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SURVIVOR DERIVATIVES: A CONSISTENT PRICING
FRAMEWORK
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David Blake

ABSTRACT

Survivorship risk is a significant factor in the provision of retirement income.
Survivor derivatives are in their early stages and offer potentially significant
welfare benefits to society. This article applies the approach developed by
Dowd et al. (2006), Olivier and Jeffery (2004), Smith (2005), and Cairns (2007)
to derive a consistent framework for pricing a wide range of linear survivor
derivatives, such as forwards, basis swaps, forward swaps, and futures. It
then shows how a recent option pricing model set out by Dawson et al.
(2009) can be used to price nonlinear survivor derivatives, such as survivor
swaptions, caps, floors, and combined option products. It concludes by con-
sidering applications of these products to a pension fund that wishes to
hedge its survivorship risks.

INTRODUCTION

A new global capital market, the Life Market, is developing (see, e.g., Blake, Cairns,
and Dowd, 2008) and “survivor pools” (or “longevity pools” or “mortality pools”
depending on how one views them) are on their way to becoming the first major
new asset class of the twenty-first century. This process began with the securitization
of insurance company life and annuity books (see, e.g., Millette et al., 2002; Cowley
and Cummins, 2005; Lin and Cox, 2005). But with investment banks entering the
growing market in pension plan buyouts, in the United Kingdom in particular, it is
only a matter of time before full trading of “survivor pools” in the capital markets
begins.1 Recent developments in this market include: the launch of the LifeMetrics
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1Dunbar (2006). On February 1, 2010, the Life and Longevity Markets Association (LLMA)
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Index in March 2007; the first derivative transaction, a q-forward contract, based on
this index in January 2008 between Lucida, a UK-based pension buyout insurer, and
J.P. Morgan (see Coughlan et al., 2007; Grene, 2008); the first survivor swap executed
in the capital markets between Canada Life and a group of ILS2 and other investors in
July 2008, with J.P. Morgan as the intermediary; and the first survivor swap involving
a nonfinancial company, arranged by Credit Suisse in May 2009 to hedge the longevity
risk in UK-based Babcock International’s pension plan.

However, the future growth and success of this market depends on participants
having the right tools to price and hedge the risks involved, and there is a rapidly
growing literature that addresses these issues. The present article seeks to contribute
to that literature by setting out a framework for pricing survivor derivatives that gives
consistent prices—that is, prices that are not vulnerable to arbitrage attack—across all
survivor derivatives. This framework has two principal components: one applicable
to linear derivatives, such as swaps, forwards, and futures, and the other applicable to
survivor options. The former is a generalization of the swap-pricing model first set out
by Dowd et al. (2006), which was applied to simple vanilla survivor swaps. We show
that this approach can be used to price a range of other linear survivor derivatives. The
second component is the application of the option-pricing model set out by Dawson
et al. (2009) to the pricing of survivor options such as survivor swaptions. This is a
very simple model based on a normally distributed underlying, and it can be applied
to survivor options in which the underlying is the swap premium or price, since the
latter is approximately normal. Having set out this framework and shown how it can
be used to price survivor derivatives, we then illustrate their possible applications to
the various survivorship hedging alternatives available to a pension fund.

This article is organized as follows. The “Pricing Vanilla Survivor Swaps” section sets
out a framework to price survivor derivatives in an incomplete market setting and
uses it to price vanilla survivor swaps. The “Pricing Other Linear Survivor Deriva-
tives” section then uses this framework to price a range of other linear survivor deriva-
tives: these include survivor forwards, forward survivor swaps, survivor basis swaps,
and survivor futures contracts. The “Survivor Swaptions” section extends the pricing
framework to price survivor swaptions, caps, and floors, making use of an option pric-
ing formula set out in Dawson et al. (2009). The “Hedging Applications” section gives
a number of hedging applications of our pricing framework, and the “Conclusion”
section concludes.

PRICING VANILLA SURVIVOR SWAPS

A Model of Aggregate Longevity Risk
It is convenient if we begin by outlining an illustrative model of aggregate longevity
risk. Let p(s, t, u, x) be the risk-adjusted probability based on information available
at s that an individual aged x at time 0 and alive at time t ≥ s will survive to time u ≥
t (referred to as the forward survival probability by Cairns, Blake, and Dowd, 2006).
Our initial estimate of the risk-adjusted forward survival probability to u is therefore

Swiss Re. The aim is “to support the development of consistent standards, methodologies
and benchmarks to help build a liquid trading market needed to support the future demand
for longevity protection by insurers and pension funds.”

