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ABSTRACT

Two methods are proposed to find the maximum likelihood parameter
estimates of a number of software reliability models. On the basis of the

results from analysing 7 sets of real data, these methods are found to be
both efficient and reliable.

The simple approach of adapting software reliability predictions by
Keiller and Littlewood (1984) can produce improved predictions, but at the
same time, introduces a lot of internal noise into the adapted predictions.
This is due to the fact that the adaptor is a joined-up function.

An alternative adaptive procedure, which involves the use of a
parametric spline adaptor, can produce at least as good adapted predictions

without the predictions being contaminated by internal noise as in the
simple approach.

Miller and Sofer (1986a) proposed a method for estimating the failure
rate of a program non-parametrically. Here, these non-parametric rates

are used to produce reliability predictions and their quality is analysed
and compared with the parametric predictions.



vi

KEY TO ABBREVIATIONS

BIM(¥)
cdf

dDIF(¥*)

pU(¥)
Go(¥)
GP
HPP
M(*)
KL(¥)
KS
L(*)
LNHPP (*)
Lv(*)
ML
MLE
MNA
MO (*)
NHPP
pdf
PL
PLR
ROCOF

SQAMA

The (adapted) Bayesian Jelinski and Moranda prediction system

Cumulative distribution function

The (adapted) prediction system with exponential failure time
and monotone rate estimates with d difference constraints

The (adapted) Duane prediction system

The (adapted) Goel and Okumoto prediction system

The generalised power law NHPP prediction system
Homogeneous Poisson process

The (adapted) Jelinski and Moranda prediction system
The (adapted) Keiller and Littlewood prediction system

Kolmogorov and Smirnov

The (adapted) Littlewood prediction system

The (adapted) Littlewood NHPP prediction system
The (adapted) Littlewood and Verrall prediction system
Maximum likelihood

Maximum likelihood estimate

Modified Newton’s algorithm

The (adapted) Musa and Okumoto prediction system
Non-homogeneous Poisson process

Probability density function

Prequential likelihood

Prequential likelihood ratio

Rate of occurrence of failures

The safeguarded quadratic approximation
minimisation algorithm

With respect to



CHAPTER 1

INTRODUCTION

Complex software systems contain design errors which may or may not
manifest themselves by causing failures during execution. A failure occurs
when there is a discrepancy between the output of the program and its
specification. When this happens, an attempt will usually be made to
identify the source of the failure and remove it. This process of
debugging, if successful, would lead to an improvement in the reliability of
the program. The main objective of this work is to measure the reliability
of software systems undergoing debugging. This would be of interest to a
software developer who wants to know whether a program is reliable
enough for marketing or more development effort is needed before reaching
that stage. It is also of interest to a user who wants to know whether the
reliability of a program has reached the level required for his particular
application. This is of particular importance if the software would be

used to control or monitor systems where an operational failure would have

disastrous consequences.

Software reliability evaluation methodologies developed up to the
present are built on the foundation that the underlying process governing
the failure behaviour of a software is random. An account for the
randomness in software failures is given by Laprie (1984). While software
reliability modellers might disagree on the sources of such randomness,

there is general acceptance that the reliability of a program can only be

meaningfully represented in terms of probability. The definition which is



commonly used is for the operational reliability of a program, which is the
probability of successful execution of the program without failure for a

specified length of time in a specified environment.

Here we will concentrate on data of the form t;,t;,...,{; of execution
times between successive failures of a program undergoing debugging, and
methods which utilise this information to predict the unobserved random

quantities Ti4q,Tj4peeee o In particular, we focus our attention on

estimating the current reliability, i.e. characteristice of the random

variables Tj;;; other unobserved quantities can be dealt with in a similar
way. Note that this estimation problem is one of prediction because it
concerns the unobserved quantity Ti44. In principle, what we need is the
probability distribution of the random variable T4y, and the problem is

effectively solved if we can accurately estimate this distribution.

In order to achieve the above objective, a prediction system has to be
used. Such a system will allow us to predict the future (Tj4y) from the

past (t;,tayeeety). It consists of the following:

1. A mathematical model detailing the behaviour of the random
variable {T;,T,...,Tj} for all i, conditional on some unknown
parameters.

2. A statistical inference procedure for estimating these unknown
parameters using observed data.

3. A prediction procedure combining (1) and (2) to allow us to

predict.



A survey by Dale and Harris (1981) has shown that there are now more
than 40 software reliability models in existence. Many such models with a

particular choice of (2) and (3) forms a prediction system which could be

used for the purpose of reliability measurement.

However, not merely do we want to have a probabilistic profile of the
unobserved time to failure, we want one which is close to reality. In
order to achieve this, it is essential to have a good model (1) in the
prediction system and at the same time, parts (2) and (3) are also of vital
importance. Viewed from this angle, the usual discussion of competing
software reliability models becomes inadequate. We should, instead, be
comparing the relative merits of different prediction .yitema rather than

just the model alone: the success or failure of a prediction system is a

result of (1), (2) and (3) jointly.

As far as selecting a model is concerned, it is not possible to decide, a
priori, the best model in any given context. Although one might argue
that some models are more suitable because of their realistic assumptions,
this still leaves us those which we cannot reject on the grounds of being
unrealistic. = Indeed, the knowledge in this aspect of software engineering
is so imperfect that it is not possible to identify the best model given all
the characteristice of the software concerned. Our approach is to employ
many prediction systems simultaneously and to select the beat prediction on
the basis of the past predictive quality of each individual system on_ the

actual data set under investigation.




A common characterstic shared by the majority of software reliability
models is that it is very hard to carry out a full Bayesian analysis on the
unknown parameters. The method of maximum likelihood is usually used in
part (2). By this method, a set of parameter values has to be determined
such that the likelihood function is maximised. In practice, this
constitutes the bulk of the numerical work that has to be done in the
whole prediction process. The amount of work involved varies from model
to model. In a few cases, it is small because the problem is
straight-forward and can be solved easily, but in the remaining cases, it is
considerable because the maximisation is by no means trivial and can only
be done by numerical search. With our multi-prediction systems
approach, in particular, the requirement on computing resources can be a
problem. In view of this, there is a definite need to develop efficient

numerical algorithms in order to save computing time,

Chapter 2 describes {wo numerical algorithme for unconstrained
optimisation. These methods are chosen for their efficiency and well

proven success with many practical problems.

Chapter 3 outlines the actual implementation of these algorithms to 7 of
the 9 software reliability models included in this study. Difficulties
encountered in analysing real data sets make it necessary to refine these

algorithms. Full details of the numerical experience in analysing 7 real

data sets are given.



Having obtained the parameter estimates, the respective prediction
systems can proceed to predict. Our next step is to analyse the
predictive quality of each of these prediction systems. In Chapter 4 we
present the tools that would be wused to evaluate the predictive

performance, namely, the u- and y-plot procedures, the prequential

likelihood, and the median plot.

An important by-product of our analysis of predictive quality is that
the u-plot can be used to recalibrate our future predictions. Keiller and
Littlewood (1984) have reported some success, on the basis of the u-plot
and y-plot criteria when they adapt future predictions by joining up the
u-plot and use it as the calibration curve. However, when we investigate
further using prequential likelihood as the criterion of success, the
adapted predictions are not always an improvement. The disagreement
with the other criteria stems from the fact that the adaptive curve is a

joined-up function, and it can be resolved by using a smooth function

instead.

The smooth function we have used is a parametric spline. In Chapter
5, the parametric spline is defined in terms of B-splines, and a numerically

stable and efficient method for its determination is described. Extensive

analyses are also given when we apply this method of adapting to 9 models

and 7 sets of datia.

One of the strongest criticisms of software reliability models is that

they are highly parameterised. Miller and Sofer (1986a) proposed a



non-parametric approach to estimate the failure rate of a program. In

Chapter 6 we shall analyse the quality of the predictions based on rates

estimated by this non-parametric method and exponential failure time

distribution. These predictions are adapted using our parametric spline

adaptor and we compare all the results including those in Chapter 5. An

alternative non-parametric rate estimation procedure is given in Appendix

2.

The final Chapter is devoted to discussions and future research

possibilities, thus concluding this thesis.



CHAPTER 2

TWO METHODS FOR UNCONSTRAINED MINIMISATION

2.1. INTRODUCTION

In this Chapter we shall describe two numerical optimisation methods
for the efficient determination of the maximum likelihood estimate (MLE) of
the unknown parametiers in the software reliability models included in this
study. Both methods are for unconstrained optimisation. The first is for
optimising functions in one variable. This method, which is due to Gill and
Murray (1974), uses the value of the objective function only. The second
is for functions in more than one variable and is also due to Gill and
Murray (1972a, 1972b); extensive results on solving many test functions and
an Algol implementation can be found in the cited publications. Unlike the
univariate optimisation method, the latter requires both the gradient and
the value of the objective function. This is because the multivariate
problems are more difficult, at least in the cases considered here. With the
extra gradient information the problem can be solved much more efficiently.

The implementation details of these techniques are in Chapter 3.

.2. THE NEED OF AN ICIENT S N

Although all the three components in a prediction system are important
to the prediction process as a whole, the attention so far being given to
various aspects concerning the related problem in the statistical inference
might give the impression that it is usually  simple and straight-forward.

However, in our experience, this is far from being the case.



We believe that a user of any software reliability models should adopt a
Bayesian inference procedure. This involves updating the prior
distribution, via the likelihood of the data, to arrive at the posterior
distribution of the parameters. This posterior distribution is then used to
generate a predictive distribution. A good account of this approach in

the context of conventional statistical problems is given in the book by

Aitchison and Dunsmore (1975).

In practice, it is often not possible to carry out a full Bayesian
analysis with most models and the method of maximum likelihood (ML) is
commonly used instead. @ When the maximum of the likelihood function
cannot be found analytically, as is usually the case, numerical optimisation
technique has to be employed. The sequential nature in which the
inference has to be repeated means that the requirement on computer time
can be substantial, if an inefficient numerical algorithm is being used.
This would be compounded if one were to use many prediction systema

simultaneously in order to select the most appropriate one.

With the advancement of micro-computer technology, it is now possible
for a personal computer to carry out mathematical calculations with
accuracy comparable to that of a mainframe computer. Therefore, a step
towards alleviating the computler resource problem is to implement the
analysis program on a personal computer. This is obviously much more
.nffordable even if the personal computer has to be dedicated entirely for
this sole purpose. However, it does mean that we become even more

dependent on the availability of a fast algorithm. For example, if one



were to carry out a simulation study on the performance of several

prediction systems, the wastage in using an inefficient method will preclude

the analysis of more replicates.

Henceforth, we shall only address the problem of minimisation. The
equivalent maximisation problem merely involves a change of sign in the
objective function. {f(x) will be used to denote the objective evaluated at
x. The variable x is either a scalar or a vector depending on whether the
problem is univariate or multi-variate. In the latter, g(x) is used to

denote the vector of partial derivatives of the objective and G(x) denotes

the Hessian matrix.

2.3. THE UNIVARIATE MINIMISATION METHOD

This is a hybrid technique which combines two univariate minimisation
methods, successive quadratic approximation and function-comparison, in

such a way that it is has the speed of the former and the reliability of the

latter. Like most univariale minimisation methods, it utilises the concept

of an interval of uncertainty, i.e. an interval ([a,b], which while the

minimum is known to lie within it, we are uncertain as to where exactly it
is. The value of such an interval derives from the fact that any estimate
lying within it will not be more than the length of the interval away from

the true minimum. If the function is unimodal this minimum is global

otherwise it can also be a local minimum.
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Given an initial interval of wuncertainty, different methods adopt

different strategies to progressively reduce the size of this interval until

it is sufficiently small. To illustrate how this is done iteratively, we give

an example where only function values are involved. Let [a,b] be the
current interval of uncertainty, x is the best point yet, w the previous x
value and v is the highest point of the three. The labelling of w and v
has no significance here but it would be necessary to do so in the method

we propose. Figure 2.1. shows how they are configurated.

A /

Figure 2.l.

A univariate minimisation algorithm will then predict a point uc[a.b] at

which the objective will be evaluated. How u is determined will depend on

the method being used. If this is u; and f(u,) is higher than f(x), then

the lower bound, a, is moved to point uy. If this point is u, and f(u;) is

lower than f(x), then the lower bound, a, is moved to x and x to u;. In

either case, w and v will be re-arranged accordingly before entering the
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next iteration, and the length of the interval is reduced while the minimum

remains bracketed.

Popular function-comparison methods like the Fibonacci search and the

Golden Section search (see Jacoby et al, 1972, or most introductory

textbooks on numerical optimisation for further details of these methods)
are reliable, but because they do not take into consideration the quantity
by which the objective changes within the interval, they are inefficient.

To overcome this, methods based on successive polynomial approximation

were developed. This class of methode involves repeated fitting of

polynomials to approximate the function and to use the minimum of the
fitted curve to predict the minimum of the objective. In the case where
only function values are available, a quadratic function is used. When the

gradient is also available, a cubic function is used instead.

The stationary point of a quadratic passing through the points (x,f(x)),

(w,f(w)) and (v,f(v)) is given by x + p/q where:

b
"

2 [(w=x)2(f(v)-£(x)) - (v-x)2(f(w)-£(x))] (2.3.1a)

e ]
1]

® 2((v-x)(f(w)-f(x)) - (w-x)(f(v)-1(x))] (2.3.1b)

The equation of the slope of a cubic passing through the points

(x,£({x)), (w,f(w)) with derivatives f'(x) and f (w) respectively, is given by:

£ = 1700 - 2 (1 60M) + Girg(f (04t ()42,



where

w—

n-= 3[———f(x) —:(")] + £7(x) + £(w)

The root of f'(u) = 0 corresponding to a minimum of the fitted cubic

can be expressed as x + p/q, where:

p=2(w-x)[f(x) -y -n] (2.3.2a)

q = ¥f'(w) - f'(x) + 2y] (2.3.2b)
with

y = sign(w - x)[n? - £ (x)f"(w)P* (2.3.2c)

These formulae are commonly available in the literature on numerical

optimisation.

With a good starting point, this method can be very efficient, especinlly
when it is near the minimum and the objective is well approximated by a
quadratic or cubic. However, if the starting value is not sufficiently close
to the minimum, it can be unreliable. The common situation causing
difficully is when one of the function values used for the curve fitting is
very large compared to the rest. On applying (2.3.1) or (2.3.2), the
predicted minimum will tend to be very close to the small value. Since
one point has to be discarded at each iteration, if one insists on using sets

of points which bracket the minimum for the curve fitting, i.e. interpolation



only, the large value will be retained for a while before it is being

discarded, thus slowing down the search considerably. Indeed, a natural

alternative is to discard the high point since it is likely to be the least

useful in future approximations. Unfortunately, the new points which

result will not necessarily bracket the minimum and in this situation the

predicted minimum using (2.3.1) or (2.3.2) cannot be trusted, because it is

being extrapolated.

The disadvantages of these methods when used alone can be effectively

eliminated by combining them together. We will focus our attention on

repeated quadratic_approximation. The basic strategy here is to retain
the lowest function values obtained so far for fitting the quadratic, and

when we are in an extrapolating position, a bound is set up to safeguard

the reliability of the predicted minimum.

Figure 2.2. is a typical situation in practice with ({a,b] being the

current interval of uncertainty. The minimum point predicted by the

quadratic through x, w and v will be obviously unreliable because it is

f(v)
\[\f(W)
l
|
l £ (x)
| |
I l :
! )
! +— d, -—Dr ,' dz
1 l t
v w X m

Figure 2.2. b
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exirapolating. A possible safeguard is to build an artificial bound m

within the interval [a,b] such that the predicted point cannot exceed m.

The artificial bound being used here is defined as follows:

x + Bla ~ x) ifwd x
m = (2.3.38)
x + B(b - x) ifwd{x
where
#(—d,/d, )% if |dyl<Id,|
B = . (2.3.3b)
/11(0-1 - dz/di) if 'dgl)'dzl
and
dy, = a-x
] if w { x
dz =b-x
or . (2.3.3c)
d‘ = b - X
] ifw>x
dz = a-X

An account supporting the use of the above as an artificial bound in the
hybrid method can be found in the original paper (Gill and Murray, 1974).

This technique which combines (2.3.1) and (2.3.3) was termed the
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safeguarded quadratic univariate minimisation method. From now on a

step defined by (2.3.3) will be referred to as a comparison step because
one can devise a univariate function-comparison minimisation algorithm

using (2.3.3) only.

The tolerance for the purpose of terminating the search is a function

of the relative error € and the absolute error 7. This function is defined

tol(x) = €|x|] + 7T

and the algorithm is said to have converged to the minimum if max(x-a,b-x)
£ 2tol(x). The two scalars € and T will depend on the accuracy of the
computer being used. A suitable choice is to set € and T to 2°t/2 when

the computation is carried out on a computer with t-bit wordlength.

With practical problems, we are often ignorant even about the
approximate location of the minimum. If we were to specify an interval of
uncertainty through guessing, this would most certainly lead to an
overstatement of the initial interval so that we can be sure that it brackets
the minimum. In our program, we set the initial step-size to be
0.1{x|4100tol(x), where x is the starting value. This step is then taken.
If the new point is higher than the starting point then all subsequent
steps will be taken in the opposite direction, otherwise we will continue to
take positive steps. The size of each subsequent step is 4 times the
previous step. The lower (if positive step) or upper (if negative step)

bound of the half-opened interval is updated every iteration. This
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continues until a higher point is located in which case we have bracketed

the minimum and the safeguarded quadratic minimisation algorithm is used

to shrink this interval until it satisfies the termination condition.

Because of rounding error in the computation of f(x), spurious modes

can be introduced even if they are not present in the function. This can

be dealt with by prohibiting the evaluation of the objective at points which

are less than some small distance apart. In algorithmic terms, this means

we have to make sure that the predicted point is at least a distance of

tol(x) away from x, a and b. This is the reason why in definition (2.3.3)

the situation of w = x is excluded. However, there is a need to modify

(2.3.3c) slightly. Since the point predicted by a comparison step is always
in dp, therefore, if d;  tol(x) we must interchange d; and d;, and the

larger half of the interval can then be reduced rapidly.

If we merely keep the predicted point a distance of tol(x) from pointis

x, w and v, this could lead to many steps of size tol(x) being taken. As a

precaution against this, a comparison step is taken whenever |e| < tol(x),

where e is the step taken in the last-but-one iteration. A comparison step

is also taken if |{p/ql < ¥le|, this is to ensure that the interval will at

least be halved in every two iterations. To avoid comparison steps in

succession, which is possible if e is small and the last step was a

comparison step, e is set to be max(ldy|, |d2|) whenever a comparison step
is taken. All these modifications can be found in the original paper.
Most of which were first suggested by Brent (1973) in his steplength

algorithm which combines polynomial approximation with Golden Section.
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2.4. THE MULTI-VARIATE MINIMISATION METHOD

This is the modified Newton’s method by Gill and Murray (1972a, 1972b).

In the kih iteration, this method performs the following three main steps:

1) Determine a descent direction vector, p(k).

2) Find a scalar a(k), known as the steplength, such
that £(x(k) + a(k)p(k))y ¢ #(x(k)),

3)  Perform the descent, i.e. set x{k+1) = x(k) 4 alk)p(k),

The superscript in brackets is used to denote the iteration number.

The basic difference between this method and the classical Newton's method

lies merely in (1).

According to the classical Newton's method, the descent direction p(k)

is obtained by solving:

G(x(K))p(k) = —g(x(k)) (2.4.1)

where g(x(k)) is the vector of partial derivatives of f and G(x(K)) is the
Hessian matrix both at point x(k), If the Hessian matrix G(x“") is positive
definite, i.e. all the eigenvalues of G(x“‘)) are positive, the direction p(k’
will have the property that the corresponding steplength (k) must be

positive. This can be shown by looking at the directional derivative of {

in the direction of p(k), which is:

.g_a £(x(k) + & p(k)) = p(k)Tg(x(k)) (2.4.2)
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where p“‘)T denotes the transpose of vector p(k). Because of (2.4.1), the

right hand side of (2.4.2) can be written as:

_p )T G(x(K)p (k) (2.4.3)

which is always negative if G(x(k)) is positive definite and not all the
elements of p(k) are zero. Therefore, a positive step in the direction plk)

must lead to a decrease in the objective.

When G is positive definite, a numerically stable method of solving

(2.4.1) is ftirst to factorize G(x(k)) by the method of Cholesky into the form:

G(x(k)) = L(k) p(k) (k)T

where L(k) is a lower-triangular matrix with unit diagonal elements and

p(k) is a diagonal matrix. Then find vector y from:
L(k)y = g(x(k))

by forward substitution, vector z from:
pik)z = y

and finally p(k) from:

L(k)T p(k) sz
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by backward substitution. The factorization of G(x(k)) can be done using
the method of Martin et al (1965). Their method has n major steps, where
n is the number of variables, during each of which a column of L(k) and a
diagonal element of D(k) are determined. Let gij ?ij and d; denote the
ijth elements and jjth element of G(x(k)), L(k), and D(k) respectively. The

jth step of the decomposition is given by:

J_
dj = €55 - L def5rs (2.4.4a)
and

J'_ - .
#ij = (835~ L drfirf5r)/d; izj+1,...,n (2.4.4b)
It is advantageous to work with the auxiliary quantities ci; defined by:
cij = %;d;

and (2.4.4) becomes:

j-1
dj = &55 ~ L jecyr, (2.4.58a)
and
=1
cij = #ij - L 2jrcir i=j+1,...,n (2.4.5b)

The numerical stability of this factorization method hangs on the positive
definiteness of the matrix G: when this is the case, all the diagonals of
D(k) are positive. When it is indefinite, or singular, i.e. one or more of
its eigenvalues is less than or equal to zero, the factorization is no longer
numerically stable even if the factors exist. In practice, a positive

definite and yet very ill-conditioned matrix can become indefinite because
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the factorization is carried out in finite arithmetic. In either situation,

the direction p(k) obtained through (2.4.1) will not necessarily be a descent

or ‘downhill’ direction because (2.4.3) is not always negative.

The modified Newton’s method adopts a more sophisticated factorization

technique in which, when the matrix G(x(k)) is sufficiently positive definite
(within the accuracy of the computer), the factors are identical to those by

Cholesky’s method, otherwise the factors are the Cholesky decomposition of

a positive definite matrix:

where E(K) is a diagonal matrix with positive or gzero elements. These

elements are determined as the decomposition takes place such that the

factors of G(K) satisfy the following:

1) each diagonal element of D(K) is always greater than a
machine dependent small constant, which can be set to

2-! when the computer has t-bit wordlength, and

2)  the elements of L(k)D(K)¥# are bounded by a constant B

where:

2 - max Iljjl Bax l‘ijlln
AS = maxl ¢i(n ,1¢Jj<n
i>
The original paper by Gill and Murray (1972a) has the full details on the

decomposition method and the rationale behind choosing the constants in
(1) and (2).
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When we use the modified Newton’s method we are determining the

search direction p(k) not by (2.4.1) but by:

G(k) p(k) = —g(x(k)) (2.4.6)

which is only equivalent to (2.4.1) if E(k) ig a zero matrix, i.e. when G(x(k))

is sufficiently positive definite. Unlike (2.4.3),

—p(OT G(k) p(k) (2.4.7)

will always be negative irrespective of whether G(x(k)) is positive definite.

This means we will always have a descent direction which is determined in

a numerically stable way.

The search direction will continuously be found by the use of (2.4.6)

until

(g(x(E)Tg(x(k) )Pt = yg(x(K) )1, ¢ tol

and E(k) is non-zero, where tol is a small positive scalar. This means we

are in the vicinity of a saddle point rather than a minimum. Since a
saddle point has the property that “‘("“‘)llz = 0, (2.4.6) cannot be used to
generate any useful direction and an alternative is needed. Gill and
Murray (1972b) used the following strategy. They solved the vector ¥y

from:

LTy = e;

where o is the jth column of an (nxn) identity matrix and j is an index



such that:

3,00 - 5500 ¢ 00 - g0

i=1,...,n

with Ej(k) denoting the jth diagonal element of g(k), Note that Ej(k) -

E j(k) is negative. The alternative search direction is defined as:

-sign(yTg(x(k)))y if ng(x(), # 0
p(K) =

y otherwise

The reason for defining the alternative search direction as above is that
this will be a deacent direction even if llz(x““)u2 = 0, because under this

situation the directional derivative of f in the direction p(k) is equals to:

p(OT g(x(K))p(k) = pUITG(K) - g(k))p(k)

e;T(K)e; — p(k)TR(K) p(k)

= 3,00 - gi(k) - P (K)g.(k) <0
J J r§j+1 PR *Ey

where pp(k) denotes the rth element of plk),

The search terminates if (ig(x(X))il, ¢ tol and E(k) is a zero matrix, i.e.

G(x(k)) is sufficiently positive definite.

The work involved in providing analytical second derivative in our
multi-variate problems is quite substantial. Therefore the Hessian matrix

G(x(k)) is approximated by finite differencing the derivatives as suggested



by the original authors. First we form the (nxn) unsymmetric matrix

Q(k) whose jth column q j(k) is given by forward differencing g, i.e.:
q;(®) = (g(x(k) + he;) - g(x(k)))/h

where h is the finite difference interval. The symmetric approximation is

then given by:
a(x(¥)) = (@k) + (K)T) 2

In our program h is chosen to be 1079, The original authors suggested

2-t/2 put they also found the performance of the algorithm almost invariant

amongst reasonable choices of h.

There remains to describe how the steplength «k) is determined in

each iteration. There are broadly two descent strategies, optimal and

non-optimal. In an optimal descent method the step is taken to the

minimum in the descent direction. In a non-optimal descent method the

step is taken whenever there is a sufficient decrease in the objective but

not necessarily the minimum in that direction. The non-optimal descent

strategy when applied with care is usually more efficient. The algorithm

used here is proposed by Gill and Murray (1974).

The basic philosophy of the steplength algorithm being used is to
proceed to compute the minimum of f(x(k) + op(k)) in « using a
safeguarded polynomial approximation minimisation method and terminates

the search when the function value at the new point is judged to be

sufficiently lower than the current value.
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Since we have both the function and gradient value available, cubic is

used in the polynomial approximation. The basic strategies are identical to

those in the quadratic case described in section 2.3. However, in the

cubic case only 2 points x and w will be held at each iteration and x will

coincide either with a or b. Therefore in order to use the same definition

(2.3.3) for m in a comparison step, (2.3.3c) has to be modified to the

following:

dy =w-x

. (2.4.8)
%= 15 F 3N,
The additional strategy of taking a comparison step whenever the predicted
step lies outside [a,b], |el ¢ tol(x) or |p/ql » Mie| applies. Here the

absolute error T in the definition of tol(x) has to be adjusted by the
division of Hp!®)|i,.

