

City, University of London Institutional Repository

Citation: Zarrin, J., Aguiar, R. L. & Barraca, J. P. (2017). HARD: Hybrid Adaptive Resource

Discovery for Jungle Computing. Journal of Network and Computer Applications, 90, pp. 42-
73. doi: 10.1016/j.jnca.2017.04.014

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18146/

Link to published version: https://doi.org/10.1016/j.jnca.2017.04.014

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

HARD: Hybrid Adaptive Resource Discovery for Jungle Computing

Javad Zarrin, Rui L. Aguiar, João Paulo Barraca

Javad Zarrin {javad@av.it.pt} Instituto de Telecomunicações - Aveiro. Rui L. Aguiar {ruilaa@ua.pt} Universidade de Aveiro, Portugal. João Paulo
Barraca{jpbarraca@ua.pt} Universidade de Aveiro, Portugal.

Abstract

In recent years, Jungle Computing has emerged as a distributed computing paradigm based on simultaneous combination of various
hierarchical and distributed computing environments which are composed by large number of heterogeneous resources. In such a
computing environment, the resources and the underlying computation and communication infrastructures are highly-hierarchical
and heterogeneous. This creates a lot of difficulty and complexity for finding the proper resources in a precise way in order to run
a particular job on the system efficiently. This paper proposes Hybrid Adaptive Resource Discovery (HARD), a novel efficient
and highly scalable resource-discovery approach which is built upon a virtual hierarchical overlay based on self-organization and
self-adaptation of processing resources in the system, where the computing resources are organized into distributed hierarchies
according to a proposed hierarchical multi-layered resource description model. The proposed approach supports distributed query
processing within and across hierarchical layers by deploying various distributed resource discovery services and functionalities in the
system which are implemented using different adapted algorithms and mechanisms in each level of hierarchy. The proposed approach
addresses the requirements for resource discovery in Jungle Computing environments such as high-hierarchy, high-heterogeneity,
high-scalability and dynamicity. Simulation results show significant scalability and efficiency of the proposed approach over highly
heterogeneous, hierarchical and dynamic computing environments.

Keywords: distributed operation systems, many-core systems, P2P, resource management, grid computing, DHT

Acronyms

vnode virtual node.
AN aggregate-node.
BRW2 a 2-layered hybrid broad-cast and full random-walk

based discovery.
DHT distributed hash table.
DOS distributed operation system.
DPT distributed probability table.
FRW2 a 2-layered hybrid DHT and full random-walk based

discovery.
HARD Hybrid Adaptive Resource Discovery.
HARD2 a 2-layered instantiation of HARD.
HARD3 a 3-layered instantiation of HARD.
JCS Jungle Computing System.
LN leaf-node.
PRW2 a 2-layered hybrid DHT, learning-based and partial

random-walk based discovery.
QMS Query Management Service.
QREG Query Registry.
QROUT Query Router.
RP Resource Information Provider.
RR Resource Requester.
SN super-node.
SoR Source of Resource.
SQMS Super Query Management Service.

1. Introduction

Large scale distributed computing technologies such as Cloud,
Grid, Cluster and High Performance Computing (HPC) super-
computers are evolving with the revolutionary emergence of
many-core designs (e.g. GPU, CPUs on single die, supercom-
puters on chip, etc.) and significant advances in networking and
interconnect solutions [1]. This has led to increase complex-
ity on the integration of such diverse computing environments,
infrastructures, platforms and technologies. Moreover, data dis-
tribution, hardware availability, software heterogeneity, and also
the sheer size of scientific problems, commonly force scientists
to resort to Jungle Computing instead of traditional supercom-
puters and clusters. Jungle Computing (i.e., leveraging multiple
computing platforms simultaneously) is a recent distributed com-
puting paradigm based on concurrent combination of various
hierarchical and distributed computing environments with large
number of heterogeneous resources [1–8]) .

In fact, integration of different resources would be necessary
specially when no single resource is available that its computa-
tion of capacity can meet the computation requirements, or if
different parts of the computation have different computational
requirements. Furthermore, for large number of users and ap-
plications, combination of multiple computing environments
with various types of resources leads to achieve high peak per-
formance by potentially accessing a many diverse collection of
resources while it is cost efficient. There exist many types of
computing landscapes (i.e., isolated computing infrastructures)

Preprint submitted to Journal of Network and Computer Applications February 15, 2017

that can be efficiently integrated as so-called Compute Jungles at
a low cost. However, high heterogeneity (in terms of hardware,
resources, connectivities and platforms) and complex hierarchi-
cal design of Compute Jungles make them more complex to be
efficiently used by scientists.

In a large scale system, where we have a pool of distinct
processors, the enabling technology for enhancing the whole
throughput of the system is resource sharing. Depending on the
computing environment, resource sharing might lead to differ-
ent issues such as resource allocation, resource provisioning,
scheduling, resource description, resource discovery and pro-
cess migration. Among them, scalable and efficient resource
discovery is one of the most challenging issues, particularly for
decentralized systems (i.e., resources should be found before we
can share them). This is be even more critical for future large
scale computing environments (e.g., future Cloud, Grid, HPC
and Cluster) and also Jungle Computing Systems (JCSs) due
to the disparate requirements of these computing environments
such as high heterogeneity, high hierarchy and high dynamicity .
Resource discovery in JCS can be characterized as a highly adap-
tive approach (considering the diversity of hardwares, platforms
and computing infrastructures) to instantaneously find the most
appropriate available set of resources (i.e., computing resources,
like as processing cores) for the user applications in the system
with minimum cost of communication and computation (i.e., in
terms of network latency, network traffic, discovery load, etc.),
based on a specific set of computational and communicational
requirements for each application or application segments. This
has to be achieved in a way that the static and dynamic proper-
ties of resources, as well as their interconnected and aggregated
characteristics, could be qualified according to the query re-
quirements. Moreover due to the intrinsic complexity of JCS
environments, high performance applications then require that
resource discovery supports some other important features such
as proximity-awareness (i.e., the , the discovered resources must
be close as much as possible) and querying flexibility (in terms
of complex querying such as multidimensional querying).

This paper proposes Hybrid Adaptive Resource Discovery
(HARD), an efficient and highly scalable resource-discovery
approach which deals with the aforementioned resource discov-
ery requirements, applicable to large heterogeneous and highly
dynamic distributed environment of JCS . HARD is based on
self-configuration and self-adaptation of processing resources
in the system, where the computing resources are organized
into distributed hierarchies according to a proposed hierarchical
resource description model (i.e., multi-layered resource descrip-
tion). Moreover, different algorithms and adapted mechanisms
(such as distributed hash tables, distributed probability tables
and any-casting) are implemented at different layers in order
to efficiently guide queries to proper resources within the spe-
cific features of that layer (e.g. leaf-node, aggregate-node and
super-node layers).

This work was developed under the framework of the S[o]OS
(Service-oriented Operating System) project [9–17], European
research project aiming to generate a reference addressing ar-
chitectures for future very large scale distributed infrastructures.
The remainder of the paper is structured as follows. In the next

section, we discuss general requirements and design principles
for our work including our hierarchical resource description
model. The details of system architecture and HARD are pre-
sented in Section III. Section IV presents our algorithms for
querying in different layers. Simulation settings and experi-
mental results for the proposed resource discovery are given in
Section V. The resource discovery approaches for distributed
computing environments in the literature are reviewed and con-
fronted in Section VI and finally Section VII presents our con-
clusion and future work.

2. Motivation

The motivation behind this work is to propose a resource
discovery solution for very large scale distributed systems with
respect to the requirements of future large dimensions, many-
core enabled, computing systems. Our desired target computing
environment can be described as a large scale (ideally, Internet
scale), chaotic environment (jungle) of (heterogeneous) process-
ing cores, connected through high speed networks and inter-
connects and widely distributed across the system. Resource
discovery requirements for such future systems are beyond the
techniques used in today’s Grids, Clouds and HPC clusters. We
were inspired by the concept of “Jungle Computing”, introduced
in the recent years [1–8], and accordingly, we can envision that
most of requirements for Jungle can be applied for future com-
puting systems. In fact, two important features of such future
environments are: first, heterogeneity of resources; and, second,
very large number of resources. With respect to these features,
the main objective of this work is to provide a scalable solution.

Current computing systems such as Cloud, HPC and Cluster
are generally based on a centralized/hierarchical architecture,
leading to the use of centralized resource discovery to respond
to user requests. For example, when a request for resources
arrives at a HPC cluster-head or a Cloud service provider in the
front-end, the resources required can be discovered (allocated
or provisioned) by searching in a specified pool of resources
or in a back-end data-center where the number and type of
resources are known beforehand (this may not be necessarily true
in Clouds). For such environments, resource discovery based
on a centralized architecture could become an easy task. And,
in fact, instead of discovery problem, the resource scheduling
issues are dominant.

However, centralized approaches are not scalable and they
can not cope with the requirements of future computing systems
(future Clouds and HPCs) due to their well-known limitations
(bottleneck/congestion issues). This also becomes more criti-
cal, as we move toward very large dimension future systems,
saturated by a large number of heterogeneous many-core pro-
cessors, handling a large diversity of tasks. In such a situation,
it is not feasible for the control system to have complete and
perfect knowledge of the entire system due to the magnitude and
diversity of the amount of resources (e.g. processors) and tasks.
This is where the role of resource discovery comes into play
and becomes very significant to provide on-demand information
about the system resources.

2

Unlike the aforementioned computing systems, decentralized
resource discovery approaches are mostly intended/desired for
Grids. However, these approaches generally work at task level
(due to the Grid nature) in which parallelism of independent
tasks is exploited. This makes current Grid discovery methods
inadequate to deal with the many-core nature of future comput-
ing (in terms of efficient satisfaction of all query constraints)
[18, 19], due to the lack of support for thread-level discovery.
On the other hand, Operating Systems can perform resource
allocation in instruction-level. This provides motivation to go
beyond the Grids through the concept of distributed operation
systems (DOSs), capable to run on the aforementioned future
computing systems. For such DOSs, we used as reference the
systems envisaged in the S[o]OS [9–17] project, and propose a
thread-level resource discovery approach which works in a fully
decentralized, self-determining and autonomous fashion, being
able to automatically and efficiently alter any P2P-like underly-
ing computing system to a hierarchically structured overly. With
respect to decentralization and referring to our target computing
environment, described above, it is not guaranteed for a pro-
cessor to have information about all other processors (or even
one processor) in the system. In order to address such potential
issues, we designed our discovery approach with having this
assumption that all processors in the system have equal infor-
mation initially (and in fact, each processor only knows about
itself and its connection gates), leading us to the area of P2P
computing.

3. Design Principles

For uniformity of discussion, for JCS environments we will
address all kind of control systems as DOSs, although their
realization may be quite different (depending on the specific
large scale computing technology under discussion).

The general architecture design of a JCS environment can be
illustrated as a set of distributed hierarchies like the one shown
in the Figure 1. Depending on the level of hierarchies in the
architecture and the other designing aspects of a DOS , we may
define Control entities in different levels. For instance, as it is
discussed in [9], we can describe the entities of Main-Control
(i.e., DOS main-kernel), Micro-Control (i.e., DOS micro-kernel)
and Nano-Control (i.e., DOS nano-kernel), which are providing
either maximal, moderate or minimal amount of capabilities,
functionalites and services in the system. These control entities
may differ in terms of service types which they can dynami-
cally instantiate on demand. The instances of these entities are
positioned in the system in a way to map the structure of the un-
derlying distributed hierarchies (e.g., deploying the main-control
instances in the hierarchies head-nodes and the nano-control in-
stances in the leaf-nodes).

3.1. Assumptions and Definitions

HARD is based on methods and techniques to distribute re-
source information, update and exchange resource data and
query and search space exploration, specially when considering

Figure 1: An example of distributed hierarchical architectures.

the particular challenges and requirements of distributed oper-
ating systems. In order to create such solution, we impose the
following assumptions on the design process:

• We assume that each single resource (i.e., single core) has
its own unique ID (e.g., IP, network-ID, Chip-ID, processor-
ID) which can specify its address in the entire system. Ad-
dressing information can potentially be provided by the
operating system or other system component, and is out of
scope in this paper.

• We assume that the target computing environment can be-
have like a P2P distributed environment containing large
number of peers (i.e., resource or computing entities) where
each peer only knows about itself and its connection gates.

The proposed discovery approach is based on a hybrid virtual
overlay network, which will be constructed automatically over
the underlying physical network. This virtual overlay contains
virtual-nodes that are organized in distributed hierarchies. In this
work, we present a 3-layered instantiation of HARD (HARD3),
which proposes two levels of resource discovery services (i.e.,
types of resource discovery components): Resource Requester
(RR) and Resource Information Provider (RP). RP services also
includes Query Management Service (QMS) and Super Query
Management Service (SQMS). We will discuss these services in
more detail later in Section 4.1. We will also use the following
definitions:

• We define the notion of a “virtual node (vnode)” as a group
of homogeneous resources, which are not necessarily posi-
tioned on a common physical node (e.g., a CPU). Rather
they are positioned within a common vicinity that is de-
scribed by parameters such as number of hops or intercon-
nect latency (i.e., resources are grouped within vnodes by
proximity and similarity). We use the generic notion of
“node” instead of “vnode”, which has the same meaning
with more emphasizing on the positioning of the “vnode”
in the underlying self-organized virtual overlay. In addition,
in this paper, the term “Source of Resource (SoR)” might

3

be used instead of vnode which also has the same mean-
ing with more emphasizing on the resource-supply-quality
aspects such as SoR’s stability or SoR’s strength.

• Every vnode is automatically assigned a module-role (i.e.,
vnode-type) in a self-organized and distributed fashion. The
module-role defines the specific vnode’s role to play in
the overall distributed resource discovery operations. We
discuss module-roles with more detail in Section 4.1.

• The term “cell” is used to denote a group of vnodes which
are sharing a common SQMS-ID and the term ”mini-cell”
is used to refer a group of vnodes with a common QMS-ID.

• For better illustration and evaluation of our approach, we
use throughout the paper the notion of “resource” to refer to
“computational resource” (i.e., physical processing cores)
and we discuss resource discovery mostly from the point
of view of computational capacity. Nevertheless, HARD
is fully generic, and applicable to other types of resources
(e.g. storage and networking resources).

HARD3 is implemented as part of the S[o]OS concept [9],
which in itself is an example of a DOS. Each DOS kernel, regard-
less of its level (i.e Main, Micro, Nano, etc.), provides support
for a single RR service. Furthermore, the kernels depending on
the level which are positioned in the hierarchy provide support
for other types of resource discovery services such as QMS and
SQMS (e.g., main-kernels or micro-kernels may provide SQMS
or QMS services). We must note that it may be possible that a
kernel simultaneously provides either one, two or all of these
discovery services. For example, the kernels in the top level of
hierarchy support all kind of discovery services.

3.2. Resource Description
Resource discovery for the DOS running on the many-core

enabled JCS hardware infrastructures requires a scalable and
powerful hardware resource description model. In fact, it must
deal with two important aspects of resource description: captur-
ing static and dynamic capabilities of hardware resources; and
making distribution of hardware information scalable. Consid-
ering the aforementioned aspects, we introduce a hierarchical
model for dynamic resource description focusing on making the
distribution of resource information scalable and able to balance
load. It is based in a modular information model that can encap-
sulate, interface and aggregate the different types of processing
hardware information in a hierarchical fashion.

We aim to abstract the characteristics and behavior of under-
lying hardware infrastructures in a way that both computational
and communicational system properties are well represented to
provide a close estimation of the real system, while avoiding to
describe the hardware at the cycle-accurate level. The descrip-
tion model only focuses on capturing the necessary information
that will aid different algorithms along the lines of resource
discovery.

The depth of hierarchy (i.e., number of layers in resource
description model) and the definition of each layer might range
from very high level (e.g. super clusters, clusters) to very low

level (e.g. processing core, ALUs) depending on architecture
designing aspects. The layering is performed by partitioning
the total number of n peers (i.e., resources) in the system into
c disjoint cells of peers (i.e., c is the number of hierarchies in
the distributed environment), in the way to ensure that peers in
the same layer of each cell are similar to one another in some
predefined and inherited attributes. Each layer has two unique
related layers: parent layer and child layer. A layer can be either
a blank (null) layer with completely no information (definition)
or it can be an identifiable layer with a deterministic definition.
Furthermore, the properties of the peers in the upper layers are
also inherited by the peers in the lower layers (see Figure 2).

Figure 2: An example of description of resources in hierarchical layers

We must note that the definition of a ”resource” (i.e., comput-
ing resource) in HARD might be highly variable depending on
the levels of the described hierarchy. In fact, HARD refers to a
single resource as a representation of any individual peers, be-
longing to the lowest level of the resource description hierarchy.
For example, we can define the ALU layer (i.e., the processing
unit or micro-architecture layer) to describe the properties of
computing resources in a low level layer with very detail infor-
mation. The ALU layer also can describe how the ALUs of a
processor (CPU or core) gains access to data. In other words it
has to decide on the number of the words to be used per cycle,
how wide the words should be and whether the word sizes are
configurable or not, etc. A HARD resource can represents either
a single ALU or a single core if the description model describes
either the ALU layer or the Core layer accordingly as the lowest
level of the hierarchy. Note that the granularity of the hierarchies
will depend on the usage intended for JCS.

According to the proposed resource description we do not
need to store locally all the information of a specific resource.
The common resource information in each layer, instead of being
repeated in all the peers in a local cell, is just maintained in a
certain number of peers which are offering resource information
services to other nodes in the group or network. Figure 3 depicts
the distribution of resource information in two individual cells
(group of resources) where due to hierarchy, each cell in each
layer stores the common information of the members in the
lower layers in certain peers which are providing the information
services to the others.

As we need to make the information of the hardware architec-

4

Figure 3: Distribution of resource information in a four-layers-hierarchy with 2
cells

ture and capabilities (i.e., hardware description) available across
computing nodes (for efficient code/application distribution) in
heterogeneous large-scale dynamic environments, we need to
categorize information relevant at the different hierarchies. As
the systems are potentially highly dynamic (ephemeral connec-
tivity of mobile devices), capability information might have to be
transmitted frequently, imposing the need to minimize overhead
of hardware resource description (or capability information) ex-
change. For this purpose, a hierarchical capability information
encoding makes sense, as we can reduce capability information
being transmitted to that which is relevant for each specific level
in the hierarchy.

We must also note that, one of the primary performance aspect
for any hardware description model is related to all forms of
communication and data exchange between any two endpoints.
It is thereby irrelevant whether the communication takes place
between two code instances (threads), residing on two individ-
ual single cores, or between a code instance and a storage unit
(i.e., between a single core processing unit and a memory unit
such as cache or main memory). In all cases, the limiting per-
formance factor is given by the hardware characteristics of the
interconnects affected. Furthermore, the degree and types of
communication potentially taking place in a system and for an
application execution are manifold, ranging from register ac-
cess over shared data to explicit communication. In all these
operations, it is possible that the nodes (individual computing
hardwares) in the system, require to exchange their capability
information (i.e., resource description). To do this, due to the
potential network overhead and traffic, the data size (description
size) and the transaction frequency of the description must be
reduced as much as possible.

In this paper, for the sake of simplicity in implementation and
evaluation of our work, we assume that our description model
contains three levels (layers) of the hierarchy, and we refer to this
implementation as HARD3. However, depending on the system
design concerns and the level of required hardware information
details, further layers can also be defined (as described in Figure
2). The following part describes the main lines of information
gathered in different layers of our devised resource description
model, as implemented in this work:

• Layer 1: Core Layer (Inter-Core Level) describes the in-
dividual characteristics of the processing cores as well
as cache hierarchies, the connections between processing
units, and memory layout/segmentation. Examples of at-
tribute definitions in this layer include cache size, cache
associativity, cache latency, memory latency, number of
Data-PU channels, number of Instruction-PU channels, vec-
tor length, core clock rate (CCR), L1 cache size (L1S), L2
cache size (L2S), number of ALUs (NA), etc.

• Layer 2: Die Layer (Inter-Chip Level) describes the overall
properties and behavior of the processing dies (e.g. CPU,
GPU, etc.) as well as the interconnection network and topol-
ogy of the different CPUs to form a many-core machine.
Examples of attribute definitions in this layer include BUS
frequency, memory bandwidth, memory latency, cache co-
herence, ISA, micro architecture, interconnection network
(INT), size of processor address BUS, processor class, pro-
cessor type (PT), number of cores (NC), etc.

• Layer 3: Node Layer (Inter-Board Level) describes the
overall dynamic and static characteristics of the network
nodes containing multiple dies with multiple cores per die.
It also describes network topology and inter-nodes commu-
nication properties. Examples of attribute definitions in this
layer include window size, total number of cores (TNC),
memory size (MS), Die count (DC), network bandwidth
(NB), network latency, etc.

3.3. Syntaxes and Description Examples

The proposed description model can flexibly describe vari-
ous ”systems” and ”queries”, ranging from very simple to very
complex, while enabling scalable distribution of the resource
information across the system. Here, we briefly discuss the fea-
tures and the syntax of our description language for describing
attributes, layers, queries and systems. We store the definitions
of layers and attributes in files with extension ”.def”. We also
store the descriptions of queries and systems into files with
extension ”.des”.

3.3.1. Defining Layers and Attributes
Grammar 1 presents the syntax, by Backus-Naur Form (BNF)

grammar, for defining layers and attributes using our resource
description language. All definitions required for a system de-
sign, including layers and attributes, must priorly be declared
using the definition rule in a .def file. This can be done by us-
ing keyword def, followed by an identifier and sequences of
layer-definitions. The syntax also supports two other alternative
expressions in order to provide capability to define attributes in-
dependent of layer-definitions. These expressions include either
layer-definitions as well as definition of other-attributes (i.e., in-
dependent attributes) or only definition of independent attributes.
In fact, the definition of attributes can be either built-in (i.e.,
embedded in the layer-definition) or independent. The indepen-
dent attributes are particularly used to describe queries where
the inter-resource and inter-group communications required for
a single group or multiple groups of resources need to be clearly

5

specified in the query. They are specified by using keyword
attributes at the beginning of a block.