2Investors in insurance-linked securities.
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p(0, 0, u, x), and these probabilities would be used at time 0 to calculate the prices of
annuities. We now postulate that, for each s = 1, . . . , t:

p(s, t − 1, t, x) = p(s − 1, t − 1, t, x)b(s,t−1,t,x)ε(s), (1)

where ε (s) > 0 can be interpreted as a survivorship “shock” at time s for age x,
although to keep the notation as simple as possible, we do not make the age depen-
dence explicit (see also Cairns, 2007, Equation (5); Olivier and Jeffery, 2004; Smith,
2005). For its part, b(s, t − 1, t, x) is a normalizing constant, specific to each pair of
dates, s and t, and to each cohort, that ensures consistency of prices under our pricing
measure.3

It then follows that S(t), the probability of survival to t, is given by:

S(t) =
t∏

s=1

p(s − 1, s − 1, s, x)b(s,s−1,s,x)ε(s) =
t∏

s=1

p(0, s − 1, s, x)

s∏
u=1

b(u,s−1,s,x)ε(u)
. (2)

We will drop the explicit dependence of ε (.) on s for convenience. We now consider
the survivor shock ε in more detail and first note that it has the following properties:

1. A value ε < 1 indicates that survivorship was higher than anticipated under the
risk-neutral pricing measure, and ε > 1 indicates the opposite.

2. Under the risk-neutral pricing measure ε has mean 1.

3. Under our real-world measure, ε has a mean of 1 − μ, where μ is the user’s
subjective view of the rate of decline of the mortality rate relative to that already
anticipated in the initial forward survival probabilities p(0, 0, u, x). So, for example,
if the user believes that mortality rates are declining at 2 percent per annum faster
than anticipated, then ε would have a mean of 1 – 0.02 = 0.98.

4. The volatility of ε is approximately equal to std(qx)/q̂x (see the Appendix), where
std(qx) is the conditional one-step-ahead volatility of qx and q̂x is its one-step-ahead
predictor.

5. It is also apparent from (1) that ε can also be interpreted as a 1-year ahead forecast
error. If expectations/forecasts are rational, then these forecast errors should be
independent over time.

We also assume that ε can be modeled by the following transformed beta distribution:

ε = 2y, (3)

where y is beta-distributed. Since the beta distribution is defined over the domain
[0,1], the transformed beta ε is distributed over domain [0, 2].

3The normalizing constants, b(s, t − 1, t, x), are known at time s – 1. For most realistic cases,
the b(s, t − 1, t, x) are very close to 1, and for practical purposes these might be dropped.
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In order to determine swap premiums under the real-probability measure,4 we now
calibrate the two parameters ν and ω of the underlying beta distribution against real-
world data to reflect the user’s beliefs about the empirical mortality process. To start
with, we know that the mean and variance of the beta distribution are ν/(ν + ω) and
υω/[(ν + ω)2 (ν + ω + 1)], respectively. The mean and variance of the transformed
beta are therefore 2ν/(ν + ω) and 4υω/[(ν + ω)2 (ν + ω + 1)]. If we now set the mean
equal to 1 − μ, then it is easy to show that ν = kω, where k = (1 − μ (x))/(1 + μ

(x)). Similarly, we know that the variance of the transformed beta (i.e., the variance of
ε) is approximately equal to var(qx)/q̂2

x , where the variance refers to the conditional
one-step-ahead variance. Substituting this into the expression for the variance of the
transformed beta and rearranging gives us

var(ε) ≈ var(qx)
q̂2

x
= 4k

(k + 1)2[ω(k + 1) + 1]

⇒ ω = 4k
(k + 1)3var(ε)

− 1
k + 1

.

In short, given information about μ and var(ε), we can solve for ω and ν using

k = 1 − μ

1 + μ
(4a)

ω = 4k
(k + 1)3var(ε)

− 1
k + 1

(4b)

ν = kω. (4c)

To illustrate how this might be done, Table 1 presents estimates calibrated against
recent England and Wales male mortality data for age 65, and assuming μ = 2 percent
for illustrative purposes, implying that the mean of ε is 0.98. If we let q (t) be our
mortality rate for the given age and year t, and take q̂ (t), our predictor of q (t), to be
equal to q (t − 1), then ε (t) = q (t)/q (t − 1) and var(ε) = 0.00069536.5 The last two
columns then show that, to achieve a mean of 0.98 and a variance of 0.00069536,
then we need ν = 703.8983 and ω = 732.6289. Thus, the model is straightforward to
calibrate using historical mortality data. Different users of the model would arrive at
a different calibration if they believed that future trend changes in mortality rates for
age 65 differed from μ = 2 percent or volatility differed from var(ε) = 0.00069536.

4Under the risk-neutral pricing measure, by contrast, no calibration is necessary for swap
purposes as the risk-neutral swap premium is zero.