While the m defined by (2.3.3a), (2.3.3b) and (2.4.10) can be used in the

comparison step, it is not optimal when x and w bracket the minimum, i.e. x

and w coincide either with a and b or b and a. The optimal function

comparison step in this case is bisection, i.e. m = (a+b)/2.
The minimisation will continue until we find an @ such that:

IO Tg(x(k) + sp(k))| ¢ - np(k)Tg(x(k))

.nd (20409)

£(x(}) + &p(k)) ¢ £(x(k))
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where N(0 { N € 1) is a prescribed constant. If at this point:

£f(x(k)) - £(x(k) + &p(k)) »—mp(K)T g(x(k)) (2.4.10)

then the steplength «(k) = @  Otherwise let s be the first member of the

sequence {(¥#)J} such that @s satisfies:

£(x(k)) - £(x(k) + zap(k)) >—1mgp(K)T g(x(k)) (2.4.11)

and the steplength «(k) = as,

Condition (2.4.9) is to ensure that the

objective is decreased sufficiently. Note that when n = 0 condition (2.4.9)

is equivalent to requiring the minimum along p(k) to be found. Condition
(2.4.10) is to prevent the situation as depicted in Figure 2.3, in which case

the halving strategy will guarantee a more satisfactory value for «(k),

In addition, an upper bound X is imposed on « If the best point

obtained by the minimisation algorithm is X and the directional derivative

p(k)Tg(x(k) + )p(k)) is negative, we will proceed to test condition (2.4.10)
even if (2.4.9) is not =satisfied.

f(x(k))

f(x(k)) - &

il
2

Figure 2.3.
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In our programs we have chosen n to be 0.4 so that the minimum along
p'k) is rarely found, and u = 104 to avoid halving the steplength

unnecessarily.
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CHAPTER 3

IMPLEMENTATION OF THE MINIMISATION METHODS AND NUMERICAL RESULTS

3.1. INTRODUCTION

There are altogether 9 prediction systems included in this study. One

of them has a Bayesian inference procedure and the remaining 8 use

maximum likelihood. Of these 8 systems only one has a model with a

likelihood function which can be maximised analytically, the rest can only

be optimized using numerical techniques.

A section is devoted to each prediction system. When applicable, we

first investigate the possibility of reducing the number of parameters in
the model so that the search can be performed in a space of lower
dimension. Since some or all of the parameters are constrained (for

example, the parameter must be positive or bigger than a fixed number,

etc.), the next step is to transform the constrained problem into an

unconstrained one which is usually easier to solve. Although the Bayesian

system does not rely on the methods described in Chapter 2 for its

parameter estimation, a numerical algorithm is needed for the determination

of its predicted median. Two methods for this purpose will be presented

in the corresponding section.

The prediction systems were coded and tested on 7 sets of real data.

6 of these data sets come from Musa (1979) and the remaining one from



British Aerospace. The results provide us with considerable insight into

the behaviour of the ML parameter estimate in each model.

Previously, the Jelinski and Moranda model (1972) was most studied and

best understood. Littlewood and Verrall (1981) have shown that the MLE

of the initial number of faults in the program according to the Jelinski and
Moranda model can be infinite if a certain condition in the data is not met.

A detailed proof can also be found in Joe and Reid (1985) and Moek

(1983b).  This "excursion to infinity" behaviour of the MLE was observed

to be present in all the models. Obviously we cannot achieve the value of

infinity on a computer but the parameters can assume value of magnitude

which is so big that computation carried out in this range is beyond the

accuracy of the machine. We will prove in the case of the Goel and

Okumoto model (1979) that the likelihood function is unimodal and also

obtain the condition under which the MLE of one of the parameters is at

infinity. Details are given in Appendix 1.

Unfortunately similar proofs cannot be found for the remaining models,

therefore we adopt the strategy of setting bounds on the parameters

instead. This means the techniques described in Chapter 2 will have to

be modified into methods of minimisation subject to bounds on variables.

This problem has been investigated by Gill and Murray (1876).

We also found that the multi~-variate problems can be very unevenly

scaled, i.e. the contours of the function are packed much closer together in

some directions, causing the steplength algorithm to fail. A strategy is

incorporated into the multi-variate algorithm to overcome this difficulty.
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The result of applying the final programs to all 7 sets of data are given in

the last section.

3.2. THE JELINSKI AND MORANDA SYSTEM (JM)

The model used here is developed by Jelinski and Moranda (1972) and
can justifiably claim to be the first software reliability model. It assumes
that there are initially N bugs in the program each of which causes the
program to fail according to a Poisson process with constant rate ¢, and
the bug will be removed from the program once it causes a failure.

Maximum likelihood is used to estimate the unknown parameters N » i and

¢ > 0.

On observing i failures the likelihood function is:

F(tys.ro ti/N,0) = T (N-jo1)ee (NITDIO; (3.2.1)
j=1

and the natural log of this is:

i ] . i .
2(ty, ... ti/N, ) = E log(¥-j+1) + iloge - Ojfx(N‘J+‘)tJ (3.2.2)

One can maximise (3.2.2) in two parameters N and ¢ and eliminate ¢ by
expressing it as a function of N. This is done by differentiating (3.2.2)
with respect to (w.r.t) ¢ and equating to zero which yields:

i

é (N-j+1) tj
J=1

‘ = (3-2.3)

Substituting (3.2.3) into (3.2.2) we get:
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-~ i
9(ty,...,t;/N) = L log(N-j+1) + ilogi
J=1

i
~ilog [_z (N—j+1)tj] - (3.2.4)
j=1

and N can be obtained by maximising (3.2.4) then ® from(3.2.3).

It is clear from (3.2.3) that if N 3 i then ¢ > 0, therefore we only have

to ensure that the constraint on N is satisfied. By letting x2 = N-i and

expressing (3.2.4) in terms of x, the above constained problem is

transformed into an unconstrained maximisation problem in x. The

objective function is:

2(ty,...sty/x) = L log(x2+i-j+i) + ilogi

[
T o
-

—ilog[.i (x2+i-j+i)tj] - i (3.2.5)
j=1

Littlewood and Verrall (1981) have shown that the MLE of N is infinity
if
i .
L (J-1)t;
J=1
, < (3.2.6)

i
L (j-1)
J=1

in which case ® = 0 and the MLE of X = N¢ is:

- (3.2.7)
1

Joe and Reid (1985) further proved that N = i if:

L1 <i/ch 1y,
n j‘=:1 T; ‘1/(523 / ;) (3.2.8)
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and
—2 (3.2.9)
1
_E (i—j+1)tj
351

where T; is the total elapsed time before the jth failure, i.e. T; = )’.‘ tg.

Conditions (3.2.6) and (3.2.8) are tested before the numerical search. If

a test is failed the MLE of the parameters will be set according to (3.2.7)

or (3.2.9) and no further search is needed.

3.3. THE BAYESIAN JELINSKI AND MORANDA SYSTEM (BJM)

The model used here is essentially the same as JM in that the failure

rate of the program depletes by an amount of & whenever a failure occurs.

The only difference is that the initial failure 2 is not necessarily an

integer multiple of o. This modification was introduced to ease the

inference, full details can be found in the paper by Littlewood and Sofer

(1981).

In the calculation of the posterior and prediction distribution, the

quantites {a;i} are required. These are the x coefficients in the following

product:

i ) i i-j
M (x-j) =L aj; .3.
j=1( J) RASH X (3.3.1)

and are defined by the following recurrence relationship:

aj,i = i85g,4-9 + 85 iy for j 3 1 (3.3.2a)
with

30,1 = 1, 31,1 =1 and 8,1 =1 ¥§i (3.3.2b)



To delay overflow in computing the a’s when i is big, we define:
_ (=g
a*\jsi - i! a.j’i (3.3.3)

and use af¥ in the calculation instead. A similar recurrence relationship

for a%¥;; can be obtained through (3.3.2) where:

_i-jg)r . i-j)!
a*j,i =3 18-y, i-1 + -(1—1‘?)— aj,i-1
= 85y i1 ¢ ‘(‘l:;l)- aX; j-1 (3.3.48)
with
akg 4, 8%y 4 =1 anda¥y =1 ¥i (3.3.4b)

Although the computation involved are complicated, they are all in
finite closed form and will not take more time than the numerical search for

MLE. However, if we want the predicted median, fn.i“, we would have to

solve:

Fisg(mj4y) = 0.5 (3.3.5)

where f‘i“ is extremely complicated and does not have an analytical inverse

function. Once again we have to rely on a numerical procedure.

A classical numerical problem is to find the zero of a function (Stoer

and Bulirsch, 1980). To find the median, we define a univariate function:

h(t) = Fj4q(t) - 0.5 : (3.3.6)

then we find ¥ such that h(t) = 0 and our required median mj,, is equal to

t, We propose the following two methods for solving h(t) = 0 numerically.
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(1) Newton’s Method

This method is iterative and terminates when llh(t(k))llz £ tol,
where tol is a pre-assigned small positive constant. If this condition is

not satisfied, we calculate:

PRI (1L

(3.3.7a)
h (t(k))

and set:
t ift>0

t
N P (3.3.7b)

The derivative of h, which is the predictive density §i+1' is also
required in this method. The alternative in (3.3.7b) when { becomes

negative is necessary because the function i“iﬂ, hence h, is only

defined for positive values of t.
2. _Secant Method

The ordinary Secant method involves fitting a straight line

passing through the 2 points: (t(k'l),h(t(k-i))) and (t(K) h(t(k))),

This line will cut the t-axis at point:

N t(k=1)h(¢(k) )t (k) h(t(k-1))
t =

(3.3.8)
h(t(k)) - h(t(k-1))

Then t(k+1) = 1 and the search terminates if ||h(t(X*1))||, ¢ tol, where
tol is a pre-assigned small positive constant. Otherwise, the point
t(k-1) jg discarded and the process repeated with the two points t(k+1)
and t(k), In our application it would be necessary to define t(k+1) ag
in (3.3.7b) with { defined by (3.3.8) because t(k+1) cannot be negative.

In this method, only one evaluation of h is required per iteration

except for the first where two function values are required.
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Newton’s method has a higher rate of convergence which means it will
need a smaller number of iterations to satisfy the termination condition.

The Secant method is not very reliable if the starting value is far from the

solution. But with a good starting value, it can be faster than Newton’s

method because in this particular application the computation involved for a
function value or a gradient is roughly equal, therefore the effort per

iteration, except the first, of the Secant method is roughly half that of the

Newton’s method. In our program we have used Newton’'s method for the

calculation of the predicted lower quartile, median and upper quartile.

3.4, THE GOEL AND OKUMOTO SYSTEM (GO)

The model here is due to Goel and Okumoto (1979). It is a

non-homogeneous Poisson process (NHPP) with a rate function defined as:

AT) = e ¥ (3.4.1)
where T is the total elapsed time, i.e. the total execution time since the

beginning of execution of the program. This model can also be obtained

by allowing the parameter N in JM model to be distributed as a Poisson

variate with mean i

On observing i failures the likelihood function is:

N _ . _ - _"o
F(tyyeen. ty/l,0) = [_lll‘ wde "J]e H{l-e T3] (3.4.2)
J:

where T ; is the total elapsed time to the jth failure, i.e. T; =’é to,
=1
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and the log likelihood is:

. i pe
§(ty,....ti/1®) = ilogu + ilogs - ¢ T T; - u[l - ¢ *'i) (3.4.3)
j=1

Al the maximum we can express KU in terms of ¢ by differentiating (3.4.3)

w.r.t. 4 and equating to zero. This yields:

u= T (3.4.4)
and when substituted into (3.4.3) gives:

B(ty,...t;/0) = -i + ilogi - ilog[l-e ¥Ti)
) i
+ iloge - oj};:1 T; (3.4.5)
Therefore ¢ can be obtained by maximising (3.4.5) over ¢ > 0 and u from

(3.4.4). To transform this problem into an unconstrained one, we define

xz =@ - € (3.4.6)
here € is 2~! when t-bit wordlength is used by the computer for the

calculations. We can now express (3.4.5) in terms of x which is:

f(ty,. .. ty/x) = —i + ilogi - ilog[l - e-(x2+¢)-ri]

+ ilog(x2+€) - (x2+¢€) f: T; (3.4.7)
J=1 v

and oplimise this over x for ®. The reason for the additional term € in
(3.4.6) is to avoid numerical difficulty in the log term in (3.4.7) when x2?

becomes too small. Note that U + » when ©-+0 because of (3.4.4) which is

very similar to the behaviour of N in JM model.

In fact it can be shown that the likelihood (3.4.5) is a concave

function, and such a function has the property that there can only be one
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maximum. Furthermore, this maximum occurs at & = 0, which implies Uz e,
if:

Ti 1 @

5 < 3 j§1 T; (3.4.8)

The proof of the above is given in Appendix 1. Condition (3.4.8) is the

Laplace test for trend in the T’s (see Cox and Lewis, 1965).

Intuitively, the above condition cuts the total elapsed time interval into
2 halves. If the average of the elapsed time lies in the right-hand half,
this means failures tend to occur late, which is in conflict with the growth
gituation where failures will tend to occur more frequently at the beginning

of execution. When (3.4.8) is true the rate function A (T) + X with:
A= L (3.4.9)

Ti

j.e. when there is no evidence of growth in the data, the model behaves

exactly as a Poisson process with a constant rate. Condition (3.4.8) is

incorporated into our program, while the definition of x in (3.4.6) remains

as an extra precaution.

3.5. THE MUSA AND OKUMOTO SYSTEM (MO)

The model in this prediction system was developed by Musa and

Okumoto (1984). This is essentially an NHPP with a rate function:

X(T) = o= (3.5.1)

where T is the total elapsed time.
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After i failures have occurred, the likelihood function is:

i (BT ;)E |
el L - (3.5.2)

€+1
(B*Tj— 1)

HE o

f(ty,...0ti/8,8) =0,

where T ; =9$_3179, To = 0, and the log likelihood can be simplified into:

T; 1
9(ty,...,ti/€B) = i - B - )
(g i/€,8) = ilog€ - Elog(l+ g - L 1o8(ATy) (55 3

For the purpose of maximising (3.5.3), the parameter € can be
eliminated from the log likelihood by differentiating (3.5.3) w.r.t. € and

equating to zero. This gives:

e - -——l—ri— (3-504)
log(l + 57)

and when substituted into (3.56.3) gives:

. T; i
B(ty,...,t;/8 = ilogi - i - ilogllog(l+ z0)) ~ L 1log(8 + T))
j=1 13.5.5)

Since B > 0, we define:

¥ =B-¢€ (3.5.6)

where € = 2=t for a t-bit machine and é can be obtained by maximising:

. T; i
B(ty,... ty/%) = ilogi - i - ilog(log(1 + rzier)] -.i‘ log(x? + € + T;)
J:
(3.5.7)

over x. After which € can be obtained through (3.5.4).
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3.6. THE DUANE SYSTEM (DU)

The model here has been studied by Duane (1964) and Crow (1977) and

is again an NHPP which has a rate function defined as:

A(T) = Tt ! (3.6.1)

When § < 1, the rate function is decreasing in T, it is constant when © = 1
and increasing when € > 1. This is the only model of those included in
this study which has a likelihood function that can be maximised

analytically.
After i failures, the likelihood function is:

f(tlyo-.tiﬂ,s) = Xisie Ili ‘rs.--x (3.6.2)
and the log likelihood:
e - | s i
Q(ttgo-o’ti/ ’s) = 1logX + 1logs - X'ri + (s_‘) i log(.rj)
J=1

(3.6.3)
The MLE of X and € is obtained by differentiating (3.6.3) w.r.t. X and ¢

respectively, and equating to zero. This gives:

- 1
k - _‘
"’is (3.6.4a)

and

§ - i
: (3.6.4b)
ilogrj - L log(T;)
=1

From (3.6.4a) it is clear that the constraint on A being positive is

automatically satisfied.
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THE LITTLEWOOD SYSTEM (L)

3.7'

The model here is due to Littlewood (1981). It assumes that the
inter-failure times are independent exponentials with rate which initially is
the sum of N independent and identically distributed (iid) Gamma variates

with parameters « and B, and N is reduced by 1 every time a failure

occurred.

On observing i failures the likelihood function is:

(N-j+1) (BT 5_, )oz(N-i+1)

F{rryn (3.7.1)

i
f(ty,.. t;/N,&,B) = T
I (B + Ty)

with T; defined as in MO, and the log likelihood can be simplified into:

i i
ty,y. ti/Nyex,B) = L log(N-j+1) - (1l+x) }1: log(B + T;)
J=1 J=1

+ ilogx + NalogB - (N - i)alog(B + T3)  (3.7.2)

For the purpose of maximising the above, « can be expressed in terms of N

and B by differentiating (3.7.2) w.r.t. « and equating to zero. This yields:

L (3.7.3)

X =
i
JE1log(B+-rJ) + (N - i)log(B + T;) - Nlogg
which when substituted into (3.7.2) gives:

. i . i
2(tys..-sti/N,B) =j§1 log(N-j-1) -551 log(B+T;) - i + ilogi

i
~log| I log(sr (1) 10g(B+7)-Nlogs]

J
(3.7.4)
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Furthermore, we define:

x%

"
z
I
-

(3.7.58)

and

n
®w
!
M

x3

(3.7.5b)

in order to transform the problem into unconstrained minimisation in the

two dimensional space of x; and x,.

3.8. THE LITTLEWOOD NHPP SYSTEM (LNHPP)

The model here can be obtained by letting N in the L model have a
Poisson distribution with mean u. Miller (1986) called it the Pareto NHPP

and Moek (1983a) investigated the MLE of its parameters. The likelihood

function after i failures is:

B o
i | 1~ (=—
f(ty,ooorty/u,,B) = [ﬁ __;".E__]e [ (ﬁﬂ’i ]

J=1 (per ;)™ (3.8.1)

the log of which is:

tg,..ooty/H,&, B) = ilogu + ilogx + &ilogB - (lw)Jli: log(B+T;)
=1

'“[1 ) (FB'T_J-)«] (3.8.2)
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Differentiating (3.8.2) w.r.t. 4 and equating to zero gives:

i
log(1l u)

« = B ' (3.8.3)
1°g(B+'rJ)

The reason for eliminating o instead of 4 is that « is usually many
orders of magnitude smaller than 4 and B, therefore minimising in («,B)

space can be more difficult than in (4,B) space because the former will be

very poorly scaled. We further define:

x3

M-1i-¢€ (3.8.4a)

and

x% B -€ (3.8.4b)

-

and perform unconstrained minimisation in (x,,x,) space for uand B. «is

then obtained from (3.8.3).

3.9. THE LITTLEWOOD AND VERRALL SYSTEM (LV)

The model in this system was formulated by Littlewood and Verrall
(1973). They assume the inter-failure times to be independent exponentials
and the jth has a failure rate which is & Gamma variate with parameters
(x,¥(j)). Growth or deterioration in reliability will depend on whether ¥(j)

is increasing or decreasing with j. Here we have used:

¥(Jj) = By + jﬂz (3.9.1a)



with

By, + B, >0 and By + iR, > O (3.9.1b)

where i is the current number of total failures.

On observing i failures the likelihood function is:

3 o &
Flty,. .o t/mw(y) = 1 =) (3.9.2)
J=1 (W(3)+t ;)

and the log likelihood is:

. .

i i
Pity,...,t;/x,¥(j)) = iloge + or_leog\P(.j) - (1 + @) L log(¥(j)+t;)
J= J=1
(3.9.3)
For the purpose of maximising (3.9.3) « can be eliminated from the

above by differentiating (3.9.3) w.r.t. « and equaling to zero. This gives:

i

(3.9.4)

1§1°£[¢(J) + 1] - log(¥(3)])
J:

and the maximisation is now in the space of B; and B,. To remove the

constraints (3.9.1b) we consider:

¢, = By + B, (3.9.5a)

B, + iB,

and
V2

(3.9.5b)

Clearly ¥(j) can be expressed in terms of ¥, and , as:

. e i-J
W) = () w2+ (D v (3.9.6)
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By defining:

(3.9.7a)

and

x3 =¥ - € (3.9.7b)

we can now maximise in the unconstrained (x4,x;) space by substituting

(3.9.4), (3.9.6) into (3.9.3) with ¥; and ¥, defined by (3.9.7a) and (3.9.7b).

3.10 THE KEILER AND LITTLEWOOD SYSTEM (KL)

The model here is almost identical to LV model (Keiller et al, 1983).
In this case the jtb inter-failure time is exponential with rate which is a
Gamma variate with parameters (¥(j),B), i.e. the growth or deterioration in

reliability is reflected through the shape parameter « rather than the scale

parameter B.

The likelihood after i failures is:

O og - i eet)
F(tyy.. . t; A(1),B) = 0T Tl
1 i b (B+tj)m)ﬂ (3.10.1)

and the log of which is:

Bty .. t1/9(1),B) =jli:‘loxv(.i) + logh £ ¥(4)
= j:l

i
- L [w(j)+l]1 .
j“[ (3)+1])log(B+t ;) (3.10.2)
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Here ¥(j) is defined as:

1
¥(Jj) REITR
with
1 _ 5 0and—2i->0
&gty &yt )X

In order to reduce the dimension of the minimisation problem

the constrains on the variables we define:

1
7 =
17 ety
and &y +ia,
Y2 = o+ &y

¢(j) can now be defined in terms of ¥, and ¥, as:

61
i-J )-1
(=D @D

w(y) =
Substituting (3.10.5) into (3.10.2) gives:

2ty,...ti/73,72,B) = ilogyy + ¥ logB :

J*(—lwz( ) j=1

<Y

(3.10.3a)

(3.10.3b)

and to remove

- 8 log(B+t ;)

(3.10.4a)
(3.10.4b)
(3.10.5)
. 1
=1 Aoy ay, (22
(3.10.6)

(i-J)
-J}: log((:l D 72 (1_1)]



- 45 -

By differentiating (3.10.6) w.r.t. ¥4 and equating to zero, we have:

i

Y, =

T (3.10.7)
i log(l + EJ)
o ,
T2 (134, (0t
T A ()
Finally, we define:
X Tz € (3.10.8a)
and
=B (3.10.8b)

and &;, &, and B can be obtained by first substituting (3.10.7) into (3.10.6),
this function is then maximised over the unconstrained (x,,x;) space
through definitions (3.10.8a) and (3.10.8b).

3.11. IMPLEMENTATION AND MODIFICATIONS

The safeguarded quadratic approximation minimisation algorithm (SQAMA)
and the modified Newton’s algorithm (MNA) described in Chapter 2 were

coded as subroutines in Fortran 77 on an IBM PC-AT. The model

programs used one or the other subroutine for the optimisation. 7 sets of

data have been used to test the performance of these algorithms. The 7

sets of data are System 1, System 2, System 3, System 4, System € and

System SS3 from Musa (1979) and BAe data from British Aerospace. These

data are listed in Appendix 3. The results of these tests provided us
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with considerable insight into the behaviour of the MLE of the parameters
in each model. Furthermore, it is on the basis of the difficulties we have
encountered during these tests that we incorporate certain changes to our
original minimisation algorithms to make them more efficient for the more

difficult problems. We begin by looking at the univariate problems first.

JM and GO model programs performed very well across all 7 data sets.

However a potential difficulty exists in GO which is partly originated from

the data itself.

There are often no dimensions given for software reliability data.
They usually come as a sequence of numbers which might have already
been scaled in some way which is convenient for recording and security.
Therefore, the magnitudes of two sets of data can be very different, even
if the programs are equally reliable, just because' the data have been
scaled differently. For example, it is fairly obvious that the magnitude of
the failure times in System SS3 is bigger than that of System 1, but if one
multiplies the inter-failure times in System SS3 by a factor of 1073, they
would not look so dissimilar in magnitude anymore. Some but not all of
the parameters in a software reliability model are scale invariant, i.e. the
magnitude of the parameter does not change when a positive scale is

applied to the data. Therefore the magnitude of those which are variant

to scale will depend on the scale of the data.

Recall that in the case of GO model the minimisation variable is x =

+/&+€ which is usually very small Also recall that the search will

terminate if max[b-x,x-a] ¢ 2tol(x) with tol(x) = ¢|x|+7

as defined in

gection 2.3. This choice of tol(x) is satisfactory for x| » 1 but becomes



unsatisfactory when |x| is very small because T will then act as a lower
bound on tol(x). In the extreme situation where x is of the same

magnitude as T, the termination condition will cease to have any effect on

the accuracy of ;(, hence 6. Merely setiting smaller values for € and 7T will

lead us beyond the accuracy of the computer.

One way to get round this problem is to optimise in u rather than ¢.

Alternatively, we can scale the data such that |$#|~1. We have adopted the

second strategy because scaling the data proved to be useful also in other

model programs for a differenti reason.

In the case of GO model, if a positive factor s is applied to the data,
the magnitude of the new ¢ parameter will become ¢/s. The method we

have used to determine the scale factor s is dynamic. Let the factor used

in the stage i minimisation be s; and we obtained 35, the factor for stage

(i+1) is given by:

8i+1 = 805 (3.11.1)

with the value of 8 for the first minimisation arbitrarily chosen to be the
reciprocal of the total elapsed time up to when the analysis starts. The
effect of using this scaling strategy is that not only is the accuracy of ®
safeguarded, the efficiency of the minimisation does not suffer as a result.
This is because the starting value, which is ¢ for the previous slage, is

usually very close to the minimum, the value of which is under our control

via scaling.

In the case of JM model, the parameter N is scale invariant and the
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program is already efficient. Therefore, scaling the data serves no

purpose and is not incorporated in the program.

Although the parameter B in MO model is variant to scale, if the data is
multiplied by s > 0 the new B value will become 8B, the size of which is
usually bigger than 1 and therefore does not suffer the same accuracy

problem as in GO model. But it has a problem of the opposite nature.

When we analysed the data sets using MO, we observed that the run of
B from stage to stage within a set of data is usually smooth if the
corresponding samples of inter-failure times showed evidence of reliability
growth. Otherwise, the magnitude of B can fluctuate quite substantially

and assumes a value which is Bo big that computation is no longer

accurate.

Recall that the rate function of this NHPP is:

€

AT) = Bor

and the MLE of € is given by:
€ = ____1_..,,,;..
108(1 + F-)
where T; is the total elapsed time at the fh failure. 1If B is very big, &
will also be very big because of the above relationship. Looking at the
rate function of this model, if we let € + ®» and B + » while €/8 + ), this
NHPP becomes a Poisson process with rate A, This is analogous to the

situation of N + », ¢ + 0 in JM model, or u + », ¢ 4 0 in GO model when the

data shows no sign of reliability growth. Unfortunately, we have not been

able to prove results similar to those in the case of JM and GO so that we
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can know when € » » and B » » and can avoid the numerical search. Here
it is not only a matter of economising, but the value of § can be' so big
that the numerical overflowing and underflowing will either render the

result of the search useless or cause the program execution to fail.

In the absence of such a test condition, the strategy we have adopted
is to restrict the size of the parameter B so that we can stay clear from
these numerical difficulties. This approach is further supported by the
empirical observation that if the size of B is restrictd when it becomes too

big, the detailed predictions that results from using the restricted value

are not affected to any significant extent. Therefore, it seems that in

these situations, the exact value of B or € is no longer significant, but:

-~

AT) = ~ A

£
B+T
will be the single quantity of importance.

To choose a suitable upper bound on B8 for a given data set is not an
obvious matter because the magnitude of B can be big for two reasons: no
evidence of reliability growth in the data or the observed inter-failure
times are large because of their scale. Therefore a suitable choice for one
data set does not imply its suitability for use in another. We suggest

that the upper bound should be determined on the basis of a trial run

performed on a subset of the data. In the trial run we set a larger than

expected value for the upper bound and then run the model program for a

few stages. The result of this run is usually a sufficient aide for

selecting a suitable value to restrict the size of B. It will only fail if the

data shows no growth at each successive stage being tested. In this
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case, we can use the Laplace test to find a trial run sub-sample which

shows the presence of reliability growth before we try again.