<Definition> ::= def <Identifier> <LayerDefinitionList> end
| def <Identifier> <LayerDefinitionList> <OtherAttributes> end
| def <Identifier> <OtherAttributes> end

<OtherAttributes> ::= attributes <AttributeDefinitionList> end
<LayerDefinitionList> := <LayerDefinition>

| <LayerDefinition> <LayerDefinitionList>
<LayerDefinition> ::= layer <Identifier> static : <

AttributeDefinitionList> dynamic : <AttributeDefinitionList>
end | layer <Identifier> <Options> <AttributeDefinitionList>
end | layer <Identifier> <AttributeDefinitionList> end

<AttributeDefinitionList> ::= <AttributeDefinition>
| <AttributeDefinition> , <AttributeDefinitionList>

<AttributeDefinition> ::= [<AttributeID>] <Identifier> <
AttributeDescription> : <AttributeType>

<Options> ::= dynamic | static
<AttributeType> ::= <Number> | byte | <BitString>
<BitString> ::= bitstring (<Number>, value) { <ValueDefinitionList>

} | bitstring (<Number>, bit) { <BitDefinitionList> }
<ValueDefinitionList> ::= <ValueDefinition>

| <ValueDefinition> , <ValueDefinitionList>
<BitDefinitionList> ::= <BitDefinition> | <BitDefinition> , <

BitDefinitionList>
<ValueDefinition> ::= <Value> = <ValueDescription> | <

ValueDescription> = <Value>
<BitDefinition>::= bit<Number> = <BitDescription> |<BitDescription>

= bit<Number>

Grammar 1: The grammar to define layers and attributes in .def files

The keyword layer is used to define a layer. A layer-definition
consists of a list of attribute-definitions where each attribute-
definition individually defines a built-in attribute for its corre-
sponding layer. An attribute-definition can be specified by an
unique attribute-id followed by an identifier, a short description
of the attribute and the type of attribute. In addition, we can
specify whether the defined attributes are static or dynamic, by
using keywords static and dynamic in the body of the layer-
definition and before defining each set of attributes (attributes
are specified as static by default). Static attributes (e.g., CPU
type) represent attributes that do not change at runtime. In con-
trary, dynamic attributes (e.g., CPU load) will potentially change
at runtime. The type of each attribute can be number (positive
integer), byte or bitstring. A bitstring is defined as a sequence
of zero or more bits, by using keyword bitstring followed by
a number in parentheses, where the number indicates the num-
ber of bits required. The type bitstring is useful to efficiently
represents attributes which their values can be either one of
multiple fixed-choices (i.e., bitstring(number,value)) or a com-
bination of multiple fixed-choices (i.e., bitstring(number,bit)).
For example we can specify the type of AF attribute (ALU
Functionalities) for each core as bitstring(11,bit), where each
bit in the binary string (with length=11 bits) indicates whether
a specific functionality is supported or not (e.g., ”And”=bit0,
”OR”=bit1, ”Not”=bit2, ”XOR”=bit3, ”Add”=bit4, ”Sub”=bit5,
”Mul”=bit6, ”Div”=bit7,”ShiftL”=bit8, ”ShiftR”=bit9, ”Ro-
tate”=bit10). Another example would be the attribute INT
which describes the topology of interconnection network for
a processor. We can define the type of this attribute as bit-
string(3,value) where each possible value of the attribute can
represents a specific topology as listed as following: ”Bus”=0,
”Ring”=1, ”NOC”=2, ”Crossbar”=3, ”PointToPoint”=4, ”Hier-
archicalNOC”=5, ”Others”=6.

Listing 2 presents a description example, using Grammar

1, which includes definitions of 3 layers: Layer1, Layer2 and
Layer3. Each layer consists of definition of 2 to 4 individual
built-in attributes. Each attribute definition includes attribute-
id, attribute-name, attribute-description and attribute type. The
description specifies a set of pre-defined potential values for the
bitstring-type attributes (PT and ISA). The code also includes the
definition of 4 independent attributes at the end of the def-block
which define a set of inter-node and inter-group communication
attributes to describe queries.

def "in-a.def"
layer Layer1
[1] CCR "Core Clock Rate by MHz" : number,
[2] L1S "L1 Cache Size by KB" : number,
[3] L1L "L1 Latency by ns" : number,
[4] L2S "L2 Cache Size by KB" : number

end
layer Layer2
[5] PT "Processor Type" : bitstring(2,value) {"CPU"=0, "GPU"=1,

"FPGA"=2, "Others"=3} ,
[6] ISA "Instruction Set Architecture" : bitstring(3,value) {"

X86"=0, "SPARC"=1, "ARM"=2, "XCORE"=3, "RISC"=4, "CISC"=5,
"Legacy"=6, "Others"=7}

end
layer Layer3
[7] MS "Memory Size by MB" : number,
[8] DC "Die Count" : number

end
attributes
[9] INB "Inter-node Bandwidth Mb/S" : number,
[10] INL "Inter-node Latency by ns" : number,
[11] IGB "Inter-group Bandwidth Mb/S" : number,
[12] IGL "Inter-group Latency by ns" : number

end
end

Listing 2: An example of definitions for layers and attributes in .def files

3.3.2. Defining Queries
Grammar 3 specifies the syntax for defining queries. A query

is defined by using keyword query, followed by and identi-
fier (the query name) and a list-of-statements. The syntax al-
lows using 4 different statements including, import, single-node-
definition, homogeneous-group-definition and heterogeneous-
group-definition (statements are separated by using a ”;”).

The import statement is used to import all definitions of layers
and attributes, presented in a ”.def” file. These definitions (of
layers and attributes) are used to specify values for the pre-
defined attributes in the query-block.

A single-node specifies the lowest level of abstraction (for
both query and system description) through describing an atomic
entity, representing the smallest computing unit in the systems
(i.e., we can use the notion of ”resource” as an instance of a
single-node where each resource can not be divisible into other
sub-resources). In fact, we can define a single-node depending
on the level of abstraction required for querying. For example, a
single-node can be defined in ALU-level, core-level, CPU-level
or node-level. A single-node definition contains characteristics
required for a single-node by specifying the desired attribute-
value(s) for a subset of attributes in each pre-defined layer. In
other words, a single-node definition is a single specification
of query requirements for the smallest computing entity in the
system. Furthermore, multiple single-node definitions (by using
different unique identifier for each single-node) are allowed in

6

order to precisely describe all requirements of a query. The
language also supports various expressions and operators (such
as parentheses, and, or, <, >, <=, >= and =) to specify value(s)
for each attribute. We must note that for query description it
is not necessary to specify required values for all pre-defined
attributes of each layer, rather, depending on the query require-
ments, conditions for a subset of attributes might need to be
specified (non-specified attributes are ignored during query pro-
cessing). The keyword all can be used for layers that do not
include any specific attribute conditions.

<QueryDefinition> ::= query <Identifier> <StatementList> end
<StatementList> ::= <Statement> ; <StatementList> | <Statement> ;
<Statement> ::= <Import> | <SingelNodeDefinition> | <

HomoGroupDefinition> | <HeteroGroupDefinition>
<Import> ::= definition <String>
<SingelNodeDefinition> ::= singlenode <SingleNodeIdentifier> <

LayerList> end
<LayerList> ::= <LayerExpression> | <LayerExpression> ; <LayerList>
<LayerExpression> ::= <LayerName> : <AttributeList> | <LayerName> :

all
<AttributeList> ::= <AttributeExpression> | <AttributeExpression> ,

<AttributeList>
<AttributeExpression> ::= (<AttributeExpression>)

| <AttributeExpression> and <AttributeExpression>
| <AttributeExpression> or <AttributeExpression>
| <AttributeName> <Operator> <AttributeValue>

<Operator> ::= < | > | <= | >= | =
<AttributeValue> ::= <Integer> | <Byte> | <Const> | <BitString>
<HomoGroupDefinition> ::= homogroup <HomoGroupExpression>

inconstraints : <AttributeList> end
| homogroup <HomoGroupExpression> end
| homogroups <HomogroupExpressionList> end

<HomoGroupExpressionList> ::= <HomoGroupExpression> | <
HomogroupExpression> , <HomogroupExpressionList>

<HomoGroupExpression> ::= <HomoGroupIdentifier> (<GroupSize> , <
SingleNodeIdentifier>)

<HeteroGroupDefinition> ::= heterogroup <Identifier> (<
HomoGroupIdentifierList>) igconstraints : <AttributeList> end
| heterogroup <Identifier> (<HomoGroupIdentifierList>) end

<HomoGroupIdentifierList> ::= <HomoGroupIdentifier> |<
HomoGroupIdentifier> , <HomoGroupIdentifierList>

Grammar 3: The grammar to define queries in .des files

A homogeneous-group is defined as a set of single-node in-
stances (resources) of a same type (specified by the single-node-
identifier) with an optional indication of query requirements
for communication among single-node instances (resources or
group members). In order to define a homogeneous-group we
can use keyword homogroup, followed by an identifier and both
group-size and single-node-identifier (separated by a ”,” and in
parentheses). The group-size specifies the number of members
(resources) in the group. The single-node-identifier specifies the
type for all members. We can also use keyword inconstraints to
specify inter-resource-constraints if it is required (for a query) to
provide conditions for communication between group members.
The definition of inter-resource-constraints includes the specifi-
cation of conditions for independent attributes (as discussed in
Section 3.3.1). Alternatively, the keyword homogroups can be
used to define multiple homogeneous-groups in a single-block,
whenever the specification of inter-resource conditions for those
groups are not required by the given query.

Similarly, a heterogeneous-group can be defined as a set of
homogeneous-groups with an optional specification of query con-
ditions for communication among homogeneous-groups (inter-
group constraints). A definition of a heterogeneous-group gen-

erally includes keyword heterogroup, followed by an identifier
(i.e., the heterogroup name) and a list of homogroup-identifiers
(names of homogroup members in parentheses and separated
by a ”,”). Conditions for communication between heterogroup
members might be included in the definition of a heterogroup.
For these conditions, each homogeneous-group can be repre-
sented by a random member of the group. In other words, the
inter-group-constraints specify the desired query requirements
for communication between each pair of (homogeneous) group-
representatives. This can be done by using keyword igcon-
straints, followed by specification of conditions for the required
independent attributes.

Listing 4 demonstrates a simple query example that shows a
query expression to search for 5 CPU cores with frequency rate
of 2000 MHz, L1 cache size of 256 MB, L2 cache size of 512
MB and L1 cache latency of 8 ns. It also indicates that the range
of communication latency between the requested resources must
be between [20, 130] ns. This example describes a group of
homogeneous resources (HOGroup1) with indication of inter-
resource communication requirements.

query Query1
definition "in-a.def"; // Importing the definition of attributes
singlenode SingleNode1 // Single resource
Layer1: CCR=2000, L1S=256, L1L=8, L2S=512;
Layer2: PT=0; // PT: Processor Type="CPU"
Layer3: all; // "*" No query constraints for Layer3

end;
homogroup HOGroup1(5,SingleNode1) // Homogeneous group of

resources
inconstraints: (INL>=20) and (INL<=130); //Inter-node

communication constraints
end;

end

Listing 4: A query expression example for a homogeneous set of resources in a
3 layer hierarchy

We can also define a heterogeneous group of resources by
creating several homogeneous groups (each homogeneous group
might have one or several members) and describing the query
requirements for communication between those (homogeneous)
groups (each homogeneous group can be represented by a ran-
dom group member). In Listing 5, we have added another homo-
geneous group (HOGroup2) which contains 8 GPU cores with
a set of specific attributes in each layer and then in the last part
we have created a heterogeneous group by describing the query
requirements for communication between groups (HOGroup1
and HOGroup2).

3.3.3. Defining Systems
In our approach, for a DOS, the resource information for every

single resources in the system can be extracted from the ”system
description” by using a component called ”resource description
provider”. These information in turn are encapsulated into layer-
stamps (see Section 3.4) and distributed among resources in
different levels of hierarchy. Grammar 6 presents the syntax for
defining systems. As we can see in the grammar, the syntax
used here is identical to the one used for defining queries (see
Grammar 3) with the following exceptions:

• The keyword system is used to define a system.

7

query Query2
definition "in-b.def";
singlenode SingleNode1 // A single resource
Layer1: CCR=2000, L1S=256, L1L=8, L2S=512;
Layer2: PT=0; // PT: Processor Type="CPU"
Layer3: all; // "*" No query constraints for Layer3

end;
homogroup HOGroup1(5,SingleNode1) // A homogeneous group of

resources
inconstraints: (INL>=20) and (INL<=130);

end;
singlenode SingleNode2 // A single resource
Layer1: CCR=1000, L1S=512, NA=4, TA=0, L2L=15;
Layer2: PT=1, PC=2, ISA=3; // PT: Processor Type="GPU", ...
Layer3: WS=90;

end;
homogroup HOGroup2(8,SingleNode2) // A homogeneous group of

resources
inconstraints: (INL>=20) and (INL<=50);

end;
heterogroup HEGroup1(HOGroup1,HOGroup2) // A heterogeneous group

of resources
igconstraints: (INL>=80) and (INL<=550); //Inter-group

constraints
end;

end

Listing 5: A query expression example for a heterogeneous set of resources in a
3 layer hierarchy (see Table 1 for further details on sample attributes)

• The only supported operator within the attribute-expression
is the equal sign (”=”), as each attribute of a single-node
must provide the exact value for the corresponding attribute.

• In order to precisely describe a system, it is desirable to
specify attribute-values for most of attributes of each single
node in the system. But if this is not feasible, the keyword
none can be used within a layer-expression to highlight that
none of attribute-values for the given layer are specified in
the description.

• Hierarchies, required for describing different systems, can
be built using multiple homogeneous and heterogeneous
group definitions. But, unlike query description, the syntax
for system description allows heterogeneous groups to be
consisted of both homogeneous and heterogeneous groups.

<SystemDefinition> ::= system <Identifier> <StatementList> end
...
<LayerExpression> ::= <LayerName> : <AttributeList> | <LayerName> :

none
<AttributeList> ::= <AttributeExpression> | <AttributeExpression> ,

<AttributeList>
<AttributeExpression> ::= <AttributeName> = <AttributeValue>
...
<HomoGroupDefinition> ::= homogroup <HomoGroupExpression> end

| homogroups <HomogroupExpressionList> end
<HomoGroupExpressionList> ::= <HomoGroupExpression> | <

HomogroupExpression> , <HomogroupExpressionList>
<HomoGroupExpression> ::= <HomoGroupIdentifier> (<GroupSize> , <

SingleNodeIdentifier>)
<HeteroGroupDefinition> ::= heterogroup <HeteroGroupIdentifier> (<

GroupIdentifierList>) end
| heterogroup <HeteroGroupIdentifier> (<GroupIdentifierList>)

<GroupIdentifierList> ::= <HomoGroupIdentifierList> | <
HeteroGroupIdentifierList>

<HomoGroupIdentifierList> ::= <HomoGroupIdentifier> |<
HomoGroupIdentifier> , <HomoGroupIdentifierList>

<HeteroGroupIdentifierList> ::= <HeteroGroupIdentifier>
| <HeteroGroupIdentifier> , <HeteroGroupIdentifierList>

Grammar 6: The grammar to define systems in .des files

Listing 7 presents an example to describe a system containing
5 CPUs with two different types of cores (Core-A and Core-B)
(further details of attributes are presented in Table 1). We use
this example for discussing the efficiency of our method for
information coding later in the next section.

system System1
definition "in-d.def";
singlenode Core-A

Layer1: CCR=2000, L1S=2048, L1L=150, NA=4;
Layer2: NC=8, PT=0, INT=1, ISA=2;
Layer3: MS=8192, DC=5, TNC=82, NB=100;

end;
singlenode Core-B

Layer1: CCR=2500;
Layer2: none;
Layer3: none;

end;
homogroups
CPU0(8,Core-A), CPU1(10,Core-B),
CPU2(16,Core-A), CPU3(16,Core-B), CPU4(32,Core-B);

end;
heterogroup Config1(CPU0, CPU1, CPU2, CPU3, CPU4);

end

Listing 7: A description example for a system containing 5 CPUs with two
different types of cores (see Table 1 for further details on Core-A attributes)).

3.4. Coding Efficiency

Referring to the proposed three layers (node-die-core) de-
scription model (in Section 3.2), we can describe the relevant
hardware capabilities (i.e., the general system attributes) by
defining arbitrary number of attributes per each layer. Although
the following discussion is very centered in the reference S[o]OS
application, its rational can be replicated for other JCS.

All attributes of each layer as well as their values must be
represented by a single layer-stamp, which is the concatenation
of the hex-decimal values of the attributes (i.e., a fingerprint
of all predefined characteristics of a vnode in a specific layer).
These values are arranged and sorted within the layer-stamp
based on the ordering of their attribute identifiers mentioned
in the attribute-string (atrstr). The attribute-positioning (atrpos)
specifies the size of each attribute value correspondent to each
attribute identifier in the attribute-string.

The layer-stamp for each layer can be constructed by concate-
nation of values (binary or hexadecimal values) of its pre-defined
attributes with respect to the attribute ordering mentioned in the
the corresponding atrstr. The resulted layer-stamp can also be
decoded by having the values for atrstr and atrpos. Depending
on the number of attributes in each layer, and the required space
to store each attribute-value, the layer-stamp can be longer and
consequently need more memory to be stored. Therefore, it is
necessary to encode the layer-stamp using a low-cost, efficient
encoding mechanism, which can reduce the length of the layer-
stamp as much as possible. The expected encoding algorithm
must be loss-less and low-cost, with high rate of reduction.

Huffman coding[20] is one of the well-known classic meth-
ods to encapsulate data in a way that allows the original data
to be perfectly reconstructed from the compressed data (i.e.,
loss-less data compression)[21–23]. However, the original al-
gorithm might create long-length code-words, which decrease
the rate of reduction, and also increase the cost of encoding

8

Table 1: An example description of general system attributes as well as the capability information for a sample single resource
ID Attribute Layer Unit Type Lengthbits Value Range Sample Value Hex Value atrstr atrpos Description

0 CCR 1 MHz num 16 0-65,535 2000 07D0 0123 FFF7 Core Clock Rate
1 L1S 1 KB num 16 0-65,535 2048 0800 0123 FFF7 L1 Cache Size
2 L1L 1 NS num 16 0-65,535 150 0096 0123 FFF7 L1 Latency
3 NA 1 — num 8 0-255 4 04 0123 FFF7 Number of ALUs
4 NC 2 — num 16 0-65,535 8 0008 4567 F333 Number of Cores
5 PT 2 — bit 4 0-15 CPU=0 0 4567 F333 Processor Type (CPU, GPU, FPGA, etc.)
6 INT 2 — bit 4 0-15 Ring=1 1 4567 F333 Interconnection Network (Bus, Ring, NOC, Cross-

bar, PointToPoint, HierarchicalNOC, etc.)
7 ISA 2 — bit 4 0-15 ARM=2 2 4567 F333 ISA (X86, SPARC, ARM, XCORE, RISC, CISC,

Legacy, etc.)
8 MS 3 MB num 16 0-65,535 8192 2000 89AB F7FF Memory Size
9 DC 3 — num 8 0-255 5 05 89AB F7FF Die Count
10 TNC 3 — num 16 0-65,535 82 0052 89AB F7FF Total Number of Cores
11 NB 3 MB/s num 16 0-65,535 100 0064 89AB F7FF Network Bandwidth

by larger Huffman tables. We must note that in compari-
son to Huffman-encoding, other loss-less algorithms such as
Run-Length encoding[24], Arithmetic coding[25], Context Tree
Weighting[26] and Burrows Wheeler Transform[27] might pro-
vide better reduction rate. However, they consume more memory
to maintain the required information for decoding, or they re-
quire a slower algorithm for data decoding.

In our work, in order to provide an efficient low-cost encoding
algorithm, we employ a variation of Length-Limited Huffman
(LLH) algorithm [28]. Figure 4 demonstrates the procedures
of encoding and decoding hardware resource information in
different steps. For each layer, we first, construct the layer-
stamps by hexadecimal encoding of the attribute-values, while
considering the order of attributes in atrstr. In the second step,
we encode the layer-stamps using LLH, where the maximum
number of symbols is defined as 16 and also the maximum length
of each code-word is 16 bits. Using this scheme, we would be
able to encode unlimited number of attribute-values, specially
for the systems that support large number of attributes per layer.

Figure 5 illustrates the bit-string template that we use to store
the LLH coding information (coding-info-string) which consists
of symbol, length of the code-word for the symbol and the code-
word of the symbol, for the succession of different symbols in
the given hexadecimal layer-stamp.

In fact, a LLH-Hex layer-stamp can be decoded using the
aforementioned coding-info-string, bearing in mind that accord-
ing to our defined coding-info-string, the constant length to store
each different symbol is 4 bits, and the maximum length of each
variable-length code-word is 16 bits. After decoding a LLH-Hex
layer-stamp, the resulting hexadecimal layer-stamp can be trans-
lated to the attribute-values for each individual attribute in the
layer by using the information encapsulated within atrstr and
atrpos.

In remaining of this section, we show how our resource de-
scription model is able to efficiently describe hardware capability
information of the individual peers in a system, while it provides
an efficient underlying scheme for information transmission and
communication between peers during resource discovery. In our
example, we assume that we can describe the relevant hardware
capabilities, using 4 different attributes per layer. For this pur-
pose, we select and define the general system attributes using
Table 1. This table also provides the values of the described
attributes for a sample single resource, as described in Listing 7.

As it is shown in Table 1, atrstr for the layer1 is 0123, which

Figure 4: A) Aggregation Procedure, B) Attribute Extraction Procedure

Figure 5: Binary String Template for LLH-Hex Encoding

means that the layer-stamp can be constructed by concatenation
of values (binary or hexadecimal values) of attribute 0, 1, 2
and 3. The resulting layer-stamp can be decoded by having

9

the values of two parameters: attribute-positioning (FFF7) and
attribute-string (0123). Thus, in order to extract the values of
different attributes from the given layer-stamp, the binary stamp,
according to atrpos, must be divided to four individual parts
with the size of 16, 16, 16 and 8 bits (according to the attribute
definitions in Table 1) which are corespondent to the attribute 0,
1, 2 and 3, respectively.

