 

b(3)=b(3)*aas2(i)/(rro2(i)*tt2(i» 
b(3)=(-b(3)-ass*(1+ts*zts/zs)*(hts+ws*us)/(ros*ts»/cp 
b(3)=(b(3)-(ws/ros+ww2(i)/rro2(i»)*dt/ar 
b(3)=b(3)-g*2*dt*dsin(th)+a(7)*ps+us 

ca 11 d m i nv ( a, 3, de t, 11, mm) 
i-F(det. ne. O. 0) gote 12 
wr i t e C 6, 33) i 

33 for ma t ( 'p i P e 2 ( 2n d 0 r d er) i = " i 3 ) 
stop "no inverse" 

12 pit=a(I)*b(1)+a(2)*b(2)+a(3)*b(3) 
tlt=a(4)*b(1)+a(5)*b(2)+aC6)*b(3) 
uit=a(7)*b(1)+a(8)*b(2)+a(9)*b(3) 
difp=dabsCpp2(i)-pit)/pit 
di-Ft=dabs(tt2(i)-tit)/tit 
i-F(count. gt.200) gate 15 
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c 

if(dift.l-t.O.OU goto 14 
13 pp2(i)=pit 

tt2(i)=tit 
uu2(i)=uit 
pdif=difp 
tdif=dift 
gate 10 

15 wr i t e (6, 16) i 
16 formate 'sub6 - no iteration for i=', i4, , in pipe 2') 
14 pp2(U=pit 

tt2(i)=tit 
uu2(i)=uit 
return 
end 
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C 

C 

C 

C 

C 

C 

c 
c 

c 

c 

t-l. 
~~ 

subroutine breakl (pI, tl, ul, p2, t2, u2, ppl, ttl, uul, 
zl, ztl, rol, asl, htl, wl, dx, tc, pc, r, ar, f, d, cp, pi, 
st, tw, g, dt, i, th, z2, zt2, ro2, as2, ht2, w2) 

~4. 

this subroutine calculates steady flow conditions 
at the break point prior to failure (pipe 1). 

~( 

implicit double precision (a-h/o-z) 
dimension pl(300), t1(300), u1(300), z1(300), 

ztl(300),wl(300),asl(300),htl(300), 
ppl(300),ttl(300)/uul(300),p2(300),t2(300), 
u2 (300), z 2 (300), z t2 (300) , r 02 (300) I w2 (300) , 
as2(300), ht2(300), zzl(300), zzp1(300), 
zztl(300)/rrol(300)/wwl(300),aasl(300), 

:! .... 
~-I. 

t-l. 
to( h h t 1 ( 300 ) I a ( 9 ), b (3) Ira 1 (300 ) 

i n t e g er I I (3 ) , mm ( 3 ) lea un t 

first order approximation 

ifcul(U.eq.O.O) goto 1 
if(u1<i-1>.eq.O.O) goto 1 
posq=dt*2/(I/(ul(i-l»+1/ul(i» 
gata 2 

1 posq=dt*(ul(i)+ulCi-l»/2 
2 posr=dt*2/(1/Cul(i-l)+asl(i-l»+1/Cul(i)+asl(i») 

poss=dt*2/(1/Cas2(1)-u2(1»+1/(as2(2)-u2(2») 

pq=posq/dx*pl(i-l)+(I-posq/dx)*pl(i) 
tq=posq/dx*tl(i-l>+(l-posq/dx)*tl(i) 
uq=posq/dx*ulCi-l)+Cl-posq/dx)*ul(i) 
zq=posq/dx*zl(i-l)+(l-posq/dx)*zl(i) 
ztq=posq/dx*ztl(i-l)+(l-posq/dx>*ztlCi) 
roq=posq/dx*rol(i-l)+(l-posq/dx)*rol(i) 
asq=posq/dx*asl(i-l)+(l-posq/dx)*asl(i) 
htq=posq/dx*htl(i-l)+(l-posq/dx)*htl(i) 
wq=posq/dx~wl(i-l)+(l-posq/dx)*wl(i) 
pr=posr/dx*pl(i-l)+(l-posr/dx)*pl(i) 
tr=posr/dx*tl(i-l)+(l-posr/dx)*tl(i) 
ur=posr/dx*ul(i-l)+(l-posr/dx)*ul(i) 
zr=pasr/dx*zl(i-l)+(l-posr/dx>*zl(i) 
ztr=posr/dx*ztl(i-l)+(l-posr/dx)*ztl(i) 
rar=pasr/dx*rol(i-l)+(l-posr/dx)*ral(i) 
asr=posr/dx*asl(i-!)+(l-posr/dx>*asl(i) 
htr=pasr/dx*htl(i-l)+(l-posr/dx)*htl(i) 
wr=posr/dx*wl(i-l)+(l-posr/dx)*wl(i> 
ps=poss/dx*p2(2)+(1-poss/dx)*p2(1) 
ts=poss/dx*t2(2)+(1-poss/dx>*t2(1) 
us=poss/dx*u2(2)+(1-poss/dx>*u2(1) 
zs=poss/dx*z2(2)+(1-poss/dx)*z2(1) 
zts=poss/dx*zt2(2)+(1-poss/dx)*zt2(1) 
ros=poss/dx*ro2(~)+(1-poss/dx)*ro2(1) 
ass=poss/dx*as2(2)+(1-poss/dx)*as2(1) 
hts=poss/dx*ht2(2)+(1-poss/dx)*ht2(1) 
ws=poss/dx*w2(2)+(1-poss/dx)*w2(1) 

xl=asr*dt*(l+tr*ztr/zr)/(ror*cp*tr*ar) 
x2=ass*dt*<1+ts*zts/zs)/Cras*cp*ts*ar) 
a(1)=-(1+tq*ztq/zq)/Croq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
a(2)=1+wq*uq*dt/(2*roq*cp*ar*tq) 
a(3)=-wq*dt/Croq*cp*ar) 
a(4)=1/(ror*asr)-wr*ur*xl/(2*pr)+wr*dt/(2*ar*ror*pr) 
a(5)=wr*ur*xll(2*tr)-wr*dtl(2*ar*ror*tr) 
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c 

c 

c 

-"""-- '!:I \ 11-- .LI \ I u~""a~:, 1TUI~~""lJS>r1\'"',::1 (':;-R-pS>l"r'UI':;'R'U"&/ \C::'R'ar~rOS"1\"pS"J" 

a(S>=-ws*us*x2/(2*ts>-ws*dt/(2*ar*ros*ts) 
if Cur. eq,O.O) goto 20 
ifCU$,eq.O.O) gote 20 
a(6)=1-wr*xl+wr*dt/Car*ror*ur) 
a(9)=I+ws*x2+ws*dt/(ar*ros*us) 
gato 21 

20 a(6)=1.0 
a (9)::0.:1. 0 

21 b(l)=htq*dt/(roq*cp*ar)+tq-pq*(l+tq*ztq/zq)/(roq*cp> 
b(2)=htr*xl+ur+pr/Cror*asr)-g*dt*dsinCth) 
b(3)=-hts*x2+us-ps/(ros*ass)-g*dt*dsin(th) 

5 ca lId m i n v ( a, 3, d et, 1 1, mm ) 
if(det. ne. O. O)goto 9 
stop "no inverse" 

9 ppl(i)=a(1)*b(1)+aC2)*b(2)+a(3)*b(3) 
ttl(i)=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uul(i)=a(7)*b(1)+a(S)*b(2)+a(9)*b(3) 
ceunt=O 
psave=ppl(i) 
usave=uul(i) 
tsave=ttl(i) 
pdif=ppl(i)*1000 
udi"F=uul (i >*1000 
tdif=ttl(i)*1000 

10 zzl(i)=9*tc/(128*ttlCi»-27*tc**3/(64*ttl(i>**3) 
zzl(i)=zzl(i)*ppl(i)/pc+l 
zzpl(i)=(zzl(i)-l)/ppl(i) 
zztl(i)=81*tc**3/(64*ttl(i)**4)-9*tc/(128*ttl(i)*ttl(i» 
zztl(i)=zztl(i)*ppl(i)/pc ' 
rrel(i)=ppl(i)/(r*ttl(i>*zzl(i» 
ww1Ci)=dabs(ar*rrol(i)*f*uul(i)*uul(i»/C2*d) 
aasl(i)=«1+zztlCi)*ttl(i)/zzlCi»**2)*ppl(i) 
aasl(i)=aaslCi)/(rrol(i>*ttl(i>*cp)+lzpl(i>*ppl(:i)/zzl(i> 
aasl(i)=(l-aasl(i»*rrol(i)/pplCi) " 
aasl(i)=l/dsqrt(dabsCaasl(i») 
hhtl(i)=pi*cp*st*d*rral(i)*uulCi)*(tw-ttl(i» 
count=count:+l 

c second order procedure 
c 

c 

if(uq.eq.O.O) goto3 
if(uu1(i), eq. O. 0) goto 3 
posq=2*dt/(1/uq+l/uulCi» 
goto 4 