Having set an upper bound is only part of the preliminary work, the
magnitude of B can still be unsatisfactorily large for the purpose of
computation. In order to enhance the numerical accuracy, it is8 necessary
to scale the data so that the scaled B remains within the desired range for
computation. The result from the trial run is again useful for the

purpose of choosing the scale factor 8. As a general rule, we choose s so

that the scaled upper bound of B is not greater than 107 when 64-bit

double precision variables are being used in the computation. For
example, if the trial run shows that B ~ 107, we can set the upper bound

at 101° and s can be chosen as 105, which means the scaled B ~ 102 and

the scaled upper bound is 108,

The starting value of the search must now be within the set bounds.
The usual choice is the minimum of the previous stage. But if this is
equal to the upper bound value, it would not be a satisfactory choice.
Therefore, we built in an option in the MO model program such that if B is
greater than a pre-assigned value, this pre-assigned value will be used

instead of B as the starling value for the minimisation in the next stage.

The setting of upper bound on the minimisation variable means that the
univariate search method has to be modified. Gill and Murray (1874) in
their original paper suggested a method which can be used for unimodal
functions. While likelihood functione are usually well behaved, we are not

entirely sure that the likelihood of MO model is unimodal, therefore we
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adopt the following sirategy instead. This method is applicable to

problems with upper and lower bounds. The example we have used is for

upper bound, the lower bound case_can be dealt with similarly.

In the proceas of finding the initial interval of uncertainty [a,b], if the
best point yet happens to be on the upper bound, we Bet b to be the
upper bound and update a to the previous x value.

Figure 3.1 shows how
the points are configured.

upper bound

£(v) l
(w)

f (x)

b ——— ——

a Figure 3.1 b

The SQAMA is then used to reduce this interval [a,b). It is clear from

Figure 3.1 that the use of this algorithm would only lead to a sequence of

comparison steps. However, point x coincides with b in this situation (x

will coincide with a if it would have been a lower bound) and definition

(2.3.3c) cannot be used without modification to obtain the d; and d,

required in defining a comparison step. We propose that the

corresponding value of d, which is supposed to be set to (x-a) in (2.3.3c),

be set to -tol(x) instead, if x=a. Similarly, the d which is supposed to be

get to (b-x) in (2.3.3c) be set to tol(x) instead, if x=b. Note that x can

only coincide with either a or b at any one time, therefore only one of the



d's will be 0 and hence be changed. By doing so, d, will always be set

to the full interval [a,b] and the comparison step will be defined within it.
The use of this sirategy means that the objective will be evaluated at a

few points, which are progressively closer to x, before we decide x is the

bounded minimum. The number of such evaluations is usually smuall and in

return we can be more confident that x is the minimum point within the

initial interval [a,b].

This modified version of SQAMA is used by the final version of JM, GO

and MO model programs. In all cases, the lower bound is set to be the

minus of the upper bound which obviously can also be set to 0, but the

larger range does not affect the efficiency of the programs. The upper

bound in the case of JM and GO is usually set to an arbitrary big value

because it is basically redundant. The scaling of data is done

automatically in the case of GO model while no scaling is used in the JM

model program. The alternative starting value option is not used in either,

but the minimisation algorithm automatically checks and ensures that the

starting value is away from the bounds. In the case of MO the modified

minimisation algorithm, the scaling of the daia and the alternative starting
strategy are all contributive factors for the efficient determination of

trusiworthy MLE of the model parameters.

When we analyse the data with the remaining 4 models, we find that

the LV and KL model programs performed very efficiently, but less so in

the case of L and LNHPP. This is due to the MLE of the parameters in L

and LNHPP being frequently very large. When this happens, the

convergence criteria in the search algorithm are usually not satisfied,
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resulting in a failure in the MNA. This behaviour was also observed to be

present in the MLE of LV and KL model but only infrequently among the

data sets we have analysed.

Miller (1986) has studied the behaviour of L and LNHPP {(called the

Pareto NHPP by Miller) model when their parameters take on various

limiting values. In the case of L model, using an obvious notation:

Lt L(N,«,B) + MO(§,B)
Nooo 020

No=+€

1
|
|
:

Lt L(N,x,B) -+ JM(N,e) |
Qo0 B0 } (3.11.2)
o/ B0 |'
and |
|
|
J

Lt L(N,x,B) + HPP(D)
Nooo | B0
Nx/BA

where HPP(}) represents the homogeneous Poisson pfoceas with rate 2, the

rest correspond to the various models and their respective parameters.

Similarly, in the case of LNHPP,

Lt LNHPP(u,x,B) -+ MO(E,RB)
Lo, 00

1
|
|

Lt LNHPP(":“nB) -» GO(“.O) l
000, Boao } (3.11.3)
o/ B+ |
|
and |
|
|
J

Lt LNHPP(u,x,B) <+ HPP(})
o/ Ba)
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It is illuminating to compare the rate function of the models in the L
family. The HPP is the only member with a constant rate, the others all
have a rate function which is decreasing either with the number of failures
occurred so far (JM model) or the elapsed time (MO model) or both (L
model). Therefore, one can distinguish between these models by the
different structure of reliability growth each model represents. From this
viewpoint, the observed behaviour of the ML parameter estimate in this
model is merely reflecting the structure of reliability growth which is
present in the data. Therefore, if the likelihood of JM model is maximised

when N = » and B in MO is very big for a particular set of data, we can

certainly expect N and B in L model to take very large values when we

apply it to the same data.

The behaviour of the ML parameter estimate in LNHPP model is identical
to L, but in the case of LV and KL, though we believe it is also related to

certain siructure in the failure data, they are not as well understood.

Whatever the underlying cause of this behaviour in the MLE may be,
the prime concern here is to find an efficient way of obtaining the MLE of
these models. Since each individual likelihood function is far too
complicated for the purpose of obtaining conditions on data under which

the various parameters in a model attain their possible limits, we opted for

the same strategy as used in MO model, i.e. set upper bound on the model

parameters.

Gill and Murray (1976) have outlined a method, which is based on the
MNA, for solving minimisation problems subject to bounds on variables.

Because there are only 2 variables in our problems here, we have used a
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simpler approach which will not be applicable to problems with more than 2
variables. The following extra steps form a shell on the MNA and have to

be performed every iteration.

1. For each of the two variables check whether it is a fixed or free
variable. A fixed variable is one which hits the upper bound and has
a negative gradient component or one which hits the lower bound and

has a positive gradient component, otherwise it is a free variable.
2. If both variables are free, the search uses a usual MNA iteration.

3. If both variables are fixed or if one variable is fixed and the
absolute value of the gradient component corresponding to the free
variable is less than a pre-assigned small positive constant, tol, the
gsearch will terminate and the current point is the bounded minimum.

4. When one variable is fixed but the size of the gradient component
of the free variable is not smaller than tol, an accurate line search will

be performed in the direction of the free variable. If this line search

fails to locate a lower point then the algorithm cannot find a bounded
minimum which satisfies the termination condition and the search can

either be terminated or restart at another point in the feasible region.

Otherwise the search returns to step 1.

The above exira steps can be easily added to the MNA program. The

only alteration required within the basic MNA is in the setting of the upper

bound > in the steplength algorithm. X\ was chosen arbitrarily as 10® in
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the unconsirained situation. Now it will be set to the largest possible

step along the descent direction p(K) go that a bound is not crossed.

MODEL
L LNHPP LV KL

Model

parameters N,x,B H,x,B «,¥(j)=B,+iB; v(j) = —-l——,p
&g+
&y +op

Minimisation Xy=2/N-1  xy=2/U-i-€ Xy=4/B,+B—€ Xy=% - €

Variables &g +icy

xp=2/B€  xy=z/B€ Xp=2/B+1B,-€ x,=2v/B-€

Table 3.1. Relationship between the model parameters and the

minimisation variables x; and x,. i is the sample
size and € = 27t on a t-bit wordlength computer

Recall that the minimisation variables in each case are not necessarily

the model parameters. Table 3.1 serves as a reminder of the relationship

between the minimisation variables and the respective model parameters. In

our programs, upper bounds are set on xf and x8 instead of the model

parameters.

To find suitable upper bounds for xf and x§ is again not trivial. In

the case of LV and KL, the program will usually analyse the data without

much difficulty, we can set some big values for the bounds, and lower them

to more suitable values only if the MLE at different stages make excursions

to very large values.
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For L and LNHPP model, the bound on B can be set to the bound used

for B in MO model because of the limiting relationship between them.

The
other variable xf in these two models is invariant to acale. It has a
physical interpretation as the number of bugs s8till remaining in the

program, the upper bound of which can be set to a value judged to be too

big for any practical program, e.g. 10€.

In all cases, the scaling option is included so that we can control the

gize of the variables which are variant to scale, to be within the range

guitable for computation. Also included is the option of starting the

gearch at a pre-aassigned point if the previous MLE is judged to be too
close to the bound.

From our preliminary tests we also observed that very occasionally,
when MLE were behaving normally, i.e. not exceptionally big, the steplength
algorithm failed to locate a lower point, and because the current point did

not satisfy the termination conditions, the MNA failed as a result. But if

we perturb this point slightly, a converged solution can usually be found

very near to the point at which difficulty first arose. When we

investigate this in detail we find that the problems we are trying to solve

can be extremely unevenly scaled. Geometrically, this means the contours

of the two dimensional surface are highly elongated. When analytical

"Hessian G(x(k)) is available, the scaling of the problem will not affect the

performance of the modified Newton’s algorithm. But in our case, since

the Hessian is being approximated by forward differencing the gradient,

the approximation error will have an effect on the performance of the

algorithm. In one particular case we found the ratio of the gradient
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components to be 104, with the smaller element being less than the set

tolerance of 10-7, at the point where_the steplength algorithm failed. It is

clear that differencing quantities of such order of magnitudes can

introduce considerable error into the approximated G(x(l‘)). The effect of

the error in G(x(k)) can then cause the resulting p(k) not to point at the

minimum. Recall that in the steplength algorithm, a new point must be at

least a distance of tol away from any previously used points to avoid

artificial modes. Therefore the steplength algorithm can still fail even

though p(k) is a descent direction, if the situation is as depicted in Figure

3,2. In Figure 3.2, p represents the direction towards the minimum and

p'k) is the MNA search direction. When the contours are highly elongated

and the current point is situated as in Figure 3.2, the angle between the

two search directions, ©, does not even have to be big to cause the

steplength algorithm to fail.

k
P()

Figure 3.2.
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One possible solution is to use a more accurate é(x“‘)). We have tried

using central difference instead of forward difference. This method

requires twice as many gradient evaluations than the forward difference

method but the approximation is usually more reliable. However, if this

method were to be wused throughout the search, the extra gradient

evaluations are not justified because the difficully with the steplength

algorithm only arises infrequently. When it does occur, there is no

guarantee that we can overcome it just by using a more accurate estimate

of é(x(k)). In view of the above, we have adopted the following strategy

instead.

Whenever the steplength algorithm fails to locate a lower point, we

perform an accurate line search in the direction of the steepest deacent.

This direction is simply:

~g(x () 7pig(x (K|,

and is a guaranteed descent direction which can be obtained easily.

Another advantage of using this search direction is that when one gradient
component is significantly bigger than the other, as in the case we have

quoted above, the search will then be mainly in the variable with the

bigger gradient. If this search produces a lower point then we continue

with the steps in a usual iteration. Otherwise, we reject the critical point

and start the MNA search at a perturbed point in the vicinity. The

perturbation in the ith variable, is arbitrarily chosen to be:

- 10-3 .im(gi(x(k)))xi(k) for i = 1,2 (3.11.4)



- 60 -

where gi(x“‘)) and x,-“‘) is the ith component of the gradient and the
variable respectively. When the perturbed component lies outside its
bounds, the sign of the perturbation defined by (3.11.4) is changed. The
rejected point and its function value is stored so that if the search failed

later for another reason at a different point, the point with the lowest

function value will be returned. This strategy has proved to be effective

in the cases we have tested. A converged solution was found either in
the steepest descent search or roughly after 2 to 3 further iterations if a

new point in the vicinity had to be chosen.

12, MERICAL RESULT

The results are summarised in two main tables. Table 3.2 is for JM,

GO and MO models which used the univariate search algorithm. Table 3.4 is

for L, LNHPP, LV and KL models. All these programs were implemented on
an IBM PC-AT and double precision variables with 64-bit wordlength were

used in all the computations.

We have not timed the runs because it would be machine dependent.

Instead we will report fi, which is the average number of function

evaluations per stage in the case of Table 3.2 or the average effort per
stage for Table 3.4, for each of the data sets. Effort is defined here as

either a function or a gradient evaluation because they involve roughly the

_same amount of computation.

For the models in Table 3.2, the option of setting upper bound on the
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System 1 System 2 System 3 System 4 System 6 System SS3 BAe

(101) (41) (28) (40) (53) (188)  (127)

M xp 108 10® 108 108 108 10® 108
n 11.4 11.8 13.6 12.4 13.2 12.8 12.8

(€=T=1078)

GO  xp 108 10@ 108 108 108 108 108
f 10.7 11.0 14.0 11.4 14.2 11.8 12.7

(€=T=107%)

M X 107 107 107 107 107 1010% 107
Xg 10€ 108 108 108 108 10° 108
s 10-3 10-3 10-3 10~4 10-2 10-¢ 104
f 10.5 11.8 12.8 11.3 12.7 12.6 11.2

(€=T=10"7)

Table 3.2. Summary of the values used for the parameters in the
minimisation algorithm

(xg = upper bound of x? where x is the minimisation variable.
Xg = upper bound on the square of the starting value of x,
s = scale factor applied to data,

€ = relative error and
T = absolute error used in defining
tol(x) = €|x|+T for use in search termination)
and the associated average number of function evaluations per stage h.
The number below the data name is the total number of stages.
If the upper bound was reached during any stage, it is followed by a *

-



minimisation variable is only effective in MO model. Out of the 7 data
gets, this optlion was required only for System SS3. Table 3.3 shows how

B fluctuates in this case over a range of stages. The upper bound on B

in this case was set to be 101°,

Stage i B x 107
128 1.9401
129 6.8663
130 100.0000
131 100.0000
132 5.3996
133 100.0000
137 100.0000
138 3.7539
139 3.8847
140 8.7773

141 100.0000

.
.

Table 3.3. MLE of B in MO mode]l for System SS3 data.
Upper bound on B is 1019,
On the basis of the results in Table 3.2, it is clear that the method we

propose for obtaining the MLE of the parameters in these 3 models is very

efficient indeed. ¥ The highest average number of function evaluations per

stage is 14.

In the case of those models in Table 3.4, it is also clear that the

modified Newton’s method is efficient in solving the parameter estimation
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System 1 System 2 System 3 System 4 System 6 System SS3 BAe
(101) (41) (28) (40) (53) (188) (127)
L xuy 107*
Bly o7 107* 107 107% 107% 107%
szj 1030%
Xgyl 108
106 108 106 106 10€ 10€
Xg2! 10°
s 1073 10-3 10~2 10—2 10—¢ 10°S 10-2?
f 59.9 47.4 84.5 149.8 236.7 63.9 150.9
107*
LNHPP xp;1 107¥ 107 % 107%* 107% 107% 107%
szj 1010*
Xg1l 10
} 108 108 1068 10¢ 10¢ 10°
Xg2) 10°
s 1073 1073 10-2 102 10-% 10-¢ 1073
n 55.4 59.8 563.0 90.6 61.7 53.2 109.3
LV xpg) 106
} 108 108 10 10 109 108
xp2) 109%
Xg1l 108
} 107 107 107 107 10° 107
s 10-3 104 10-3 10-2 10-2 10-¢ 104
fi 26.5 74.3 21.8 21.1 18.4 16.2 18.0
KL xp31)
107% 107% 10 107% 108 10? 10°
szl
Xg1l
} 10€ 108 10?7 10 107 10@ 107
x.zj
s 10-3 1073 10°3 103 102 10-¢ 10~¢
] 59.0 26.8 22.0 41.2 19.4 22.8 19.4
Table 3.4 .Summary of the value used for the parameters in the minimisation algorithm
(xg = upper bound on x2 where x; is the ith component of the minimisation variable,
Xg = upper bound on the square of the starting value of x;,
s = scale factor applied to data,
€=

T = 2.5x10719 for celculating tol(x) in the.lteplength algorithe and the

minimisation is said to have converged at x if lig(x)ll2 € 1077 and the
associated average effort per stage .

If at least one of the bounds was reached at any stage, it is followed by a *.
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problem in LV and KL model, but less so in the case of L and LNHPP.

However, the algorithm is not the cause of this worse performance.

The main reason for the large amount of effort involved in L and

LNHPP is because the program was constructed to continue searching until

it finds a point which converges (satisfies the termination condition) or

terminates if the maximum effort allowed, which is 300, is exhausted.

Should the algorithm fail before the maximum effort allowed is exceeded, the

search will restart in another point in the vicinity. Therefore the final

point is either a converged solution or the best point yet within the total

effort spent. Thus, when there is a large proportion of non-converging

stages in a data set, the average number of effort will tend to be high.
Had a lower figure been used as the maximum allowed, the average figures

in Table 3.4 will come down in the case of L and LNHPP. However, the

risk of using a low value for the maximum allowed is that the accuracy of

the solution to more difficult problems could be affected.

Another reason is the large fluctuation which is present in the MLE of

the parameters in these models, noticeably in L. The following examples

are chosen to illustrate the extent of fluctuation exhibited by the MLE in

each model. The first is L on System 1 data over stages 81 to 103, given

in Table 3.5.

The column of n is the effort required for that stage. When the

algorithm did not converge, it is followed by a %. The upper bound on

(N-i) and B were sel to be 107, It is spectacular how the parameter

estimates fluctuate from stage to stage. By this behaviour, L model was
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System 1(L)
Stage i N « B x 104 n
81 1x107 0.4529x10~S 0.4218 44
82 1x107 0.4639x10~8 0.4386 24
83 0.1058x107 0.3996x10™ 4 0.3769 16
84 0.4504x10”7 0.9141x10-S 0.3605 26
85 95 0.6569x10° 0.7665x10 302x%
86 95 0.3883x10° 0.4514x10° 302%
87 96 0.6054x103 0.7216x102 304%
88 97 0.2683x102 0.3262x10° 304%
89 285547 0.1394x10~3 0.3409 212
90 679705 0.5842x10~4 0.3396 22
9] 698491 0.5711x10~4 0.3423 18
92 108 0.3435x10% 0.4425x101 136
93 98 0.8095x103 0.9993x102 302%
94 99 0.1631x103 0.2061x102 302x
95 105 0.4552x10% 0.5734x10} 62
96 125 0.1236x10? 0.1691x101 38
97 166 0.5170 0.8586 36
98 145 0.7345 1.1064 26
99 168 0.5050 0.8495 28
100 167 0.5124 0.8586 52
101 322 0.1655 0.4845 40
102 0.5572x107 0.6949x10~S 0.3261 128
103 1x107 0.3967x10~8 0.3408 40
Table 3.5.

MLE of the unknown parameters in L for System 1 data
over a selected range.
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switched between MO (when N ~ 107), JM (when B~ 107) and itself. When

this happens a larger effort is required because the starting value is not a

good guess of the minimum anymore.

Over the same range, the MLE of LNHPP does not behave as violently

as in the case of L, it only does the following switches as shown in Table

306'

System 1 (LNHPP)

Stage i u « Bx10~4 n
90 1x107 0.3970x10-S 0.3395 52
9] 1x107 0.3989x10~% 0.3422 36
92 1x107 0.3783x10"% 0.3122 40
93 0.7633x10% 0.4682x10~3 0.2823 78
94 0.2063x10° 0.3017 0.5659 130
95 0.1615sx104 0.2330x10"1 0.3122 84
96 1x107 0.3661x10"% 0.2823 106
97 1x107 0.3741x10°% 0.5659 44

Table 3.6. MLE of the unknown parameters in LNHPP for System 1 data
over a selected range.

However, it does not mean that it is incapable of behaving like L. Table

3.7 is a range of stages when LNHPP was applied to BAe data.

The upper bound option was only used for LV in analysing System 2

data. Table 3.8 shows the sudden change in the magnitude of the MLE

which took place between stages 42 and 43.
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BAe‘LNHPP)
Stage i u « Bx10~4 n
100 1x107 0.3381x10~4 0.1342x10! 130
101 1x107 0.1566x10 4 0.5522 44
102 0.9492x107 0.1467x104 0.4782 70
103 1x107 0.1403x10~ 4 0.4824 46
104 0.1777x10° 0.1056x10~4 0.6521x103 304x%
105 0.1877x103 0.1506x104 1x10? 124
120 0.1894x10% 0.1034x104 0.9681x103 302%
121 0.2078x10° 0.9840x10% 0.7330x102 110
122 1x107 0.1318x10"4 0.4477 290
Table 3.7. MLE of the unknown parameters in LNHPP for BAe data
over a selected range.
System 2 (LV)
Stage 1 & b 1 Bz n
40 0.6080x104 0.7241x10¢€ 0.2759x10¢ 96
41 0.5933x104 0.7406x10¢ 0.2594x10€ 64
42 0.6138x104 0.7192x10€ 0.2808x10® 54
43 0.2137x102 0.1941x10¢ 0.1130x104 62
44 0.1417x102 0.1441x104 0.6975x10° 54
45 0.1032x102  0.1182x10* 0.4693x104 48
Table 3.8. MLE of the unknown parameters in LV for System 2 data

over a selected range.



Prior to stage 43, the ¥(i) values were all on the upper bound.
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The

change in the parameter estimate for KL also occurred between stages 42

and 43. This is shown in Table 3.9.

System 2 (KL)

Stage i &1 &2 B n
40 0.1207x107* 0.4421x10°S 1x107 26
41 0.2833x1072 0.9331x10"4 0.4538x10% 36
42 0.1189x10"* 0.4462x10°S 1x107 80
43 0.1398x10"! 0.5485x1072 0.7967x104 40
44 0.1841x10"! 0.6125x10"2 0.6629x104 20
45 0.2434x10"! 0.6797x10°2 0.5512x104 20

Table 3.9. MLE of the unknown parameters in KL for System 2 data
over a selected range.

The switching behaviour of the ML parameter estimate in all these

models is because at each stage, the inference procedure selects a

structure of reliability growth, permitted by the model being used, to best

fit the data. On observing the next inter-failure time, the parameters

have to be re-estimated on the basis of all the data now available.

Certain asepcts of the data might have changed as a result of including

this extra data point. For example, the enlarged data set might now fail

the test for finite N in JM, in which case N will jump from some finite

value to » from one stage to the next. Thus, this fluctuating behaviour in

the ML parameter estimates is in response to the change in certain

characteristic of the data from one stage to another.
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We have compared the estimates obtained from our programs with those
obtained using the programs coded by Abdel-Ghaly for his thesis (1986).

His programs used the Nelder-Mead Simplex search (Nelder and Mead,1965)

for the ML parameter estimation. This non-gradient minimisation is known

to be robust and is easy to implement but is extremely inefficient. We

found, however, that our programs succeeded in locating estimates with

lower objective function wvalue which were missed by the other programs.

In fact in the estimaies obtained from the Nelder-Mead programs, the

switching behaviour was not detected and the algorithms simply terminated

incorrectly.

As for efficiency, it is difficult to compare between the bi-variate

minimisation models because we have used a minimisation method which

requires gradient, but those in Table 3.2 are undoubtedly better.

However, Abdel-Ghaly’s programs were not constructed with the intention

that they should be efficient, 80 it would not be a fair basis for

comparison. Nonetheless, we can safely conclude that our methods are

efficient when the corresponding problem is relatively easy to solve and

reliable when it is difficult,
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CHAPTER 4

MEASUREMENT AND ANALYSIS OF THE PREDICTIVE QUALITY

OF ORDINARY AND ADAPTIVE PREDICTION SYSTEMS

4.1. INTRODUCTION

In this Chapter we shall first look at ways of measuring the success of

a prediction system in performing its task of prediction. The idea behind

most of these predictive quality measurement procedures is to compare the

actual predictions made in the past with the actual outcomes when they

become available later. The current techniques are by no means complete,

but jointly they can provide us with a lot of useful information on the past

performance of a prediction system when used on a particular data set.

With this information at hand, it may help us to decide whether or not

to trust the future predictions on the same program from the prediction

system in question.

When more than one system is being used

simultaneously on a single data set, it would be even more important to be

able to identify the better ones. After all, how can we justify using one

system instead of another if we cannot show that there are advantages in

doing so?

The methods that we shall present here are only a subset of those

reported in Abdel-Ghaly et al (1986), but they are sufficiently informative
for our current purposes.
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The idea of adapting future predictions on the basis of past prediction
error in software reliability context is due to Keiller and Littlewood (1984).
They have reported encouraging results in their paper on the basis of two

predictive quality measurement procedures only. When we analyse the

results using a new measurement tool, the prequential likelihood, we

obtained conflicting conclusions. After further investigations, we have

identified the cause and the details are given in the following.

4.2. MEASURING PREDICTIVE QUALITY

So far we have been dealing with the estimation of the unknown

parameters. The nexi step is to incorporate the result from the inference

into the prediction phase.

For a Bayesian system, the predictive distribution for T;,, will be its
posterior distribution conditional on the data tg,..t. For a maximum
likelihood system, the ML estimate of the unknown parameters based on
data t4)...t; will be substituted into the distribution of T;,, as if they were

the true parameters. The cumulative distribution function (cdf) of Tj4, is:

Fi+s (t) = Pr(Tj4q < t] (4.2.1)

The estimate of which, based on ty,t;,..,tj, i8 our predictive distribution

Fisalt).



Once we have obtained f:‘i+1(t), we can calculate quantities which are of
interest to reliability measurement. The common statistics for current
reliability are the mean or median time to the next failure, the rate of
occurrence of failures (ROCOF), etc. Naturally, it is important to know
whether these predictions are in good accord with reality. Therefore, our
next task is to examine the closeness of the predictions to reality. As
these statistics are derived from f‘i“(t), a good estimate of the Iatter

which is close to the true Fj;,(t) will enable us to have good related

estimates of any kind. Hence we shall focus our attention on examining

the closeness of I:‘i.u(t) and Fj,,(t).

The obvious difficulty in analysing the closeness of f-‘iﬂ(t) and Fjq4(t),
which is also shared by other statistics we have mentioned, arises from our
never knowing what the truth is, even at a later stage. In fact, all we
will ever observe is the single realisation of T;,; when the program next

fails, and we must base all our analysis of the predictive capability of a

prediction system on these pairs {i-‘iﬂ(t,), tiss )

Consider the transformations:

-~

Yivi-ig Fiea(tiey) for i )i, (4.2.2)
ﬁhich is the estimated cdf at the actual observed failure time, and i is the
initial stage at which we begin reliability prediction. If each i“iﬂ(‘-) is
identical to the corresponding Fj;,(t) generating the observation ti;,, then

according to formal theory, the u’s would be realisations of independent

and identically distributed (iid) Uniform (0,1) (U(0,1)) random variables



(Rosenblatt, 1952, and Dawid 1984a). Consequently, our task of examining
the closeness of i‘i+1(t) and Fj,,(t) can be reduced to one of examining
whether the sequence of u’s is behaving like a random sample from U(0,1).

If it does not, it must cast doubts on the suitability of the prediction

system in gquestion for the given data.

Amongst many possible ways of examining the uniformity of a sequence
of (0,1) random variables, here we will use the following two probability

plotting procedures.