Table 2: Information Encoding
Layer1 Layer2 Layer3

Hex-smp 07D00800009604 0008012 20000500520064
Bin-smplength 56 bits 28 bits 56 bits
LLH-smplength 30 bits 12 bits 26 bits
LLH-smpreduction 46% 57% 53%
RLH-smplength 26 bits 12 bits 22 bits
RLH-smpreduction 53% 57% 60%

Table 2 provides a comparison between both LLH (our ap-
proach) and RLH (i.e., a combination of Huffman and Run-
Length algorithms) coding algorithms in terms of reduction of
bits in encryption. For this comparison, we use the definition
of attributes and their corresponding values (for a sample re-
source) and also the values of atrstrs and atrposs for each layer,
presented in Table 1. The attributes defined are categorized in
3 layers. Hexadecimal-Stamp (Hex-smp) specifies the result-
ing layer-stamp in hexadecimal for each layer. Bin-smplength

shows the length of Binary-Stamp (number of bits) for each
layer. LLH-smplength and RLH-smplength are also the lengths
of each encoded layer-stamp using LLH and RLH encoding
accordingly. Similarly, LLH-smpreduction and RLH-smpreduction

demonstrate the rate of reduction for encoded layer-stamps for
both methods. The rate of reduction is the ratio of bits-reduction
(number of bits for input string minus number of bits for output
string) to number of bits for input string. As we can see in Table
2, RLH provides better rate of reduction in the range of [53%,
60%] while the rate of reduction for LLH is [46%, 53%]. How-
ever, the rate of reduction is not the only important performance
criteria in deciding to use a coding approach, rather, there are
other important aspects. Among them the cost of encoding (in
terms of memory) is very important. In fact, an encoding process
generally creates two type of information in output, including
the encoded information and the information which is required
for decoding process (e.g., coding-info-string which stores the
list of symbols and their corresponding codes). For an encoding
process, the cost of encoding specifies the amount of memory
which is required to store encoding information (for the purpose
of later decoding).
Table 3: Cost of Encoding (Required Space): NOS=Number of Fixed-Length
Symbols, BPS=Required Bits per Symbol, BFL=Required Bits for the Fixed-
Length, MCL=Maximum Permitted Codeword-Length, MBC=Maximum Re-
quired Bits for the Codewords, LID=Length of Sample Input Data by Bits,
TCB=Total Cost or Maximum Cost by Bits

NOS BPS BFL MCL MBC LID TCB

LLH-Hex n=16 4 4 l=16 n ∗ l=256 any-length 384
RLH-Hex n ∗ n=256 8 4 l=16 n∗ l=4096 any-length 7168

In Table 3, we compare RLH to our LLH encoding method
in terms of encoding cost. As we can see in the table, LLH
creates the maximum cost of 384 bits for each layer encoding
while its rate of reduction is more than 30%. It means that using
this scheme, we would be able to encode unlimited number of

attribute-values with the maximum memory cost of 384 bits
which is very low-cost. Table 3 also shows that despite our LLH
algorithm, the maximum memory cost for RLH is too high (7168
bits per each layer encoding). In overall, RLH provides better
rate of reduction (compared to LLH), but it significantly suffers
from its large encryption cost.

4. HARD Mechanisms

JCS environments are highly-hierarchical and highly-
heterogeneous in nature. Accordingly, the HARD architecture
deploys various layer-based hybrid adaptive mechanisms (i.e.,
inter-layers and intra-layers methods) in order to efficiently di-
rect discovery requests to the proper resources across and within
layers. This means that, according to properties and character-
istics of each layer in the hierarchy, HARD proposes a set of
specific adapted methods which have been designed to obtain
the maximum discovery efficiency on the target layer while an
integrated and coherent approach is used to traverse layers in
hierarchy.

4.1. Overall System Architecture
Figure 6 depicts the overall architecture of HARD3, highlight-

ing users, main services, underlying techniques and organization
of computing resources in different layers.

Figure 6: HARD3 Overall System Architecture

We build our system architecture based on a self organized
virtual hybrid overlay. In order to create the virtual overlay, at
first, the resources in the system are organized within vnodes
according to their homogeneity and proximity parameters (i.e.,
their similarities and locations). In the next step vnodes start
to negotiate with each other in a multi-round distributed fash-
ion to seek agreement on the contribution (i.e., module-role
or vnode type) of each party in the overlay hierarchy. As ne-
gotiations evolve, each vnode shapes its own system-view by
improving and consolidating its own knowledge on the entire
system. The resulting overlay contains three different types of
virtual-nodes: leaf-nodes (LNs), aggregate-nodes (ANs) and

10

super-nodes (SNs) which take position in layerln, layeran and
layersn of the hierarchy respectively. Depending on the vnode
type (i.e., module-role), each virtual-node provides different
HARD3 services (e.g., QMS and SQMS). vnodes in the upper
layers are able to provide discovery services specific to their own
layer and all the services in the lower layers. vnodes respond
to the discovery demands based on their module-roles as well
as the immediate requirements of the triggered communication
events. For example, a vnode in layersn (i.e., a super-node) pro-
vides SQMS service. However, depending on the properties of
the received communication events, it may also provide QMS or
RR services or participate in the overall discovery procedure by
playing a role of a leaf-node.

As it is represented in Figure 6, the leaf-nodes in layerln

are organized in distributed hash tables (DHTs) based on the
multidimensional fingerprint (layer-stamp) of each participat-
ing vnode. In fact, the leaf-nodes participate in a core-level
specification-based DHT ring where the sibling nodes (i.e., the
vnodes with similar resources) are linearly organized in linked
lists with single entries on the DHT ring. Our proposed DHT
ring is a variation of Chord [29] with capability to manage
sibling nodes. Similarly, aggregate-nodes (in layeran) and super-
nodes (in layersn) regardless of their module-role, participate in
DHT. For each group of LNs which elect a single AN/SN as
their common resource provider (QMS or SQMS), the DHT is
composed of all the vnodes in the group (containing LN mem-
bers and either a single AN or a single SN). In other words,
all vnodes, regardless of their module-role, are able to perform
Lookup queries over DHTs (refer to Section 5.1 for a detailed
description of the proposed algorithm for DHT lookup).

The reason to use DHT in the core-level (layerln) of our ar-
chitecture is due to the following aspects: (a) DHT is scal-
able: this is specially important when considering the potentially
large number of cores that can reside on a single die (in future
systems). (b) DHT is fast, reliable, fault tolerant and deter-
ministic: resource discovery in the core-level is much more
sensitive to speed than querying in the network-level, due to
the tightly coupled design of many-core processors. In many-
core level, resource discovery might be ineffective if it fails to
provide required information in an adequate amount of time
(e.g., discovery latency might have a direct impact on the cost
of execution migration in a many-core environment). Moreover,
in such highly sensitive environments, it is essential for a dis-
covery method to operate reliably and provides deterministic
results (undetermined results might have cost by reprocessing
the query or exploring an already visited search space). (c) DHT
maintenance is low cost (in terms of memory and communica-
tion): a very small finger-table is required to be maintained in
each vnode in layersn. (d) DHT supports attribute-based query
description: this makes DHTs more compatible to our attribute-
based resource description model. On the other hand, DHTs
originally do not support semantic-based querying. To solve this
issue, in our DHT variation, we enhanced the original Chord
DHT to support a similarity algorithm which makes feasible
similar-matching instead of exact-matching (HARD supports
both modes of matching through specifying the desired matching
mode in the query by the user).

QMS is a service which provides query processing facili-
ties in layeran. It uses a probability-based mechanism to guide
queries among a group of aggregate-nodes which share a single
super-node as the resource provider (i.e., SQMS). During the
discovery procedure, distributed probability tables (DPTs) co-
operate with each other in a set of dynamic distributed learning
processes, which are adapted to the progressive environmental
changes. For each AN, its local probability table dynamically
collects, aggregates and updates information about the status of
the overall resources in the system, gathered from all transacted
queries and results through the AN itself. By using this DPT
technique, the network that connects ANs becomes increasingly
resource-aware, as the number of traversed queries increases
across the system (refer to Section 5.2 for detailed description
of the proposed methods for DPTs and querying in layeran).

We use DPT as a base method in the die-level (layeran) due
to its scalability, dynamicity, efficiency and also its compact
structure. Comparing to DHT, DPT provides probabilistic results
instead of deterministic results. But this not a drawback, since
DPTs operate in the middle-level of HARD architecture which
does not need to provide deterministic results. The reason is
that, queries are not going to be concluded in layeran. In fact, a
query processing starts from the top-level (layersn) (of course,
if there exist any query conditions for this layer) and then goes
to the middle-level (layeran) and finally it could be concluded
in the lower-level (layerln). Furthermore, we enhance our DPT
approach by introducing a SoR mechanism which can help DPT
to provide deterministic results whenever feasible.

The compact design and dynamic nature of DPT provides a
facility to efficiently cope with dynamic changes in the environ-
ment (e.g., unavailability of resources due to resource failure,
resource reservation, etc). Each vnode in layeran maintains a
small probability table. Depending on the number of predefined
attributes in the system, a property table may include multi-
ple records (called resource-type or resource-category records),
where each record represents the aggregated probability informa-
tion for all neighbors with respect to the overall query transaction
data (monitoring data), collected and analyzed, for a single at-
tribute over a predefined specific range of values. In fact, each
resource-type record includes probability factors for all neigh-
bors as well as a suggestion of a SoR (a vnode which determin-
istically can provide resources, matched with the resource-type
definition of the record). We also note that probability tables
only cover attributes defined for layerln and layeran. We discuss
further details of DPT and SoR mechanisms in Section 5.2.

SQMS is a specific QMS which provides additional capabil-
ities to support query forwarding in layersn. For instance, as
we can see in Figure 6, super-nodes (i.e., SQMS providers) are
able to concurrently provide multiple services (such as lookup,
QMS, SQMS and RR) for the different triggered communication
events (refer to Section 4.5). The query forwarding in layersn

uses the specifications of the resources in the node-level to con-
duct a specification based anycasting method to direct the queries
among SNs. It uses the top level layer-stamps to create anycast
groups, while nodes in this layer are able to automatically adjust
to the anycast group they are interested in based on their spec-
ifications in layersn (refer to Section 5.3). We use anycasting

11

as a base method for querying in the network-level (layersn)
due to its scalabity, efficiency and its powerful features which
make it more adequate and compatible for resource discovery in
computing systems with a large number of network connected
nodes (as we discussed in our previous work [30]).

Depending on the specific DOS architecture, HARD3 users
could be resource management entities, schedulers, process man-
agers or even code adapters. Each user would be able to perform
resource discovery through invocation of a RR entity. RR in turn
sends the given query to its local QMS. Due to the type of query
and the user’s demand (e.g., simple single resource, multiple
heterogeneous resources, complex resource graph containing
the constraints for inter resource communications, etc.) QMS
splits the Main-Query to a set of sub-queries and chooses the
appropriate layer that each sub-query must start to process. Fi-
nally, the QMS that originated the sub-queries, aggregates the
discovery results, and responds the RR with a set of resource
matches that optimally satisfy the Main-Query’s demand. In the
remaining of this section we elaborate more on the mechanisms
proposed above.

4.2. Initialization Phase
Initialization procedure is the pre-processing phase of the

resource discovery process, where the initialization of the envi-
ronment variables (e.g. modules configurations) is performed. In
fact it is necessary in order to provide the minimum requirements
for the execution of the discovery algorithm. The discovery pro-
cess in the next phase is performed on the basis of these primary
settings which consist of the resource grouping and clustering
indexes, module roles initialization and allocation of the primary
values for the underlying data structures. Some of these settings
are directly calculated and stored in the local memory of each
node during initialization phase while some others are dynam-
ically updated/recalculated according to different policies and
during the discovery procedure. There are also system variables
which are required to be set by the system administrator such as
grouping policies and grouping thresholds.

Figure 7: Initialization Phase

In summary, the initialization phase (see Figure 7) of the
resource discovery modules consists of the following steps:

1. Self-organization and self-stabilization of the multi-layers
communication overlays (zero/auto-configure overlays)

2. Distributed role-allocation (e.g., leaf-node, aggregate-node,
super-node)

3. Data gathering and registration (initialization of the succes-
sor, probability and neighbor tables)

The details of the algorithm for self-organization and
self-configuration of the nodes in hierarchical layers (e.g.,
layerln, layeran and layersn) have been presented in our previ-
ous work in [31].

4.3. Storage and Retrieval

In HARD3 initialization phase, according to a distributed
self-configuration mechanism, each single HARD3 instance
(running on different vnodes) obtains its own instance role (i.e.,
module-role), which clarifies the future operational behavior of
that module instance in terms of discovery. Depending on the
module role, each resource discovery instance is responsible for
maintaining and updating a set of information in memory, which
are the following:

A) The nodes which have the LN role maintain a successor
table, a resource state table (i.e., a vector of states for all the
resources belonged to a vnode), a leaf-stamp, a pointer to the
sibling node (i.e., a vnode with similar type of resources in
the current DHT-ring) and a QMS-ID. Successor tables in leaf-
nodes are created through getting information from the system
resource description provider and by leveraging some dynamic
algorithms. The leaf-stamp is a key that demonstrates all the
characteristics of a computing node (e.g., a processor) in the
leaf-node layer and it is generated by extraction and aggregation
of the predefined layer’s characteristics presented by the system
resource description provider. The QMS-ID also specifies the
address of a cluster representative which the current leaf-node
belongs to (i.e., the address of an aggregate-node in the system
which provides QMS service).

B) The nodes which have AN role (i.e., the nodes with QMS
functionality) maintain all the information related to the LN layer
as well as a probability table, an aggregate-stamp and a SQMS-
ID (i.e., Super-Node ID). The probability table will be created
and configured by the aggregate-node itself during initialization
phase and it would be updated during the resource discovery
procedure due to the dynamic behaviors of the HARD3 module
instances which are running on the other aggregate-nodes in
the system. Furthermore, the aggregate-stamp indicates all the
characteristics of a computing node in the AN layer through
extraction and aggregation of those properties from the resource
description provider.

C) The nodes which have SN role (i.e., the nodes with SQMS
functionality) maintain all the information related to both of
the LN and AN layers as well as the neighbors table and the
node-stamp. The neighbors table provides information about
the other super-nodes in vicinity and the node-stamp indicates
all the predefined characteristics of a computing node in the SN
layer.

It needs to be taken into account that all the instances of
the resource discovery modules must have initial states either
by using static configuration or performing the initialization

12

procedure (resulting from a dynamic self-organization of the
logical network overlays in the hierarchy). The value for module-
role can be LN, AN or SN. We must also note that, each one
of the module instances has the capability to act as a leaf-node
by default. However they can not play the role of aggregate-
node or super-node unless their module-roles clearly are marked
as such. Moreover, the role of each module instance can be
changed dynamically during the resource discovery procedures,
and system self-organization.

4.4. Resource Requester and Resource Information Provider
RRs are the module instances that query RPs on behalf of

HARD3 users (i.e., the resource discovery users or the system
components such as resource manager or process manager which
need to discover resources for purposes like resource allocation)
for their needed resource information and the RPs are the module
instances that provide information services to other RPs and RRs.
As it is shown in Figure 8, RR operations can be summarized
according to the following steps:

Figure 8: Resource requester general behavior.

(1) RR reads memory to get the description of resources
which are demanded by a user (reading and analyzing the user’s
query description). In accordance with our hierarchical resource
description, the description of the required resources can be ac-
curately reflected in a flexible query description. A general query
might be described as a single group of heterogeneous resources,
which contain several homogeneous group of resources. The
description of each homogeneous group represents the group
characteristics such as number of desired resources, static and
dynamic desired properties of resources in each standard layer
and the required inter-resources and inter-groups communication
properties.

(2) Using the query description set by the user, RR creates a
Main-Query message and sends it to its local QMS. The local
QMS is the default self-configured RP for RR. Each local QMS,
on behalf of its RR clients, manages all the relevant discovery
steps for a Main-Query in the distributed system.

(3) Later, RR receives a main-reply message corresponding
to its discovery request. This consists of information on the
discovered resources which are pre-reserved for the user (i.e.,
application segments belonging to the user). RR is able to
either release them or reserve these resources for a longer time
period. The discovery temporary reservation for each resource

will automatically end after a certain time period if the related
RR makes no decision on the reservation policy. Moreover, a
RR will release the reserved resources when those resources are
not needed any more by the user (i.e., application execution is
terminated).

Unlike the irrelevancy of RR behavior to the module’s role,
the RP algorithms and mechanisms are mostly dependent on
the module’s role. For this reason, we elaborate on the details
of these algorithms in Section 5, explaining the behavior of the
HARD3 modules from RPs viewpoint.

4.5. Communication Events

After the initialization phase has been completed, system ac-
tions are concentrated along the line of maintaining resource
information, handling queries and managing unpredictable
changes in the system configuration. In order to handle queries
and route discovery requests to the proper resources within and
across layers, we have defined several types of events (see Figure
9 and Table 4) where each event specifies the type of commu-
nication and also the necessary actions that are required to be
done by a receiver node. The receiver node basically acts as
an event handler responsible for handling the triggered event.
These events are the following:

Figure 9: Communication events within layer and across layers.

Lookup event: DHTs have been used to store the highest
details of the resource information in the lowest layer of the
resource description hierarchy, therefore all the peers in a mini-
cell (i.e., a group of vnodes with common QMS-ID and SQMS-
ID) participate in a ring-based DHT. It is not necessary to have a
single or flat DHT, rather in each mini-cell, for each dimension,
a flat/hierarchical ring can be used. RPs trigger Lookup events
in order to search the entire leaf-nodes in the local mini-cells for
the desired resources.
Update event: Once a query is successfully resolved in a

vnode, an Update event is triggered in order to inform the
original resource requester and all the intermediate resource
providers on the result of the corresponding query. The response
(Update) message follows the reverse path taken by the query
message through the overlay network and updates the values
for the resource-type-depended variables such as probe factors
and preferred-nodes in the probability tables for the next usage.

13

Table 4: Inter-layer and Intra-layer Communication Events

Event Source Event Generator Target Event Handler Description
LN AN SN LN AN SN

Lookup yes yes yes yes yes yes DHT lookup in layerln, Intra-layer communications in layerln, layeran − > layerln (inter-layers communi-
cations)

Upward no yes no no no yes Ensuring that the lower layers in the current cell (a group of vnodes with common SQMS-IDs) have
already been searched with no results, layeran − > layersn (inter-layers communications)

Forward no yes yes no no yes There is no assurance that the lower layers of the current cell are explored, Intra-layer communications in
layersn, layeran − > layerln (inter-layers communications)

Downward no yes yes no yes no Ensuring that the query conditions are met in the upper layer (layersn but the query is still not fully
resolved and further search is required to be carried out in the lower layers., Intra-layer communications
in layeran, layersn − > layeran (inter-layers communications)

Downwardcbk no yes no no yes no Ensuring that all the potential children of the current vertex (i.e., an aggregate-node or a vnode with
QMS functionality) in the layer2 search tree have already been explored. Further search is required by
calling back to the parent of the current vertex. The probability table in receiver nodes must be updated.
Intra-layer communications in layeran

Updateqms yes no no no yes no The result (i.e., full result, partial result or no result) of a Lookup query is delivered to the caller entity
which is the QMS of the event generator (event initializer), layerln − > layeran (inter-layers communica-
tions)

Updatesys no yes no no yes yes Ensuring that a query (sub-query) is completed (with partial or full results). The result is delivered to the
original QMS requester (i.e., the QMS which has registered the original query). The intermediate entities
must be updated. Intra-layer communications in layeran and layersn, layeran < − > layersn (inter-layers
communications)

Updatevic no yes no no yes no The QMS of the aggregate-nodes in the vicinity of the event generator are required to be updated on their
knowledge of source of resource. Intra-layer communications in layeran

Updatenul no yes no no yes yes Ensuring that a query (sub-query) is unusually completed (with partial or null results). This could hap-
pens when all the potential vnodes in the system are explored or the query is expired. The result is
delivered to the original QMS requester. Updating is not required for the intermediate entities. Intra-layer
communications in layeran and layersn, layeran < − > layersn (inter-layers communications)

Generally, the leaf-nodes return updates with the whole results,
with partial results, or with no results.
Upward event: This is an inter-layer communication event

received by a SQMS provider in the super-node layer. It notifies
the SQMS that the lower layers in the current cell were already
explored with no result, and the discovery process must be
continued by directing the query to other SQMS in the system.
Downward event: In order to resolve a query, due to the hi-

erarchical structure of the resource information and query de-
scriptions, each query starts the discovery process from the
higher layer and when the resource description in a layer satis-
fies the query conditions for that layer, the query must be sent
downwards to the lower layer which supports adequate detail
information. In fact queries are traversing between layers to
extract more accurate information of the desired resources. In
other words, a Downward event is generated by a RP in an upper
layer and it will be send to another RP in the lower layer, so the
recipient RP can be sure that the query conditions in the higher
layers already have been achieved.
Forward event: This is the major communication event in the

super-node layer, which alerts the receiver that the lower layers
of the current cell are not explored yet. It is obvious that the
lower layer exploration is only required if the query conditions
in the super-node layer are met. Forward Event can also be
generated by the original QMS of a query in the lower layer and
received by the SQMS in the upper layer.

Main-Query event: Once a HARD3 instance, running on a
particular processing node, receives a discovery demand from
a user, the RR component starts by generating a Main-Query.
This happens when the local processing resources are not suf-
ficient for an efficient application execution, and some extra
remote resources are required to improve the execution perfor-
mance. The resource requester will trigger the Main-Query
event in a target node in its local mini-cell which provides query

management service (i.e., QMS).
Main-Reply event: Upon completing a Main-Query a

Main-Reply will be created by the original QMS of the
Main-Query to inform the HARD3 user on the overall result
of the discovery request. Depending on the states of the sub-
queries, the discovery reply for a Main-Query may contain full
results, partial results, or no results.

5. Algorithms

5.1. LN Algorithm Description

RPlns (i.e., vnodes with the module-role of LN) operate as
following (see Algorithm 1):

(1) Upon receiving a Lookup request in a receiver node which
is denoted as RPln, it checks its local resources in order to find an
available match/matches that meets/meet the requester criterias
described in the Lookup message. For doing this, the RPln

verifies if its leaf-stamp is validated either in terms of equality
or similarity (based on the degree of similarity returned by a
similarity function) by the lookup-key (i.e., the description of
the query conditions for the layerln) mentioned in the Lookup

message. It must be taken into account that the acceptable
similarity degree to resolve queries can be a constant value for
all the queries, predefined in the entire system, or it can be
variable for each query.