3 posq=dt*(uq+uul(i»/2 
4 posr=2*dt/(1/(ur+asr)+1/(uul(i)+aasl(i») 

poss=2*dt/(1/(ass-us)+1/(aasl(i)-uul(i») 

pq=pl(i)-posq*(p2(2)-pl(i-l»/(2*dx) 
tq=t1(i)-posq*(t2(2)-tl(i-l»/(2*dx) 
uq=ul(i)-posq*(u2(2)-ul(i-l»/(2*dx) 
zq=zl(i)-posq*(z2(2)-zl(i-l»/(2*dx) 
ztq=ztl(i)-posq*(zt2(2)-ztl(i-l»/(2*dx) 
roq=rol(i)-posq*(ro2(2)~rol(i-l»/(2*dx) 
asq=asl(i)-posq*(as2(2)-asl(i-l»/(2*dx) 
htq=htl(i)-posq*(ht2(2)-htl(i-l»/(2*dx) 
wq=wl(i)-posq*(w2(2)-wl(i-l»/(2*dx) 
pr=pl(i)-posr*(p2(2)-pl(i-l»/(2*dx) 
tr=tl(i)-posr*(t2(2)-tl(i-l»/(2*dx) 
ur=ul(i)-posr*(u2(2)-ul(i-l»/(2*dx) 
zr=zl(i)-posr*(z2(2)-zl(i-l»/(2*dx) 
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ror=rol(i)-posr*(ro2(2)-rol(i-l»/(2*dx) 
asr=asl(i)-posr*(as2(2)-asl(i-l»)/(2*dx) 
htr=htl(i)-posr*(ht2(2)-htl(i-l»/(2*dx) 
wr=wl(i)-posr*(w2(2)-wl(i-l»/(2*dx) 
ps=pl(i)+poss*(p2(2)-plCi-l»/(2*dx) 
ts=tl(i)+poss*(t2(2)-tl(i-l»/(2*dx) 
us=ul(i)+poss*(u2(2)-ul(i-l»!(2*dx) 
zs=zl(i)+poss*(z2C2)-zl(i-l»/(2*dx) 
zts=ztl(i)+poss*(zt2(2)-ztl(i-l»/(2*dx) 
ros=rol(i)+poss*(ro2(2)-rol(i-l»/(2*dx) 
ass=asl(i)+poss*(as2(2)-asl(i-l»!(2*dx) 
hts=htl(i)+poss*(ht2(2)-htl(i-l»/(2*dx) 
ws=wl(i)+poss*(w2(2)-wl(i-l»/(2*dx) 
pq=pq+posq*posq*(p2(2)+plCi-l)-2*pl(i»/C2*dx*dx) 
tq=tq+posq*posq*Ct2(2)+tl(i-l)-2*tl(i»/(2*dx*dx) 
uq=uq+posq*posq*<u2(2)+ulCi-l)-2*ul(i»/(2*dx*dx) 
zq=zq+posq*posq*Cz2(2)+zl(i-l)-2*zl(i»/(2*dx*dx) 
ztq=ztq+posq*posq*(zt2(2)+ztl(i-l)-2*ztl(i»/C2*dx*dx) 
roq=roq+posq*posq*(ro2(2)~rol(i-l)-2*rol(i»/(2*dx*dx) 
asq=asq+posq*posq*(as2(2)+asl(i-l)-2*asl(i»/(2*dx*dx) 
htq=htq+posq*posq*(ht2(2)+htl(i-l)-2*htlCi»/(2*dx*dx) 
wq=wq+posq*posq*(w2(2)+wl(i-l)-2*wl(i»/(2*dx*dx) 
pr=pr+posr*posr*(p2(2)+pl(i-l)-2*pl(i»!(2*dx*dx) 
tr=tr+posr*posr*(t2C2,+tl(i-l)-2*tl(i»!(2*dx*dx) 
ur=ur+posr*posr*(u2(2)+ul(i-l)-2*ul(i»!(2*dx*dx) 
zr=zr+posr*posr*Cz2(2)+zl(i-l)-2*zlCi»/(2*dx*dx) 
ztr=ztr+posr*posr*(zt2C2)+ztl(i-l)-2*ztl(i»/(2*dx*dx) 
ror=ror+posr*posr*(ro2(2)+rol(i-l)-2*rol(i»/(2*dx*dx) 
asr=asr+posr*posr*(as2(2)+aslCi-l)-2*aslCi»!(2*dx*dx) 
htr=htr+posr*posr~(ht2(2)+htl(i-l)-2*htl(i»!(2*dx*dx) 
wr=wr+posr*posr*(w2(2)+wl(i-l)-2*wl(i»!(2*dx*dx) 
ps=ps+poss*poss*(p2(2)+pl(i-l)-2*pl(i»/(2*dx*dx) 
ts=ts+poss*poss*(t2(2)+tl(i-l)-2*tl(i»/(2*dx*dx) 
us=us+poss*poss*(u2(2)+ul(i-l)-2*ul(i»/(2*dx*dx) 
zs=zs+poss*poss*(z2(2)+zlCi-l)-2*zl(i»!(2*dx*dx) 
zts=zts+poss*poss*(zt2C2)+ztl(i-l)-2*ztl(i»/(2*dx*dx) 
ros=ros+poss*poss*(ro2(2)+rol(i-l)-2*rol(i»!(2*dx*dx) 
ass=ass+poss*poss*(as2(2)+aslCi-l)-2*asl(i»/(2*dx*dx) 
hts=hts+poss*poss*Cht2(2)+htl(i-l)-2*htl(i»/(2*dx*dx) 
ws=ws+poss*poss*(w2(2)+wl(i-l'-2*wl(i»!(2*dx*dx) 

a(l)=-(l+ttl(i)*zztl(i)/zzl(l»/rrol(i) 
a(1)=(a(1)-(1+tq*ztq/zq)/roq)/(2*cp) 
a(2)=1.0 
a(3)=O.O 
a(4)=(1/(ror*asr)+1/(rrol(i)*aasl(i»)/2 
a(S'>=O.O 
a(6)=1.0 
a(7)=(-1/(ros*ass)-1/(rrol(i)*aasl(i)')/2 
a(S)=O.O 
a(9)=1. 0 

b(l)=(htq+wq*uq)/roq+(hhtl(i)+wwlCi)*uul(i»/rrol(i) 
b(1)=b(1)*dt/(2*cp*ar)+a(1)*pq+tq 
b(2)=(1+ttl(1)*zztl(1)/zzl(1»*(hhtl(i)+wwl(i)*uul(i» 
b(2)=b(2)*aasl(i)/(rrol(i)*ttl(i» 
b(2)=(b(2)+asr*(1+tr*ztr!zr)*(htr~wr*ur)/(ror*tr»/cp 
b(2)=(b(2)-(wr/ror+wwl(i)/rrolCi»)*dt/(2*ar) 
b(2)=b(2)-g*dt*dsin(th)+a(4)*pr+ur 
b(3)=(1+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i» 
b(3)=bC3)*aasl(1)/(rrol(i)*ttl(i» 
b(3)=(-b(3)-ass*(1+ts*zts/zs)*(hts+ws*us)/Cros*ts»!cp 
b(3)=Cb(3)-Cws/ros+wwl(i)/rrol(f»)*dt/C2*ar) 
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c 

c 

· r·· --

call dminv(a,3, det, ll,mm) 
ifCdet. ne. O. 0) goto 12 
stop "no inverse" 

12 pit=a(1)*b(1)+a(2)*b(2)+a(3)*b(3) 
tit=a(4)*b(1)+a(5)*b(2)+a(6)*b(3) 
uit=a(7)*b(1)+a(S)*b(2)+aC9)*b(3) 
difp=d~bs(ppl(i)-pit)/pit 

dift=dabsCtt1(i)-tit)/tit 
if ( d i f p. 9 t. (4* P d if» got 0 15 
i f ( d i ft. g t. (4* t d if» 9 0 f; a 1 5 
if C co un t. 9 t. 200) got 0 15 
ifCdifp. gt. O. 01) goto 13 
ifCdift.lt.O.Ol> goto 14 

13 ppl(U=pit 
ttl(i)=tlt 
uu1(U=uit 
pdif=difp 
tdif=dlft 
goto 10 

1 5 wr i t e ( 6, 16) i 
16 formate/divergence - no iteration For i=', 14, 'in pipe 1') 

pit=psave 
tlt=tsave 
uit=usave 

14 ppl(i)=pit 
ttlCi)=tit 
uul(i)=uit 
return 
end 
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c 
subroutine break2(prJ1, ttl, uul, pp2, tt2, uu2, ml, i) 

c 
c this subroutine calculates steady flow conditions 
c at the break point prior to failure (pipe 2). 
c: 

c 

implicit double precision(a-h,o-z) 
dimension ppl(300),ttl(300),uul(300),pp2(300), 

& tt2(300),uu2(300) 

pp2(1)=ppl(ml) 
tt2(1)=ttl(ml) 
uu2(1)=uul(ml) 
return 
end 
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c 

subroutine break3(pl, tl, uL ppl,ttl, uu1., zl, ztl, 1'01, asl, htl, 
~-I. wl, dx, tc, pc, 1', ar, f, d, cp, pi, st, tw, g, dt, it th, pat. t.:lt) 

c This subroutine calculates the conditions at the break 
c using the equalisation pressure as defined by Eannister 
c and Mucklow. 
c 

c 

implicit double precision(a-h,o-z) 
dimension pt(300), t1(300), ul(300), z1(300), ztl(300), 

~o.( w 1 ( 300 ) , as 1 ( 300 ) , h t 1. ( 300 ) , pp 1 (300), t t 1 ( 300 ) , 
~~ uu1(300), zz1(300), zztl(300), zzpl(300),rro1<300), 
& ww1(300),aasl(300),hht1(300),a(9),r01(300) 

integer count 

c first order approximation 
c 

c 

c 

if(u1(U.eq.O.O) goto 1 
if(u1<i-l). eq. O. 0) goto 1 
posq=dt*2/(l/ul(i)+l/u1(i-l» 
goto 2 