4.2.1. The u-plot Procedure

——

Assume that we have n u values generated at n successive stages.
Each of these u’s is obtained via a transformation as defined by (4.2.2).
1f they are really observations from U(0,1) random variables, their sample
cdf should be close to the 45° line. The sample cdf here is the step
function which is defined on (0,1) and increases by ‘/n at each of the n

order statistics of the u's.

The two-sided Kolmogorov-Smirnov (KS) distance is used to signify
departure of the sample cdf from the line of unit slope. This distance is
simply the greatest vertical distance between the sample cdf and the 456°

line. Significance levels for the statistic can be found in Kendall and

Stuart (1977) or Miller (1956).

Intuitively, this procedure aims at examining whether there is any

biasedness in the u's. If the KS distance is significant, it would suggest
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that the u’s are biased and would not have come from the wuniform

distribution. This would in turn imply the unsuitability of the underlying

prediction system to be used for the particular data set. It is important

to bear in mind that we are not merely trying to establish the success or

failure of the model concerned, but rather of the prediction system as a

whole.

However, the order in which the u’s are realised will be lost in the

process of constructing the sample cdf. Thus we can, for example, have

a situation where the first half of the unordered u’s are biased towards

low values and the latter half is reversely biased, and when they are

combined together they look perfectly uniform. In this situation, the

u-plot will not be able to detect the presence of such trend in the u’s.

The y-plot procedure, however, can prevent this kind of behaviour in the

u’s going undetected.

4.2.2. The y-plot Procedure

The foundation of this procedure is that if the u’s are indeed the

realisations of iid U(0,1) random variables, the transformations:

x; = -log(l - u;) i=1,...,n (4.2.2.1)

will then be realisations of a sequence of n iid unit exponentials.

When
these x's are normalised by defining:
i
rgt Xr .
yi = n 1=1""'n (4020202)
E x,
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the sequence of y's will be the order statistics of the realisations of n iid

U(0,1) random variables.

If trend is present in the y’s, the x’s will no longer be realisations of

n iid unit exponentials, thus resulting in the y’s being non-uniform (Cox

and Lewis, 1966).

The y-plot procedure compares the sample cdf of the y's with the line

of unit slope. The KS distance is again used to signify departure from

the 45° line.

4.2.3. The Prequential Likelihood

Miller (1983) in private communication has pointed out that:

"...a good u-plot reflects unbiasedness or being well-calibrated and a

good y-plot reflects a good fit of trend. But there is a third aspect

to quality of predictions: how noisy is the predictor? Two different
predictors could both have very good u-plots and y-plots but differ

significantly in quality because of noise".
To illustrate this point further, he constructed the following example:

He assumed that the unconditional distribution of T;,, is exponential

with rate \j45. Furthermore, this rate is estimated as:

Rify =2
T (4.2.3.1)
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Therefore, the predictive cdf is:

. ‘ii+ 1t
F1+1(t) =]1-~-e
2t
=1-e timt*h (4.2.3.2)
It can be shown that:
Prifie (Tie) < u) = 19500 108()-4] (4.2.3.3)

for u€(0,1), which is the expected u-plot of this prediction system if the

underlying assumptions of the predictor are true for the data.

As it is
not uniform, we can adapt using (4.2.3.3) and the adaptor is:
a log(1-u){log(1l-u)-4]

This means the adapted predictive cdf i“‘iﬁ(t) will have f}iﬂ and i’iﬂ as
defined in (4.2.3.4) and (4.2.3.2) respectively, and can be simplified into:

t{t+2(t 4+t . )]
i‘*i+1(t) - b § 1-1

[ti-g+ti+t12 for t > 0 (4.2.3.5)

It can be shown that:

PriF¥i4,(Ti4y) €< ul = u

which means the u-plot should be very good. Note that in the above the

original predictor is being adapted. Details on adaptive modelling are

given in the next Section.

In practical situations, even though the underlying assumptions of this

predictor are unrealistic, we can still expect the u-plot to be good because
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of the way it is constructed; the trend is estimated using very local

information, therefore the y-plot should also be good. But it is fairly

obvious that there is considerable noise in this prediction system -

successive predictors can fluctuate a great deal.

Table 4.1. shows the u- and y- plot distances and their corresponding

significance level for the various prediction systems, and the predictor by

Miller, when applied to System 1 data. The significance level of the

distances is denoted by one of the letters from A to E. The range of

values they represent are as follows:

A - above 20% 1
B - between 20X - 10% :
C - between 10% -~ 5% : (4.2.3.6)
D - between 5% - 1% :
E - below 1% j|

Therefore, in the case of JM model, the u-plot is significant at 1%, GO is

significant at 5% but not at 1X and MO is not significant even at 20%.

As we can see from Table 4.1, MO, LNHPP and the Miller prediction

system have the best u-plot and y-plot distances. The noise which is

present in the last prediction system has gone undetected. Therefore, we

must look for some means of measuring the wvariability or noise of a

prediction system.
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u-plot y-plot -log PL
distance distance
JM .1874E .1202C 770.253
BJM .1702E .1161B 770.694
GO .15625D .1245C 768.568
MO .0805A .0642A 761.393
DU .1590D .0931A 765.299
L . 10898 .0732A 762.975
LNHPP .0805A .0643A 761.439
LV . 1437D .1099B 764.868
KL .1378D .1156B 765.066
Miller .0757A .0686A 790.802
Table 4.1.

u-plot and y-plot KS distances and log prequential
likelihood of the respective prediction systems for Musa’s
System 1 data. Total number of predictions is 101 in all cases

In a series of important papers Dawid (1982, 1984a, 1984b) dealt with

various theoretical issues concerning the validity of forecasting systems.

In particular, he introduced the idea of prequential likelihood (PL) which
can be used to investigate the relative plausibility of the predictions

emanating from two or more different systems.

The definition of PL is as follows. The predictive probability density

function (pdf) of the random variable T;,, is:

Tin(t) = %; Fivs(t) (4.2.3.7)

-After a sequence of n predictions beginning at stage i,, the prequential
likelihood is:

ign
Py =, M, $itp) (4.2.3.8)
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When there are two such systems A and B, a comparison between them can

be made via their prequential likelihood ratio:

igtn ?iA(ti)
PIR, =. .M ~——— 4.2.3.9
Rn 1-10-!»1 ?ln(tl) ( )

Dawid shows that if PLR,, -+ ®» as n + =, prediction system B is discredited

in favour of A, and when PLR, » 0 as n -+ &, prediction system A is

discredited in favour of B.

To get an intuitive feel for the behaviour of the prequential likelihood,

we consider the following example. Let us assume, for the sake of

simplicity, that we are trying to predict a sequence of iid random

variables, i.e. Fi;4(t) = F(t) and fj;,(t) = f() Y i.  The extension to our
non-stationary case is trivial.

Figure 4.1 depicts a sequence of predictive densities and the true

density. The predictive densities are all biased towards the left relative

to the true density. Observations which will tend to fall within the body

of the true distribution, will tend to lie in the right hand tail of the

predictive densities. Thus the prequential likelihood will tend to be small.

~ -~ ~
fi0, £ £

Figure 4.1
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Another situation, depicted in Figure 4.2, is when the predictive

densities exhibit a lot of variation, i.e. they are very noisy, but on average

they are roughly unbiased. Here again the observations will tend to fall

in the body of the true distribution which corresponds to the taila of the

predictive densities and the prequential likelihood will again tend to be

small. Thus the prequential likelihood can in principle detect predictors

which are either too noisy or biased or both.

Figure 4.2

Returning to the example of Miller’'s prediction system, the -log of the

prequential likelihood of the respective prediction aystems is given in the

last column of Table 4.1. While the PL confirms the superiority of MO and

LNHPP for this data, it also points out the shortcoming in the Miller

predictor. The PLR of MO against Miller is ¢2®, Even BJM, which has the
lowest PL, against Miller is €20, Thus in all cases, it is highly probable

that the Miller system is discredited.
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Another situation which can occur in the context of software reliability
is that, while the predictors are smooth, the true distributions fluctuate for
different values of i due, for example, to bad fixes. In thie case the
observations will tend to fall in the body of the noisy yet true

distributione which correspond to the taile of the predictors, and again we

can expect the prequential likelihood to detect it.

Although prequential likelihood is a global measure of predictive
quality, it does not mean we can rely on the PL alone because given the
PL of a set of predictions is worse than another, we cannot separate out
which of bias, noise or wrong trend is responsible for this worse PL.

With the u-plot and y-plot procedures, we can gain insight into what is

objectively wrong with these predictions.

If two Bayesian systems are being compared, the PLR can be the
posterior odds_ratio of one asystem against the other (Abdel-Ghaly et al,
1986). Although we are not always dealing with Bayesian systems, odds
ratio seems to be a useful interpretation of the PLR, and we can always

bear this informal interpretation in mind.

In practical situations we would not know the location of the true
distributions. Therefore, when we have more than one sequence of
predictors, we can take the sequence with the highest prequential
likelihood as being the closest to the truth. Other predictive distributions

which are significantly different can then be judged as being too noisy or

too smooih or biased.
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402'40 Medinn Plots

For the purpose of comparing the location of different predictive
distributions and their respective variability over different stages, it is
informative to plot the predicled medians againat stage i for each

prediction system. The predicted median ;ni“ is the t wvalue which

corresponds to the 50% point in the predictive cdf, i.e.

Fi+s(mjey) = 0.5 (4.2.4.1)

4.2.5. Summary

To summarise, we shall use the u-plot procedure to check the

unbiasedness of the u's and the y-plot procedure to check if they are

trend free. The prequential likelihood and prequential likelihood ratio

shall be used to compare globally the relative plausibility of different

prediction systems. The predicted medians shall be plotted to provide

information on the variability or noise of the predictive distributions. This

will be the basis we adopt for the assessment of predictive quality of

different prediction systems.

4.3. THE u-PLOT AND ADAPTIVE MODELLING

Apart from detecting the existence of bias in the u's, the u-plot has

one further useful feature. Suppose we have a prediction system which is

consistently optimistic relative to reality. The actual observations will
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tend to be smaller than expected according to this prediction system.
Consequently, the sequence of u’s which results from a number of such

predictions will have a high proportion of small u values. The .lample cdf

of such a set of u’s will lie predominantly above the 45° line.

In the opposite situation when the system is pessimistic, the set of u’s

will have a high proportion of big u values. The u-plot of these u’'s will

lie predominantly below the 45° line.

Applying this observation in reverse, we can deduce whether a

prediction system is pessimistic or optimistic for a particular data set by

inspecting whether the u-plot is predominantly below or above the line of

unit slope. This kind of bias, i.e. simple optimism or pessimism, is only

used as an example and the u-plot could pick up other consistent

departures from reality.

Keiller and Littlewood (1984) utilised this idea further and constructed

a general adaptive procedure which allows current predictions to be

improved in the light of past predictive behaviour of the system. Their

method aims at improving the future predictions of a prediction system

which has a good y-plot but poor u-plot. In other words, the method

should work best when we are reasonably confident that the trend
(reliability growth) in the data is being captured by the system, but there

- is ®till considerable biasedness.

The rationale of this adaptive approach is as follows. In theory, if
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one knows the true cdf Fj,,(t), one can always express this as a function

of the estimated predictive cdf, i.e.:

F1+1(t) = Gl‘f’l(i‘l"‘l(t)) (4-3.1)

The role of G;;; can be viewed as correcting the estimated cdf i“iﬁ (t), 1t

f‘i“(t) iz indeed the true cdf, then G;,; would simply be the line of unit

slope.

It is conceivable that the estimated cdf is wrong only in being biased,

in this case Gj;q will recalibrate the predictive cdf. As we have just

established that the u-plot contains information on the nature of biasedness

which is present in a prediction system, this information could then be

used to recalibrate future prediction by the same system on the assumption

that this bias is expected to persist. To insiat on having a good y-plot

aims to ensure that any non-uniformity in the u-plot is only due to

biasedness and not wrong trend.

F¥ 540 () = Gi4q(Fiaa (V) (4.3.2)

where éin is the estimated calibration curve for stage i based on the u's

obtained from past predictions prior to the present stage. This is

repeated with a new G being constiructed at each stage. Note that this

adaptive prediction method forms a genuine prediction system because it
only uses past data to predict.
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Keiller and Littlewood (1984) suggested the following two ways of

constructing the é functions.

Method 1. Here G is essentially the u-plot of the u’s obtained

prior to the current stage. In order that this function be continuous

and the adpated predictions are unique, the vertical increment is

!/ (n+1) instead of 1/, at each of the n u values, and G is the function

which interpolates this modified u-plot. In other words, G is the

joined up sample cdf of the u’s with step height /(p44)-

Method 2. The G function here is constructed in the same way as

in Method 1, but the u’s are calculated using the most recently

estimated model parameters. Therefore, at stage i of a ML system, the

first step is to estimate the model parameters using data tg,..t.

These parameters are then substituted into the cdf’s of the past stages

to recalculate the u’s. In other words, the u's are being retrodicted.

G will then be consiructed as in Method 1 with these new u’s.

The authors reported encouraging results on the basis of the KS

distances of the u-plot and y-plot when these two methods were applied to

a selection of prediction systems and real data sets. Another feature in

their results is that the second method of adapting is not performing as

well as the first method.

This is hardly surprising because the G function obtained by the

second method does not contain the actual predictive error which the

system has made in the past. In fact, none of the u's used for the
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estimation of G is genuinely predictive because all these u’s were

constructed using data which at least partly would not be available if they

were in a predictive position. For example, the parameters in uj (3> 0)

were estimated using data tis..,t

i 45 which if it were genuinely predictive
[o]

it could only have used data ti"'°tio+j-1'

One might be inclined to think that the G obtained via Method 2 should

be superior because the parameters are estimated on the basis of more

data. However, this is not necessarily the case, at least for some of the

models, because the behaviour of their ML parameter esilimates are not

known. With those models which specify a finite number of failures, the

usual asymptotic properties of MLE will not apply because of the existence

of a finite ceiling on the total population. Finite sample properties of

these model parameter estimates are invariably difficult to obtain even for

the simplest model. Hence we shall concentrate on the application of

Method 1 only.

4.4. THE ANALYSIS OF PREDICTIVE QUALITY OF ADAPTIVE
PREDICTION SYSTEMS

In the previous section we have discussed how to construct an

adaptive predictor. For reasons given there, we will only consider

adapting with G functions constructed using Method 1. Since éiﬂ is

constructed on the basis of past data ty,...,tj only, it is therefore a genuine

prediction system. This means we can assess the performance of a

sequence of adapled predictions using the techniques we have discussed in

gsection 4.2.
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Keiller and Littlewood (1984) have reported results on the basis of the
u-plot and y-plot distances only. We shall present the results of our
wider choice of prediction systems and an exira data set. Table 4.2
summarises the total number of data points, the stage at which analysis of
predictive quality starts (iy), the number of u’s in the analysis of
predictive performance (n) and the number of u’s in the first adaptor

éi 4.1*(“0)' Therefore, for each of the data sets, the parameter estimation
)

begins at stage (ig-ng) and actual predictions by the adaptive systems only

start at stage ig,

For the purpose of analysing the predictive quality of an adaptive

t 1)

system, we use the u- and y-plot procedures on the set of u*’s defined

by:
u¥. = F¥ (t ) J=1,.0.,m (4.4.1)

J 1°+j i°+j

The prequential likelihood contribution from stage i » i, which is the

adapted predictive pdf evaluated at the observed failure time tj,,, is:

-~ d ~ T
¥4 (tivg) = g i+1(Fi+1(t))'t=ti“
= gier(u o OFiea(tieg) for i=ig,...,ig*n"1
i-ig+t (4.4.2)

where & is the derivative of G. Note the PL for stage i is the product of
the raw PL and the gradient of G at the value of u defined by the raw

prediction system for stage i. The PL after n predictions will simply be:

igtn

£%.(t.: 2.
j=ifes Ta(ti) (4.4.3)

with each of the f%'s as defined by (4.4.2).
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DATA Total no. Stage at Total no. Number of u’s
of failures which of in the first
analysis predictions adaptor
starts (ig) (n) Gj 41(ng)
o
System 1 136 50 86 15
System 2 54 23 31 10
System 3 38 20 18 10
System 4 53 23 30 10
System 6 73 35 38 15
System SS3 278 105 173 15
BAe 207 95 112 15

Table 4.2. Summary of the total number of failures, ig,
n and number of u's in the first adaptor.
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If we want to examine the improvement over the raw predictor brought
about by this adaptive procedure, we can calculate the PLR of the adapted

against raw predictions which is:

igtn FX. (ti)
n 2

i=igrs £5(t5)

igtn = F.o(t.
:i:io-u %i(ti) =i=¥o+1 gi(“i—io) (4.4.4)

which is simply the product of the gradient of the successive G functions

al the corresponding u value given rise by the raw system.

The predicted median of the adapted distribution is obtained by

solving:
F¥;(m*{) = 0.5 i=igHs,...ign (4.4.5)

which presents no difficulties.

Table 4.3 contains the u- and y-plot KS distances for the 9 prediction
sysiems before and after ¥ adapting using Method 1. The corresponding
level of significance is given by (4.2.3.6). These resullts are not identical
to those of Keiller and Littlewood because the ranges over which
predictions were made in each data set were different. There is clear
evidence that the adapling procedure does improve the results from the
raw predictlors, in some cases quite considerably, for example, System 6 and
SS3 data. Only on one occasion does the u*-plot have a marginally worse
KS distance, but this is sﬁll not significant at 10%. Notle also that the
y-distance in this particular case is very poor indeed, which suggesis that
the trend in the data is not being captured in the first place. Thus the

u-ploi, hence é, will contain error information which is not only due to

biasedness alone.
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respective prediction systems before and after ¥ adapting
(joined-up function adaptor).
See (4.2.3.6) for the corresponding significance level.

DATA JM BIM GO MO DU L LNHPP Lv KL
(n) .
u .2049E .1871E .1773E .0982A .1567D .1123A .0982A .1504D .1457D
Sys.1 u* .1188B .1226B .1341C .0499A .0752A .0499A .049%A .0B94A .0S01A
(86) y .1156B .1148B .1190B .0795A .1029A .0904A .0793A .1148B .1173B
y¥ .10184 .1016A .1076A .0775A .0808A .0893A .0768A .0901A .0916A
u .2604D .2325C .2181C .1518A .2317C .1554A .151BA .2388D .2219C
Sys.2 u¥ .1637A .1666A .1736A .1423A .1337A .1401A .1617A .1332A .1115A
(31) y .1858A .1853A .1989B .1898B .1620A .1772A .1743A .1325A .1451A
y¥ .1500A .1511A .1581A .1909B .1812A .2045B .1476A .1747A .1880RB
u .7038E .3354D .2705B .1B77A .3556D .2556B .1531A .4260E .3908E
Sys.3 wu¥ .3294D .2696B .2730B .1121A .1333A .1590A .1059A .2070A .2009A
(18) y .68B08E .3900E .4445E .2234A .2012A .3075C .2430A .1112A .1135A
v¥ .3436D .3193D .2841C .1874A .2113A .1839A .2006A .1576A .1303A
u .1711A .2185C .1328A .1143A .1415A .1712A .1211A .1955B .2014B
Sys.4 u¥ .1250A .1854A .1627A .1805A .1975B .1253A .1805A .2156B .1994B
(30) y .4647E .1399A .1989B .3418BE .4887E .2709D .2695D .2420D .2010B
v¥ .2110B .1535A .1440A .2360C .4567E .1838A .2002B .1754A .1495A
u .2924E .3010FE .2812E .2B4A5E .2856E .2B53E .2B45E .1658A .1731B
Sys.6 u¥ .0821A .0803A .0786A .0639A .0846A .0923A .1030A .1248A .0925A
(38) y .3969E .3486E .3B70E .4017E .40l10E .3978BE .4026E .2020C .2069C
y¥ .2373D .2405D .2421D .2573D .2366D .2404D .2501D .2066C .2160D
u .2717E .2713E .2705E .2645E .2596E .2717E .2704E .2382F .2372F
583 u¥ .0982C .1042D .0978C .1057D .1122D .0987C .0997C .0864B .1043D
(173) y J1273E .1379E .1263E .1435E .1835E .1291E .1300E .0346A .0500A
y¥ .0577A .0664A .0579A .0631A .0968C .0561A .0558A .0415A .0596A
u .0775A .0726A .0697A .0713A .1270D .0763A .0655A .103%B .1151C
BAe u¥ .0623A4 .0626A .0613A .0876A .1126B .0617A .0636A .1016B .0931A
(112) y .0890A .0787A .0906A .0793A .0744A .0873A .0790A .0673A .0687A
y¥ .0753A .0689A .0763A .0711A .0682A .0743A .0728A .0765A .0B18A
Table 4.3. Kolmogorov-Smirnov distance of the u-plot and y-plot of the
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A surprising feature is the improvement in the y-plot KS distances.
In most cases there is marginal improvement in the y-plot after adapting.
Only two adapted predictors have marginally poorer y*-plot on System 2

data. The most significant improvement is on System SS3 data.

Table 4.4 gives the -log prequential likelihood of the raw systems for
each Bet of data. In the cases of JM and L model on System 3 and 4
data, the - « log prequential likelihood is due to the occurrence of the
event that at some stage i, N equals the number of failures seen, i.
According to these two models, it means that the program should be free of
any faults. But it promptly failed after executing for a period of ti4,.
Therefore, according to these prediction systems an impossible event which
has zero measure has occurred, thus the prequential likelihood immediately

goes to zero.

The prequential likelihood is unforgiving in reacting to this kind of
behaviour in a prediction system, because once the PL is gero it will
remain at zero no matter how good or bad the other predictions are. Such
a system is simply totally rejected. After all, it is not desirable to use a
prediction system which assigns zero probability to an event which
promptly occurs at a later stage. By having a zero PL, not only are we
reminded of the occurrence of this event in the past, we are also

constantly warned that this might happen again in the future.

In fact, whenever N = i, where i is the number of failures occurred,

the predictive cdf in these predictive systems will be:

f‘i.n(t) = { 2 Ot(::t'( ® (4.4.6)



DATA JM BIM GO MO DU L LNHPP LV KL
(n)

Sys.1
(86) 668.944 669.147 667.267 660.061 663.715 661.664 660.107 663.348 663.212

Sys.2
(31) 286.183 285.546 284.313 279.918 283.425 282.010 280.532 281.882 282.244

Sys.3
(18) o 173.779 172.848 164.140 169.089 o 165.365 170.955 169,367

Sys.4
(30) ® 233.691 239.356 242.512 253.617 L) 241.838 233.390 232.233

Sys.b
(38) 210.007 204.807 208.211 207.407 203.618 209.659 207.587 191.395 191.554

S83
(173) 2300.37 2298.09 2300.12 2301.12 2303.07 2300.47 2300.49 2263.79 2267.31

BAe

(112) 637.352 636.835 637.419 637.265 641.053 637.566 637.572 637.969 638.694
Table 4.4. -log prequential likelihood of the respective prediction systems.

DATA Jm* BJIM* Go¥ Mo¥ DU* L* LNHPP¥* LV¥ KL¥

{n)

Sys.1

(86) 680.743 693.229 693.978 690.742 689.099 682.513 690.044 685.545 688.851

Sys.2
(31) 292.269 291.094 288.235 287.037 289.994 288.623 287.127 285.069 287.203

Sys.3

(18) o 179.596 177.455 172.803 168.808 [ 173.382 168.985 175.417
Sys.4
(30) oo 243.954 254.317 252.966 258.466 ®© 254.092 244.884 244.789
Sys.b6

(38) 208.735 205.540 207.166 203.425 211.886 207.996 207.406 200.758 202.255

SS3
(173) 2274.06 2266.05 2271.95 2268.83 2281.41 2267.57 2270.89 2274.62 2288.64

BAe
(112) 674.711 6B1.492 676.400 676.652 682.754 677.950 667.049 671.112 672.455

Table 4.5. -log prequential likelihood of the respective adpated
(joined-up function adaptor) prediction systems.
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which means the adapted probability for any finite failure time is equal to

the value of &i+1 at the origin. When N = i has happened for previous
value(s) of i, it would mean that there is a discrete component to éiﬂ at
the origin. Thus the adapting procedure might seem to be able to correct
the raw prediction, but in reality the adapted predictor is just as
practically useless as before: it has probability Gj4s(0) for any finite
failure time and probability (l-éi“(O)) at infinity. Merely looking at the
u-plot and u¥*-plot could be very misleading. As an example, Figure 4.3
shows the u-plot for JM on System 3 data before and after adapting.
(These are line printer plots and only provide an approximate picture to

the true plots).

When there is a discrete component to G at point 0, it means the
derivative at 0 will be infinite. Since the PL of the adapted prediction is

now the product (4.4.2) with a term being zero, it will also be 0.

However, there are zero failure times in some of Musa’s data, for
example, System 1 data. In this case, it means that there will be a discrete
component to é, due to these zero failure times which will give rise to
repeated zero u values. Because the raw PL is non-gero in this case, the
PL of the adapted predictor will also be infinite. This implies that all

other prediction systems, except those also with infinite PL, are inferior.

This behaviour in the PL is due to our mixing discrete and continuous
probabilities in the adapted predictive cdf. The PL as defined is for

continuous random variables and utilises the pdf which is the derivative
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Fig. 4.3 The u-plot before and after * adapting JM predictions



- 95 -

of the cdf and is a continuous function. For discrete random variables,
the PL is defined in terms of the probability mass function which is a
discrete function obtained by differencing, instead of differentiating, the
cdf at consecutive points in the domain. This is essentially a conceptual

confusion which can be avoided if G is constrained to be a function without

a discrete component.

Table 4.5 is the -log prequential likelihood of the adpated predictions
on the various data sets. The gradient of G at 0 is taken to be the
gradient at 0+ in order to avoid the situation mentioned above. Adapted
predictions for System SS3 have in most cases better prequential likelihood
value than raw predictions. The improvement in System 6 data is only

negligible in those cases which are better. In all other cases the

adapted _predictions__have worse prequential likelihood than the raw

predictions.

This is counter-intuitive. Take System 1 data for example. The KS
distance of u*-plots have all been improved by the adapting process wﬁich
means the new predictions are not as biased as before. The KS distances
of the y¥-plots are all very good, which means the trend in the data is
being captured. The adapted predicted medians are in closer agreement

than before.

Table 4.6 gives the predicted medians by the various raw prediction
systems ai selected stages. We can clearly see that the first three

systems are always predicting high values, the last two systems are always
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predicting low values and the rest are in the middle. The disagreement is

profound between the highest and the lowest predictions, especially at the

later stages.

Table 4.7 gives the predicted medians by the adaptive systems. As we
can see there are hardly any differences among all of them up to stage 80,
Subsequent disagreement is much less severe than before adapting, and
there is close agreement amongst the last six adaptive systems. Yot even
in the presence of all this evidence, the prequential likelihood insists on

the superiority of the raw predictions.

Since both bias and trend are good in the adpated predictions, can it
be the case that a lot of noise was somehow introduced into the adaptive
systems? If this is true, as the raw predictive cdf and the adapted
predictive cdf are related only via the G function, it must be the source of

all this extra noise in the new system.

Successive G functions are different only because of an extra u being
included in the basis for constructing the latter. Therefore, it should be
fairly slow changing over different stages, particularly when there are
many u’'s in the basis already, and should not fluctuate in any substantial

way.