(2) If all the resources required by the query are found in
the local set of resources (i.e., if the query is fully resolved),
the current lookup procedure exits and, consequently the RPln

creates and sends an Updateqms message to the local QMS (i
.e. the aggregate-node, providing the QMS service to RPln,
that has initiated the current lookup procedure) containing the
information on the matched resources in the current leaf-node.
In other cases, if some partial results are achieved or there are

14

Algorithm 1: Processing a Lookup sub-query by a RPln

Input: sq= The received Lookup sub-query
/* sq, temp:sub-query, ft:finger-table of RPln */
/* for a sub-query, nRR is the number of resources requested,

nDR is the number of already discovered resources, DRs is
the list of IDs for already discovered resources */

temp=sq; temp.nRR= sq.nRR- sq.nDR; temp.nDR=0
idx=ft.get-entry-index(temp.cln) // checking the lower bound of the

finger table ft, if idx==NULL ⇒ there is no an entry index
for temp.cln in the finger table, an entry index refers to a
possible range of key values defined in ft, ft specifies a
successor-node-id for each entry index

if RPln is qualified due to temp.cln then
matched-resources=check-local-resources(temp)
temp.DRs.push(matched-resources); reserve(matched-resources, temp)
temp.nDR=matched-resources.size(); sibling-node=hasNextSibling()
if (sibling-node) ∧ (temp.nDR < temp.nRR) then

temp.nRR=sq.nRR; temp.nDR=temp.nDR+sq.nDR
send(Lookup, sibling-node, temp)

else
temp.nRR=sq.nRR; temp.nDR=temp.nDR+sq.nDR
temp.preferred-vnode=check-sor-capabilities(temp)
temp.visited-qms-ids.push(qms-id)
send(Updateqms, qms-id, temp)

else if (RPln is not qualified with respect to temp.cln)∧ (idx) then
temp.nDR=0; temp.nRR=sq.nRR; temp.nDR=temp.nDR+sq.nDR
temp.visited-qms-ids.push(qms-id)
send(Updateqms, qms-id, temp)

else
if (vnode-id==maxRank) ∨ (maxKey < temp.qls) then

/* checking the upper bound of the finger table ft */
temp.nDR=0; temp.nRR=sq.nRR; temp.nDR=temp.nDR+sq.nDR
temp.visited-qms-ids.push(qms-id)
send(Updateqms, qms-id, temp)

else
next-node=ft.get-successor-id(idx)
forward(Lookp, next-node, sq)
/* sending the input sub-query to the next-node in the

DHT without change */

return

no resources available in the local set of resources, while the
leaf-stamp of the current node is validated by the query’s lookup-
key, the RPln checks if it has sibling-node. On the existence of
a sibling node, the Lookup message will be redirected to the
sibling-node, while the content of message is updated for the
partial results achieved in the current node and, if the sibling-
node has not exist, similar to what is performed on a full query
resolution, an Updateqms message containing partial result or no
result will be sent to the local QMS. It must be taken into account
that each lookup query contains information such as the number
of resources required, the number of resources discovered and
the properties of the resources desired in layerln. The receiver
of a Lookup message identifies the number of resources, which
are currently needed to be discovered due to the information
extracted from the message content. This information includes
the lookup history, which clarifies on the resources which are
already discovered in other SoRs. Sibling-nodes are the vnode
which provides similar resources. These vnodes are not directly
participating in the DHT, rather among each group of sibling-
nodes only a single member joins the DHT of the leaf-nodes
in the current mini-cell. In fact sibling-nodes are the hidden
members of the DHT, which are called whenever more SoRs of
a particular type of resource are needed. Moreover, each group
of sibling-nodes constructs a chain where each node knows only
its single sibling-node. The first node of the chain directly gets
position in the DHT while the last-node ends the search in the
sibling-nodes.

(3) If the lookup-key fails to validate the leaf-stamp of the
current node, thus, according to the DHT properties (i.e., the
properties of the DHT ring which has been created through par-
ticipation of a group of leaf-nodes in the LN layer) and the local
successor-table of RPln, the lookup ending conditions would be
examined to determine whether they are satisfied or not. Accord-
ingly, there would be two possibilities: (a) If a lookup ending
condition is reached, the lookup procedure ends, and the RPln

sends an Updateqms message to its QMS address containing in-
formation, which ensures the local QMS about the non-existence
of available matches for the lookup query constraints in the leaf-
node layer, while the search space has efficiently been explored.
(b) If no one of the lookup ending conditions is reached, the
RPln redirects the Lookup message to the next RPln in the DHT
by using its successor-table.

5.2. AN Algorithm Description

RPans (i.e., vnodes with the module-role of AN which provide
Query Management Service) operate as following:

RPs assign several different event-handlers to manage the
communication events. They also receive and inspect each in-
coming message to identify the event that must be triggered.
Depending on the message type in the client-side (source event
generator) and the vnode type (i.e., node type or module-role)
in the server side (target event handler) various operations (i.e.,
event handler functions) might be performed by receivers. Below
we elaborate on the event receivers’ behavior (event-handling
functions) for different events when the node type of the receiver
node is set to AN.

The Lookup event handling in the RPans is similar to Lookup

event handling at the RPlns. The only difference is that the AN
receiver nodes play the role of a LN.

RP_an

Original Requester

Main Query

QMS_or

Probability TableQuery Router

Query Registry

Query Analayzer

Sub Query 1

Sub Query 2

Sub Query i

Sub Query n

Figure 10: Main query processing in QMS or

The RPans are the major targets for the Main-Query events.
Whenever such event occurs in the receiver side, that is supposed
to be the local QMS of the requester, several tasks are conse-
quently performed by different sub-components of the QMS
(e.g., Query-Analyzer, Query Router (QROUT), Query Registry
(QREG), etc) (see Figure 10). At first, the Main-Query is regis-
tered in the QREG. This specifies the current QMS provider, as
the main responsible entity to collect and manage the overall re-
sults of the Main-Query. Afterwards the Query-Analyzer splits
the Main-Query in multiple sub-queries (i.e., queries) based on
the Main-Query description and the homogeneity of resources
in each sub-query. These sub-queries in turn update their query-
routing information in the QROUT. Depending on the sub-query

15

conditions for the different layers, the Query-Analyzer makes a
decision for each individual and independent sub-query based
on their query-schemes, focused entirely towards conducting the
best possible exploration pathway around the system.

For the sake of simplicity, in the rest of this paper, we use
a query-scheme to represent sub-query conditions in different
layers (the number of homogeneous resources required for each
sub-query is a separated query argument which is not shown in
the query-scheme). A query-scheme represents all sub-query
conditions in 3 layers as < cln.can.csn >. Here, cln, can and csn

denote the existence of query constraints for the layerln, layeran

and layersn accordingly, while nln, nan and nsn determine non-
existence of any query-conditions on those layers.

The strategy to split a query by Query-Analyzer is related
with the description of the query. The Query-Analyzer simply
splits the query (a heterogeneous group) to multiple sub-queries
(multiple homogeneous groups), as it is originally described by
the query description (see Section 3.3.2). For example, for the
query description presented in Listing 4, the Query-Analyzer
can only create a single sub-query, since the query description
only contains one homogeneous group (HOGroup1). The result-
ing sub-query aims to find 5 similar processing cores with the
characteristics described by SingleNode1. As it is shown in List-
ing 4, the sub-query does not provide any condition in Layer3
(< cln.can.nsn >). Similarly, in other example for the query de-
scribed in Listing 5, the Query-Analyzer splits the query into
two sub-queries (sub-query1 and sub-query2), since the query
description contains two homogeneous groups (HOGroup1 and
HOGroup2). The sub-query1 is similar to the one discussed
for Listing 4. The sub-query2 aims to find a group of similar
resources, including 8 processing cores with attributes described
by SingleNode2. The query-scheme for sub-query2 can be pre-
sented as < cln.can.csn >, since it provides conditions in all
layers.

The conduction of sub-queries by the Query-Analyzer can
be done as following: (a) for the sub-queries with the query-
scheme < cln.nan.nsn >, the RPan initiates a DHT lookup search
(i.e., searching in the local mini-cell) by sending a DHT Lookup

message to the entry node in the DHT ring. (b) if the query-
scheme is < cln.can.nsn >, the RPan first checks if its aggregate-
stamp is validated according to the aggregate-key of the query.
In other words, it determines whether the layeran information
of the local QMS fulfills the sub-query conditions in this layer
or not. Thus, if the layeran information of the current node is
validated by the can query conditions, the RPan continues with
the DHT lookup, otherwise, the RPan, leveraging the probability
table, selects the next QMS (i.e., another RPan in the current
layer which represents a mini-cell with the higher probability to
find the requested resources) and sends a Downward discovery
message towards the QMS address of the next mini-cell. (c)
if the query-scheme is < cln.can.csn >, the RPan generates and
sends a Forward discovery message towards the higher layer
which offers the SQMS service (the RPan relays the query to its
SQMS address in the super-node layer).

Figure 11 demonstrates examples of query processing for sub-
queries with different schemes and due to the decisions made by
the Query-Analyzer. Upon receiving a request from a HARD

(a) < cln.nan.nsn >

(b) < cln.can.nsn >

(c) < cln.can.csn >

Figure 11: Examples of sequence of the resource discovery message flow for
different sub-query schemes (the Main-Query contains a single sub-query).

user, the RR entity starts the discovery procedure by sending a
Main-Query to its local pre-assigned QMS provider (QMSor).
The Main-Query includes only a single sub-query. In Figure 11-
a, the sub-query scheme is < cln.nan.nsn >, which means that the
query only introduces conditions for the layerln. Thus, the query
is delivered to the lower layer (layerln) with a Lookup event. This
will result in a DHT lookup. The query successfully returned a
hit by sending an Update message to the QMSor. The QMSor

finally sends the overall query results to the requester by using a
Main-Reply message. In Figure 11-a, the sub-query scheme is
< cln.can.nsn >. Therefore, the query must find a match for its can

conditions, before going to the lower layer. This can be done by
dispatching the query within layeran and visiting potential ANs,
by using probability tables and Downward messages. The query
finally finds a matched AN and then sends a Lookup message to
its lower layer in order to process the rest of the query conditions,
similar to the first example. Figure 11-c depicts similar processes
for a sub-query with query-scheme < cln.nan.csn >. Due to the
csn constraints, the discovery must be initially started from the
upper layer (layersn). A Forward message is used to transmit the
query to the top layer. Subsequently, one or multiple anycasting
might be required to find a matched SN. The sub-query then
transferred to the layeran for the rest of discovery process in the
lower layers.

HARD3 defines four different types of Update events, which
are elaborated in Table 4. The Update event handler in a RPan

generally performs the following operations in response to the
occurrence:

(a) Depending on the content and the type of the incoming
Update message, RPan updates the values of the relevant fields
in its local probability table. As it is detailed in Algorithm 2,
Updating is required only for Updatesys and Updatevic events.
On a Updatevic event, the updating process is terminated in this
step since the purpose of this event is just to update the resource
knowledge of neighboring aggregate-nodes of a potential SoR
(the event generator). On Updatesys and Updatenul events, the
receiver realizes that the discovery process for the given sub-
query is completed, thus, the Update messages follows the

16

reverse path taken by the query message to the QMSor (i.e.,
the QMS which has initially registered the query) through the
overlay network. The only difference between these two events
is that Updatesys is required to update the probability table of
the the intermediate nodes but Updatenul does not need to do
this.

(b) On Updateqms, the receiver (which is a RPan) investigates
the current status of the query considering the discovery results
as provided by the received Update message. Accordingly, three
different possibilities would be considered: the query is fully
resolved, the query is partially resolved and the query is not
resolved. When the query (i.e., the sub query which has already
registered in the QMS of the original requester) is fully resolved,
a corresponding Updatesys event is created and sent back to
the QMSor while the probability tables and the QROUTs of the
revisited nodes will be updated. In fact, due to the temporal
knowledge of the Query-Routers in each node, the Updatesys

message backtracks its way to the QMSor by traversing the nodes
in different layers.

(c) In other case, when a sub query is partially resolved, RPan

properly reshapes the sub query as a Downward message includ-
ing information on the partial discovered resources in order to
continue the search to find the rest of the requested resources
within the current layer. Probability tables assist RPans to effi-
ciently decide, choice of the next QMS destination. There are
two search ending conditions in layeran: the first one is reached if
all the potential QMS providers in the current layer of the current
cell are explored, thus, an Upward message including the partial
results (if there is any) will be transferred to the address of the
SQMS provider in the upper layer. A potential QMS provider is
an aggregate-node, representing a group of leaf-nodes in a mini-
cell, which the probability to find the desired resources for a
sub-query among its subsidiary resources is more than a specific
threshold value. We must note that, even among the potential
QMS providers, only qualified QMS providers which fulfills
the can conditions for a given query will be deeply searched in
layerln level; the second layeran search ending condition is also
reached if the TTL (i.e time to live in terms of number of hops
or expiration time) of the sub-query is expired, therefore, an
Updatenul will be sent to the QMSor.

(d) Upon receiving an Updatesys or an Updatenul message by
a QMSor (i.e., the main query registry point), the local QREG of
the QMSor will be updated according to the discovered results
of the sub query and if all the other sub queries of the main
query are also resolved or completed, a final main-reply message
including the results of all the sub-queries will be sent to the
original requester (the issuer of the given Main-Query) (see
Algorithm 3).

As we elaborated in Table 4, there are two types of Downward
events: normal Downward and call back Downward. A
Downward event is triggered when the query conditions in the
upper layer are met. It is the major communication event which
is happening in layeran, and notifies the receiver that the re-
quired number of resources are not fully discovered yet. The
query transmission in layeran is performed by employing DPTs,
and exploits the query status information from the content of
the received query at each aggregate-node to manage the relying

Algorithm 2: DPT Updating
Input: sq= sub-query, up=updater, ut=update-type or type of sub-query
/* sq:sub-query, rt:resource-type, nr:neighbor-record,

ϕ():quality fun(), sor:source-of-resource */
sorpf(sq, up, ut, sornew, sorold , p fold , f lag)

// a function to calculate the new p f value and making
decision for the new sor

result.sor=-1 // indicates that the sor value should not change
δ=random(0,1) /* 0 < δ 6 1 , λ:latency */
λ=sq.receiver-time - sq.sender-time // λ is the latency by ms
between the sq-sender or updater and the sq-receiver
if ut==Updatesys then // or if sq.type==Updatesys

if (sq is fully resolved)∧(∃ sornew) then
result.pf=p fold-δ∗ (p fold) + δ

λ // potential increase in p f
value
if ϕ(sornew) > ϕ(sorold) then

result.sor=1 // a new sor, suggested by sq, can
replace the previous sor in the DPT

else
result.pf=δ∗ (p fold) // potential reduction in p f value
if (sorold==sornew)∨(f lag == 0) then

result.sor=0 // the previous sor in the DPT must
be removed by setting the sor value to empty

else if ut==Updatevic then
result.pf=p fold-δ∗ (p fold) + δ

λ

else if ut==Downwardcbk then
result.pf=δ∗ (p fold)

return result

sornew=sq.preferred-vnode // getting the preferred-vnode/SoR of sq
foreach rt : rtid ∈ sq.res-type-ids do

if DPT.find(rt) then // rt already exists in the DPT
RTrecord=DPT(rt).get(); f lag=1

else // rt does not exist in the DPT
DPT.add(rt); RTrecord.sor.set-empty(); RTrecord(nb).pf=1.0; f lag=0

foreach nb ∈ List of AN Neighbors do
if nb==up then

sorold=RTrecord.sor
p fold=RTrecord(nb).pf
res=sorpf(sq,up,ut,sornew,sorold ,p fold , f lag)
RTrecord(nb).pf=res.pf
RTrecord(nb).probability=

RTrecord(nb).p f∑AllNeighbors
nr RTrecord(nr).p f

if res.sor==0 then
RTrecord.sor.set-empty() // SoR sets to empty

else if res.sor==1 then
RTrecord.sor=sornew // SoR changes

else
RTrecord.sor=sorold // SoR does not change

DPT(rt).set(RTrecord)

return

process. The query status information contains the fields such
as the query-scheme (i.e., the query conditions in each layer),
inter resources communication constraints, number of requested
resources, number of discovered resources, resource-IDs for the
discovered resources, preferred-vnode, source address, destina-
tion address, etc. Whenever a Downward query is received/sent
from/to an/a aggregate-node/super-node, the query routing in-
formation (such as main-query-id, sub-query-id, parent-sender
and destination) in the QROUT must be updated. Furthermore,
for a given query, the corresponding information in the QROUT
of the revisiting nodes automatically will be removed before
generating the events such as Updatesys, Updatenul, Upward
and Downwardcbk. In fact QROUT only traces the mainstream of
the queries which contain the events such as Downward, Upward
and Forward.

The search in layeran is conducted over a tree graph where the
tree’s root is the first aggregate-node in the current layer which
receives the Downward query from the other layers (i.e., upper
or lower layers). The QMS in each aggregate-node makes a
decision to relay the query to one of the neighboring aggregate-

17

nodes if it is required. This is performed depending on several
parameters such as the query’s resource-type-ids, the query’s
preferred-vnode and the probability to find the required resource-
type in the path which is specified by a neighbor-node as the
next QMS destination. The query’s resource-type-ids denote the
IDs for different resource-types due to query dimensions. Each
query dimension specifies a desired value or range of values
for a single resource attribute. The query-analyzer (i.e., a QMS
component) in the local QMS of each Main-Query is responsi-
ble for recognizing the list of resource-type-ids for each created
sub-query. On the other side, each QMS in the system constructs,
maintains and updates one small probability table containing
fields such as neighbor-id and probe-factor(pf) (indicating prob-
ability) for each demanded resource-type. Moreover, for each
resource-type a preferred source of resource might be assigned
or modified during the update procedure, which represents the
current QMS’s preference to direct the related queries to a SoR
that provides quality, in terms of size (i.e., number of available
resources in SoR), and distance (i.e., latency or number of hops
between current QMS and SoR).

Figure 12 depicts a simple example of DPT in a system with
2 predefined attributes (CCR: Core Clock Rate, L1S: L1 Cache
Size) over 4 different ranges of values (resource-types 1-4). We
must note that the number of predefined resource-types in the
system is an arbitrary design choice. Also the number and defi-
nition of resource-types must be uniform among all probability
tables in the system. Defining a large number of resource-types
in the system may increase the resolution of DPTs (i.e., accu-
racy of probability tables). However, it might have memory
cost, resulting DPTs with larger sizes (HARD limits the num-
ber of resource-type definitions for each single attribute in the
range of 2 to 4). In our example, a requester (RR) sends a
Main-Query to its local QMS provider (vnode-11). The re-
sources desired for the query include two different processing
cores (core-A and core-B): 5 cores with CCR=1500 MHz and
L1S=512 MB and 8 cores with CCR=2200 MHz and L1S=256
MB. The query is simple and does not introduce any conditions
in layeran and layersn (i.e., < c1ln.nan.nsn > and < c2ln.nan.nsn >).

The Query-Analyzer in the vnode-11 splits the Main-Query

into two sub-queries, bearing in mind that each sub-query must
represent query conditions for required resources, specified by
the query description, which are identical to each other (i.e.,
resources required by a sub-query are a group of homogeneous
resources). In other words, sub-query1 aims to find 5 processing
cores of type core-A and sub-query2 is going to find 8 process-
ing cores of type core-B. These two sub-queries finally return
their results achieved to the QMSOR in vnode-11. The QMSOR

aggregates the results and sends a Main-Reply to the requester
(vnode-7). Figure 12 shows that sub-query1, in continuation of
its exploration path, arrives in vnode-21. Due to the querying
policies for the current layer, if the sub-query is required to
be transferred into another QMS provider in the neighborhood,
therefore one of the neighboring vnodes must be selected as the
next QMS destination. This can be done by using the proba-
bility table in vnode-21. This table includes the list of direct
neighbors (vnodes-72, 12 and 23) as well as the probe factor
for each neighbor for each resource-type-id. The sub-query1
contains its list of desired resource-type-ids (1 and 4) which have
been already specified by the Query-Analyzer of the QMSOR

of the sub-query. For the sub-query1, the QMS in vnode-21
only analyzes the resource-type records RT-1 and RT-2 which
are matched with the resource-type-ids of the sub-query. Ac-
cordingly, a neighboring vnode with the absolute maximum of
probability in both records (vnode-12) will be selected as the
sub-query destination. Each resource-type record also includes
a SoR suggestion. The sub-query1 sets its preferred-vnode to 41,
since its original preferred-vnode is empty and also both records
RT-1 and RT-4 collectively propose an absolute value for SoR.
We must note that values for PFs and SoRs in the probability ta-
bles are dynamically updated due to the querying data provided
by each transacted query (the initial values for PFs are 1, as they
are for RT-3, and the SoR value might be empty, as it is for RT-3
and RT-4).

The type of sub-query1 in the above example (Figure 12) is
Downward. In fact, upon receiving a Downward query by a QMS,
if the query conditions in layeran are met by the aggregate-stamp,

Figure 12: An example of DPT in a system with 2 predefined attributes over 4 different ranges of values (resource-types or resource-categories) (CCR: Core Clock
Rate, L1S: L1 Cache Size).

18

Algorithm 3: Processing an Updateqms sub-query by a RPan

Input: sq= The received Updateqms message
/* sq, temp:sub-query, qrg:QREG, qrt:QROUT, QMS: the QMS

provided by RPan */
while sq.TTL is valid do // if sq is valid due to its Time to Live

if sq is fully resolved then // if all resources required by sq has
already been discovered

if sq is registered in QMS.qrg then // if QMS is the QMSor of sq
qrg.addDiscoveryResults(sq) // adding results of sq to
overall results collected by other sub-queries of
the main-query
if qrg(sq.mainQID).isCompleted then // checking if all
sub-queries of the main query have already been
resolved

send(Main-Reply,qrg(sq.mainQID).sender)
/* sending the final Main-Reply of the query

to the original requester */

else // if QMS is not the QMSor of sq
send(Updatesys, qrt(sq.subQID).sender); // sending an
Updatesys to the sender of sq (the last visited RPan
by sq) through using sub-query tracking
information recorded in QROUT
if the current vnode is the preferred-vnode for sq then

broadcast(Updatevic, all members of AN-Neighbors)
// sending an Updatevic message to all neighbors of

current RPan
qrt.(sq.subQID).remove // removing sq tracking info
from QROUT

else // if sq is not resolved or partially resolved
temp=sq; temp.nRR= sq.nRR- sq.nDR; temp.nDR=0
// adjusting/reshaping sq (as sub-query temp) based on
current discovered resources and the remaining
resources required, the sub-query temp maintains list
of all previously discovered resources by sq and it is
identical to sq except for the changes
temp.type=Downward|Downwardcbk |Upward // QMS makes
decision for the type of sub-query temp, the initial
choice is Downward, if it is not possible, then
Downwardcbk is the choice, and in the case that all ANs
in the current cell have already been searched, Upward
is the choice
qrt(sq.subQID).update
Continuation of the search with the modified sub-query temp // since
sq is not fully resolved yet, the search must be
proceed either in the current layer (layeran using
Downward or Downwardcbk) or in the upper layer (layersn
using Upward)

if sq.TTL is expired then
if sq is registered in QMS.qrg then

send(Main-Reply,qrg(sq.mainQID).sender)
qrg.dreg(sq.mainQID) // removing main query information
(including sub-queries result info) from QREG
removeQroutInfo(sq.mainQID) // removing main query
information (including sub-queries routing info) from
QROUT

else
The sq will be destroyed;
The sq routing info in the QROUT of all visited nodes (by sq) will be
removed;
The QMSor will be notified to issue the final Main-Reply for the query;

return

a Lookup query is conducted to search in the current mini-cell,
otherwise the QMS, using its probability table, must select the
next Downward destination to continue the search.