5Mortality rates at time t – 1 obviously represent crude and biased estimators of mortality
rates at time t. However, volatility estimates are largely unaffected by this bias.
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TABLE 1
Calibrating the Beta Distribution

Age Mean(ε) var(ε) Implied ν Implied ω

x = 65 0.98 0.00069536 703.8983 732.6289
x = 70 0.98 0.00092591 528.5079 550.0797
x = 75 0.98 0.00091992 531.9548 553.6673
x = 80 0.98 0.0011208 436.5402 454.3581
x = 85 0.98 0.0015393 317.7 330.6674

Notes: The assumed mean in the second column incorporates a subjective believe that mortality
will decline at 2 percent per annum. var(ε) ≈ var(qx)/q̂ 2

x is based on England and Wales male
mortality data over 1961–2005 for 65-year-olds. Implied ν and implied ω are the values that the
parameters of the beta distribution must take to ensure that the distribution gives the mean
and variances in the previous two columns.

The Dowd et al. (2006) Pricing Methodology
We now explain our pricing methodology in the context of the vanilla survivor swap
structure analyzed in Dowd et al. (2006). This contract is predicated on a benchmark
cohort of given initial age. On each of the payment dates, t, the contract calls for
the fixed-rate payer to pay the notional principal multiplied by a fixed proportion
(1 + π ) H(t) to the floating-rate payer and to receive in return the notional principal
multiplied by S(t). H(t) is predicated on the life tables or mortality model available
at the time of contract formation and π is the swap premium or swap price that is
factored into the fixed-rate payment.6 H(t) and π are set when the contract is agreed
and remain fixed for its duration. S(t) is predicated on the actual survivorship of the
cohort.

Had the swap been a vanilla interest-rate swap, we could then have used the spot-
rate curve to determine the values of both fixed and floating leg payments. We would
have invoked zero-arbitrage to determine the fixed rate that would make the values
of both legs equal, and this fixed rate would be the price of the swap. In the present
context, however, this is not possible because longevity markets are incomplete, so
there is no spot-rate curve that can be used to price the two legs of the swap.

Instead, we take the present value of the floating-leg payment to be the expectation of
S(t) under the assumed real probability measure. Under our illustrative model, this
is given by

E[S(t)] = E

⎡
⎣

t∏
s=1

p(0, s − 1, s, x)

s∏
u=1

b(u,s−1,s,x)ε(u)
⎤
⎦ . (5)

6Strictly speaking, the contract would call for the exchange of the difference between (1 +
π )H(n) and S(n): the fixed rate payer would pay (1 + π )H(n) − S(n) if (1 + π )H(n) − S(n) > 0,
and the floating rate payer would pay S(n) − (1 + π )H(n) if (1 + π )H(n) − S(n) < 0. We ignore
this detail in the text.
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The premium π is then set so that the swap value is zero at inception. Hence, if E[S(t)]
denotes each time-t expected floating-rate payment under the our pricing measure,
and if Dt denotes the price at time 0 of a bond paying $1 at time t, then the fair value
for a k-period survivor swap requires:

(1 + π )
k∑

t=1

Dt H (t) =
k∑

t=1

Dt E [S (t)] (6)

∴ π =

k∑
t=1

Dt E [S (t)]

k∑
t=1

Dt H (t)

− 1. (7)

From this structure, it becomes possible to price a range of related derivatives securi-
ties.

Generalizing the Dowd et al. (2006) Pricing Methodology
The pricing model set out earlier can be generalized to a wide range of related deriva-
tives. For ease of presentation, we assume that payments due under the derivatives
are made annually. We denote the age of cohort members during the life of the
derivatives by the following subscripts:

t = their age at the time of the contract agreement;

s = their age at the time of the first payment;

f = their age at the time of the final payment;

n = their age at the time of any given anniversary (t ≤ n ≤ f ).

Let us also denote:

N = the size of the cohort at age t;

Dn = the discount factor from age t to age n;

Yn = the payment per survivor due at age n ( = 0 for n < s).

Now note that the present value (at time t) of a fixed payment due at time n is

(1 + π ) NYn Dn H(n). (8)

From this, it follows that the present value, at time t, of the payments contracted by
the pay-fixed party to the swap is
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(1 + π ) N
f∑

n=t+1

Yn Dn H(n), (9)

which—conditional on π—can be determined easily at time t from the spot-rate curve.