A possibility is when the number of u’s used in the basis for
constiructing G is small, the effect of an extra u would be larger and thus

causing fluctuations in the early stages. If this is the sole reason, all we



Stage i JM BJM GO MO DU L LNHFP Lv KL
60 344 331 316 302 230 302 302 242 247
70 377 372 357 336 255 336 336 274 281
80 460 449 433 385 288 385 385 318 334
90 900 873 B41 577 401 577 577 418 428

100 1723 1676 1615 854 563 1032 854 534 538
110 1502 1452 1408 906 595 906 906 570 575
120 1320 1250 1217 931 613 931 931 613 621
130 2314 2197 2137 1242 793 1242 1242 662 668
Table 4. Predicted median for System 1 data at selected stages
by respective prediction systems.

Stage i JM¥ BIM*  Go¥ MO ¥ pu* L¥ LNHPP*  Lv¥ KL¥
60 265 268 273 250 249 250 250 255 252
70 298 301 308 279 276 279 279 296 299
80 363 363 374 330 318 326 326 340 342
90 763 763 809 627 568 515 627 558 553

100 1467 1461 1529 974 868 921 974 740 715
110 1155 1171 1202 965 886 778 955 790 767
120 934 982 993 952 899 791 896 848 817
130 1732 1684 1722 1195 1124 1051 1190 894 890
Table 4.7. Predicted median for System 1 data at selected stages

by respective adapted (joined-up function adaptor)
prediction systems.
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have to do is to start with a reasonable number of u's for constructing G
and we should see better PL from the adapted systems. It is easy to
check from Tables 4.8 and 4.9 that it is again not possible to obtain better
PL just by starting at a later stage. Hence, we must conclude that this

cannot be the sole reason for the extra noise in the new systems.

The other kind of noise which could possibly be present is internal to
the G function. If we examine closer how a G function is constructed, it

will become apparent where all the unwarranted noise is coming from.

Since E}iﬂ is a joined-up function, its derivative &iﬂ at the joint of
two lines with different slopes is discontinuous. This means ?'iﬂ is also

discontinuous over its domain because:

i“*:i,-0'1(t) = % i*i.}.‘(t)
= iy (Fiag () T4 (2) . (4.4.7)

Figure 4.4 is the plot of é278 for adapting LV on Musa’s System SS3 data
which has 188 u’s values. This might look rather smooth but if we look at
Figure 4.5 which is the derivative of 6278, we see how ‘mspiky’ it is. In
fact the larger the number of u’s, the more spiky & becomes, in which
case, the adapted predictive density for the failure time is also becomming
more discontinuous. As there is no apparent reason why the pdf of Tj,,
should be discontinuous in such a fashion, the PL points out this flaw in

the adaptive systems.

In the case of System SS3 data, the gain from correcting the bias in
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Stage i JM BJM GO MO 114] L LNHPP Lv KL
60 73.580 73.409 73.022 72.542 71.294 72.542 72.542 71.639 71.924
70 143.593 143.494 142.882 142.120 140.635 142.120 142.120 141.101 141.574
80 215.410 215.669 214.769 213.895 212.639 213.895 213.895 213.255 213,766
30 294.487 295.140 294.006 292.918 293.344 293.562 292.918 293.318 293.582
100 377.702 378.464 377.060 374.652 376.638 376.173 374.698 376.443 376.759
110 458.548 459.042 457.444 452.562 453.751 454.146 452.608 453.482 453.851
120 537.944 538.225 536.437 529.442 528.924 531.025 529.488 528.654 529.025
130 624.160 624.203 622.444 615.300 617.282 616.883 615.347 616.350 616.536
135 668.944 669.147 667.267 660.061 663.715 661.644 660.107 663.348 663.212
Table 4.8. -log prequential likelihood of the respective prediction
system at selected stages of System 1 data.

Stage i JM* BIM¥ GO¥ Mo* pU* L¥ LNHPP¥  LV¥ KL*
60 77.294 77.356 76.910 73.951 74.835 73.951 73.921 75.453 75.556
70 149.269 149.529 150.038 146.572 147.803 146.573 146.550 147.957 148.457
80 222.968 220.555 222.620 222.541 223.647 222.541 222.538 219.722 219.785
90 305.369 303.411 303.540 302.641 306.581 304.624 302.643 303.878 304.616

100 389.930 392.141 392.086 389.896 388.443 390.513 389.557 389.894 387.019
110 471.203 474.660 474.846 474.166 471.135 471.378 472.768 470.041 468.941
120 550.554 558.058 558.855 555.166 549.723 550.056 554.483 549.851 548.909
130 639.199 649.416 663.298 644.162 641.162 637.016 643.466 638.591 639.184
135 680.743 693.229 693.978 690.742 689.099 682.513 690.044 685.545 688.851

Table 4.9. -log prequential likelihood of the adpated (joined-up function adaptor)

prediction systems at selected stages of System 1 data.
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the predictions is more than sufficient to compensate for the introduction

of this internal noise, hence better PL is observed in most of the adaptive

systems. Apparently this is not the case in most other situations.

The obvious solution is to use a smooth adapting function a, which is

the subject of the next Chapter.



CHAPTER 5

THE DETERMINATION OF THE PARAMETRIC SPLINE ADAPTOR

AND THE ANALYSIS OF THE RESULTS OF THEIR APPLICATION

5.1. INTRODUCTION

In this Chapter, we shall present a non-parametric method of
constructing a smooth adapting function G. The function we have used is

a parametric spline consisting of two suitably constrained least-squares

cubic_splines.

Two representations of a cubic spline will be given. The first is the
redundant representation which has a clear physical interpretation. The
second is the B-spline representation which is not as obvious as the first
but has many advantages in practical applications. With the use of the
B-spline representation, it is possible to fit an over-constrained

least-square cubic spline efficiently and in a numerically stable way.

The parametric spline adaptor is then used to adapt those cases

reported in Chapter 4. Detailed results are given in the last section.



5.2. THE SMOOTH ADAPTIVE CURVE

We have established in the previous Chapter that it is desirable to
have a smooth adapting function G. We shall look ai the properties which

such a smooth function must possess:

-

1) G is a function defined on (0,1) and the range of which

is also (0,1), i.e.:

G : (0,1) » (0,1)

2) The derivative of G must be positive for all values

within its domain, i.e.:

G'(u) >0 VYue(0,1)

3) G(0) = 0 and G(1) = 1

The above conditions are automatically satisfied by the cdf of a random
variable defined on the interval (0,1). This is hardly surprising since the
u-plot is just the sample cdf of the u’s. Therefore one could view the
problem as one of obtaining a smooth estimate of the cdf of a random

variable defined on (0,1), based on a finite random sample.

A possibility is to choose a parametric family of distributions and use
the u’s as data to estimate the unknown parameters. However, the family

of distributidne must be for a random variable which is defined on a finite
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interval, otherwise a transformation on the variable would be required.
Once the domain of the distribution is a finite interval, it would be an easy

matter to make this interval into (0,1).

An example of such a family is the Beta distribution with two

parameters. It has a pdf:

f(u) = ZE B w1 )R

y(x) ¥(B)
for «,2 > 0 and u€(0,1). ¥y(x) is the Gamma function which is defined as:
® x-1 -u
Y(x) = S u "e  du for x > 0
0

Although the shape of this distribution is relatively flexible among
parametric distributions, it might still be unable to give a close fit to the
shape of the joined-up adapting curve. See Figure 4.4 for one such

adaptor.

Another more serious difficulty in using a Beta distribution, which is
also true for many parametric distributions, is in the evaluation of the cdf
at a given point. Thie can usually be done only by numerical
approximations and can be very difficult with certain values of « and B.
This means we will have difficulties calculating the u’s or the predicted

medians.

In view of the above, we can add the following two extra requirements

on the smooth G function.

4) The function must be flexible enough to fit very

different shapes.
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5) It must be easy to compute the derivative and the

value of G at any point in the interval (0,1).

Because most parametric distributions will have difficulty in satisfying
conditions (4) and (5), we have not pursued the use of parametric
distributions any further. Inastead, we have chosen to use a parametric

spline which is composed of two suitably constrained least-squares cubic

splines.

A parametric spline is based on the following parametric representation.
Take a general dependent variable y, say, with x being the independent

variable. Let the function f define their relationship, i.e.:

y = f(x)

If we introduce a parameter p such that:

x = x(p)

we can also express y in terms of p:

Yy = y(p)

Then we will have a parametric representation of x and y in terms of p

(x(p),y(p)). When x(p) and y(p) are splines, the resulting function is a

parametric spline.
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The parametric spline is widely used in computer graphice and
computer aided design. The main reason for its use in the context of
adaptive modelling is because of its flexibility. The shape in Figure 4.4

can easily be reproduced by a parametric spline.

Epstein (1976) has supported the use of the cumulative chord joining
up the discrete data points as the parameter. If (x,y;) for i = l,.., r,
denote the r pairs of data to which we want to fit the parametric spline,

the cumulative chord is:

Pi = Pi-g + Mx; - %-)2 + (5 - ¥j-1)°  i=t,...,r 5.2.1)
with pg = 0, Xo = 0 and yo = 0. In our application, x; is the ith order
statistic of the u's and y; is the height of G at xi. However, we have, for
convenience, used the normalised cumulative chord:

Pi
pi = 7 i=1....,!‘ (50202)
Pr

so that both parametric functions will have domain {0,1].

Having introduced the parameter p, we now have two groups of data:
{pixj} and (p;y;} for i=1,..r. To each group of data we shall fit a
least-squares cubic spline. This spline function is constrained such that
. conditions (1) to (3) in section 5.2 are satisfied. It is clear that if the px
spline and the py spline both satisfy conditions (1) to (3) the resulting xy

E function will also satisfy these conditions.

It might seem to be a waste of effort to use a parametric spline
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because we could have simply used one instead of two such constrained
least-squares spline for the xy function. Practical results, however, have
shown that the shape of the G can be very fast changing. If we were to
simply fit a cubic spline, we would have to use many knots, hence
increasing the dimension of the problem (to be explained later), in order
that the cubic spline could reproduce such characteristics in the adapting
function. But the parametric spline can do so with fewer number of knots
being used. Furthermore, the introduction of the parameter p helps to
smooth out local oscillations in the data and as a result the parametric

spline does not oscillate as much as the joined-up G function.

5.3, THE REDUNDANT REPRESENTATION AND THE LEAST-SQUARES SOLUTION
OF _THE CONSTRAINED CUBIC SPLINE

Since the parametric spline is made up of two cubic splines defined on
[0,1], we shall derive in this section the redundant representation of a
cubic spline on the interval [0,1]. Other variants of this representation

could be found in Ahlberg et al (1967).

In order to define a cubic spline over the interval, it is necessary to

choose a knot sequence:
0 = )o < x‘ evsesee < lm < )m+‘ - 1 (50301)

where m is the number of interior knots in the sequence. This knot
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sequence also defines (m+1) sub-intervals in [0,1]. The choice of knots
will affect the fitted spline function. We shall discuss knot placement in
more delail as we proceed.

Let z; and w; denote the function value and the second derivative of

J J
the spline at the jth knot, for j=o,1...m+1. We can define the cubic spline

in terms of these 2(m+2) quantities in the following way.

The property of a cubic spline is that it is continuous up to its second
derivative over the entire [0,1] interval, and between two successive knots
it is a cubic. Let Sk(p) be the cubic spline between the knots Ay_, and
A for k=i,...,m+1, Because Sy(p) is a cubic for pe[Xy_;,2 k], this implies

that the second derivative must be a straight line, i.e.:

) (P-Ag-y) (Ag-P)
SK(P) = ——f— Wk * —p— ¥k-y (5.3.2)

where hy is the kth interknot spacing:
hg = A2goy | k=1,...,m+2 (6.3.3)

Integrating (5.3.2) gives:

. (p-Ak-1)? (g-p)?2
Sk(p) = —-z—Ek-— Wi - ——z-ﬁr Wk-g t+ &k (5.3.4)

and integrating again gives:
(PAg-q)? (Ox-p)?

WO TR e T e e

where ap ‘and by are constants of integration.
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Now Sk(Ak-1) = zk-1, 80 from (5.3.5) we have:

2
bk = Zk_l - "6'" Wk_1 (5.3-6)
Similarly, Sp(2,) = zy and from (5.3.5) we have:
zx by by
Combining (5.3.5) with (5.3.6) and (5.3.7) gives:
(P’lk-—g ) (P"lk—g)z
Sk(p) = 3 ™ = hy| wi
(A\k-P) [ -p)2
+ 6 hy, - hyjwy—y
(P2k-1) (Ox-p)
+ T 2k + _llk—-. ZR._’. k=1’-00’n+1 (5.308)

If we utilise the continuity of derivative condition, i.e. s,;(xk) =

Sk+1(Ak), we have:

hy (hy + hysy) hy
"k * 5 Ykt

Zk+1 ~ Tk  Zk T Zk-1 3
- llk-.—t hk fOl" k—i.....l (5. 09)

which forms m constraints on the z's and the w’s. This is the reason why
this representation is called redundant because instead of requiring 2(m+2)

variables, we only need (m+4) variables to uniquely define the cubic spline

for a given knot sequence.
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If we have data (p;y;j) for i=1,..,r, to which we want to fit a
least-squares cubic spline, the problem is to find the unknowns (Wj,Zj) for
J=0,..., m+1, which minimise the residual sum of squares and also satisfy the
m equations defined by (5.3.9). Note that if there are m interior knots in
the knot sequence, there will be (m+4) independent variables, therefore the
maximum number of interior knots must not be greater than (r-s). Thus,
the larger the number of knots being used, the higher is the dimension of
the minimisation problem. In fact, there are restrictions on the position of
the knots such that the least-square solution is unique (Cox, 1975, Cox and
Hayes, 1973). For our purpose, we will ensure that there is at least one

data point between any two knots.

Corresponding to each Pj let S}i denote the fitted value of y; given by

(5.3.8). Therefore the r vector of fitted value y can be written as:

Y = Aw + Bz - (5.3.10)

where w and z are the (m+2) vector of wy and gz, respectively, A and B
are the (rx(m+2)) matrix of coefficients of w and z respectively. The

constraint equation (5.3.9) can also be written as:
Cw = Dz (6.3.11)
where C and D are the (mx(m+2)) matrix of the coefficients of w and z

given by (5.3.9).

If there are no further consiraints on the spline function, the

least-aq\uares problem has linear constraints and is:
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:ig Mly - vll3 subject to Cw = Dz (5.3.12)

We can write down the Lagrangian:

= H(Aw + Bz — y)T (Aw + Bz - y) - AT(Cw - Dz) (5.3.13)

where ) is the m vector of Lagrange multipliers. By differentiating w.r.t.

w, z and X and equating to zero, we get the following system of equations:

ATA ATB —T w ATy
BTA BTB pT y = BTy (6.3.14)
- D 0 A 0

which we can solve for the unknowns ;v, z and . However, in our

application, it is necessary that the least-squares spline should satisfy

conditions (1) to (3) of section 5.2.

To impose condition (3) presents no problem because these are linear

equality constraints and we simply have to include:
20620 and zpyy =1 (5.3.15)
in the equality constraints of (5.3.9).
Condition (1) is automatically observed if (2) and (3) are Jjointly

satisfied because condition (2) will ensure the function to be monotonically

increasing, thus the function is a one-to-one map with range [0,1].



To impose condition (2) causes considerable difficully because this
condition cannot be expressed in terms of a finite number of linear
equations (Cox and Jones, 1985). To see this, we look at interval [X,_,,2y]

in more detail.

Now Sy(p) is a quadralic over this interval [M\y_;»k] and condition (2)

can be separated into two paris:

a) Sl;o‘k-x) and S;;()\k) must both be positive. These two
requirements can be expressed as two linear inequality consiraints and

can be handled without great difficulty.

b)  The minimum of Sy(p), if it is within [Ak_y k], must also be
positive, This requirement, however, cannot be expressed as a linear

inequality of the variables and cannot be imposed easily.

We have previously used the Nelder-Mead simplex search method
(Nelder and Mead, 1962) to solve this non-linear inequality constrained
least-squares problem, whenever the least-squares solution violates
conditions (a) or (b) within any sub-intervals, This method is very heavy
in computational terms whenever the search is invoked and is not a
practical way of determining such a constrained cubic spline function.
However, if we use the B-spline representation instead of the redundant
representation of the cubic spline, we can find a practical solution to the

spline fitting problem very efficiently.
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5.4. THE B-SPLINE REPRESENTATION OF THE CUBIC SPLINE

Just as polynomials can be expressed as a linear combination of certain
basis polynomials, such as Chebyshev, it is possible to express a spline in
terms of a basis - the B-spline basis. We will show by using the B-apline
representation, we can derive a numerically stable and efficieni method for
obtaining a practical solution to the constrained cubic spline fitting
problem. Our discussion here is specifically related to our problem only,
more detailed and general discussions on various aspects of B-splines and

their applications could be found in Cox (1975).

In order to define the B-spline basis for a cubic spline, it is necessary

to extend the knot sequence to include 3 extra exterior knots at either end

of the interval [0,1]. Therefore, the new knot sequence is:

0 = x_suoo: xo < X*no-o( zm+1 = )m+2nu= )m.',‘ = 1 ‘50401)

The reason for the above choice of exterior knots will become apparent

later.

Given a knot sequence the normalised B-splines satisfy the following

recurrence relation:

P = M- kP
Np,k(P) = [ nn] Np-g k-1(P) + [:—k:im] Np-3,k(P)

)k_l-lk_
forn> 1 (5.4.2a)
with

‘ 1 if pe[dg—yqrg)
N1,k (P) ={o ~ otherwise (5.4.2b)
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where n is the order of the B-spline, which is 4 in the case of cubic
B-splines. In order to define the B-splines on the entire interval [0,1],
we have to extend the last sub-interval to be closed on the right hand

side as well, which means:

_ if pe[dpidp+1]
Ni,mea(P) = {0 otherwise (5.4.2¢)

Curry and Schoenberg (1966) has shown that the normalised B-splines
defined by (5.4.2) for k=i,...,m+n, form a basis for splines of order n over
the interval with which the knot sequence (\y,...;hp43) i8 prescribed.

Thus if S(p) is such a spline, it has the B-spline representation:

m+n
S({p) =j§1 CJNn,j(p) for P‘[)‘o,)ﬁmﬂ

where the c.i’s are the B-spline coefficients.

In the case of a cubic spline over the interval [0,1], this means the

spline function S(p) can be defined as:
m+e
S(P) = E CJ’N4' j(P) p‘[O.l] (5.4.3)
J=1

From (5.4.2), it is clear that N4 j(p) is non-zero if the value of p falls
within the interval (X jog*j) for j=ije..,mil. Therefore, if pe[d;_;,2k) for
k=1,...,m or PEA,_4 2] for k=m+s, N4’k(p),...,N4,k+3(p) will be the only 4

non-zero normalised B-splines. Thus:
k+3
- S(p) =_Ek c‘jNh‘j(p) (5.4.4)
J:

when p lie within the kth sub-interval [Ak-12k) with the last Dm*m+s]

also closed on the right hand side.
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The r vector of fitted values 5' can now be written as:
¥y = Nc (5.4.5)

where N is the (rx(m+4)) matrix of non-zero normalised B-splines
| corresponding to the data vector p and c is the (m+4) vector of B-spline

- coefficients. The least squares fitting problem is to:

min | y - viI3

. which is simply:

mén liNc - ylI3 (5.4.6)

;Note that (5.4.6) is much simpler compared to the least-square problem
(5.3.12) when the redundant representation is being used. Furthermore,
ébecause of (5.4.4), the non-zero elements of the matrix N have a band
éltructure with bandwidth 4. This structure can be taken advantage of
%when solving the least squares problem (5.4.6). Details of how this is

- done are given in the next section.

Recall that our cubic npline has to be constrained to pass through the
| points (0,0) and (1,1). If we use the recurrence relation of the normalised

%B-aplines (5.4.2) and (5.4.4) to evaluate S(0) and S(1) we will find that:

‘and (5.4.7)

S(O) = ¢
S(1) ]

Cm+e

‘because the exterior knots at both ends of the interval [0,1] are chosen to
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be coincidental. The advantage of this choice of exterior knots is now
apparent: condition (3) of section 5.2, i.e. S(0)=0 and S(1)=1 will then be

requiring:

C1 = 0 and Cm+‘ =1] (5-4.8)

which is only a pair of simple equality constraints.

As for the positivity requirement on the derivative of the spline within
the entire interval, it is still not possible to express it in a finite number
of linear equations. Hanson (1979) has suggested solving the least-squares
problem by imposing the positive derivative constraint at a finite number
of pointe within the interval. This set of points is built-up iteratively
until the spline has positive derivative over the entire interval. Apart
from a brief description similar to the one we have just given, Hanson has
not disclosed further algorithmic details on how this could be done. Oon
the surface of his suggestion, we do not envisage much practical value in
his approach because there is too much vagueness in how the set of points
could be updated in each iteration, and it is doubtful if the congtrained

solution obtained in this way is optimal.

One of the properties of the B-spline representation is that the
derivative of the cubic spline can be expressed in a way similar to that of
the spline in terms of the c j’s. By differentiating (5.4.3) it can readily be

shown that:

$° () :E: cj(1) Ny, j(®)  pel0,1] (5.4.a)
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with
C'+1 - C3
c;(1) = 3 ;:’___i_J J=1,...,m3 (5.4.9h)
J J-3
in the cubic case. Because there can only be 3 non-zero normalised
B-splines - N3 y(p), Njk41(P) and Njg42(p) - when peldg_ ;) the
derivative S (p) will only be a product sum of these three terms. Note

also that the derivative at 0 is simply c1(1) and at 1 is °m+3(1)v again as a

result of our using coincidental exterior knots.
Furthermore, the derivative satisfies locally the following:

min CJ(1) € S°(p) € max CJ'“)

when pelX;_;,2k), the min and max are taken over jzk, k+1, k+2 (Cox, 1975).
Therefore, if we ensure that all the cj(‘)’s are positive, it would guarantee
the positivity of the derivative over the entire interval. As the Cj(‘)’s
are linear in the B-spline coefficients, this requirement can be translated

into imposing (m+3) linear inequaliLty constraints on the least-squares

problem (5.4.6).

Now the optimally constrained problem will have two linear inequality
constraints at the end points of the interval, i.e. c1(1) > 0 and °m+3(1) > 0.
But within the interval the inequality constraints are not linear in the Cj's.
Furthermore, all the Cj“)’s, except the first and the lasi, do not
ﬁecessarily have to be positive in order that the derivative is positive over
the interior of the interval. To insist on all the cj(i)'a being positive

might over-constrain the fitted spline. The derivative of the two

constrained splines might look like those in Figure 5.1.
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derivative of the optimally-constrained spline

derivative of the over-constrained spline

region of very small derivative

Figure 5.1.

However, in our application this is not a disadvantage because the
‘:iopt.imally constrained spline might entail a region with very small derivative
i{:likt‘: that of Figure 5.1. This corresponds to a shoulder in the cubic
l:;:!Dlims. With the over-constrained spline, the presence of such a region is
i;unlikely, thus the spline will tend to be smoother. A by-product of using
the over-constrained spline is that we can avoid having very small

breQuential likelihood if the spline in Figure 5.1 is the py function, or

very big prequential likelihood if it is the px function.

In private communication, Cox (1986) has also recommended the
dver-constrained spline as the most practical solution to fitting monotonic

iplines with order greater than 3.
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5.5. METHOD FOR THE DETERMINATION OF THE
OVER-CONSTRAINED CUBIC SPLINE

The least-squares problem which we have to solve is:

min |INc - vl

(5.5.1a)
subject to the equality constraints:
c, =0
(5.5.1b)
Cpis = 1
and the inequalityv consiraints:
ATe > 0 (5.5.1c)
where A is the ((m+4)x{m+3)) matrix with elements:
- _3—.—— i:j
Y Y
aij =
if?§f" iz j+1 (5.5.1d)
J )-8
0 otherwise
for j=t,..,m+3 and Q is a (m+3) vector of zeros. Note that Alc = c(1)

which is the (m+3) vector of Cj(i)'s, and the ith column of A is made up of

the non-zero coefficients defining CJ(i) as given in (5.4.9b),
The approach we shall adopt to solve (5.5.1) consists of two stages:

(1) The sub-problem (5.5.1a) subject to (5.5.1b) is solved and c¥ is

used to denote the solution.

(2) If all the inequality constraints in (5.5.1c) are satisfied, i.e.:

ATc* > g
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then the solution to the constrained least-squares problem (5.5.1),

c, is equal to c¥. Should any of (5.5.1c) not be satisfied, we

will find an adjustment vector ¥ such that the constrained

solution:

c =c* + sf

The sub-problem corresponding to the first stage can be solved by the
orthogonal triangularization of N. Here we shall only give an outline of
the principles involved. Further details could be found in Cox (1975, 1980)

and an Algol implementation could be found in Cox and Hayes (1973).

Suppose Q is an orthogonal (rxr) matrix such that:

QTq

"
-t

and

QN = { g] (5.5.2)

~

where R is an upper-triangular matrix whose order is identical to the rank
of N. (This is one of the criteria governing the choice of the m interior
knots: the rank of N must be full, i.e. (m+4), in order that the B-spline
coefficients can be uniquely determined. The condition on the position of
a knot sequence which will guarantee N to have full rank and methods to
deal with rank deficiency could be found in Cox (1975, 1982). Here we
shall insist upon having at least one data point within any two

non-coincidental knots, which is more than sufficient to guarantee N to

have full rank).

We can write:

e=Nc -y (5.5.3a)
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and let

e = QTy (5.5.3b)

Furthermore, we shall separate the vector © into @, and @, such that 6,

has (m+4) and @, has (r-m-4) elements. Then:

e = af [Fe_ €] (5.5.4)
2
which means:
ele = ||Rc - 0,113 + lle, 112 (5.5.5)
because of the orthogonality of Q. It is clear from (5.5.5) that ele is
minimised if:
lIRc - 6,113 = 0
or
Rc = o, (5.5.6)

and the residual sum of squares is simply ||@,}i§. Since N has full rank, R

is ((m+4)x(m+4)) and upper-triangular which means c can be solved easily

by back-substitutions.

To impose the constraints (5.5.1b), we note that:

0
1

e=Nc-vy

where cT = (cz'ca,...,cm“), N is the (rx(m+2)) matrix composed of the

second to the (m+3)th columns of N and Nm+s is the (m+¢)th column of N.

Therefore we have:



e =Nc-vy (56.5.8)
where y = y - Np4, and c can be determined by the orthogonal
triangularization of N just as before. Thus the solution of the firsi stage

sub-problem is:

c*

n
(e

0
E] (5.5.9a)
1

with —
Rc = &, (5.5.9b)

where R comes from the factorization:

~

aTy = [ g ] (5.5.9¢)
and 6, from: .
- 8,

Qly = | _ (5.5.9d)
6.

The dimension of R is ((m+2)x(m+2)) and 31 is a (m+2) vector. From now

on we shall drop the ~ and all matrices and vectors will correspond to the

constrained situation of (5.5.7) to (5.5.9).

The factorization of N is performed via repeated use of Givens rotation

matrix which is:

Pl 1 j
.. ]
.1..

i ‘eC, s
Qjj = .1'1

J -5 ¢,

.1.
| S T




where C and S denote Cos® and Sine, respectively, and @ is chosen such

that the jith element of the matrix:
N’ = ;N

is zero. It is easy to verify that the appropriate values of C and S are

given by:
C = nii/h |
S = nji/h (5.5.10)
where
2 2
h = (nj; + nji)*

and nj; denotes the ijth element of N. Here we assumed nj ¢ 0, which

ensures that h is non-zero. If n ji is already gzero then no rotation is

needed.