1 posq=dt*(ul(i)+u1(i-l»/2 
2 posr=dt*2/(l/(ul(i)+asl(i»+1/(u1(i-1)+asl(i-1») 

pq=posq/dx*pl(i-l)+(l-posq/dx)*pl(i) 
uq=posq/dx*ul(i-l)+(l-posq/dx)*ul(i) 
tq=posq/dx*tl(i-l)+(l-posq/dx>*tl(i) 
zq=posq/dx*zl(i-l)+(l-posq/dx)*zl(i) 
ztq=posq/dx*ztl(i-l)+(l-posq/dx)*ztl(i) 
roq=posq/dx*ro1(i-l)+(1-posq/dx)*rol(i) 
asq=posq/dx*as1(i-l)+(1-posq/dx)*asl(i) 
htq=posq/dx*htl(i-l)+(l-posq/dx)*htl(i) 
wq=posq/dx*wl(i-l)+(l-posq/dx)*wl(i) 
pr=posr/dx*p1(i-1)+(1-posr/dx)*pl(i) 
ur=posr/dx*ul(i-l)+(l-posr/dx>*ul(i) 
tr=posr/dx*tl(i-1)+(l-posr/dx)*t1(i) 
zr=posr/dx*zl(i-l)+(l-posr/dx)*zl(i) 
ztr=posr/d~*ztl(i-l)+(l-posr/dx)*ztl(i) 
ror=posr/dx*rol(i-l)+(1-posr/dx)*rol(i) 
asr=posr/dx*asl(i-1)+(1-posr/dx)*asl(i) 
htr=posr/dx*htl(i-l)+(1-posr/dx)*ht1(i) 
wr=posr/dx*w1(i-l)+(1-posr/dx)*wl(i) 

xl=l/(ar*ror)-asr*ur*(1+tr*ztr/zr)/(ror*cp*tr*ar) 
a(l)=-wq/(roq*cp*ar) 
a(2)=wq*uq/(2*roq*cp*ar*tq)+l/dt 
a(3)=xl*wr/ur+l/dt 
a(4)=-xl*wr/(2*tr) 
a(S)=(1+tq*ztq/zq>*(pp1(i)-pq)/(roq*cp*dt)+tq/dt 
~(S)=a(S)+htq/(roq*cp*ar)+wq*uq*pp1(i)/(2*pq*roq*cp*ar> 
a(6)=(1+tr*ltr/zr)*asr*htr/(ror*cp*tr*ar)-g*dsin(th) 
a(6)=a(6)-xl*wr*ppl(i)/(2*pr)+ur/dt-(ppl(i)-pr)/(ror*asr*dt) 

uul(i)=(a(4)*a(S)-a(2)*a(6»/(a(1)*a(4)-a(2)*a(3» 
tt1(i)=(a(1>*a(6)-a(3>*a(5»/(a(1>*a(4)-a(2)*aC3» 
count=O 
tsave=ttl(i) 
usave=uul(i) 
tdif=ttl(i>*1000 

10 zzl(i)=9*tc/(128*tt1(i»-27*tc**3/(64*ttl(i>**3) 
zzl(i)=zz1(i)*ppl(i)/pc+l 
zzpl(i)=(zzl(i)-l)/ppl(i) 
zztl(i)=81*tc**3/(64*ttl(i)**4)-9*tc/(128*ttl(i)*ttl(i» 
zztl(i)=zztl(i)*ppl(i)/pc 
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'''·~----~U/ijTnT)=aa-6·sTar-*rro 1 (i) *f*uu iTi ) *uu 1 (i) ) I (2*d) 
aasl(i)=«1+zztl(i)*ttl(i)/zzl(i»**2)*ppl(i) 
aasl(i)=aasl(i)/(rrol(i)*ttl(i)*cp)+zzpl(i)*ppl(i)/zzl(i) 
aasl(i)=(l-aasl(l»*rrol(l)/ppl(l) 
aasl(i)=l/dsqrt(dabs(aasl(l») 
hhtl(i)=pi*cp*st*d*rrol(i)*uul(i)*(tw-ttl(i» 
count=count+l 

c 
c 
c 

c 

Second order procedure 

ifCuq.eq.O.O) goto3 
if(uu1<iL eq. O. 0) gate 3 
posq=2*dt/(1/uq+l/uul(i» 
goto 4 

3 posq=dt*(uq+uul(i»/2 
4 posr=2*dt/(1/(ur+asr)+1/(uul(i)+aasl(i») 

pq=pl(i-l)+(1-posq/dx)*()1(1)-pl(i-2»/2 
tq=tl(i-l)+(1-posq/dx)*(tl(i)-tl(i-2»/2 
uq=ul(i-l)+(1-posq/dx)*(ul(i)-ul(i-2»/2 
zq=zl(i-l)+(1-posq/dx)*(zl(i)-zl(i-2»/2 
ztq=zt1(i-l)+(1-posq/dx'*(ztl(i)-ztl(i-2»/2 
roq=ro1(i-l)+(1-posq/dx)*(rol(i)-rol(i-2»/2 
asq=asl(i-l)+(1-posq/dx)*(asl(1)-asl(i-2»/2 
htq=htl(i-l)+(1-posq/dx)*(htl(i)-htl(i-2»/2 
wq=wl(i-l)+(1-posq/dx)*(wl(i)-wl(i-2»/2 
pr=p1(i-l)+(1-posr/dx)*(pl(i)-pl(i-2»/2 
tr=tl(i-l)+(1-posr/dx)*(tl(i)-tl(i-2»/2 
ur=ul(i-l)+(1-posr/dx)*(ul(i)-ul(i-2»/2 
zr=z1(i-l)+C1-posr/dx)*(zl(i)-zl(i-2»/2 
ztr=ztl(i-l)+(1-posr/dx)*(ztl(i)-ztl(i-2»/2 
ror=rol(i-l)+(1-posr/dx)*(rol(i)-rol(i-2»/2 
asr=asl(i-l)+(1-posr/dx)*(asl(i)-asl(i-2»/2 
htr=htl(i-l)+(1-posr/dx)*(htl(i)-htl(i-2»/2 
wr=wl(i-l)+(1-posr/dx)*(wl(i)-wl(i-2»/2 
pq=pq+Cpl(i)+pl(i-2)-2*pl(i-l»*(1-posq/dx)**2/2 
tq=tq+(tl(i)+tl(i-2)-2*tl(i-l»*(1-posq/dx)**2/2 
uq=uq+(ul(i)+u1(i-2)-2*ul(i-l»*(1-posq/dx)**2/2 
zq=zq+(zl(ii+z1(i-2)-2*zl(i-l»*(1-posq/dx)**2/2 
ztq=ztq+(ztl(i)+ztl(i-2)-2*ztl(i-l»*(1-posq/dx>**2/2 
roq=roq+(rol(i)+rol(i-2)-2*rol(i-l»*(1-posq/dx)**2/2 
asq=asq+(asl(i)+asl(i-2)-2*asl(i-l»*(1-posq/dx)**2/2 
htq=htq+(htl(i)+htl(i-2)-2*htl(i-l»*(1-posq/dx)**2/2 
wq=wq+(wl(i)+wl(i-2)-2*wl(i-l»*(1-posq/dx)**2/2 
pr=pr+(pl(i)+pl(i-2)-2*p1(i-l»*(1-posr/dx)**2/2 
tr=tr+(tl(i)+tl(i-2)-2*tl(i-l»*(1-posr/dx)**2/2 
ur=ur+(ul(i)+ul(i-2)-2*ul(i-l»*(1-posr/dx)**2/2 
zr~zr+(zl(i)+zl(i-2)-2*zl(i-l»*(1-posr/dx)**2/2 
ztr=ztr+(ltl(i)+ztl(i-2)-2*ztl(i-l»*(1-posr/dx)**2/2 
ror=ror+(rol(i)+rol(i-2)-2*rol(i-l»*{1-posr/dx)**2/2 
asr=asr+(asl(i)+asl(i-2)-2*asl(i-l»*(1-posr/dx)**2/2 
htr=htr+(htl(i)+htl(i-2)-2*htl(i-l»*(1-posr/dx)**2/2 
wr=wr+(wlCi)+wl(i-2)-2*wl(i-l»*(1-posr/dx>**2/2 

tit={l+tq*ztq/zq)/roq+(l+ttl(i)*zztl(i)/zzl(i»/rrol(i) 
tit=tit*(ppl(i)-pq)/(2*cp)+tq 
titt=(htq+wq*uq)/roq+(hhtl(i)+ww1(i)*uu1(i»/rrol(i) 
tit=titt*dt/(2*cp*ar)+tit 
uit=(l+ttl(i)*zztl(i)/zzl(i»*(hhtl(i)+wwl(i)*uul(i»*aas1(i) 
uit=uit/(rra1(i>*ttl(i»+(1+tr*ztr/zr)*(htr+wr*ur)*asr I(ror*tr) 
uit=uit*dt/(2*cp*ar)+ur-g*dt*dsinCth) . 
uit=uit-(1/(rrol(i)*aasl(i»+1/(ror*asr»*(pp1(i)-pr)12 
uit=uit-(wwl(i)/rrol(i)+wr/ror)*dt/(2*ar) 
dift=dabsCttl(i)-tit)/tit 

276 



--------rf{count.-gt-:-20oT gato' 15 
ifCdift.lt.O.01>goto 14 
ttl(i)=tit 
uul(i)=uit 
tdif=dift 
goto 10 

15 write(6, 16)i 
16 format( 'divergence - no iteration .por i=', i4, ' in 

t i t=·~ save 
uit=usave 

14 ttl(i)=tit 
uul(i)=uit 
return 
end 
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--
c 

c 
c 
c 
c 
c: 

c 

~~ 

subroutine break4(p2,t2,u2,pp2,tt2,uu2, z2, zt2,ro2,<3s2,ht2, 
w2, d x, t c, pc, r, a r, f, d, c p, pi, s t, t w, g, d t I i, t h, pat, t t I, m 1 ) 

This subroutine calculates conditions at the point 
immediately downstream of.the break after the break 
has occurred 

implicit double precision(a-h,o-z) 
dimension p2(300), t2(300), u2(300), z2(300), zt2(300), 