Following the same approach as with the vanilla survivor swap, the present value of
the floating rate leg is

N × E

⎡
⎣

f∑
n=t+1

Yn DnS(n)

⎤
⎦ = N

f∑
n=t+1

Yn DnE[S(n)]. (10)

Since a swap has zero value at inception, we then combine (9) and (10) to calculate a
premium, π s,f , for any swap-type contract, valued at time t, whose payments start at
age s and finish at age f . This premium is given by

πs, f =

f∑
n=t+1

Yn DnE[S(n)]

f∑
n=t+1

Yn Dn H(n)

− 1. (11)

PRICING OTHER LINEAR SURVIVOR DERIVATIVES

We now use the pricing methodology outlined in the previous section to price some
key linear survivor derivatives.

Survivor Forwards
Just as an interest-rate swap is essentially a portfolio of FRA contracts, so a survivor
swap can be decomposed into a portfolio of survivor forward contracts. Consider two
parties, each seeking to fix payments on the same cohort of 65-year-old annuitants.
The first enters into a k-year, annual-payment, pay-fixed swap as described earlier, and
with premium, π . The second enters into a portfolio of k annual survivor forward
contracts, each of which requires payment of the notional principal multiplied by
(1 + πn) H(n) and the receipt of the notional principal multiplied by S(n), n = 1,2, . . . k.
Note that in this second case, πn differs for each n. Since the present value of the
commitments faced by the two investors must be equal at the outset, it must be
that:

(1 + π )
k∑

n=1

Dn H (n) =
k∑

n=1

Dn H (n) (1 + πn) (12)
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∴ π =

k∑
n=1

Dn H (n) πn

k∑
n=1

Dn H (n)

. (13)

Hence, it follows that π in the survivor swap must be equal to the weighted average
of the individual values of πn in the portfolio of forward contracts, in the same way
that the fixed rate in an interest-rate swap is equal to the weighted average of the
forward rates.

Forward Survivor Swaps
Given the existence of the individual values of πn in the portfolio of forward contracts,
it becomes possible to price forward survivor swaps. In such a contract, the parties
would agree at time 0 the terms of a survivor swap contract that would commence at
some specified time in the future. Not only would such a contract meet the needs of
those who are committed to providing pensions in the future, but it could also serve
as the hedging vehicle for survivor swaptions, as shown later.

The pricing of such a contract would be quite straightforward. As shown earlier,
the position could be replicated by entering into an appropriate portfolio of forward
contracts. Thus, π forwardswap—the risk premium for the forward swap contract—must
equal the weighted average of the individual values of πn used in the replication
strategy. π forwardswap can then be derived directly from Equation (11).

Basis Swaps
Dowd et al. (2006) also discuss, but do not price, a floating-for-floating swap, in which
the two counterparties exchange payments based on the actual survivorships of two
different cohorts. Following practice in the interest-rate swaps market, such contracts
should be called basis swaps. Their approach shows how such contracts could be
priced. First, consider two parties wishing to exchange the notional principal7 multi-
plied by the actual survivorship of cohorts j and k. Assume equal notional principals
and denote the risk premiums and expected survival rates for such cohorts by π i
and πk and by Hj(n) and Hk(n), respectively. Given the existence of vanilla swap
contracts on each cohort, the present values of the fixed leg of each such contract
will be (1 + π j )

∑ f
n=1 Dn Hj (n) and (1 + πk)

∑ f
n=1 Dn Hk(n), respectively, and the no-

arbitrage argument shows that these must also be the present values of the expected
floating-rate legs. It is then possible to calculate, with certainty, an exchange factor, κ ,

7Following practice in the interest rate swaps market, we avoid constant reference to the
notional principal henceforth by quoting swap prices as percentages. The notional principal
in survivor swaps can be expressed as the cohort size, N, multiplied by the payment per
survivor at time n, Yn.
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such that

(
1 + π j

) f∑
n=1

Dn Hj (n) = κ (1 + πk)
f∑

n=1

Dn Hk (n) (14)

and, hence

κ =

(
1 + π j

) f∑
n=1

Dn Hj (n)

(1 + πk)
f∑

n=1

Dn Hk (n)

, (15)

from which it follows that the fair value in a floating-for-floating basis swap requires
one party to make payments determined by the notional principal multiplied by
Sj(n) and the other party to make payments determined by the notional principal
multiplied by κSk(n); κ is determined at the outset of the basis swap and remains
fixed for the duration of the contract.