The effect of multiplying the Givens matrix onto N is that the:

ith pow of N°

C x(ith row of N) + S x (jth row of N)

jth row of N°

C x(jth row of N) - § x (ith row of N)

with the ji"h element being reduced to gero, i.e.:

njj=h; nj;=0 (5.5.10a)



nik Cnjk + 8 n jk

k=i+1,...,n (56.5.10b)

Nk -S njp + C D jk

Since there are 4 multiplications in (5.5.10b) it is termed the 4

multiplication rule.

By using & series of Q;; matrices, we can triangularize N into the

required form:

[y
1O o
e

The advantage of this method is that the conditioning of the matrix N is
not worsened in the factorization process because of the use of orthogonal
matrices. This method is unconditional stable (Wilkinéon, 1963) and, most
importantly, we can take advantage of the band structure in N and

economize considerably on the amount of work required for the

triangularization.

The matrix N corresponding to our constrained sub-problem has the

following structure:



rxxx b
XXX
AXKX
AXXX
ARXX
XXXX
N = AXXX
XXXX (56.5.11)
AXXX
XXXX
XXXX
XXX
4
L X g-

with x denoting a non-zero element. Ag a result, R would have the

following structure:

&xxx 7
XXXX
XXXX
R - * . .
XXX (5.5.12)

XXX

XX
L X J

The rows of N are rotated into R, successively. To show how this is

done, we use the following pictorial illustration which Cox (1980) has used.

In each of these diagrams, (5.5.13) and (5.5.14), the first block represents

the situation immediately before the reduction process. Each subsequent

block illustrates R and the row of N immediately after its leading element

has been reduced to zero using a Givens rotation matrix. The
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corresponding elements of 6, and y are to the right in each block. In
each case a previously esiablished zero is represented by a period, a zero
element that has just been created is denoted by 0, an element which is
affecied by the rotation is defined by m and a non-zero element which is
unaffected during the last rotation is denoted by x. (5.5.13) shows how a
4 elemented row of N is reduced to zeros sequentially. A 3-elemented row

is processed in the same way.

XXXX X mnmm m XXXX X AXHX X XXXX X

XXX X XXX X Emm m XXX X XXX X
XX X XX X XX X ] XX X (5.5.13)

X X X X X X X X B n

XXXX X Ommm m +Omn m ««Omm cee0 m

The corresponding element of y is rotated into e; by the same sequence of
Givens rotations. During the reduction process, if the element of R
corresponding to the non-zero leading element of the row of N is zero, the

two rows are swapped, including the corresponding ©, element and the y

element, and we continue to process the next row of N. This situation is

depicted in (5.5.14) when the third row of N is being processed. We have

assumed that this is also the first 4-elemented row in N, i.e. py€[X; ;).

XXX. X MM B XXXX X XXXX X
XX. X XX. X mom m XXX X
.0 . .o L] LN L] m . (505'14)

XxxxX X Ommm m Omm ..066
Because of the band structure of N, it means that there will be no

more than 4 rotations required for the reduction of each row of N.

Furthermore, the constraints c; = 0 and cp44 = 1 can be incorporated



without extra effort being required to obtain the constrained solution to
this sub-problem. The residual sum of squares is simply the cumulated
value of the square of the rotated y elements (now being elements of 82)
corresponding to those situations of (5.5.13), but excluding those of (5.5.14)

where a row swapped is involved.

Once N is triangularized, c* can be determined easily by

back-substitutions. The nex{ step is to check whether:

ATc* 5 0 (5.5.15)

If condition (5.5.15) is satisfied then the solution to the constrained
least-squares problem (5.5.1) is c = ct. Otherwise, it would be necessary
to invoke the second stage process which involves finding a vector $* such
that ¢ = c¥ + €%, Note that since the first and the last B-spline
coefficients are already fixed, the corresponding elements of $* must be

zero. Therefore, returning to the ~ notation used earlier, we have:

0
s - § (5050163)
0
and
-~ ~ 0 ~
c = |c* + ¢¥ (5.5.16b)
1

where §F has (m+2) elements.



Before we begin discussing how €% can be found, there are two

preliminary adjustments which we shall make. Firstly, we shall rewrite

the inequality constrains (5.5.1c) into:

0
AT ' % } » d (5.5.17)

where d is a (m+3) vector with elements equal to some small constant €.
We have chosen € to be 107%.  The effect of replacing (5.5.1c) by (5.5.17)
is that we shall restrict the cj(‘)’a, hence the derivative of the cubic
spline, to be bigger than € rather than zero. Since the derivative, if it

exists, of a function with the parametric representation of (x(p),y(p)) is:

dy _d dx

== E% = (5.5.18)
Thus by setting a lower bound on the derivative of the respective splines,
we have avoided possible division by too small a value or having too small

a derivative when combining two such functions to form the parametric

spline.

Secondly, we have to find the A matrix and d vector corresponding to

the variable vector ¢. It is easy to see that:

0 0
AT | c | =aTc + y d (5.5.19)
1 3
Ap+3~m
which can be expressed as:
ATc » d (5.5.20)

where A is composed of the 2nd to the (m+2)th row of A and the (m+s)th

element of d is:
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3
Ap+z T A

(€ - )

We can now formally specify the second stage sub-problem as:

min MliRc - ©,l3 subject to ATc » d (5.5.21)
c
The ||62||§ term is left out because it is just a constant. Again we shall

~

drop the notation and all the matrices and vectors mentioned below will

correspond to the situation of (5.5.21).

The method we have used to solve the quadratic programming problem

is iterative. It requires solving a series of sub-problems of the form:

m(i:n Ml|Rc - 0‘||§ subject to ATc = 4 (5.5.22)

where A is ((m+2)xt) and d is a t vector for t < (m+3)- A is composed of

the columns of A corresponding to the t active constraints in (5.5.22): the

jth constraint is said to be active if cj(*) s € This sub-problem is

solved in the following way.

First we define the Lagrangian:

= #(Rc - e;)T(RC - 01) - )T(RTC - a) (5‘5'23)

where ) is the t vector of Lagrange multipliers. Differentiating (5.5.23)

w.r.t. the c;’s and equating to zero yields the following set of equations:

RTRc - RTe, = Ar (5.5.24)



Differentiating (5.5.23) w.r.t. the X;’s and equating to zero yields another

set of equations:

AT oA
Alc = d (56.5.25)

One way of obtaining the solution of (5.5.24) and (5.5.25), ¢’ and X\’ is

to solve:

RTR -A c RTe,
ar 0 NP (5.5.26)

This approach, however, does not take advantage of the triangular
structure of R and also requires the inversion of a ((m+2+t)x(m+2+t))
matrix. However, the method we have used, as suggested by Cox (1975),
takes full advantage of the structure of R and the unknowns are found in

an efficient and numerically stable way.

Clearly, we can express the vector of solution ¢’ as:

c'=c¥+ 8’

(6.5.27)

where §° can be viewed as an adjustment vector to the solution of the

first stage sub-problem. If we substitute ¢ = c* + § into (5.5.24) and

(5.5.25) we shall have:

Tpe* - RT Ths = 3
RTRc* ~ RTe, + RTRS = A (5.5.28a)

and

‘TS - 3 - .T
AT® =d - Alc (5.5.28b)



Since

Rc* = e,

therefore (5.5.28) becomes:

RTRS = A

and

ATe = 4°

where d° = & - ATc*.

From (5.5.29a),

= (RTR)-1 AX

which when substituted into (5.5.29b) gives:

AT(RTR)"* A = d°
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(5.5.29a)

(5.5.29b)

(5.5.30)

(5.5.31)

To solve (5.5.31) for 2\°, we first find the ((m+2)xt) matrix V from:

RTv = A

(5.5.32)



because:

vIv = AT(RTR)— 1A

Therefore, in terms of V, (5.5.31) is:

vIiva = 4~ (5.5.33)

The matrix V is then triangularised:

Ry
0

by the multiplication of the orthogonal matrix QVT and (5.5.33) becomes:

RyTRy» = d° (5.5.34)

The vector A’ can now be found by forward-substitutions:

RyTu = d° (5.5.35a)

for vector u and then by back-substitutions:

R}  =u (5.5.35b)
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Once >’ is found, §  can be solved from (5.5.29a) again by forward- and

back-substitutions.

The amount of work involved in finding $° for each sub-problem (or
each iteration) might seem to be very heavy by this approach. However,
we have adopted an updating technique by Gill et al (1972) which only
changes one column of A in every iteration, thus V does not have to be

recalculated from the beginning in each iteration and the triangularization

of which only requires little extra effort. The remaining work all involves

trivial forward- and back-substitutions.

This updating technique utilises the property that if:

[o )
"
mm———
—0 O
s

i.e. the solution to the quadratic programming problem defined by (5.5.21)
has been found, then XA’ corresponding to the t° active constraints are all
positive and there is no violation of the inactive constraints. Should the
jth constraint be violated, i.e. Cj(‘) <{ € we shall set that constraint to be
active by including the jth column of A into A and the corresponding

element of d into d and solve for the new §° and 2\°.

Let Aj denote the jth column of A. The next step in adding a

constraint is to find the corresponding enlarged V matrix. If Aj is always

the last column of the new R, then the new V matrix will also have an extira

new (t+1) column with the rest of the columns unchanged. This new

column of V is given by:
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RTViyy = Aj (5.5.36)

by forward-substitutions.

Once the new V matrix is determined, we shall have to triangularize it.
Let Qv(k'”T be the orthogonal matrix for the triangularization of the old V

matrix, V(k"i), where the superscript in brackets is used to denote the

iteration number and the present iteration is k. If we multiply Qv(k"”T

onto v(k) we shall have:

(k"l) u
Qy(k-)T y(k) = [R" } (5.5.37a)
0 z
where:
ul ) (t+1) :
i ] = Qulk-1)Ty, ., (5.5.37b)
z ) ) (ms-t)

All we have to do now is to rotate the vector z into a vector of zeros and:

Ry(¥) = [nv(k-ﬂ Gu] (5.5.38)

where G is the product of the sequence of Givens rotation matrices

required for the reduction. (5.5.39) is a pictorial illustration when t=3

and m:ss. The characters used here bear the same meaning as those in

(5.5.13) and (5.5.14).



XXXX XXXX XXX XXXX
XXX XXX ANX XXX
XXtu XX XX XX

m m m (5.5.39)
X 0 . .
Xtz X 0 .
X X X 0

The Qv(k") matrix is also updated in the process and stored for use in

the next iteration. Once Rv““) is found, we can proceed to determine X\’

and .

At the end of an ileration if none of the inactive constraints are
violated, but a Lagrange multiplier is negative, we shall release this

consiraint in the next iteration. To release a previously active

constraints, we have to delete a column in F\, hence a column in V and the

corresponding element in d. The effect on Ry when a column of V is

being deleted is that Ry is no longer upper triangular. Again we shall

use a series of Givens rotations to triangularize Ry. (6.5.40) illustrates
how the triangularization is performed when t=s and the constraint
corresponding to the second column of A is being deleted.
XXXX XXXX XXXX XXXX
XXX nmm XXX XXX
XXX Ormm . . XX (5.5.40)
XX XX Om .M
X b X 0

Again Qy is also updated and stored for use in the next iteration.

Should there be more than one violation of the constraints, the one
with the biggest violation will be set active. Similarly, if there are more

than one Lagrange mulliplier being negative, the constraint with the most



negative multiplier will be released. This will be repeated until we find
the ©°, such that ¢’ does not violate the constraints and the Lagrange

multipliers X' are all positive. Then ¥ = ' and:

c = ( c* o+ s*l (5.5.41)

which is the solution to the constrained least-squares problem (5.5.1).
The whole fitting procedures were coded into 12 Fortran 77 subroutines

on an IBM PC-AT. In the next section, we shall report the resulis of

using parametric splines to adapt our predictions systems.

5.6. QUALITY OF THE PREDICTIONS BY PARAMETRIC SPLINE

ADAPTIVE PREDICTION SYSTEMS

Here in this section, we shall present the results of adapting our 9
prediction systems on 7 data sets using parametric spline adaptors. The
number of interior knots (m) we have used is 3 in all the following
examples, i.e. 4 sub-intervals within [0,1]. This number was first chosen
arbitrarily in our experimental fit, using the Nelder-Mead search method, of
an optimally constrained least-squares spline. Results of this have been
published in Chan (1986). Therefore, when we adopt the over-constrained
version, we have chosen to use the same number of knots so that we can

compare the effect of over-constraining the least-squares splines.
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These 3 interior knots are placed within (0,1) such that a roughly
equal number of data points are distributed in each of the 4 sub-intervals.

The reason for doing this is that if the data points are very unevenly

distributed amongst the sub-intervals, the fitted spline might fail to

capture the shape characteristic in a sub-interval with many data, and

oscillates excessively in a sub-interval with few data points.

Considerable effort has been devoted to devising knot placement

strategies in fitting spline functions (see Cox, 1982, for some suggestions).
Here we shall contend that the results we have achieved could possibly be

improved upon, if another strategy for knot placement is used.

On the basis of our results, we found that it has negligible effect on
the predictions when the splines of the parametric spline adaptor are
over-constrained. This is partly due to the fact that introducing the
parameter p has a smoothing effect on the raw data, which makes it less

likely for the constituent functions to oscillate within [0,1] and have

negative gradient.

Table 5.1 summarizes the u-plot and y-plot KS distances before and

after adapting the same examples used in Chapter 4 with a parametric

spline adaptor. Comparing the distances here with those by using a

joined-up adaptor given in Table 4.3, we can see that they are very similar

in terms of their significance levels. In the case of JM, the spline

adaptor has worse u*- and y¥-plot distances for System 3 data. We have

already commented on the fact that on this data set, JM has N equal to the

number of failures seen at various stages. The joined-up adaptor
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DATA

M

BJM

GO

DU L LNHPP LV KL
(n)
u .2049E .1871E .1773E .0982A .1567D .1123A .0982A .1504D .1457D
Sys.1 u¥ .11688B .1197B .1277B .0511A .0794A .0507A .0526A .1027A .1053A
(86) y .1156B .1148B .1190B .0795A .1029A .0904A .0793A .1148B .1173B
y¥ .1109A .1126A .1102A .0852A .0762A .0715A .0853A .0B78A .0916A
u .2604D .2325C .2181C .1518A .2317C .1554A 15184 .2388D .2219C
Sys.2 u¥ .1595A .1665A .1747A .1488A .1421A .1428A .1561A .1305A .1203A
(31) 'y .18584 .1853A .1989B .18B98B .1620A .1772A .1743A .1325A .1451A
y*¥ .1635A .1514A .1629A .1865A .1877B .2087B .1551A .1867A .1947B
u .7038E .3354D .2705B .1B77A .3556D .2556B .1531A .4260E .3908E
Sys.3 u¥ .6939E .2522B .2701B .1067A .1347A .1949A .1067A .2058A .1847A
(18) y .6BOBE .3900E .4445E .2234A .2012A .3075C .2430A .1112A .1135A
y*¥ .6473E .3108D .3101D .1882A .1987A .2015A .1963A .1628A .1497A
u .1711A .2185C .1328A .1143A .1415A .1712A .1211A .1955B .2014B
Sys.4 u¥ .1333A .1576A .1551A .1466A .1905B .1333A .1362A .2199C .2162B
(30) y .4647E .1399A .1989B .3418E .4887E .2709D .2695D .2420D .2010B
y*¥ .4487E .1249A .1788A .4766E .4691E .4480E .4580E .2093B .1747A
u .2924E .3010E .2B12E .2B45E .2B56E ,2853E .2845E .1658A .1731B
Sys.6 u¥ .0787A .0B06A .0850A .0819A .1039A .0812A .0840A .1531A .1210A
(38) y .3969E .3486E .3870E .4017E .4010E .3978E .4026E .2020C .2069C
y* .2708E .2549D .4241E .2818E .3010E .2715E .2764E .2063C .2120C
u .2717E .2713E .2705E .2645E .2596E .2717E .2704E .2382E .2372E
ss3  u¥ .0820B .0822B .0782A .0901B .0916B .0859B .0846B .0B34B .1006C
(173) y .1273E .1379E .1263E .1435E .1835E ,1291E .1300E .0346A .0500A
y¥ .0573A .0693A .0560A .0632A .1016C ,0571A .0557A .0352A .0452A
u .0775A .0726A .0697A .0713A .1270D .0763A .0655A .1039B .1151C
BAe. u* .0731A .0BO9A .0728BA .0826A .0974A .0730A .0707A .0853A .0812A
(112) y .0890A .0787A .0906A .0793A .0744A .0873A .0790A .0673A .0687A
y* .0725A .06B0A .0733A .0690A .0656A .0717A .0704A .0671A .0721A
Table 5.1.

Kolmogorov-Smirnov distance of the u-plot and y-plot

of the respective

prediction systems before and after % adapting (parametric spline

adaptor).

See (4.2.3.6) for the corresponding significance level.
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accumulates a discrete component at the origin and adapts a zero u to that
value. Thus u¥ will have a non-zero value which will help the u*-plot to
become more uniform butl the corresponding predictor is practically useless.
The parametric spline G function, however, is constrained to be gero at the
origin, therefore u¥ will be zero whenever u is zero. Hence, the u¥*- and
y¥-plot KS distances corresponding to the spline adaptor are not better
than those of the joined-up adaptor because of the presence of this group

of zeros. This is also the case for System 4 data.

In the case of L, since N=i occurred 3 times between stages 25 and 27
amongst the 28 predictions on System 3 data, the difference in the KS
distances i8 not as apparent as in the case of JM¥, which has 12
occurrences of N=i amongst the 28 predictions on the same data. But with
System 4 data, the y*-plot KS distance of the spline adapted predictions is

much worse than the corresponding distance of the prediction from a

joined-up adaptor.

In the majority of cases, the two adapting methods have produced very
similar u*- and y*-plot KS distances, with the exception of System 6 and
SS3 data where the spline adaptor has produced even better results.
Thus on the basis of these distances, the spline adaptor seems to be at
least as capable of adapting predictions as the joined-up adaptor, and is
more reliable when a situation like JM on System 3 data occurs.
Furthermore, by using the spline adaptor we no longer have to concern
ourselves with having infinite prequential likelihood when there are zero
failure times in the data, which will be the case if a joined-up adaptor is

used.
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The use of the parametric spline has also removed the internal noise

which is present in a joined-up adaptor. Corresponding to the example

given in Chapter 4, i.e. the joined-up G function for LV¥ on System SS3
data and its derivative in Figure 4.2 and Figure 4.3, the parametric spline
adaptor for the same situation is given in Figure 5.2 and its derivative in
Figure 5.3. We can clearly see the shape of G in Figure 4.2 being
reproduced by the spline without unwarranted oscillation in the middle

gection. The shape of the derivative in Figure 5.3 will be difficult for most

approximating polynomials or functions to reproduce. Since the parametric

spline is made up of two cubic splines, it encompasses a much wider class

of functions and has a unique combination of flexibility and smoothness.

In Chapter 4 we have given, in Tables 4.6 and 4.8, the predicted

median and the prequential likelihood of the raw predictors at selected

stages of System 1 data. We shall now make use of this information and

perform a detailed analysis on the effect of our spline adaptive procedure

on this data set.

From Table 5.2 we can clearly see that the magnitude of predicted
medians from the spline adaptor are very close to those from the joined-up
adaptor (Table 4.7). When compared with the raw medians in Table 4.6, we
can see that the adapted medians are in closer agreement than before. It

is more informalive for the purpose of comparison to plot the raw and

adapted medians against the stage number i. These plots are grouped

under Appendix 4 for ease of comparison here and with the results in the

next Chapter.
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JIM¥

BJM¥*

Go¥*

Mo¥*

pu¥

Stage i L¥ LNHPP¥  Lv¥  KL¥
60 259 259 264 250 250 250 250 255 252
70 321 327 334 309 305 309 309 296 299
80 383 385 394 349 342 349 349 340 342
90 799 797 B12 593 537 557 593 558 553
100 1482 1484 1509 934 824 1003 927 740 715
110 1168 1175 1196 937 840 853 930 790 767
120 968 956 972 919 838 852 913 848 817
130 1641 1611 1638 1188 1058 1110 1181 B4 890
Table 5.2. Predicted median for System 1 data at selected stages

by respective adapted (parametric spline adaptor)
prediction systems.

Stage i JM¥ BIM¥ Go¥* Mo* pu* L¥ LNHPP¥ Lv* KL¥
60 74.155 73.874 74.083 72.820 72.386 72.820 72.820 72.490 72.318
70 142.571 142.383 142.364 141.364 140.875 141.365 141.364 140.812 140.687
g0 216.185 215.896 216.015 214.564 213.785 214.564 214.564 213.847 213.626
90 293.965 293.910 293.915 293.585 293.218 293.084 293.585 293.380 293.282

100 375.727 375.652 375.702 374.648 374.690 375.327 374.726 375.653 376.114
110 454.340 454.367 454.563 451.552 451.466 451.552 451.628 452.615 453.167
120 531.869 532.076 632.311 528.334 527.460 528.150 528.430 528.163 528.625
130 616.966 617.547 617.604 613.415 612.998 612.771 613.475 614.067 614.789
135 662.644 663.210 663.298 658.483 658.035 657.867 658.535 659.846 660.642
Table 5.3. -log prequential likelihood of the adapted

(parametric spline adaptor) prediction systems
at selected stages.
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In Plot A4.l1a, we have the raw predicted medians for System 1 data

from the 9 different raw prediction systems. We can clearly see that after

stage 80 there is wide disagreement amongst several groups of raw
predictions. Roughly we have JM, BJM, GO consistently predicting very

large values, DU, LV and KL consistently predicting very low values and

the remaining systems predicting values in-between. Incidentally, the

u-plot of the first 3 systems lies entirely above the 45°' line and the u-plot

of the last 3 systems lies predominantly below the 45° line. Thus there is

evidence that the first 3 systems are optimistic and the last 3 are

pessimistic.

It is also clear from the median plot that after stage 80 the medians
from JM, BJM, GO and L (not after stage 100 in the last case) become more

noisy than those from LNHPP and MO, and even more so than those from

pU, LV and KL.

Inspecting the PL of the raw predictions at selected stages given in
Table 4.8 in the previous Chapter, it seems that LNHPP and MO are most
likely to be the closest to the truth (these predictions are almost identical

because LNHPP behaved like MO nearly throughout the entire sequence of

predictions). The closeness here is in the sense of the whole distribution

rather than just the median, The median is only a point in the

distribution and two different distributions could have identical medians,

but differ in other distributional aspects, for example in the spread of the

distribution.
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In Plot A4.1b we can see the predicted medians of LV¥, KL*¥ and DU*
have all been adjusted upwards and are now in much closer agreement with
LNHPP¥ and MO¥ than before. The predicted medians of JM¥, BIJM¥ and
GO* after stage 80 are still bigger than the others, but they have all been
adjusted downwards by the adapting process. Evidence exists in the
u¥*-plot to support the observation that JM¥, BJM* and GO¥ are still
optimistic, although less seriously than their raw counterparts. Figure 5.4
is the u-plots of JM predictions on System 1 data before and after
adapting. We can see that the raw u-plot lies entirely above the line of

unit slope. The u¥*-plot is still exhibiling this behaviour but is not as

severe as before.

The switching behaviour of L between JM, MO and itself between stages
80 and 100 is still very visible in the predicted medians of L¥. It is also
vigible that the predicted medians of MO* and LNHPP* are more noisy than
before. The introduction of some noise into the adaptive system is the

cost we have to pay for having to estimate the G.

The prequential likelihood of the adapted prediction at selected stages
are given in Table 5.3. If we compare these with the raw PL in Table 4.8,
we can see that in PL terms, all the adapted predictions are better than
before. It is also fair to say that on the basis of PL, there is little to
choose between the last 6 adaptive systems for this data set. The first 3
adaptive systems have nearly identical and poorer PL. Thus confirming

our observation earlier from the median plot and u¥-plot that these

predictions are still optimistic for this data.
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Among the 6 better systems L¥ has the best PL. But from the median

plot, L¥ has very nosiy predicted medians especially between stages 80 to
100. If we check through the PL of L¥ given in Table 5.3, we can see

that prior to stage 100, the PL of L* is indeed worse than those of DU¥,

MO* and LNHPP* because of the extra noise. This means L¥ has gained

more than the lost ground in the last 35 predictions. This is confirmed in

the median plot, where the LX predictions after stage 100 are indeed much
less noisy than before, because the raw L predictions have switched to

those of MO.

Thus we conclude that this method of adapting has improved the

quality and accuracy of some of the raw predictions on System 1 data. In

the case of good raw predictions like those from MO and LNHPP, this
adapting process has not worsened the quality of these predictions to any

appreciable extent. The price we have to pay for adapting these

predictions, i.e. the introduction of noise into the predictors, is either

insignificant or being out-weighed by the gain from correcting the bias.

The next set of results which we shall analyse is on System 2 data.
From Table 4.4, the raw predictions from MO have the best PL. This is

closely followed by LNHPP because their predictions are again identical

except for those between stages 27 to 35. This is clearly visible from Plot

Ad.2a too.

The behaviour of the predicted medians here is similar to those in

System 1 data. We can see from the median plot that DU, LV and KL

predictions are small compared to the others. They all have a u-plot
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which lies mostly below the 45° line, thus they are pessimistic for this

data. JM, BJM and GO predictions are usually relatively big and all of

them have a u-plot which lies entirely above the 45° line, hence they are
optimistic. The predicted medians from MO and LNHPP lie in between

these two groups, while the medians of L. switched between its limits. On

the basis of the PL, it seems most likely that the MO predictions are

closest to the truth.

The PL of the adapted predictions in Table 5.4 confirmed this

observation because DU* has the best PL amongst all the adapted

predictions and it is clear from Plot A4.2b that its predicted medians are

indeed very close to those of MO’s. The predicted medians of MO* have

become noisier but their locations have not been changed by any

substantial amount.

After stage 35, the adapted medians are in closer agreement than

before. We can see from Plot A4.2a and Plot A4.2b, that the optimistic

predictions have been effectively adapted downwards and the pessimistic

ones being adapted upwards. Before stage 35, the adapted medians of

optimistic systems like JM, BJM and GO have all been adapted upwards.
This behaviour is very difficult to avoid because we have to estimate the

adapting function on the basis of the past u values. Sampling fluctuation

in the u’s could lead to a wrong G being estimated, especially when there

are relatively few u’s available. Therefore it is safer to start adapting

when more u’s become available. Unfortunately there is limitation to this

strategy in practice because the length of the data might not permit us to

do so.
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DATA (n)  JM¥ BJM* Go¥* MO* pu¥ L¥ LNHPP* Lv¥ KL¥
Sys.1

(86) 662.264 663.210 663.298 658.489 658.035 657.867 658.535 6539.846 660.642
Sys.2

(31) 282.137 283.7B6 284.635 279.330 278.943 280.247 281.210 279.959 281.042
Sys.3

(18) I 175.099 174.463 166.624 165.604 o 167.892 164.830 166.727
Sys.4 )

(30 ) 238.166 241.809 242.592 251.467 o 244.770 238.672 235.982
Svs.b

(38) 200.288 196.536 200.223 198.885 197.797 199.380 199.241 194.352 193.943

SS3

(173) 2210.49 2211.47 2210.43 2210.68 2213.09 2211.21

BAe

2211.03 2214.06 2216.80

(112) 644.116 643.596 644.290 643.457 643.189 644.208 644.042 643.459 643.761

Table 5.4. -log prequential likelihood of the respective adapted
(parametric spline adaptor) prediction systems.
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A common feature in those cases where adapting has improved the
predictions is that they all have good y-plot and poor u-plot. For MO and
LNHPP, adapting has not brought about any improvement because their
u-plots are already very good in the first place. In the latter case, the

PL has even gone slightly worse. Nonetheless, the adapting procedure

does improve some of the predictions on this data set, especially at the

later stages and has brought them into closer agreement.