In order to select the next QMS provider among the neigh-
boring aggregate-nodes, as it is presented in Algorithm 4 , at
first, the QMS checks if there exist any absolute SoR prefer-
ence either by query itself or by QMS (i.e., query based or
QMS-based preference). An absolute preference only exists
if an absolute maximum number of records (in the probabil-
ity table) corresponding to the resource-types mentioned in the
resource-type-ids of the given query agree to vote to a specific
SoR.

HARD3 introduces two different mechanisms for SoR trac-

Algorithm 4: Selection of the next QMS provider
Input: sq= sub-query
/* sq:sub-query, rt:resource-type, nb:neighbor, vn:vnode,

sor:source-of-resource, op:overall-probability */
const: call-back /* indicates that a Downwardcbk must be initiated,

an Upward is initiated when it is not possible to initiate a
Downwardcbk */

ϑ:vector, temp:vector-record // overall probability for the neighbors
A={nb : nb ∈ AN − Neighbors}; B={vn : vn ∈ sq.visited − qms − ids}
C=(A ∩ B ′) // A is the list of AN neighbors, B is the list of

all already visited ANs by sq and C is the list of neighbors
which have not yet been visited by sq

if |C|==0 then return call-back
if (there is sq.preferred-vnode) ∧ (sq.preferred-vnode ∈ C) then

return sq.preferred-vnode
foreach rt : rtid ∈ sq.res-type-ids do // calculating the average

probability for each of the C members with respect to
different resource-type-id specified by sq.res-type-ids

if DPT.find(rt) then
RTrecord=DPT(rt).get()
foreach nb ∈ C do

if ϑ.find(nb) then
ϑ(nb).op=mean(ϑ(nb).op, RTrecord(nb).probability)

else
temp.neighbor=nb
temp.op=RTrecord(nb).probability
ϑ.add(temp)

if ϑ.size()==0 then return random(nb : nb ∈ C)
D={nb : (ϑ. f ind(nb)) ∧ (ϑ(nb).op == ϑ.Maximum − op) ∧ (ϑ(nb).op > 0)} // D
is the list of C members with the maximum overall probabilities
if |D|==0 then return random(nb : nb ∈ C)

// returning a random member of C as the next QMS destination
else return random(nb : nb ∈ D)

// returning a random member of D as the next QMS destination

ing: query-based preference and QMS-based preference. In
the query-based preference, the query obtains the value for its
preferred-vnode (note that each query message includes the in-
formation of the preferred-vnode of the query) based on the
QMS’s SoR preference of the QMSor and it keeps relying on
this fixed preference until discovery ends. But in the QMS-based
preference, the query in each intermediate QMS dynamically
applies to use the SoR preference of the current QMS. On the
existence of either the preferred-vnode for the query (in query-
based method) or the absolute SoR preference for the current
QMS (in QMS-based method), RPan gives priority to a neigh-
boring QMS provider, which is preferred by SoR preference
or preferred-vnode as the next query destination. However, if
the query doesn’t have a target preference, a neighbor, with
the highest probability among all neighbors is selected. In the
case that the number of neighbors with highest probability is
higher than one, a random destination is selected among the
highest ranked neighbors. It must also be taken into account
that, the overall probability to select a neighbor as destination
for a query in a QMS, is measured by averaging the probability
values provided by the local probability table, corresponding to
the resource-types, identified in the list of resource-type-ids of
the query.

Whenever a RPan ensures that all the potential QMS providers
in the vicinity of the current node are explored, and since the
query is not completed, a Downwardcbk message must be sent
to the sender of the original query in the upper level of the
search tree (i.e., the query parent), using the query tracking
information recorded in the QROUT. The query itself also keeps
the information about the visited nodes, which helps the query to
efficiently explore the tree graph. By triggering the Downwardcbk

19

event in the receiver-side, the normal Downward procedure is
performed, exploring other potential branches of the tree, by
directing the query to a qualified unvisited neighbor, while the
probability table in the Downwardcbk receiver is updated due to
the query’s characteristics and search results, as we elaborated
in Algorithm 2. If consecutive down-warding processes (i.e.,
series of Downwardcbk and Downward) fail to complete the given
query in different levels, and branches of the search tree and
the Downwardcbk finally reach the entry QMS provider (i.e., the
first QMS provider in the current layer of the current cell which
initiated the Downward query within this layer), a RPan sends
an Upward message to its SQMS address in the upper layer
(i.e., layersn), informing the SQMS provider that search must be
continued in other qualified cells in the distributed environment.

5.3. SN Algorithm Description
In this section we present our specification-based anycasting

method to resolve the queries in layersn. Anycast can be con-
sidered as a powerful paradigm for resource discovery in large
scale distributed systems. It enables communication between a
source node and the nearest (or the best) member of an anycast
group. The proximity metric (or the metric for being the best)
can be defined in terms of hop count, delay or the minimum
amount of load [32].

In our algorithm, each SN creates its own anycast address by
hashing the layer-stamp of the SN node which is the representa-
tive of all the specifications of resources in layersn. Using this
approach, the anycast address of each SN is a function of the
resource specifications in the super-node’s layer. The anycast
address of a node may change when the node’s specifications
(e.g. dynamic resource attributes) are modified. SN nodes with
uniform specifications advertise the same anycast addresses. The
creation and maintenance of the anycast groups are significantly
lightweight, since the anycast groups can automatically be cre-
ated and they can also dynamically be changed without creating
any necessity for communication among the group members
or group registration. SN nodes advertise their anycast address
as well as unicast address to other SN nodes in their neighbor-
hood. The neighborhood can be specified based on proximity
metrics such as number of hops or delay. Whenever a RPsn is
decided to anycast a discovery request to other potential SNs in
the network, it passes the request to its local anycast-resolver
which is responsible to determine the unicast address of the best
possible destination. Subsequently, the discovery request would
be forwarded to the destination by using its unicast address and
the regular routing. The anycast-resolver operates as followings:
The anycast address of the potential destination for a given dis-
covery request, is extracted from csn mentioned in the request.
Anycast-resolver checks the list of registered SNs in the current
node and selects the ones that their anycast address are similar
to the anycast address of the given request. In the next step,
the unicast address of a SN in the list with minimum number
of hops (i.e., minimum delay) is returned to RPsn as the final
destination of the request. If the desired anycast destination is
not found among the registered SNs, the discovery request is
forwarded to the closest SN in the list. If the list is empty, the
query is terminated and the proper update (i.e., reply) message

would be sent to the original requester. If csn conditions are not
existed for the given discovery request (i.e., when the creation
of the anycast address is not feasible), the discovery request is
forwarded to the closest SN in the list.

The RPsns are the resource providers which provide SQMS
services to entities in their local cell, and to other SQMS
providers in the system. Depending on the type and status of
the event triggered and the characteristics of the given query,
SQMS providers might behave as RPsn, RPan or RPlns. When-
ever a RPsn receives a query, a query type retrieval is performed,
and different mechanisms and procedures are conducted to re-
solve or redirect the query. The Forward event is the most
regular communication event within layersn. A Forward re-
ceiver (a node which receives a Forward message), first assesses
whether the layer stamp (i.e., the super-node-stamp) will be qual-
ified due to the csn query conditions or not. If it is qualified,
a Downward self-event is triggered in the current super-node
where the SQMS provider, as the event-receiver acts as a QMS
provider, which conducts the Downward query to lower layers.
The SQMS provider, later, will receive a response from the lower
layers either in the form of Upward (if the query fails or remains
uncompleted in the lower layers) or Update messages (if the
query is resolved or completed). On the occurrence of a Update
event, the RPsns redirect the incoming messages to the orginal
requesters. Receiving a Upward event is exclusively dedicated
to RPsns (see Table 4 and Figure 9). In fact, on occurrence of
an Upward event, the RPsn will know that the requirements of
the correspondent query can not be met in the lower layers of
the current SN’s cell, and the query must be directed to other
remote cells in the system.

Algorithm 5: Anycast based Forwarding in RPsn

Input: sq= The received sub-query message
/* sq:sub-query, nb:neighbor */
if sq.type==Forward then

if RPsn is qualified according to sq.csn then
send(sq, Downward, RPsn)
/* generating a Downward self-event by sending a

self-message to RPsn, as a result, RPsn behaves as a
RPan, receiving a Downward message */

else
anycast-address=mapped-ac-address(sq.csn) // generating an

anycast address by mapping the specification of the
sub-query sq in the layersn into an anycast address

anycast(sq,Forward, anycast-address) // anycasting the
sub-query sq with the type Forward to the extracted
anycast address

else if sq.type==Upward then
if there is sq.csn then

anycast-address=mapped-ac-address(RPsn.layer-stampsn)
// generating an anycast address by mapping the
specification of the RPsn in the layersn into an
anycast address

anycast(sq,Forward, anycast-address)
else

target=random(nb:(nb ∈ SN-Neighbors)∧(nb < sq.visited-qms-ids))
// selecting a random neighbor from the list of SN
neighbors which have not yet been visited by sq

send(Forward, target)
else if sq.type==Update then

RPsn performs the corresponding update procedure similar to RPan

As depicted in Algorithm 5, if a RPsn receives an Upward

query, it means that the receiver already has been qualified for
the csn query conditions, but the query conditions in the lower
layers have not been achieved. Accordingly, the RPsn sends
a Forward message to an anycast address extracted from csn

20

of the given query. The Forward message will be automati-
cally redirected to the nearest SQMS provider in the system,
which has the same anycast address. Using the proposed any-
cast scheme significantly reduces the search space for the given
query. It automatically limits the search space to only the SQMS
providers in the system that certainly would be able to fulfill
the csn query conditions. However the query conditions in the
lower layers must be examined in each target forward-receiver
separately.

6. Evaluation and Simulation Results

This section presents the simulation results for evaluating the
proposed resource discovery model. For this, we use simulation
instead of experiment on the real large scale computing infras-
tructures (e.g. PlanetLab, TACC, Oak Ridge, BSC, GENCI and
public cloud providers like Amazon and Google) due to issues
as cost and flexibility of the simulation to design, develop and
assess several algorithms as well as providing full control over
system behavior and evaluation scenarios. On the other hand,
real infrastructures generally provide limitations to explore the
design space, particularly for scalable performance and large
scale evaluation. Due to these reasons, and also due to space lim-
itations, we consider the evaluation of our discovery approach
on the real infrastructures as future work.

6.1. Simulation Approach

To do our evaluation, we developed a simulation platform,
based on OMNET++/INET-Framework and Oversim simulation
tools (similar to the approach that is presented in [33]), which
is able to simulate many-core environments (up to 55000 pro-
cessing cores in different chips and network-nodes), focusing
on communication aspects (i.e., communications between cores,
chips and nodes), albeit taking long simulation times (a 3-week
simulation run is average).

Objective Modular Network Testbed in C++ (OMNeT++)
[34] is a discrete event simulation tool designed to simulate com-
puter networks, multi-processors and other distributed systems
associated with a GUI-based simulation library debugging and
tracing. A simulation model consists of “nodes” connected by
“links”. The nodes represent blocks, entities, modules, etc, while
the links represent channels, connections, etc. The structure of
how fixed elements (i.e. nodes) in a network are interconnected
together is called the topology. OMNeT++ uses the NEtwork
Description (NED) language for topology description. The sim-
ulator provides a set of built-in components and libraries to
instantiate as nodes and as links. We have extended and devel-
oped a set of C++ based components to describe details of a
manycore system including network and interconnection topolo-
gies. This has been done by developing compound modules
(derived from the built-in “cComponent” module) to describe
different entities and objects such as multicore nodes, core, vn-
ode, QMS and SQMS objects. Each compound module, in turn,
includes a set of other compound or simple modules (derived
from “cModule” or “cSimpleModule”) as well as the descrip-
tion of interconnection among modules (derived from “cObject”,

“cGate” or “cChannel”). The network topology among simu-
lated network nodes can be also defined by using “cChannel”
and through the NED description of the network topology.

Overall, the simulated manycore system includes the simu-
lated network nodes (up to 1000) connected through a network
(with bandwidth of 100Mbps) based on a random network topol-
ogy (a connected graph with β = 62.5, indicating the ratio of
the number of nodes to the number of links in the network
graph), where each network node contains manycore proces-
sors. The cores of each processor are connected through a three-
dimensional mesh/torus interconnect topology (with datarate of
50Gbps) where each core has its own dedicated L1 and L2 cache
that are not shared with any other cores. We also do not simulate
cache coherency protocols, as we use message-passing for inter-
core and inter-chip communication. The routing among cores
is performed through a variation of Dimension Order Routing
algorithm where packets are routed to the correct position along
higher dimensions before being routed along lower dimensions.
Furthermore, the processors of each node are connected through
a high speed bus with datarate of 20 Gbps.

We conducted and implemented our experiments in different
scenarios and settings. Accordingly, we evaluate the scalability
and efficiency of HARD3 with respect to the several evaluation
criterias (such as discovery latency, discovery load, discovery
accuracy and discovery cost) in large scale resource pools (con-
taining 1000 to 55000 simulated processing cores positioned
in 100 to 1000 simulated network node) with presence of high
dynamicity and high heterogeneity of resources and show the
performance achieved with the proposed methods and heuristics.

In order to run our simulation model, we use the inherent
capability of OMNET++ to execute multiple simulation runs
in parallel [34] and on different processing cores of a single
dedicate multicore server (an octa-core with 96 GB of memory).
This is different from the distrusted parallel simulation of model
partitions across multiple machines/processors in a cluster which
might be challenging, as we discussed in our previous work [35].

In the rest of this section, we evaluate scalability (for both
synchronous and asynchronous querying) and efficiency (for
complex querying in high heterogeneous computing environ-
ments) and finally we compare our discovery approach with
other different proposals.

6.2. Scalability for Synchronous Querying

Upon starting an iteration in a synchronous querying approach,
requesters simultaneously start to propagate their discovery re-
quests (i.e., a single main-query per requester per iteration) in
the system. In contrast to asynchronous querying, the reserved
resources (by requesters) in synchronous querying would be
released after timing synchronization and before starting each
successive iteration process. However, the distributed probabil-
ity information, gathered in the whole system during an iteration
will be maintained to be used and updated in the successive itera-
tions. The purpose of our evaluation under these assumptions is
to fully understand and precisely study the HARD’s scalability
behavior with minimal impact caused by resource reservation.

21

Figure 13: Average number of discovery messages vs system size for basic querying (i.e., single-resource/single-sub-query) in several querying iterations (time
periods) with different FTR values. FTR is the overall frequency of the target (desired) resources.

6.2.1. Simulation Setup
We conduct our simulation experiments along two different

main scenarios (i.e., synchronous and asynchronous querying
scenarios), and for each scenario we conduct several experiments
with regard to different simulation parameters.

For evaluating the synchronous querying we simulate a many-
core networking environment containing between 10 to 100
types of heterogeneous computing resources which are uni-
formly distributed within a system, with the size ranging from
1000 to 10000 resources, and where each simulated node repre-
sents a computing resource. The simulation starts by performing
a self-stabilization of the nodes during the initialization phase,
which leads to the establishment of a distributed hierarchy of
virtual overlays on top of the simulated network. Upon comple-
tion of the initialization phase, nodes in the system would be
qualified to start discovery requests.

We schedule 4 synchronous querying iterations (time peri-
ods) for all the requesters in the system. A constant fraction
of nodes (1%) are randomly selected to initiate discovery re-
quests by specifying their resource requirements (in terms of
number of target resources to be discovered, arbitrary level of
details of computing characterization factors and communica-
tion properties among requested resources) as desired target
attributes (in different resource description level). The selected
requesters, after a synchronization step, regenerate the similar
queries in the next 3 iterations. Moreover, the scheduled queries
in all iterations for all the requesters are also uniform with the
type of single-resource-single-query. The frequency of the tar-
get resources are ranged from 30 to 120. The other simulation
parameters for the first scenario are summarized in Table 5.

6.2.2. Simulation Results
In the first experiment we evaluate the impact of changing

the system size (in terms of the total number of resources in
the system) on the discovery cost, in terms of the number of
required messages to perform a discovery request. As it is shown
in Figure 13, the discovery cost in all the tests is decreased in
the subsequent iterations. In other words, the average number

Table 5: Simulation parameters for scalability evaluation (synchronous querying)
Parameter Values
Maximum start-up time 3000 ms
Querying iterations per requester 4
Querying interval 2000 ms
Complexity of querying single-resource/single-query
Percentage of requesters 1%
Frequency of Target Resources (FTR) 30,60,90,120
Physical network size 1000 to 10000 cores
Interconnect topology mesh/torus
Network topology random
Interconnect channel data-rate 50Gbps
Routing type DOR
Network channel 100 Mbps
Simulation runs 10 per system size per scenario

of required messages per discovery request decreases as time
progressed which means that the proposed discovery approach
is scalable over time. The reason for this is that the query
guidance mechanism in the DPTs will be dynamically improved,
by enhancing the probability values for successful discovery
over larger number of query dimensions, as well as raising the
quality of SoR preferences in the QMS providers in the system
with respect to the results of both the past queries in the former
iterations and the concurrent queries from other requesters in
the current iteration.

The discovery cost reduction is specially significant when
time progressed from the first iteration to the second iteration,
while for the subsequent iterations, the speed of discovery cost
reduction is decreased gradually with a lapse of time. This hap-
pens because of the lack of querying knowledge in the DPTs for
the first iteration. In fact, DPTs should be tuned and warmed up
(i.e., build up) through initial queries, before they can efficiently
be used in the system.

As we can also see in the similar results of a experiment, for
measuring discovery latency in various system sizes (see Figure
14), the initial DPTs warm-up leads to higher latency for the
initial queries which are generated in the first iteration. How-
ever, depending on several system parameters, such as discovery
traffic (in terms of the number of discovery requests, number of

22

Figure 14: Average discovery latency vs system size for basic querying (i.e.,
single-resource/single-sub-query) in several querying iterations (time periods)
with different FTR values. FTR is the overall frequency of the target (desired)
resources. a) FTR=30, b) FTR=60, c) FTR=90, d) FTR=120.

requester, querying intervals, etc.), complexity of the queries,
heterogeneity of the resources and DPT’s configuration (in terms
of predefined resource-types, SoR capabilities, etc), DPTs can
quickly be adjusted and updated, in order to predict and recog-

nize the appropriated high quality SoRs in the system for each
given discovery request, with higher level of accuracy, and even
the DPT warm-up cost might not be visible after several number
of querying iterations.

The results in Figure 13 also show that the average number
of messages required per discovery request, for different system
sizes, increases due to the increased exploring space of the larger
systems. However, in all tests, for larger iteration numbers, and
specially for the larger systems, the slope (in most places) is
very slight or steady, which demonstrates that the proposed
discovery approach can tolerate an increase of the system size
(in terms of number of resources), while it maintains system
efficiency by exploring the larger search space for the discovery
requests, with almost constant number of messages. Moreover,
the average number of required discovery messages decreases
when the Frequency of the Target/Desired Resources (FTR) is
getting higher. Considering the similar behavior for the latency
tests in Figure 13, it can be seen that HARD3 provides good
scalability for the discovery requests in large and very active
systems.

The results presented in Figs 13 and 14 also prove that our
proposed DPT mechanism is fault tolerant. As depicted in these
figures, a large change (improvement) in the discovery perfor-
mance in the second iteration has happened compared to the
discovery performance in the first iteration. This improvements
continues in the next iterations. But, as it shown in the results,
after a few initial iterations, changes become imperceptible. In-
deed, DPTs are empty at the beginning, but after a few iterations,
they can rapidly become informative and provide a reasonable
stable performance. In other words, altering probability tables in
some nodes does not have a visible impact on the overall system
behavior. This makes probability tables more powerful for being
rapidly recovered from any potential failure.

Figs 15-a and 15-b demonstrate the overall results of all afore-
mentioned iterations including the DPTs warm-up costs to mea-
sure the impact of system size on the discovery overhead and
discovery latency accordingly. As we can see in these results,
the mean discovery overhead and the mean discovery latency,
particularly for the reasonable frequency of the target resources
(like FTR >60), and for the larger system sizes, remains stable
with no significant changes.

The overall results in this section proves the HARD3 scala-
bility at least for the simple querying. In the next section we
evaluate the HARD3 scalability under complex querying condi-
tions whereas high resource heterogeneity is emphasized.

6.3. Heterogeneity and Complexity
HARD3 provides flexibility for complex querying in terms of

multidimensional querying, resource graph querying, exact/par-
tial and range querying. Multidimensional and resource graph
querying are inherent features of HARD3 due to the original
attribute-based definition of resources in HARD’s hierarchical
architecture and mechanisms as well as the query description. In
other hand, in addition to exact querying, the partial and range
querying are possible by leveraging a similarity function in differ-
ent layers, where HARD3 algorithms would be able to discover
the required resources with a certain amount of approximation.

23

Figure 15: a) Discovery Overhead (in terms of number of required discovery
messages) vs system size for different frequencies of the target resources in Syn-
chronous Querying, b) Discovery latency vs system size for different frequencies
of the target resources in Synchronous Querying

Indeed, requesters are allowed to send main-queries to their
corresponded QMS providers, containing multiple querying con-
ditions in each layer, as well as inter-resource and inter-resource-
group communication constraints for the desired resources. A
main-query might includes the required conditions for several
different (i.e heterogeneous) resource groups where each re-
source group specifies the number of required resources with
similar (i.e., homogeneous) characteristics and inter-resource
communication properties. QMS providers, in turn, split the
main-queries into various number of sub-queries depending on
the number of heterogeneous resource groups described in the
main-queries. The obtained concurrent sub-queries dynamically
and independently choose their own-path across the system in or-
der to find their required number of homogeneous resources and
finally returns the discovery results to their origin QMS provider,
which is responsible to maintain the overall-state of the main-
query and make proper decisions accordingly. In this section,
we evaluate the impact of complex querying on the HARD’s
scalability by increasing the number of desired heterogeneous
resource-groups, as well as the number of required resources
per each group in the main-queries of the requesters. We pro-
vide evaluations for both uniform and non-uniform distribution
of SoRs capabilities (i.e., initial number of potential available
resources in each source of resource). In uniform distribution,
SoRs in the system initially have equal capability to provide
resources to the requesters, while in non-uniform distribution
the initial capabilities for each SoR might be different.