The same approach can be used to price forward basis swaps, in which case, following
earlier analysis, κ is given by

κ =

(
1 + π j

) f∑
n=s

Dn Hj (n)

(1 + πk)
f∑

n=s
Dn Hk (n)

. (16)

Cross-Currency Basis Swaps
We turn now to price a cross-currency basis swap, in which the cohort-j payments
are made in one currency and the cohort-k payments in another. The single currency
floating-for-floating basis swap analyzed in the preceding subsection required the
cohort-j payer to pay Sj(n) at each payment date and to receive κSk(n). Now consider
a similar contract in which the cohort-j payments are made in currency j and the
cohort-k payments made in currency k. Assume the spot exchange rate between the
two currencies is F units of currency k for each unit of currency j.8

From the arguments above, we can determine the present value of each
stream—(1 + π j )

∑ f
n=1 Dn Hj (n) and (1 + πk)

∑ f
n=1 Dn Hk(n), respectively, each ex-

pressed in their respective currencies. Multiplying the latter by F then expresses
the value of the cohort-k stream in units of currency j. The standard requirement

8In foreign exchange markets parlance, currency j is the base currency and currency k is the
pricing currency.
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that the two streams have the same value at the time of contract agreement is again
achieved by determining an exchange factor, κFX. In the present case, this exchange
factor, κFX is given by:

(1 + π j )
f∑

n=1

Dn Hj (n) = κFX F (1 + πk)
f∑

n=1

Dn Hk (n) (17)

∴ κFX =
(1 + π j )

f∑
n=1

Dn Hj (n)

F (1 + πk)
f∑

n=1

Dn Hk (n)

. (18)

Thus, in the case of a floating-for-floating cross-currency basis swap, on each payment
date, n, one party will make a payment of the notional principal multiplied by Sj(n)
and receive in return a payment of κFX Sk(n). Each payment will be made in its own
currency, so that exchange rate risk is present. However, in contrast with a cross-
currency interest-rate swap, there is no exchange of principal at the termination of
the contract, so the exchange rate risk is mitigated.

The same procedure is used for a forward cross-currency basis swap, except that
the summation in Equations (17) and (18) above is from n = s to f rather than from
n = 1 to f . Since the desire is to equate present values, it should be noted that the
spot exchange rate, F, is applied in this equation rather than the forward exchange
rate.9

Futures Contracts
The wish to customize the specification of the cohort(s) in the derivative contracts
described earlier implies trading in the over-the-counter (OTC) market. However, an
exchange-traded instrument offers attractions to many, especially in light of proposed
regulatory intervention in derivatives markets.10 As shown earlier, the uncertainty in
survivor swaps is captured in factor π , and a futures contract with π as the underlying
asset would serve a useful function both as a hedging vehicle and for investors who
wished to achieve exchange-traded exposure to survivor risk, in much the same way
as the Eurodollar futures contract is based on 3-month Eurodollar LIBOR.

Thus, if the notional principal were $1 million and the time frame were 1 year, a
long position in a December futures contract at a price of π = 3 percent would

9The foreign exchange risk could be eliminated by use of a survivor swap contract in which
the payments in one currency are translated into the second currency at a predetermined
exchange rate, similar to the mechanics of a quanto option. Derivation of the pricing of such
a contract is left for future research.

10See Kopecki and Leising (2009) and Henson and Shah (2009) for discussions of proposed U.S.
and European regulatory initiatives.
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notionally commit the holder to pay $1.03 million multiplied by the expected size
of the cohort surviving and to receive $1 million multiplied by the actual size. This
is a notional commitment only: in practice, the contracts would be cash-settled, so
that if the spot value of π at the December expiry, which we denote π expiry, were 4
percent, the investor would receive a cash payment of $10,000, that is, (4–3) percent
of $1 million.11

The precise cohort specification would need to be determined by research among
likely users of the contracts. Too many cohorts would spread the liquidity too thinly
across the contracts; too few cohorts would lead to excessive basis risk.

Determination of the settlement price at expiry might be achieved by dealer poll. Such
futures contracts could be expected to serve as the principal driver of price discovery
in the Life Market, with dealers in the OTC market using the futures prices to inform
their pricing of customized survivor swap contracts.

SURVIVOR SWAPTIONS

Where there is demand for linear payoff derivatives, such as swaps, forwards, and
futures, there is generally also demand for option products. An obvious example is a
survivor swaption contract.

Specification of Swaptions
The specification of such options is quite straightforward. Consider a forward sur-
vivor swap, described earlier, with premium π forwardswap. A swaption would give the
holder the right but not the obligation to enter into a swap on specified terms. Clearly,
the exercise decision would depend on whether the market rate of the π at expiry
for such a swap was greater or less than π forwardswap. Thus, in the case described,
π forwardswap is the strike price of the swaption. Of course, the strike price of the option
does not have to be π forwardswap but can be any value that the parties agree. However,
using π forwardswap as an example shows how put-call12 parity applies to such swap-
tions. An investor who purchases a payer swaption, at strike price π forwardswap, and
writes a receiver swaption with an identical specification has synthesized a forward
survivor swap. Since such a contract could be opened at zero cost, it follows that a
synthetic replication must also be available at zero cost. Hence, the premium paid for
the payer swaption must equal the premium received for the receiver swaption.