& w2(300),as2(300),ht2C300),ro2(300),pp2(300), tt2(300), 
~-( uu2(300), zz2(300), zzt2(300), zzp2(300), rro2(300), 
& ww2(300),aas2(300),hht2(300),a(9),ttl(300) 

integer ml,count 

c First order approximation 
c 

c 

c 

c 

poss=dt*2!(1!(as2(1)-u2(1»+1!(as2(2)-u2(2») 
ps=poss/dx*p2(2)+(1-poss/dx)*p2(1) 
ts=poss!dx*t2(2)+(l-poss/dx)*t2(1) 
us=poss/dx*u2(2)+(1-poss/dx>*u2(1) 
zs=poss/dx*z2(2)+(1-poss/dx)*z2(1) 
zts=poss/dx*zt2(2)+(1-poss/dx)*zt2(1) 
ros=poss!dx*ro2(2)+(1-poss!dx)*ro2(1) 
ass=poss!dx*as2(2)+(1-poss!dx)*as2(1) 
hts=poss!dx*ht2(2)+(1-poss/dx)*ht2(1) 
ws=poss/dx*w2(2)+(1-pass/dx)*w2(1) 

if-(u2(l>'ge.0.0) goto. 20 
if(u2(2). eq. O. 0) gate 1 
pasq=dabs(dt*2!(l!u2(1)+1!u2(2») 
gota 2 

1 posq=dabs(u2(1)*dt!2) 
2 pq=posq/dx*p2(2)+(1-posq!dx)*p2(1) 

uq=posq/dx*u2(2)+(1-posq/dx)*u2(1) 
tq=posq/dx*t2(2)+(1-posq/dx)*t2(1) 
zq=posq/dx~z2(2)+(1-posq!dx)*z2(1) 

ztq=posq!dx*zt2(2)+(1-pasq/dx)*zt2(1) 
roq=posq/dx*ro2(2)+(1-posq!dx)*ra2(1) 
asq=posq/dx*as2(2)+(1-pasq/dx)*as2(1) 
htq=posq/dx*ht2(2)+(1-posq/dx)*ht2(1) 
wq=posq/dx*w2(2)+(1-posq!dx)*w2(1) 
gate 21 

20 if ( I) 2 ( 1 ). g·t. o. 0) got 0 23 
pq=p2( 1) 
uq=O.O 
tq=t2(1) 
zq=z2(1) 
ztq=zt2(1) 
roq=ro2(1) 
aSQ.=as2(1) 
htQ.=O.O 
wq=O.O 

21 a(1)=1/dt+wq*uq/(2*roq*cp*ar*tq) 
a(2)=-wq!(roq*cp*ar) 
a(3)=(1+tq*ztq/zq)*(pq-pp2(1»/(roq*cp*dt)-htq/(roq*cp*ar)-tq!dt 
a(3)=a(3)-wq*uq*pp2(1)!(roq*cp*ar*2*pq) 

23 xl=ass*(1+ts*zts/zs)!(ros*cp*ar*ts) 
a(4)=ws*(-xl*us-l!Car*ros»!(2*ts) 
a(S)=l/dt+xl*ws+ws/(ar*ros*us) 
a(6)=(ps-pp2(1»/(ros*ass*dt)-us/dt+ws*pp2Cl)/(2*ar*ros*ps) 
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c 

c 

,c 

if(u2(U. le. O. 0) guto 24 
tt2(1)=ttl(ml) 
uu2(1)=(-a(4)*tt2(1)-a(6»/a(v) 
goto 25 

. 
24 tt2(1)=(a(2)*a(6)-a(S>*a(3»/(a(S)*a(1)-a(2)*a(4» 

uu2(1)=(aCl)*a(6)-a(4)*a(3»/(a(4)*a(2)-a(1)*a(5» 

25 pSdve=pp2(1) 
uSdve=uu2(1) 
tsave:::tt2( 1) 

count=O 
tdif=tt2(1)*1000 
udif=uu2(1)*lOOO 

10 zz2(1)=9*tc/(128*tt2(1»-27*tc**3/(64*tt2(1)**3) 
zz2(1)=zz2(1)*pp2(1)/pc+l 
zzp2(1)=(zz2(1)-1)/pp2(1) 
zzt2(1)=81*tc**3/(64*tt2(1>**4)-9*tc/(128*tt2(1)*tt2(1» 
zzt2(1)=zzt2(1)*pp2(1)/pc 
rro2(1)=pp2(1)/(r*tt2(1)*zz2(1» 
ww2(1)=dabs(ar*rro2(1)*f*uu2(1>*uu2(1»/(2*d) 
aas2(1)=«1+tt2(1)*zzt2(1)/zz2(1»**2)*pp2(1) 
aas2(1)=aas2(1)/(rro2(1)*tt2(1)*cp)+zzp2(1)*pp2(1)/zz2(1) 
aas2Cl)=(1-aas2(1»*rro2(1)/pp2(1) 
aas2(1)=1/ds~rt(dabsCaas2Cl») 

hht2(1)=pi*cp*st*d*rro2(1)*uu2(1)*(tw-tt2Cl» 
count=count+l 

c Second order procedure 
c 

c 

poss=2*dt/(1/(ass-us)+1/(aas2(1)-uu2(1») 
ps=p2(2)-(dx-poss)*<p2(3)-p2Cl»/(2*dx) 
ts=t2(2)-(dx-poss)*(t2(3)-t2(1»/C2*dx) 
us=u2(2)-(dx-poss)*(u2(3)-u2(1»/(2*dx) 
zs=z2(2)-Cdx-poss)*(z2C3)-z2(1»/C2*dx) 
zts=zt2(2)-(dx-poss)*(zt2(3)-zt2(1»/(2*dx) 
ros=ro2(2)~(dx-poss>*(ro2(3)-ro2(1»/(2*dx) 
ass=as2(2)-(dx-poss)*(as2(3)-as2(1»/(2*dx) 
hts=ht2(2)-(dx-poss)*Cht2(3)-ht2(1»/(2*dx) 
ws=w2(2)-(dx-poss)*(w2(3)-w2(1»/(2*dx) 
ps=ps+(dx-pass)**2*(p2(3)+p2(1)-2*p2(2»/(2*dx*dx) 
ts=ts+(dx-poss)**2*(t2(3)+t2(1)-2*t2(2»/(2*dx*dx) 
us=us+(dx-poss)**2*(u2(3)+u2(1)-2*u2(2»/(2*dx*dx) 
zs=zs+(dx-poss)**2*(z2(3)+z2(1)-2*z2C2»/(2*dx*dx) 
zts=zts+(dx-pess)**2*(zt2(3)+zt2(1)-2*zt2(2»/(2*dx*dx) 
ro~=ros+(dx-poss)**2*(ro2(3)+ro2(1)-2*ro2C2»/(2*dx*dx) 
ass=ass+Cdx-poss)**2*(as2(3)+as2(1)-2*as2C2»/(2*dx*dx) 
hts=hts+(dx-poss)**2*(ht2(3)+ht2(1)-2*ht2(2»/C2*dx*dx) 
ws=ws+ (d x-poss )*~~2*( w2 (3) +w2 (1. ) -2*1J/2 (2) ) / (2*d x*d x) 

ifC1I2<1 >. ge. O. 0) gate 26 
posq=dabs(2*dt/(1/uq+l/uu2(1») 
p~=p2(2)-(dx-posq)*(p2(3)-p2(1»/{2*dx) 

t~=t2(2)-(dx-posq)*(t2(3)-t2(1»/(2*dx) 

uq=u2(2)-Cdx-posq)*(u2(3)-u2(1»/(2*dx) 
zq=z2(2)-Cdx-posq)*<z2(3)-z2(1»j(2*dx) 
ztq=zt2(2)-(dx-posq)*(zt2(3)-zt2(1»/(2*dx) 
roq=ro2(2)-(dx-posq>*(ro2(3)-ro2(1»/(2*dx) 
asq~as2(2)-(dx-pDsq)*(as2(3)-as2(1»/(2*dx) 

htq=ht2(2)-(dx-posq)*(ht2(3)-ht2(1»/(2*dx) 
w~=w2(2)-(dx-posq)*(w2C3)-w2(1»/(2*dx) 

pq=pq+(dx-posq)**2.(p2(3)+p2(1)-2*p2(2»/(2*dx*dx) 
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uq=uq+Cdx-pasq>**2*(u2C3)+u2(1)-2*u2C2»/(2*dx*dx) 
zq=zq+(dx-posq)**2*(z2(3)+z2(1)-2*z2(2»/(2*dx*dx) 
ztq=ztq+(dx-posq)**2*(zt2(3)+zt2(1)-2*zt2(2»/C2*dx*dx) 
roq=roq+(dx-posq>**2*(ro2(3)+ro2Cl)-2*ro2(2»/(2*dx*dx) 
asq=asq+(dx-posq)**2*(~s2(3)+as2(1)-2*as2C2»/(2*dx*dx) 

htq=htq+(dx-posq'**2*(ht2(3)+ht2(1)-2*ht2(2»/(2*dx*dx~ 
wq=wq+(dx-posq)**2*(w2(3)+w2(l'-2*w2(2»/(2*dx*dx) 
goto 27 

26 ir('J2(l). gt. O. 0) goto 28 
pq=p2(1) 
uq=O.O 
tq=t2(1) 
zq=z2(1) 
ztq=zt2(l) 
roq=ro2(1) 
asq=as2(1) 
htq=O.O 
wq=O.O 

27 tit=(1+tq*ztq/zq)/roq+(I+tt2{1)*zzt2(1)/zz2(1»/rro2(1) 
tit=tit*(pp2(1>-pq)+Chht2(1)+ww2(1)*uu2{1»*dt/(rro2(1)*ar) 
tit=(tit+(htq+wq*uq)*dt/(raq*ar»/(2*cp)+tq 
goto 29 