Looking at the u-plot and y-plot KS distances of System 3 data in

Table 5.1 one would immediately expect DU, LV and KL to be the most

suitable candidates for adapting. Indeed, the PL of these adapted

predictions are all better than before. The raw MO and LNHPP predictions

are very good in the first place and adapting them has led to worse PL.

In the cases of JM and L we have N=i occurring to both of them and
adapting cannot change the degenerate nature of these raw predictions.
In the remaining cases of BJM and GO, their y-plots are very poor which
means the trend in the data has not been captured adequately by these
raw predictions. In fact the y-plots are slightly reverse s-shaped: the
early section of the plot lies above and the later section lies below the 45°
line. This means the early u’s are consistently smaller than the later
ones. Therefore, the u-plots are non-uniform not only because of being

biased, but also because of an ill-captured trend, and adapting cannot be

expected to improve these predictions.

From the median plots ~ Plot A4.3a and Plot A4.3b - we can see that
the raw predicted medians corresponding to JM, BJM, GO and L are

extremely noisy. Adapting has little effect on the predicted medians from



- 150 -

these systems. It is clear that the predicted medians from MO* and
LNHPP* are more noisy than before and their PL’s have become worse.
The predicted medians from DU¥*, LV¥, and KL¥, however, are nearer to
those from MO, and all of these 4 sets of predictions have very close PL
values. Therefore, we conclude that these 4 sets of predictions are most
likely to be closest to the truth for this data set. In the other cases, the
raw predictions are either degenerate or have trend in the y-plots, which

cannot be improved upon by adapting.

For System 4 data, we can see from Table 4.1 that the y-plot distance
of most of the raw predictions are poor. Even in the case of BJM and GO
where the distance is insignificant, the y-plots have clear visible trend.
Figure 5.5 contains the y-plots of these two sets of predictions. We can
clearly see that the y-plot in either case is broken at two points: one

near the middle and one near the end. This is also very clear from the

predicted medians in Plot A4.4a. Furthermore, the y-plots are slightly

reverse s-shaped.

Given these observations, we cannot expect the adapting procedure to
be able to improve upon these predictions. Indeed, the u®*-plot distance
is even worse than before for DU* and LV*, In the case of GO*, although
the u¥-plot is better, the PL has deteriorated, which must be due to the
systematic bias in the raw predictions. The only case where there is a
gain in PL is DU¥, but this PL value is still very much lower than those of
LV and KL. Incidentally, LV¥ and KL* have noiser predicted medians
which are of similar magnitude to the raw medians. This accounts for the

worse PL after LV and KL are adapted. Thus we conclude that our
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adapting approach cannot improve the worse raw predictions for this data

because they themselves are not only being biased. It seems that the

exponential failure time is unsuitable for this data set. The Pareto

distribution of LV and KL, which has more likelihood for extreme values,

geems to be much better.

On checking the y-plot distances of the raw predictions on System 6
data, one might think immediately that this would be like the previous

example because all the y-plot distances are very poor. But if we examine

the y-plots in more detail, we will find that the poor y-plot is due to a

very large observation tgg (refer to Appendix 3 for a listing of the data).

This cause of a poor y-plot is quite different from the systematic bias

we have seen in the previous data set. Let us consider the example of

adapting the predictions with a reverse s-shaped y-plot. First of all, we

shall assume that the predictions are optimistic at -the early stages and

pessimistic later. Therefore, during the early stages the G function will

lie mostly above the 45° line because of the optmistic (small) u’s seen so
far. When the change in sysatematic bias occurs, the G will be of the

wrong shape until there are sufficient pessimistic (big) u’s to influence &

to be below the 45°' line. It is conceivable that G might still be wrong at

the end of the prediction sequence because the u’s simply averaged out

and together they look perfectly uniform. As a result, the adapted

predictions are clearly wrong. This situation is observed in System 4

data where the u-plots are all very good but the y-plots have visible

trend.
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Therefore our approach of estimating G in the light of past u’s would
work best when the G functions from stage to stage are stationary, i.e. the

shape of G should not vary from one stage to another. Should the G’s be

non-stationary, the fact that we know its shape is changing does not

enable us to estimate it, because of the lack of information concerning its
new shape. Thus in practice, our requirement of a good y-plot is not

strictly to have a non-significant KS distance, but an absence of trend in

the y-plot itself. If this is accompanied by a steady shaped and

non-uniform u-plot, we can expect the adaptive procedure to improve the

raw predictions.

In the case of System 6, where the poor y-plot is caused by an

exceptionally large inter-failure time, the effect on the shape of the u-plot

might not be significant. In this particular case, the effect of this data

on the shape of the adaptor is further diminished because this large value
is very near the end of the data siream, which means there are already

quite a number of u’s in the basis for the estimation of G.

1f we refer to the uf-plot KS distances in Table 5.1, we will find all
the distances are now dramaticaly improved to be non-significant even at

20%, the y*-plot distances are still poor in general, may be except LV and

KL and their adapted predictions, because of the large inter-failure time,

teo

The PL has agreed with the KS distances that the adapted predictions
are better except for LV and KL, which have the best PL amongst all raw

and adapted predictions. Although the PL of LV* and KL* are worse than



their raw counterpartis, they are still the best amongst all adapted
predictions. The u*-plot for LV* and KL* are mainly above the 45° line
which indicates that these adapted predictions are optimistic for this data.
This plus the extra noise, which is evident in the median plot (Plot A4.5b),
in the adapted predictions is responsible for the deterioration in the PL
after adapting. As for the other adapted predictions, we can see from
Plot A4.5a and Plot A4.5b that they are now in remarkable agreement with
the raw predicted medians of LV and KL. Once again, the adapting

procedure has improved the bimsed predictions for this data.

The next data sei we shall analyse ie System SS3 which is also the
biggest data set in our study. The u-plot and y-plot distances are very
poor for the firsi seven sets of raw predictions. The y-plot for the last

two sequences of predictions are very good, but their u-plots are poor.

The predicted medians in Plot A4.6a revealed exireme disagreement
between these two groups of predictors. The first group has extremely
large median values and those from the latter group are much smaller.
Examining the shape of the u-plots shows that the first group of
predictions are very optmistic and the latter pessimistic although to a

lesser extent.

Plot A4.6b shows the adapted medians. It is very clear that the
pessimistic predictions are adapted upwards, at the cost of much more
noise in the new medians, and the optimistic ones are adapted downwards
considerably, also at a cost of having more noise in the new medians as

evident in the median plot. However, there is now much closer agreement

among these adapted predictions than before.
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The u*-plot and y*-plot distances have improved all round. The gain
in PL is most significant in the first group of predictors all of which has a
prequential likelihood ratio of around e®® against their raw counterparts
over these 173 predictions. The gain by LV¥ and KL* is appreciable but
less substantial than the firast group of predictors. In fact, the PL of LV¥
and KL¥ turned out to be worse than the others, most likely caused by the
extra noise being introduced as evident in the adapted median plot. But

still it is incredible that their PL should be so close after 173 predictions.

To demonstrate the extent of bias in these predictions being removed,
Figure 5.6 and Figure 5.7 are the u-plots for JM and LV before and after
adapting. We can see in both cases that the shape of the u-plot has been
dramatically changed and both u*-plots are much more uniform than before.

Thus we conclude that the adapting procedure has been very successful in

improving the preditions on this data set.

Finally, we shall look at the effect of adapting the BAe data. The

u-plot and y-plot distances for this data are all good, may be with the

exception of the u-plot of DU. Therefore, we cannot expect to gain much

by adapting, at least in the cases of JM, BJM, GO, MO, L and LNHPP.
Another reason for not expecting to gain anything by adapting is that the
PL for all these raw predictions are incredibly close after 112 predictions,
and we have yet to succeed in improving upon a set of predictions with

good u-plot and y-plot and relatively good PL by adapting.

Although the u*-plot distances showed improvement in the cases of DU,

LV and KL, the PL registered no gain for any of the adapted
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predictions.  If we compare the predicted medians in Plot A4.7a and Plot
A4.7b, we can see that the adapted medians, although in closer agreement
now, are also noiser than before. The magnitudes of the medians have not
been changed in any significant way, but those of DU¥*, LV¥ and KL* have
fluctuated above their raw predictions. Thus we conclude that since the
bias in the raw predictions here is not serious, adapting has increased the
noise and produced worse (more noisy) predictions. But in return we now
have remarkable agreement amongst all the adapted predictions, as evident

in Plot A4.7b.
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HAPTER 6

SOFTWARE RELIABILITY PREDICTION SYSTEMS WITH NON-PARAMETRIC RATE

ESTIMATES AND THE ANALYSIS OF THEIR PERFORMANCE

6.1. INTRODUCTION

A major criticism of conventional software reliability models is that they
are highly parameterized. The evolution of the failure rate of a program

is highly structured through the modelling assumptions underlying the

model being used.

Miller (1986) found that the rate function of mosi existing software
reliability models has the Qw property. Based on this
observation, Miller and Sofer (1986a) formulated a non-parametric approach

to estimate the failure rate of a program. Their basic assumption is that

the failure rate should be completely monotone up to a specified order d.
They found that the resulting problem of least-squares regression under
order restrictions warrants a careful method of solution because the

constraint matrix is very ill-conditioned (Miller and Sofer, 1986b).

They have investigated the performance of their method and a number
of exponential models based on data simulated from the latter (Miller and
Sofer, 1986a). Here we shall use the non-parametiric rates estimated by
their method to make predictions on the 7 real data sets. These
predictions are then adapted with our parametric spline adaptor. The

quality of these predictions are analysed and compared with those obtained

in the previous Chapter. Another non-parametric approach to estimate
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the failure rate is formulated in Appendix 2. Constraints based on
empirical observation of the evolution of the failure rate of a program

undergoing debugging can also be imposed.

6.2. ESTIMATION OF THE COMPLETELY MONOTONE RATES

Let N(T) denote the number of failures observed in [0,7] and M(T) =
E[N(T)] be the expected number. The rate function of the failure process

is defined as:
_d
r(T) = T M(T) for T30 (6.2.1)

Note that T is the elapsed time.

The rate function is said to be completely monotone if and only if it

possesses derivates of all order (j » 0) and

(—1)‘i -:ir"_ r(t) >0 for 7> 0 (6.2.2)
Miller (1986) has found that the rate functions of wide classes of
exponential models (including all the exponential models we have used)
possess this complete monotone property. A detailed exposition can be
found in his original paper. On the basis of this observation, the
complete monotone requirement is being imposed on the non-parametric

estimate of the failure rate of a program.
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Instead of using a completely monotone function, they have formulated
the problem in terms of a completely monotone sequence. This means that

the resulting rate function is piecewise constant. We shall briefly go

through how this is done.

Consider a set of software failure data which consists of n failures in
{0,T]. The elapsed time at the ith failure is denoted by T with T4 = 0.
(0,T) is then separated into k equal intervals: let &s = T/k and & = ids
for i = 0,Tyu0sk.

Now the function corresponding to a completely monotone sequence of
rates {rj) defined over the partition of [0, ] in steps of As will be of the

form:

r(t) = rj if 854 € 7T <84 for i = 1,2,

..... (6.2.3)
with the set of ri's satisfying:
(-1)J Adr; » 0 for i » j+1 (6.2.4)
and j > 0
where Al is the jth backward difference operator.
A%r; = rj; )
alry = 1y - Ty
nd _ (6.2.5)
airy = 8974 ry - ATy for § > 1
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The estimation problem is to find a sequence of rate estimates ({r;}

which in some sense best fits the available data and also satisfies the

constraints (6.2.4).

In practice, the number of future intervals is restricted to 2 (rather
than ») and the order of the difference constraints j is restricted to d

(rather than ®). Thus the constraints (6.2.4) become:

(-1)JaJr; 3 0 for k + + 1 (6.2.6)

The rates are estimated as follows:

1. The expected number of failures is constructed as a continuous

function on the basis of the data:

( i+ (T-7)/(Tjeq — T3)  if T3 €T € Ti4g
. [ for i=0,...n-1
M(T) = :

L n+0.5(T-T)/(T-7Tp) if T, T(T.

Note that there is half a failure being accounted for should the period

[0,T] not end with a failure.

2. For each of the k intervals, the raw data is defined as:

ri = (M(sj) - M(sj_y))/88 i=1,2,...,k (6.2.7)

3. The fitted rates ({r;] minimise the weighted sum of squared

deviations which is:
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D(r,r) = Lwi(r; - ry)?2
i=1

gsubject to the constraints in (6.2.6) with specified values of ¢ and d.

6.3. PREDICTION SYSTEMS WITH MONOTONE RATE ESTIMATES

Miller and Sofer (1986a) compare the estimated with the actual rates
because the data are being simulated and the truth is known. In our
case, such a direct comparison is not possible because the true state of
nature underlying any of the real data sets is not known to us. Our
approach is to define a prediction system which utilises the non-parametric
rate estimates to predict the current reliability of the program, just as the
prediction systems in the last Chapter. The quality of these predictions
are then analysed using the techniques of Chapter 4. This provides us

with some indication concerning the practical value of such non-parametric

estimates.

The 3 components of such a prediction system are:

1. At stage i, after we have seen i failures, we assume the time to

the next failure of the program to be exponentially distributed.

2. The data available up to and including the ith failure will be used

to estimate a completely monotone rate sequence with difference

constraintsof order d (=1,2,3 and 4).
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3. The kth member of the sequence estimated in (2) is taken as the

rate of the failure time distribution in (1) to make predictions

Although the success of such a prediction system will be a joint effort
of all components rather than just (2) alone, it is doubtful that the
predictions emanating from such a system could be of good quality when
the estimated rates are wrong. Thus the analysis of the quality of these
.predictions should be a good guide to the quality of the rate estimates for
a given data set. The analysis could also be viewed as simply forming a
basis of comparison between these new predictions and those in the

previous Chapter.

We are grateful to Miller and Sofer for providing us with the software
for estimating the rates in our examples. For each of the 7 data sets, a
gsequence of predictions is generated for each of 1 to 4 orders of difference
constraints. We shall use dDIF to denote the pfediction system with
exponential failure times and completely monotone rate estimates subject to
d difference constraints. At each stage the number of intervals k is 30
which means the dimension of the least-squares problem is always 30. The

number of intervals into the future 2 is always fixed at 5 and unit weights

are used.

6.4. ANALYSIS OF THE QUALITY OF THE PREDICTIONS

USING MONOTONE RATE ESTIMATES

The first set of results we shall look at is on System 1 data. From

Table 6.1 the KS distances of the u-plot for 2DIF, 3DIF and 4DIF are all
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Data (n) IDIF 2DIF 3DIF 4D1F

u .1689D .0870A .0784A .0821A

Sys.1 u* .0715A .0601A .0764A .0780A
(86) y .0939A .1144B .1243B .1251B
y¥ .0815A .1165B .1346C .1360C

u .1392A .1220A .1184A .1215A

Sys.2 u* .12224 .14464 . 13944 .13924A
(31) y .1417A .1783A .1956B .1960B
v¥ .1652A .2192¢C .2382D .2372¢C

u .1542A .1978A .1904A .1747A

Sys.3 u¥ .0901A .0891A .0919A .0919A
(18) y .1968A . 18484 .1753A .18184
y¥ .1744A .1650A .1531A .1552A

u .1446A .1245A .1527A .1521A

Sys.4 u* .1606A .1694A .1180A .1068A
(30) y .5028E .4352E .4291E .4307E
v* .4674F .4493E .4402E .4421E

u . 3308F .2774E .2769E .2769E

Sys.6 u¥ .09934 .0922A .1061A .1012A
(38) y .3164E .4007E .4009E .4028E
v¥ .2259D .4311E .4313E .4311F

u .2771F. .2612E .2632F .2632E

SS3 u¥ .0698A .0899B .0908B .0882B
(173) v .1223D JA777E .1796E .1780E
y¥ .0657A .0977C .0988C .0978C

u .1614E .0891A .0670A .0651A

BAc. u¥ .1060B .07324A .0685A . 06894
(112) y .0625A .0831A .0955A .0951A
y¥ .0461A .0772A .0818A .0818A

Table 6.1. Kolmogorov-Smirnov distance of the u-plot and y-plot
of the exponential monotone rate prediction systems
before and after ¥ adapting (parametric spline adaptor).
See (4.2.3.6) for the corresponding significance level.
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very good and their y-plot distances are also good. But the u-plot
distance for 1DIF is rather poor and the plot itself lies entirely above the

45° line, which indicates that these predictions are optimistic for this data.

Incidentally, this coincides with the result of the simulation study by

Miller and Sofer (1986a) that the current failure rate estimate with 1

difference constirainis has large negative bias.

The PL in Table 6.2 also suggests that the predictions from IDIF are

inferior to those from the other 3 prediction systems. Since the y-plot in

the case of IDIF is very good, we can use our parametric spline adapting
procedure to improve these predictions. The y-plot distances show that
2DIF captures the irend better than the higher difference predictions,

which explains its slightly better PL.

Indeed, the KS distances of the u*-plot have improved in all 4 cases.
The most significant improvement being IDIF: from D to A. The PL in
Table 6.3. agrees that the predictions of IDIF% are better than those from

IDIF, but they are still not better than the predictions from 2DIF, 3DIF or
4DIF.

The reason for this will be apparent if we refer to the raw medians
plotted in Plot Ad.lc. From the median plot, we can see that the IDIF

predicted medians are exiremely noisy. Each of the peaks corresponds to

a small estimated rate in the predictive distribution. We have already

established that the predictions are optimistic. But this optimism is also

because of the current failure rate estimated with 1 difference constraints

is highly affected by the last data point.
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Data (n) 1DIF 2DIF 3DIF 4DIF
Sys.1 (86) 668.907 661.425 662.233 662.601
Sys.2 (31) 279.498 282.102 281.834 282.136
Sys.3 (18) 164.739 165.832 166.929 167.001
Sys.4 (30) 245.590 249.413 308.927 281.357
Sys.6 (38) 207.685 206.312 206.617 206.864
sS3 (173) 2298.23 2306. 31 2306. 97 2306.95
BAe (112) 642.590 638.912 639.115 639.018

Table 6.2. -log prequential likelihood of the prediction systems

with monotone failure rate and exponential failure time
distribution.

Data (n) 1DIFX* 2DIF* 3DIF¥ 4D1F¥
Sys.1 (86) 664 .599 658.714 661.509 661.812
Sys.2 (31) 280.346 282.716 283.403 283.439
Sys.3 (18) 167.792 167.542 167.470 168.313
Sys.4 (30) 250.392 250.937 309.769 282.012
Sys.6 (38) 195.304 199.207 198.508 198.399
§S3 (173) 2211.27 2213.75 2214.19 2214.00
BAe (112) 645.417 643.987 645.009 644.969

Table 6.3. -log prequential likelihood of the adapted
(parametric spline adaptor) exponential monotone rate
prediction systems.
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The least-squares monotone rate estimation subject to 1 difference
consiraints is identical to isotonic regression (Barlow et al, 1972), which has
been applied to estimating system reliability by Campbell and Ott (1979).
There is a simple algorithm for fitting these rates: they are the ;lopes of
the smallest concave envelope (least concave majorant, Barlow et al, 1972) of
the graph of the cumulative sum of }iAs against s;, where }i' As and s
are as defined in section 6.2. Because this cumulative sum is a step
function, the envelope will be made up of a series of straight lines with
positive but successively decreasing slopes. If the last data ;’k happens
to be relatively small, then the corresponding piece of straight line in the
envilope is likely to be flat, which means the current failure rate will also
be small. When f'k is not relatively small, the corresponding piece of
straight line in the envelope might be joining up more than 1 interval,
thus the current failure rate might be smoothed and no longer be too

small. As a result, we see the peaks in the median plot corresponding to

the first situation which we have described above.

This kind of bias is not consistent in the sense we have described in
the last Chapter because between two peaks the estimated rates might not
be as optimistic. @ Thus, even though the u-plot of IDIF lies entirely above
the 45° line and the medians of IDIF* are being adapted downwards, as
evident in Plot A4.1d, there is still considerable noise in them. Hence the

PL is worse than the other less noisy predictions.

Note that by imposing 1 more difference constraint the raw medians are
much smoother than those of IDIF. Thie is clearly visible in Plot A4.lc.
Another feature which is also apparent in Plot A4.lc is that the predicted
medians of IDIF, 3DIF and 4DIF are very close, which implies that the

estimated failure rate in each of these cases is also close.
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This again coincides with the result of the simulation study of Miller
and Sofer (1986a) that for data simulated from moderate growth models, the

esltimates are not improved as the order of the difference restrictions

increases beyond 2.

The PL of 2DIF¥ has shown improvement over the raw 2DIF predictions.
Indeed, the u®*-plot distance is even smaller than before even though the

u-plot is already very good. We can see from Plot A4.1d that the medians

of 2DIF¥ are adapted slightly upwards.

For the remaining two sets of adaptled predictions the improvement in
PL is small, probably due to the trend in these adapted predictions being

marginally worse than before as evident in their y*-plot distances.

If we compare these non-parametric predictions with those in the
previous Chapters (Tables 4.3, 5.1 and 5.3) we will find that L* has the
smallest u¥- and y*-plot distances and the highest PL. MO* has the 2nd

best distances and PL, which is followed very closely by LNHPP¥ in 3rd

place with 2DIF* in 4th. The differences between their PL’s are small.

All of them have very good u-plot distances, but 2DIF* has a slightly
worse y-plot distance with a significance level of between 10 and 20%. It
we examine Plots Ad.lb and A4.ld, the worse y*-plot in the case of 2DIF¥ is

probably due to the predictions between stages 100 to around 127: the

predicted medians from 2DIF* are noticeably smaller than those for the 3

better systems.

On comparing the median plots of the raw prediction systems, Plots

A4.1a and A.4.lc, we observed the following features:
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a) The predicled medians from DIF's with 2 or more difference

constraints which are bigger than the medians of MO, behaved very

gimilarly to the medians from L.

b) The predicted medians from DIF’s with 2 or more difference

consirainis are nearly always bounded above by those from JM and

below by those from DU.

From Plot Ad.la we can clearly see a space between the predicted
medians of MO and DU. We postulate that if we would have used a

prediction system with a Generalised Power Law NHPP (Miller, 1986) which

has a rate function:
-1
X(T) = AB (B + T) (6.4.1)

the predicted medians for this data from this prediction system (GP) will lie
between those from MO and DU because:

B0

Lt G(»,%,B) -» MO (€,B)
A0, B0

AS-E (6.4.2)

and

Lt G()osoﬁ) -+ HPP (X)
o=l

in an obvious notation.
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We conjecture that the predicted medians from GP which are between
those from MO and DU will be very close to those from 2DIF, 3DIF and 4DIF
which lie below the medians from MO; specifically after stage 100 of this

data set.

If this is indeed the case, it would provide more support for this
non-parametric approach from the point of view of model flexibility because
by using 1 such prediction system (with d ) 2) we are in effect using a

meta-system consisting of 5 systems, namely JM(GO), L{LNHPP), MO, GP and

DU.

However, from a prediction point of view, a prediction system with a
more flexible model does not guarantee to produce better predictions. For
this particular data set MO and LNHPP are better than 2DIF on the basis of
PL; although 2DIF has a smaller u-plot distance, the y-plot distance is

gmaller in the case of MO and LNHPP.

Nonetheless, if we can achieve high flexibility with relatively relaxed
assumptions, it is certainly an advantage. This type of non-parametric

approach deserves further investigation.

The next set of results we shall look at is for System 2 data. On the
basis of the u-plot distances in Table 6.1, the predictions from the
non-parametric rate prediction systems are all very good. From Plot A4.2c
we can see that the predicted medians from 2DIF, 3DIF and 4DIF are very
close indeed. Those medians from 1DIF are slightly bigger than the others

up to stage 28 and become much bigger and noisier after stage 4l.
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However, the PL in Table 6.2 while confirming that 2DIF, 3DIF and 4DIF
are indeed similar, suggests that IDIF is better than the others. If we
refer to Appendix 3 for the listing of the data, we will find that the
inter-failure times are occasionally very large, for example, t43 and those
near the end of the data. This could be the main reason why even
though the predictions from 1DIF are noisier than the others, its PL is still
better because it captured the trend in the data better than the others.
This is evident from the y-plot distances where IDIF’s is the smallest
amongst all 4. However, it seems that IDIF is performing better here by

coincidence: its known optimistic bias is associated with an increase in the

t’s.

Because the u-ploits are already good, it seems unlikely that these
predictions can be improved to any appreciable extent, if at all, by
adapting. In fact by adapting these predictions, the resulting u¥-plot
distances have gone worse in all but one case. In the case of IDIF¥, the
u¥-plot distance is smaller than that of IDIF but the y*-plot distance is
worse, and as a result the PL of IDIF® ia slightly worse than the PL of
IDIF. In all the remaining cases both the y*-plot distance and the PL

have worsened. A possible reason for no improvement here is that the

raw predictions are noisy in the first place which cannot be improved

simply by adapting.

If we compare these predictions with those in the previous Chapter we
will find, on the basis of PL, that DU¥ is the best, followed by MO* with
IDIF in 3rd place. The differences between these PL's are very small

indeed. However, on the basis of the u- and y- plot KS distances, IDIF
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is the best. The worst PL in the case of IDIF is probably caused by the
noise in its predictions which we can clearly see by comparing the medians

in Plots A4.2b and A.4.2c.

Finally, if we compare Plot A4.2a with Plot A4.2c, we will find that the
medians from dDIF with d > 2 are again bounded by those from JM and DU.
This time the DIF medians are close to those from LNHPP which are greater

than the MO medians. Their PL are also very close.

Plot A4.3c shows that the predicted medians for System 3 dala are in
close agreement amongst the 4 non-parametric rate prediction systems. The

u- and y-plot distances are very good in all cases. According to the PL,

IDIF has produced the best predictions for this data set.

Since the u-plots are already very good, we cannot expect to improve
these predictions further by adapting. Although the u*- and y*-plot
distances are even betier after we have adapted these predictions, the PL
disagrees that they are better than before. If we check the median plots
we can see quite clearly that the adapted medians are more noisy than
before: the peaks are more pronounced in all cases. Once again the
non-parametric rate prediction systems are performing well on this data set

and adapting does not improve the raw predictions.

We have seen in the previous Chapter that some prediction systems
performed rather poorly on this data set (JM, L). We can see from Plot
A4.3a that the predicted medians from a number of prediction systems are

extremely noisy. Surprisingly, however, the predicted medians from the
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non-parametric rate prediction systems are not as noisy, they are in fact
behaving similar to those from LNHPP. Overall, the predictions with the
best PL for this data set are from MO, closely followed by IDIF and LV*.
The noise in the IDIF predictions is probably the reason why its PL is not

better than MO’s even though it has better u- and y-plot KS distances.