6.3.1. Simulation Setup
In order to evaluate the HARD3 performance with respect

to high complex querying and high resource heterogeneity, we
conduct a simulation scenario based on the previous scenario,
but with some added changes. Simulation parameters presented
in Table 6.
Table 6: Simulation parameters for HARD3 evaluation under the complex
querying conditions and high heterogeneity of resources (synchronous querying)

Parameter Values
Complexity of querying multi-resource/multi-query
Frequency of Target Resources (FTR) 300
Physical network size - uniform SoRs 3000,5000,7000 cores
Physical network size - non-uniform SoRs 16500,27500,38500 cores
Homogeneity rate of desired resources 20%, 25%, 33%, 50%, 100%
Uniform SoRs capabilities 10 resources per SoR
Non-uniform SoRs capabilities normal(µ = 50, σ = 40)
Desired homogeneous resources/subquery 1 to 6, uniform-SoRs
Desired homogeneous resources/subquery 3 to 18, non-uniform-SoRs
Static subquery dimensions min=4, max=12
Dynamic subquery dimensions min=4, max=8
Simulation runs 10 per system size per sce-

nario
Number of resource-type definitions 3 for each single attribute

6.3.2. Simulation Results

Figs 16-a1 and 16-a2 depict the experiment results for average
discovery latency, and average required number of discovery
messages per query, for complex querying in the system with
3000 resources while the SoR capability has uniformly been ap-
plied for all the vnodes in the system. This means that all SoRs
in the system initially have similar capability to supply resources.
The SoRs capabilities might also be changed over time depend-
ing on their resource release or occupation conditions. In these
figures we can see that, as the level of querying complexities in
terms of number of required resources and the heterogeneity of
the desired resources are increased, the mean discovery latency
and discovery cost remain scalable. The experiment results pre-
sented in Figs 16-bx and 16-cx also show the similar behavior
for the larger networks with 5000 and 7000 number of resources.
However, for the highest complex queries (like the main-queries
with the homogeneity rate less than 50% and the number of
required resources per sub-query greater than 4), we see that
our resource discovery approach gradually becomes worse when
we vary the system size from 3000 in Figs 16-ax to 5000 in
Figs 16-bx and 7000 in Figs 16-cx. This happens because of
several reasons such as, poor stability of SoRs under sub-query
requests with high resource demands, disproportion between
weak SoRs capabilities and high rated concurrent queries with
large resource demands, inefficiency of the HARD’s SoR prefer-
ence mechanism in the lack of SoRs with initially non-uniform
capabilities which significantly reduces the degree and scope
of competitiveness for SoR preference, and finally exceeding
resource demands over resource availability.

QMS providers are able to continuously and dynamically
detect and recognize the best possible SoRs for each of their
registered resource-type-ids in each moment of time. But these
SoRs might become weaker (in terms of number of available
resources) over time through reservation of their resources by

24

Uniform SoRs Non-Uniform SoRs

Si
ze Discovery Latency Discovery Messages

Si
ze Discovery Latency Discovery Messages

30
00

R
es

ou
rc

es

16
50

0
R

es
ou

rc
es

50
00

R
es

ou
rc

es

27
50

0
R

es
ou

rc
es

70
00

R
es

ou
rc

es

38
50

0
R

es
ou

rc
es

L
eg

en
d

L
eg

en
d

Figure 16: Complexity (in terms of heterogeneity of desired resources and number of desired homogeneous resources per sub-query) vs discovery latency and number
of discovery messages for different system size and different distribution of SoRs capabilities: a1 and a2) uniform SoRs with system size=3000, b1 and b2) uniform
SoRs with system size=5000, c1 and c2) uniform SoRs with system size=7000, d1 and d2) non-uniform SoRs with system size=16500, e1 and e2) non-uniform SoRs
with system size=27500, f1 and f2) non-uniform SoRs with system size=38500.

multiple queries from different requesters. The weak SoRs even-
tually become unresponsive to the incoming queries, and this
will create an extra communication cost to detect the best al-
ternative new SoR as the replacement of the dead SoR. In the
experiment results presented in Figs 16-ax, 16-bx and 16-cx, the

initial number of available resources supported by each uniform
SoR in the system is equal to 10. This means that a fresh SoR
dies after successful handling of 10 successive sub-queries with
one desired resource, given our assumption for synchronous
querying that the discovered resources in each querying iteration

25

would be reserved until end of the iteration. As we increase
the number of desired resources for each sub-query, the insta-
bility rate of SoRs in the system is increased. For instance, for
sub-queries with 5 desired homogeneous resources, the target
SoRs at best die after only 2 (and even less for higher demands)
successful queries handled, which leads to high rate of SoRs
instability in the system (see Figs 16-cx). In these experiments,
it can be concluded that our resource discovery approach, for
complex querying in synchronous manner with uniform SoRs,
can remains scalable, while the amount of demands is atleast
less than half of the target SoRs capabilities.

In the aforementioned experiments we assumed that the SoRs
capabilities are uniformly distributed, and all the SoRs initially
provide equal number of available resources. However in a real
jungle computing environment, the SoRs capabilities are not
uniform, and in such systems there exist multiple resources with
different capabilities and strengths. Along this line we extend
our evaluations for non-uniform distribution of SoRs capabil-
ities. The initial number of available resources for each SoR
is obtained using a normal distribution with the given mean of
50 and standard deviation of 40 truncated in the range [10,100].
We also increase the level of complexity for the main-queries
as well as the system size (see Table 6). As we can see in the
Figs 16-dx, 16-ex and 16-fx, HARD3 provides significant scal-
ability for discovery latency and discovery cost (i.e., number
of transacted discovery messages) when we increase the level
of complexity (with respect to the heterogeneity and amount of
desired resources for each main-query) for even larger system
sizes (16500, 27500 and 38500) and more complex discovery
requests (3 to 18 for number of desired resources and 100% to
20% homogeneity rate).

6.4. Scalability for Asynchronous Querying
For asynchronous querying in dynamic computing environ-

ment, the querying interval for each requester in each iteration
is randomly specified by a uniform distribution in the range
[2000,6000] ms. Requesters also propagate their successive
complex main-queries in the system upon reaching each query-
ing interval. Subsequently, on the successful completion of the
resource discovery, the discovered resources would be reserved
for the requester in the way that the other concurrent requesters
in the system will not be able to discover and get access to
the reserved resources until those resources are released by the
original requester (i.e., resource occupier). The requesters will
release their reserved resources when the execution of the corre-
sponding application is ended. In fact in a dynamic computing
environment, resource reservation leads to unexpected unavail-
ability of resources, which can be described as the natural churn.
In this section we evaluate the HARD’s efficiency and scalability
under complex asynchronous querying in dynamic computing
environments (i.e., evaluation under natural churn).

6.4.1. Simulation Setup
In order to evaluate the HARD3 performance with respect to

complex asynchronous querying in dynamic computing environ-
ments, we conduct a simulation scenario based on modifications
of the previous scenario, as presented in Table 7.

Table 7: Simulation parameters for asynchronous querying
Parameter Values
Complexity of querying multi-resource/multi-query
Frequency of Target Resources (FTR) 1650
Physical network size - non-uniform SoRs 27500 cores
Execution time (i.e., reservation) uniform [i-2000,i=2000*k],k=1-7
Querying interval by ms uniform[2000,6000]
Consecutive main-query runs per requester 100
Homogeneity rate of desired resources 33%
Non-uniform SoRs capabilities normal(µ = 50, σ = 40)
Simulation runs 1 per system size per sce-

nario
Desired homogeneous resources/subquery 20, non-uniform-SORs

6.4.2. Simulation Results
Figs 17-a1 , 17-a2 , 17-a3 and 17-a4 present the density scat-

ter plots for discovery cost over simulation time (millisecond)
for 100 successive main-queries (i.e., discovery requests) per
requester in dynamic computing environments with different
range of task duration (i.e., application execution) (0,2000] ms,
(2000,400] ms, (4000, 6000] ms and (6000, 8000] ms accord-
ingly. Each data point in the graphs represents the result of a
single main-query. The darker points in the graphs (i.e., the high
density points) represent states that have a higher probability of
occurrence in comparison to the lighter points. As presented
in these graphs, the majority of the queries results, particularly
the high dense data points, fall on or below the regression line.
Similar behavior can also be seen in the Figs 17-b1 , 17-b2 ,
17-b3 and 17-b4 for discovery latency evaluation over time. This
illustrates that HARD3 is highly scalable over time and can effi-
ciently maintains its performance under natural churn, caused
by high frequent resource reservations and resource releases in
highly dynamic computing environment.

In the aforementioned experiment results, when we vary the
distribution range of the task duration from (0,2000] ms in Figs
17-a1 and b1 to (6000, 8000] ms in Figs 17-a4 and b4 while
the range for querying intervals is fixed to [2000,6000] ms,
as it is expected, the discovery cost and discovery latency are
gradually increased. The reason is that for the larger application
execution times, it takes longer for the reserved resources to be
released by the original requesters and this leads to higher rate
of unavailability for the occupied resources in the system. In
this regard, the frequent resources (i.e., very common resources)
in the system, might become the rare resources over time with
higher cost of discovery. Discovering rare resources might be
costly due to the potentially larger search space that is needed
to be explored. In addition, the rate of resource unavailability
(and becoming rare) would be accelerated particularly when the
overall task duration (i.e., application execution time) exceeds
the overall querying interval.

The dispersion of the data points is bigger for the graphs
with the larger application execution times which shows the
impact of resource unavailability, rare resources and resource
contentions on the HARD3 performance. The mean hit rates (i.e.,
the success rate of querying) for querying in the experiments
presented in Figs 17-a1, 17-b1, 17-a2, 17-b2, 17-a3 and 17-b3
are 100%, which means that all the generated discovery requests
by requesters in the system are fully resolved. In Figs 17-a4
and 17-b4, because of the larger tasks duration, the amount of

26

Figure 17: Density scatter plot of discovery cost (i.e., number of transacted discovery messages) and latency for fully resolved discovery requests (i.e., hit rate=100%)
over time for various application size (i.e., application execution time) while the querying interval is [2000,6000] ms: a1 & b1) execution time=(0,2000] ms, a2 & b2)
execution time=(2000,4000] ms, a3 & b3) execution time=(4000,6000] ms, a4 & b4) execution time=(6000,8000] ms.

available resources is decreased in most of the time-slices, while
the amount of requesters in the systems, issuing new queries,
is constant. This can lead to resource contention among the
requesters, which in turn reduces the overall hit rate for the
discovery requests in the system. The density of the data points
in Figs 17-a4 and 17-b4 is reduced in comparison with other
graphs. It means that the number of fully-resolved main-queries
is decreased. Thus, as it is shown in Figure 18, the mean hit rate
is expected to be reduced for the task duration=(6000,8000] ms.

Figure 18 illustrates the hit rate for querying in the system
with different task duration. It shows that the mean hit rate
is decreased while we increase the tasks duration, and the hit
rate is equal to 100% when the overall execution time is less
than querying interval. In fact HARD3 is able to precisely and
successfully discover all the desired resources for the discovery
requests without any specific limitations. The hit rate reduction
only happens when there are not enough available matched re-
sources for all the concurrent discovery requests in the system in
a moment of time, which leads to resource contentions. But the
HARD’s performance and efficiency in itself is completely iso-
lated from the external conditions such as resource unavailability
and resource contention.

6.5. Comparison with Different Proposals

In this section, we present the simulation results which demon-
strate the performance of our resource discovery scheme (i.e.,
HARD) in comparison to other alternative approaches. For
comparison, we simulate our discovery scheme, HARD, in
conjunction with three generic hybrid distributed approaches:

Figure 18: Mean hit rate for queries within the time-frames (each time-
frame=10000 ms) for different application execution times in asynchronous
querying with system-size=27500 resources.

a 2-layered hybrid DHT, learning-based and partial random-
walk based discovery (PRW2), a 2-layered hybrid DHT and full
random-walk based discovery (FRW2) and a 2-layered hybrid
broad-cast and full random-walk based discovery (BRW2).

We also simulate two versions of HARD, HARD3 and a
2-layered instantiation of HARD (HARD2) for assessing the im-
pact of hierarchy and our proposed layer-based query resolution
methods on the HARD’s performance. We already discussed
and presented the details of HARD3 in the previous sections.
HARD2 is a two-layered non-anycast based implementation of

27

HARD, which is identical to HARD3 except that it doesn’t sup-
port SN layer and SQMS providers and instead it resolves any
SN-dependent queries (e.g., < nln.nan.csn >) by extending the
native probability mechanism of HARD3 to support the layersn

resource information within layeran.
Similar to HARD2, PRW2, FRW2 and BRW2 are organized

on top of two-layered (i.e., leaf-node layer and aggregate-node
layer) distributed hierarchies. PRW2 and FRW2 leverage the
same Chord based DHT method which is used in HARD3 in the
leaf-node layer while they provide different query forwarding
methods in the aggregate-node layer. PRW2 uses both probabil-
ity and random-walk method to guide queries in layeran. In this
approach, distributed probability tables in the system only pro-
cess the query results with respect to the resource information
in layerln and layeran. PRW2 might behave similar to HARD2
for non-SN-dependent queries (e.g., < cln.can.nsn >), but for
SN-dependent queries the selection of the forwarding destina-
tion node is partially random, since the probability tables do
not actually care about the required resource conditions in the
super-node layer for these queries.

PRW2 is comparable to our approach (i.e., HARD3) in the
sense that it creates clusters on top of the underlying network. It
also provides similarity to some well-known request propagation
strategies in the literature such as the shortcut, random walk,
learning-based, best-neighbor, learning-based+best-neighbor
methods. These methods have been used in many popular re-
source discovery systems and applications [36–41]. For example
in Iamnitchi et al [42] a fully decentralized discovery approach
is proposed, which is based on publish/subscription of the re-
source information on some specific nodes in the virtual orga-
nization. Learning-based and also random-walk methods are
used to propagate the queries among the server nodes. Our
approach (and PRW2) are not based on publish/subscription
since it has costs in terms of network traffic, processing, and
storage needs for periodical updating and the maintenance of
resource information particularly in high dynamic environment.
On the other hand, our probability mechanism is comparable to,
or even better than, learning-based strategies. In the learning-
based method, nodes learn from experience by recording the
requests answered by other nodes (i.e., by caching the results
of successful queries). A request is forwarded to the node that
has answered similar queries previously [43]. This strategy be-
comes inefficient when the system size, dynamicity and hetero-
geneity of resources/queries increases due to the larger memory
requirements to maintain the query results and unavailability of
the pre-discovered resources. But in our proposed probability
mechanism, the statistical information about all the transacted
queries by each peer are aggregated in the fixed-size DPTs re-
gardless of the successfulness of the queries. In addition, by
leveraging techniques such as dynamic best SoR detection, low-
resource nodes and resource unavailability detection and various
situation-based policies and updating strategies (e.g., shortest
path, latency-aware and attribute-based updating) our proposed
probability method provides better accuracy and efficiency.

Unlike PRW2, FRW2 employs a fully single random-walk
method to guide all type of queries in aggregate-node layer.
Random-walk is a common query forwarding method, which

is originally proposed in the literature to alleviate the exces-
sive traffic problem caused by flooding [44], and to deal with
the traffic/coverage trade-off. Random-walk is used in many
distributed resource discovery applications such as Gnutella
[45, 46], Iamnitchi et al [42] and [47–51].

BRW2 or Broad-Walk is a hybrid two layered approach which
uses broadcast-based query propagation method [52, 53] in
the leaf-node layer and the random-walk forwarding in the
aggregate-node layer. In continuation of this section we ex-
plain the details of our simulation setup and and we discuss the
comparison results.

6.5.1. Simulation Setup
Using our self-organized clustering algorithm we simulate

the aforementioned discovery approaches, on top of either two-
layered or three-layered distributed hierarchies. Similar to the
previous scenarios, we simulate dynamic computing environ-
ment containing various number of computing resources, in
which a constant number of resources (i.e., requesters) simul-
taneously issue the discovery requests to the system. The time
interval between each pair of consecutive queries issued by a
requester is defined by an exponential distribution. We also as-
sume that each requester issues 10 consecutive resource requests
to the system over the simulation time. The discovered resources
will be reserved for each discovery request. The reserved re-
sources for each process will be released after execution time
period which is defined by a Weibull distribution. We execute 10
queries per requester for each system size, each one originating
from a uniformly chosen source-node. Each experiment for each
system-size is repeated for 100 runs with different topology pa-
rameters. All the queries are identical and represent the queries
of type < cln.can.csn >. Each requester is willing to find required
resources for a process containing three thread-groups with dif-
ferent resource requirements. Table 8 presents more details of
simulation parameters for our evaluation.

Table 8: Simulation Parameters for performance compression
Parameter Values
Physical network size 5500-55000 cores
Interconnect topology Mesh/Torus
Network topology Random
Interconnect channel datarate 50Gbps
Network channel 100 Mbps
Desired Resources for each Request 3x20
Homogeneity rate of desired resources 33%
Frequency of Target Resources (FTR) 1650
Process Duration by sec Weibull(λ=3.58,k=2.40)
Querying Interval by ms Exponential(β=4000)
Consecutive Query Runs per Requesters 10
Simulation runs 100 per system size per approach
Rate of Requesters 1%

6.5.2. Simulation Results
In the first test, we perform experiments to measure the av-

erage number of required messages, and the average latency
(by milliseconds) per discovery request for HARD3, HARD2
and other approaches. The PRW2, FRW2 and BRW2 with
the same topology, simulation parameters and conditions are
used as alternative reference works. Figs 19-a, 19-b and 19-c
show plots of the average discovery messages, and the average
discovery latency per query, as a function of the number of com-
puting resources in the system (i.e., system size). Figure 19-b

28

demonstrates the results presented in the Figure 19-a with better
resolution (without BRW2).

In Figure 19-a, we observe that the average required number
of discovery messages per query for BRW2 is much larger than
the other approaches, while in Figure 19-c the average latency of
BRW2 is close to FRW2, PRW2 and HARD2. This means that
BRW2 significantly generates more discovery traffic in compar-
ison to others, due to the heavy cost of broadcasting in layerln.
The queries in BRW2 are guided in the aggregate-node layer
by being forwarded to a non-visited single random neighboring
aggregate-node. Upon arrival of a query in an aggregate-node, if
that node fits the query conditions (i.e., can) for the current layer
(i.e., layeran) the query is broadcasted to all the leaf-node mem-
bers of the current aggregate-node, otherwise it is forwarded
further in the network using random-walk. Broadcasting results
in increased traffic, but as seen in Figure 19-c, this could provide
reasonable response time for queries, since the aggregate-node
inquires all of its leaf-node members in parallel. The response
time for BRW2 is approximately close to the results for FRW2,
PRW2 and even HARD2.

Figs 19-b and 19-c show that our approach, HARD3, provides
the highest performance and scalability among others for both
discovery traffic (i.e., average number of discovery messages
propagated during a search), and latency when varying the num-
ber of resources in the system from 5500 to 55000 resources.
This is particularly significant for the query’s response time (la-
tency) since other approaches, such as HARD2 and PRW2, also
provide close results in terms of number of discovery messages.
HARD3 efficiently divides the exploring space to the anycast
groups in a way that, queries with csn requirements are only
propagated among the SQMS providers whose specifications in
layersn fulfill the csn conditions of the given query essentially. In
comparison to HARD2, this strategy leads to a significant reduc-
tion in the response time of HARD3 while its discovery traffic
is also slightly decreased. As we already discussed, HARD3 is
the enhancement of HARD2 by leveraging our proposed anycast
forwarding mechanism in an extra layer which is called layersn.
The presented results for HARD2 and HARD3 in Figs 19-b and
19-c also prove that increasing the level of hierarchy along with
the implementation of an efficient adaptive corresponding query
processing method improves the overall performance of our dis-
covery system. Another factor contributing to HARD3’s overall
performance is that HARD3 controls the discovery procedure in

a more intelligent way which saves much unnecessary message
cost. Moreover due to the anycast nature of HARD3, SQMS
providers are able to effectively guide the given queries to the
closest qualified SQMS provider in the system which results in
a significant reduction in the discovery latency for the queries in
the system (see Figure 19-c).

From Figure 19-b, we can also see that, PRW2 generates
larger number of discovery messages per query than HARD2
and HARD3 because of its partial random-walk query forward-
ing mechanism in layeran. In fact, PRW2 provides an efficient
probability mechanism (similar to HARD2) to guide queries in
layeran to the potential matched resources in the system. But
this probability mechanism becomes inefficient for processing
the queries with csn requirements because the DPTs in PRW2
do not consider the csn requirements of the given queries in or-
der to statistically estimate the target aggregate-node for query
forwarding. This leads to a sort of partial random-walk for the
SN-dependent queries (i.e., for the queries that csn <> nsn). But
for the other types of queries (e.g. < cln.can.nsn >), which are not
considered in our evaluation in this section, PRW2 is expected
to behave identically to HARD2.

Figure 19-b illustrates that FRW2 provides a lower perfor-
mance with respect to discovery overhead compared to PRW2
while they exhibit almost similar behavior for discovery la-
tency as shown in Figure 19-c. This is due to the fact that
the mechanism for query resolution in layeran of FRW2 is fully
based on random-walk method. This means that the queries in
layeran are forwarded to a uniformly random selected neighbor-
ing aggregate-node in the system which is not yet visited. Since
the next-node selection strategy is completely random-based the
number of required traversed discovery messages for resolving
a query would get more compared to the approaches benefiting
a type of estimation-based strategy.