28 tit=ttl(ml) 
29 uit=aas2Cl)*Cl+tt2(1)*zzt2(1)/zz2(1»*(hht2(1)+ww2(1)*uu2(1» 

uit=uit/(rro2(1)*tt2(1»+ass*(1+ts*zts/zs)*(hts+W5*US)/(ras*ts) 
uit=(uit/Ccp*ar)+ww2(1)/(ar*rro2Cl»+ws/(ar*ros»*dt 
uit=(Cpp2(1)-ps)*(I/(ros*ass)+1/(rra2Cl)*aas2(1»)-uit)/2 
uit=uit-g*dt*dsin(th)+us 
dift=dabsCtt2(1)-tit)/tit 
if (dift. gt. C4*tdi"F» goto 15 
i -F ( co u n t. 9 t. 200) got a 15 
if (dirt. It. O. 01) gato 13 
uu2(I)=uit 
tt2(1)=tit 
tdir=di-Ft 
gate 10 

1::; wr i t e ( 6, 16? 
16 format('divergence - no iteration for i=1 in pipe 2') 

tit=tsave 
uit=usave 

13 tt2(1)='f;it 
uu2(1)=uit 
return 
end 
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C 

c: 
C 

c 
e 
c: 

c 

t-t 
~o( 

subroutine subup (pi, tt, ul, dx, ttl, uul, tc, pc, r, ar, 
·f, d, cp, pi, st, tw, 9' dt, i, zl, zpl, ztl, rol, w1, asl, ht1. th, 
ppl,ttl,uu1) 

this subroutine calculates p,u and t at the upstream 
end of the pipe assuming constant pressure and 
constant mass flow rate. 

impli.cit double precision (a-h,o-z) 
dimension p1(300), tl(300), u1(300), z1(300), ztl(300), 

& zpl(300),rol(300),aslC300),htl(300),wl(300), 
~-t t t 1 (300) , u u 1 ( 300 >, z z 1 ( 300 ), z z t 1 C 300 ), z z P 1 ( 300 ) , 
& rrol(300),aasl(300),hhtl(300),ww1(300),ppl(300) 

integer count 

c first order approximation 
c 

c 

poss=dt*2/(l/(asl(1)-ul(l»+1/(asl(2)-ul(2») 
ps=(poss/dx>*pl(2)+(l-poss/dx)*pl(1) 
us=Cposs/dx)*ul(2)+(1-poss/dx)*ul(1) 
ts=(poss/dx)*t1(2)+(I-poss/dx)*tl(1) 
zs=(poss/dx)*zl(2)+(1-poss/dx)*zl(1) 
zts=(poss/dx)*ztl(2)+(I-poss/dx)*ztl(1) 
ros=(poss/dx)*rol(2)+(1-poss/dx)*rol(1) 
ass=(poss/dx)*asl(2)+(1-poss/dx)*asl(1) 
hts=(poss/dx)*htl(2)+(1-poss/dx)*htl(1) 
ws=(poss/dx>*wl(2)+Cl-poss/dx)*wl(1) 
xl=l/dt+(l+ts*ztslzs)*ws*ass/(ros*cp*ts*ar) 
xl=xl+ws/Car*ros*us) 
x2=(1+ts*zts/zs)*(hts-ws*us/2)*ass/(ros*cp*ts*ar) 
x2=x2-ws/(2*ar*ros)-us/dt-Cpl(1)-ps)/(ros*ass*dt) 
x2=x2+g*dsinCth) 
x3=(I+ts*zt;lzs)*ass*ws*us*rol(I)*ul(l)/Ccp*ts) 
x3=(x3+ws*rolCl)*ul(l»/(2*ar*ros**2) 
uul(1)=(dsqrt(x2*x2-4*xl*x3)-x2)/(2*xl) 
usave=uulCl) 
count=O . 
udif=uul(l)*lOOO 

4 rrol(l)=rol(l)*ulCl)/uulCl) 
ttl(l>=pl(l)/Crrol(l)*zl(l)*r) 
zzl(l)=9*tc/(128*tt1(1»-27*tc**3/(64*ttl(1)**3) 
zzl(l)=zzl(l)*plCl)/pc+l 
Izpl(l)=Czzl(l)-l)/plCl) 
zztlCl)=81*tc**3/(64*ttl(1)**4)-9*tc/C128*~tl(1)*ttl(i» 

zztl(1)=zztl(1)*pl(1)/pc 
ww~(1)=dabs{ar*rrol{1)*f*uul(1)*uul(i»/C2*d> 

aasl(1)=«1+zztlCl)*ttlCl)/zzlCl»**2) 
aasl(l)=aasl(l)/Crrol(l)*ttl(l)*cp)+zzpl(l)/zzl(l) 
aasl(l)=Cl/pl(l)-aasl(l»*rrolCl) 
aasl(l)=l/dsqrtCdabs(aasl(l») 
hhtl(l)=pi*cp*st*d*rrol(l)*uul(l)*Ctw-ttl(l» 
count=count+l 

c second order procedure 
c 

poss=dt*2/(1/(aasl(1)-uul(1»+1/(ass-us» 
ps=pl(2)-(dx-poss)*(plC3)-pl(1))/(2*dx) 
ps=ps+Cdx-poss)**2*(pl(3)+pl(1)-2*pl(2»/(2*dx*dx) 
ts=tl(2)-(dx-poss)*(tl(3)-tl(1»/(2*dx) 
ts=ts+(dx-poss)**2*(tl(3)+tl(1)-2*tl(2»/(2*dx*dx) 
us=ul(2)-Cdx-poss)*(ul(3)-ulCl»/(2*dx) 
us=us+(dx-poss)**2*(ul(3)+ul(1)-2*ul(2»/(2*dx*dx) 
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Is=zs+(dx-poss)**2*(zl(3)+zl(1)-2*zl(2»/(2*dx*dx) 
ws=wl(2)-Cdx-pass)*Cwl(3)-wl(1»/(2*dx) 
wS:::I..us+(dx-p()ss)*-H'~?*(lUl (3)+wl (1 )-2*wl (2) )/(2*dx*dx) 
z t 5 = z t 1. (2) .,. ( d x - P CJ S 5 HH It 1 ( 3 ) -z t 1. ( 1. ) ) / ( 2* d x ) 
zts=zts+(dx-poss)**2*(ztl(3)+ztl(1)-2*ztl(2»/(2*dx*dx) 
ros=rol(2)-(dx-poss)*(rol(~)'-rol{1»/(2*dx) 

ros=ros+(dx-poss)**2*(rol(3)+rol(1)-2*rol(2»/(2*dx*dx) 
ass=asl(2)-(dx-passi*(asl(3)-asl(1»/(2*dx) 
ass=ass+(dx-poss)**2*(asl(3)+asl(l)-2*asl(2»/(2*dx*dx) 
hts=htl(2)-(dx-poss)*(htl(3)-htl(1»/(2*dx) 
hts=hts+(dx-poss)**2*(htl(3)+htl(1)-2*htl(2»/(2*dx*dx) 

uit=us+(1/(ros*ass)+1/(rrol(1)+aasl(1»)*(pl(1)-ps)/2 
xl=ass*Cl+ts*zts/zs)*(hts+ws*us)/(ros*ts) 
x2=aasl(1)*(1+tt1.(1).zzt1(1)/zzl(1»*(hht1(1)+wwl(1)*uu1(1» 
x2=x2/(rrol(1)*ttl(1» 
x3=(xl+x2)/(cp*ar)+ws/(ar*ros)+wwl(1)/(ar+rrolCl» 
x3=x3*dt/2+g*dt*dsin(th) 
uit=uit-x3 
difu=dabs(uul(l)-uit) 
if Ccount. gt. 200) goto 1 
if(difu.lt.O.Ol) gate 3 
uu1(1)=uit 
gote 4 

1 write,(22,2) 
2 format('no :i.teration fOl' i=1 in pipe I') 

uit=usave 
3 uul(1)=uit 

rrol(l)=rol(l)*ul(l)/uul(l) 
ttl(l)=pl(l)/(rrol(l)*zzl(I)*r) 
ppl(1)=pl<l) 
return 
end 
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--

9*9*9*~************************************************************** 
c 

c 
c 
r: 
c 
c: 

C 

~~ 

::"! 

subroutine downl(p2, t2,u2, dx,pp2,tt2,uu2, tc,pc,r,ar, 
th, r, d, CP' p.f., st, i;wi g, dt, L z2, zp2, zt2, r02, w2, as2, 
h t2) 

this subroutine calculates p, u and t at the downstream 
boundary condition assuming a constant temperature 
non-retuT'n valve situat.;ion. (valve closes if IJ<O m/s) 

implicit double precision (a-h,o-z) 
dimension p~:(300), u2(300), t2(300), 12(300" zt2(300), ro2(300), 