In the previous Chapter, when we analyse the predictions on System 4
data, we have found trend to be present in the y-plots of the parametric
prediction systems with exponential failure time distribution. This
situation is similar with the predictions from the non-parametric rate
prediction systems here. We can see from Table 6.1 that the u-plot
distances are all very good, but the y-plot distances are all extremely

poor.

The PL for 3DIF is particularly poor because its estimated current
failure rate at stage 51 is extremely small after seeing the exceptionally
large inter-failure time tg,. 4DIF behaved similarly at stage 51 but not as

extreme as 3DIF, hence the PL is better than 3DIF yet noticeably worse
than IDIF and 2DIF.

Under these circumstances, we cannot expect to be able to improve
these predictions by adapting. Indeed, the PL in Table 6.3 confirms our
belief: the PL of IDIF*¥ and 2DIF* are worse than before.  Overall, the

best predictions for this data set come from LV and KL with the Pareto

failure time distribution.
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From Table 6.1 we can see that the u- and y-plot distances for the
predictions of System 6 data are all very poor. We have already
commented on the cause of these poor y-plots in the previous Chapter:
this is due to an exceptionally large inter-failure time tgg. The u-plot in
all cases lies entirely above the 45° line. The level of significance in all

the u-plot distances indicates that the optimistic bias is very severe.

After these predictions have been adapted, we find the u*-plots to
have improved considerably in all cases. The y¥*-plots are still poor

because of the large inter-failure time tggq,

The PL’s in Table 6.2 and 6.3 suggest that all the adapted predictions
have improved over their raw counterparts, of which IDIF* has improved

most significantly and has the highest PL amongst all 4 sets of adapted

predictions.

Comparing Plot A4.5c with Plot A4.5d, we can see that all the adapted
medians are being adapted downwards. The medians from IDIF* are still

the noisiest amongst the adapted medians, although the range of values is

smaller than those from IDIF.

1f we compare the raw medians here with those in the previous
Chapter, we will find that the predictions from dDIF with d » 2 are again
behaving very similarly to those from LNHPP. After they have been
adapted, we can see from Plots A4.5b and A4.5d that the medians from
dDIF¥ with d ) 2 are incredibly close to the medians from those adapted

parametric prediction systems with exponential failure time distribution.

This agreement is also observed in their PL’s.
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Of all the predictions being made on this data set, those from LV and

KL are still the best in PL terms. IDIF* has the 3rd highest PL, the

noise in its predictions has reflected the noise in this data. Again the
Pareto distribution in LV and KL seems to be most suitable for data with

exceptionally large or small values.

For System SS3 data, the u-plot distances in Table 6.1 are poor for all
the predictions. The PL’s in Table 6.2 prefer the IDIF predictions for this
data set, probably because of its better trend capturing as evident in the
y-plot distances. The good performance of IDIF here seems to be again
coincidental and similar to the situation of System 2 data: its optimistic bias
is matched by an increase in the t’s. We can see from Plots A4.6a and

A4.6c that after stage 220 there is a rapid increase in all the predicted

medians.

The u-plot for IDIF lies entirely above the line of unit slope and is
extremely non-uniform. The u-plots in the other cases also lie
predominantly above the 45° line and are very non-uniform. Thus it

seems adapting can improve these predictions.

Indeed we see quite dramatic improvement in all the adapted
predictions. The u®¥- and y*-plot distances are improved in all cases, the

best being IDIF¥ which are now insignificant even at 20%.

Plot A4.6c reveals that there is remarkably little difference amongst the
raw medians before stage 220. Those from IDIF are much bigger and

noisier after this stage. After they have been adapted, we can see from
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Plot A4.6d that all the medians are now smaller than before. Those from

IDIF* are still noisier and bigger than the other adapted medians after

stage 220, but seems to be less seriously so than before.

According to the PL in Table 6.3, IDIF* is the best with the other
adapted predictions trailing closely behind. The improvemeni in PL
through adapting is very substantial in all cases. The PLR of IDIF*

against IDIF in nearly e®7, which clearly rejects IDIF for this data set.

In the previous Chapter, we have achieved very similar improvement by
adapting the parametric predictions on this data set. Pooling all the
results together, we find that the PL of IDIF* is very close to those better
predictions of JM¥, GO¥, MO¥, L¥, and LNHPP*, while the PL of dDIF* with

d ) 2 is close to those of DU* and LV¥,

I1f we compare the raw medians in Plot A4.6a and Plot A4.6c, they are
not as closely behaving as in the previously analysed data sets. We can
see from the raw medians that the trend is decreasing before stage 220.
In the case of IDIF, we can see its predicted medians are quite different
from the other raw medians depicted in Plot A4.6a. But after they have
been adapted, the IDIF* medians are incredibly close to the medians from

those adapted parametric systems with very similar PL.

Finally, we shall investigate the performance of the non-parametric rate
prediction systems on BAe data. The u- and y-plot KS distances in Table
6.1 are very good for dDIF with d 3 2. The u-plot for IDIF is very poor

and lies entirely above the 45' line, which seems to be a good candidate

for adapting.
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Indeed the KS distance of the u*-plot for IDIF*¥ has improved.

However, the PL's in Table 6.2 and 6.3 dismiss any improvement through

adapting in all 4 cases. It is not surprising that the PL should register

no gain if we adapt predictions which are already good. But in the case

of IDIF, we would expect the adapted predictions to be better.

1f we refer to Plot A4.7c for the IDIF medians, we will find that they

are extremely noisy and ‘spiky’ like those in System 1 data. Although the

Jocation of the IDIF* medians is in close agreement with that of the better

predictions, they are even more noisy than the raw medians, as we can see

from Plot A4.7d. Thus the PL becomes smaller because the predictions

from IDIF* are very noisy.

In the previous Chapter, we also find that the raw parametric

predictions are generally good and cannot be improved further by

adapting.  When we compare the raw medians in Plot A4.7a and Plot Ad.7c,

we find that the medians from dDIF with d 3 2 are not behaving closely to

those from L or LNHPP, even though they seem to be once again bounded

by the JM and DU medians. The DIF medians are visibly more noisy and

this extra noise is likely to be the reason why the PL for dDIF with d » 2

are worse than the PL of the raw parametric prediction systems with the

only exception of DU.

As for the adapted predictions, we can see from Plots A4.7b and A.47d

that the medians from dDIF* (d » 2) are now very close to those from the

adapted parametric prediction systems. Furthermore, their PL's also show

remarkable agreement.
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CHAPTER 7

SUMMARY AND CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES

7.1. SUMMARY AND CONCLUSIONS

We have presented two numerical methods for the minimisation of
univariate and bivariate functions with bound restrictions on the variables.
According to the numerical results we have obtained, these methods have
proved to be both efficient and reliable for determining the maximum

likelihood estimate of the unknown parameters in the 7 software reliability

models in this study.

The success of our methods is also due to the two preliminary steps

which we have taken:

1. Reduce the number of variables in the minimisation problem and

optimise over a lower dimensional space.

2. Transform the variables in the minimisation problem so as to remove

their constraints. We believe that the square transformation we have used
in our examples might also have contributed to the efficiency of our
methods because the shape of the objective function after such a

transformation will be more curved and hence more suited to the

minimisation methods.
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These parameters are then wused in the respective predictive
distributions to predict the current reliability of a program. We argued
that since our aim is to predict, the only sensible way of assessing our

success is by a direct analysis of the quality of these predictions.

This is done by using:

1. The prequential likelihood as a global measure of the goodness of

the predictions.

2. The u-plot procedure to check the biasedness in the predictions.

3. The y-plot procedure to check whether the predictions have

captured the trend in the data adequately.

4. The predicted median plot to indicate the level of noise in the

predictions.

Our ability to measure the quality of the predictions also enables us to

make use of the information concerning past prediction error to correct the

future predictions on the same data. A naive approach based on a

joined-up adaptor can produce good probability predictions but at the same

 time introduces a lot of internal noise into the adapted predictors. As a

result, we are unable to use PL {o analyse the success of the adaptive

procedure.
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By using a smooth adaptor, based on a parametric spline, we have
avoided the introduction of internal noise into the adapted predictors and

are able to assess the effect of adapting. This is done by analysing the

quality of the predictions before and after adapting, and comparing the

results of the analyses.

On the basis of our 7 data sets and 9 different predictions systems we

conclude that:
1. Adapting is most effective if the bias is consistent.

2. In order to have improved adapted predictions, it is not necessary
to have a good y-plot to ensure that trend in the data is well
captured. We have encountered situations where the y-plot is poor,

maybe due to one or two exceptionally large observations, but their

adapted predictions are improved. However, we must make sure that

the bias is fairly stationary and there ie no systematic trend in the

y-plot which could be due to a reversal in the nature of the bias.

3. The y-plot might also be improved as a result of the improvement

in the adapted predictions.

4, The adapted predictions are invariably more noisy than the raw

predictions - the price we have to pay for having to estimate the

adaptor from the data.



5. Predictions which are already very good would usually not gain
by adapting mainly because of the induced noise. But there are a few
cases in which we have observed a slight improvement in the

prequential likelihood even when the raw predictions are already very

good.

We then use the completely monotone rate estimates with 1 to 4
difference constraints and assume the failure times to be exponentially

distributed to predict. We applied these 4 prediction systems to our 7

data sets and adapted all these predictions. We observed that:

1. The predictions from IDIF are usually noisier than the others and

they are usually optimistic.
2. The predictions from 3DIF and 4DIF are usually very similar.

3. On data sets with occasional exceptionally large data points, 1DIF

or its adapted version, 1DIF¥, is usually best in PL terms.

4. When the raw predictions are very noisy as well as being biased,

adapting might not be able to improve them.

When we compare these predictions with those in which a parametric

model is used, we find that:

1. The predictions from DIF with 2 or more difference constiraints

can be very limilar~ to those based on parametric models with

exponential failure times.



2. In none of the cases we have looked at are the predictions from
DIF (raw or adapted) best, although the best set of DIF predictions

(raw or adapted) is usually close to the overall best (raw or adapted).

In practice, a user can choose the prediction with the best past

predictive analysis results for his/her use.

7.2. _FUTURE RESEARCH POSSIBILITIES

This study is based on 7 sets of real data. The problem with using
real data is that the underlying true state of nature is not known, thus it
is very difficult to fully understand and interpret the results. Our
prediclive quality measurement tools can help us up to a point but are far
from perfect. Therefore, we should organise a large scale simulation
study in order to fully appreciate the performance of the different
parametric and non-parametric prediction systems; the capability of our
adaptive procedure in correcting biased predictions; the situations and
conditions in which adapting will succeed or fail;

the effect of the

introduction of noise in the use of adapted predictions.

So far we have been analysing continuous data. The other type of

data which is usually easier to collect consists of non-overlapping intervals

of execution times and count of failures observed within each interval: the

discrete datia.

Abdel-Ghaly (1986) has implemented a number of prediction systems for

this type of data. The unknown parameters in the respective models are

estimated using maximum likelihood. The optimisation involved is done by
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the Nelder-Mead simplex search which is very inefficient. We can most

certainly improve the efficiency by using the same methods we have used

for the continuous cases. It may also be possible to extend the adaptive

idea to this type of data.

As for the predictive quality measurement tools, the theoretical

justification for the u- and y-plot procedures to be used for discrete

predictions is lacking. Their use in the discrete case is empirically

motivated: they do provide the correct information. Therefore, more

effort is needed to find suitable and effective measurement tools for

discrete data. The search for predictive quality measurements is by no

means restricted only to discrete data, more measurement procedures are

also needed for continuous data. After all, it is very important to be able

to measure what we have or have not achieved in our predictions,

otherwise, we cannot justify any alternative or modification method like

adapting.

The approach using non-parametric rate estimates seems to be

generating predictions which are noisier than the better parametric

predictions, but usually manage well in capturing trend. Based on the

results of our study, it does seem that this approach can generate

plausible predictions. It has the further advantage that the assumptions

are more relaxed. It might be possible to reduce the noise in these

predictions, perhaps at the cost of more bias or worse trend capturing.

Maybe the formulation in Appendix 2 can generate less noisy rates because

all the inter-failure times are used. Or maybe too much smoothing would

be involved. The performance of such a non-parametric formulation

should repay investigation.
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Amongst all the data we have analysed there are siutations where the

PL for two or more sets of predictions are very similar and yet the

predictions are still dissimilar. It might be possible to combine these
predictions to form a meta-prediction in some optimal way. It is

conceivable that in doing so we can improve further the quality of the
predictions. We have previously attempted to combine predictions using
the past PL, but have not obtained consistent results (Abdel-Ghaly et al,

1985). This is also a topic which deserves more investigation.
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APPENDIX 1

UNIQUENESS AND CONDITION FOR FINITE MAXIMUM LIKELIHOOD
PARAMETER ESTIMATE IN THE GOEL AND OKUMOTO MODEL
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APPENDIX 1

UNIQUENESS AND CONDITION FOR FINITE MAXIMUM LIKELIHOOD
PARAMETER ESTIMATE IN THE GOEL AND OKUMOTO MODEL

We shall prove that the likelihood function of the Goel and Okumoto
model has one unique maximum and this maximum is at finite 4 and «

provided that:

-~

i

-2->

e bt
T o I°8

TJ' (Al.l)

J=1

where T; is the total elapsed time as at the jth failure and i is the total

number of failures observed. If (Al.1) is not satisfied, then the maximum

of the likelihood is at finite X = u® and infinite u.

Proof

In section 3.4. we have established that the MLE of ¢ can be obtained

by maximising:

\ A B! i
2(tg,...tj/4,0) = ilogi -~ i - ilog|l-e +ilogé - @ L T,

=1 Y
(A1.2)
over ¢ > 0 and u is given by:
i = - (A1.3)
1-;”1

We will show that 2 is strictly concave, which is a necessary and

sufficient condition for its maximum to be unique. Note that the reverse

is not true - a function with a unique maximum is not necessarily strictly

concave,
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A function is strictly concave if its second derivative is always

negative. The second derivative of (Al.2) is:

A —eTj
329 i iT?e
ETLI +[ o712 (Al.4)
1-e
which can be factorized into:
T T
_0_1 _0_1
i forie * .l emie 7 (A1.5)
;: _o-rl _wi - 1 .
l1-e l-e

The sign of 322/3¢2 is the same as the sign of the last term in (AL5)

because the remaining terms are both positive for ¢ > 0.

Now
9T ;e ) ot 2
sign - 1} = sign{—72 -1
1-e ¥Ti 2 l o _!'_i]
2 2
e -e
o7y o7y
= sign < - sinh(—f-)] (Al1.6)
By the MacLaurin’s series:
3
sinh(x) = x + x_’ + § + teeeen
a 3 3
o qary . [eTR (e
. ’1@ 5;!} “Blgl’l 3' + 5! + cieae (Al.?)
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which is clearly -ve V ¢ > 0. This means (Al.2) is strictly concave for

¢ > 0, hence the likelihood function can have only one maximum.

Since the MLE of u is given by:

P S
l-e
it will be infinite if ® = 0. To investigate the behaviour of the likelihood

function at ¢ = 0, we use the reparameterization of X = ®. The log

likelihood in terms of (\,®) is:

. i x[ -7 ]
Q(tl’.'.’ti/k’°) = nlogx - Q : T; — = 1 -e (Al.g)
Jj=1 J ¢

Expanding e_m-i by the use of Maclaurin’s series, (Al.9) becomes:

2(ty,... ti/X ) = nlogh - °5§1 J gl -~ —3 |+ 0e?)
)‘Ti i 2
= nlogh = AT + 0[—2— -jE!. TJ] - ? Tg + 0(¢3) (Al1.10)

where 0(¢>) denotes the terms of order 3. Obviously:

Lt 2(t,,...,t;/X, log) - AT:
0 1 1/ 0) = nlog Tl (Al-ll)

which is the log likelihood of the homogeneous Poisson process.

It is clear that if a small feasible step is taken from (3,0), for ¥ > 0,

in the direction of ¢, the effect on 2 will be determined by the first order
term in (Al.10):

._-z T:
2 gy (A.1.12)
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If (Al.12) is positive at the current value of 2, then a small feasible
(positive) step in & will increase the value of 2, otherwise, such a step will

lead to a decrease. When (Al.12) is equal to zero, the second order term
is:
- —T3

which is always negative. If the latter situation is true, the maximum of 2

will be equal to:

mgx [nlogh - 7]
which yields:
%=Ll
Ti
Because of the uniqueness of the maximum, it suffices to check the sign of

i . ] -
(Al1.12) only at (T—i.O) in order to decide whether u is finite or not.

Hence if,

i
E T (A1.14)

then 1= », & =0, and A = 2-, otherwise i and ¢ will both be finite.

-3 -
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APPENDIX 2

NON-PARAMETRIC APPROACH TO ESTIMATE

FAILURE RATES OF A PROGRAM UNDERGOING DEBUGGING
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APPENDIX 2

A NON-PARAMETRIC APPROACH TO ESTIMATE THE FAILURE RATES

OF A PROGRAM UNDERGOING DEBUGGING

We shall outline a non-parametric method for determining the failure

rates of a program on the basis of past inter-failure time data tg,..,tp.

Our aim is to estimate these rates such that the trend in the data is

adequately captured. We shall do this by minimising the y-plot

Kolmogorov-Smirnov Distance of {rjt;} subject to some suitable constraints

being imposed on the rj’s.

Since {r;t j} is a sequence, the corresponding y-plot will be a step

function which means there are two distances to consider:

i
,t rjtj
+ - max J=1 _ i
D (r) 1 ‘ i ‘ n !z] r't‘ ; (A2.1)
Py J°J
J=1
and
Eorgt
LT
- _ max J=1 i-1
l‘. I‘jtj
J=1

Here we shall only deal with D*(r), the case of D~(r) can be dealt with in a

gimilar way.
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In order to transform (A2.1) and (A2.2) to be linear in the variables,

rj, we impose the following equality constraint:

n
jEoratysn (A2.3)

Thus our estimation problem can be written as:

min [ max i \
r li¢ig¢n| E Tt ‘ ]

rjtj=mn (A2.4)

sub ject to:

and

rj>,0 1 j4dn

which is a classical Ly fit problem in the n variables (Barrodale and Young,

1966) and can be transformed into a linear programming problem in the

following way.

X :
Let {r; } denote the solution to the above problem, and d* denote the

minimum positive distance, i.e.

a* = R T max i
1¢ignlsE T o IR S IPEUPEY AN LS Rt

with (A2.58)
n

}'_E rj*tj = n (A2.5b)
Note that (A2.5a) is true for all non-negative {r;} which satisfies

L rjt
ri;t; -
j=1 J°J n.
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If we let d be the positive distance corresponding to a set of rj's then

clearly:

rjtj—i+d)0

T ol

Jj=1
and , 1<i¢n (A2.6)

rjtj -i-d{£0

[ o [

U]

J=1

because d must be greater than or equal to all the positive deviations and
-d must be less than or equal to all the negative deviations. Therefore,
problem (A2.4) can now be solved by minimising d subject to the
constraints in (A2.4) and (A2.6) with d 3 0, which is a linear programming

problem in (n+1) positive variables, d, ry,..,rp.

In the context of reliability growth, the failure rate of a program

should be decreasing with the number of bugs found. Thus we might

want to impose the following constraints on the r j's:

Arj =rj-rj-y €0 2<Jj{n (A2.7)

Furthermore, we can reasonably expect early fixes would contribute
more towards improving the reliability of the program, thus we can impose

the following constraints to reflect this:

Arj = rj - rj-y 0 2¢j<€n
' } (A2.8)

Azrj =8rj - Arjy 0 3¢jin

These constraints, in the same spirit as those of Miller and Sofer (1986a,b),
specify that the failure rates are decreasing (or non-increasing) with j and

the amount of decrease is progressively smaller.
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Therefore, we can impose further linear constraints onto the basic

problem and solve it using a linear programming package.



- 196 -

APPENDIX 3

LISTING OF THE SOFTWARE RELIABILITY DATA
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Musa' s System 1 Data
(read left to right)

I F0. 1173, g81. 115,
9. 2. 1. 112, 15.
1728, 50. 77. 24, 108.
BB. 70, 120. 26. 114,

325 55, 242, &8. 422,
180. 10, 1146. 600, 15.
Eh. Q. 8. 227.
&, S8 457. SO0,
@7 452, 255. 197.
1973, 7%9. 816. 351,
148. 2375 134, 357.
197%. 1. I69. 748.

G IT0. T6S. 1282,
D47 l6. G29. 379
44, 810. 20, 200,
S29. 1460, 828. 1011.

445,
860.

1755. 10464. 1783.
707. 33 868.
724, 2930, 14461. 847.
o 1800, B8&6S. 1435,
Z0. 143, 108. 0. Z110.
1247, 47, 700, B79. 245.
729, 1897. 447, I86. 444,
122, R0, 248. 1082, 22
75, 482, 5209, 100, 10,
1071. 71 790, 6150,
1045, &H45, T489. 1140.
4114,




191.

8G.

-y
275,

S0,
638,
1215,
&F00.
123,
180.
ZO0.

2750.
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Musa®s System 2 Data
(read left to right)

223, 280,
B7O. 6H10.
Sbi), 800,
&0, 1507.
2973, 1212,
2715. 2551,
IEI00., 1510.
bé 1. S50.
4225, 15600,
FOR1. 2519,
LLT7S. 6745,

290,
T65.
1210,
&25.
612,
800.
195.
729.
0.
6890,
7899.

290.
390.
407.
Q12.
675,
3910,
1956.
0O,
0.
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Musa®s System I Data
(read left to right)

115, 0. 83. 178, 194,
174, 1077. 15. 15. ?2.
=0, 71. 606, 1189. 40,
788. 222, 72, 615, o89.
15. IR0, 16673, 1327, 4508.
834, Z400, b 4561. I186.
10571. 5673, 2770. 652, 5593,

11696, 6724, 2546.
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Musa’s Bystem 4 Data
(read left to right)

5. 7. 141, 491, 3.

=, 28. 138. 478. 229.
147. 198. 22, S6. 424,
2. 520, 1424, 0. 2.
183, 10, 115, 17. 284.
224, 215. 116. 287. 50.
308, 272. 140, &78. 183.
2462, 104, 2178. 285. 171.
Q. LA, 887. 149, 449.
716. &04 ., 0. 774. 25646.

14637, 18740, 1526,
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Musa™s System & Data
(read left to right)

= 14. 59. 32 8.
S92 2 23. 2. 3.
4, 1. J0. 21. 196.
265. b. 3. 8. 1.
pre RT-3 8. 1. 74.

R Y 121. 18. 9.
23, 1. 672, 189. 83.
) B 1. 41. 7.
473, I 4. S 1.
14. 70. 60. 2. 2.

=z 16%9. 29. 88. 35.
27. 24. 27. 140, 3.

5. b 74, 40. 2.
8&. 221. b. B891. 273,

4. 437. bb.



107400,
26100,
18780,

120,
2100,
478620,

2220,
1320,
S20320,
8820,
1080,
4740,
120,
T6H0.
70800,
188040,
2046640,
472080,
S76612.
73740,
2340,
180,

51 00 .
420,
180.
273000,
148480,
77040,
70800,
2967956.
480,
z28580.
G40,
T49320.,
=89980.
FO0.
87840,
158640,
5700,
654460,
505680,
6240,
7200,
450.
07140,
&HLHO00,
IRT7H00,
P60,
71640,
S97900,
123030,
498Z6H0.
Z28400.,
680760,
468180.

722110,

-
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Musa®s System S857 Data
left to right)

(read

17220,
44160,
P60,
1800.
TR0H0.
BO76O.
758880,
14700,
GHTE0.
488280,
1273240,
THA901.
T414.
85160,
12940,
SLE280.
4740,
TOG.
718720,
1462800,
BRR60.
Z0BAQ.
549540,
518640,
&HOO0,
59880,
2I7B40.
747450,
6H1B0.
FCIB0,
117360,
I917380.
FI6F00,
4080,
TE2280.
1080.
B4TLHO.,
G&HO .,
DROTEO.
402900,
54420,
47944,
&8940,

1042680,

S8500.
47500,
2017300,

912760,

I6IRR0.

689400,

26010.

623280,

109800,

26220,

1568580,
219460,

180.
ITIT720,
PAHO,
480,
258704,
1200,
146420,
I420.
418200.
480.
21860.
69480,
74160,
180.
200,
420,
10140,
87600,
83100,
1.
DE9920.
166740,
540.
1020,
HI7460.
840,
45460.
738180,
27540,
724560,
L4BO,
180.
264480,
644680,
24140,
11380.
78120,
180,
2840,
75480,
I19020,
420,
26820,
779580,
28I240.
2040,
226980,
819240.
090,
11520,
75240,

I3E30,

S473870,

376110,

333720,

26400,

32880.
17820.
79860.
780.
480,
BO700,
8280.
2520,
4747460,
3540.
22800,
380220,
262500,
2I7R0.
120,
4144464,
300,
48240,
GO0,
T02280.
780.
&LOQ0,
00,
4140,
82440,
7140.
1920,
147000,
93020,
167100,
60,
180.
847080,
840,
240060,
21460.
58500,
15960.
LR040,
IB0220.
5220,
L7320,
448420,
B8040,

2039460,

600,
HES440.,
80146460,
227970.

23830,
68170,
7290,
1615860,
181890,
180.

QL0.
408B60.
240,
27260,
21900,
688860,
251354,
162480,
543780,
2220,
22920,
848640,
879300,
120,
5858540,
240780,
4140,
41940,
240300,
I340.
10740,
376140,
521252,
480,
180.
76320,
16B&0.
76680,
120,
106200,
7860.
240.
26460,
S40.
2700,
192720,
83880.
J180.
&8880.
704948.
9100,
120,
TIQ420.
1158240,
9522240,
226320,
1020.
160380.
17190,
75870.
B11050,
47140,
14940,
64320,

B10,
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British Aerospace Data
(read left to right)

RN 10, 4., Zb. 4,
[ 4, ?1. 49, 1.
25, 1. 4. 30, 2.
9. 49. 44, 32, S
78. 1. 30, 205, 5.

. al. "

129. 107, 22 1864. 52

us PR
14. Q. 2. 10, 1.
4. 170. 129. 4. 4.
TS S T 22. b,
35 121. 23, I 48.
R 21. 4, 23 9.
1=, 16%5. 14. 22. 41.

2 138, 95. 49. b2,
e 30, 89. 0. &69.
22 S 19. 42, 14,
11. 41 210, 14, Z0.
37 bbb Q. 16. 14.
24, e 159, 89. 118.
29, 21. i8. 2. 114,
7. 4&. 17. 1. 150.
8. 1460, bé&. 206. ?.
2b. 62 239, e 4,
85. B5. 240, 178. 4.
102, 9. _ 146, g2. 48,
25. 25, 111. S 3t.
51, & 193. 27 . 25.
Rhb, 26. 0. 0. 17.
20, 78. I9. e Z
19. 128. 34, B84. : 40,
177. 45, 274, 82. 58.
=1 114, 39, 88. 84.

o, 108. Z8. B6. 7
2. 80. i 3

. 3. 39.
&, 152, &3, 80. 245,
124, 44. 152, 102, 2.
228. 220. 208. 78. I
83, b 212, 1. 3.
10. 172, 21. 173. I71.
40, 48. 126. 0. 149.
0. Ti17. S00. &73. 432,
hb. 1468. b6, bb. 120,

49. TIT2.
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APPENDIX 4

MEDIAN PLOTS
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