The exercise of these swaptions could be settled either by delivery (i.e., the parties
enter into opposite positions in the underlying swap) or by cash, in which case the
writer pays the holder Max[0, φπexpiry − φπstrike ]N

∑ f
n=1 Dexpiry,nYn H(n) with φ set

11Recall, however, that π can take values between –1 and 1. Since negative values are rare for
traded assets, this raises the issue of whether user systems are able to cope. To avoid such
problems, the market for π futures contracts could either be quoted as (1 + π ), with π as
a decimal figure, or follow interest-rate futures practice and be quoted as (100 − π ) with π

expressed in percentage points.
12In swaptions markets, usage of terms such as put and call can be confusing. Naming such

options payer (i.e., the right to enter into a pay-fixed swap) and receiver (i.e., the right to
enter into a receive-fixed swap) swaptions is preferable. We denote the options premia for
such products as Ppayer and Preceiver, respectively.
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as +1 for payer swaptions and −1 for receiver swaptions, π expiry representing the
market value of π at the time of swaption expiry, π strike representing the strike price
of the swaption, and Dexpiry,n representing the price at option expiry of a bond paying
1 at time n.13

Pricing Swaptions
Our survivor swaptions are specified on the swap premium π as the underlying,
and this raises the issue of how π is distributed. In a companion paper, Dawson
et al. (2009) suggest that π should be (at least approximately) normal, and they
report Monte Carlo results that support this claim.14 We can therefore state that
π is approximately N(π forwardswap, σ 2), where σ 2 is expressed in annual terms in
accordance with convention. Normally distributed asset prices are rare, because such
a distribution permits the asset price to become negative. In the case of π forwardswap,
however, negative values are perfectly feasible.

Dawson et al. (2009) derive and test a model for pricing options on assets with
normally distributed prices and application of their model to survivor swaptions
gives the following formulae for the swaption prices:

Ppayer = e−rτ ((πforwardswap − πstrike)N(d) + σ
√

τ N′(d)) (19)

Preceiver = e−rτ ((πstrike − πforwardswap)N(−d) + σ
√

τ N′(d)) (20)

d = πforwardswap − πstrike

σ
√

τ
. (21)

In (19)–(21) above, r represents the interest rate, τ the time to option maturity, and σ the
annual volatility of the returns of π forwardswap. N(d) is the standard normal cumulative
distribution function of d, with d ∼ N(0, 1).N′(d) is the corresponding probability

13Under Black-Scholes (1973) assumptions, interest rates are constant, so that
N

∑ f
n=1 Dexpir y,nYn H(n) is known from the outset. Let us call this the settlement sum. Fol-

lowing the approach in footnote 7, we can dispense with constant repetition of the settlement
sum by expressing option values in percentages and recognising that these can be turned into
a monetary amount by multiplying by the settlement sum.

14More precisely, the large Monte Carlo simulations (250,000 trials) across a sample of dif-
ferent sets of input parameters reported in Dawson et al. (2009) suggest that πforwardswap is
close to normal but also reveal small but statistically significant nonzero skewness values.
Furthermore, while excess kurtosis is insignificantly different from zero when drawing from
beta distributions with relatively low standard deviations, the distribution of πforwardswap is ob-
served to become increasingly platykurtic as the standard deviation of the beta distribution
is increased. Our option pricing model can deal with these effects in the same way as the
Black-Scholes models deal with skewness and leptokurtosis. In this case of platykurtosis, a
volatility frown, rather than a smile, is dictated.
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density function. Apart from replacing geometric Brownian motion with arithmetic
Brownian motion, this valuation model is predicated on the standard Black-Scholes
(1973) assumptions, including, inter alia, continuous trading in the underlying asset.
Naturally, we recognize that, at present, no such market exists.

The use of this model in practice would, therefore, inevitably involve some degree
of basis risk. This arises, in part, because it is unlikely that a fully liquid market
will ever be found in the specific forward swap underlying any given swaption. A
liquid market in the π futures described earlier would mitigate these problems, how-
ever.15 Furthermore, survivor swaption dealers will likely need to hedge positions
in swaptions on different cohorts, which will be self-hedging to a certain extent and
so reduce basis risk. We could also envisage option portfolio software that would
translate some of the remaining residual risk into futures contract equivalents, thus
dictating (and possibly automatically submitting) the orders necessary for maintain-
ing delta-neutrality.

Most liquid futures markets create a demand for futures options, and this leads to
the possibility of π futures options. Pricing such contracts is also accomplished in
(19)–(20) above. All that is necessary is to substitute π futures for π forwardswap as the
value of the optioned asset.