& pp2(300),uu2(300),tt2(300),rr02(300),w2(300),as2(300),ht2(300), 
~~ 2z2(300), np2(300), zzt2(;J00), wUJ2(300), aas2(300), hht2(300) 

i n t e gel' C 0 IJ n t 

c First order approximation 
c 

c 

c 

C 

c 

posr=dt*2/(1/(u2(i)+as2(i»+1/(u2(i-l)+as2(i-l») 
pr=(posr/dx)*p2(i-l)+(1-posr/dx)*p2(i) 
ur=(posr/dx)*u2(1-1)+(1-posr/dx)*u2(i) 
tr=(posr/dx)*t2(i-l)+(1-posr/dx)*t2(i) 
zr=(posr/dx)*z2(i-l)+(1-posr/dx)*z2(i) 
ztr=(posr/dx)*zt2(i-l)+(1-posr/dx)*zt2(i) 
ror=(posr/dx)*ro2(i-l)+(1-posr/dx)*r02(i) 
asr=(posr/dx)*as2(i-l)+(1-posr/dx)*as2(1) 
htr=(posr/dx)*ht2(i-l)+(1-posr/dx)*ht2(i) 
wr=(posr/dx)*ID2(i-l)+(1-posr/dx)*w2(i) 

xl=1/(ror*asr)-asr*IDr*ur*dt*(1+tr*ztr/zr)/(2*pr*ror*cp*tr*ar) 
xl=xl+wr*dt/(2*ar*ror*pr) 
x2=1-asr*wr*dt*(1+tr*ztr/zr)/(ror*cp*tr*ar)+wr*dt/(~r*ror*ur) 

x3=asr*dt*(1+tr*ztr/zr)*(htr-wr*ur*t2(i)/(2*tr»/(ror*cp*tr*ar) 
x3=x3+UJr*dt*t2(i)/(2*tr*ar*ror)-g*dt*dsin(th)+pr/(ror*asr)+ur 

if(u2(i).eq.O.0) goto 3 
if(uu2( i-1). It. O. 0) goto 3 
if(u2(i-1> .. eq. 0.0) goto 1 
posq=dabs(dt*2/(1/u2(1)+1/u2(i-l») 
goto 2 

1 posq=dt*u2(i)/2 
2 pq=(posq/dx)*p2(i-l)+(1-posq/dx)*p2(i) 

uq=(posq/dx)*u2(i-l)+(1-posq/dx)*u2(1). 
tq=(posq/dx)*t2(i-l)+(1-posq/dx)*t2(i) 
zq=(posq/dx)*z2(i-l)+(1-posq/dx)*z2(i) 
ztq=(posq/dx)*zt2(i-l)+(1-posq/dx)*zt2(1) 
roq=(posq/dx)*ro2(i-l)+(1-posq/dx)*ro2(i) 
asq?(posq/dx)*as2(i-l)+(1-posq/dx)*as2(i) 
htq=(posq/dx)*ht2(i-l)+(1-posq/dx)*ht2(i) 
wq=(posq/dx)*w2(i-l)+(1-posq/dx)*w2(i) 

x4=-(1+tq*ztq/zq)/(roq*cp)-wq*uq*dt/(2*roq*cp*ar*pq) 
x5=-wq*dt/(roq*cp*ar) 
x6=(htq-wq*uq*t2(i)/C2*tq»*dt/(ar*roq*cp)-t2(i)+tq 
x6=x6-(1+tq*ztq/zq)*pq/(roq*cp) 

uu2(i)=(x3*x4-xi*x6)/(x4*x2-xl*x5) 
pp2(i)=(x5*x3-x2*x6)/(xl*x5-x4*x2) 
goto 4 

3 uu2(i)=O.O 
pp2(i)=x3/xl 

4 psave=pp2(i) 
cOllnt=O 
pdif=pp2(i)*1000 
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c 

""~, ... ,--\le:.\.L I 

10 zz2(i)=9*tc/(128*tt2(i»-27*tc**3/(64*tt2(i>**3) 
zz2(i)=zz2(i)*pp2(i)/pc+l 
zzp2(i>=(zz2(i)-1)/pp2(i) 
zzt2(i)~81*tc**3/(64*tt2(i)**4)-9*tc/(128*tt2(i)*tt2(i» 
zzt2(i)=zzt2(i)*pp2(i)/pc 
rro2(i)=pp2(i)/Cr*tt2(i)*112(i» 
ww2(i)=dabsCar*rro2(i)*f-*uu2(i)*uu2(i»/(2*d) 
aas2Ci)=«1+zzt2Ci)*tt2(i)/zz2(i»**2)*pp2(i) 
aas2(i)~aas2(i)/(rro2(i)*tt2(i)*cp)+zzp2(i)*pp2(i)/zz2(i) 

aas2(1)=(1-aas2(i»*rro2(i)/pp2(i) 
aas2(i)=1/dsqrt(dabs(aas2(i») 
hht2(i)=pi*cp*st*d*rro2(i)*uu2(i)*(tw-tt2(i» 
count=count+l 

c second order procedure 
c 

c 

c 

posr=dt*2/(1/(asr+ur)+1/(aas2(i)+uu2(i») 
pr=p2(i-l)+(dx-pasr)*(p2(i)-p2(i-2»/(2*dx) 
ur=u2(i-l)+(dx-posr)*(u2(i)-u2(i-2»/(2*dx) 
tr=t2(i-l)+(dx-pasr)*(t2(i)-t2(i-2»/(2*dx) 
zr=z2(i-l)+(dx-posr>*(z2(i)-z2(i-2»/C2*dx) 
ztr=zt2(i-l)+Cdx-posr)*(zt2(i)-zt2Ci-2»/(2*dx) 
ror=ro2(i-l)+(dx-posr)*(ro2(i)-ro2Ci-2»/(2*dx) 
asr=as2(i-l)+(dx-posr)*(as2(i)-as2Ci-2»/(2*dx) 
htr=ht2(i-l)+Cdx-posr)*Cht2(i)-ht2(i-2»/(2*dx) 
wr=w2(i-l)+(dx-posr)*(w2(i)-w2(i-2»/(2*dx) 
pr=pr+(dx-posr)**2*(p2(i)+p2(i-2)-2*p2(i-l»/(2*dx*dx) 
ur=ur+(dx-posr)**2*(u2Ci)+u2(i-2)-2*u2Ci-l»/(2*dx*dx) 
tr=tr+(dx-pasr)**2*Ct2Ci)+t2(i-2)-2*t2(i-l»/(2*dx*dx) 
zr=lr+(dx-posr)**2*(z2Ci)+z2Ci-2)-2*z2(i-l»/C2*dx*dx) 
ztr=ztr+Cdx-posr)**2*Czt2(i)+zt2(i-2)-2*zt2(i-l»/C2*dx*dx) 
ror=ror+(dx-posr)**2*Cro2Ci)+ro2(i-2)-2*ro2(i-l»/(2*dx*dx) 
asr=asr+(dx-posr)**2*(as2(i)+as2(i-2)-2*as2(i-l»/C2*dx*dx) 
htr=htr+(dx-posr)**2*Cht2(i)+ht2(i-2)-2*ht2Ci-l»/(2*dx*dx) 
wr=wr+(dx-posr)**2*(w2(i)+w2(i-2)-2*w2(i-l»/(2*dx*dx) 

xl=Cl/(ror~asr)+1/Crro2(i)*aas2(i»)/2 

x2=1. 0 
x3=aas2(i)*(1+tt2(i)*zzt2(i)/zz2(i»*(hht2Ci)+ww2(i)*uu2(i» 
x3=x3/Crro2(i)*tt2(i»+asr*(1+tr*ztr/zr)*(htr+wr*ur)/(ror*tr) 
x3=(x3/cp-ww2(i)/rro2(i)-wr/ror)*dt/(2*ar)-g*dt*dsinCth) 
x3=x3+xl*pr+ur 

if(u1l2(U. le. O. 0) gate 5 
posq=dabsCdt*2/(1/uu2Ci)+1/uq» 
pq=p2(i-l)+(dx-posq)*(p2(i)-p2(i-2»/C2*dx) 
uq=~2Ci-l)+(dx-posq)*(u2(i)-u2(i-2»/(2*dx) 

tq=t2(i-l)+(dx-posq)*Ct2(i)-t2(i-2»/C2*dx) 
zq=z2(i-l)+(dx-posq)*(z2(i)-z2(i-2»/C2*dx) 
ztq=zt2(i-l)+(dx-pos~)*(zt2(i)-zt2Ci-2»/C2*dx) 

roq=ro2Ci-l)+Cdx-posq)*(ro2(i)-ro2(i-2»/(2*dx) 
asq=as2Ci-li+Cdx-posq)*(as2(i)-as2(i-2»/(2*dx) 
htq=ht2(1-1)+(dx-posq)*Cht2(i)-ht2(i-2»/(2*dx) 
wq=w2(i-l)+(dx-posq)*Cw2(i)-w2(i-2»/C2*dx) 
pq=pq+(dx-posq)**2*(p2(i)+p2(i-2)-2*p2Ci-l»/C2*dx*dx) 
uq=uq+Cdx-posq)**2*(u2Ci)+u2Ci-2)~2*u2(i-l»/(2*dx*dx) 

tq=tq+(dx-posq)**2*(t2(i)+t2(i-2)-2*t2(i-l»/(2*dx*dx) 
zq=zq+(dx-posq)**2*(z2Ci)+z2(i-2)-2*z2(i-l»/(2*dx*dx) 
ztq=ztq+(dx-posq)**2*(zt2(i)+zt2(i-2)-2*zt2Ci-l»/(2*dx*dx) 
roq=roq+Cdx-posq)**2*Cro2(i)+ro2Ci-2)-2*ro2Ci-l»/C2*dx*dx) 
asq=asq+(dx-posq)**2*(as2(i)+as2(i-2)-2*as2(i-l»/(2*dx*dx) 
htq=ht,q+(dx-posq>**2*(ht2(i)+ht2(i-2)-2*ht2Ci-l»/(2*dx*dx) 
wq=wq+(dx-posq>**2*(w2(i)+w2(i-2)-2*w2(i-l»/(2*dx*dx) 
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c 

c 

x4=<-{1+tt2Ci)*zzt2(1)/zz2(i»/rro2(i)-(1+tq*ztq/zq)/roq)/(2*cp) 
x5=O.0 
x6=«hht2(i)+ww2(i)*uu2(i»/rro2(i)+(htq+wq*uq)/roq)*dt/C2*cp*ar) 
x6=x6-tt2(1)+tq+x4*pq 

uit=(x3*x4-xl*x6)/x4 
pit=x6/x4 
goto 6 

5 uit=O.O 
pit=x3/xl 

6 difp=dabs(pp2(i)-pitJ/pit 
i f ( d i f p. 9 t. (4* P d if» 9 (J t 0 7 
if ( co un t. g 1;. 200) gat 0 7 
if(dlfp. It. O. (1) gato 8 
pp 2 ( i J =p it 
uu2(i)=uit 
pdif=difp 
goto 10 

7 write(6,9Ji 
9 formate 'diveT'gence - no iteration for i=', i4,' in pipe 2') 

pi .t;=p save 
uit=usave 

8 pp2(U=pit 
uu2(U=uit 
return 
end 
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5 U b;:'''o u tl n e---g-e t- f i 1 ( i ) ------.­

character*80 filnam 
1233 write(*, 1234) 
1234 format(lx, 'filename ? ',$) 

read*, filnam 
open(unit=i, file=filnam, err=1235) 
rewind i 
return 

1235 print*, "Can't open",filnam 
goto 1233 
end 
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c 
c 
c 
c 
c 
c 
c 
c 
c: 
c 
c 
c 
c 
c 
c 

c: 

Description of parameters 
a - Input matrix replaced by inverse on exit 

n 

Matrix a is the whole matrix stored in a single 
dimension array columnwise. 