In the next experiments we analyze the dynamic behavior of
the above-discussed approaches for various system size over
time. The simulation results for both average generated dis-
covery messages and average discovery latency per request per
time-frame (1000 ms) for HARD3, PRW2 and FRW2 are de-
picted in Figs 20-a1/a2, 20-b1/b2 and 20-c1/c2 respectively.
These results lead to the following conclusions:

(a) The overall variation and fluctuation in the query results
(in terms of discovery overhead) per time-frame for HARD3 is
less than PRW2 and FRW2. This means that HARD3 provides

0 10000 20000 30000 40000 50000 60000

0
5

0
0

1
0

0
0

1
5

0
0

a)

System Size

D
is

c
o
ve

ry
 M

e
s
s
a

g
e

s
 #

HARD3
HARD2
PRW2
FRW2
BRW2

0 10000 20000 30000 40000 50000 60000

0
5

0
1

0
0

1
5

0
2

0
0

b)

System Size

D
is

c
o
ve

ry
 M

e
s
s
a

g
e

s
 #

HARD3
HARD2
PRW2
FRW2

0 10000 20000 30000 40000 50000 60000

0
1

0
0

0
3

0
0

0
5

0
0

0
7

0
0

0

c)

System Size

L
a

te
n

c
y
 (

m
s
)

HARD3
HARD2
PRW2
FRW2
BRW2

Figure 19: Comparison between HARD3 and other alternative approaches: a, b & c) Average number of required discovery messages and discovery latency per
discovery request for different system size and different strategies

29

10 20 30 40 50 60 70

0
5

0
1

0
0

1
5

0
2

0
0

a1)

Time Frame

D
is

c
o
v
e

ry
 M

e
s
s
a

g
e

s
 #

#resources=55000
#resources=33000
#resources=27500
#resources=22000

10 20 30 40 50 60 70

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

a2)

Time Frame

L
a

te
n

c
y
 (

m
s
)

#resources=55000
#resources=33000
#resources=27500
#resources=22000

10 20 30 40 50 60 70

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

b1)

Time Frame

D
is

c
o
v
e

ry
 M

e
s
s
a

g
e

s
 #

#resources=55000
#resources=33000
#resources=27500
#resources=22000

10 20 30 40 50 60 70

0
2

0
0

0
6

0
0

0
1

0
0

0
0

b2)

Time Frame

L
a

te
n

c
y
 (

m
s
)

#resources=55000
#resources=33000
#resources=27500
#resources=22000

10 20 30 40 50 60 70

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

c1)

Time Frame

D
is

c
o
v
e

ry
 M

e
s
s
a

g
e

s
 #

#resources=55000
#resources=33000
#resources=27500
#resources=22000

10 20 30 40 50 60 70

0
2

0
0

0
6

0
0

0
1

0
0

0
0

c2)

Time Frame

L
a

te
n

c
y
 (

m
s
)

#resources=55000
#resources=33000
#resources=27500
#resources=22000

Figure 20: Comparison between HARD3 and other alternative approaches: a1 & a2) Mean number of discovery messages and discovery latency per request per
time-frame (1000 ms) over time in different system size for HARD3, b1 & b2) Mean number of discovery messages and discovery latency per request per time-frame
(1000 ms) over time in different system size for PRW2, c1 & c2) Mean number of discovery messages and discovery latency per request per time-frame (1000 ms)
over time in different system size for FRW2.

better scalability over time with respect to discovery overhead.

(b) The figures that demonstrate the amount of discovery
overhead per time-frame for various system size for HARD3
provide relatively better approximation of the overlap than the
corresponding charts for PRW2 and FRW2. This means that
HARD3 outperforms the other approaches with respect to scala-
bility (in terms of discovery overhead) when varying the number
of computing resources in the network from 22000 to 55000.
This behavior can also be seen in the figures illustrating the
average discovery latency per time-frame for various number
of computing resources. Thus, we can conclude that HARD3
provides better scalability (in terms of discovery latency) for
different system sizes.

(c) The latency figures in all the approaches approximately
provide similar steady behavior except for a portion of time

when the requesters gradually start or stop sending series of
discovery requests to the network. This unsteadiness happens
because we assumed that at the beginning of the simulation all
the computing resources in the system are free (not reserved),
and that is how the initial queries for each requester would
be able to discover their desired resources in a shorter time.
As time proceeds, the total number of reserved resources in
the network to execute the waiting processes of the requesters
increases which leads to increasing the response time for the
new queries. The requesters will release the reserved resources
for each of their processes after the execution terminates. This
is the reason for the dramatical increment of the response time
of the queries at the beginning of the experiments. Similarly, the
response time for the queries decreases dramatically at a portion
of time at the end of the experiment, when the requesters in the

0 10000 20000 30000 40000 50000 60000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

a)

System Size

D
is

c
o
ve

ry
 L

o
a

d
 p

e
r

N
o

d
e

HARD3
HARD2
PRW2
FRW2
BRW2

0 10000 20000 30000 40000 50000 60000

0
5

1
0

1
5

2
0

2
5

3
0

b)

System Size

O
ve

rl
a
y
 L

o
a

d
 p

e
r

N
o

d
e

HARD3
HARD2
PRW2
FRW2
BRW2

5.5k 11k 16.5k 22k 27.5k 33k 38.5k 44k 49.5k 55k

c)

System Size

T
D

D
 p

e
r

N
o

d
e

 (
b
y
te

s
)

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

4
e

+
0

5

HARD3
HARD2
FRW2
BRW2

Figure 21: Comparison between HARD3 and other alternative approaches: a & b) Average discovery load (number of transmitted discovery messages) per node (i.e.,
vnode) and average overlay load (number of transmitted messages for overlay construction) per node during simulation time (60000-80000 ms) for various system
sizes, c) Average transited discovery data per node during simulation time (60000-80000 ms) for various system sizes.

30

system gradually stop sending new queries after issuing fixed
number of successive queries. A requester may stop querying
earlier or later than other requesters depending on its various
querying interval time before generating each new query. With
respect to the aforementioned behavior of the latency charts in
our experiments we can conclude that all the approaches provide
scalability for discovery latency over time. But HARD3 shows
better scalability (in terms of latency) than others for different
system sizes as elaborated earlier.

In the next simulation, we measure the overall discovery load
per node (i.e., vnode) during the querying period (60000-80000
ms), which is the duration of time that the requesters propagate
a constant number of successive queries across the network in
a parallel manner. The querying period ends when the request-
initiator corresponding to the last query is replied. The discovery
load is the average number of transacted discovery messages by
each vnode during the querying period. We also measure the
overlay load per node (i.e., the average number of transacted
overlay messages per node to create the underlying hierarchical
system overlay) and TDD per node (the average amount of trans-
mitted discovery data per node) during the querying period. Figs
21-a, 21-b and 21-c depict the discovery load per node, overlay
load per node and TDD per node respectively, as the function of
system size for different approaches. As we can see in Figs 21-a
and 21-c, HARD3 shows better performance compared to other
solutions. However Figure 21-b shows that the overlay cost (in
terms of the average transacted overlay messages per node) to
establish the underlying overlay for HARD3 is relatively larger
than in others. As we already discussed, all approaches em-
ploy the same multistage hierarchical overlay algorithm [31] to
implement either two-layered or three-layered structure. The
overlay cost to create the structures with higher levels of hierar-
chy, like HARD3-overlay, which has three layers is bigger than
the structures with lower levels of hierarchy, such as the underly-
ing overlay of HARD2, PRW2, FRW2 and BRW2. The overlay
cost for BRW2 is the least among the other two-layered based
approaches because it provides a non-DHT based approach for
query processing in layerln unlike HARD2, PRW2 and FRW2.
BRW2 does not require the creation of a DHT structure within
the layerln which has some extra overlay cost.

6.6. Other Features
Our proposed discovery approach provides a set of impor-

tant functionalities/features in order to support complex and
flexible querying within large scale distributed systems. In this
section, we briefly compare our approach with some discovery
examples in the literature in terms of querying features. These
approaches include SWORD [54], Node-Wiz [55], MDS-4 [56],
MatchTree [57], CycloidGrid [58] and OntoSum [59]. Table 9
presents the result of our qualitative assessment. Following, we
provide a short description for some of the features, used in the
comparison.

Nearest Neighbor Query is a discovery capability to provide a
list of discovered resources considering the priority of the closer
neighbors. Similar Matching is the ability to find a similar match
for a query with respect to query conditions. Resource Graph
Discovery is the capability to discover a graph of resources

considering both individual characteristics and interconnecting
properties of resources. Multi-Dimensional and Range Query-
ing is the capability of the discovery system to process queries
containing multiple attributes either dynamic or static within
specific ranges of values. Thread-level discovery specifies the
capability of the discovery system to deal with the query condi-
tions in thread-level (i.e., resource requirements for each thread
in a process).

Overall, HARD3 seems to present the best solution for JCS,
with the most complete set of features. Even of HARD3 does not
provide ”Nearest Neighbor Query”, it is proximity-aware, which
copes with this issue. Also, HARD3 is inherently providing
”Load-Balancing”, due to the probability aspects of the search
algorithms.

7. Related Work

7.1. Resource Description

In general, there are two types of approaches for resource
description in the current literature: attribute-based and semantic-
based schemes.

The attribute based schemes define the resource characteriza-
tions through a set of (attribute, value) pairs. Depending on the
level of information details and the different storage, retrieval
and distribution mechanisms these approaches are able to pro-
vide a scalable distribution of resource information. However,
the attribute-based description models are facing some challeng-
ing issues such as providing appropriate support for dynamic
and collective attributes [60]. Dynamic attributes are changing
frequently, which results that the above mentioned description
models becomes unappropriated to store their values due to
expensive updating and maintenance cost. In our description
model, we can define dynamic and static attributes for both sys-
tems and queries. However, we do not use dynamic attributes
in the body of layer-stamps. Instead, dynamic attributes can
be defined as independent-attributes, whose their values can be
extracted real-time and upon receiving a request from a resource
provider entity.

WSDL [61], OASIS UDDI [62] and [63] are some examples
of attribute-based resource descriptions which have been used
in many resource discovery solutions specially in web-based
resource discovery protocols. WSDL is a set of instructions to
describe the behavior, characteristics and formats of services,
particularly for web service providers. UDDI uses a XML-
based repository to provide policies and standards for service
discovery which facilitate the process of resource advertise-
ment and service publication. Tutschku et al, a recent work
[63], is proposing a resource description method based on the
capabilities of on-board Linux tools for describing resource util-
isation in cloud networking and NFV infrastructures. It aims to
provide a description approach for dynamic attributes such as
CPU load and utilization. However, the approach is not general
(it is based on linux) and is limited by very abstract descrip-
tion of resources and also the description is restricted to a very
few number of predefined general attributes. In addition to the
attributed-based description languages, there are a number of

31

Table 9: An overall comparison between HARD3 and examples of other discovery approaches in terms of querying features.
Functionalities SWORD Node-Wiz MDS-4 MatchTree CycloidGrid OntoSum HARD3

Load Balance 3 3 3
Fault Tolerance 3 3 3 3
Self-Organization 3 3 3 3 3
Range Query 3 3 3 3
Similar Matching 3
Multi-Dimensional Query 3 3 3 3
Resource Graph Discovery 3 3
Nearest Neighbor Query 3 3
Proximity-Awareness 3 3
Resource Reservation 3 3 3
Semantic-Awareness 3
Thread-Level Discovery 3

recent attributed-based (resource information) encryption meth-
ods in the current literature including [64–69] which are mostly
application-oriented. And in fact, they are not really flexible and
even efficient to be used for different applications (in this paper
we proposed our own encryption method).

Semantic-based description models are alternative approaches
which focus on the overall collaborative description of the re-
sources. These approaches are appropriate to describe all sys-
tem resources where all the possible collaborative system and
resource properties and behaviors (e.g., the structure of the pro-
cessor or memory architectures) are precisely described, but
we must take into account that these approaches might not be
scalable in terms of distribution of the resource information.
RDF [70] is an example of classic semantic-based resource
description which provides a type of ontology/knowledge rep-
resentation approach, which is a primitive language providing
a binary relation of classes and properties supporting all kind
of range/domain constraints and sub-property/sub-class relation-
ships. However, RDF lacks support of expressive queries which
can add useful semantic information to descriptions.

The works in [71–73] are examples of semantic-based
schemes which use functional languages to describe hardware
resources. The use of higher-order functions allows the com-
position of arbitrarily complex structures in a clear and concise
way. The strong type system of most functional languages also
ensures the soundness of the composition of the different hard-
ware components. Functional resource description models focus
on capturing the structure as well as numerical properties of
hardware resources. Resource descriptions themselves are func-
tions, capturing the fact that behaviors/capabilities relevant for a
resource can change under certain circumstances. Additionally,
functions can be used to concisely and clearly capture complex,
parameterizable collaboratives.

The Lexical Bridge [74] is a recent work which proposes
a methodology to translate meaningful information in natural
language sources into a standardized, structured knowledge rep-
resentation for the purposes of semantic normalization, integra-
tion, analysis, and reasoning. However, it is a very general work
and in fact doesn’t provide a resource description language (for
the purpose of resource discovery in the distributed system) a
complete resource description language, rather, it aims to build
”lexical bridges” (LBs) in order to fill the gap between the natural
languages and their ontology representations.

The authors in [75] have highlighted that a scalable resource
description and information exchange (in terms of distribution

of resource information between Clouds) is an important re-
quirement for sharing heterogeneous Cloud resources among
federated Clouds. However, the work presented in this paper, a
semantic based resource description model for inter-clouds, does
not really provide a scalable solution for distributing all details
of resource information in the entire system. It focuses on pro-
viding a scalble information exchange method between multiple
clouds, where each cloud centrally manage its own resources.
In this regard, the concept of scalability is far from scalable
inter-resources information exchange in a purely decentralized
environment.

Considering the above approaches, an optimum resource de-
scription model for resource discovery can be designed in such
a way that it takes the concerns of both approaches (attribute-
based and semantic-based): capturing individual and collab-
orative capabilities of resources while still allowing for scal-
able distribution of this information [75]. In comparison to the
current literature, our description model/language is a domain
specific language with an embedded encryption method, specif-
ically designed for the purpose of resource discovery in large
dimension many-core enabled future computing systems with
capability for scalable distribution of encrypted resource infor-
mation across the system. Furthermore, it is highly expressive
and flexible to describe various complex queries/systems and de-
tailed attributes/layers, making feasible to provide almost most
of the necessary description requirements (scalability, flexibility,
expressiveness and compact design) for resource sharing and
discovery in such future systems. Furthermore, the proposed
resource description model is computing-oriented, which means,
unlike most of the approaches in the literature, we describe all
types of resources (Compute, Network and Storage) from the
viewpoint of computation. This inherently provides capability
for the resource description model for being more adapted to the
applications like discovering processors in distributed computing
systems.

7.2. Resource Discovery

Besides algorithms were already discussed and compared, it is
relevant to highlight that several resource discovery approaches
have been proposed to enable grid information services on early
examples of JCS [56]. They can be categorized according to
their main approach to the problem: centralized and distributed.

The simplest approach to create an information service is
the first: employ a centralized directory. As examples for this
kind of resource discovery solutions we can find Condor [76],

32

Condor-G [77] and BOINC [78]. These approaches are only
efficient for local area deployments. In large-scale systems, the
central point of failure, and poor scalability bottleneck, make
these solutions under-perform [79]. The major advantage of
these solutions is the simplicity of finding all resource infor-
mation on the central server, making the resource discovery la-
tency low, and data coherence high. However these approaches
suffer from sub-optimal scalability and lower fault tolerance,
mostly due to the centralized nature of the directories. Another
approach for discovery in grids relies in hierarchically (e.g.,
MDS[80, 81]) or semantically (e.g., OntoSum [59]) organized
servers. In MDS [80, 81], a grid is composed by several re-
source description providers that are registered to index servers.
Resource requesters query directory nodes to discover resource
index servers, and to obtain more detailed resource information
from their resource description providers. The index servers also
follow an hierarchy. The top index server answers requests ei-
ther directly or by dispatching requests to its child index servers.
This approach limits scalability, as requests trickle through the
root server, which can easily become a bottleneck and conse-
quently suffer from fault tolerance issues. Indeed, the loss of
a node in the higher level of the architecture causes the loss of
an entire sub tree. OntoSum [59] organizes a Grid network by
a semantically linked overlay, representing the semantic rela-
tionships between Grid participants. It improves the discovery
efficiency in Grids through propagating the discovery requests
only between semantically related nodes.

NodeWiz [55] , Mercury[82], SWORD[54] and [83], in partic-
ular have investigated the issue of supporting multi-dimensional
resource attributes and range-based querying, and improve the
existing systems by resorting to DHTs or non-DHT based meth-
ods. The main disadvantages of the traditional DHT based
discovery approaches (like SWORD) is the lack of support for
partial matching (i.e., user needs to give exact keyword to search
for information due to the hash table structure). In other hand,
The non-DHT based solutions (like NodeWiz) also suffer from
inefficiency caused by high response time of the queries due to
unstructured techniques such as flooding and blind search.

Distributed discovery approaches have been specially de-
signed to provide a high level of scalability and fault tolerance,
which is required in large scale environments. Iamnitchi et
al[84] proposes a solution for using the benefit of the distributed
Peer-to-Peer (P2P) system for resource discovery in Grids. The
combination of P2P and Grid RD models [85, 86] would be
desirable to build fault tolerant and large scale distributed sys-
tems. There are two kind of approaches in this field which are
based on structured and unstructured overlays networks. The
first model uses an unstructured overlay network with flooding
based query propagation. Relevant solutions are Zorilla [87] and
Vishwa[88]. One of the advantages of these approaches is the
ability to perform resource discovery with high expressiveness.
However, the discovery systems are not exhaustive and efficient.
The response time of the queries is high due to flooding and
blind search. Also, rarer resource information may be unable to
be found. Moreover, one of the common limitations of current
grid-based discovery approach is that the queries are in the task-
level, resulting in a course-grained discovery. This can reduce

the efficiency of such approaches to cope with the problem of
resource sharing/allocation with respect to a high resolution of
future many-core systems and also future parallel applications.
This is the point that providing a fine-grained adaptive discovery
solution becomes important.

The other common model for resource discovery are the dis-
covery systems for P2P networks which offers a significant
advantage over their hierarchical counterparts by the way of re-
sistance to failure and traffic congestion. In particular, structured
P2P systems based on DHTs such as Pastry [89] and Tapestry
[90] are very popular for file-sharing applications but not for
sharing resource information. Moreover, typical structured P2P
systems such as Chord[91], CAN[92] and Pastry are very sen-
sitive to churning leading to resource unavailability. These sys-
tems achieve good performance and scalability characteristics
but they are limited to only support exact matching. Moreover
their hashing functionalities performs well with static attributes,
however they fail in handling dynamic objects appropriately.

Routing Indices (RI) [93] is another form of resource discov-
ery which uses distributed indices in unstructured P2P networks.
The advantage of this mechanism relies in the fact that queries
are disseminated and forwarded only among the places of the
network where resources existed, thus avoiding to flood query
requests to the nodes which are not useful. The main drawback
of this solution is that this indexing system comes from the pres-
ence of cycles in the network graph. A recent work [83] of this
type extends RI and proposes a technique to perform resource
discovery in grids based on P2P with capability to perform
multi-attribute queries and range queries for numerical attributes.
It uses an information summarization technique presented in
[94] and creates different types of summaries and accordingly
presents a metric (called goodness function) needed by RIs to
guide the query process. It still suffers from RI drawbacks as
well as lack of support for complex querying. A similar proposal
[95] presents a task/job-level resource discovery with limited
flexibility of querying to handle multi-core machines in desktop
grids. This technique handles resource availability based on a
few set of numerical parameters, such as CPU speed, number of
cores, and memory availability.

For unstructured P2P discovery systems both informed search
and blind search can be used. Blind search uses flooding which
burdens the communication network heavily, and requires hop
limitation and loop limitation mechanisms. One of the best
known systems using flooding is probably Gnutella [96], which
is also used by CORBA traders[97]. In Gnutella the discovery
requests are routed to all neighbor nodes of a given node. This
keeps happening until the queries expire or until the matched
resources are retrieved. The flooding mechanism creates a large
volume of traffic for networks with many nodes, connections
and resources.

Further examples of P2P based discovery approaches include
MatchTree [57], CycloidGrid [58]. MatchTree proposes a scal-
able and fault tolerant system by creating a self-organized tree
for query distribution and result aggregation with a specific
asymptotic latency increase pattern. It reduces the query latency
and improves the system fault tolerance through redundant query
topologies, sub-region queries, and dynamic timeout policies

33

and set of dynamic timeout policies. It supports complex queries
and guarantees query completeness. CycloidGrid provides a
two stages QoS and locality aware discovery algorithm for P2P
based volunteer computing systems. In the first stage, it discov-
ers a set of resources based on the required quality of service
and the current load of the peers, and in the next stage it selects
the closest resource in terms of communication delay (latency)
between peers which is calculated using a network model based
on queuing theory with considering the background traffic of
Internet.

Finally referring to the current state of the art, to the best of
authors knowledge, there is no extensive work in the literature,
addressing specifically the problem of resource discovery (in
thread-level) with respect to the various and complex require-
ments of future large dimension many-core enabled computing
systems (such as high heterogeneity, scalability, dynamicity, ef-
ficiency, adaptability, querying flexibility in terms of complex
querying, query expressiveness, resource graph discovery, etc).

8. Conclusion

This paper proposes HARD, a novel efficient and highly
scalable resource-discovery approach, which deals with the re-
source discovery requirements in computing environments such
as high-hierarchy, high-heterogeneity and high-scalability and
dynamicity. The approach is based on self-organization and self-
adaptation of processing resources information in the system,
where the computing resources are organized into distributed
hierarchies according to a proposed hierarchical resource de-
scription model (i.e., multi-layered resource description). Our
simulation results assure the significant scalability and efficiency
of HARD3 (an implementation of HARD) over highly heteroge-
neous, hierarchical and dynamic computing environments with
respect to several scalability and efficiency aspects while sup-
porting flexible and complex queries with guaranteed discovery
results accuracy. We further showed that HARD3 outperforms
different other potential strategies.

9. Acknowledgment

The authors acknowledge the support of project FP7-ICT-
2009.8.1, Grant Agreement No.248465, Service-oriented Operat-
ing Systems (2010-2013) [9–17] and of project Cloud Thinking
(2013-2015), CENTRO-07-ST24-FEDER-002031 [98].

References

[1] J. Maassen, N. Drost, H. E. Bal, F. J. Seinstra, Towards jungle computing
with ibis/constellation, in: Proceedings of the 2011 Workshop on Dynamic
Distributed Data-intensive Applications, Programming Abstractions, and
Systems, 3DAPAS ’11, ACM, New York, NY, USA, 2011, pp. 7–18.