Survivor Caps and Floors
The parallels with the interest rate swaps market can be carried still further. In the
interest rate derivatives market, caps and floors are traded, as well as swaptions. These
offer more versatility than swaptions, since each individual payment is optioned with
a caplet or a floorlet, while a swaption, if exercised, determines a single fixed rate for
all payments. The extra optionality comes at the expense of a significantly increased
option premium, however. Similar caplets and floorlets can be envisaged in the market
for survivor derivatives and can be priced using (19) and (20) with the π value for the
survivor forward contract serving as the underlying in place of π forwardswap.

HEDGING APPLICATIONS

In this section, we consider applications of the securities presented earlier. By way
of example, we consider a pension fund with a liability to pay $10,000 annually to
each survivor of a cohort of 10,000 65-year-old males. Using the same life tables as
Dowd et al. (2006), and assuming a yield curve flat at 3 percent, the present value
of this liability is approximately $1.41 billion and the pension fund is exposed to
survivorship risk. We consider several strategies to mitigate this risk. In pricing the
various securities applied, we use the models presented earlier in this article and, in
accordance with Table 1, use values of ν = 703.8983 and ω = 732.6289 for the two
parameters specifying the beta distribution used to model ε in (3) above.

The first hedging strategy that the fund might undertake is to enter into a 50-year
survivor swap. Using the framework of this article gives a swap rate of 10.39 per-
cent. Entering a pay-fixed swap at this price would remove the survivor risk entirely

15Given a variety of cohorts, basis risk could be a problem, but as noted earlier, an important
precondition of futures introduction is research among industry participants to optimize the
number of cohorts for which π futures would be introduced. A large number of cohorts
decreases the potential basis risk but spreads the liquidity more thinly across the contracts.



592 THE JOURNAL OF RISK AND INSURANCE

FIGURE 1
Distribution of the Cost of Hedging Over Cohort Ages

from the pension fund but increase the present value of its liabilities to approxi-
mately $1.56 billion ($1.41 billion × 1.1039). The cost of hedging in this case is thus
$0.15 billion.

The second hedging strategy has the pension fund choosing to accept survivor risk
for the next 5 years and entering into a forward swap today to hedge survivor risk
from age 71 onward. The value of π in this case is 15.07 percent. The $1.41 billion
present value of the pension fund’s liabilities can be broken down into $0.44 billion
for the first 5 years and $0.97 billion for the remaining 45 years. Opening a pay-fixed
position in this forward swap would again raise the present value of the pension
fund’s liabilities to $1.56 billion ($0.44 billion + $0.97 billion × 1.1507). From this, it
can be seen that the cost of hedging just the first 5 years of the pension fund’s liabilities
is close to zero. In fact, the fair π value for such a swap is just 0.16 percent which, on
a present value of $0.44 billion, amounts to less than $1 million.

Taking this one stage further, the third strategy has the pension fund using survivor
forward contracts to hedge such individual payment dates as the managers choose.
Following the argument presented in Equation (11), if the managers choose to hedge
all payment dates in this way, they effectively replicate a swap contract, and hence,
the cost of hedging is again $0.15 billion. It is instructive to consider how this cost is
distributed over the lifetime of the liabilities. Figure 1 shows that this cost starts low,
rises as the impact of the volatility of survivor shocks increases, but then falls away
as the cohort size reduces.
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These three hedging strategies fix the commitments of the pension fund, either for the
entire period of survivorship or for all but the first 5 years, and this means that the
fund would have no exposure to any financial benefits from decreasing survivorship
during the hedged periods. These benefits could, however, be obtained by our fourth
hedging strategy, namely, a position in a 5-year payer swaption. Again, the fund
would accept survivor risk for the first 5 years but would then have the right, but not
the obligation, to enter a pay-fixed swap on pre-agreed terms. Using the same beta
parameters as above, the annual volatility of the forward contract is 4.36 percent and
the premium for an at-the-money forward swaption is 3.35 percent. Applying the
swaption formula, the pension fund would pay an option premium of approximately
$32 million to gain the right but not the obligation to fix the payments at a π rate
of 15.07 percent thereafter. If survivorship declines, the fund will not exercise the
option and will have lost merely the $32 million swaption premium but then reaps
the benefit of the decline in survivorship.

Rather more optionality could be obtained through a survivor cap rather than a
survivor swaption. As described earlier, this is constructed as a portfolio of options
on survivor forwards. The expiry value of each option is NYH(n)Max[0, π settlement
− π strike], in which π settlement refers to the value of π prevailing for that particular
payment at the time, n, at which the settlement is due. Its value at expiry is simply
S(n)/H(n) – 1. Thus, on each payment date, n, the pension fund holding a survivor
cap effectively pays NY(1 + Min[π settlement, π strike])H(n) and receives NYS(n) in re-
turn, with this receipt designed to match its liability to its pensioners. This extra
optionality comes at a price: it was noted earlier that the option premium for a 5-
year survivor swaption, at strike price 15.07 percent, with our standard parameters,
was approximately $32 million. The equivalent survivor cap (in which the pension
fund again accepts survivor risk for the first 5 years but hedges it with a survivor cap
again struck at 15.07 percent for the remaining 45 years) would carry a premium of
approximately $129 million.