Order o'P mat'rix 'a' 

cl - Resultant determinant 

I .- Work vector of length 'n' 

III Work vector of length 'n' 

double precision 13(*), d, biga, hold 
integer l(*),m(*) 
d=1. 0 
nk=-n 
do 80 k=L n 
nk=nk+n 
l{k)=k 
m ( k ) =k 
kk=nk+k 
biga=a(kk) 
do 20 j=k.Tl 
iz=n*(j-l> 
do 20 i=k,Tl 
ij=iz+i 

10 if(dabs(biga)-dabs(a(ij»)15,20,20 
15 biga=a(ij) 

10)=i 
m(k)=j 

20 continue 

c Interchange rows 
c: 

c 
c 
c 

c: 
c 
c 

j=l<k) 
if(j-k)35,35,25 

25 ki=k-n 
do 30 i=L n 
ki=ki+n 
hold=-a(ki) 
j i=ld-k+ j 
a (-k i ) =a ( j i ) 

30 a(ji)=hold 

Interchange columns 

35 i=m ( k) 
if(i-k)45,45,38 

38 jp=n*( i-i) 
do 40 j=1. n 
jk=nk+j 
ji=jp+j 
hold=-a(jk) 
a(jk)=a(ji) 

40 a(ji>=hold 

Divide column by minus pivot value ( -biga ) 

45 iF(biga)48,46,48 
46 d=O. 0 

return 
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c 
c: 
c 

c 
c 
c: 

c 
c 
c 

c 
c 
c 

c: 
c 
c 

if(i-k)50, 55, 50 
50 ik=nk+i 

a(ik)=a(ik)/(-biga) 
55 continue 

Reduce matrix 

do 65 i=l,n 
ik=nk+i 
hold=a(ik) 
ij=i-n 
do 65 j=1. n 
ij=ij+n 
if(i-k)60,65,60 

60 if(j-k)62,65,62 
62 kj=ij-i+k 

a(ij)=hold*a(kj)+a(ij) 
65 continue 

Divide row by pivot 

k j=I<-n 
do 75 j=l,n 
kj=kj+n 
if(j-k)70,75,70 

70 a(kj)=a(kj)/biga 
75 continue 

Product of pivots 

d=d*biga 

Replace pivot by reciprocal 

a(kk )=1. O/biga 
80 continue 

Final row and column interchange 

k=n 
100 k=k-l 

if (k) 150,150,105 
105 i=l(k) 

i f ( i - k ) 120, 120, 1 08 
108 jq=n*(k-1) 

jr=n* ( i-l ) 
do.l10 j=l,n 
jk=jq+J 
hold=a(jk) 
ji=jr+j 
a(jk)=-aeji) 

110 a(Ji>=hold 
120 j=m(k) 

if (j-k) lOO, lOO, 125 
125 ki=k-n 

do 130 i=1, n 
ki=ki+n 
hold=a(ki) 
j i=k i-k"+- j 
a(ki)=-a(ji) 

1.30 a(ji)=hold 
goto 100 

150 retuT'n 
end 
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GRAPHICS PROGRAMS 

r 

C ,Routine to plot graphs of pressure vs time 
c 

real*4 p(20),u(20),t(20),wisen(20),wisot(20),time{500),pplot(500) 
dimension int(20) 
character*20 yorn 

800 format(A20) 
iTlag=O 
ipen=O 
open(unit=l,file='theory') 
rewind (1) 
open(unit=2,file='expt') 
rewind (2) 
yspot=65.0 

100 print*. 'Enter value OT i required for plot' 
rewindC!) 
rewind(2) 
readC5,*) iset 
readCl,*) nint 
writeC6,25) 

25 formatC'Do you require the experimental data plotted?') 
read. (5,800) yorn 
if (yorn. et\. 'N t. or. yorn. et\. 'n') goto 300 
read(2.*) nint2 
ipen=1 
1=0 

20 1=1+1 
reade2.*,end=400) time Cl) 
do 3 i=1,nint2 
read C2,*> intCi),p(i),u(i),t(i),wisenCi),wisotCi) 

:3 continue 
do 4 J=l, ni.nt2 
if(intCJ). ne. iset) goto 4 
pplotCl)=pCJ) 
goto 20 

4 ifeJ.et\.nint2) goto 400 
continue 
goto 20 

400 1=1-1 
gotE) 500 

300 1=0 
10 1=1+1 

read(1,*,end=200) time(l) 
do 1 i=1,nint 
readC1, *) intei), p(i), u(i), tCi), wisen{i),wisot{i) 

1 continue 
do 2 J=l,nint 

'if<1nteJ). ne. iset) goto 2 
pplotCl)=p(j) 

2 continue 
goto 10 

200 
500 

1=1-1 
pmax=10000 ___ Maximum Pressure Value 
ifCiflag. gt. 0) gato 11 
call hp7550 
call devpap(380.0,250.0,0) 
call window(2) 
call pensel( 1, 0.5,2) 

289 



\ 

j 

call ·axipos(L'30. 0;3C>.'"o;-i50~ '0',1> 
call axipos(1,30.0,30.0, 150.0,2) 
call axisca(l, I, 0.0, time(l), 1) 

call axisca(l, 1/2,O.O,pmax,2' 
call axidraCl,l, 1) 

call axidra(-2,-1,2) 
call movto2(SO.O, 15.0) 
call chastr( 'time (secs)') 
c.aU mov.t..o2..U5- 0...130.-0) 
call chaang(90:0) 
call chastr('pressure (KPa)') 
call chaang(O.O) 
call movto2(90.0,200.0) 
call chastr('Foothills Test NABTF3 ')~ 

11 ifCipen. eq,.1) goto 12 
call pensel (1, 0.5,2) 
call grapol(time,pplot,U 
goto 13 

12 call pensel(2,O.5,2) 
prlnt*, 'Enter code for symbol type (1-6) I 

read(5,*) nsym 
call grapolCtime, pplot,l) 
call grasym(time, pplot, 1, nsym, 1) 

yspot=yspot-5.0 
call movto2(150.0,yspot) 
call symbolCnsym) 
call movto2(155.0,yspot) 
call chastr('i= ') 
call chaint(iset,4) 

13 call chamod 
ip en=O ' 
iflag=l 
prlnt*, 'Do you require another I? Y or N' 
read(5,800)_yorn 
1 f ( Y 0 r n. e q. I Y I • 0 r. y 0 r n. e q,. I Y ') got 0 100 
call piccle 
call devend 
stop 
end 
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c: Routine to plot graphs of pressure vs wavespeed 
c: 

rea 1 *4 p (20) , u (20), t (20) , w is en (20) , w is 0 t (20), t i 111 e ( 500) , pp lot ( 500 ) 
rea1*4 wp1ot(500) 
dimension int(20) 
charac:ter*20 yarn 

800 format(A20) 
iflag=O 
ipen=O 
openCunit=l,file='theory') 
rewind (1) 

openCunit=2,fi1e='expt') 
rewind (2) 
yspot=100.0 

100 pr1nt*, 'Enter value of 1 required for plot' 
rewind (1) 
rewind (2) 
read(5,*) iset 
read(1,*) nint 
write(6,25) 

25 format('Do you require the experimental data plotted?') 
read(5,800) yarn 
if (yorn. eq. 'N'. or. yorn. eq. 'n') goto 700 
readC2,*> nint2 
1pen=1 
1=0 

20 1=1+1 
read(2,*,end=400) timeCl) 
do 3 i=1,nint2 
read(2,*> int(i),pCi),u(i),tC1),wisenCi),wisotCi) 

3 continue 
do 4 J=1,n1nt2 
if(1nt(J). ne. iset) goto 4 
pplotCl)=pCj) 
wplot(l)=wi~enCJ) 

4 continue 
goto 20 

.400 1=1-1 
goto 500 

700 write(6,22) 
22 format('Theoretical Plot=-') 

write(6,21) 
21 format('Do you want isothermal Cl) or isentropic (2) wavespeed?') 

read(5,*> ii· 
ifCii. eq.2) goto 300 
1=0 

30 1=1+1 
read (l,*,end=600) time (1) 
do 5 i=l,nint 
read(l,*> int(i),p(i),u(i),tCi),wisen(t),wisot(i) 

5 continue 
do 6j=l,ntnt 
if(int(j>' ne. 1set) goto 6 
pp10tCl)=pej) 
wplot(l)=wisot(j> 