[2] F. J. Seinstra, J. Maassen, R. V. Van Nieuwpoort, N. Drost, T. Van Kessel,
B. Van Werkhoven, J. Urbani, C. Jacobs, T. Kielmann, H. E. Bal, Jungle
computing: Distributed supercomputing beyond clusters, grids, and clouds,
in: Grids, Clouds and Virtualization, Springer, 2011, pp. 167–197.

[3] M. Hajibaba, S. Gorgin, A review on modern distributed computing
paradigms: Cloud computing, jungle computing and fog computing, CIT.
Journal of Computing and Information Technology 22 (2014) 69–84.

[4] Y. Wang, T. Uehara, R. Sasaki, Fog computing: Issues and challenges in se-
curity and forensics, in: Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, volume 3, IEEE, pp. 53–59.

[5] R. S. Segall, N. Gupta, Overview of global supercomputing, Research and
Applications in Global Supercomputing (2015) 1.

[6] E. Jeannot, J. Zilinskas, High-performance Computing on Complex Envi-
ronments, volume 96, John Wiley & Sons, 2014.

[7] D. D’Agostino, F. J. Seinstra, A parallel isosurface extraction compo-
nent for visualization pipelines executing on {GPU} clusters, Journal of
Computational and Applied Mathematics 273 (2015) 383–393.

[8] N. Drost, J. Maassen, M. A. J. van Meersbergen, H. E. Bal, F. I. Pelupessy,
S. P. Zwart, M. Kliphuis, H. A. Dijkstra, F. J. Seinstra, High-performance
distributed multi-model / multi-kernel simulations: A case-study in jungle
computing, in: Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2012 IEEE 26th International, pp. 150–162.

[9] L. Schubert, A. Kipp, Principles of service oriented operating systems, in:
P. Vicat-Blanc Primet, T. Kudoh, J. Mambretti (Eds.), Networks for Grid
Applications, volume 2 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, Springer
Berlin Heidelberg, 2009, pp. 56–69.

[10] The S[o]OS Consortium , S(o)OS (Service-oriented Operating System):
Resource-independent execution support on exa-scale systems, Available at
http://www.soos-project.eu/, http://www.soos-project.eu/
index.php/publications, 2010-2013. [Online: accessed 5-September-
2014].

[11] J. Zarrin, R. L. Aguiar, J. P. Barraca, Elcore: Dynamic elastic resource
management and discovery for future large-scale manycore enabled dis-
tributed systems, Microprocessors and Microsystems (2016) –.

[12] C. P. R. Baaij, J. Kuper, L. Schubert, SoOSiM: Operating System and
Programming Language Exploration, in: G. Lipari, T. Cucinotta (Eds.),
Proceedings of the 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time System (WATERS), pp. 63–
68.

[13] G. Lipari, E. Bini, A framework for hierarchical scheduling on multi-
processors: From application requirements to run-time allocation, in:
Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pp. 249–258.

[14] T. Cucinotta, Challenges in operating system design for future
many-core systems, All Hands Meeting (AHM) 2010, Cardiff, UK,
Available at http://retis.sssup.it/~tommaso/presentations/
AHM-2010.pdf, 2010. [Online: accessed 15-April-2016].

[15] L. Schubert, Dynamicity requirements in future cloud-like infrastruc-
tures, Invited Speaker, EuroCloud CLASS Conference, Available at
http://videolectures.net/classconference2012_schubert_

infrastructures/, 2012. [Online: accessed 15-April-2016].
[16] L. Schubert, A. Kipp, S. Wesner, Above the clouds: From grids to service-

oriented operating systems., in: Future Internet Assembly, pp. 238–249.
[17] J. Zarrin, R. L. Aguiar, J. P. Barraca, Dynamic, scalable and flexible

resource discovery for large-dimension many-core systems, Future Gener-
ation Computer Systems 53 (2015) 119–129.

[18] K. Sathish, A. RamaMohan Reddy, Workflow scheduling in grid comput-
ing environment using a hybrid gaaco approach, Journal of The Institution
of Engineers (India): Series B (2016) 1–8.

[19] H. B. Prajapati, V. A. Shah, Scheduling in grid computing environment,
in: 2014 Fourth International Conference on Advanced Computing &
Communication Technologies, IEEE, pp. 315–324.

[20] F. P. Miller, A. F. Vandome, J. McBrewster, Huffman Coding: Computer
Science, Algorithm, Lossless Data Compression, Variable- Length Code,
David A. Huffman, Doctor of Philosophy, Massachusetts Institute of Tech-
nology, Alpha Press, 2009.

[21] F. P. Miller, A. F. Vandome, J. McBrewster, Lossless Data Compression:
Data Compression, Algorithm, Lossy Compression, Bit Rate, ZIP (File
Format), Unix, Gzip, Portable Network Graphics, Graphics Interchange
Format, Tagged Image File Format, Alpha Press, 2009.

[22] J.-L. Zhou, Y. Fu, Scientific data lossless compression using fast neu-
ral network, in: Proceedings of the Third International Conference on
Advances in Neural Networks Volume Part I, ISNN’06, Springer-Verlag,
Berlin, Heidelberg, 2006, pp. 1293–1298.

[23] M.-B. Lin, Y.-Y. Chang, A new architecture of a two-stage lossless data
compression and decompression algorithm, IEEE Trans. Very Large Scale
Integr. Syst. 17 (2009) 1297–1303.

[24] B. Alik, N. Lukač, Chain code lossless compression using move-to-front

34

http://www.soos-project.eu/
http://www.soos-project.eu/index.php/publications
http://www.soos-project.eu/index.php/publications
http://retis.sssup.it/~tommaso/presentations/AHM-2010.pdf
http://retis.sssup.it/~tommaso/presentations/AHM-2010.pdf
http://videolectures.net/classconference2012_schubert_infrastructures/
http://videolectures.net/classconference2012_schubert_infrastructures/

transform and adaptive run-length encoding, Image Commun. 29 (2014)
96–106.

[25] A. Moffat, R. M. Neal, I. H. Witten, Arithmetic coding revisited, ACM
Trans. Inf. Syst. 16 (1998) 256–294.

[26] F. M. Willems, Y. M. Shtarkov, T. J. Tjalkens, The context-tree weighting
method: basic properties, Information Theory, IEEE Transactions on 41
(1995) 653–664.

[27] P. Fenwick, Burrows–wheeler compression: Principles and reflec-
tions, Theor. Comput. Sci. 387 (2007) 200–219.

[28] L. L. Larmore, D. S. Hirschberg, A fast algorithm for optimal length-
limited huffman codes, Journal of the ACM (JACM) 37 (1990) 464–473.

[29] Z. Chen, L. Wu, J. Zhang, X. Hu, Y. Xu, Heuristic resource discovery
in p2p network, in: Proceedings of the 25th international conference
on Industrial Engineering and Other Applications of Applied Intelligent
Systems: advanced research in applied artificial intelligence, IEA/AIE’12,
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 333–342.

[30] J. Zarrin, R. L. Aguiar, J. P. Barraca, A specification-based anycast scheme
for scalable resource discovery in distributed systems, in: 10th ConfTele
2015 - Conference on Telecommunications, pp. 13–17.

[31] J. Zarrin, R. L. Aguiar, J. P. Barraca, A self-organizing and self-
configuration algorithm for resource management in service-oriented sys-
tems, in: 19th IEEE Symposium on Computers and Communications
(IEEE ISCC 2014), Madeira, Portugal, pp. 1–7.

[32] C. Partridge, T. Mendez, W. Milliken, Host Anycasting Service, RFC,
IETF, United States, 1993. RFC 1546.

[33] S. Kumar, T. Cucinotta, G. Lipari, A latency simulator for many-core
systems, in: Proceedings of the 44th Annual Simulation Symposium,
ANSS ’11, Society for Computer Simulation International, San Diego, CA,
USA, 2011, pp. 151–158.

[34] Andras Varga, Omnet++ discrete event simulator, Available at
https://omnetpp.org/, https://omnetpp.org/pmwiki/index.

php?n=Main.SettingUpParallelDistributedSimulations,
2003-2010. [Online: accessed 14-February-2017].

[35] J. Zarrin, R. L. Aguiar, J. P. Barraca, Manycore simulation for peta-scale
system design: Motivation, tools, challenges and prospects, Simulation
Modelling Practice and Theory 72 (2017) 168 – 201.

[36] S. Castano, A. Ferrara, S. Montanelli, D. Zucchelli, Helios: a general
framework for ontology-based knowledge sharing and evolution in P2P
systems, in: Database and Expert Systems Applications, 2003. Proceed-
ings. 14th International Workshop on, pp. 597–603.

[37] K. Sripanidkulchai, H. Zhang, Content location in peer-to-peer systems:
Exploiting locality, in: X. Tang, J. Xu, S. Chanson (Eds.), Web Content
Delivery, volume 2 of Web Information Systems Engineering and Internet
Technologies Book Series, Springer US, 2005, pp. 73–97.

[38] N. Bisnik, A. A. Abouzeid, Optimizing random walk search algorithms in
{P2P} networks, Computer Networks 51 (2007) 1499–1514.

[39] J. Li, R. Yahyapour, Learning-based negotiation strategies for grid schedul-
ing, in: Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, volume 1, pp. 8 pp.–583.

[40] A. Sharma, S. Bawa, Comparative analysis of resource discovery ap-
proaches in grid computing, Journal of Computers 3 (2008).

[41] I. Filali, F. Huet, C. Vergoni, A simple cache based mechanism for peer to
peer resource discovery in grid environments, in: Cluster Computing and
the Grid, 2008. CCGRID ’08. 8th IEEE International Symposium on, pp.
602–608.

[42] A. Iamnitchi, I. Foster, D. Nurmi, A peer-to-peer approach to resource lo-
cation in grid environments, in: High Performance Distributed Computing,
2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium
on, pp. 419–.

[43] A. Iamnitchi, I. Foster, A peer-to-peer approach to resource location in grid
environments, in: J. Nabrzyski, J. Schopf, JenniferM. Weglarz (Eds.), Grid
Resource Management, volume 64 of International Series on Operations
Research and Management Science, Springer US, 2004, pp. 413–429.

[44] C. Papadakis, P. Fragopoulou, E. Markatos, E. Athanasopoulos, M. Dika-
iakos, A. Labrinidis, A feedback-based approach to reduce duplicate
messages in unstructured peer-to-peer networks, in: S. Gorlatch, M. Dane-
lutto (Eds.), Integrated Research in GRID Computing, Springer US, 2007,
pp. 103–118.

[45] E. Pournaras, G. Exarchakos, N. Antonopoulos, Load-driven neighbour-
hood reconfiguration of gnutella overlay, Computer Communications 31
(2008) 3030–3039. Special Issue:Self-organization and self-management

in communications as applied to autonomic networks.
[46] A. Furno, E. Zimeo, Self-scaling cooperative discovery of service compo-

sitions in unstructured {P2P} networks, Journal of Parallel and Distributed
Computing 74 (2014) 2994–3025.

[47] E. Jeanvoine, C. Morin, Rw-ogs: An optimized randomwalk protocol for
resource discovery in large scale dynamic grids, in: Grid Computing, 2008
9th IEEE/ACM International Conference on, pp. 168–175.

[48] R. Robinson, J. Indulska, The emergence of order in random walk resource
discovery protocols, in: R. Khosla, R. Howlett, L. Jain (Eds.), Knowledge-
Based Intelligent Information and Engineering Systems, volume 3683 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2005, pp.
827–833.

[49] V. Bioglio, R. Gaeta, M. Grangetto, M. Sereno, Rateless codes and random
walksfor P2P resource discovery in grids, Parallel and Distributed Systems,
IEEE Transactions on 25 (2014) 1014–1023.

[50] D. Zhou, V. Lo, Cluster computing on the fly: resource discovery in a
cycle sharing peer-to-peer system, in: Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE International Symposium on, pp. 66–73.

[51] N. Bisnik, A. Abouzeid, Modeling and analysis of random walk search
algorithms in P2P networks, in: Hot Topics in Peer-to-Peer Systems, 2005.
HOT-P2P 2005. Second International Workshop on, pp. 95–103.

[52] S. El-Ansary, L. Alima, P. Brand, S. Haridi, Efficient broadcast in struc-
tured P2P networks, in: M. Kaashoek, I. Stoica (Eds.), Peer-to-Peer
Systems II, volume 2735 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2003, pp. 304–314.

[53] M. Sharmin, S. Ahmed, S. Ahamed, Safe-rd (secure, adaptive, fault toler-
ant, and efficient resource discovery) in pervasive computing environments,
in: Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, volume 2, pp. 271–276Vol. 2.

[54] J. Albrecht, et al., Design and implementation trade-offs for wide-area
resource discovery, Acm Transactions on Internet Technology 8(4) (2008).

[55] S. Basu, L. Costa, F. Brasileiro, S. Banerjee, P. Sharma, S.-J. Lee, Nodewiz:
Fault-tolerant grid information service, Peer-to-Peer Networking and
Applications 2 (2009) 348–366.

[56] N. J. Navimipour, A. M. Rahmani, A. H. Navin, M. Hosseinzadeh, Re-
source discovery mechanisms in grid systems: A survey, Journal of
Network and Computer Applications 41 (2014) 389–410.

[57] K. Lee, T. Choi, P. O. Boykin, R. J. Figueiredo, Matchtree: Flexible,
scalable, and fault-tolerant wide-area resource discovery with distributed
matchmaking and aggregation, Future Gener. Comput. Syst. 29 (2013)
1596–1610.

[58] T. Ghafarian, H. Deldari, B. Javadi, M. H. Yaghmaee, R. Buyya, Cy-
cloidgrid: A proximity-aware P2P-based resource discovery architecture
in volunteer computing systems, Future Gener. Comput. Syst. 29 (2013)
1583–1595.

[59] J. Li, Grid resource discovery based on semantically linked virtual organi-
zations, Future Gener. Comput. Syst. 26 (2010) 361–373.

[60] M. Siddiqui, T. Fahringer, Grid Resource Management: On-demand Provi-
sioning, Advance Reservation, and Capacity Planning of Grid Resources,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 157–177.

[61] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and
UDDI, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[62] S. Pastore, The service discovery methods issue: A web services uddi
specification framework integrated in a grid environment, J. Netw. Comput.
Appl. 31 (2008) 93–107.

[63] K. Tutschku, V. A. Mehri, A. Carlsson, K. V. Chivukula, J. Christenson,
On resource description capabilities of on-board tools for resource man-
agement in cloud networking and NFv infrastructures, in: 2016 IEEE
International Conference on Communications Workshops (ICC), pp. 442–
447.

[64] V. Vaikuntanathan, P. Voulgaris, Attribute based encryption using lattices,
2016. US Patent 20,160,156,465.

[65] S. Fugkeaw, H. Sato, Design and implementation of collaborative
ciphertext-policy attribute-role based encryption for data access control in
cloud, Journal of Information Security Research 6 (2015).

[66] G. Baranwal, D. P. Vidyarthi, A fair multi-attribute combinatorial double
auction model for resource allocation in cloud computing, Journal of
Systems and Software 108 (2015) 60–76.

[67] X. Yao, Z. Chen, Y. Tian, A lightweight attribute-based encryption scheme
for the internet of things, Future Generation Computer Systems 49 (2015)

35

https://omnetpp.org/
https://omnetpp.org/pmwiki/index.php?n=Main.SettingUpParallelDistributedSimulations
https://omnetpp.org/pmwiki/index.php?n=Main.SettingUpParallelDistributedSimulations

104–112.
[68] N. S. Kumar, G. R. Lakshmi, B. Balamurugan, Enhanced attribute based

encryption for cloud computing, Procedia Computer Science 46 (2015)
689–696.

[69] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, W. Shi,
Ciphertext-policy hierarchical attribute-based encryption with short cipher-
texts, Information Sciences 275 (2014) 370–384.

[70] G. Klyne, J. J. Carroll, B. McBride, Resource description framework (rdf):
Concepts and abstract syntax, W3C recommendation 10 (2004).

[71] A. Gill, T. Bull, A. Farmer, G. Kimmell, E. Komp, Types and type families
for hardware simulation and synthesis: The internals and externals of
kansas lava, in: Proceedings of the 11th International Conference on Trends
in Functional Programming, TFP’10, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 118–133.

[72] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, M. Gerards, Clash: Struc-
tural descriptions of synchronous hardware using haskell, in: Digital
System Design: Architectures, Methods and Tools (DSD), 2010 13th

Euromicro Conference on, pp. 714–721.
[73] J. Kuper, C. Baaij, M. Kooijman, M. Gerards, Exercises in architecture

specification using c #x03Bb;ash, in: Specification Design Languages
(FDL 2010), 2010 Forum on, pp. 1–6.

[74] D. K. Bimson, D. R. Hull, D. Nieten, The Lexical Bridge: A Methodology
for Bridging the Semantic Gaps between a Natural Language and an
Ontology, Springer International Publishing, Cham, pp. 137–151.

[75] B. D. Martino, G. Cretella, A. Esposito, A. Willner, A. Alloush, D. Bern-
stein, D. Vij, J. Weinman, Towards an ontology-based intercloud resource
catalogue – the IEEE p2302 intercloud approach for a semantic resource
exchange, in: Proceedings of the 2015 IEEE International Conference on
Cloud Engineering, IC2E ’15, IEEE Computer Society, Washington, DC,
USA, 2015, pp. 458–464.

[76] T. Tannenbaum, M. Litzkow, The condor distributed-processing system,
Dr Dobbs Journal 20(2) (1995) 40–&.

[77] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-g: A
computation management agent for multi-institutional grids, Cluster Com-
puting 5 (2002) 237–246.

[78] D. Anderson, Boinc: A system for public-resource computing and storage,
in: Fifth Ieee/Acm International Workshop on Grid Computing, pp. 4–10.

[79] R. Subramaniyan, P. Raman, A. D. George, M. Radlinski, Gems: Gossip-
enabled monitoring service for scalable heterogeneous distributed systems,
Cluster Computing 9 (2006) 101–120.

[80] X. Zhang, J. Schopf, Performance analysis of the globus toolkit monitoring
and discovery service, mds2, in: the 2004 Ieee International Performance,
Computing, and Communications Conference, pp. 843–849.

[81] S. Zanikolas, R. Sakellariou, A taxonomy of grid monitoring systems,
Future Generation Computer Systems 21(1) (2005) 163–188.

[82] R. Devarakonda, et al., Mercury: reusable metadata management, data
discovery and access system, Earth Science Informatics 3(1-2) (2010)
87–94.

[83] A. C. Caminero, A. Robles-Gómez, S. Ros, R. Hernández, L. Tobarra,
P2P-based resource discovery in dynamic grids allowing multi-attribute
and range queries, Parallel Computing 39 (2013) 615–637.

[84] Iamnitchi, I. T. Foster, On fully decentralized resource discovery in grid
environments, in: the Second International Workshop on Grid Computing
(Grid’01), Springer-Verlag, London, UK, 2001, pp. 51–62.

[85] J. A. Torkestani, A distributed resource discovery algorithm for {P2P} grids,
Journal of Network and Computer Applications 35 (2012) 2028–2036.

[86] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov, S. Haridi, Peer-to-peer resource
discovery in grids: Models and systems, Future Generation Computer
Systems 23 (2007) 864–878.

[87] N. Drost, et al., Zorilla: a peer-to-peer middleware for real-world dis-
tributed systems, Concurrency and Computation-Practice & Experience
23(13) (2011) 1506–1521.

[88] M. Reddy, et al., Vishwa: A reconfigurable P2P middleware for grid
computations, in: International Conference on Parallel Processing, pp.
381–388.

[89] A. I. T. Rowstron, P. Druschel, Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, in: Proceedings
of the IFIP/ACM International Conference on Distributed Systems Plat-
forms Heidelberg, Middleware ’01, Springer-Verlag, London, UK, 2001,
pp. 329–350.

[90] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, J. Kubiatowicz,
Tapestry: a resilient global-scale overlay for service deployment, Selected
Areas in Communications, IEEE Journal on 22 (2004) 41–53.

[91] Y.-C. Wu, C.-M. Liu, J.-H. Wang, Enhancing the performance of locating
data in chord-based P2P systems, in: Parallel and Distributed Systems,
2008. ICPADS ’08. 14th IEEE International Conference on, pp. 841–846.

[92] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content-addressable network, SIGCOMM Comput. Commun. Rev. 31
(2001) 161–172.

[93] A. Crespo, H. Garcia-Molina, Routing indices for peer-to-peer systems,
in: Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pp. 23–32.

[94] R. Brunner, A. C. Caminero, O. F. Rana, F. Freitag, L. Navarro, Network-
aware summarisation for resource discovery in P2P-content networks,
Future Generation Computer Systems 28 (2012) 563–572.

[95] J. Lee, P. Keleher, A. Sussman, Decentralized multi-attribute range search
for resource discovery and load balancing, The Journal of Supercomputing
68 (2014) 890–913.

[96] M. Ripeanu, Peer-to-peer architecture case study: Gnutella network, in:
Peer-to-Peer Computing, 2001. Proceedings. First International Confer-
ence on, pp. 99–100.

[97] Z. Tari, G. Craske, A query propagation approach to improve corba trading
service scalability, in: Distributed Computing Systems, 2000. Proceedings.
20th International Conference on, pp. 504–511.

[98] R. Aguiar, D. Gomes, J. Barraca, N. Lau, Cloudthinking as an intelligent
infrastructure for mobile robotics, Wireless Personal Communications 76
(2014) 231–244.

36

View publication statsView publication stats

https://www.researchgate.net/publication/316561073

	Introduction
	Motivation
	Design Principles
	Assumptions and Definitions
	Resource Description
	Syntaxes and Description Examples
	Defining Layers and Attributes
	Defining Queries
	Defining Systems

	Coding Efficiency

	HARD Mechanisms
	Overall System Architecture
	Initialization Phase
	Storage and Retrieval
	Resource Requester and Resource Information Provider
	Communication Events

	Algorithms
	LN Algorithm Description
	AN Algorithm Description
	SN Algorithm Description

	Evaluation and Simulation Results
	Simulation Approach
	Scalability for Synchronous Querying
	Simulation Setup
	Simulation Results

	Heterogeneity and Complexity
	Simulation Setup
	Simulation Results

	Scalability for Asynchronous Querying
	Simulation Setup
	Simulation Results

	Comparison with Different Proposals
	Simulation Setup
	Simulation Results

	Other Features

	Related Work
	Resource Description
	Resource Discovery

	Conclusion
	Acknowledgment