Our next hedging strategy is a zero-premium collar. Again using the same beta
parameters, the premium for a payer swaption with a strike price of 16.5 percent is
2.77 percent or about $27 million. The same premium applies to a receiver swaption
with a strike price of 12.72 percent. Thus, a zero-premium collar can be constructed
with a long position in the payer swaption financed by a short position in the receiver
swaption. With such a position, the pension fund would be hedged, for a premium
of zero, against the price of a 45-year swap rising above 16.5 percent by the end of
5 years and would enjoy the benefits of the swap rate falling over the same period,
but only as far as 12.72 percent.

One downside to such a zero-premium collar is that the pension fund puts a floor
on its potential gains from falling survivorship. If it wishes to have a zero-premium
option position, which retains an unfloored potential from falling survivorship, an
alternative is to finance the purchase of the payer swaption by the sale of a receiver
swaption with the same strike price. Since the payer swaption is out of the money,
its premium is less than that of the receiver swaption—2.77 percent compared to
3.13 percent. Thus, to finance a payer swaption on the $968 million liabilities, it
would be necessary to sell a receiver swaption on only $857 million (= $968 million ×
2.77 percent ÷ 3.13 percent) of liabilities. The pension fund would then enjoy,
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at zero premium, complete protection against the survivor premium rising above
16.5 percent, and unlimited participation, albeit at about 12c on the dollar, if the
survivor premium turns out to be less than this.

The hedging strategies presented so far in this section serve to transfer the survivor
risk embedded in a pension fund to an outside party. In all cases, this is done at a cost:
either an explicit financial cost or, in the case of the zero-premium option structures, at
the willingness to forego some of the financial benefits of falling survivorship, that is,
at an opportunity cost. A quite different alternative that avoids these costs is simply
for the pension fund to diversify its exposure. Using a basis swap or a cross-currency
basis swap, the pension fund could swap some of its exposure to the existing cohort
for an exposure to a different cohort (either in its domestic economy or overseas).
Hence, in return for receiving cash flows to match some of its obligations to its own
pensioners, it would assume liability for paying according to the actual survivorship
of a different cohort. As the derivations of Equations (15) and (17) show, this does
not change the value of the pension fund’s liabilities but, assuming less than perfect
correlation between the survival rates of the two cohorts, enables the pension fund to
enjoy the benefits of diversification.

CONCLUSION

This article develops a consistent pricing framework applicable across a wide variety
of survivor derivatives. Further developments can be expected. First, as mentioned
earlier, quanto features could be incorporated in cross-currency products to eliminate
currency risk. Next, barrier features might also be anticipated. For example, a pension
fund might be quite willing to forego protection against increasing survivorship
in the event of a flu pandemic and would buy a payer swaption that knocks out
if mortality rises above a predetermined threshold. Such a payer swaption would
specify a low value of π as the knock-out threshold. Alternatively, such a fund might
seek protection contingent on a major breakthrough in the treatment of cancer and
would thus buy a payer swaption, which knocks in if survivorship rises above a
predetermined threshold. Such a payer swaption would specify a high value of π as
the knock-in threshold.

Survivorship is a risk of considerable importance to developed economies. It is sur-
prising that the market has been so slow to develop derivative products to manage
such risk. However, parallels with other markets seem apposite: once the initial prod-
ucts were launched, the growth in these markets was rapid, and as of the time of
writing (mid-2009), we are already witnessing increasingly rapid developments in
the longevity swaps space.

APPENDIX

This appendix shows that volatility of std(ε) ≈ std(qx)/q̂x .

Proof: Let p1 = p(s, t − 1, t, x) and p0 = p(s − 1, t − 1, t, x). Since b(.) ≈ 1, then (1)
in the main text implies

p1 ≈ pε
0

⇒ var(log(p1)) ≈ log(p0)2 × var(ε)
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Now let q1 and q0 be the mortality rates corresponding to p1 and p0. We know that
log(p1) ≈ − q1 and log(p0) ≈ − q0, so

var(q1) ≈ q2
0 × var(ε)

⇒ std(ε) ≈ std(q1)
q0

or
std(qx)

q̂x

where q̂x = 1 − p(s − 1, t − 1, t, x) is the one-step-ahead predictor of qx = 1 − p(s, t −
1, t, x). Q.E.D.
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