6 continue 
goto 30 

600 1=1-1 
goto 500 

300 1=0 
10 1=1+1 
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read(l,*,end=200) time(l) 
do 1 i=l,nint 
read(1.*) int(i), p(i), uCi), t(i),wisen(i).,wisotCU 

1 continue 
do 2. j;:l,-nint 
iT(intej>' ne. iset} gete 2 
pplotCI>=p(j) 
wplot(l)=wisen(j} 

200 
500 

2 continue 
goto 10 
1=1-1 
wmax=500 } 
pmax=10000 - Maxrmum Wavespeed and Pressure Values 
iTCiflag.gt.O) goto 11 
call hp7550 
call devpap(380.0,250.0,0) 
call window(2) 
call pensel(1,O. 5,2) 
call axipos(1,30. 0,30. 0, 150.0,1) 
call axipos(1,30.0,30.0, 150.0,2) 
ca 11 a xis c a ( 1, 1, O. 0, wma x, 1 ) 
call axisca(1, 1/2,O.O,pmax,2) 
ca 11 a x id ra (1, 1, 1) 

call axidraC-2,-1,2) 
call movto2(SO.0. 15.0) 
call chastrC'wavespeed Cm/s)') 
call movto2C15.0,80.0) 
call chaangC90.0) 
call chastrC'pressure CKPa)') 

·call chaang(O.O) 
Title of Graph 

/' call movt02e40.0,200.0) 
call chastr('Groves Shock Tube Test - Natural Gas') 

11 ifCipen. eq.1> goto 24 
call pensel<l,O.5.2) 
call grapol(wplot.pplot,l) 
goto 23 

24 

23 

print*, 'Enter code Tor symbol type (1-6)' 
read(5,*) nsym 
call penselC2,O. 5,2) 
call grapol(wplot,pplot,l) 
call grasymCwplot, pplot. 1, nsym, 0) 
yspot=yspot-5.0 
call movt02(150.0,yspot) 
call symbol(nsym) 
call.movto2{155.0,yspot) 
call chastr('i= ') 
call chaintCiset,4) 
call chamod 
ipen=O 
lflag=l 
prlnt*. '00 you require another i? V or N' 
read(5.800) yorn 
ifeyorn. eq. 'V'. or. yorn. eq,. 'y'} goto 100 
call piccle 
call devend 
stop 
end 
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APPENDIX VI. PREPARATION OF GAS DATA 

i) Specific Heat at Constant Pressure Cp 

From the known molar· compositions 'lT~-bi~~~j~~j~}~~.· 2Z~1), the mass 

compo'sition of the gas mixtures could be calculated using the Method of 

Mixtures:-

(1) 

where mi = mass percentage of component i 

Xi = molar percentage of component i 

Mi = molecular weight of component i 

n = number of components. 

,.....,....'":~;. . ... 

The calculated mean percentages are presented in Table A2 r on page 223 J. 
I •. ' _.'. '. 

The specific heats of the mixtures were then obtained by applying the 

following formula:-

Cp = 1: mi Cpl.' 
i=l,n 

where Cp = mean specific heat of mixture 

mi = mass percentage of component i 

CPi = specific heat' of component i 

n = number of components. 

EXAMPLE 

(2) 

To calculate the specific heat of the natural gas mixture used by 

Groves [1978J: 
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From Table AI, the molecular composition (neglecting components of less 

than 0.001%) is:-

Molecular % . Component Molecular Weight 
(From Table A3) 

1.498 N2 28.013 

1.073 CO2 44.010 

83.266 CH4 16.043 

9.608 C2H6 30.070 

3.597 C3HS 44.094 

0.3414 iC4HlO 58.124 

0.4581 nC4HIO 58.124 

0.0403 iCsHI2 72.151 

0.0342 nCsH12 72.151 

0.0046 C6HI4 86.178 

the mass percentage of, for example, methane (CH4) is 

= ~~~~~8~3~.2~6~6~x~1~6~.~04~3~~~~~~~~~~ __ 
{(1.49~x 28.013)+(1.073x44.010)+(83.266xl6.043)+ ••• ) 

= 69.40% 

The mass percentage of the other components were calculated in a 

similar manner and the mean specific heat could then be obtained from the 
r.,.+ ..... , ...... ..--- -..-: ~. • 

specific heats of the components given in Table A3 t:,o!l.pagEL,?24 • 

Cp = (0.02l8xI037)+(0.0245xSI9)+(0.6940x2174 )+(0.150lxI533 )+ ••• 

= 1960 J/kg K. 
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ii)· Specific Gas Constant R 

The mean molecular weight of a gas mixture was calculated from the 

formula:-

(3) 

where xi = molecular percentage of component i 

Mi = molecular weight of component i 

n = number of components. 

The specific gas constant for the gas mixture could then be calculated 

from:-

R = R* 
M 

where R = specific gas constant for the gas mixture 

R* = universal gas constant. 

EXAMPLE 

(4) 

To calculate the specific gas constant of the natural gas mixture used 

by Groves [1978]: 

Mean Molecular 
Weight M 

= «1.498x28.0l3)+(1.073x44.0l0)+(83.266x16.043)+ .•• ) 
(1.498 + 1.073 + 83.266 + 9.608 + 3.597 + ••••• , 

= 19.264 

8314 
R = 19.264 

= 432 J/kg K. 

J/kg K 
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iiiJ Critical Temperature T c 

In the chosen procedure, the ratios of the boiling point temperatures 

of the components of the gas were used to obtain coefficients Axy and Ayx 

from the charts below. 

1.5 

I. 4 

3 

A I. 
It I 2" .I 

10 

0.9 

08 

1.0 

0.9 

A 0.8 
21 

0.7 

0.6 

0.5 

0.4LO 

~ 
I' 

l"'- v 

v -I"'-

b 
...... 

1.2 1.4 1.6 1.8 
T. 

'to ~ .. 
(non;~than. I,s'tems) 

Figure A.2. 

I 
'f 

v 

'" r'-. 

'" "' 
2.2 2.4 

2.4 

2.2 

2.0 

1.8 

1.6 
All 1.4 

1.2 

1.0 

0.8 

0.6 

0.9 

0.8 

A 0.7 
ZI 0.6 

0.5 

0.4 

0.3 

,\ 

1.5 

1\ 

I' 

2.0 T. 2.5 
'to? .. 

(methane systems) 

Coefficient Charts for use in the 
Method of Grieves and Thodos 

3.0 3.5 

The following formula was then implemented to obtain values for the 

critical temperatures:-

[ 

Tc· 1 Tcrn =.r --l~~l------
. 1.=l,n 1 + - 1: A' . • X· 

xi j=l n 1.J J 
J"*l.' 

where T ci = critical temperature of component i (" R) 

T cm = mixture critical temperature (. R) 

Xi = molar fraction of component i 

Xj = molar fraction of component j 

Aij = coefficient taken from chart 

n = number of components. 
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EXAMPLE 

For Groves' data, neglecting the N2 and C02 components of the natural 

gas, the main components are:-

Molar fraction Tb ('R) Tc ('R) 

1. Methane 0.83266 200.9 342.7 

2. Ethane 0.09608 332.3 549.7 

3. Propane 0.03597 416.0 665.6 

From these three components three binary pairs exist. The ratios of 

the boiling point temperatures and the corresponding coefficients are listed 

below: 

Tb·/Tb· Coefficients J ~ 
(from Figure A.l ) 

Methane-ethane 1.65 A12 = 1.46 A21 = 0.65 
Methane-propane 2.07 A13 = 2.06 A31 = 0.42 

Ethane-propane 1.25 A23 = 0.966 An = 0.986 

Therefore 

342.7 549.7 
9.608 (1 46) 3.597 (2 06)+ 1 + 83.266(0 65)+ 3.597(0 966) 

1 +'83.266 • + 83.266 • 9.608' 9.608' 

+ __ ~~~~6~6~5~.~6 __ ~~~ ___ 
1 + 83.266 (0 42)+ 9.608(0 986) 

3.597 . 3.597' 

= 400.8 'R 
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iv) Critical Pressure Pc 

The critical pressures were calculated from the following equation 

(Prausnitz and Gunn [1958]):-

R* (l: xi le·) T • 1. cm 
P __ ~J~~n-~ __ _ 

cm = l: (Xi Vc·) 
• 1. 
1. 

where Pcm = pseudo critical pressure 

T cm = critical temperature 

x' = molar fraction 1 

Zci = compressibility factor of component i 

v ci = specific volume of component i 

R* = universal gas constant (= 8.3144 kJ/kmol K). 

EXAMPLE 

(6) 

For the natural gas used by Groves, the relevant data taken from 
r-,,- -'~":.:: ~-" i.·!I.:.·.~ ... -t.-'" \'"'';:-- . ~- -.t.--~-·· "-," T" .-- '--.;' -- '.~ 

Tables At and A3 [.(~lye~_·\~~_·t~ges32_~L~n~_ :,~,?~L .~~e~; 

i X· 1. VCi (cm3/mol) le· 1. 

1 1.498 89.8 0.290 

2 1.073 93.9 0.274 

3 83.266 99.2 0.288 

4 9.608 148.3 0.285 

5 3.597 203.0 0.281 

6 0.3414 263 0.283 

7 0.4581 255 0.274 

8 0.0403 303 0.269 

9 0.0342 304 0.263 

10 0.0046 370 0.264 
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Therefore: 

and 

E (Xi Zc i ) = (1.498xO.290)+(1.073xO.274)+(83.266xO.288)+ •••• 
i 

= 28.701 

E (xi VCi) = (1.498x89.8)+(1.073x93.9)+(83.266x99.2)+ •••••• 
i 

= 10881 cm3/mo1 

* p _ 8.3144 x 28.701 x 222.66 x 103 kPa 
cm - 10881 

= 4888 kPa. 
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